Science.gov

Sample records for adaptive secondary mirror

  1. Optimized mirror supports, active primary mirrors and adaptive secondaries for the Optical Very Large Array (OVLA)

    NASA Astrophysics Data System (ADS)

    Arnold, Luc

    1994-06-01

    This article first deals with general aspects of optimizing mirror supports. A wide variety of support topologies have been optimized by Nelson et al for unobscured entrance pupils. Optical forces and locations of point supports have been calculated here for annular pupils. Efficient topologies introducing a small amount of defocusing are also proposed for unobscured and annular pupils. Support efficiencies are given for each topology. Wavefront errors are estimated in the case of a defective cell, in order to specify tolerances on forces and geometries. The OVLA active optics is then discussed. The very thin, meniscus-shaped primary will be actively supported by 29 actuators and 3 fixed points. Actuator locations and forces have been calculated to minimize the mirror deflection under its own weight but also to allow a good control of astigmatism. We finally present a study of a concave adaptive secondary for the OVLA telescopes. As an initial result, we propose a defocus adaptive corrector with a variable thickness distribution. Conditions of use are defined, and performances are evaluated.

  2. Evolution after mirror neurons: tapping the shared manifold through secondary adaptation.

    PubMed

    Gervais, Matthew M

    2014-04-01

    Cook et al. laudably call for careful comparative research into the development of mirror neurons. However, they do so within an impoverished evolutionary framework that does not clearly distinguish ultimate and proximate causes and their reciprocal relations. As a result, they overlook evidence for the reliable develop of mirror neurons in biological and cultural traits evolved to work through them.

  3. JWST Secondary Mirror Deploy Timelapse

    NASA Video Gallery

    Setting up NASA's James Webb Space Telescope's secondary mirror in space will require special arms that resemble a tripod that was recently demonstrated in a NASA cleanroom. TRT: 1:25 / Credit: NAS...

  4. LST secondary mirror articulation mechanism

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The analysis, design, manufacture, test, and delivery of one secondary mirror articulation mechanism for the large space telescope (LST) are reported. The mechanism provides angular freedom about two axes that are perpendicular to the optical axis of the secondary mirror. Motion in each axis is controlled from two sources; one source provides alignment, the other source provides stabilization. Two articulation mechanism configurations were evaluated. In one configuration the stabilization system was assembled with piezoelectric actuators. In the second configuration the stabilization system utilized flexure torque motor actuators. The alignment system was the same for both configurations. System testing confirmed performance that met or exceeded all operational requirements. The two types of stabilization actuators had different performance characteristics. Both types demonstrated position resolution and frequency response better than specified limits.

  5. Finite element analysis of carbon fiber composite adaptive mirrors

    NASA Astrophysics Data System (ADS)

    Kendrew, Sarah; Doel, Peter

    2004-10-01

    With the advent of the new generation of ground-based telescopes with primary sizes of 30-100 m, adaptive optics (AO) technology is in rapid development. One important area of research is that of integration of AO into the telescope's operation. A possible solution for this is the use of an adaptive secondary mirror. However, for a secondary of several meters in size, this presents many problems in choice of material, as well as design for the adaptive control. An active mirror prototype made out of a carbon fibre composite material (CFC) is under development at University College London in collaboration with QinetiQ and Cobham Composites. We present here results from finite element analysis of this mirror, as well as modelling results of an adaptive secondary mirror section as might be developed for the new class of telescopes. These results indicate that CFC could indeed present a viable alternative to more traditional deformable mirror materials.

  6. Development of GMT fast steering secondary mirror assembly

    NASA Astrophysics Data System (ADS)

    Cho, Myung; Corredor, Andrew; Dribusch, Christoph; Park, Won Hyun; Muller, Gary; Johns, Matt; Hull, Charlie; Kern, Jonathan; Kim, Young-Soo

    2014-07-01

    The Giant Magellan Telescope (GMT) is one of Extremely large telescopes, which is 25m in diameter featured with two Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). The FSM is 3.2 m in diameter and built as seven 1.1 m diameter circular segments conjugated 1:1 to the seven 8.4m segments of the primary. The guiding philosophy in the design of the FSM segment mirror is to minimize development and fabrication risks ensuring a set of secondary mirrors are available on schedule for telescope commissioning and early operations in a seeing limited mode. Each FSM segment contains a tip-tilt capability for fine co-alignment of the telescope subapertures and fast guiding to attenuate telescope wind shake and mount control jitter, thus optimizing the seeing limited performance of the telescope. The final design of the FSM mirror and support system configuration was optimized using finite element analyses and optical performance analyses. The optical surface deformations, image qualities, and structure functions for the gravity print-through cases, thermal gradient effects, and dynamic performances were evaluated. The results indicated that the GMT FSM mirror and its support system will favorably meet the optical performance goals for residual surface error and the FSM surface figure accuracy requirement defined by encircled energy (EE80) in the focal plane. The mirror cell assembly analysis indicated an excellent dynamic stiffness which will support the goal of tip-tilt operation.

  7. The secondary mirror concept for the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Cayrel, Marc; Bonnet, Henri; Ciattaglia, Emanuela; Esselborn, Michael; Koch, Franz; Kurlandczyk, Herve; Pettazzi, Lorenzo; Rakich, Andrew; Sedghi, Babak

    2014-07-01

    The E-ELT is an active and adaptive 39-m telescope, with an anastigmat optical solution (5 mirrors including two flats), currently being developed by the European Southern Observatory (ESO). The convex 4-metre-class secondary mirror (M2) is a thin Zerodur meniscus passively supported by an 18 point axial whiffletree. A warping harness system allows to correct low order deformations of the M2 Mirror. Laterally the mirror is supported on 12 points along the periphery by pneumatic jacks. Due to its high optical sensitivity and the telescope gravity deflections, the M2 unit needs to allow repositioning the mirror during observation. Considering its exposed position 30m above the primary, the M2 unit has to provide good wind rejection. The M2 concept is described and major performance characteristics are presented.

  8. LSST primary, secondary, and tertiary mirror support systems

    NASA Astrophysics Data System (ADS)

    Cuerden, Brian; Sebag, Jacques; Mathews, Scott; Cho, Myung; Lee, Joon; West, Steven

    2004-09-01

    The current LSST Baseline Configuration has a field of view of 3.5 degrees and an optical etendue of 302 meters square degrees square. The etendue calculation includes the effect of gradual vignetting by the camera as the field angle increases. A current optical point design includes an 8.4 m spun cast light-weighted borosilicate primary mirror, a 3.2 m secondary mirror and a 5.0 m tertiary mirror. The goal of this study is to determine if these mirrors can be actively supported and retain figure control over elevation angles without closed-loop control based on wave-front measurement. Support systems for the tertiary and primary mirrors are adapted from proven systems utilized on 6.5 and 8.4 m class primaries developed by the University of Arizona"s Mirror Laboratory. The number and locations of axial and lateral supports is determined for each mirror and the gravitational and support induced surface distortions are calculated and are shown to be within budgeted limits. The support components and their performance are described and it is demonstrated that predicted mirror distortion attributable to the support system is consistent with the known performance of the support components.

  9. Wind responses of the LSST secondary mirror

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; Vogiatzis, Konstantinos; Sebag, Jacques; Neill, Douglas R.

    2012-09-01

    The Large Synoptic Survey Telescope (LSST) optical design calls for a large annular 3.4 m diameter meniscus convex aspheric Secondary Mirror (M2). The M2 has a mass of approximately 1.5 metric tons and the optimized mirror support system consists of 72 axial actuators, mounted at the mirror back surface, and 6 tangent link lateral supports mounted around the outer edge. A fully integrated M2 Finite Element Model (FEM) including the mirror and the support systems has been developed to investigate the performance of the M2 assembly and to determine the image degradation due to dynamic wind loading. Detailed wind response analysis was performed based on the input from Computational Fluid Dynamics (CFD) simulations. Image quality calculations of the time history responses and Power Spectrum Density (PSD) are addressed.

  10. Development of the SOFIA silicon carbide secondary mirror

    NASA Astrophysics Data System (ADS)

    Fruit, Michel; Antoine, Pascal; Varin, Jean-Luc; Bittner, Hermann; Erdmann, Matthias

    2003-02-01

    The SOFIA telescope is ajoint NASA-DLR project for a 2.5 m airborne Stratospheric Observatory for IR Astronomy to be flown in a specially adapted Boeing 747 SP plane, Kayser-Threde being resopinsible for the development of the Telescope Optics. The φ 352 mm Secondary Mirror is mounted ona chopping mechanism to allow avoidance of background noise during IR observations. Stiffness associated to lightness is a major demand for such a mirror to achieve high frequency chopping. This leads to select SIlicon Carbide for the mirror blank. Its development has been run by the ASTRIUM/BOOSTEC joint venture SiCSPACE, taking full benefit of the instrinsic properties of the BOOSTEC SiC-100 sintered material, associated to qualified processes specifically developed for space borne mirrors by ASTRIUM. Achieved performances include a low mass of 1.97 kg, a very high stiffness with a first resonant frequency of 1865 Hz and a measured optical surface accuracy of 39 nm rms, using Ion Beam Figuring. It is proposed here to present the major design features of the SOFIA Secondary Mirror, highlighting the main advantages of using Silicon Carbide, the main steps of its development and the achieved optomechanical performances of the developed mirror.

  11. Thermo-optically driven adaptive mirror

    NASA Astrophysics Data System (ADS)

    Reinert, Felix; Lüthy, Willy

    2006-02-01

    The ideal adaptive optical mirror combines large aperture with high spatial and temporal resolution and a phase shift of at least 2π. Further, a simple low-cost solution is preferred. No adaptive system can perfectly fulfill all these requirements. We present a system that has the potential to reach this goal with the exception of high temporal resolution. But even with a moderate temporal resolution of one second such a system can find practical applications. For example as a laser resonator mirror that allows to modify the intensity distribution of the emission, or to correct slowly varying aberrations of optical systems. Two possible mechanisms can be used to change the optical path length of the adaptive mirror: thermal expansion of the mirror substrate or the thermally induced change of the refractive index (thermal dispersion) of a medium in front of the mirror. Both mechanisms have been shown to lead to promising results. In both cases heating was performed by irradiation of light in the active medium. The thermal dispersion based adaptive mirror is built with a thin layer of a liquid in front of a mirror. To allow a modification of the refractive index by irradiation with a diode laser at 808 nm, a suitable absorber is dissolved in the water. With chopped irradiation a resolution of 3.8 Hz at 30 % contrast is measured. This mirror has been used in a laser resonator to modify the output distribution of the laser. The thermal expansion based adaptive mirror is built with a thin layer of a silicon elastomer with a gold coated front side. We present a preparation method to produce thin films of Sylgard on sapphire. With an irradiated intensity of only 370 mW/cm2 surface modulations of up to 350 nm are obtained. With a test pattern a resolution of 1.6 line-pairs per millimeter at 30 % contrast is measured. The temporal resolution is better than one second.

  12. Performance prediction of the LSST secondary mirror

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; Liang, Ming; Neill, Douglas R.

    2009-08-01

    The Large Synoptic Survey Telescope (LSST) is an 8.4 meter telescope with a field of view of 10 square degrees. This telescope will be capable of mapping the entire visible sky every few nights via sequential 15-second exposures, opening new windows on the universe from dark energy to time variable objects. The LSST optics calls for an annular 3.5 m diameter Secondary Mirror (M2), which is a large meniscus convex asphere (ellipse). The M2 converts the beam reflected from the f/1.2 primary mirror into a beam for the f/0.83 Tertiary Mirror (M3). The M2 has a mass of approximately 1.5 metric tons and the mirror support system will need to maintain the mirror figure at different gravity orientations. The optical performance evaluations were made based on the optimized support systems consisting of 72 axial supports, mounted at the mirror back surface, and 6 tangent link lateral supports mounted around the outer edge. The predicted print-though errors of the M2 supports are 8nm RMS surface for axial gravity and 10nm RMS surface for lateral gravity. The natural frequencies were calculated for the M2 dynamic performance. In addition, thermo-elastic analyses of M2 for thermal gradient cases were conducted. The LSST M2 support system has an active optics capability to maintain optical figure and its performance to correct low-order aberrations has been demonstrated. The optical image qualities and structure functions for the axial and lateral gravity print-through cases, and thermal gradient effects were calculated.

  13. Adaptive PVDF piezoelectric deformable mirror system.

    PubMed

    Sato, T; Ishida, H; Ikeda, O

    1980-05-01

    An adaptive mirror system whose surface deforms smoothly according to the desired curve has been made of polyvinylidene fluoride (PVDF) piezoelectric film and laminar glass plate. One surface of the glass plate was evaporated with silver, and this side was used as the mirror surface. A PVDF film, whose shape was determined by the deformation curve, was pasted tightly on the other surface. The mirror deforms smoothly along this curve with the application of a single voltage to the film. Holographic filter and feedback were lso considered to improve the static and dynamic characteristics. Typically, deformation along ax(2)+bx(3) was obtained. PMID:20221054

  14. Large thin adaptive x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Doel, Peter; Atkins, Carolyn; Thompson, Samantha; Brooks, David; Yao, Jun; Feldman, Charlotte; Willingale, Richard; Button, Tim; Zhang, Dou; James, Ady

    2007-09-01

    This paper describes the progress made in a proof of concept study and recent results of a research program into large active x-ray mirrors that is part of the UK Smart X-ray Optics project. The ultimate aim is to apply the techniques of active/adaptive optics to the next generation of nested shell astronomical X-ray space telescopes. A variety of deformable mirror technologies are currently available, the most promising of which for active X-ray mirrors are probably unimorph and bimorph piezoelectric mirrors. In this type of mirror one or more sheets of piezoelectric material are bonded to or coated with a passive reflective layer. On the back or between the piezoceramic layer/layers are series of electrodes. Application of an electric field causes the piezoelectric material to undergo local deformation thus changing the mirror shape. Starting in 2005 a proof of concept active mirror research program has been undertaken. This work included modelling and development of actively controlled thin shell mirrors. Finite element models of piezo-electric actuated mirrors have been developed and verified against experimental test systems. This has included the modelling and test of piezo-electric hexagonal unimorph segments. Various actuator types and low shrinkage conductive bonding methods have been investigated and laboratory tests of the use of piezo-electric actuators to adjust the form of an XMM-Newton space telescope engineering model mirror shell have been conducted and show that movement of the optics at the required level is achievable. Promising technological approaches have been identified including moulded piezo-ceramics and piezo-electrics fibre bundles.

  15. Optomechanical analysis and testing of a fast steering secondary mirror prototype for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Corredor, Andrew; Park, Won Hyun; Cho, Myung; Kim, Young-Soo

    2013-09-01

    The Giant Magellan Telescope (GMT) will be one of the next class of extremely large segmented mirror telescopes. The GMT will utilize two Gregorian secondary mirrors, and Adaptive Secondary Mirror (ASM) and a Fast-steering Secondary Mirror (FSM). The FSM consists of six off-axis mirrors surrounding a central on-axis circular segment. The segments are 1.1 m in diameter and conjugated 1:1 to the seven 8.4 m segments of the primary. A prototype of the FSM mirror (FSMP) has been developed, analyzed and tested in order to demonstrate the mechanical and optical responses of the mirror assembly when subjected to structural and thermal loadings. In this paper, the mechanical and thermal performances of the FSMP were evaluated by performing finite element analyses (FEA) in NX Nastran. The deformation of the mirror's lateral flexure was measured when the FSMP was axially loaded and the temperature response of the mirror assembly was measured when exposed to a sample thermal environment. In order to validate the mirror/lateral flexure design concept, the mechanical, optical and thermal measurements obtained from the tests conducted on mirrors having two different lateral flexures were compared to the responses calculated by FEA.

  16. VLT deformable secondary mirror: integration and electromechanical tests results

    NASA Astrophysics Data System (ADS)

    Biasi, R.; Andrighettoni, M.; Angerer, G.; Mair, C.; Pescoller, D.; Lazzarini, P.; Anaclerio, E.; Mantegazza, M.; Gallieni, D.; Vernet, E.; Arsenault, R.; Madec, P.-Y.; Duhoux, P.; Riccardi, A.; Xompero, M.; Briguglio, R.; Manetti, M.; Morandini, M.

    2012-07-01

    The VLT Deformable secondary is planned to be installed on the VLT UT#4 as part of the telescope conversion into the Adaptive Optics test Facility (AOF). The adaptive unit is based on the well proven contactless, voice coil motor technology that has been already successfully implemented in the MMT, LBT and Magellan adaptive secondaries, and is considered a promising technical choice for the forthcoming ELT-generation adaptive correctors, like the E-ELT M4 and the GMT ASM. The VLT adaptive unit has been recently assembled after the completion of the manufacturing and modular test phases. In this paper, we present the most relevant aspects of the system integration and report the preliminary results of the electromechanical tests performed on the unit. This test campaign is a typical major step foreseen in all similar systems built so far: thanks to the metrology embedded in the system, that allows generating time-dependent stimuli and recording in real time the position of the controlled mirror on all actuators, typical dynamic response quality parameters like modal settling time, overshoot and following error can be acquired without employing optical measurements. In this way the system dynamic and some aspect of its thermal and long term stability can be fully characterized before starting the optical tests and calibrations.

  17. Design and development of a fast-steering secondary mirror for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Cho, Myung; Corredor, Andrew; Dribusch, Christoph; Park, Kwijong; Kim, Young-Soo; Moon, Il-Kweon

    2011-09-01

    The Giant Magellan Telescope (GMT) will be a 25m class telescope which is one of the extremely large telescope projects in the design and development phase. The GMT will have two Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). Both secondary mirrors are 3.2 m in diameter and built as seven 1.1 m diameter circular segments conjugated 1:1 to the seven 8.4m segments of the primary. The FSM has a tip-tilt feature to compensate image motions from the telescope structure jitters and the wind buffeting. The support system of the lightweight mirror consists of three axial actuators, one lateral support at the center, and a vacuum system. A parametric study and optimization of the FSM mirror blank and central lateral flexure design were performed. This paper reports the results of the trade study. The optical image qualities and structure functions for the axial and lateral gravity print-through cases, thermal gradient effects, and dynamic performances will be discussed for the case of a lightweighted segment with a center thickness of 140 mm weighing approximately 105 kg.

  18. An Aluminum Secondary Mirror for the SOFIA Telescope

    NASA Astrophysics Data System (ADS)

    Erickson, E. F.; Kunz, N.; Brivkalns, C. A.; Brown, T. M.; Honaker, M.

    2002-12-01

    The secondary mirror for the SOFIA telescope is made from silicon carbide. It is 352 mm in diameter, weighs 1.8 kg, and is finished to good optical tolerances. The light weight is essential for chopping with the secondary support mechanism to suppress low frequency "sky" noise. To achieve the light weight, the back side of the mirror is structured with thin-walled pockets; the face plate is 2.3 mm thick. The material is stiff, has low density and high thermal conductance, but is brittle. The latter is a concern because failure of this mirror would render the telescope inoperable. For this reason we are designing a spare secondary mirror. The spare must match the mass and moments of inertia of the SiC mirror (to permit effective chopping), but should be more robust and much cheaper. The spare should permit continuation of much of the observing program, and since many of SOFIA's observations will be made in the far-infrared, the optical quality of the spare can be significantly lower than that of the SiC secondary. Currently it appears that a bare aluminum secondary can be made to meet the requirements, while achieving a diffraction-limited wavelength of 20 microns or less. The design details will be described and discussed in the paper. We gratefully acknowledge NASA support of this work.

  19. Active optics control of VST telescope secondary mirror.

    PubMed

    Schipani, Pietro; D'Orsi, Sergio; Fierro, Davide; Marty, Laurent

    2010-06-01

    In telescopes based on active optics, defocus and coma are usually compensated for by secondary mirror movements. They are performed at the Very Large Telescope Survey Telescope (VST) with a hexapod--a parallel robot with six degrees of freedom positioning capability. We describe the application of the two-mirror telescope theory to the VST case and the solutions adopted for the hexapod control. We present the results of performance and reliability tests performed both in the laboratory and at the telescope.

  20. Development of the fast steering secondary mirror for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Cho, Myung; Corredor, Andrew; Dribusch, Christoph; Park, Won-Hyun; Muller, Gary; Johns, Matt; Hull, Charlie; Sheehan, Michael; Kern, Jonathan; Kim, Young Soo; Hansen, Eric; Kim, Seongdo

    2013-09-01

    The Giant Magellan Telescope (GMT) Fast Steering Secondary Mirror (FSM) is one of the GMT two Gregorian secondary mirrors. The FSM is 3.2 m in diameter and built as seven 1.06 m diameter circular segments. The conceiving philosophy used on the design of the FSM segment mirror is to minimize development and fabrication risks ensuring a set of secondary mirrors are available on schedule for telescope commissioning and early operations in a seeing limited mode, thereby mitigating risks associated with fabrication of the Adaptive Secondary Mirrors (ASM). This approach uses legacy design features from the Magellan Telescope secondary mirrors to reduce such risks. The final design of the substrate and support system configuration was optimized using finite element analyses and optical performance analyses. The optical performance predictions of the FSM are based on a substrate with a diameter of 1.058m (on-axis), 1.048m (off-axis), a depth of 120mm, and a face plate thickness of 20mm leading to a mass of approximately 90kg. The optical surface deformations, image qualities, and structure functions for the axial and lateral gravity print-through cases, thermal gradient effects, and dynamic performances were evaluated. The results indicated that the GMT FSM mirror and its support system will favorably meet the optical performance goals for residual surface error and the FSM surface figure accuracy requirement defined by encircled energy in the focal plane. The mirror cell assembly analysis indicated an excellent dynamic stiffness which will support the goal of 20 Hz tip-tilt motion.

  1. Prototype Secondary Mirror Assembly For The Space Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Stier, M.; Duffy, M.; Gullapalli, S.; Rockwell, R.; Sileo, F.; Krim, M.

    1988-04-01

    We describe our concept for a liquid helium temperature prototype secondary mirror assembly (PSMA) for the Space Infrared Telescope Facility. SIRTF, a NASA "Great Observatory" to be launched in the 1990's, is a superfluid heliumcooled 1-meter class telescope with much more stringent performance requirements than its precursor the Infrared Astronomical Satellite (IRAS). The SIRTF secondary mirror assembly must operate near 4 K and provide the functions of 2-axis dynamic tilting ("chopping") in addition to the conventional functions of focus and centering. The PSMA must be able to withstand random vibration testing and provide all of the functions needed by the SIRTF observatory. Our PSMA concept employs a fused quartz mirror kinematically attached at its center to an aluminum cruciform. The mirror/cruciform assembly is driven in tilt about its combined center of mass using a unique flexure pivot and a four-actuator control system with feed-back provided by pairs of eddy current position sensors. The actuators are mounted on a second flexure-pivoted mass providing angular momentum compensation and isolating the telescope from vibration-induced disturbances. The mirror/cruciform and the reaction mass are attached to opposite sides of an aluminum mounting plate whose AL/L characteristics are nominally identical to that of the aluminum flexure pivot material. The mounting plate is connected to the outer housing by a focus and centering mechanism based upon the six degree of freedom secondary mirror assembly developed for the Hubble Space Telescope.

  2. HCN laser with an adaptive output mirror

    SciTech Connect

    Kamenev, Yu E; Masalov, S A; Filimonova, A A

    2006-09-30

    A device for optimal coupling between a laser resonator and the external medium, having the form of one-dimensional wire grating conjugated with a plane mirror with an aperture, is proposed, developed and tested experimentally. The dependences of the output laser power on the separation between the grating and the mirror, diameter of the aperture in the plane mirror, and the grating period, are studied. The obtained results not only confirm the possibility of using such a coupling device, but also point towards the ways and principles of its application. (lasers)

  3. Optical figuring specifications for thin shells to be used in adaptive telescope mirrors

    NASA Astrophysics Data System (ADS)

    Riccardi, A.

    2006-06-01

    The present work describes the guidelines to define the optical figuring specifications for optical manufacturing of thin shells in terms of figuring error power spectrum (and related rms vs scale distributon) to be used in adaptive optics correctors with force actuators like Deformable Secondary Mirrors (DSM). In particular the numerical example for a thin shell for a VLT DSM is considered.

  4. Performance prediction of the TMT secondary mirror support system

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.

    2008-07-01

    The Ritchey-Chretien (RC) design of the Thirty Meter Telescope (TMT) optics calls for a 3.1 m diameter Secondary Mirror (M2), which is a large meniscus convex hyperboloid. The M2 converts the beam reflected from the f/1 primary mirror into an f/15 beam for the science instruments. The M2 Mirror (M2M) has a mass of approximately two metric tons and the mirror support system will need to maintain the mirror figure at different gravity orientations. Recent changes in the telescope configuration to RC from Aplanatic Gregorian (AG) prescription and reduction of the fully-illuminated field of view to 15 arc minutes required a design change in the M2 mirror figure from a concave radius to a convex radius, with a significant reduction in diameter, which in turn requires re-optimization of the mirror support systems. The optical performance evaluations were made based on the optimized support systems resulting from the change from AG to RC. The M2 optimized support system consists of 60 axial supports, mounted at the mirror back surface, and 24 lateral supports mounted along the outer edge. The predicted print-though errors of the M2M supports are 10nm RMS surface for axial gravity and 2nm RMS surface for lateral gravity. This M2M support system has an active optics capability to accommodate potential mechanical or thermal errors; its performance to correct low-order aberrations has been analyzed. A structure function of the axial gravity support print-through was calculated.

  5. Modeling electrostrictive deformable mirrors in adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Hom, Craig L.; Dean, Peter D.; Winzer, Stephen R.

    2000-06-01

    Adaptive optics correct light wavefront distortion caused by atmospheric turbulence or internal heating of optical components. This distortion often limits performance in ground-based astronomy, space-based earth observation and high energy laser applications. The heart of the adaptive optics system is the deformable mirror. In this study, an electromechanical model of a deformable mirror was developed as a design tool. The model consisted of a continuous, mirrored face sheet driven with multilayered, electrostrictive actuators. A fully coupled constitutive law simulated the nonlinear, electromechanical behavior of the actuators, while finite element computations determined the mirror's mechanical stiffness observed by the array. Static analysis of the mirror/actuator system related different electrical inputs to the array with the deformation of the mirrored surface. The model also examined the nonlinear influence of internal stresses on the active array's electromechanical performance and quantified crosstalk between neighboring elements. The numerical predictions of the static version of the model agreed well with experimental measurements made on an actual mirror system. The model was also used to simulate the systems level performance of a deformable mirror correcting a thermally bloomed laser beam. The nonlinear analysis determined the commanded actuator voltages required for the phase compensation and the resulting wavefront error.

  6. Space Adaptation of Active Mirror Segment Concepts

    NASA Technical Reports Server (NTRS)

    Ames, Gregory H.

    1999-01-01

    This report summarizes the results of a three year effort by Blue Line Engineering Co. to advance the state of segmented mirror systems in several separate but related areas. The initial set of tasks were designed to address the issues of system level architecture, digital processing system, cluster level support structures, and advanced mirror fabrication concepts. Later in the project new tasks were added to provide support to the existing segmented mirror testbed at Marshall Space Flight Center (MSFC) in the form of upgrades to the 36 subaperture wavefront sensor. Still later, tasks were added to build and install a new system processor based on the results of the new system architecture. The project was successful in achieving a number of important results. These include the following most notable accomplishments: 1) The creation of a new modular digital processing system that is extremely capable and may be applied to a wide range of segmented mirror systems as well as many classes of Multiple Input Multiple Output (MIMO) control systems such as active structures or industrial automation. 2) A new graphical user interface was created for operation of segmented mirror systems. 3) The development of a high bit rate serial data loop that permits bi-directional flow of data to and from as many as 39 segments daisy-chained to form a single cluster of segments. 4) Upgrade of the 36 subaperture Hartmann type Wave Front Sensor (WFS) of the Phased Array Mirror, Extendible Large Aperture (PAMELA) testbed at MSFC resulting in a 40 to 5OX improvement in SNR which in turn enabled NASA personnel to achieve many significant strides in improved closed-loop system operation in 1998. 5) A new system level processor was built and delivered to MSFC for use with the PAMELA testbed. This new system featured a new graphical user interface to replace the obsolete and non-supported menu system originally delivered with the PAMELA system. The hardware featured Blue Line's new stackable

  7. Fabrication Methods for Adaptive Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; White, Victor E.; Manohara, Harish; Patterson, Keith D.; Yamamoto, Namiko; Gdoutos, Eleftherios; Steeves, John B.; Daraio, Chiara; Pellegrino, Sergio

    2013-01-01

    Previously, it was difficult to fabricate deformable mirrors made by piezoelectric actuators. This is because numerous actuators need to be precisely assembled to control the surface shape of the mirror. Two approaches have been developed. Both approaches begin by depositing a stack of piezoelectric films and electrodes over a silicon wafer substrate. In the first approach, the silicon wafer is removed initially by plasmabased reactive ion etching (RIE), and non-plasma dry etching with xenon difluoride (XeF2). In the second approach, the actuator film stack is immersed in a liquid such as deionized water. The adhesion between the actuator film stack and the substrate is relatively weak. Simply by seeping liquid between the film and the substrate, the actuator film stack is gently released from the substrate. The deformable mirror contains multiple piezoelectric membrane layers as well as multiple electrode layers (some are patterned and some are unpatterned). At the piezolectric layer, polyvinylidene fluoride (PVDF), or its co-polymer, poly(vinylidene fluoride trifluoroethylene P(VDF-TrFE) is used. The surface of the mirror is coated with a reflective coating. The actuator film stack is fabricated on silicon, or silicon on insulator (SOI) substrate, by repeatedly spin-coating the PVDF or P(VDFTrFE) solution and patterned metal (electrode) deposition. In the first approach, the actuator film stack is prepared on SOI substrate. Then, the thick silicon (typically 500-micron thick and called handle silicon) of the SOI wafer is etched by a deep reactive ion etching process tool (SF6-based plasma etching). This deep RIE stops at the middle SiO2 layer. The middle SiO2 layer is etched by either HF-based wet etching or dry plasma etch. The thin silicon layer (generally called a device layer) of SOI is removed by XeF2 dry etch. This XeF2 etch is very gentle and extremely selective, so the released mirror membrane is not damaged. It is possible to replace SOI with silicon

  8. Overview of deformable mirror technologies for adaptive optics and astronomy

    NASA Astrophysics Data System (ADS)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  9. "Pocket" Deformable Mirror for an Integrated On-Mirror Adaptive System

    NASA Astrophysics Data System (ADS)

    Beresnev, L.; Voronstov, M.; Wangsness, P.

    Existing HEL beam control architectures are extremely complicated because they require installation and alignment of a large number of optical elements, resulting in substantial increase of the entire HEL system size, weight and cost. There is a strong interest in designing new robust beam control capabilities integrated directly to a beam director system. The discussed technical effort is focused on development and demonstration of a new adaptive beam director (ABD) consisting of a beam forming telescope with wavefront compensation integrated solely on its ultra-lightweight primary mirror. This on-mirror AO system will be controlled using a stochastic parallel gradient descent (SPGD) controller specifically designed for target-in-the-loop (TIL) operation. The key component of the on-mirror AO system is its primary mirror. This mirror contains an array of pockets machined on its backside, called a pocket-mirror. A special dielectric layer deposited on the front surface of the pocket-mirror is highly reflective for the HEL wavelength ???HEL, and semi-transparent for the laser illuminator wavelength ?ILL. Thus the wave ?ILL scattered by the target surface enters inside the mirror pockets, while the outgoing HEL beam with wavelength ?HEL is totally reflected. The pockets of the ABD pocket-mirror include opto-electronic components that can provide local (inside pocket-window) wavefront correction and sensing. Wavefront correction at each pocket aperture is performed using electrically sectioned piezo-ceramic annular rings made from thin (~0.3 mm) bimorph discs glued to the pocket bottoms. Control voltages applied to these electrodes result in mechanical deformation of the pocket-window front surface thus providing compensation of low-order aberrations at each pocket-window. Packaging the pockets with a high fill factor allows high resolution control of the beam director primary mirror shape. Preliminary analysis has shown that surface stroke near 3 microns with

  10. Ferrofluid based deformable mirrors: a new approach to adaptive optics using liquid mirrors

    NASA Astrophysics Data System (ADS)

    Laird, Phil R.; Bergamasco, R.; Bérubé, Vincent; Borra, Ermanno F.; Gingras, Julie; Ritcey, Anna-Marie R.; Rioux, Myriam; Robitaille, Nathalie; Thibault, Simon; Vieira da Silva, L., Jr.; Yockell-Lelièvre, Helene

    2003-02-01

    The trend towards ever larger telescopes and more advanced adaptive optics systems is driving the need for deformable mirrors with a large number of low cost actuators. Liquid mirrors have long been recognized a potential low cost alternative to conventional solid mirrors. By using a water or oil based ferrofluid we are able to benefit from a stronger magnetic response than is found in magnetic liquid metal amalgams and avoid the difficulty of passing a uniform current through a liquid. Depositing a thin silver colloid known as a metal liquid like film (MELLF) on the ferrofluid surface solves the problem of low reflectivity of pure ferrofluids. This combination provides a liquid optical surface that can be precisely shaped in a magnetic field. We present experimental results obtained with a prototype deformable liquid mirror based on this combination.

  11. Multiple focusing with adaptive time-reversal mirror

    NASA Astrophysics Data System (ADS)

    Kim, J. S.; Shin, K. C.

    2004-02-01

    Recently, adaptivity was introduced to time-reversal mirror to steer the nulls, and referred to as an adaptive time-reversal mirror (ATRM) [J. S. Kim, H. C. Song, and W. A. Kuperman, J. Acoust. Soc. Am. 109, 1817-1825 (2001)]. In this study, ATRM is extended to simultaneous multiple focusing in an ocean waveguide. The multiple focusing is achieved by imposing a set of constraints in the formulation to find the weight vectors. The algorithm is applied to the long-range underwater acoustic communication to show, via simulation, that the simultaneous pulse compression at multiple receiving locations is achieved.

  12. Robust control of a bimorph mirror for adaptive optics systems.

    PubMed

    Baudouin, Lucie; Prieur, Christophe; Guignard, Fabien; Arzelier, Denis

    2008-07-10

    We apply robust control techniques to an adaptive optics system including a dynamic model of the deformable mirror. The dynamic model of the mirror is a modification of the usual plate equation. We propose also a state-space approach to model the turbulent phase. A continuous time control of our model is suggested, taking into account the frequential behavior of the turbulent phase. An H(infinity) controller is designed in an infinite-dimensional setting. Because of the multivariable nature of the control problem involved in adaptive optics systems, a significant improvement is obtained with respect to traditional single input-single output methods.

  13. Adaptive optics ophthalmologic systems using dual deformable mirrors

    SciTech Connect

    Jones, S; Olivier, S; Chen, D; Sadda, S; Joeres, S; Zawadzki, R; Werner, J S; Miller, D

    2007-02-01

    Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer/tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to ''focus'' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.

  14. Modeling and simulation of a 6-DOF parallel platform for telescope secondary mirror

    NASA Astrophysics Data System (ADS)

    Yue, Zhongyu; Ye, Yu; Gu, Bozhong

    2014-07-01

    The 6-DOF parallel platform in this paper is a kind of Stewart platform. It can be used as supporting structure for telescope secondary mirror. In order to adapt the special dynamic environment of the telescope secondary mirror and to be installed in extremely narrow space, a unique parallel platform is designed. PSS Stewart platform and SPS Stewart platform are analyzed and compared. Then the PSS Stewart platform is chosen for detailed design. The virtual prototyping model of the parallel platform is built. The model is used for the analysis and calculation of multi-body dynamics. With the help of ANSYS, the finite element model of the platform is built and then the analysis is performed. According to the above analysis the experimental prototype of the platform is built.

  15. Fast liquid crystal adaptive mirror for wavefront correction

    NASA Astrophysics Data System (ADS)

    Anderson, Michael H.; Caldwell, Loren M., Jr.; Scheffler, Craig R.

    1999-11-01

    We have designed and constructed a prototype adaptive mirror using a nematic liquid crystal as the optical phase modulating material. The mirror has 127 hexagonal elements (actuators) in a 12 mm diameter clear aperture. The liquid crystal is a dual-frequency type that can be driven both parallel to, and orthogonal to, the external driving field by changing the drive frequency. With the dual-frequency liquid crystal we have achieved 1 micron of optical phase delay with full-cycle switching times of 6 ms. The electronic driver was designed to interface with an IBM compatible PC.

  16. Modeling for deformable mirrors and the adaptive optics optimization program

    SciTech Connect

    Henesian, M.A.; Haney, S.W.; Trenholme, J.B.; Thomas, M.

    1997-03-18

    We discuss aspects of adaptive optics optimization for large fusion laser systems such as the 192-arm National Ignition Facility (NIF) at LLNL. By way of example, we considered the discrete actuator deformable mirror and Hartmann sensor system used on the Beamlet laser. Beamlet is a single-aperture prototype of the 11-0-5 slab amplifier design for NIF, and so we expect similar optical distortion levels and deformable mirror correction requirements. We are now in the process of developing a numerically efficient object oriented C++ language implementation of our adaptive optics and wavefront sensor code, but this code is not yet operational. Results are based instead on the prototype algorithms, coded-up in an interpreted array processing computer language.

  17. An approach to fabrication of large adaptive optics mirrors

    NASA Astrophysics Data System (ADS)

    Schwartz, Eric; Rey, Justin; Blaszak, David; Cavaco, Jeffrey

    2014-07-01

    For more than two decades, Northrop Grumman Xinetics has been the principal supplier of small deformable mirrors that enable adaptive optical (AO) systems for the ground-based astronomical telescope community. With today's drive toward extremely large aperture systems, and the desire of telescope designers to include adaptive optics in the main optical path of the telescope, Xinetics has recognized the need for large active mirrors with the requisite bandwidth and actuator stoke. Presented in this paper is the proposed use of Northrop Grumman Xinetics' large, ultra-lightweight Silicon Carbide substrates with surface parallel actuation of sufficient spatial density and bandwidth to meet the requirements of tomorrow's AO systems, while reducing complexity and cost.

  18. Design and analysis of supporting structure between the primary mirror and the secondary mirror on a space telescope

    NASA Astrophysics Data System (ADS)

    Wang, Chenjie; Chai, Wenyi; Feng, Liangjie; Yang, Wengang; Wang, Wei; Fan, Xuewu

    2015-10-01

    Mechanical stability is a significant segment for an on-axis space telescope to assure its assembly accuracy as well as the image quality in the rigorous space environment, supporting structure between the primary mirror and the secondary mirror as a main structure of the on-axis space telescope must be designed reasonably to meet the mission requirements of the space telescope. Meanwhile, in view of the limitation of the satellite launching cost, it is necessary to reduce the weight and power compensation during the supporting structure design based on the satisfaction of telescope performance. Two types of supporting structure for a space telescope are designed, one is three-tripod structure which has three tripods located on the optical bench to support the secondary mirror assemblies and keep the distance between the primary mirror and the secondary mirror, the other is barrel supporting structure which includes a tube and a secondary mirror support with four spider struts. To compare the mechanical performance and launching cost of the two kinds of supporting structure, both structural and thermal analysis model are established. The analysis results indicates that the three-tripod support is lighter, has better mechanical performance and needs less power compensation than the barrel support.

  19. Large chopping secondary mirror for the 15-m submillimeter James Clerk Maxwell telescope.

    PubMed

    van de Stadt, H; Verkerk, J

    1987-08-15

    A 75-cm diam chopping secondary mirror has been developed for the 15-m diam James Clerk Maxwell telescope. The large focal ratio (D/F = 1:0.36) requires a highly convex secondary mirror, which was manufactured out of a solid slab of high-grade aluminum, consisting of a 3-mm thick shell with a support ring along the edge. The mirror surface approaches a predescribed hyperboloid with a rms precision better than 9 microm, which is adequate for use in the submillimeter wavelength region. The design aspects, the performance of a two-axis chopping mechanism, and the construction of the mirror are described.

  20. Hubble Space Telescope secondary mirror vertex radius/conic constant test

    NASA Technical Reports Server (NTRS)

    Parks, Robert

    1991-01-01

    The Hubble Space Telescope backup secondary mirror was tested to determine the vertex radius and conic constant. Three completely independent tests (to the same procedure) were performed. Similar measurements in the three tests were highly consistent. The values obtained for the vertex radius and conic constant were the nominal design values within the error bars associated with the tests. Visual examination of the interferometric data did not show any measurable zonal figure error in the secondary mirror.

  1. Contactless thin adaptive mirror technology: past, present, and future

    NASA Astrophysics Data System (ADS)

    Biasi, Roberto; Gallieni, Daniele; Salinari, Piero; Riccardi, Armando; Mantegazza, Paolo

    2010-07-01

    The contactless, voice coil motor adaptive mirror technology starts from an idea by Piero Salinari in 1993. This idea has progressively evolved to real systems thanks to a fruitful collaboration involving Italian research institutes (INAF - Osservatorio Astrofisico di Arcetri and Aerospace Department of Politecnico di Milano) and small Italian enterprises (Microgate and ADS). Collaboration between research institutions and industry is still very effectively in place, but nowadays the technology has left the initial R&D phase reaching a stage in which the whole projects are managed by the industrial entities. In this paper we present the baseline concept and its evolution, describing the main progress milestones. These are paced by the actual implementation of this idea into real systems, from MMT, to LBT, Magellan, VLT, GMT and E-ELT. The fundamental concept and layout has remained unchanged through this evolution, maintaining its intrinsic advantages: tolerance to actuators' failures, mechanical de-coupling and relaxed tolerances between correcting mirror and reference structure, large stroke, hysteresis-free behavior. Moreover, this concept has proved its expandability to very large systems with thousands of controlled d.o.f. Notwithstanding the solidity of the fundamentals, the implementation has strongly evolved from the beginning, in order to deal with the dimensional, power, maintainability and reliability constraints imposed by the increased size of the targeted systems.

  2. Performance prediction of the fast steering secondary mirror for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Cho, Myung; Corredor, Andrew; Dribusch, Christoph; Park, Won-Hyun; Sheehan, Michael; Johns, Matt; Shectman, Stephen; Kern, Jonathan; Hull, Charlie; Kim, Young-Soo; Bagnasco, John

    2012-09-01

    The Giant Magellan Telescope (GMT) Fast-steering secondary mirror (FSM) is one of the GMT two Gregorian secondary mirrors. The FSM is 3.2 m in diameter and built as seven 1.1 m diameter circular segments conjugated 1:1 to the seven 8.4m segments of the primary. A parametric study and optimization of the FSM mirror blank and central lateral flexure design were performed. For the optimized FSM configuration, the optical image qualities and structure functions for the axial and lateral gravity print-through cases, thermal gradient effects, and dynamic performances will be discussed. This paper reports performance predictions of the optimized FSM. To validate our lateral flexure design concept, mechanical and optical tests were conducted on test mirrors installed with two different lateral flexures.

  3. COMPONENTS OF LASER SYSTEMS: Single-channel adaptive mirrors for laser optics

    NASA Astrophysics Data System (ADS)

    Safronov, A. G.

    1995-11-01

    Single-channel deformable mirrors for use in low-correction-order laser adaptive systems were developed and investigated. The structure of the mirrors is described and the results are given of experimental determinations of the initial shape of the optical surface, of the response functions, of the sensitivity, and of the electromechanical hysteresis. Calculations are reported of the thermal deformation of the mirrors subjected to the effects of heat under various conditions, and also of the frequency characteristics of these mirrors. It is shown that such adaptive mirrors are effective in compensation for large-scale axisymmetric distortions of the wavefront in laser optics operating at powers up to 1 kW. The operational range of these mirrors is approximately ±20 μm in respect of the amplitude of the optical surface displacements and up to 1 kHz in respect of the frequency.

  4. Silver coating of the 1.3 m infrared secondary mirror of Subaru.

    NASA Astrophysics Data System (ADS)

    Kanzawa, T.; Sasaki, G.; Yutani, M.; Torii, Y.; Ohshima, N.; Kamata, Y.; Hayashi, S. S.; Nakagiri, M.; Imi, K.; Noguchi, T.

    1999-09-01

    The authors report the silver coating of 1266 mm secondary mirror to be used for infrared observations at Subaru Telescope. Silver was deposited over the chromium bondage layer, using a 1.6-m vacuum coating chamber at the Advanced Technology Center of the National Astronomical Observatory of Japan. The witness mirrors coated at the same time with this mirror show the characteristics as follows: 1) Total thickness of the chromium plus silver film is 1300±100 Å. 2) Reflectivity is 98±1% over the wide range of visible wavelength to the near infrared wavelength.

  5. Four-zone varifocus mirrors with adaptive control of primary and higher-order spherical aberration.

    PubMed

    Lukes, Sarah J; Downey, Ryan D; Kreitinger, Seth T; Dickensheets, David L

    2016-07-01

    Electrostatically actuated deformable mirrors with four concentric annular electrodes can exert independent control over defocus as well as primary, secondary, and tertiary spherical aberration. In this paper we use both numerical modeling and physical measurements to characterize recently developed deformable mirrors with respect to the amount of spherical aberration each can impart, and the dependence of that aberration control on the amount of defocus the mirror is providing. We find that a four-zone, 4 mm diameter mirror can generate surface shapes with arbitrary primary, secondary, and tertiary spherical aberration over ranges of ±0.4, ±0.2, and ±0.15  μm, respectively, referred to a non-normalized Zernike polynomial basis. We demonstrate the utility of this mirror for aberration-compensated focusing of a high NA optical system. PMID:27409212

  6. Four-zone varifocus mirrors with adaptive control of primary and higher-order spherical aberration.

    PubMed

    Lukes, Sarah J; Downey, Ryan D; Kreitinger, Seth T; Dickensheets, David L

    2016-07-01

    Electrostatically actuated deformable mirrors with four concentric annular electrodes can exert independent control over defocus as well as primary, secondary, and tertiary spherical aberration. In this paper we use both numerical modeling and physical measurements to characterize recently developed deformable mirrors with respect to the amount of spherical aberration each can impart, and the dependence of that aberration control on the amount of defocus the mirror is providing. We find that a four-zone, 4 mm diameter mirror can generate surface shapes with arbitrary primary, secondary, and tertiary spherical aberration over ranges of ±0.4, ±0.2, and ±0.15  μm, respectively, referred to a non-normalized Zernike polynomial basis. We demonstrate the utility of this mirror for aberration-compensated focusing of a high NA optical system.

  7. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    DOEpatents

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  8. Modelling MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Blain, Celia

    As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full onaxis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024- actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for

  9. MEMS Deformable Mirrors for Adaptive Optics in Astronomical Imaging

    NASA Astrophysics Data System (ADS)

    Cornelissen, S.; Bierden, P. A.; Bifano, T.

    We report on the development of micro-electromechanical (MEMS) deformable mirrors designed for ground and space-based astronomical instruments intended for imaging extra-solar planets. Three different deformable mirror designs, a 1024 element continuous membrane (32x32), a 4096 element continuous membrane (64x64), and a 331 hexagonal segmented tip-tilt-piston are being produced for the Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) program, the Gemini Planet Imaging Instrument, and the visible nulling coronograph developed at JPL for NASA's TPF mission, respectively. The design of these polysilicon, surface-micromachined MEMS deformable mirrors builds on technology that was pioneered at Boston University and has been used extensively to correct for ocular aberrations in retinal imaging systems and for compensation of atmospheric turbulence in free-space laser communication. These light-weight, low power deformable mirrors will have an active aperture of up to 25.2mm consisting of thin silicon membrane mirror supported by an array of 1024 to 4096 electrostatic actuators exhibiting no hysteresis and sub-nanometer repeatability. The continuous membrane deformable mirrors, coated with a highly reflective metal film, will be capable of up to 4μm of stroke, have a surface finish of <10nm RMS with a fill factor of 99.8%. The segmented device will have a range of motion of 1um of piston and a 600 arc-seconds of tip/tilt simultaneously and a surface finish of 1nm RMS. The individual mirror elements in this unique device, are designed such that they will maintain their flatness throughout the range of travel. New design features and fabrication processes are combined with a proven device architecture to achieve the desired performance and high reliability. Presented in this paper are device characteristic and performance results of these devices.

  10. Development of a fast steering secondary mirror prototype for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; Corredor, Andrew; Dribusch, Christoph; Park, Kwijong; Kim, Young-Soo; Moon, Il-Kweon; Park, Won Hyun

    2012-09-01

    The Giant Magellan Telescope (GMT) will be a 25m class telescope currently in the design and development phase. The GMT will be a Gregorian telescope and equipped with a fast-steering secondary mirror (FSM). This secondary mirror is 3.2 m in diameter and built as seven 1.1 m diameter circular segments conjugated 1:1 to the seven 8.4m segments of the primary. The prototype of FSM (FSMP) development effort is led by the Korea Astronomy and Space Science Institute (KASI) with several collaborators in Korea, and the National Optical Astronomy Observatory (NOAO) in USA. The FSM has a tip-tilt feature to compensate image motions from the telescope structure jitters and the wind buffeting. For its dynamic performance, each of the FSM segments is designed in a lightweight mirror. Support system of the lightweight mirror consists of three axial actuators, one lateral support at the center, and a vacuum system. A parametric design study to optimize the FSM mirror configuration was performed. In this trade study, the optical image qualities and structure functions for the axial and lateral gravity print-through cases, thermal gradient effects, and dynamic performances will be discussed.

  11. Optical design of off-axis Cassegrain telescope using freeform surface at the secondary mirror

    NASA Astrophysics Data System (ADS)

    Gautam, Suryakant; Gupta, Amit; Singh, Ganga Sharan

    2015-02-01

    Freeform surfaces enable imaginative optics by providing abundant degrees of freedom for an optical designer as compared to spherical surfaces. An off-axis two-mirror-based telescope design is presented, in which the primary mirror is a concave prolate spheroid and the secondary mirror is freeform surface-based. The off-axis configuration is employed here for removing the central obscuration problem which otherwise limits the central maxima in the point spread function. In this proposed design, an extended X-Y polynomial is used as a surface descriptor for the off-axis segment of the secondary mirror. The coefficients of this extended polynomial are directly related to the Seidel aberrations, and are thus optimized here for a better control of asymmetric optical aberrations at various field points. For this design, the aperture stop is located 500 mm before the primary mirror and the entrance pupil diameter is kept as 80 mm. The effective focal length is 439 mm and covers a full field of view of 2 deg. The image quality obtained here is near diffraction limited which can be inferred from metrics such as the spot diagram and modulation transfer function.

  12. Push-pull membrane mirrors for adaptive optics

    NASA Astrophysics Data System (ADS)

    Bonora, Stefano; Poletto, Luca

    2006-12-01

    We propose an improvement to the electrostatic membrane deformable mirror technique introducing push-pull capability that increases the performance in the correction of optical aberrations. The push-pull effect is achieved by the addition of some transparent electrodes on the top of the device. The transparent electrode is an indium-tin-oxide coated glass. The improvement of the mirror in generating surfaces is demonstrated by the comparison with a pull membrane mirror. The control is carried out in open loop by the knowledge of the response of each single electrode. An effective iterative strategy for the clipping management is presented. The performances are evaluated both in terms of Zernike polynomials generation and in terms of aberrations compensation based on the statistics of human eyes.

  13. Push-pull membrane mirrors for adaptive optics.

    PubMed

    Bonora, Stefano; Poletto, Luca

    2006-12-11

    We propose an improvement to the electrostatic membrane deformable mirror technique introducing push-pull capability that increases the performance in the correction of optical aberrations. The push-pull effect is achieved by the addition of some transparent electrodes on the top of the device. The transparent electrode is an indium-tin-oxide coated glass. The improvement of the mirror in generating surfaces is demonstrated by the comparison with a pull membrane mirror. The control is carried out in open loop by the knowledge of the response of each single electrode. An effective iterative strategy for the clipping management is presented. The performances are evaluated both in terms of Zernike polynomials generation and in terms of aberrations compensation based on the statistics of human eyes.

  14. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    NASA Astrophysics Data System (ADS)

    Goto, Takumi; Nakamori, Hiroki; Kimura, Takashi; Sano, Yasuhisa; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto; Matsuyama, Satoshi

    2015-04-01

    An adaptive Kirkpatrick-Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  15. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    SciTech Connect

    Goto, Takumi; Nakamori, Hiroki; Sano, Yasuhisa; Matsuyama, Satoshi; Kimura, Takashi; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya

    2015-04-15

    An adaptive Kirkpatrick–Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  16. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors.

    PubMed

    Goto, Takumi; Nakamori, Hiroki; Kimura, Takashi; Sano, Yasuhisa; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto; Matsuyama, Satoshi

    2015-04-01

    An adaptive Kirkpatrick-Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  17. Save our secondary: recovering a broken 1.3-m mirror

    NASA Astrophysics Data System (ADS)

    Abbott, Timothy M. C.; Probst, Ronald G.; Poczulp, Gary; Tighe, Roberto; Schurter, Patricio; Montané, Andrés.; DeVries, Joseph; Harris, Ronald C.; Elias, Jonathan; Martinez, Manuel; Saa, Oscar

    2014-07-01

    In an inauspicious start to the ultimately very successful installation of the Dark Energy Camera on the V. M. Blanco 4- m telescope at CTIO, the light-weighted Cer-Vit 1.3-m-diameter secondary mirror suffered an accident in which it fell onto its apex. This punched out a central plug of glass and destroyed the focus and tip/tilt mechanism. However, the mirror proved fully recoverable, without degraded performance. This paper describes the efforts through which the mirror was repaired and the tip/tilt mechanism rebuilt and upgraded. The telescope re-entered full service as a Ritchey- Chrétien platform in October of 2013.

  18. Manipulation of visual biofeedback during gait with a time delayed adaptive Virtual Mirror Box

    PubMed Central

    2014-01-01

    Background A mirror placed in the mid-sagittal plane of the body has been used to reduce phantom limb pain and improve movement function in medical conditions characterised by asymmetrical movement control. The mirrored illusion of unimpaired limb movement during gait might enhance the effect, but a physical mirror is only capable of showing parallel movement of limbs in real time typically while sitting. We aimed to overcome the limitations of physical mirrors by developing and evaluating a Virtual Mirror Box which delays the mirrored image of limbs during gait to ensure temporal congruency with the impaired physical limb. Methods An application was developed in the CAREN system’s D-Flow software which mirrors selected limbs recorded by real-time motion capture to the contralateral side. To achieve phase shifted movement of limbs during gait, the mirrored virtual limbs are also delayed by a continuously calculated amount derived from past gait events. In order to accommodate non-normal proportions and offsets of pathological gait, the movements are morphed so that the physical and virtual contact events match on the mirrored side. Our method was tested with a trans-femoral amputee walking on a treadmill using his artificial limb. Joint angles of the elbow and knee were compared between the intact and mirrored side using cross correlation, root mean squared difference and correlation coefficients. Results The time delayed adaptive virtual mirror box produced a symmetrical looking gait of the avatar coupled with a reduction of the difference between the intact and virtual knee and elbow angles (10.86° and 5.34° reduced to 4.99° and 2.54° respectively). Dynamic morphing of the delay caused a non-significant change of toe-off events when compared to delaying by 50% of the previous gait cycle, as opposed to the initial contact events which showed a practically negligible but statistically significant increase (p < 0.05). Conclusions Adding an adaptive time

  19. High-Resolution Adaptive Optics Scanning Laser Ophthalmoscope with Dual Deformable Mirrors

    SciTech Connect

    Chen, D C; Jones, S M; Silva, D A; Olivier, S S

    2006-08-11

    Adaptive optics scanning laser ophthalmoscope (AO SLO) has demonstrated superior optical quality of non-invasive view of the living retina, but with limited capability of aberration compensation. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina. We used a bimorph mirror to correct large-stroke, low-order aberrations and a MEMS mirror to correct low-stroke, high-order aberration. The measured ocular RMS wavefront error of a test subject was 240 nm without AO compensation. We were able to reduce the RMS wavefront error to 90 nm in clinical settings using one deformable mirror for the phase compensation and further reduced the wavefront error to 48 nm using two deformable mirrors. Compared with that of a single-deformable-mirror SLO system, dual AO SLO offers much improved dynamic range and better correction of the wavefront aberrations. The use of large-stroke deformable mirrors provided the system with the capability of axial sectioning different layers of the retina. We have achieved diffraction-limited in-vivo retinal images of targeted retinal layers such as photoreceptor layer, blood vessel layer and nerve fiber layers with the combined phase compensation of the two deformable mirrors in the AO SLO.

  20. Laser Doppler velocimeter system simulation for sensing aircraft wake vortices. Part 3: The problem of reflection from the secondary mirror

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.

    1975-01-01

    Calculations are carried out to investigate the effects of obscuring the central portion of the secondary mirror. Two cases are treated: (1) a Gaussian distribution of reflectivity, and (2) a sharp-edged obscuration. Substantial reduction in reflection from the secondary mirror is found achievable, but the reduction was found highly sensitive to the form of the radial distribution of reflectivity. The total power reflected from the secondary mirror that is incident on the detector is estimated. Techniques for experimental testing of alleviation schemes are suggested.

  1. Fabrication of experimental three-meter space telescope primary and secondary mirror support structure

    NASA Technical Reports Server (NTRS)

    Mishler, H. W.

    1974-01-01

    The fabrication of prototype titanium alloy primary and secondary mirror support structures for a proposed experimental three-meter space telescope is discussed. The structure was fabricated entirely of Ti-6Al-4V tubing and plate. Fabrication included the development of procedures including welding, forming, and machining. Most of the structures was fabricated by gas-shielding tungsten-arc (GTA) welding with several major components fabricated by high frequency resistance (HFR) welding.

  2. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    SciTech Connect

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  3. Fabrication and Testing of Active and Adaptive Cyanate Ester Composite Mirrors

    NASA Technical Reports Server (NTRS)

    Bennett, H. E.

    2004-01-01

    The objective of the NASA/Bennett Optical Research Inc. (BOR) NAS8-02008 Phase II Program, which also incorporated ideas developed under the earlier NASA NAS8-01035 Phase 1 Program, was to develop a large mirror fabrication and test facility with emphasis on producing large, light weight active and adaptive optics. A principle objective was to develop mandrels on which to make large composite graphite-filled cyanate ester mirrors, Deliverables were two of these superpolished lightweight active/adaptive optic composite mirrors, one 12" (approx.1/3 meter) in diameter and one 22" (approx.1/2 meter) in diameter. In addition optical superpolishers for mandrels up to 1.2 meters in diameter, test instruments for determining optical figure and scattered light, novel design actuators for making the composite mirrors both active and adaptive, and passive and active means for measuring actuator performance were developed at BOR. We are now installing a superpolisher capable of producing 3 meter diameter mirror/mandrels. All polishers utilize the principle of centrifugal elutriation and produce superpolished mandrels with surface microroughnesses under 1 nm rms.

  4. Nanostructure Secondary-Mirror Apodizing Mask for Transmitter Signal Suppression in a Duplex Telescope

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Livas, Jeffrey; Shiri, Shahram; Getty, Stephanie; Tveekrem, June; Butler, James

    2012-01-01

    A document discusses a nanostructure apodizing mask, made of multi-walled carbon nanotubes, that is applied to the centers (or in and around the holes) of the secondary mirrors of telescopes that are used to interferometrically measure the strain of space-time in response to gravitational waves. The shape of this ultra-black mask can be adjusted to provide a smooth transition to the clear aperture of the secondary mirror to minimize diffracted light. Carbon nanotubes grown on silicon are a viable telescope mirror substrate, and can absorb significantly more light than other black treatments. The hemispherical reflectance of multi-walled carbon nanotubes grown at GSFC is approximately 3 to 10 times better than a standard aerospace paint used for stray light control. At the LISA (Laser Interferometer Space Antenna) wavelength of 1 micron, the advantage over paint is a factor of 10. Primarily, in the center of the secondary mirror (in the region of central obscuration, where no received light is lost) a black mask is applied to absorb transmitted light that could be reflected back into the receiver. In the LISA telescope, this is in the center couple of millimeters. The shape of this absorber is critical to suppress diffraction at the edge. By using the correct shape, the stray light can be reduced by approximately 10 to the 9 orders of magnitude versus no center mask. The effect of the nanotubes has been simulated in a stray-light model. The effect of the apodizing mask has been simulated in a near-field diffraction model. Specifications are geometry-dependent, but the baseline design for the LISA telescope has been modeled as well. The coatings are somewhat fragile, but work is continuing to enhance adhesion.

  5. Asymmetric fMRI adaptation reveals no evidence for mirror neurons in humans.

    PubMed

    Lingnau, Angelika; Gesierich, Benno; Caramazza, Alfonso

    2009-06-16

    Neurons in macaque ventral premotor cortex and inferior parietal lobe discharge during both the observation and the execution of motor acts. It has been claimed that these so-called mirror neurons form the basis of action understanding by matching the visual input with the corresponding motor program (direct matching). Functional magnetic resonance imaging (fMRI) adaptation can be used to test the direct matching account of action recognition by determining whether putative mirror neurons show adaptation for repeated motor acts independently of whether they are observed or executed. An unambiguous test of the hypothesis requires that the motor acts be meaningless to ensure that any adaptation effect is directly because of movement recognition/motor execution and not contextually determined inferences. We found adaptation for motor acts that were repeatedly observed or repeatedly executed. We also found adaptation for motor acts that were first observed and then executed, as would be expected if a previously seen act primed the subsequent execution of that act. Crucially, we found no signs of adaptation for motor acts that were first executed and then observed. Failure to find cross-modal adaptation for executed and observed motor acts is not compatible with the core assumption of mirror neuron theory, which holds that action recognition and understanding are based on motor simulation.

  6. ERP adaptation provides direct evidence for early mirror neuron activation in the inferior parietal lobule.

    PubMed

    Möhring, Nicole; Brandt, Emily S L; Mohr, Bettina; Pulvermüller, Friedemann; Neuhaus, Andres H

    2014-10-01

    Mirror neuron systems are frequently investigated by assessing overlapping brain activity during observation and execution of actions; however, distinct neuronal subpopulations may be activated that fall below the spatial resolution of magnetic resonance techniques. This shortfall can be resolved using repetition suppression paradigms that identify physiological adaptation processes caused by repeated activation of identical neuronal circuits. Here, event-related potentials were used to investigate the time course of mirror neuron circuit activation using repetition suppression within and across action observation and action execution modalities. In a lip-reading and speech production paradigm, the N170 component indexed stimulus repetition by adapting to both cross-modal and intra-modal repetitions in the left hemisphere. Neuronal source localization revealed activation of the left inferior parietal lobule during cross-modal relative to intra-modal trials. These results provide support for the position that the same neuronal circuits are activated in perceiving and performing articulatory actions. Moreover, our data strongly suggest that inferior parietal lobule mirror neurons are activated relatively early in time, which indicates partly automatic processes of linguistic perception and mirroring. Repetition suppression paradigms therefore help to elucidate neuronal correlates of different cognitive processes and may serve as a starting point for advanced electrophysiological research on mirror neurons.

  7. ERP adaptation provides direct evidence for early mirror neuron activation in the inferior parietal lobule.

    PubMed

    Möhring, Nicole; Brandt, Emily S L; Mohr, Bettina; Pulvermüller, Friedemann; Neuhaus, Andres H

    2014-10-01

    Mirror neuron systems are frequently investigated by assessing overlapping brain activity during observation and execution of actions; however, distinct neuronal subpopulations may be activated that fall below the spatial resolution of magnetic resonance techniques. This shortfall can be resolved using repetition suppression paradigms that identify physiological adaptation processes caused by repeated activation of identical neuronal circuits. Here, event-related potentials were used to investigate the time course of mirror neuron circuit activation using repetition suppression within and across action observation and action execution modalities. In a lip-reading and speech production paradigm, the N170 component indexed stimulus repetition by adapting to both cross-modal and intra-modal repetitions in the left hemisphere. Neuronal source localization revealed activation of the left inferior parietal lobule during cross-modal relative to intra-modal trials. These results provide support for the position that the same neuronal circuits are activated in perceiving and performing articulatory actions. Moreover, our data strongly suggest that inferior parietal lobule mirror neurons are activated relatively early in time, which indicates partly automatic processes of linguistic perception and mirroring. Repetition suppression paradigms therefore help to elucidate neuronal correlates of different cognitive processes and may serve as a starting point for advanced electrophysiological research on mirror neurons. PMID:25017963

  8. The actuator design and the experimental tests of a new technology large deformable mirror for visible wavelengths adaptive optics

    NASA Astrophysics Data System (ADS)

    Del Vecchio, Ciro; Agapito, Guido; Arcidiacono, Carmelo; Carbonaro, Luca; Marignetti, Fabrizio; De Santis, Enzo; Biliotti, Valdemaro; Riccardi, Armando

    2012-07-01

    Recently, Adaptive Secondary Mirrors showed excellent on-sky results in the Near Infrared wavelengths. They currently provide 30mm inter-actuator spacing and about 1 kHz bandwidth. Pushing these devices to be operated at visible wavelengths is a challenging task. Compared to the current systems, working in the infrared, the more demanding requirements are the higher spatial resolution and the greater correction bandwidth. In fact, the turbulence scale is shorter and the parameter variation is faster. Typically, the former is not larger than 25 mm (projected on the secondary mirror) and the latter is 2 kHz, therefore the actuator has to be more slender and faster than the current ones. With a soft magnetic composite core, a dual-stator and a single-mover, VRALA, the actuator discussed in this paper, attains unprecedented performances with a negligible thermal impact. Pre-shaping the current required to deliver a given stroke greatly simplifies the control system, whose output supplies the current generator. As the inductance depends on the mover position, the electronics of this generator, provided with an inductance measure circuit, works also as a displacement sensor, supplying the control system with an accurate feed-back signal. A preliminary prototype, built according to the several FEA thermo-magnetic analyses, has undergone some preliminary laboratory tests. The results of these checks, matching the design results in terms of power and force, show that the the magnetic design addresses the severe specifications.

  9. Adaptive Assessment for Nonacademic Secondary Reading.

    ERIC Educational Resources Information Center

    Hittleman, Daniel R.

    Adaptive assessment procedures are a means of determining the quality of a reader's performance in a variety of reading situations and on a variety of written materials. Such procedures are consistent with the idea that there are functional competencies which change with the reading task. Adaptive assessment takes into account that a lack of…

  10. Multiconjugate adaptive optics for large telescopes: analytical control of the mirror shapes.

    PubMed

    Owner-Petersen, Mette; Goncharov, Alexander

    2002-03-01

    We present an analytical algorithm for deriving the shapes of the deformable mirrors to be used for multiconjugate adaptive correction on a large telescope. The algorithm is optimal in the limit where the overlap of the wave-front contributions from relevant atmospheric layers probed by the guide stars is close to the size of the pupil. The fundamental principle for correction is based on a minimization of the sum of the residual power spectra of the phase fluctuations seen by the guide stars after correction. On the basis of the expressions for the mirror shapes, so-called layer transfer functions describing the distribution of the correction of a single atmospheric layer among the deformable mirrors and the resulting correction of that layer have been derived. It is shown that for five guide stars distributed in a regular cross, two- and three-mirror correction will be possible only up to a maximum frequency defined by the largest separation of the conjugate altitudes of the mirrors and by the angular separation of the guide stars. The performance of the algorithm is investigated in the K band by using a standard seven-layer atmosphere. We present results obtained for two guide-star configurations: a continuous distribution within a given angular radius and a five-star cross pattern with a given angular arm length. The wave-front fluctuations are subjected to correction using one, two, and three deformable mirrors. The needed mirror dynamic range is derived as required root-mean-square stroke and actuator pitch. Finally the performance is estimated in terms of the Strehl ratio obtained by the correction as a function of field angle. No noise has been included in the present analysis, and the guide stars are assumed to be at infinity.

  11. Finite element analysis of low-cost membrane deformable mirrors for high-order adaptive optics

    NASA Astrophysics Data System (ADS)

    Winsor, Robert S.; Sivaramakrishnan, Anand; Makidon, Russell B.

    1999-10-01

    We demonstrate the feasibility of glass membrane deformable mirror (DM) support structures intended for very high order low-stroke adaptive optics systems. We investigated commercially available piezoelectric ceramics. Piezoelectric tubes were determined to offer the largest amount of stroke for a given amount of space on the mirror surface that each actuator controls. We estimated the minimum spacing and the maximum expected stroke of such actuators. We developed a quantitative understanding of the response of a membrane mirror surface by performing a Finite Element Analysis (FEA) study. The results of the FEA analysis were used to develop a design and fabrication process for membrane deformable mirrors of 200 - 500 micron thicknesses. Several different values for glass thickness and actuator spacing were analyzed to determine the best combination of actuator stoke and surface deformation quality. We considered two deformable mirror configurations. The first configuration uses a vacuum membrane attachment system where the actuator tubes' central holes connect to an evacuated plenum, and atmospheric pressure holds the membrane against the actuators. This configuration allows the membrane to be removed from the actuators, facilitating easy replacement of the glass. The other configuration uses precision bearing balls epoxied to the ends of the actuator tubes, with the glass membrane epoxied to the ends of the ball bearings. While this kind of DM is not serviceable, it allows actuator spacings of 4 mm, in addition to large stroke. Fabrication of a prototype of the latter kind of DM was started.

  12. An error function minimization approach for the inverse problem of adaptive mirrors tuning

    NASA Astrophysics Data System (ADS)

    Vannoni, Maurizio; Yang, Fan; Siewert, Frank; Sinn, Harald

    2014-09-01

    Adaptive x-ray optics are more and more used in synchrotron beamlines, and it is probable that they will be considered for the future high-power free-electron laser sources, as the European XFEL now under construction in Hamburg, or similar projects now in discussion. These facilities will deliver a high power x-ray beam, with an expected high heat load delivered on the optics. For this reason, bendable mirrors are required to actively compensate the resulting wavefront distortion. On top of that, the mirror could have also intrinsic surface defects, as polishing errors or mounting stresses. In order to be able to correct the mirror surface with a high precision to maintain its challenging requirements, the mirror surface is usually characterized with a high accuracy metrology to calculate the actuators pulse functions and to assess its initial shape. After that, singular value decomposition (SVD) is used to find the signals to be applied into the actuators, to reach the desired surface deformation or correction. But in some cases this approach could be not robust enough for the needed performance. We present here a comparison between the classical SVD method and an error function minimization based on root-mean-square calculation. Some examples are provided, using a simulation of the European XFEL mirrors design as a case of study, and performances of the algorithms are evaluated in order to reach the ultimate quality in different scenarios. The approach could be easily generalized to other situations as well.

  13. A PSD (position sensing device) to map the shift and tilt of the SRT secondary mirror

    NASA Astrophysics Data System (ADS)

    Pisanu, Tonino; Buffa, Franco; Concu, Raimondo; Marongiu, Pasqualino; Pili, Mauro; Poppi, Sergio; Serra, Giampaolo; Urru, Enrico; Vargiu, Gianpaolo

    2014-07-01

    The Sardinia Radio Telescope (SRT) Metrology team has started to install the initial group of devices on the new 64 meters radio-telescope. These devices will be devoted for the realization of the antenna deformation control system: an electronic inclinometer able to monitor the alidade deformations and a Position Sensing Device (PSD) able to map the secondary mirror (M2) displacements and tilts. The inclinometer is used to map the rail conditions, the azimuthal axis inclination and the thermal effects on the alidade structure. The PSD will be used to measure the secondary mirror displacements induced by the gravity and by the thermal deformations that produce shifts and tilts with respect to it s ideal optical alignment. The PSD will be traced by a laser diode installed on a mechanically stable position inside the vertex room. Preliminarly we decided to characterize excursion range of M2, in order to know if the PSD measuring range of about +/- 10 mm is enough for our purposes. We designed, built and tested an optical measuring device, based on commercial CMOS with a wider measurement range of +/- 40 mm and with a resolution of around 0.1 mm. After a laboratory characterization at the 23 meters real distance, the PSD and the laser have been installed in the antenna. In this paper we show the results of the measurements performed by moving the antenna in elevation.

  14. Multi-mirror adaptive optics for control of thermally induced aberrations in extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Habets, Michel; Scholten, Joni; Weiland, Siep; Coene, Wim

    2016-03-01

    The imaging quality of the projection optics of an extreme ultraviolet lithography scanner degrades under the influence of thermally induced deformations of its mirrors. Wavefronts of different reticle points encounter different parts of the deformed mirrors, resulting in a field dependent wavefront error. This paper presents how ideas from multi-conjugate adaptive optics can be used to reduce these thermally induced aberrations. To this end a generic deformable mirror model is implemented. Linear actuator sensitivities are derived directly, based on nominal ray locations and directions, enabling fast prototyping. An integrated opto-thermo-mechanical mirror heating model is used to determine the evolution of thermally induced abberations over time. This transient simulation is used to analyze four different adaptive optics configurations and two different control algorithms. It is shown that by employing the multi-objective goal-attainment method, it is possible to improve the optical performance significantly when compared to minimizing the l2-norm of the total residual wavefront error vector.

  15. Support and Position Control of Primary and Secondary Mirrors for the Sloan Digital Sky Survey (SDSS) Telescope

    NASA Astrophysics Data System (ADS)

    Carey, Larry N.; Owen, Russell E.; Gunn, James E.; Siegmund, Walter A.; Mannery, Edward J.; Hull, Charles L.; Brown, Yorke J.

    2002-12-01

    The support and position control systems for both the primary and secondary mirror of the SDSS Telescope allow the mirrors up to 12 mm of precisely positioned axial motion, as well as limited tilt and transverse motion. This paper describes the final design and operation of these systems. Some relative strengths and limitations of the components and problems encountered with their implementation are also summarized.

  16. Qualification and Testing of a Large Hot Slumped Secondary Mirror for Schwarzschild-Couder Imaging Air Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Rodeghiero, G.; Giro, E.; Canestrari, R.; Pernechele, C.; Sironi, G.; Pareschi, G.; Lessio, L.; Conconi, P.

    2016-05-01

    Dual-mirror Schwarzschild-Couder (SC) telescopes are based on highly aspherical optics, and they represent a novel design in the world of very high energy astrophysics. This work addresses the realization and the qualification of the secondary mirror for an SC telescope, named ASTRI, developed in the context of the Cherenkov Telescope Array Observatory. The discussion surveys the overall development from the early design concept to the final acceptance optical tests.

  17. Natural diversity and adaptation in plant secondary metabolism.

    PubMed

    Kroymann, Juergen

    2011-06-01

    Technological advances in metabolomics, transcriptomics and genomics have facilitated the detection of genes that contribute to diversification in plant secondary metabolism. Statistical tools from molecular population genetics may help in evaluating whether the corresponding genes or genomic regions carry a signature of selection and answering the question of whether novel compounds are 'adaptive'. Gene duplication fuels diversification in plant secondary metabolism and the evolutionary mechanism for adaptation may follow a path of neofunctionalization subsequent to gene duplication, or gene duplication may occur subsequent to--and resolve--an adaptive conflict present in a single ancestral gene sequence.

  18. Massive free-space optical 1xN fiber switch using an adaptive membrane mirror

    NASA Astrophysics Data System (ADS)

    Gonte, Frederic; Peter, Yves-Alain; Herzig, Hans Peter; Daendliker, Rene

    2002-02-01

    We present a 1xN switch for single mode fiber optical communication systems, which is composed of an array of fibers, an achromatic lens, and an adaptive membrane mirror. The working principle of the optical switch is as follows: the center fiber of the array delivers the input signal, this signal is collimated by the lens, back reflected on the membrane mirror and refocused by the lens to an other fiber. The addressing of the receiving fiber is made by lateral displacement of the lens. However, using the achromatic lens under off-axis conditions introduces aberrations, which cause coupling losses to the receiving single-mode fibers. The deformable membrane mirror is used to adaptively correct these aberrations. The optimization of the coupling efficiency is made with the help of a genetic algorithm. For each position of the lens, the optimized voltages on the electrodes of the membrane mirror can be stored during the calibration procedure and afterwards recalled during operation of the switch. A demonstrator has been set up with a commercially available linear array of 32 single-mode fibers disposed in V-grooves, an achromatic lens mounted on a two-dimensional translation stage, and a membrane mirror made of silicon nitride coated with aluminum and electro-statically activated by thirty-seven electrodes. To demonstrate the capabilities of the aberration correction we used the first fiber in the array as input fiber and optimized the coupling efficiency to all the other fibers in the array. We obtained insertion losses of less than 3 dB and a cross talk below 30 dB. These results prove the feasibility to build a switch with a two-dimensional array of more than 1000 addressable fibers.

  19. Adaptive Optics: Arroyo Simulation Tool and Deformable Mirror Actuation Using Golay Cells

    NASA Technical Reports Server (NTRS)

    Lint, Adam S.

    2005-01-01

    The Arroyo C++ libraries, written by Caltech post-doc student Matthew Britton, have the ability to simulate optical systems and atmospheric signal interference. This program was chosen for use in an end-to-end simulation model of a laser communication system because it is freely distributed and has the ability to be controlled by a remote system or "smart agent." Proposed operation of this program by a smart agent has been demonstrated, and the results show it to be a suitable simulation tool. Deformable mirrors, as a part of modern adaptive optics systems, may contain thousands of tiny, independently controlled actuators used to modify the shape of the mirror. Each actuator is connected to two wires, creating a cumbersome and expensive device. Recently, an alternative actuation method that uses gas-filled tubes known as Golay cells has been explored. Golay cells, operated by infrared lasers instead of electricity, would replace the actuator system thereby creating a more compact deformable mirror. The operation of Golay cells and their ability to move a deformable mirror in excess of the required 20 microns has been demonstrated. Experimentation has shown them to be extremely sensitive to pressure and temperature, making them ideal for use in a controlled environment.

  20. A microprocessor-based position control system for a telescope secondary mirror

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Barrows, W. F.; Clappier, R. R.; Lee, G. K.

    1983-01-01

    The pointing requirements for the Shuttle IR Telescope Facility (SIRTF), which consists of an 0.85-m cryogenically cooled IR telescope, call for an image stability of 0.25 arcsec. Attention is presently given to a microprocessor-based position control system developed for the control of the SIRTF secondary mirror, employing a special control law (to minimize energy dissipation), a precision capacitive position sensor, and a specially designed power amplifier/actuator combination. The microprocessor generates the command angular position and rate waveforms in order to maintain a 90 percent dwell time/10 percent transition time ratio independently of chop frequency or amplitude. Performance and test results of a prototype system designed for use with a demonstration model of the SIRTF focal plane fine guidance sensor are presented.

  1. The Gemini secondary mirror tip/tilt system: past, present, and future

    NASA Astrophysics Data System (ADS)

    Carter, Christopher J.; Rippa, Mathew J.; Rojas, Roberto; Sheehan, Michael P.

    2008-07-01

    The Gemini Observatory is currently in the early stages of a major upgrade of the Secondary Mirror Tip/tilt Systems (M2TS). Although these systems continue to deliver good fast-steering and chopping performance at both sites, there are persistent and occasionally time-consuming issues that need to be addressed in order for them to deliver their full potential and further reduce downtime. We present an overview of the system, outline its capabilities, and review the early commissioning process and some of the issues encountered. We describe the augmentation of the original system with data logging features which made possible some critical servo tuning work that was key in delivering improved performance. The hardware and software upgrade project to date is discussed, along with a brief overview of items it intends to address.

  2. Extreme Adaptive Optics Testbed: High Contrast Measurements with a MEMS Deformable Mirror

    SciTech Connect

    Evans, J W; Morzinski, K; Reza, L; Severson, S; Poyneer, L; Macintosh, B; Dillon, D; Sommargren, G

    2005-08-16

    ''Extreme'' adaptive optics systems are optimized for ultra-high-contrast applications, such as ground-based extrasolar planet detection. The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. We use a simple optical design to minimize wavefront error and maximize the experimentally achievable contrast. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Previously, we have demonstrated RMS wavefront errors of <1.5 nm and a contrast of >10{sup 7} over a substantial region using a shaped pupil without a deformable mirror. Current work includes the installation and characterization of a 1024-actuator Micro-Electro-Mechanical-Systems (MEMS) deformable mirror, manufactured by Boston Micro-Machines for active wavefront control. Using the PSDI as the wavefront sensor we have flattened the deformable mirror to <1 nm within the controllable spatial frequencies and measured a contrast in the far field of >10{sup 6}. Consistent flattening required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. Ultimately this testbed will be used to test all aspects of the system architecture for an extrasolar planet-finding AO system.

  3. Extreme Adaptive Optics Testbed: Performance and Characterization of a 1024 Deformable Mirror

    SciTech Connect

    Evans, J W; Morzinski, K; Severson, S; Poyneer, L; Macintosh, B; Dillon, D; REza, L; Gavel, D; Palmer, D

    2005-10-30

    We have demonstrated that a microelectrical mechanical systems (MEMS) deformable mirror can be flattened to < 1 nm RMS within controllable spatial frequencies over a 9.2-mm aperture making it a viable option for high-contrast adaptive optics systems (also known as Extreme Adaptive Optics). The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Consistent flattening, required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. An error budget for MEMS closed loop performance will summarize MEMS characterization.

  4. High Resolution Imaging with Adaptive Optics at the Multiple Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Lloyd-Hart, M.; McLeod, B. A.; Wittman, D.; Colucci, D.; McCarthy, D. W.; Angel, R.; Dekany, R.

    1992-12-01

    We present the latest results from an adaptive optics program being implemented at the MMT using a six element adaptive mirror. The tilt of the wavefront over each of the six telescopes is determined with a Shack-Hartmann type sensor using a 24times 24 pixel low-noise CCD. This system allows the MMT to operate at a resolution of 0.3'' at 2 microns -- near the diffraction limit of the individual 1.8-m telescopes. This resolution can be obtained within ~ 1' of any star with visual magnitude < 16, allowing high-resolution near-IR imaging with a NICMOS2 array of a wide variety of targets, including high-redshift galaxies and young and evolved stars. This system can also be used with the MMT operated as a phased array telescope. In this mode, the piston errors between the telescopes are determined by examining the Fourier transform of the combined 2-micron image of the natural guide star using a fast-readout InSb array. In this configuration we have achieved a resolution of 0.075''. In good seeing we expect to obtain images of interest within the isoplanatic patch of guide stars with K magnitude <7. We acknowledge financial support from the NSF (AST92-03336) and the Flintridge Foundation. The adaptive mirror was donated by ThermoTrex Corp.

  5. When mirroring is both simple and "smart": how mimicry can be embodied, adaptive, and non-representational.

    PubMed

    Carr, Evan W; Winkielman, Piotr

    2014-01-01

    The concept of mirroring has become rather ubiquitous. One of the most fundamental empirical and theoretical debates within research on mirroring concerns the role of mental representations: while some models argue that higher-order representational mechanisms underpin most cases of mirroring, other models argue that they only moderate a primarily non-representational process. As such, even though research on mirroring-along with its neural substrates, including the putative mirror neuron system-has grown tremendously, so too has confusion about what it actually means to "mirror". Using recent research on spontaneous imitation, we argue that flexible mirroring effects can be fully embodied and dynamic-even in the absence of higher-order mental representations. We propose that mirroring can simply reflect an adaptive integration and utilization of cues obtained from the brain, body, and environment, which is especially evident within the social context. Such a view offers reconciliation among both representational and non-representational frameworks in cognitive neuroscience, which will facilitate revised interpretations of modern (and seemingly divergent) findings on when and how these embodied mirroring responses are employed. PMID:25071532

  6. Thermo-optically driven adaptive mirror based on thermal expansion: preparation and resolution

    NASA Astrophysics Data System (ADS)

    Reinert, Felix; Lüthy, W.

    2005-12-01

    A thermo-optically driven adaptive mirror is presented. It is based on the thermal expansion of a thin film heated with a light pattern. We describe a procedure for the preparation of a silicon elastomer with a high-quality optical surface. This material, Sylgard 184, has a high linear thermal expansion coefficient of 3.1μ10-4 K-1. Surface modulations are recorded in an interferometer. Modulations of 350 nm result at an intensity of 370 mW/cm2. The resolution is measured with a line pattern. The contrast drops to 30 % at 1.6 line pairs per millimeter (lp/mm).

  7. Thermo-optically driven adaptive mirror based on thermal expansion: preparation and resolution.

    PubMed

    Reinert, Felix; Lüthy, W

    2005-12-26

    A thermo-optically driven adaptive mirror is presented. It is based on the thermal expansion of a thin film heated with a light pattern. We describe a procedure for the preparation of a silicon elastomer with a high-quality optical surface. This material, Sylgard 184, has a high linear thermal expansion coefficient of 3.110-4 K-1. Surface modulations are recorded in an interferometer. Modulations of 350 nm result at an intensity of 370 mW/cm2. The resolution is measured with a line pattern. The contrast drops to 30 % at 1.6 line pairs per millimeter (lp/mm).

  8. Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.

    PubMed

    He, Yi; Deng, Guohua; Wei, Ling; Li, Xiqi; Yang, Jinsheng; Shi, Guohua; Zhang, Yudong

    2016-01-01

    We have designed, constructed and tested an adaptive optics scanning laser ophthalmoscope (AOSLO) using a bimorph mirror. The simulated AOSLO system achieves diffraction-limited criterion through all the raster scanning fields (6.4 mm pupil, 3° × 3° on pupil). The bimorph mirror-based AOSLO corrected ocular aberrations in model eyes to less than 0.1 μm RMS wavefront error with a closed-loop bandwidth of a few Hz. Facilitated with a bimorph mirror at a stroke of ±15 μm with 35 elements and an aperture of 20 mm, the new AOSLO system has a size only half that of the first-generation AOSLO system. The significant increase in stroke allows for large ocular aberrations such as defocus in the range of ±600° and astigmatism in the range of ±200°, thereby fully exploiting the AO correcting capabilities for diseased human eyes in the future.

  9. Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.

    PubMed

    He, Yi; Deng, Guohua; Wei, Ling; Li, Xiqi; Yang, Jinsheng; Shi, Guohua; Zhang, Yudong

    2016-01-01

    We have designed, constructed and tested an adaptive optics scanning laser ophthalmoscope (AOSLO) using a bimorph mirror. The simulated AOSLO system achieves diffraction-limited criterion through all the raster scanning fields (6.4 mm pupil, 3° × 3° on pupil). The bimorph mirror-based AOSLO corrected ocular aberrations in model eyes to less than 0.1 μm RMS wavefront error with a closed-loop bandwidth of a few Hz. Facilitated with a bimorph mirror at a stroke of ±15 μm with 35 elements and an aperture of 20 mm, the new AOSLO system has a size only half that of the first-generation AOSLO system. The significant increase in stroke allows for large ocular aberrations such as defocus in the range of ±600° and astigmatism in the range of ±200°, thereby fully exploiting the AO correcting capabilities for diseased human eyes in the future. PMID:27526166

  10. Multi-segmented piezoelectric mirrors as active/adaptive optics components.

    PubMed

    Signorato, R; Hignette, O; Goulon, J

    1998-05-01

    The angular acceptance of piezoelectric (Pzt) bimorph mirrors is limited by the maximum length of commercially available Pzt ceramic plates. To overcome this limit and manufacture longer devices, several (2n + 1) 150 mm-long bimorph Pzt stacks were assembled side-to-side. Two prototype mirrors, 450 (n = 1) and 750 (n = 2) mm long, were designed, assembled, polished and optically characterized. They are fully UHV compatible and are now installed in the monochromatic section of the ESRF beamlines ID26 and ID32. Both mirrors cover the full range of required bending radii (1 km concave-3.5 km convex). Junctions between segments do not spoil the optical surface quality. The surface slope error r.m.s. can be kept well below 1 arcsec over the full bending range. Adaptive compensation for low-frequency figure errors was shown to be easy and reliable. After compensation, residual shape errors are of the order of 40 nm r.m.s. over 700 mm. PMID:15263657

  11. Characterization and annealing of high-stroke monolithic gold MEMS deformable mirror for adaptive optics

    NASA Astrophysics Data System (ADS)

    Fernández, Bautista; Kubby, Joel

    2011-03-01

    Adaptive optics for the next generation of extremely large telescopes (30 - 50 meter diameter primary mirrors) requires high-stroke (10 microns), high-order (100x100) deformable mirrors at lower-cost than current technology. Lowering the cost while improving the performance of deformable mirrors is possible using Micro-Electro-Mechanical Systems (MEMS) technology. In this paper the fabrication and testing of an array of high-stroke gold MEMS X-beam actuators attached to a continuous gold facesheet will be described. Both the actuator and the facesheet were fabricated monolithically in gold plated onto a thermally matched ceramic-glass substrate (WMS-15) using a high-aspect ratio fabrication process. Continuous facesheets that are deformed due to stress gradients have been annealed at high temperature and for an extended amount of time. The facesheet was flattened to the point where features such as etch holes and support post topography were easily distinguishable. Initial root-mean-square (RMS) topography at center of facesheet attached to a 16x16 X-beam actuator array with 1mm pitch was measured to be ~13.8μm. After annealing, the surface topography was measured to be ~1.0μm.

  12. Development of lightweight mirror elements for the Euro50 mirrors

    NASA Astrophysics Data System (ADS)

    Bennett, Harold E.; Romeo, Robert C.; Shaffer, Joseph J.; Chen, Peter C.

    2004-07-01

    New, very large telescopes with apertures of 30, 50, and 100 meters are being proposed by the astronomical community. Superpolished or ultrapolished mirrors with low scattered light levels and the use of adaptive optics for near-diffraction-limited performance would make such large telescopes a turning point in astronomy. The secondary mirror for the Euro50 will be a four meter adaptive optic made of a low expansion graphite-filled cyanate ester resin composite produced using a replica transfer technique. We have made three 1/3rd meter diameter prototype composite adaptive optic mirrors of this cyanate ester composite material. Because of the embedded graphite fibers, the composite material has a measured expansion coefficient in the 10-8 range, as has Zerodur or ULE glass. It is very much lighter, more rugged and more economical than Zerodur or ULE, and can be fabricated in weeks, not months. The Zerodur mandrels upon which these replica transfer mirrors are made are superpolished using centrifugal elutriation, so the replica surface has an rms roughness of 0.6 to 0.8 nm. It thus scatters about an order of magnitude less light than typical conventionally polished astronomical mirrors. In adaptive optic mirrors with sub-mm thick faceplates the number of plies used is insufficient to produce an isotropic surface. For mirrors 2 mm thick, with more plies, the surfaces are isotropic, and the slight astigmatism sometimes resulting from the mesh in the ply can be corrected by actuators to make them attractive mirrors. They must be supported to maintain a good optical figure over a meter diameter mirror. The support requirement may be met by using a new type of mechanical/piezoelectric actuator adjustable to a fraction of a wavelength. The mechanical actuators have a coarse adjust of over an mm and a fine adjust of less than a wavelength of light. They can be used in series with a novel type of piezoelectric actuator for final static adjustment. The low voltage, up to 2

  13. Control of the unilluminated deformable mirror actuators in an altitude-conjugated adaptive optics system

    PubMed

    Veran

    2000-07-01

    Off-axis observations made with adaptive optics are severely limited by anisoplanatism errors. However, conjugating the deformable mirror to an optimal altitude can reduce these errors; it is then necessary to control, through extrapolation, actuators that are not measured by the wave-front sensor (unilluminated actuators). In this study various common extrapolation schemes are investigated, and an optimal method that achieves a significantly better performance is proposed. This extrapolation method involves a simple matrix multiplication and will be implemented in ALTAIR, the Gemini North Telescope adaptive optics system located on Mauna Kea, Hawaii. With this optimal method, the relative H-band Strehl reduction due to extrapolation errors is only 5%, 16%, and 30% when the angular distance between the guide source and the science target is 20, 40 and 60 arc sec, respectively. For a site such as Mauna Kea, these errors are largely outweighed by the increase in the size of the isoplanatic field.

  14. Control of the unilluminated deformable mirror actuators in an altitude-conjugated adaptive optics system

    PubMed

    Veran

    2000-07-01

    Off-axis observations made with adaptive optics are severely limited by anisoplanatism errors. However, conjugating the deformable mirror to an optimal altitude can reduce these errors; it is then necessary to control, through extrapolation, actuators that are not measured by the wave-front sensor (unilluminated actuators). In this study various common extrapolation schemes are investigated, and an optimal method that achieves a significantly better performance is proposed. This extrapolation method involves a simple matrix multiplication and will be implemented in ALTAIR, the Gemini North Telescope adaptive optics system located on Mauna Kea, Hawaii. With this optimal method, the relative H-band Strehl reduction due to extrapolation errors is only 5%, 16%, and 30% when the angular distance between the guide source and the science target is 20, 40 and 60 arc sec, respectively. For a site such as Mauna Kea, these errors are largely outweighed by the increase in the size of the isoplanatic field. PMID:10883986

  15. Wave front adaptation using a deformable mirror for adiabatic nanofocusing along an ultrasharp gold taper.

    PubMed

    Schmidt, Slawa; Engelke, Pascal; Piglosiewicz, Björn; Esmann, Martin; Becker, Simon F; Yoo, Kyungwan; Park, Namkyoo; Lienau, Christoph; Groß, Petra

    2013-11-01

    We describe and demonstrate the use of an adaptive wave front optimization scheme for enhancing the efficiency of adiabatic nanofocusing of surface plasmon polariton (SPP) waves along an ultrasharp conical gold taper. Adiabatic nanofocusing is an emerging and promising scheme for controlled focusing of far field light into nanometric volumes. It comprises three essential steps: SPP excitation by coupling far field light to an SPP waveguide, SPP propagation along the waveguide and adiabatic SPP nanofocusing towards a geometric singularity. For commonly used complex waveguide geometries, such as, e.g., conical metal tapers, a realistic modeling and efficiency optimization is challenging. Here, we use a deformable mirror to adaptively control the wave front of the incident far field light. We demonstrate an eight-fold enhancement in nanofocusing efficiency and analyze the shape of the resulting optimized wave front. The introduced wave front optimization scheme is of general interest for guiding and controlling light on the nanoscale.

  16. fMRI adaptation reveals mirror neurons in human inferior parietal cortex.

    PubMed

    Chong, Trevor T-J; Cunnington, Ross; Williams, Mark A; Kanwisher, Nancy; Mattingley, Jason B

    2008-10-28

    Mirror neurons, as originally described in the macaque, have two defining properties [1, 2]: They respond specifically to a particular action (e.g., bringing an object to the mouth), and they produce their action-specific responses independent of whether the monkey executes the action or passively observes a conspecific performing the same action. In humans, action observation and action execution engage a network of frontal, parietal, and temporal areas. However, it is unclear whether these responses reflect the activity of a single population that represents both observed and executed actions in a common neural code or the activity of distinct but overlapping populations of exclusively perceptual and motor neurons [3]. Here, we used fMRI adaptation to show that the right inferior parietal lobe (IPL) responds independently to specific actions regardless of whether they are observed or executed. Specifically, responses in the right IPL were attenuated when participants observed a recently executed action relative to one that had not previously been performed. This adaptation across action and perception demonstrates that the right IPL responds selectively to the motoric and perceptual representations of actions and is the first evidence for a neural response in humans that shows both defining properties of mirror neurons.

  17. Six movements measurement system employed for GAIA secondary mirror positioning system vacuum tests at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Ramos Zapata, Gonzalo; Sánchez Rodríguez, Antonio; Garranzo García-Ibarrola, Daniel; Belenguer Dávila, Tomás

    2008-07-01

    In this work, the optical measurement system employed to evaluate the performance of a 6 degrees of freedom (dof) positioning mechanism under cryogenic conditions is explored. The mechanism, the flight model of three translations and three rotations positioning mechanism, was developed by the Spanish company SENER (for ASTRIUM) to fulfil the high performance requirements from ESA technology preparatory program for the positioning of a secondary mirror within the GAIA Astrometric Mission. Its performance has been evaluated under vacuum and temperature controlled conditions (up to a 10-6mbar and 100K) at the facilities of the Space Instrumentation Laboratory (LINES) of the Aerospace Technical Nacional Institute of Spain (INTA). After the description of the 'alignment tool' developed to compare a fixed reference with the optical signal corresponding to the movement under evaluation, the optical system that allows measuring the displacements and the rotations in the three space directions is reported on. Two similar bread-boards were defined and mounted for the measurements purpose, one containing two distancemeters, in order to measure the displacements through the corresponding axis, and an autocollimator in order to obtain the rotations on the plane whose normal vector is the axis mentioned before, and other one containing one distancemeter and one autocollimator. Both distancemeter and autocollimator measurements have been combined in order to extract the information about the accuracy of the mechanism movements as well as their repeatability under adverse environmental conditions.

  18. When mirroring is both simple and “smart”: how mimicry can be embodied, adaptive, and non-representational

    PubMed Central

    Carr, Evan W.; Winkielman, Piotr

    2014-01-01

    The concept of mirroring has become rather ubiquitous. One of the most fundamental empirical and theoretical debates within research on mirroring concerns the role of mental representations: while some models argue that higher-order representational mechanisms underpin most cases of mirroring, other models argue that they only moderate a primarily non-representational process. As such, even though research on mirroring—along with its neural substrates, including the putative mirror neuron system—has grown tremendously, so too has confusion about what it actually means to “mirror”. Using recent research on spontaneous imitation, we argue that flexible mirroring effects can be fully embodied and dynamic—even in the absence of higher-order mental representations. We propose that mirroring can simply reflect an adaptive integration and utilization of cues obtained from the brain, body, and environment, which is especially evident within the social context. Such a view offers reconciliation among both representational and non-representational frameworks in cognitive neuroscience, which will facilitate revised interpretations of modern (and seemingly divergent) findings on when and how these embodied mirroring responses are employed. PMID:25071532

  19. Impact of resolution in multi-conjugate adaptive optics systems using segmented mirrors

    NASA Astrophysics Data System (ADS)

    Corej, Thomas A.; Schmidt, Jason D.

    2009-08-01

    In moderate-to-strong scintillation, multi-conjugate adaptive optics (MCAO) appears promising to compensate for amplitude and phase fluctuations. In this research, a MCAO system is simulated with a segmented deformable mirror (DM) reshaping the amplitude and the second DM (continuous) flattening the phase after propagation from the segmented mirror. A Gerchberg-Saxton (GS) type algorithm is used with Fresnel propagation between DM planes. The effects of varying the phase's apparent resolution on a segmented DM in the pupil plane is investigated. Results show the mean square error in the reshaped beam decreases as D/ro and Rytov number increase over the range of conditions tested (ro: 0.11 m - 0.36 m). The field-estimated Strehl ratio drops precipitously when the number of subapertures is increased beyond about 36 across, using a branch-pointtolerant unwrapper, due to the presence of branch points. On the second DM, by using the mean of the phase within each subaperture before back propagating to the first DM plane (inside the GS loop), the Strehl ratio was improved 6 - 11 percent using 4 - 19 actuators across. Further a novel method of cascading segmented DMs, of increasingly higher resolution, doing amplitude reshaping followed by a continuous DM to flatten the phase is explored.

  20. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Atkinson, D.; Bharmal, N. A.; Bitenc, U.; Brangier, M.; Buey, T.; Butterley, T.; Cano, D.; Chemla, F.; Clark, P.; Cohen, M.; Conan, J.-M.; de Cos, F. J.; Dickson, C.; Dipper, N. A.; Dunlop, C. N.; Feautrier, P.; Fusco, T.; Gach, J. L.; Gendron, E.; Geng, D.; Goodsell, S. J.; Gratadour, D.; Greenaway, A. H.; Guesalaga, A.; Guzman, C. D.; Henry, D.; Holck, D.; Hubert, Z.; Huet, J. M.; Kellerer, A.; Kulcsar, C.; Laporte, P.; Le Roux, B.; Looker, N.; Longmore, A. J.; Marteaud, M.; Martin, O.; Meimon, S.; Morel, C.; Morris, T. J.; Myers, R. M.; Osborn, J.; Perret, D.; Petit, C.; Raynaud, H.; Reeves, A. P.; Rousset, G.; Sanchez Lasheras, F.; Sanchez Rodriguez, M.; Santos, J. D.; Sevin, A.; Sivo, G.; Stadler, E.; Stobie, B.; Talbot, G.; Todd, S.; Vidal, F.; Younger, E. J.

    2016-06-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  1. Age-Specific Effects of Mirror-Muscle Activity on Cross-Limb Adaptations Under Mirror and Non-Mirror Visual Feedback Conditions

    PubMed Central

    Reissig, Paola; Stöckel, Tino; Garry, Michael I.; Summers, Jeffery J.; Hinder, Mark R.

    2015-01-01

    Cross-limb transfer (CLT) describes the observation of bilateral performance gains due to unilateral motor practice. Previous research has suggested that CLT may be reduced, or absent, in older adults, possibly due to age-related structural and functional brain changes. Based on research showing increases in CLT due to the provision of mirror visual feedback (MVF) during task execution in young adults, our study aimed to investigate whether MVF can facilitate CLT in older adults, who are known to be more reliant on visual feedback for accurate motor performance. Participants (N = 53) engaged in a short-term training regime (300 movements) involving a ballistic finger task using their dominant hand, while being provided with either visual feedback of their active limb, or a mirror reflection of their active limb (superimposed over the quiescent limb). Performance in both limbs was examined before, during and following the unilateral training. Furthermore, we measured corticospinal excitability (using TMS) at these time points, and assessed muscle activity bilaterally during the task via EMG; these parameters were used to investigate the mechanisms mediating and predicting CLT. Training resulted in significant bilateral performance gains that did not differ as a result of age or visual feedback (both p > 0.1). Training also elicited bilateral increases in corticospinal excitability (p < 0.05). For younger adults, CLT was significantly predicted by performance gains in the trained hand (β = 0.47), whereas for older adults it was significantly predicted by mirror activity in the untrained hand during training (β = 0.60). The present study suggests that older adults are capable of exhibiting CLT to a similar degree to younger adults. The prominent role of mirror activity in the untrained hand for CLT in older adults indicates that bilateral cortical activity during unilateral motor tasks is a compensatory mechanism. In this particular task, MVF did not facilitate the

  2. Adaptive optics for resolution/throughput optimization; variable-radius-mirror application for a PGM

    NASA Astrophysics Data System (ADS)

    Morikawa, Eizi; Scott, John D.; Saile, Volker

    1992-08-01

    The utilization of a bendable, variable-radius mirror as a key optical element to control resolution (and throughput) of an XUV monochromator is discussed. A bendable mirror is placed between source and grating; by bending it to either a concave or a convex figure along the dispersion direction, a variation of monochromator resolution is accomplished. As an application example, a plane-grating soft X-ray monochromator equipped with this bendable mirror system was investigated with ray-tracing calculations.

  3. Adaptive optimization of reference intensity for optical coherence imaging using galvanometric mirror tilting method

    NASA Astrophysics Data System (ADS)

    Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai

    2015-09-01

    Integration time and reference intensity are important factors for achieving high signal-to-noise ratio (SNR) and sensitivity in optical coherence tomography (OCT). In this context, we present an adaptive optimization method of reference intensity for OCT setup. The reference intensity is automatically controlled by tilting a beam position using a Galvanometric scanning mirror system. Before sample scanning, the OCT system acquires two dimensional intensity map with normalized intensity and variables in color spaces using false-color mapping. Then, the system increases or decreases reference intensity following the map data for optimization with a given algorithm. In our experiments, the proposed method successfully corrected the reference intensity with maintaining spectral shape, enabled to change integration time without manual calibration of the reference intensity, and prevented image degradation due to over-saturation and insufficient reference intensity. Also, SNR and sensitivity could be improved by increasing integration time with automatic adjustment of the reference intensity. We believe that our findings can significantly aid in the optimization of SNR and sensitivity for optical coherence tomography systems.

  4. Active control of adaptive optics system in a large segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Nagashima, M.; Agrawal, B. N.

    2014-02-01

    For a large adaptive optics system such as a large segmented mirror telescope (SMT), it is often difficult, although not impossible, to directly apply common multi-input multi-output (MIMO) controller design methods due to the computational burden imposed by the large dimension of the system model. In this article, a practical controller design method is proposed which significantly reduces the system dimension for a system where the dimension required to represent the dynamics of the plant is much smaller than the dimension of the full plant model. The proposed method decouples the dynamic and static parts of the plant model by a modal decomposition technique to separately design a controller for each part. Two controllers are then combined using the so-called sensitivity decoupling method so that the resulting feedback loop becomes the superposition of the two individual feedback loops of the dynamic and static parts. A MIMO controller was designed by the proposed method using the H ∞ loop-shaping technique for an SMT model to be compared with other controllers proposed in the literature. Frequency-domain analysis and time-domain simulation results show the superior performance of the proposed controller.

  5. A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system

    PubMed Central

    Li, Chaohong; Sredar, Nripun; Ivers, Kevin M.; Queener, Hope; Porter, Jason

    2010-01-01

    We present a direct slope-based correction algorithm to simultaneously control two deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. A global response matrix was derived from the response matrices of each deformable mirror and the voltages for both deformable mirrors were calculated simultaneously. This control algorithm was tested and compared with a 2-step sequential control method in five normal human eyes using an adaptive optics scanning laser ophthalmoscope. The mean residual total root-mean-square (RMS) wavefront errors across subjects after adaptive optics (AO) correction were 0.128 ± 0.025 μm and 0.107 ± 0.033 μm for simultaneous and 2-step control, respectively (7.75-mm pupil). The mean intensity of reflectance images acquired after AO convergence was slightly higher for 2-step control. Radially-averaged power spectra calculated from registered reflectance images were nearly identical for all subjects using simultaneous or 2-step control. The correction performance of our new simultaneous dual DM control algorithm is comparable to 2-step control, but is more efficient. This method can be applied to any woofer-tweeter AO system. PMID:20721058

  6. Dynamic performance of MEMS deformable mirrors for use in an active/adaptive two-photon microscope

    NASA Astrophysics Data System (ADS)

    Zhang, Christian C.; Foster, Warren B.; Downey, Ryan D.; Arrasmith, Christopher L.; Dickensheets, David L.

    2016-03-01

    Active optics can facilitate two-photon microscopic imaging deep in tissue. We are investigating fast focus control mirrors used in concert with an aberration correction mirror to control the axial position of focus and system aberrations dynamically during scanning. With an adaptive training step, sample-induced aberrations may be compensated as well. If sufficiently fast and precise, active optics may be able to compensate under-corrected imaging optics as well as sample aberrations to maintain diffraction-limited performance throughout the field of view. Toward this end we have measured a Boston Micromachines Corporation Multi-DM 140 element deformable mirror, and a Revibro Optics electrostatic 4-zone focus control mirror to characterize dynamic performance. Tests for the Multi-DM included both step response and sinusoidal frequency sweeps of specific Zernike modes. For the step response we measured 10%-90% rise times for the target Zernike amplitude, and wavefront rms error settling times. Frequency sweeps identified the 3dB bandwidth of the mirror when attempting to follow a sinusoidal amplitude trajectory for a specific Zernike mode. For five tested Zernike modes (defocus, spherical aberration, coma, astigmatism and trefoil) we find error settling times for mode amplitudes up to 400nm to be less than 52 us, and 3 dB frequencies range from 6.5 kHz to 10 kHz. The Revibro Optics mirror was tested for step response only, with error settling time of 80 μs for a large 3 um defocus step, and settling time of only 18 μs for a 400nm spherical aberration step. These response speeds are sufficient for intra-scan correction at scan rates typical of two-photon microscopy.

  7. On the optimal reconstruction and control of adaptive optical systems with mirror dynamics.

    PubMed

    Correia, Carlos; Raynaud, Henri-François; Kulcsár, Caroline; Conan, Jean-Marc

    2010-02-01

    In adaptive optics (AO) the deformable mirror (DM) dynamics are usually neglected because, in general, the DM can be considered infinitely fast. Such assumption may no longer apply for the upcoming Extremely Large Telescopes (ELTs) with DM that are several meters in diameter with slow and/or resonant responses. For such systems an important challenge is to design an optimal regulator minimizing the variance of the residual phase. In this contribution, the general optimal minimum-variance (MV) solution to the full dynamical reconstruction and control problem of AO systems (AOSs) is established. It can be looked upon as the parent solution from which simpler (used hitherto) suboptimal solutions can be derived as special cases. These include either partial DM-dynamics-free solutions or solutions derived from the static minimum-variance reconstruction (where both atmospheric disturbance and DM dynamics are neglected altogether). Based on a continuous stochastic model of the disturbance, a state-space approach is developed that yields a fully optimal MV solution in the form of a discrete-time linear-quadratic-Gaussian (LQG) regulator design. From this LQG standpoint, the control-oriented state-space model allows one to (1) derive the optimal state-feedback linear regulator and (2) evaluate the performance of both the optimal and the sub-optimal solutions. Performance results are given for weakly damped second-order oscillatory DMs with large-amplitude resonant responses, in conditions representative of an ELT AO system. The highly energetic optical disturbance caused on the tip/tilt (TT) modes by the wind buffeting is considered. Results show that resonant responses are correctly handled with the MV regulator developed here. The use of sub-optimal regulators results in prohibitive performance losses in terms of residual variance; in addition, the closed-loop system may become unstable for resonant frequencies in the range of interest. PMID:20126246

  8. Demonstration of a 17 cm robust carbon fiber deformable mirror for adaptive optics

    SciTech Connect

    Ammons, S M; Hart, M; Coughenour, B; Romeo, R; Martin, R; Rademacher, M

    2011-09-12

    Carbon-fiber reinforced polymer (CFRP) composite is an attractive material for fabrication of optics due to its high stiffness-to-weight ratio, robustness, zero coefficient of thermal expansion (CTE), and the ability to replicate multiple optics from the same mandrel. We use 8 and 17 cm prototype CFRP thin-shell deformable mirrors to show that residual CTE variation may be addressed with mounted actuators for a variety of mirror sizes. We present measurements of surface quality at a range of temperatures characteristic of mountaintop observatories. For the 8 cm piece, the figure error of the Al-coated reflective surface under best actuator correction is {approx}43 nm RMS. The 8 cm mirror has a low surface error internal to the outer ring of actuators (17 nm RMS at 20 C and 33 nm RMS at -5 C). Surface roughness is low (< 3 nm P-V) at a variety of temperatures. We present new figure quality measurements of the larger 17 cm mirror, showing that the intra-actuator figure error internal to the outer ring of actuators (38 nm RMS surface with one-third the actuator density of the 8 cm mirror) does not scale sharply with mirror diameter.

  9. Adaptive evolution of the osmoregulation-related genes in cetaceans during secondary aquatic adaptation

    PubMed Central

    2013-01-01

    Background Osmoregulation was a primary challenge for cetaceans during the evolutionary transition from a terrestrial to a mainly hyperosmotic environment. Several physiological mechanisms have been suggested to maintain the water and salt balance in cetaceans, but their genetic and evolutionary bases remain poorly explored. The current study investigated the genes involved in osmoregulation in cetaceans and compared them with their counterparts in terrestrial mammals to test whether adaptive evolution occurred during secondary aquatic adaptation. Results The present study analyzed the molecular evolution of 11 osmoregulation-related genes in 11 cetacean species, which represented all of the major cetacean clades. The results demonstrated positive selection acting on angiotensin converting enzyme (ACE), angiotensinogen (AGT), SLC14A2, and aquaporin 2 (AQP2). This evidence for the positive selection of AQP2 and SLC14A2 suggests that the adaptive evolution of these genes has helped to enhance the capacity for water and urea transport, thereby leading to the concentration of urine, which is an efficient mechanism for maintaining the water balance. By contrast, a series of positively selected amino acid residues identified in the ACE and AGT (two key members of the renin-angiotensin-aldosterone system, RAAS) proteins of cetaceans suggests that RAAS might have been adapted to maintain the water and salt balance in response to a hyperosmotic environment. Radical amino acid changes in positively selected sites were distributed among most internal and terminal branches of the cetacean phylogeny, which suggests the pervasively adaptive evolution of osmoregulation since the origin of cetaceans and their subsequent diversification. Conclusions This is the first comprehensive analysis of the molecular evolution of osmoregulation-related genes in cetaceans in response to selection pressure from a generally hyperosmotic environment. Four genes, i.e., AQP2, SLC14A2, ACE, and AGT

  10. Adaptive optics with a magnetic deformable mirror: applications in the human eye

    NASA Astrophysics Data System (ADS)

    Fernandez, Enrique J.; Vabre, Laurent; Hermann, Boris; Unterhuber, Angelika; Povazay, Boris; Drexler, Wolfgang

    2006-10-01

    A novel deformable mirror using 52 independent magnetic actuators (MIRAO 52, Imagine Eyes) is presented and characterized for ophthalmic applications. The capabilities of the device to reproduce different surfaces, in particular Zernike polynomials up to the fifth order, are investigated in detail. The study of the influence functions of the deformable mirror reveals a significant linear response with the applied voltage. The correcting device also presents a high fidelity in the generation of surfaces. The ranges of production of Zernike polynomials fully cover those typically found in the human eye, even for the cases of highly aberrated eyes. Data from keratoconic eyes are confronted with the obtained ranges, showing that the deformable mirror is able to compensate for these strong aberrations. Ocular aberration correction with polychromatic light, using a near Gaussian spectrum of 130 nm full width at half maximum centered at 800 nm, in five subjects is accomplished by simultaneously using the deformable mirror and an achromatizing lens, in order to compensate for the monochromatic and chromatic aberrations, respectively. Results from living eyes, including one exhibiting 4.66 D of myopia and a near pathologic cornea with notable high order aberrations, show a practically perfect aberration correction. Benefits and applications of simultaneous monochromatic and chromatic aberration correction are finally discussed in the context of retinal imaging and vision.

  11. Chopping secondary mirror control systems for the W. M. Keck Telescopes

    NASA Astrophysics Data System (ADS)

    Lupton, William

    1997-09-01

    The Keck 1 chopping secondary was built by the Palo Alto Research Laboratories of the Lockheed (now Lockheed Martin) Missiles and Space Company. The only software component of the delivered system is a proprietary error correction algorithm; Keck wrote software to generate acceleration-limited azimuth and elevation demands, to rotate these demands as a function of telescope position, to interact with the error correction system, and to mange hardware start-up and shutdown. The Keck 2 chopping secondary, also built by Lockheed, was originally conceived as an infrared fast steering mechanism (IFSM) and is simpler than the Keck 1 system, with lower power and acceleration limits and, therefore, lower chop amplitude and frequency specifications. As far as possible, it provides the same external interfaces as the Keck 1 system. A new EPICS- based telescope control system has been written for Keck 2 and was retrofitted on Keck 1 in March 1997. The Keck 1 chopper control software has been converted to the EPICS environment and, at the same time, altered so that the same software supports both choppers. This conversion has retained as much as possible of the complex real-time code of the old system while at the same time fully utilizing EPICS facilities. The paper presents more details of both the old and the new systems and illustrates how the new system is simpler than the old as well as being much better integrated into the overall telescope control system. Operational experience is presented.

  12. Optical tests of a space mechanism under an adverse environment: GAIA secondary mirror mechanism under vaccum and thermal controlled conditions

    NASA Astrophysics Data System (ADS)

    Ramos Zapata, Gonzalo; Sánchez Rodríguez, Antonio; Belenguer Dávila, Tomás; Urgoiti, Eduardo; Ramírez Quintana, Argiñe

    2007-09-01

    In this work, the optical evaluation of a mechanism for space applications under vacuum and temperature controlled conditions at the facilities of the Space Instrumentation Laboratory (LINES) of the Aerospace Technical Nacional Institute of Spain (INTA) is reported. The mechanism was developed by the Spanish company SENER to fulfill the high performance requirements from ESA technology preparatory program for GAIA Astrometric Mission; in particular, a five degrees of freedom (dof), three translations and two rotations positioning mechanism for the secondary mirror of the GAIA instrument. Both interferometric tests and autocollimator measurements have been combined in order to extract the information about the accuracy of the mechanism movements as well as their repeatability under adverse environmental conditions: vacuum and thermal controlled conditions, up to a 10 -6mbar and 100K. The scope of this paper will cover the measurements concept selection, the presentation of verification activities, the results of such dedicated optical measurements, the correlation with the mechanical models and a brief description of the design process followed to meet the test requirements.

  13. Simulations of far-field optical beam quality influenced by the thermal distortion of the secondary mirror for high-power laser system

    NASA Astrophysics Data System (ADS)

    Guo, Ruhai; Chen, Ning; Zhuang, Xinyu; Wang, Bing

    2015-02-01

    In order to research the influence on the beam quality due to thermal deformation of the secondary mirror in the high power laser system, the theoretical simulation study is performed. Firstly, three typical laser power 10kW, 50kW and 100kW with the wavelength 1.064μm are selected to analyze thermal deformation of mirror through the finite element analyze of thermodynamics instantaneous method. Then the wavefront aberration can be calculated by ray-tracing theory. Finally, focus spot radius,beam quality (BQ) of far-filed beam can be calculated and comparably analyzed by Fresnel diffraction integration. The simulation results show that with the increasing laser power, the optical aberration of beam director gets worse, the far-field optical beam quality decrease, which makes the laser focus spot broadening and the peak optical intensity of center decreasing dramatically. Comparing the clamping ring and the three-point clamping, the former is better than the latter because the former only induces the rotation symmetric deformation and the latter introduces additional astigmatism. The far-field optical beam quality can be improved partly by simply adjusting the distance between the main mirror and the secondary mirror. But the far-field power density is still the one tenth as that without the heat distortion of secondary mirror. These results can also provide the reference to the thermal aberration analyze for high power laser system and can be applied to the field of laser communication system and laser weapon etc.

  14. A Theory of Secondary Teachers' Adaptations When Implementing a Reading Intervention Program

    ERIC Educational Resources Information Center

    Leko, Melinda M.; Roberts, Carly A.; Pek, Yvonne

    2015-01-01

    This study examined the causes and consequences of secondary teachers' adaptations when implementing a research-based reading intervention program. Interview, observation, and artifact data were collected on five middle school intervention teachers, leading to a grounded theory composed of the core component, reconciliation through adaptation, and…

  15. EUV reflectance characterization of the 94/304 ? flight secondary AIA mirror at beamline 6.3.2 of the Advanced Light Source

    SciTech Connect

    Soufli, R; Spiller, E; Aquila, A L; Gullikson, E M; Windt, D L

    2006-02-22

    The AIA secondary flight mirror, previously coated at Columbia University with Mg/SiC for the 303.8 {angstrom} channel and Mo/Y for the 93.9 {angstrom} channel was characterized by means of EUV reflectance measurements at beamline 6.3.2 of the Advanced Light Source (ALS) synchrotron at LBNL on January 10, 2006. Paul Boerner (LMSAL) also participated in these measurements.

  16. Mirror neurons in monkey area F5 do not adapt to the observation of repeated actions.

    PubMed

    Caggiano, Vittorio; Pomper, Joern K; Fleischer, Falk; Fogassi, Leonardo; Giese, Martin; Thier, Peter

    2013-01-01

    Repetitive presentation of the same visual stimulus entails a response decrease in the action potential discharge of neurons in various areas of the monkey visual cortex. It is still unclear whether this repetition suppression effect is also present in single neurons in cortical premotor areas responding to visual stimuli, as suggested by the human functional magnetic resonance imaging literature. Here we report the responses of 'mirror neurons' in monkey area F5 to the repeated presentation of action movies. We find that most single neurons and the population at large do not show a significant decrease of the firing rate. On the other hand, simultaneously recorded local field potentials exhibit repetition suppression. As local field potentials are believed to be better linked to the blood-oxygen-level-dependent (BOLD) signal exploited by functional magnetic resonance imaging, these findings suggest caution when trying to derive conclusions on the spiking activity of neurons in a given area based on the observation of BOLD repetition suppression.

  17. Single-camera stereo-digital image correlation with a four-mirror adapter: optimized design and validation

    NASA Astrophysics Data System (ADS)

    Yu, Liping; Pan, Bing

    2016-12-01

    A low-cost, easy-to-implement but practical single-camera stereo-digital image correlation (DIC) system using a four-mirror adapter is established for accurate shape and three-dimensional (3D) deformation measurements. The mirrors assisted pseudo-stereo imaging system can convert a single camera into two virtual cameras, which view a specimen from different angles and record the surface images of the test object onto two halves of the camera sensor. To enable deformation measurement in non-laboratory conditions or extreme high temperature environments, an active imaging optical design, combining an actively illuminated monochromatic source with a coupled band-pass optical filter, is compactly integrated to the pseudo-stereo DIC system. The optical design, basic principles and implementation procedures of the established system for 3D profile and deformation measurements are described in detail. The effectiveness and accuracy of the established system are verified by measuring the profile of a regular cylinder surface and displacements of a translated planar plate. As an application example, the established system is used to determine the tensile strains and Poisson's ratio of a composite solid propellant specimen during stress relaxation test. Since the established single-camera stereo-DIC system only needs a single camera and presents strong robustness against variations in ambient light or the thermal radiation of a hot object, it demonstrates great potential in determining transient deformation in non-laboratory or high-temperature environments with the aid of a single high-speed camera.

  18. Gene expression in closely related species mirrors local adaptation: consequences for responses to a warming world.

    PubMed

    O'Neil, Shawn T; Dzurisin, Jason D K; Williams, Caroline M; Lobo, Neil F; Higgins, Jessica K; Deines, Jillian M; Carmichael, Rory D; Zeng, Erliang; Tan, John C; Wu, Grace C; Emrich, Scott J; Hellmann, Jessica J

    2014-06-01

    Local adaptation of populations could preclude or slow range expansions in response to changing climate, particularly when dispersal is limited. To investigate the differential responses of populations to changing climatic conditions, we exposed poleward peripheral and central populations of two Lepidoptera to reciprocal, common-garden climatic conditions and compared their whole-transcriptome expression. We found evidence of simple population differentiation in both species, and in the species with previously identified population structure and phenotypic local adaptation, we found several hundred genes that responded in a synchronized and localized fashion. These genes were primarily involved in energy metabolism and oxidative stress, and expression levels were most divergent between populations in the same environment in which we previously detected divergence for metabolism. We found no localized genes in the species with less population structure and for which no local adaptation was previously detected. These results challenge the assumption that species are functionally similar across their ranges and poleward peripheral populations are preadapted to warmer conditions. Rather, some taxa deserve population-level consideration when predicting the effects of climate change because they respond in genetically based, distinctive ways to changing conditions.

  19. Point Spread Function and Transmittance Analyses for Conical and Hexapod Secondary Mirror Support Towers for the Next Generation Space Telescope (NGST)

    NASA Technical Reports Server (NTRS)

    Wilkerson, Gary W.; Pitalo, Stephen K.

    1999-01-01

    Different secondary mirror support towers were modeled on the CODE V optical design/analysis program for the NGST Optical Telescope Assembly (OTA) B. The vertices of the NGST OTA B primary and secondary mirrors were separated by close to 9.0 m. One type of tower consisted of a hollow cone 6.0 m long, 2.00 m in diameter at the base, and 0.704 m in diameter at its top. The base of the cone was considered attached to the primary's reaction structure through a hole in the primary. Extending up parallel to the optical axis from the top of this cylinder were eight blades (pyramidal struts) 3.0 m long. A cross section of each these long blades was an isosceles triangle with a base of 0.010 m and a height of 0.100 m with the sharpest part of each triangle pointing inward. The eight struts occurred every 45 deg. The other type of tower was purely a hexapod arrangement and had no blades or cones. The hexapod consisted simply of six, very thin, circular struts, leaving in pairs at 12:00, 4:00, and 8:00 at the primary and traversing to the outer edge of the back of the secondary mount. At this mount, two struts arrived at each of 10:00, 2:00, and 6:00. The struts were attached to the primary mirror in a ring 3.5 m in diameter. They reached the back of the secondary mount, a circle 0.704 m in diameter. Transmittance analyses at two levels were performed on the secondary mirror support towers. Detailed transmittances were accomplished by the use of the CODE V optical design/analysis program and were compared to transmittance calculations that were almost back-of-the-envelope. Point spread function (PSF) calculations, including both diffraction and aberration effects, were performed on CODE V. As one goes out from the center of the blur (for a point source), the two types of support towers showed little difference between their PSF intensities until one reaches about the 3% level. Contours can be delineated on CODE V down to about 10 (exp -8) times the peak intensity, fine

  20. Shifting mirrors: adaptive changes in retinal reflections to winter darkness in Arctic reindeer.

    PubMed

    Stokkan, Karl-Arne; Folkow, Lars; Dukes, Juliet; Neveu, Magella; Hogg, Chris; Siefken, Sandra; Dakin, Steven C; Jeffery, Glen

    2013-12-22

    Arctic reindeer experience extreme changes in environmental light from continuous summer daylight to continuous winter darkness. Here, we show that they may have a unique mechanism to cope with winter darkness by changing the wavelength reflection from their tapetum lucidum (TL). In summer, it is golden with most light reflected back directly through the retina, whereas in winter it is deep blue with less light reflected out of the eye. The blue reflection in winter is associated with significantly increased retinal sensitivity compared with summer animals. The wavelength of reflection depends on TL collagen spacing, with reduced spacing resulting in shorter wavelengths, which we confirmed in summer and winter animals. Winter animals have significantly increased intra-ocular pressure, probably produced by permanent pupil dilation blocking ocular drainage. This may explain the collagen compression. The resulting shift to a blue reflection may scatter light through photoreceptors rather than directly reflecting it, resulting in elevated retinal sensitivity via increased photon capture. This is, to our knowledge, the first description of a retinal structural adaptation to seasonal changes in environmental light. Increased sensitivity occurs at the cost of reduced acuity, but may be an important adaptation in reindeer to detect moving predators in the dark Arctic winter.

  1. Development and testing of a high-precision high-stiffness linear actuator for the focus-center mechanism of the SOFIA secondary mirror

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo; Schwab, Philippe; Gallieni, Daniele

    2000-06-01

    The SOFIA telescope chopping secondary mirror is mounted on a Focus Centering Mechanism. This system is a novel type of parallel manipulator (hexapod) made of six linear actuators which provide active alignment and focus of the chopper unit with respect to the top ring frame. We describe the development of the compact high-precision linear actuator used for this hexapod mechanism. The paper reports the test results measured on the actuator prototype proving its submicron position accuracy capability as well as its high stiffness and force. The prototype was designed to be largely representative of the flight unit ones currently in the construction phase.

  2. The Experience of Male Adolescent Refugees during Their Transfer and Adaptation to a UK Secondary School

    ERIC Educational Resources Information Center

    Hastings, Catherine

    2012-01-01

    This paper outlines a study which investigated the experience of six male adolescent refugees during their transfer and adaptation to a secondary school in the UK. The research used a qualitative design. The approach adopted was Interpretative Phenomenological Analysis. The data generated three superordinate themes which reflected the…

  3. Mesmerising mirror neurons.

    PubMed

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition.

  4. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria.

    PubMed

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel W; Gontang, Erin A; McGlinchey, Ryan P; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric E; Moore, Bradley S; Jensen, Paul R

    2009-10-01

    Genomic islands have been shown to harbor functional traits that differentiate ecologically distinct populations of environmental bacteria. A comparative analysis of the complete genome sequences of the marine Actinobacteria Salinispora tropica and Salinispora arenicola reveals that 75% of the species-specific genes are located in 21 genomic islands. These islands are enriched in genes associated with secondary metabolite biosynthesis providing evidence that secondary metabolism is linked to functional adaptation. Secondary metabolism accounts for 8.8% and 10.9% of the genes in the S. tropica and S. arenicola genomes, respectively, and represents the major functional category of annotated genes that differentiates the two species. Genomic islands harbor all 25 of the species-specific biosynthetic pathways, the majority of which occur in S. arenicola and may contribute to the cosmopolitan distribution of this species. Genome evolution is dominated by gene duplication and acquisition, which in the case of secondary metabolism provide immediate opportunities for the production of new bioactive products. Evidence that secondary metabolic pathways are exchanged horizontally, coupled with earlier evidence for fixation among globally distributed populations, supports a functional role and suggests that the acquisition of natural product biosynthetic gene clusters represents a previously unrecognized force driving bacterial diversification. Species-specific differences observed in clustered regularly interspaced short palindromic repeat sequences suggest that S. arenicola may possess a higher level of phage immunity, whereas a highly duplicated family of polymorphic membrane proteins provides evidence for a new mechanism of marine adaptation in Gram-positive bacteria.

  5. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    NASA Astrophysics Data System (ADS)

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  6. Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency.

    PubMed

    Liu, Wei; Yao, Kainan; Huang, Danian; Lin, Xudong; Wang, Liang; Lv, Yaowen

    2016-06-13

    The Greenwood frequency (GF) is influential in performance improvement for the coherent free space optical communications (CFSOC) system with a closed-loop adaptive optics (AO) unit. We analyze the impact of tilt and high-order aberrations on the mixing efficiency (ME) and bit-error-rate (BER) under different GF. The root-mean-square value (RMS) of the ME related to the RMS of the tilt aberrations, and the GF is derived to estimate the volatility of the ME. Furthermore, a numerical simulation is applied to verify the theoretical analysis, and an experimental correction system is designed with a double-stage fast-steering-mirror and a 97-element continuous surface deformable mirror. The conclusions of this paper provide a reference for designing the AO system for the CFSOC system.

  7. Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency.

    PubMed

    Liu, Wei; Yao, Kainan; Huang, Danian; Lin, Xudong; Wang, Liang; Lv, Yaowen

    2016-06-13

    The Greenwood frequency (GF) is influential in performance improvement for the coherent free space optical communications (CFSOC) system with a closed-loop adaptive optics (AO) unit. We analyze the impact of tilt and high-order aberrations on the mixing efficiency (ME) and bit-error-rate (BER) under different GF. The root-mean-square value (RMS) of the ME related to the RMS of the tilt aberrations, and the GF is derived to estimate the volatility of the ME. Furthermore, a numerical simulation is applied to verify the theoretical analysis, and an experimental correction system is designed with a double-stage fast-steering-mirror and a 97-element continuous surface deformable mirror. The conclusions of this paper provide a reference for designing the AO system for the CFSOC system. PMID:27410346

  8. Virtual Mirrors

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2010-01-01

    The multiple-reflection photograph in Fig. 1 was taken in an elevator on board the cruise ship Norwegian Jade in March 2008. Three of the four walls of the elevator were mirrored, allowing me to see the combination of two standard arrangements of plane mirrors: two mirrors set at 90 degrees to each other and two parallel mirrors. Optical phenomena…

  9. Influence functions of a thin shallow meniscus-shaped mirror.

    PubMed

    Arnold, L

    1997-04-01

    Thin shallow spherical shell theory is used to derive the general influence function, owing to uniform and/or discrete (actuators) loads, for a thin shallow meniscus-shaped mirror of uniform thickness with a central hole and supported at discrete points. Small elastic deformations are considered. No symmetry on the load distribution constrains the model. Explicit analytical expressions of the set of equations are given for calculating the influence functions. Results agree with the finite element analysis (FEA) to within 1%. When the FEA requires megabytes of RAM memory, the analytical method needs only kilobytes and typically runs 30 times faster. This is a crucial advantage for the iterative optimization of mirror supports such as large passive or active meniscus-shaped primary mirror supports or Cassegrain/Gregorian adaptive secondary actuator configurations. References are given on estimating the shear effects (thick mirror), the thickness variation effect, and the influence of the size of the support pads. PMID:18253168

  10. Influence functions of a thin shallow meniscus-shaped mirror.

    PubMed

    Arnold, L

    1997-04-01

    Thin shallow spherical shell theory is used to derive the general influence function, owing to uniform and/or discrete (actuators) loads, for a thin shallow meniscus-shaped mirror of uniform thickness with a central hole and supported at discrete points. Small elastic deformations are considered. No symmetry on the load distribution constrains the model. Explicit analytical expressions of the set of equations are given for calculating the influence functions. Results agree with the finite element analysis (FEA) to within 1%. When the FEA requires megabytes of RAM memory, the analytical method needs only kilobytes and typically runs 30 times faster. This is a crucial advantage for the iterative optimization of mirror supports such as large passive or active meniscus-shaped primary mirror supports or Cassegrain/Gregorian adaptive secondary actuator configurations. References are given on estimating the shear effects (thick mirror), the thickness variation effect, and the influence of the size of the support pads.

  11. Protein Secondary Structure Prediction Using Local Adaptive Techniques in Training Neural Networks

    NASA Astrophysics Data System (ADS)

    Aik, Lim Eng; Zainuddin, Zarita; Joseph, Annie

    2008-01-01

    One of the most significant problems in computer molecular biology today is how to predict a protein's three-dimensional structure from its one-dimensional amino acid sequence or generally call the protein folding problem and difficult to determine the corresponding protein functions. Thus, this paper involves protein secondary structure prediction using neural network in order to solve the protein folding problem. The neural network used for protein secondary structure prediction is multilayer perceptron (MLP) of the feed-forward variety. The training set are taken from the protein data bank which are 120 proteins while 60 testing set is the proteins which were chosen randomly from the protein data bank. Multiple sequence alignment (MSA) is used to get the protein similar sequence and Position Specific Scoring matrix (PSSM) is used for network input. The training process of the neural network involves local adaptive techniques. Local adaptive techniques used in this paper comprises Learning rate by sign changes, SuperSAB, Quickprop and RPROP. From the simulation, the performance for learning rate by Rprop and Quickprop are superior to all other algorithms with respect to the convergence time. However, the best result was obtained using Rprop algorithm.

  12. Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti.

    PubMed

    diCenzo, George C; Checcucci, Alice; Bazzicalupo, Marco; Mengoni, Alessio; Viti, Carlo; Dziewit, Lukasz; Finan, Turlough M; Galardini, Marco; Fondi, Marco

    2016-01-01

    The genome of about 10% of bacterial species is divided among two or more large chromosome-sized replicons. The contribution of each replicon to the microbial life cycle (for example, environmental adaptations and/or niche switching) remains unclear. Here we report a genome-scale metabolic model of the legume symbiont Sinorhizobium meliloti that is integrated with carbon utilization data for 1,500 genes with 192 carbon substrates. Growth of S. meliloti is modelled in three ecological niches (bulk soil, rhizosphere and nodule) with a focus on the role of each of its three replicons. We observe clear metabolic differences during growth in the tested ecological niches and an overall reprogramming following niche switching. In silico examination of the inferred fitness of gene deletion mutants suggests that secondary replicons evolved to fulfil a specialized function, particularly host-associated niche adaptation. Thus, genes on secondary replicons might potentially be manipulated to promote or suppress host interactions for biotechnological purposes. PMID:27447951

  13. Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti

    PubMed Central

    diCenzo, George C.; Checcucci, Alice; Bazzicalupo, Marco; Mengoni, Alessio; Viti, Carlo; Dziewit, Lukasz; Finan, Turlough M.; Galardini, Marco; Fondi, Marco

    2016-01-01

    The genome of about 10% of bacterial species is divided among two or more large chromosome-sized replicons. The contribution of each replicon to the microbial life cycle (for example, environmental adaptations and/or niche switching) remains unclear. Here we report a genome-scale metabolic model of the legume symbiont Sinorhizobium meliloti that is integrated with carbon utilization data for 1,500 genes with 192 carbon substrates. Growth of S. meliloti is modelled in three ecological niches (bulk soil, rhizosphere and nodule) with a focus on the role of each of its three replicons. We observe clear metabolic differences during growth in the tested ecological niches and an overall reprogramming following niche switching. In silico examination of the inferred fitness of gene deletion mutants suggests that secondary replicons evolved to fulfil a specialized function, particularly host-associated niche adaptation. Thus, genes on secondary replicons might potentially be manipulated to promote or suppress host interactions for biotechnological purposes. PMID:27447951

  14. Investigating the adaptive immune response in influenza and secondary bacterial pneumonia and nanoparticle based therapeutic delivery

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Krishnan V.

    In early 2000, influenza and its associated complications were the 7 th leading cause of death in the United States[1-4]. As of today, this major health problem has become even more of a concern, with the possibility of a potentially devastating avian flu (H5N1) or swine flu pandemic (H1N1). According to the Centers for Disease Control (CDC), over 10 countries have reported transmission of influenza A (H5N1) virus to humans as of June 2006 [5]. In response to this growing concern, the United States pledged over $334 million dollars in international aid for battling influenza[1-4]. The major flu pandemic of the early 1900's provided the first evidence that secondary bacterial pneumonia (not primary viral pneumonia) was the major cause of death in both community and hospital-based settings. Secondary bacterial infections currently account for 35-40% mortality following a primary influenza viral infection [1, 6]. The first component of this work addresses the immunological mechanisms that predispose patients to secondary bacterial infections following a primary influenza viral infection. By assessing host immune responses through various immune-modulatory tools, such as use of volatile anesthetics (i.e. halothane) and Apilimod/STA-5326 (an IL-12/Il-23 transcription blocker), we provide experimental evidence that demonstrates that the overactive adaptive Th1 immune response is critical in mediating increased susceptibility to secondary bacterial infections. We also present data that shows that suppressing the adaptive Th1 immune response enhances innate immunity, specifically in alveolar macrophages, by favoring a pro anti-bacterial phenotype. The second component of this work addresses the use of nanotechnology to deliver therapeutic modalities that affect the primary viral and associated secondary bacterial infections post influenza. First, we used surface functionalized quantum dots for selective targeting of lung alveolar macrophages both in vitro and in vivo

  15. An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures

    PubMed Central

    Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf

    2016-01-01

    Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer. PMID:27499762

  16. An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures.

    PubMed

    Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf

    2016-01-01

    Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer. PMID:27499762

  17. An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures.

    PubMed

    Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf

    2016-01-01

    Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer.

  18. Mirror mount

    DOEpatents

    Kuklo, Thomas C.; Bender, Donald A.

    1994-01-01

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for "X" and "Y" tilts of the mirror only. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time.

  19. Einstein's Mirror

    ERIC Educational Resources Information Center

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  20. Chiral mirrors

    NASA Astrophysics Data System (ADS)

    Plum, Eric; Zheludev, Nikolay I.

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  1. fMRI Adaptation between Action Observation and Action Execution Reveals Cortical Areas with Mirror Neuron Properties in Human BA 44/45

    PubMed Central

    de la Rosa, Stephan; Schillinger, Frieder L.; Bülthoff, Heinrich H.; Schultz, Johannes; Uludag, Kamil

    2016-01-01

    Mirror neurons (MNs) are considered to be the supporting neural mechanism for action understanding. MNs have been identified in monkey’s area F5. The identification of MNs in the human homolog of monkeys’ area F5 Broadmann Area 44/45 (BA 44/45) has been proven methodologically difficult. Cross-modal functional MRI (fMRI) adaptation studies supporting the existence of MNs restricted their analysis to a priori candidate regions, whereas studies that failed to find evidence used non-object-directed (NDA) actions. We tackled these limitations by using object-directed actions (ODAs) differing only in terms of their object directedness in combination with a cross-modal adaptation paradigm and a whole-brain analysis. Additionally, we tested voxels’ blood oxygenation level-dependent (BOLD) response patterns for several properties previously reported as typical MN response properties. Our results revealed 52 voxels in left inferior frontal gyrus (IFG; particularly BA 44/45), which respond to both motor and visual stimulation and exhibit cross-modal adaptation between the execution and observation of the same action. These results demonstrate that part of human IFG, specifically BA 44/45, has BOLD response characteristics very similar to monkey’s area F5. PMID:26973496

  2. The Athena Mirror

    NASA Astrophysics Data System (ADS)

    Wille, Eric

    2016-07-01

    The Athena mission (Advanced Telescope for High Energy Astrophysics) requires lightweight X-ray Wolter optics with a high angular resolution and large effective area. For achieving an effective area of 2 m^2 (at 1 keV) and an angular resolution of below 5 arcsec, the Silicon Pore Optics technology was developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the current design of the Athena mirror concentrating on the technology development status of the Silicon Pore Optics, ranging from the manufacturing of single mirror plates towards complete focusing mirror modules and their integration into the mirror structure.

  3. High stroke pixel for a deformable mirror

    DOEpatents

    Miles, Robin R.; Papavasiliou, Alexandros P.

    2005-09-20

    A mirror pixel that can be fabricated using standard MEMS methods for a deformable mirror. The pixel is electrostatically actuated and is capable of the high deflections needed for spaced-based mirror applications. In one embodiment, the mirror comprises three layers, a top or mirror layer, a middle layer which consists of flexures, and a comb drive layer, with the flexures of the middle layer attached to the mirror layer and to the comb drive layer. The comb drives are attached to a frame via spring flexures. A number of these mirror pixels can be used to construct a large mirror assembly. The actuator for the mirror pixel may be configured as a crenellated beam with one end fixedly secured, or configured as a scissor jack. The mirror pixels may be used in various applications requiring high stroke adaptive optics.

  4. Two-mirror optical system with a small fold mirror

    NASA Astrophysics Data System (ADS)

    Liu, Xinping; Li, Yingcai; Yang, Jianfeng

    1998-09-01

    A new configuration of two-mirror optical system with a small fold mirror is presented in this paper. Consisting of a concave (positive power) primary mirror followed by a small flat mirror, a concave (positive power) secondary mirror, four lenses and a beam splitter, it gives the excellent image quality. A 1.5-m EFL, F/10 system of the upper configuration is designed over the 4 degree(s) field angle and 0.50 approximately 0.70 micrometers wavelength range. The aberrations have been highly corrected and the distortion is less than 0.3% over the field. The obscuration could be minimized by reducing primary radius of curvature and avoiding the spider that holds the small fold mirror.

  5. Mirror mount

    DOEpatents

    Kuklo, T.C.; Bender, D.A.

    1994-10-04

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for ''X'' and ''Y'' tilts of the mirror only is disclosed. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time. 4 figs.

  6. Hysteresis compensation of the piezoelectric ceramic actuators-based tip/tilt mirror with a neural network method in adaptive optics

    NASA Astrophysics Data System (ADS)

    Wang, Chongchong; Wang, Yukun; Hu, Lifa; Wang, Shaoxin; Cao, Zhaoliang; Mu, Quanquan; Li, Dayu; Yang, Chengliang; Xuan, Li

    2016-05-01

    The intrinsic hysteresis nonlinearity of the piezo-actuators can severely degrade the positioning accuracy of a tip-tilt mirror (TTM) in an adaptive optics system. This paper focuses on compensating this hysteresis nonlinearity by feed-forward linearization with an inverse hysteresis model. This inverse hysteresis model is based on the classical Presiach model, and the neural network (NN) is used to describe the hysteresis loop. In order to apply it in the real-time adaptive correction, an analytical nonlinear function derived from the NN is introduced to compute the inverse hysteresis model output instead of the time-consuming NN simulation process. Experimental results show that the proposed method effectively linearized the TTM behavior with the static hysteresis nonlinearity of TTM reducing from 15.6% to 1.4%. In addition, the tip-tilt tracking experiments using the integrator with and without hysteresis compensation are conducted. The wavefront tip-tilt aberration rejection ability of the TTM control system is significantly improved with the -3 dB error rejection bandwidth increasing from 46 to 62 Hz.

  7. The meter-class carbon fiber reinforced polymer mirror and segmented mirror telescope at the Naval Postgraduate School

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher; Fernandez, Bautista; Bagnasco, John; Martinez, Ty; Romeo, Robert; Agrawal, Brij

    2015-03-01

    The Adaptive Optics Center of Excellence for National Security at the Naval Postgraduate School has implemented a technology testing platform and array of facilities for next-generation space-based telescopes and imaging system development. The Segmented Mirror Telescope is a 3-meter, 6 segment telescope with actuators on its mirrors for system optical correction. Currently, investigation is being conducted in the use of lightweight carbon fiber reinforced polymer structures for large monolithic optics. Advantages of this material include lower manufacturing costs, very low weight, and high durability and survivability compared to its glass counterparts. Design and testing has begun on a 1-meter, optical quality CFRP parabolic mirror for the purpose of injecting collimated laser light through the SMT primary and secondary mirrors as well as the following aft optics that include wavefront sensors and deformable mirrors. This paper will present the design, testing, and usage of this CFRP parabolic mirror and the current path moving forward with this ever-evolving technology.

  8. Magic Mirrors

    ERIC Educational Resources Information Center

    Mills, Allan

    2011-01-01

    "Magic mirrors" were so named because, when they were positioned to throw a reflected patch of sunlight on a nearby wall, this area contained an outline of a design cast on the back of the (bronze) mirror. Investigations begun in the 19th century showed that this was a response to heavy localized pressures exerted on the face of the thin mirror…

  9. Slumped mirrors

    NASA Astrophysics Data System (ADS)

    Pteancu, Mircea; Dragan, Dorin; Dragan, Olivier; Miron, Andrei; Stanescu, Octavian

    2008-02-01

    The authors discusse the construction of slumped mirrors, their fabrication and testing (polishing and lapping). An important topic of the discussion is thermal fabrication of mirrors by using of matrixes. One of the authors of the entry is combining astronomy and aquariums construction.

  10. Impact of Attitudinal Adaptation on Academic Achievement among Students: A Comparative Study of Boys and Girls in Boarding Secondary Schools in Meru County, Kenya

    ERIC Educational Resources Information Center

    Murithi, Grace Gatune; Nyaga, Veronica Karimi; Barchok, Hillary K.

    2015-01-01

    This study sought to examine the impact of attitudinal adaptation on academic achievement among boys and girls in boarding secondary schools in Meru County in Kenya. The descriptive survey research design was adapted for the study whose sample size was 384 students, school counsellors and deputy principals in the boarding secondary schools. The…

  11. Mirror, Mirror on the Wall...?

    ERIC Educational Resources Information Center

    Pflaster, Gail

    1979-01-01

    The study determined the value of using a mirror for speech teaching by recording manner, place, voicing, and blend errors produced by 27 hearing-impaired children (5-13 years old) while imitating consonant-vowel syllables under three conditions (audition alone, audition plus direct vision, and audition plus vision using a mirror). (Author)

  12. Carbon nanotube optical mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  13. Smart materials optical mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas M.

    2014-08-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes embedded in an epoxy matrix. CNT/epoxy is a multifunctional or `smart' composite material that has sensing capabilities and can be made to incorporate self-actuation as well. Moreover, since the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and 3D printing. The technology therefore holds promise for development of a new generation of lightweight, compact `smart' telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics. We discuss possible paths for future development.

  14. Mirror mount

    DOEpatents

    Humpal, Harold H.

    1987-01-01

    A mirror mount (10) is provided that allows free pitch, yaw and roll motion of the mirror (28) while keeping the location of a point (56) on the surface of the mirror (28) fixed in the rest frame of reference of the mount (10). Yaw movement is provided by two yaw cylinders (30,32) that are bearing (52) mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell (42) that is air bearing (72,74) mounted to move between a clamp (60) and an upper pedestal bearing (44). The centers of curvature of the spherical surfaces of the shell (42) lie upon the point (56). Pitch motion and roll motion are separately and independently imparted to mirror (28) by a pair of pitch paddles (34) and a pair of roll paddles (36) that are independently and separately moved by control rods (76,80) driven by motors (78,82).

  15. Mirror mount

    DOEpatents

    Humpal, H.H.

    1986-03-21

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.

  16. Mirror mount

    DOEpatents

    Humpal, H.H.

    1987-11-10

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.

  17. EUV imaging experiment of an adaptive optics telescope

    NASA Astrophysics Data System (ADS)

    Kitamoto, S.; Shibata, T.; Takenaka, E.; Yoshida, M.; Murakami, H.; Shishido, Y.; Gotoh, N.; Nagasaki, K.; Takei, D.; Morii, M.

    2009-08-01

    We report an experimental result of our normal-incident EUV telescope tuned to a 13.5 nm band, with an adaptive optics. The optics consists of a spherical primary mirror and a secondary mirror. Both are coated by Mo/Si multilayer. The diameter of the primary and the secondary mirrors are 80 mm and 55mm, respectively. The secondary mirror is a deformable mirror with 31 bimorph-piezo electrodes. The EUV from a laser plasma source was exposed to a Ni mesh with 31 micro-m wires. The image of this mesh was obtained by a backilluminated CCD. The reference wave was made by an optical laser source with 1 μm pin-hole. We measure the wave form of this reference wave and control the secondary mirror to get a good EUV image. Since the paths of EUV and the optical light for the reference were different from each other, we modify the target wave from to control the deformable mirror, as the EUV image is best. The higher order Zernike components of the target wave form, as well as the tilts and focus components, were added to the reference wave form made by simply calculated. We confirmed the validity of this control and performed a 2.1 arc-sec resolution.

  18. Manufacturing and testing of a convex aspherical mirror for ASSIST

    NASA Astrophysics Data System (ADS)

    ter Horst, Rik; Stuik, Remko

    2012-09-01

    ASSIST is the testbed for the ESO Adaptive Optics Facility. The main objective of ASSIST is the characterization of the 1.2 meter deformable mirror which will replace the existing secondary of one of the 8 meter VLT telescopes. A large concave 1.65 meter diameter aspherical primary mirror combined with a 140 mm diameter convex aspherical secondary forms the main optical system of ASSIST. Two additional optical units provide the light sources and the wave front analyzing optics. Without having the possibility for checking the entire optical system as a whole, each individual mirror had to be manufactured and tested using reliable techniques. The secondary mirror for ASSIST (AM2) is made of an optically transparent material (BK7) with a specific and accurate backside radius in order to achieve a null test in transmission. Furthermore, not only the overall RMS surface error of AM2 is important, but due to the fact that it will be used in a setup that measures specific spatial frequencies, also the spatial frequencies of the surface error of AM2 is important. The aspherical surface is tested in double pass using an optical flat and an interferometer with a transmission sphere. Manufacturing of this asphere is mainly done by hand at the optical lab of NOVA-ASTRON. The final accuracy of the reflecting surface is within the required 50 nm RMS with a surface roughness of less than 2 nm RMS. This paper reports in more detail on manufacturing and testing of the a-spherical convex mirror.

  19. Mirror Technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Under a NASA contract, MI-CVD developed a process for producing bulk silicon carbide by means of a chemical vapor deposition process. The technology allows growth of a high purity material with superior mechanical/thermal properties and high polishability - ideal for mirror applications. The company employed the technology to develop three research mirrors for NASA Langley and is now marketing it as CVD SILICON CARBIDE. Its advantages include light weight, thermal stability and high reflectivity. The material has nuclear research facility applications and is of interest to industrial users of high power lasers.

  20. [Mirror neurons].

    PubMed

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  1. Conicoid Mirrors

    ERIC Educational Resources Information Center

    Castano, Diego J.; Hawkins, Lawrence C.

    2011-01-01

    The first-order equation relating object and image location for a mirror of arbitrary conic-sectional shape is derived. It is also shown that the parabolic reflecting surface is the only one free of aberration and only in the limiting case of distant sources. (Contains 3 figures.)

  2. Mirror Support

    NASA Technical Reports Server (NTRS)

    Baron, Richard L. (Inventor)

    2013-01-01

    Disclosed herein is a method of making a mirror support comprising a composite, the composite comprising a plurality of carbon nanotubes, wherein at least two of the plurality of carbon nanotubes are bonded to each other through a bridging moiety bound to each of the two carbon nanotubes, and a laminate comprising the composite.

  3. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  4. Design, fabrication and characterization of high-stroke high-aspect ratio micro electro mechanical systems deformable mirrors for adaptive optics

    NASA Astrophysics Data System (ADS)

    Fernandez Rocha, Bautista

    Adaptive optic (AO) systems for next generation of extremely large telescopes (30--50 meter diameter primary mirrors) require high-stroke (10 microns), high-order (100x100) deformable mirrors at lower-cost than current technology. The required specifications are achievable with Micro Electro Mechanical Systems (MEMS) devices fabricated with high-aspect ratio processing techniques. This dissertation will review simulation results compared with displacement measurements of actuators utilizing a white-light interferometer. It will also review different actuator designs, materials and post-processing procedures fabricated in three different high-aspect ratio processes, Microfabrica's Electrochemical Fabrication (EFAB(TM)), HT-Micro's Precision Fabrication Technology (HTPF(TM)), and Innovative Micro Technologies (IMT) fabrication process. These manufacturing processes allow high-precision multilayer fabrication and their sacrificial layer thicknesses can be specified by the designer, rather than by constraints of the fabrication process. Various types of high-stroke gold actuators for AO consisting of folded springs with rectangular and circular membranes as well as X-beam actuators supported diagonally by beams were designed, simulated, fabricated, and tested individually and as part of a continuous facesheet DM system. The design, modeling and simulation of these actuators are compared to experimental measurements of their pull-in voltages, which characterizes their stiffness and maximum stroke. Vertical parallel plate ganged actuators fabricated with the EFAB(TM) process have a calculated pull-in voltage of 95V for a 600mum size device. In contrast, the pull-in voltages for the comb-drive actuators ranged from 55V for the large actuator, to 203V for the smallest actuator. Simulations and interferometer scans of actuator designs fabricated with HT-Micro's Precision Fabrication (HTPF(TM)) two wafer bonded process with different spring supports have shown the ability of

  5. Mirror, Mirror, on the Wall.

    ERIC Educational Resources Information Center

    Flowers, Jim; Rose, M. Annette

    1998-01-01

    Students use tables of anthropometric data, their own measurements, underlying principles of physics, and math to solve a problem. The problem is to determine the height of a wall mirror, and where to mount it, so that 90% of the clientele can view their entire length without stretching or bending. (Author)

  6. Secondary School Music Education: A Case Study in Adapting to ICT Resource Limitations

    ERIC Educational Resources Information Center

    Crawford, Renee

    2009-01-01

    This article explores the current availability and use of information communication and technology (ICT) for music education purposes, and music technology resources and facilities, in Victorian government secondary schools. Survey data is presented providing a snapshot of the status of computer and technology resources in government secondary…

  7. Mirror monochromator

    SciTech Connect

    Mankos, Marian; Shadman, Khashayar

    2014-12-02

    In this SBIR project, Electron Optica, Inc. (EOI) is developing a mirror electron monochromator (MirrorChrom) attachment to new and retrofitted electron microscopes (EMs) for improving the energy resolution of the EM from the characteristic range of 0.2-0.5 eV to the range of 10-50 meV. This improvement will enhance the characterization of materials by imaging and spectroscopy. In particular, the monochromator will refine the energy spectra characterizing materials, as obtained from transmission EMs [TEMs] fitted with electron spectrometers, and it will increase the spatial resolution of the images of materials taken with scanning EMs (SEMs) operated at low voltages. EOI’s MirrorChrom technology utilizes a magnetic prism to simultaneously deflect the electron beam off the axis of the microscope column by 90° and disperse the electrons in proportional to their energies into a module with an electron mirror and a knife-edge. The knife-edge cuts off the tails of the energy distribution to reduce the energy spread of the electrons that are reflected, and subsequently deflected, back into the microscope column. The knife-edge is less prone to contamination, and thereby charging, than the conventional slits used in existing monochromators, which improves the reliability and stability of the module. The overall design of the MirrorChrom exploits the symmetry inherent in reversing the electron trajectory in order to maintain the beam brightness – a parameter that impacts how well the electron beam can be focused downstream onto a sample. During phase I, EOI drafted a set of candidate monochromator architectures and evaluated the trade-offs between energy resolution and beam current to achieve the optimum design for three particular applications with market potential: increasing the spatial resolution of low voltage SEMs, increasing the energy resolution of low voltage TEMs (beam energy of 5-20 keV), and increasing the energy resolution of conventional TEMs (beam

  8. The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans.

    PubMed

    Kishida, Takushi; Kubota, Shin; Shirayama, Yoshihisa; Fukami, Hironobu

    2007-08-22

    An olfactory receptor (OR) multigene family is responsible for the well-developed sense of smell possessed by terrestrial tetrapods. Mammalian OR genes had diverged greatly in the terrestrial environment after the fish-tetrapod split, indicating their importance to land habitation. In this study, we analysed OR genes of marine tetrapods (minke whale Balaenoptera acutorostrata, dwarf sperm whale Kogia sima, Dall's porpoise Phocoenoides dalli, Steller's sea lion Eumetopias jubatus and loggerhead sea turtle Caretta caretta) and revealed that the pseudogene proportions of OR gene repertoires in whales were significantly higher than those in their terrestrial relative cattle and also in sea lion and sea turtle. On the other hand, the pseudogene proportion of OR sequences in sea lion was not significantly higher compared with that in their terrestrial relative (dog). It indicates that secondary perfectly adapted marine vertebrates (cetaceans) have lost large amount of their OR genes, whereas secondary-semi-adapted marine vertebrates (sea lions and sea turtles) still have maintained their OR genes, reflecting the importance of terrestrial environment for these animals. PMID:17535789

  9. Streaming in Flemish Secondary Schools: Exploring Teachers' Perceptions of and Adaptations to Students in Different Streams

    ERIC Educational Resources Information Center

    Stevens, Peter A. J.; Vermeersch, Hans

    2010-01-01

    A rich body of research on streaming or tracking conducted mainly in the USA and UK suggests that teachers have lower expectations of students in lower education streams and adapt their curriculum and pedagogy in line with such expectations. Recent large-scale quantitative research conducted in Flanders (Belgium) shows that teachers teaching in…

  10. Three-point spherical mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  11. Three-point spherical mirror mount

    DOEpatents

    Cutburth, R.W.

    1984-01-23

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  12. Status on NGST Mirror Technology

    NASA Technical Reports Server (NTRS)

    Jacobson, David

    2000-01-01

    The NGST primary mirror is anticipated to be a segmented deployable optic with segment size being in the range of 1 - 3 m depending on the details of the architecture. The secondary mirror will likely be a monolith similar in size to one of the primary mirror segments. Over the past 4 years the NGST program has initiated and implemented an aggressive lightweight cryogenic mirror technology program. The program was designed to challenge and excite the optical community in reaching a new standard in production of lightweight optics. The goal was to develop optics at less than 15 kg/sq m, operational at approx. 40 K and meeting the overall NGST observatory requirement for diffraction limited performance at 2 microns. In order to meet the NGST needs, technology efforts were initiated to investigate and develop mirrors in a variety of materials, which held promise for the program. The basic technology approaches have initially targeted the production of large mirrors in the 1.2 - 2.0 m diameter range (or side-to-side distance in the case of hexagonal optics). Although this size may not be the final size of an NGST primary mirror segment, it was felt that a 1.2 - 2.0 m optic would be of sufficient size to understand the mirror material and fabrication processes which drive the cost and schedule of mirror production. The ultimate goals of the technology program are both to demonstrate mirrors meeting, the NGST performance requirements, and to establish cost and schedule credibility for producing and implementing the mirrors for the NGST flight system. Establishing cost and schedule credibility is essential to NGST which is a cost capped mission, with past program experience demonstrating that the optics will be a large portion of the total cost of the program. The first two years of the program were dedicated to understanding; the various applicable materials, funding those materials to various levels of maturity and implementing the first large mirror procurement, the

  13. Membrane Mirrors With Bimorph Shape Actuators

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    Deformable mirrors of a proposed type would be equipped with relatively-large-stroke microscopic piezoelectric actuators that would be used to maintain their reflective surfaces in precise shapes. These mirrors would be members of the class of MEMS-DM (for microelectromechanical system deformable mirror) devices, which offer potential for a precise optical control in adaptive-optics applications in such diverse fields as astronomy and vision science. The proposed mirror would be fabricated, in part, by use of a membrane-transfer technique. The actuator design would contain bimorph-type piezoelectric actuators.

  14. Unimorph piezoelectric deformable mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Rausch, P.; Verpoort, S.; Wittrock, U.

    2016-07-01

    We have developed, manufactured and tested a unimorph deformable mirror for space applications based on piezoelectric actuation. The mirror was designed for the correction of low-order Zernike modes with a stroke of several tens of micrometers over a clear aperture of 50 mm. It was successfully tested in thermal vacuum, underwent lifetime tests, and was exposed to random vibrations, sinusoidal vibrations, and to ionizing radiation. We report on design considerations, manufacturing of the mirror, and present the test results. Furthermore, we discuss critical design parameters, and how our mirror could be adapted to serve recently proposed space telescopes such as HDST and TALC.

  15. First closed-loop visible AO test results for the advanced adaptive secondary AO system for the Magellan Telescope: MagAO's performance and status

    NASA Astrophysics Data System (ADS)

    Close, Laird M.; Males, Jared R.; Kopon, Derek A.; Gasho, Victor; Follette, Katherine B.; Hinz, Phil; Morzinski, Katie; Uomoto, Alan; Hare, Tyson; Riccardi, Armando; Esposito, Simone; Puglisi, Alfio; Pinna, Enrico; Busoni, Lorenzo; Arcidiacono, Carmelo; Xompero, Marco; Briguglio, Runa; Quiros-Pacheco, Fernando; Argomedo, Javier

    2012-07-01

    The heart of the 6.5 Magellan AO system (MagAO) is a 585 actuator adaptive secondary mirror (ASM) with <1 msec response times (0.7 ms typically). This adaptive secondary will allow low emissivity and high-contrast AO science. We fabricated a high order (561 mode) pyramid wavefront sensor (similar to that now successfully used at the Large Binocular Telescope). The relatively high actuator count (and small projected ~23 cm pitch) allows moderate Strehls to be obtained by MagAO in the “visible” (0.63-1.05 μm). To take advantage of this we have fabricated an AO CCD science camera called "VisAO". Complete “end-to-end” closed-loop lab tests of MagAO achieve a solid, broad-band, 37% Strehl (122 nm rms) at 0.76 μm (i’) with the VisAO camera in 0.8” simulated seeing (13 cm ro at V) with fast 33 mph winds and a 40 m Lo locked on R=8 mag artificial star. These relatively high visible wavelength Strehls are enabled by our powerful combination of a next generation ASM and a Pyramid WFS with 400 controlled modes and 1000 Hz sample speeds (similar to that used successfully on-sky at the LBT). Currently only the VisAO science camera is used for lab testing of MagAO, but this high level of measured performance (122 nm rms) promises even higher Strehls with our IR science cameras. On bright (R=8 mag) stars we should achieve very high Strehls (>70% at H) in the IR with the existing MagAO Clio2 (λ=1-5.3 μm) science camera/coronagraph or even higher (~98% Strehl) the Mid-IR (8-26 microns) with the existing BLINC/MIRAC4 science camera in the future. To eliminate non-common path vibrations, dispersions, and optical errors the VisAO science camera is fed by a common path advanced triplet ADC and is piggy-backed on the Pyramid WFS optical board itself. Also a high-speed shutter can be used to block periods of poor correction. The entire system passed CDR in June 2009, and we finished the closed-loop system level testing phase in December 2011. Final system acceptance (

  16. Performance of the deformable mirror for Subaru LGSAO

    NASA Astrophysics Data System (ADS)

    Oya, Shin; Bouvier, Aurelien; Guyon, Olivier; Watanabe, Makoto; Hayano, Yutaka; Takami, Hideki; Iye, Masanori; Hattori, Masayuki; Saito, Yoshihiko; Itoh, Meguru; Colley, Stephen; Dinkins, Matthew; Eldred, Michael; Golota, Taras

    2006-06-01

    The performance of a deformable mirror with 188 electrodes is reported in this paper. The deformable mirror has been manufactured by CILAS for a new adaptive optics system at Subaru Telescope equipped with laser-guide-star. The type of deformable mirror is bimorph PZT with the blank diameter of 130 mm (beam size 90 mm).

  17. Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations.

    PubMed

    Zhou, Xuming; Sun, Fengming; Xu, Shixia; Fan, Guangyi; Zhu, Kangli; Liu, Xin; Chen, Yuan; Shi, Chengcheng; Yang, Yunxia; Huang, Zhiyong; Chen, Jing; Hou, Haolong; Guo, Xuejiang; Chen, Wenbin; Chen, Yuefeng; Wang, Xiaohong; Lv, Tian; Yang, Dan; Zhou, Jiajian; Huang, Bangqing; Wang, Zhengfei; Zhao, Wei; Tian, Ran; Xiong, Zhiqiang; Xu, Junxiao; Liang, Xinming; Chen, Bingyao; Liu, Weiqing; Wang, Junyi; Pan, Shengkai; Fang, Xiaodong; Li, Ming; Wei, Fuwen; Xu, Xun; Zhou, Kaiya; Wang, Jun; Yang, Guang

    2013-01-01

    The baiji, or Yangtze River dolphin (Lipotes vexillifer), is a flagship species for the conservation of aquatic animals and ecosystems in the Yangtze River of China; however, this species has now been recognized as functionally extinct. Here we report a high-quality draft genome and three re-sequenced genomes of L. vexillifer using Illumina short-read sequencing technology. Comparative genomic analyses reveal that cetaceans have a slow molecular clock and molecular adaptations to their aquatic lifestyle. We also find a significantly lower number of heterozygous single nucleotide polymorphisms in the baiji compared to all other mammalian genomes reported thus far. A reconstruction of the demographic history of the baiji indicates that a bottleneck occurred near the end of the last deglaciation, a time coinciding with a rapid decrease in temperature and the rise of eustatic sea level. PMID:24169659

  18. Large Scale Nanolaminate Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Miles, R; Chang, K

    2005-11-30

    This work concerns the development of a technology that uses Nanolaminate foils to form light-weight, deformable mirrors that are scalable over a wide range of mirror sizes. While MEMS-based deformable mirrors and spatial light modulators have considerably reduced the cost and increased the capabilities of adaptive optic systems, there has not been a way to utilize the advantages of lithography and batch-fabrication to produce large-scale deformable mirrors. This technology is made scalable by using fabrication techniques and lithography that are not limited to the sizes of conventional MEMS devices. Like many MEMS devices, these mirrors use parallel plate electrostatic actuators. This technology replicates that functionality by suspending a horizontal piece of nanolaminate foil over an electrode by electroplated nickel posts. This actuator is attached, with another post, to another nanolaminate foil that acts as the mirror surface. Most MEMS devices are produced with integrated circuit lithography techniques that are capable of very small line widths, but are not scalable to large sizes. This technology is very tolerant of lithography errors and can use coarser, printed circuit board lithography techniques that can be scaled to very large sizes. These mirrors use small, lithographically defined actuators and thin nanolaminate foils allowing them to produce deformations over a large area while minimizing weight. This paper will describe a staged program to develop this technology. First-principles models were developed to determine design parameters. Three stages of fabrication will be described starting with a 3 x 3 device using conventional metal foils and epoxy to a 10-across all-metal device with nanolaminate mirror surfaces.

  19. Toward a large lightweight mirror for AO: development of a 1m Ni coated CFRP mirror

    NASA Astrophysics Data System (ADS)

    Thompson, S. J.; Doel, A. P.; Brooks, D.; Strangwood, M.

    2008-07-01

    We present our recent developments towards the construction of a large, thin, single-piece mirror for adaptive optics (AO). Our current research program aims to have completed fabrication and testing of a 1m diameter, nickel coated carbon-fibre reinforced cyanate ester resin mirror by the last quarter of 2009. This composite mirror material is being developed to provide a lightweight and robust alternative to thin glass shell mirrors, with the challenge of future large deformable mirrors such as the 2.5m M4 on the E-ELT in mind. A detailed analysis of the material properties of test mirror samples is being performed at the University of Birmingham (UK), the first results of which are discussed and presented here. We discuss the project progress achieved so far, including fabrication of the 1m flat moulds for the replication process, manufacturing and testing methods for 20 cm diameter sample mirrors and system simulations.

  20. Double arch mirror study

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.

  1. Adaptive changes in photosynthetic performance and secondary metabolites during white dead nettle micropropagation.

    PubMed

    Kapchina-Toteva, V; Dimitrova, M A; Stefanova, M; Koleva, D; Kostov, K; Yordanova, Zh P; Stefanov, D; Zhiponova, M K

    2014-09-15

    The white dead nettle, Lamium album L., is an herb that has been successfully cultivated under in vitro conditions. The L. album micropropagation system offers a combination of factors (light intensity, temperature, carbon dioxide (CO2) level, humidity) that are limiting for plant growth and bioactive capacity. To get a better understanding of the mechanism of plant acclimation towards environmental changes, we performed a comparative investigation on primary and secondary metabolism in fully expanded L. album leaves during the consecutive growth in in situ, in vitro, and ex vitro conditions. Although the genetic identity was not affected, structural and physiological deviations were observed, and the level of bioactive compounds was modified. During in vitro cultivation, the L. album leaves became thinner with unaffected overall leaf organization, but with a reduced number of palisade mesophyll layers. Structural deviation of the thylakoid membrane system was detected. In addition, the photosystem 2 (PS2) electron transport was retarded, and the plants were more vulnerable to light damage as indicated by the decreased photoprotection ability estimated by fluorescence parameters. The related CO2 assimilation and transpiration rates were subsequently reduced, as were the content of essential oils and phenolics. Transfer of the plants ex vitro did not increase the number of palisade numbers, but the chloroplast structure and PS2 functionality were recovered. Strikingly, the rates of CO2 assimilation and transpiration were increased compared to in situ control plants. While the phenolics content reached normal levels during ex vitro growth, the essential oils remained low. Overall, our study broadens the understanding about the nature of plant responses towards environmental conditions. PMID:25046755

  2. Adaptive changes in photosynthetic performance and secondary metabolites during white dead nettle micropropagation.

    PubMed

    Kapchina-Toteva, V; Dimitrova, M A; Stefanova, M; Koleva, D; Kostov, K; Yordanova, Zh P; Stefanov, D; Zhiponova, M K

    2014-09-15

    The white dead nettle, Lamium album L., is an herb that has been successfully cultivated under in vitro conditions. The L. album micropropagation system offers a combination of factors (light intensity, temperature, carbon dioxide (CO2) level, humidity) that are limiting for plant growth and bioactive capacity. To get a better understanding of the mechanism of plant acclimation towards environmental changes, we performed a comparative investigation on primary and secondary metabolism in fully expanded L. album leaves during the consecutive growth in in situ, in vitro, and ex vitro conditions. Although the genetic identity was not affected, structural and physiological deviations were observed, and the level of bioactive compounds was modified. During in vitro cultivation, the L. album leaves became thinner with unaffected overall leaf organization, but with a reduced number of palisade mesophyll layers. Structural deviation of the thylakoid membrane system was detected. In addition, the photosystem 2 (PS2) electron transport was retarded, and the plants were more vulnerable to light damage as indicated by the decreased photoprotection ability estimated by fluorescence parameters. The related CO2 assimilation and transpiration rates were subsequently reduced, as were the content of essential oils and phenolics. Transfer of the plants ex vitro did not increase the number of palisade numbers, but the chloroplast structure and PS2 functionality were recovered. Strikingly, the rates of CO2 assimilation and transpiration were increased compared to in situ control plants. While the phenolics content reached normal levels during ex vitro growth, the essential oils remained low. Overall, our study broadens the understanding about the nature of plant responses towards environmental conditions.

  3. Dynamic Reconstruction and Multivariable Control for Force-Actuated, Thin Facesheet Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Grocott, Simon C. O.; Miller, David W.

    1997-01-01

    The Multiple Mirror Telescope (MMT) under development at the University of Arizona takes a new approach in adaptive optics placing a large (0.65 m) force-actuated, thin facesheet deformable mirror at the secondary of an astronomical telescope, thus reducing the effects of emissivity which are important in IR astronomy. However, The large size of the mirror and low stiffness actuators used drive the natural frequencies of the mirror down into the bandwidth of the atmospheric distortion. Conventional adaptive optics takes a quasi-static approach to controlling the, deformable mirror. However, flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the surface of the deformable mirror. A linearized model of atmospheric distortion is combined with dynamic influence functions to produce a dynamic reconstructor. This dynamic reconstructor is recognized as an optimal control problem. Solving the optimal control problem for a system with hundreds of actuators and sensors is formidable. Exploiting the circularly symmetric geometry of the mirror, and a suitable model of atmospheric distortion, the control problem is divided into a number of smaller decoupled control problems using circulant matrix theory. A hierarchic control scheme which seeks to emulate the quasi-static control approach that is generally used in adaptive optics is compared to the proposed dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive than the hierarchic technique.

  4. Where do mirror neurons come from?

    PubMed

    Heyes, Cecilia

    2010-03-01

    Debates about the evolution of the 'mirror neuron system' imply that it is an adaptation for action understanding. Alternatively, mirror neurons may be a byproduct of associative learning. Here I argue that the adaptation and associative hypotheses both offer plausible accounts of the origin of mirror neurons, but the associative hypothesis has three advantages. First, it provides a straightforward, testable explanation for the differences between monkeys and humans that have led some researchers to question the existence of a mirror neuron system. Second, it is consistent with emerging evidence that mirror neurons contribute to a range of social cognitive functions, but do not play a dominant, specialised role in action understanding. Finally, the associative hypothesis is supported by recent data showing that, even in adulthood, the mirror neuron system can be transformed by sensorimotor learning. The associative account implies that mirror neurons come from sensorimotor experience, and that much of this experience is obtained through interaction with others. Therefore, if the associative account is correct, the mirror neuron system is a product, as well as a process, of social interaction.

  5. Solar simulator mirror refurbishment

    NASA Technical Reports Server (NTRS)

    Leverton, W. R.

    1974-01-01

    Solar simulator mirrors were refurbished. Two different refurbishment methods were employed. In the first, the electroformed mirror replica was removed from the casting and replaced with a new mirror replica. In the second, only the aluminized surface, with its protective overcoat, was removed from the mirror and replaced after cleaning of the nickel surface.

  6. GMT primary mirror support

    NASA Astrophysics Data System (ADS)

    Hull, Charlie

    2014-07-01

    The GMT primary mirror support draws on the heritage developed for the 3.5 m, 6.5 m, and 8.4 m mirrors from the Steward Observatory Mirror Lab. While similar in design philosophy and concept, each successive generation has incorporated refinements based on the experience gained from previous mirrors.

  7. MindMatters--A Programme for the Promotion of Mental Health in Primary and Secondary Schools: Results of an Evaluation of the German Language Adaptation

    ERIC Educational Resources Information Center

    Franze, M.; Paulus, P.

    2009-01-01

    Purpose: The purpose of this article is to present a German adaptation of the Australian programme MindMatters for school mental health promotion in secondary schools. Design/methodology/approach: As well as other methods, the external evaluation consisted of a questionnaire-based pre-post-design (at one year interval of measurement; n=633…

  8. Examining the Use of Adaptive Technologies to Increase the Hands-On Participation of Students with Blindness or Low Vision in Secondary-School Chemistry and Physics

    ERIC Educational Resources Information Center

    Supalo, Cary A.; Humphrey, Jennifer R.; Mallouk, Thomas E.; Wohlers, H. David; Carlsen, William S.

    2016-01-01

    To determine whether a suite of audible adaptive technologies would increase the hands-on participation of high school students with blindness or low vision in chemistry and physics courses, data were examined from a multi-year field study conducted with students in mainstream classrooms at secondary schools across the United States. The students…

  9. Dilemmas of Design and Predicaments of Practice: Adapting the "Fostering a Community of Learners" Model in Secondary School English Language Arts Classrooms

    ERIC Educational Resources Information Center

    Whitcomb, Jennifer A.

    2004-01-01

    This study examines three middle school and secondary school English teachers' attempts to adapt and enact the principles and practices of the "Fostering a Community of Learners" (FCL) model. As a systemic pedagogical model designed to foster authentic dialogue and inquiry, FCL challenges deeply held traditions of English as both a school subject…

  10. Manufacturing of glassy thin shell for adaptive optics: results achieved

    NASA Astrophysics Data System (ADS)

    Poutriquet, F.; Rinchet, A.; Carel, J.-L.; Leplan, H.; Ruch, E.; Geyl, R.; Marque, G.

    2012-07-01

    Glassy thin shells are key components for the development of adaptive optics and are part of future & innovative projects such as ELT. However, manufacturing thin shells is a real challenge. Even though optical requirements for the front face - or optical face - are relaxed compared to conventional passive mirrors, requirements concerning thickness uniformity are difficult to achieve. In addition, process has to be completely re-defined as thin mirror generates new manufacturing issues. In particular, scratches and digs requirement is more difficult as this could weaken the shell, handling is also an important issue due to the fragility of the mirror. Sagem, through REOSC program, has recently manufactured different types of thin shells in the frame of European projects: E-ELT M4 prototypes and VLT Deformable Secondary Mirror (VLT DSM).

  11. Floating mirror mount

    SciTech Connect

    Koop, D.E.

    1989-01-03

    This patent describes a floating mirror mount for a mirror of a laser is described consisting of: a mirror having a front surface and a back surface, a keeper encircling the mirror and having a peripheral flange engaging the front surface of the mirror when the mirror is not installed in a laser, a retainer positioned rearwardly of the back surface of the mirror and connected to the keeper and having a spring seating surface, spring means engageable with the spring seating surface of the retainer for exerting a resilient biasing force on the mirror, and fastening means for connecting the retainer to the mirror positioning structure of the laser on installation of the mirror mount in the laser.

  12. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  13. Deformable mirror design of Subaru LGSAO system

    NASA Astrophysics Data System (ADS)

    Oya, Shin; Guyon, Olivier; Watanabe, Makoto; Hayano, Yutaka; Takami, Hideki; Iye, Masanori; Arimoto, Nobuo; Colley, Stephen; Eldred, Michael; Kane, Thomas; Hattori, Masayuki; Saito, Yoshihiko; Kamata, Yukiko; Kobayashi, Naoto; Minowa, Yosuke; Goto, Miwa; Takato, Naruhisa

    2004-10-01

    As an upgrade plan of Subaru adaptive optics facility, laser-guide-star adaptive-optics (LGSAO) project is on going. One of key components of the project is a deformable mirror (DM). The DM for LGSAO is a bimorph type of PZT with 188 control elements. The specification of design is presented together with the analysis of stroke and vibration properties by FEM.

  14. Mirror neurons: from origin to function.

    PubMed

    Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia

    2014-04-01

    This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation. PMID:24775147

  15. Mirror neurons: from origin to function.

    PubMed

    Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia

    2014-04-01

    This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.

  16. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, T.C.

    1995-03-21

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis. 7 figures.

  17. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, Thomas C.

    1995-01-01

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis.

  18. Deformable Mirrors Correct Optical Distortions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    By combining the high sensitivity of space telescopes with revolutionary imaging technologies consisting primarily of adaptive optics, the Terrestrial Planet Finder is slated to have imaging power 100 times greater than the Hubble Space Telescope. To this end, Boston Micromachines Corporation, of Cambridge, Massachusetts, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory for space-based adaptive optical technology. The work resulted in a microelectromechanical systems (MEMS) deformable mirror (DM) called the Kilo-DM. The company now offers a full line of MEMS DMs, which are being used in observatories across the world, in laser communication, and microscopy.

  19. Light, Color, and Mirrors.

    ERIC Educational Resources Information Center

    Tiburzi, Brian; Tamborino, Laurie; Parker, Gordon A.

    2000-01-01

    Describes an exercise in which students can use flashlights, mirrors, and colored paper to discover scientific principles regarding optics. Addresses the concepts of angles of incidence and reflection, colored vs. white light, and mirror images. (WRM)

  20. Coating considerations for mirrors of CPV devices

    SciTech Connect

    Schmauder, Torsten; Sauer, Peter; Ickes, Gerd

    2014-09-26

    One of the different optical concepts for concentrator devices is to place a focussing primary mirror behind a transparent front plate. In addition (also in case of Fresnel-diffractive main optics), further 'secondary' reflectors may be used further along the beam path. Such mirrors are usually implemented as coating stacks of a highly reflective metal - usually silver - and protective layers. The protective layers are preferably designed as reflection enhancing interference stack. The design of such protective layer stacks yields two difficulties, which are addressed in this paper: (a) vacuum coating of three-dimensional parts will result in a thickness distribution and the optical design of the stack should thus be tolerant to layer thickness variations, and (b) different places of the mirror will have different angle-of-incidence of the sunlight under operating conditions. As result, the layer stack has a different design at different places of the mirror.

  1. Water Cooled Mirror Design

    SciTech Connect

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  2. The Chilled-Mirror Humidity Sensor: Improved Radiosonde Measurements

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.

    1999-01-01

    Chilled-mirror humidity sensor technology recently was adapted for use with the VIZ radiosonde. The principle of the chilled-mirror operation is to lower its temperature until dew forms on the mirror, at that point the dew point temperature is noted and the mirror is then heated to evaporate the moisture. The cycle is repeated. Research conducted from NASA's Wallops Flight Facility has provided comparisons between the chilled-mirror sensor and the carbon hygristor of VIZ, and the capacitive sensors of AIR Inc. and Vaisala Co. We believe the chilled-mirror sensor is accurate and would serve as a reference standard for evaluating operational radiosonde relative humidity sensors. Thus, differences seen in the comparisons are beginning to furnish insight into developing better humidity sensors. We discuss these comparison results as well as reproducibility results from a dual chilled-mirror measurement.

  3. Opinions on Further Strengthening and Improving Primary and Secondary School Moral Education Work to Adapt to the New Situation

    ERIC Educational Resources Information Center

    Chinese Education and Society, 2006

    2006-01-01

    In order to earnestly carry out the spirit of Comrade Jiang Zemin's February 1, 2000, "Conversations on Issues in Education" and his important speech at the Party Central Committee's Ideological and Political Work Conference; further strengthen and improve primary and secondary school (including vocational secondary school) moral education work;…

  4. Integral Flexure Mounts for Metal Mirrors for Cryogenic Use

    NASA Technical Reports Server (NTRS)

    Zewari, S. Wahid; Hylan, Jason E.; Irish, Sandra M.; Ohl, Raymond G.; Conkey, Shelly B.

    2006-01-01

    Semi-kinematic, six-degree-of-freedom flexure mounts have been incorporated as integral parts of metal mirrors designed to be used under cryogenic conditions as parts of an astronomical instrument. The design of the mirrors and their integral flexure mounts can also be adapted to other instruments and other operating temperatures. In comparison with prior kinematic cryogenic mirror mounts, the present mounts are more compact and can be fabricated easily using Ram-EDM (electrical discharge machining) process

  5. The Giant Magellan Telescope adaptive optics program

    NASA Astrophysics Data System (ADS)

    Bouchez, Antonin H.; Acton, D. Scott; Agapito, Guido; Arcidiacono, Carmelo; Bennet, Francis; Biliotti, Valdemaro; Bonaglia, Marco; Briguglio, Runa; Brusa-Zappellini, Guido; Busoni, Lorenzo; Carbonaro, Luca; Codona, Johanan L.; Conan, Rodolphe; Connors, Thomas; Durney, Oliver; Espeland, Brady; Esposito, Simone; Fini, Luca; Gardhouse, Rusty; Gauron, Thomas M.; Hart, Michael; Hinz, Philip M.; Kanneganti, Srikrishna; Kibblewhite, Edward J.; Knox, Russell P.; McLeod, Brian A.; McMahon, Thomas; Montoya, Manny; Norton, Timothy J.; Ordway, Mark P.; d'Orgeville, Celine; Parcell, Simon; Piatrou, Piotr K.; Pinna, Enrico; Price, Ian; Puglisi, Alfio; Quiros-Pacheco, Fernando; Riccardi, Armando; Roll, John B.; Trancho, Gelys; Uhlendorf, Kristina; Vaitheeswaran, Vidhya; van Dam, Marcos A.; Weaver, David; Xompero, Marco

    2012-07-01

    The Giant Magellan Telescope adaptive optics system will be an integral part of the telescope, providing laser guide star generation, wavefront sensing, and wavefront correction to most of the currently envisioned instruments. The system will provide three observing modes: Natural Guidestar AO (NGSAO), Laser Tomography AO (LTAO), and Ground Layer AO (GLAO). Every AO observing mode will use the telescope’s segmented adaptive secondary mirror to deliver a corrected beam directly to the instruments. High-order wavefront sensing for the NGSAO and LTAO modes is provided by a set of wavefront sensors replicated for each instrument and fed by visible light reflected off the cryostat window. An infrared natural guidestar wavefront sensor with open-loop AO correction is also required to sense tip-tilt, focus, segment piston, and dynamic calibration errors in the LTAO mode. GLAO mode wavefront sensing is provided by laser guidestars over a ~5 arcminute field of view, and natural guidestars over wider fields. A laser guidestar facility will project 120 W of 589 nm laser light in 6 beacons from the periphery of the primary mirror. An off-axis phasing camera and primary and secondary mirror metrology systems will ensure that the telescope optics remain phased. We describe the system requirements, overall architecture, and innovative solutions found to the challenges presented by high-order AO on a segmented extremely large telescope. Further details may be found in specific papers on each of the observing modes and major subsystems.

  6. The origin and function of mirror neurons: the missing link.

    PubMed

    Lingnau, Angelika; Caramazza, Alfonso

    2014-04-01

    We argue, by analogy to the neural organization of the object recognition system, that demonstration of modulation of mirror neurons by associative learning does not imply absence of genetic adaptation. Innate connectivity defines the types of processes mirror neurons can participate in while allowing for extensive local plasticity. However, the proper function of these neurons remains to be worked out.

  7. Erected mirror optical switch

    DOEpatents

    Allen, James J.

    2005-06-07

    A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention, a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.

  8. Self in the mirror.

    PubMed

    Prinz, Wolfgang

    2013-09-01

    What are mirror systems good for? Several suggestions have been made in response to this question, addressing the putative functions of mirror systems in minds and brains. This paper examines possible contributions of mirror systems to the emergence of subjectivity. At the heart of the discussion is the notion of social mirroring, which has a long tradition in social philosophy and social anthropology. Taking the existence of mirror devices in minds and brains for granted, I argue that social mirroring is a prerequisite for the constitution of mental selves, and, hence, the emergence of subjectivity. However, the fact that self and subjectivity are socially created should not be taken to indicate that they are illusory. They are as real as natural facts are. PMID:23410785

  9. LOXT mirror design study

    NASA Technical Reports Server (NTRS)

    Vanspeybroeck, L.; Antrim, W.; Boyd, D.; Giacconi, R.; Sinnamon, G.; Stille, F.

    1972-01-01

    The final report for the large orbiting X-ray telescope (LOXT) high resolution mirror design study is presented. The following tasks were performed: (1) Generation of a reference and alternate preliminary design for the LOXT high resolution mirror assembly, which will meet the LOXT scientific requirements, and are within the present state of the art of materials and fabrication techniques. (2) Measurement, in X-rays, of the scattering properties of a variety of optical flats, embodying materials, coatings, and polishing techniques which might be applicable to the flight configuration LOXT high resolution mirror. (3) Preparation of a procurement specification for a paraboloid test mirror of the size of the innermost paraboloid of the high resolution mirror assembly, including the design requirements for the reference design evolved from this preliminary design study. The results of the engineering and scientific analysis and the conclusions drawn are presented. The procurement specification for the test mirror is included.

  10. Adapting to the System or the Student? Exploring Teacher Adaptations to Disadvantaged Students in an English and a Belgian Secondary School

    ERIC Educational Resources Information Center

    Stevens, Peter A. J.; Van Houtte, Mieke

    2011-01-01

    This article builds on research on teacher adaptations to students by exploring how Belgian and English national contexts influence teachers' definitions of educational success, their explanations of educational failure, and their allocation of scarce educational resources to disadvantaged students. Ethnographic data from one Flemish (Belgian) and…

  11. Manufacturing of the ESO adaptive optics facility

    NASA Astrophysics Data System (ADS)

    Arsenault, R.,; Madec, P.-Y.; Hubin, N.; Stroebele, S.; Paufique, J.; Vernet, E.; Hackenberg, W.; Pirard, J.-F.; Jochum, L.; Glindemann, A.; Jost, A.; Conzelmann, R.; Kiekebusch, M.; Tordo, S.; Lizon, J.-L.; Donaldson, R.; Fedrigo, E.; Soenke, C.; Duchateau, M.; Bruton, A.; Delabre, B.; Downing, M.; Reyes, J.; Kolb, J.; Bechet, C.; Lelouarn, M.; Bonaccini Calia, D.; Quattri, M.; Guidolin, I.; Buzzoni, B.; Dupuy, C.; Guzman, R.; Comin, M.; Silber, A.; Quentin, J.; La Penna, P.; Manescau, A.; Jolley, P.; Heinz, V.; Duhoux, P.; Argomedo, J.; Gallieni, D.; Lazzarini, P.; Biasi, R.; Andrighettoni, M.; Angerer, G.; Pescoller, D.; Stuik, R.,; Deep, A.

    2010-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train, in this case the secondary 1.1m mirror, and four Laser Guide Stars (LGSs). This evolution implements many challenging technologies like the Deformable Secondary Mirror (DSM) including a thin shell mirror (1.1 m diameter and 2mm thin), the high power Na lasers (20W), the low Read-Out Noise (RON) WaveFront Sensor (WFS) camera (< 1e-) and SPARTA the new generation of Real Time Computers (RTC) for adaptive control. It also faces many problematic similar to any Extremely Large Telescope (ELT) and as such, will validate many technologies and solutions needed for the European ELT (E-ELT) 42m telescope. The AOF will offer a very large (7 arcmin) Field Of View (FOV) GLAO correction in J, H and K bands (GRAAL+Hawk-I), a visible integral field spectrograph with a 1 arcmin GLAO corrected FOV (GALACSI-MUSE WFM) and finally a LTAO 7.5" FOV (GALACSI-MUSE NFM). Most systems of the AOF have completed final design and are in manufacturing phase. Specific activities are linked to the modification of the 8m telescope in order to accommodate the new DSM and the 4 LGS Units assembled on its Center-Piece. A one year test period in Europe is planned to test and validate all modes and their performance followed by a commissioning phase in Paranal scheduled for 2014.

  12. Correction of an active space telescope mirror using a deformable mirror in a woofer-tweeter configuration

    NASA Astrophysics Data System (ADS)

    Allen, Matthew R.; Kim, Jae Jun; Agrawal, Brij N.

    2016-04-01

    The Naval Postgraduate School's segmented mirror telescope (SMT) was developed using prototype silicon carbide active hybrid mirror technology to demonstrate lower cost and rapid manufacture of primary mirror segments for a space telescope. The developmental mirror segments used too few actuators limiting the ability to adequately correct the surface figure error. To address the unintended shortfall of the developmental mirrors, a deformable mirror is added to the SMT and control techniques are developed. The control techniques are similar to woofer-tweeter adaptive optics, where the SMT segment represents the woofer and the deformable mirror represents the tweeter. The optical design of an SMT woofer-tweeter system is presented, and the impacts of field angle magnification on the placement and size of the deformable mirror are analyzed. A space telescope woofer-tweeter wavefront control technique is proposed using a global influence matrix and closed-loop constrained minimization controller. The control technique simultaneously manipulates the woofer and tweeter mirrors. Simulation and experimental results demonstrate a significant improvement in wavefront error of the primary mirror and the control technique shows significant wavefront error improvement compared to sequentially controlling the woofer and tweeter mirrors.

  13. Mirror focus in a patient with intractable occipital lobe epilepsy.

    PubMed

    Kim, Jiyoung; Shin, Hae Kyung; Hwang, Kyoung Jin; Choi, Su Jung; Joo, Eun Yeon; Hong, Seung Bong; Hong, Seung Chul; Seo, Dae-Won

    2014-06-01

    Mirror focus is one of the evidence of progression in epilepsy, and also has practical points for curative resective epilepsy surgery. The mirror foci are related to the kindling phenomena that occur through interhemispheric callosal or commissural connections. A mirror focus means the secondary epileptogenic foci develop in the contralateral hemispheric homotopic area. Thus mirror foci are mostly reported in patients with temporal or frontal lobe epilepsy, but not in occipital lobe epilepsy. We have observed occipital lobe epilepsy with mirror focus. Before epilepsy surgery, the subject's seizure onset zone was observed in the left occipital area by ictal studies. Her seizures abated for 10 months after the resection of left occipital epileptogenic focus, but recurred then. The recurred seizures were originated from the right occipital area which was in the homotopic contralateral area. This case can be an evidence that occipital lobe epilepsy may have mirror foci, even though each occipital lobe has any direct interhemispheric callosal connections between them.

  14. The 8.2 metre primary mirrors of the VLT

    NASA Astrophysics Data System (ADS)

    Dierickx, P.; Enard, D.; Merkle, F.; Noethe, L.; Wilson, R. N.

    1990-08-01

    The Very Large Telescope (VLT) presently being developed at ESO is described in terms of technological advances which make its use both technically effective and feasible. The VLT capitalizes on advances in materials, polishing techniques, and mirror support systems. The VLT consists of four 8-m alt-az telescopes and a 2-m auxiliary telescope in a single-dish configuration with Zerodur meniscus mirrors passively supported on a lateral system. A discussion of the tradeoffs between glass and metal mirrors is presented, and computerized polishing is described in relation to optical specifications. The mirror is supported with 150 axial and 60 lateral supports with electromechanical actuators to modulate applied force. The active optics concept is employed via the flexibility of the primary mirror, which generates elastomechanical deformations and the position and orientation of the secondary mirror.

  15. Castable Amorphous Metal Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Davis, Gregory L.; Agnes, Gregory S.; Shapiro, Andrew A.

    2013-01-01

    A revolutionary way to produce a mirror and mirror assembly is to cast the entire part at once from a metal alloy that combines all of the desired features into the final part: optical smoothness, curvature, flexures, tabs, isogrids, low CTE, and toughness. In this work, it has been demonstrated that castable mirrors are possible using bulk metallic glasses (BMGs, also called amorphous metals) and BMG matrix composites (BMGMCs). These novel alloys have all of the desired mechanical and thermal properties to fabricate an entire mirror assembly without machining, bonding, brazing, welding, or epoxy. BMGs are multi-component metal alloys that have been cooled in such a manner as to avoid crystallization leading to an amorphous (non-crystalline) microstructure. This lack of crystal structure and the fact that these alloys are glasses, leads to a wide assortment of mechanical and thermal properties that are unlike those observed in crystalline metals. Among these are high yield strength, carbide-like hardness, low melting temperatures (making them castable like aluminum), a thermoplastic processing region (for improving smoothness), low stiffness, high strength-to-weight ratios, relatively low CTE, density similar to titanium alloys, high elasticity and ultra-smooth cast parts (as low as 0.2-nm surface roughness has been demonstrated in cast BMGs). BMGMCs are composite alloys that consist of a BMG matrix with crystalline dendrites embedded throughout. BMGMCs are used to overcome the typically brittle failure observed in monolithic BMGs by adding a soft phase that arrests the formation of cracks in the BMG matrix. In some cases, BMGMCs offer superior castability, toughness, and fatigue resistance, if not as good a surface finish as BMGs. This work has demonstrated that BMGs and BMGMCs can be cast into prototype mirrors and mirror assemblies without difficulty.

  16. The production of metal mirrors for use in astronomy

    NASA Astrophysics Data System (ADS)

    Brooks, David

    This thesis demonstrates the possibility of manufacturing larger mirrors from nickel coated aluminium with a considerable cost and risk benefits compared to zero expansion glass ceramic or borosilicate. Constructing large mirrors from aluminium could cut the cost of production by one third. A new generation of very large telescopes is being designed, on the order of 100 meters diameter. The proposed designs are of mosaic type mirrors similar to the Keck Telescope primary. The enormous mass of glass required inhibits the construction, simply by its cost and production time. Very little research has been done on the processes involved in the production of large metal mirrors. However the thermal efficiency and potential improved mirror seeing benefits are documented. Space telescopes and optical telecommunications could also benefit with the application of metal mirrors. Presented here are the processes and results that culminated in the rebirth of the Birr Telescope. The main section concerns the material selection and processes in the construction of a 1.83 meter diameter 1.4 tonne aluminium primary mirror. The aluminium mirror technology developed was also applied to the construction of an aspheric thin meniscus deformable mirror. Methods employed in its production are described. Documented are the advanced computer controlled polishing methods employed in producing a one third scale model of the hyperbolic secondary mirror for the Gemini Telescopes. These were developed using an active polishing lap.

  17. Deformable mirrors based on magnetic liquids

    NASA Astrophysics Data System (ADS)

    Laird, Phil R.; Borra, Ermanno F.; Bergamasco, Rosangela; Gingras, Julie; Truong, Long; Ritcey, Anna

    2004-10-01

    The trend towards ever larger telescopes and more advanced adaptive optics systems such as multi-conjugate adaptive optics is driving the need for deformable mirrors with a large number of low cost actuators. Other applications require strokes larger than those readily available from conventional mirrors. Magnetically deformable liquid mirrors are a potential solution to both these problems. Depositing a thin silver colloid known as a metal liquid-like film (MELLF) on the ferrofluid surface solves the problem of low reflectivity of pure ferrofluids. This combination provides a liquid optical surface that can be precisely shaped in a magnetic field. We have demonstrated a reflective coating that is stable for more than 30 days with a reflectivity of 50% in the near infrared. Additional experiments indicate that MELLF coatings can provide near infrared reflectivity values in excess of 80%. We also report on recent response time measurements of liquid deformable mirrors. We have demonstrated liquid mirror actuators with slew rates of 800 μm/s, corresponding to an actuator bandwidth of approximately 40 Hz and 80 Hz for strokes of 10 μm and 5 μm respectively.

  18. Impact of Adaptive Materials on Teachers and their Students with Visual Impairments in Secondary Science and Mathematics Classes

    NASA Astrophysics Data System (ADS)

    Rule, Audrey C.; Stefanich, Greg P.; Boody, Robert M.; Peiffer, Belinda

    2011-04-01

    Science, technology, engineering, and mathematics (STEM) fields, important in today's world, are underrepresented by students with disabilities. Students with visual impairments, although cognitively similar to sighted peers, face challenges as STEM subjects are often taught using visuals. They need alternative forms of access such as enlarged or audio-converted text, tactile graphics, and involvement in hands-on science. This project focused on increasing teacher awareness of and providing funds for the purchase of supplemental adaptive resources, supplies, and equipment. We examined attitude and instructional changes across the year of the programme in 15 science and mathematics teachers educating students with visual impairments. Positive changes were noted from pretest to posttest in student and teacher perspectives, and in teacher attitudes towards students with disabilities in STEM classes. Teachers also provided insights into their challenges and successes through a reflective narrative. Several adolescent students resisted accommodations to avoid appearing conspicuous to peers. Teachers implemented three strategies to address this: providing the adaptations to all students in the class; convincing the student of the need for adaptation; and involving the class in understanding and accepting the student's impairment. A variety of teacher-created adaptations for various science and mathematics labs are reported. Another finding was many adaptations provided for the student with visual impairment benefitted the entire class. This study supports the claim that given knowledgeable, supportive teachers, and with appropriate accommodations such as tactile or auditory materials, students with visual impairments can be as successful and engaged as other students in science and mathematics.

  19. The mirror box

    NASA Astrophysics Data System (ADS)

    Thompson, Gene; Mathieson, Don

    2001-11-01

    The mirror box is an old standby in magic shows and an impressive demonstration of the law of reflection for the physics instructor. The box creates the illusion of an object floating in space by the use of a plane mirror.

  20. Stable mirror mount

    DOEpatents

    Cutburth, R.W.

    1983-11-04

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and means for simultaneously locking said post assembly and said key assembly in a fixed position.

  1. Stable mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and a device for simultaneously locking the post assembly and the key assembly in a fixed position.

  2. Corticospinal mirror neurons.

    PubMed

    Kraskov, A; Philipp, R; Waldert, S; Vigneswaran, G; Quallo, M M; Lemon, R N

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited 'classical' mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation ('suppression mirror-neurons'). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.

  3. Bronze rainbow hologram mirrors

    NASA Astrophysics Data System (ADS)

    Dawson, P.

    2006-02-01

    This project draws on holographic embossing techniques, ancient artistic conventions of bronze mirror design and modelling and casting processes to accomplish portraiture of reflection. Laser scanning, 3D computer graphics and holographic imaging are employed to enable a permanent 3D static holographic image to appear integrated with the real-time moving reflection of a viewer's face in a polished bronze disc. The disc and the figure which holds it (caryatid) are cast in bronze from a lost wax model, a technique which has been used for millennia to make personal mirrors. The Caryatid form of bronze mirror which went through many permutations in ancient Egyptian, Greece and Rome shows a plethora of expressive figure poses ranging from sleek nudes to highly embellished multifigure arrangements. The prototype of this series was made for Australian choreographer Graeme Murphy, Artistic Director of the Sydney Dance Company. Each subsequent mirror will be unique in figure and holographic imagery as arranged between artist and subject. Conceptually this project references both the modern experience of viewing mirrors retrieved from ancient tombs, which due to deterioration of the surface no longer reflect, and the functioning of Chinese Magic mirrors, which have the ability to project a predetermined image. Inspired by the metaphorical potential of these mirrors, which do not reflect the immediate reality of the viewer, this bronze hologram mirror series enables each viewer to reflect upon himself or herself observing simultaneously the holographic image and their own partially obliterated reflection.

  4. Unimorph-type deformable mirror for cryogenic telescopes

    NASA Astrophysics Data System (ADS)

    Reinlein, Claudia; Goy, Matthias; Lange, Nicolas; Kinast, Jan

    2014-07-01

    Deformable mirrors can be used in cryogenic instruments to compensate for temperature-induced deformations. A unimorph-type deformable mirror consists of a mirror substrate and a piezoelectric layer bonded on substrates rear surface. A challenge in the design of the deformable mirror is the lack of knowledge about material properties. Therefore, we measured the coefficient of thermal expansion (CTE) of the substrate material TiAl6V4 between 295 K and 86 K. The manufactured mirror is characterized by an adaptive optical measurement setup in front of a test cryostat. The measured mirror deformations are feedback into a finite element model to calculate the CTE of the piezoelectric layer. We compare our obtained results to other published CTE-values for the piezoelectric material PIC151.

  5. Tandem mirror plasma confinement apparatus

    DOEpatents

    Fowler, T. Kenneth

    1978-11-14

    Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

  6. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  7. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  8. Assessing Motivation to Learn Chemistry: Adaptation and Validation of Science Motivation Questionnaire II with Greek Secondary School Students

    ERIC Educational Resources Information Center

    Salta, Katerina; Koulougliotis, Dionysios

    2015-01-01

    In educational research, the availability of a validated version of an original instrument in a different language offers the possibility for valid measurements obtained within the specific educational context and in addition it provides the opportunity for valid cross-cultural comparisons. The present study aimed to adapt the Science Motivation…

  9. Alignment test results of the JWST Pathfinder Telescope mirrors in the cryogenic environment

    NASA Astrophysics Data System (ADS)

    Whitman, Tony L.; Wells, Conrad; Hadaway, James B.; Knight, J. Scott; Lunt, Sharon

    2016-07-01

    After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASA's Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the Science Instrument (SI) detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.

  10. Alignment Test Results of the JWST Pathfinder Telescope Mirrors in the Cryogenic Environment

    NASA Technical Reports Server (NTRS)

    Whitman, Tony L.; Wells, Conrad; Hadaway, James; Knight, J. Scott; Lunt, Sharon

    2016-01-01

    After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASAs Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the SI detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.

  11. Infinite impulse response modal filtering in visible adaptive optics

    NASA Astrophysics Data System (ADS)

    Agapito, G.; Arcidiacono, C.; Quirós-Pacheco, F.; Puglisi, A.; Esposito, S.

    2012-07-01

    Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors.

  12. A Resource for Eliciting Student Alternative Conceptions: Examining the Adaptability of a Concept Inventory for Natural Selection at the Secondary School Level

    NASA Astrophysics Data System (ADS)

    Lucero, Margaret M.; Petrosino, Anthony J.

    2016-07-01

    The Conceptual Inventory of Natural Selection (CINS) is an example of a research-based instrument that assesses conceptual understanding in an area that contains well-documented alternative conceptions. Much of the CINS's use and original validation has been relegated to undergraduate settings, but the information learned from student responses on the CINS can also potentially be a useful resource for teachers at the secondary level. Because of its structure, the CINS can have a role in eliciting alternative conceptions and induce deeper conceptual understanding by having student ideas leveraged during instruction. In a first step toward this goal, the present study further investigated the CINS's internal properties by having it administered to a group (n = 339) of students among four different biology teachers at a predominantly Latino, economically disadvantaged high school. In addition, incidences of the concept inventory's use among the teachers' practices were collected for support of its adaptability at the secondary level. Despite the teachers' initial enthusiasm for the CINS's use as an assessment tool in the present study, results from a principal components analysis demonstrate inconsistencies between the original and present validations. Results also reveal how the teachers think CINS items may be revised for future use among secondary student populations.

  13. Space Mirror Alignment System

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; McKinney, Colin; Smythe, Robert F.; Palmer, Dean L.

    2011-01-01

    An optical alignment mirror mechanism (AMM) has been developed with angular positioning accuracy of +/-0.2 arcsec. This requires the mirror s linear positioning actuators to have positioning resolutions of +/-112 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are 0.1 arc-sec angular mirror positioning accuracy, which translates into linear positioning resolutions at the actuator of 50 nm. The mechanism consists of a structure with sets of cross-directional flexures that enable the mirror s tip and tilt motion, a mirror with its kinematic mount, and two linear actuators. An actuator comprises a brushless DC motor, a linear ball screw, and a piezoelectric brake that holds the mirror s position while the unit is unpowered. An interferometric linear position sensor senses the actuator s position. The AMMs were developed for an Astrometric Beam Combiner (ABC) optical bench, which is part of an interferometer development. Custom electronics were also developed to accommodate the presence of multiple AMMs within the ABC and provide a compact, all-in-one solution to power and control the AMMs.

  14. Mirror plasma apparatus

    DOEpatents

    Moir, Ralph W.

    1981-01-01

    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.

  15. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2010-04-06

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  16. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  17. Lighted, Folding Inspection Mirror

    NASA Technical Reports Server (NTRS)

    Roepe, Brian E.

    1991-01-01

    Compact, inexpensive tool used in place of expensive borescopes. Shortens inspection/photographing process. Includes two small metal or glass mirrors hinged together. Two 3-V light bulbs attached along edges of one mirror and connected to battery of two cells. Inserted into narrow opening of clevis or tand, and surface viewed and photographed in opposite mirror. Useful in assembly of segments of solid rocket motors as well as in postflight assessment, engineering evaluation, and refurbishment. Also applied in general to inspection and photographing of inner sealing surfaces to which access difficult.

  18. Metrology Arrangement for Measuring the Positions of Mirrors of a Submillimeter Telescope

    NASA Technical Reports Server (NTRS)

    Abramovici, Alex; Bartman, Randall K.

    2011-01-01

    The position of the secondary mirror of a submillimeter telescope with respect to the primary mirror needs to be known .0.03 mm in three dimensions. At the time of this reporting, no convenient, reasonably priced arrangement that offers this capability exists. The solution proposed here relies on measurement devices developed and deployed for the GeoSAR mission, and later adapted for the ISAT (Innovative Space Based Radar Antenna Technology) demonstration. The measurement arrangement consists of four metrology heads, located on an optical bench, attached to the secondary mirror. Each metrology head has a dedicated target located at the edge of the primary mirror. One laser beam, launched from the head and returned by the target, is used to measure distance. Another beam, launched from a beacon on the target, is monitored by the metrology head and generates a measurement of the target position in the plane perpendicular to the laser beam. A 100-MHz modulation is carried by a collimated laser beam. The relevant wavelength is the RF one, 3 m, divided by two, because the light carries it to the target and back. The phase change due to travel to the target and back is measured by timing the zero-crossing of the RF modulation, using a 100-MHz clock. In order to obtain good resolution, the 100-MHz modulation signal is down-converted to 1 kHz. Then, the phase change corresponding to the round-trip to the target is carried by a 1-kHz signal. Since the 100-MHz clock beats 100,000 times during one period of the 1-kHz signal, the least-significant-bit (LSB) resolution is LSB = 0.015 mm.

  19. [Mirror behaviors in dementia: the many mirror signs].

    PubMed

    Ghika, Joseph; Diéguez, Sebastian; Assal, Frédéric; Demonet, Jean-François

    2013-11-13

    Mirror behaviors in advanced dementia are: the mirror sign of Abely and Delmas, where the patient stares at his face (environment-driven behavior of Lhermitte); non recognition of the self in the mirror (autoprosopagnosia and/or delirious auto-Capgras); mirror agnosia of Ramachandran and Binkofski where the patient do not understand the concept of mirror and its use; the psychovisual reflex, or reflex pursuit of the eyes when passively moving a minrror in front of a patient (intact vision); mirror writing (procedural learning). We describe four demented patients with mirror behaviors assessing brain mechanisms of self recognition, social brain and mental and visuo-spatial manipulation of images and objects.

  20. JWST Mirror Installation

    NASA Video Gallery

    The first six of 18 hexagonal shaped segments that will form NASA’s James Webb Space Telescope’s primary mirror for space observations were readied this week to begin final cryogenic testing at...

  1. The Rotating Mirror.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1981-01-01

    Discusses theory of the rotating mirror, its use in measuring the velocity of the electrical signal in wires, and the velocity of light. Concludes with a description of the manometric flame apparatus developed for analyzing sound waves. (SK)

  2. Mirror image proteins.

    PubMed

    Zhao, Le; Lu, Wuyuan

    2014-10-01

    Proteins composed entirely of unnatural d-amino acids and the achiral amino acid glycine are mirror image forms of their native l-protein counterparts. Recent advances in chemical protein synthesis afford unique and facile synthetic access to domain-sized mirror image d-proteins, enabling protein research to be conducted through 'the looking glass' and in a way previously unattainable. d-Proteins can facilitate structure determination of their native l-forms that are difficult to crystallize (racemic X-ray crystallography); d-proteins can serve as the bait for library screening to ultimately yield pharmacologically superior d-peptide/d-protein therapeutics (mirror-image phage display); d-proteins can also be used as a powerful mechanistic tool for probing molecular events in biology. This review examines recent progress in the application of mirror image proteins to structural biology, drug discovery, and immunology.

  3. Wide field adaptive optics correction for the GMT using natural guide stars

    NASA Astrophysics Data System (ADS)

    van Dam, Marcos A.; Bouchez, Antonin H.; McLeod, Brian A.

    2014-07-01

    The conceptual design of the Giant Magellan Telescope has four wavefront sensors used to maintain the shape and alignment of the segmented primary and secondary mirrors. In this paper, we show that by reading the sensors at 200 Hz, we can also compensate for low altitude turbulence. As a result, there is a large improvement in image quality, even at visible wavelengths, over the entire science field of view of the telescope. A minimum-variance reconstructor is presented that takes slope measurements from four stars of arbitrary location and magnitude and produces the optimal adaptive secondary mirror commands. The performance of the adaptive optics system in this mode is simulated using YAO, an end-to-end simulation tool. We present the results of trade studies performed to optimize the science return of the telescope.

  4. The contribution of primary and secondary somatosensory cortices to the representation of body parts and body sides: an fMRI adaptation study.

    PubMed

    Tamè, Luigi; Braun, Christoph; Lingnau, Angelika; Schwarzbach, Jens; Demarchi, Gianpaolo; Li Hegner, Yiwen; Farnè, Alessandro; Pavani, Francesco

    2012-12-01

    Although the somatosensory homunculus is a classically used description of the way somatosensory inputs are processed in the brain, the actual contributions of primary (SI) and secondary (SII) somatosensory cortices to the spatial coding of touch remain poorly understood. We studied adaptation of the fMRI BOLD response in the somatosensory cortex by delivering pairs of vibrotactile stimuli to the finger tips of the index and middle fingers. The first stimulus (adaptor) was delivered either to the index or to the middle finger of the right or left hand, and the second stimulus (test) was always administered to the left index finger. The overall BOLD response evoked by the stimulation was primarily contralateral in SI and was more bilateral in SII. However, our fMRI adaptation approach also revealed that both somatosensory cortices were sensitive to ipsilateral as well as to contralateral inputs. SI and SII adapted more after subsequent stimulation of homologous as compared with nonhomologous fingers, showing a distinction between different fingers. Most importantly, for both somatosensory cortices, this finger-specific adaptation occurred irrespective of whether the tactile stimulus was delivered to the same or to different hands. This result implies integration of contralateral and ipsilateral somatosensory inputs in SI as well as in SII. Our findings suggest that SI is more than a simple relay for sensory information and that both SI and SII contribute to the spatial coding of touch by discriminating between body parts (fingers) and by integrating the somatosensory input from the two sides of the body (hands).

  5. Using Principles of Complex Adaptive Systems to Implement Secondary Prevention of Coronary Heart Disease in Primary Care

    PubMed Central

    Kottke, Thomas E; Huebsch, Jacquelyn A; McGinnis, Paul; Nichols, Jolleen M; Parker, Emily D; Tillema, Juliana O; Maciosek, Michael V

    2016-01-01

    Context: Primary care practice. Objective: To test whether the principles of complex adaptive systems are applicable to implementation of team-based primary care. Design: We used complex adaptive system principles to implement team-based care in a private, five-clinic primary care practice. We compared randomly selected samples of patients with coronary heart disease (CHD) and diabetes before system implementation (March 1, 2009, to February 28, 2010) and after system implementation (December 1, 2011, to March 31, 2013). Main Outcome Measures: Rates of patients meeting the composite goals for CHD (blood pressure < 140/90 mmHg, low-density lipoprotein cholesterol level < 100 mg/dL, tobacco-free, and using aspirin unless contraindicated) and diabetes (CHD goal plus hemoglobin A1c concentration < 8%) before and after the intervention. We also measured provider and patient satisfaction with preventive services. Results: The proportion of patients with CHD who met the composite goal increased from 40.3% to 59.9% (p < 0.0001) because documented aspirin use increased (65.2%–97.5%, p < 0.0001) and attainment of the cholesterol goal increased (77.0%–83.9%, p = 0.0041). The proportion of diabetic patients meeting the composite goal rose from 24.5% to 45.4% (p < 0.0001) because aspirin use increased (58.6%–97.6%, p < 0.0001). Increased percentages of patients meeting the CHD and diabetes composite goals were not significantly different (p = 0.2319). Provider satisfaction with preventive services delivery increased significantly (p = 0.0017). Patient satisfaction improved but not significantly. Conclusion: Principles of complex adaptive systems can be used to implement team-based care systems for patients with CHD and possibly diabetic patients. PMID:26784851

  6. Mirror Attachment For Borescope

    NASA Technical Reports Server (NTRS)

    Gearhart, John F.; Peloquin, James E.

    1994-01-01

    Attachment for articulated borescope provides views into small, normally inaccessible spaces. Simple small round mirror on extension arm welded to borescope head. Tilted at angle to axis of borescope head, mirror provides views sideways to borescope head. Disassembly of turbopump blades not necessary to enable fluorescent-penetrant-dye inspection. Attachment used to inspect difficult-to-reach internal parts of other assemblies. Also used for inspection with ordinary white light.

  7. Dual-use bimorph deformable mirrors

    NASA Astrophysics Data System (ADS)

    Griffith, M. S.; Laycock, L. C.; Bagshaw, J. M.; Rowe, D.

    2005-11-01

    Adaptive Optics (AO) is a critical underpinning technology for future optical countermeasures, laser delivery, target illumination and imaging systems. It measures and compensates for optical distortion caused by transmission through the atmosphere, resulting in the ability to deploy smaller lasers and identify targets at greater ranges. AO is also well established in ground based astronomy, and is finding applications in free space optical communications and ophthalmology. One of the key components in an AO system is the wavefront modifier, which acts on the incoming or outgoing beam to counter the effects of the atmosphere. BAE SYSTEMS ATC is developing multi-element Deformable Bimorph Mirrors (DBMs) for such applications. A traditional bimorph deformable mirror uses a set of edge electrodes outside the active area in order to meet the required boundary conditions for the active aperture. This inflicts a significant penalty in terms of bandwidth, which is inversely proportional to the square of the full mirror diameter. We have devised a number of novel mounting arrangements that reduce dead space and thus provide a much improved trade-off between bandwidth and stroke. These schemes include a novel method for providing vertical displacement at the periphery of the aperture, a method for providing a continuous compliant support underneath the bimorph mirror, and a method for providing a three point support underneath the bimorph. In all three cases, there is no requirement for edge electrodes to provide the boundary conditions, resulting in devices of much higher bandwidth. The target is to broaden the use of these types of mirror beyond the current limits of either low order/low bandwidth, to address the high order, high bandwidth systems required by long range, horizontal path applications. This paper will discuss the different mirror designs, and present experimental results for the most recently assembled mirrors.

  8. Notes on moving mirrors

    SciTech Connect

    Obadia, N.; Parentani, R.

    2001-08-15

    The Davies-Fulling (DF) model describes the scattering of a massless field by a noninertial mirror in two dimensions. In this paper, we generalize this model in two different ways. First, we consider partially reflecting mirrors. We show that the Bogoliubov coefficients relating inertial modes can be expressed in terms of the reflection factor and the transformation from inertial modes to modes at rest with respect to the mirror. In this perspective, the DF model is simply the limiting case when the reflection factor is unity for all frequencies. In the second part, we introduce an alternative model which is based on self-interactions described by an action principle. When the coupling is constant, this model can be solved exactly and gives rise to a partially reflecting mirror. The usefulness of this dynamical model lies in the possibility of switching off the coupling between the mirror and field. This allows us to obtain regularized expressions for the fluxes in situations where they are singular when using the DF model. Two examples are considered. The first concerns the flux induced by the disappearance of the reflection condition, a situation which bears some analogies with the end of the evaporation of a black hole. The second case concerns the flux emitted by a uniformly accelerated mirror.

  9. Superconducting mirror for laser gyroscope

    SciTech Connect

    Wang, X.

    1991-05-14

    This paper describes an apparatus for reflecting a light beam. It comprises: a mirror assembly comprising a substrate and a superconductive mirror formed on such substrate, wherein: the substrate is optically transparent to the light beam and has a thickness of from about 0.5 to about 1.0 millimeter, and the superconductive mirror has a thickness of from about 0.5 to about 1.0 microns; means for cooling the superconductive mirror; means for measuring the temperature of the superconductive mirror; means for determining the reflectivity of the superconductive mirror; and means for varying the reflectivity of the superconductive mirror.

  10. Cold welded laser mirror assembly

    SciTech Connect

    Chaffee, E.G.

    1989-02-07

    A gas laser apparatus is described comprising: (a) a gas laser tube having a bore extending between cathode and anode ends; (b) the laser tube terminating at each end with a bellows assembly operative to extend the length of the tube bore; (c) each bellows assembly comprising: (i) an adjustably positionable metal bellows secured to a selected end of the tube; (ii) a tubular pedestal secured at one end to the bellows to form an extension thereof and at the opposite end providing a mirror mount surface; (iii) a mirror secured to the surface; (iv) a cold weld material located between the mirror and mirror mount surface; and (v) retaining means secured to the pedestal encasing the outer portion of the mirror and operative to apply pressure to the cold weld material to establish a cold weld seal between the mirror and mirror mount surface to retain the mirror on and prevent shifting of the mirror with respect to the mirror mount surface.

  11. Secondary contact and local adaptation contribute to genome-wide patterns of clinal variation in Drosophila melanogaster.

    PubMed

    Bergland, Alan O; Tobler, Ray; González, Josefa; Schmidt, Paul; Petrov, Dmitri

    2016-03-01

    Populations arrayed along broad latitudinal gradients often show patterns of clinal variation in phenotype and genotype. Such population differentiation can be generated and maintained by both historical demographic events and local adaptation. These evolutionary forces are not mutually exclusive and can in some cases produce nearly identical patterns of genetic differentiation among populations. Here, we investigate the evolutionary forces that generated and maintain clinal variation genome-wide among populations of Drosophila melanogaster sampled in North America and Australia. We contrast patterns of clinal variation in these continents with patterns of differentiation among ancestral European and African populations. Using established and novel methods we derive here, we show that recently derived North America and Australia populations were likely founded by both European and African lineages and that this hybridization event likely contributed to genome-wide patterns of parallel clinal variation between continents. The pervasive effects of admixture mean that differentiation at only several hundred loci can be attributed to the operation of spatially varying selection using an FST outlier approach. Our results provide novel insight into the well-studied system of clinal differentiation in D. melanogaster and provide a context for future studies seeking to identify loci contributing to local adaptation in a wide variety of organisms, including other invasive species as well as temperate endemics. PMID:26547394

  12. Secondary contact and local adaptation contribute to genome-wide patterns of clinal variation in Drosophila melanogaster.

    PubMed

    Bergland, Alan O; Tobler, Ray; González, Josefa; Schmidt, Paul; Petrov, Dmitri

    2016-03-01

    Populations arrayed along broad latitudinal gradients often show patterns of clinal variation in phenotype and genotype. Such population differentiation can be generated and maintained by both historical demographic events and local adaptation. These evolutionary forces are not mutually exclusive and can in some cases produce nearly identical patterns of genetic differentiation among populations. Here, we investigate the evolutionary forces that generated and maintain clinal variation genome-wide among populations of Drosophila melanogaster sampled in North America and Australia. We contrast patterns of clinal variation in these continents with patterns of differentiation among ancestral European and African populations. Using established and novel methods we derive here, we show that recently derived North America and Australia populations were likely founded by both European and African lineages and that this hybridization event likely contributed to genome-wide patterns of parallel clinal variation between continents. The pervasive effects of admixture mean that differentiation at only several hundred loci can be attributed to the operation of spatially varying selection using an FST outlier approach. Our results provide novel insight into the well-studied system of clinal differentiation in D. melanogaster and provide a context for future studies seeking to identify loci contributing to local adaptation in a wide variety of organisms, including other invasive species as well as temperate endemics.

  13. Oxygen-evolving system and secondary quinonic acceptors are highly reduced in dark adapted Euglena cells: A thermoluminescence study.

    PubMed

    Farineau, J; Laval-Martin, D

    1992-06-01

    Characteristics of thermoluminescence glow curves were compared in three types of Euglena cells: (i) strictly autotrophic, Cramer and Myers cells; (ii) photoheterotrophic cells sampled from an exponentially growing culture containing lactate as substrate repressing the photosynthetic activity; (iii) semiautotrophic cells, sampled when the lactate being totally exhausted, the photosynthesis was enhanced.In autotrophic and semiautotrophic cells, composite curves were observed after series of two or more actinic flashes fired at -10°C, which can be deconvoluted into a large band peaking in the range 12-22°C and a smaller one near 40°C, This second band presents the characteristics of a typical B band (due to S2/3QB (-) recombination), whereas the first one resembled the band, shifted by -15-20°C, which is observed in herbicide resistant plants. The amplitude of this major band, which was in all cases very low after one flash, exhibited oscillations of period four but rapidly damping, with maxima after two and six flashes. In contrast, photoheterotrophic Euglena displayed single, non-oscillating curves with maxima in the range 5-10°C.In autotrophic and semiautotrophic cells, oxidizing pretreatments by either a preillumination with one or more (up to twenty-five) flashes, or a far-red preillumination in the presence of methylviologen, followed by a short dark period, induced thermoluminescence bands almost single and shifted by +3-5°C, or +12°C, respectively. In autotrophic cells, far-red light plus methyl viologen treatment induced a band peaking at 31°C, as in isolated thylakoids from Euglena or higher plants, while it had barely any effect in photoheterotrophic cells.Due to metabolic activities in dark-adapted cells, a reduction of redox groups at the donor and acceptor sides of PS II dark-adapted cells is supposed to occur. Two different explanations can be proposed to explain such a shift in the position of the main band in dark-adapted autotrophic control

  14. The use of the rare UUA codon to define "expression space" for genes involved in secondary metabolism, development and environmental adaptation in streptomyces.

    PubMed

    Chater, Keith F; Chandra, Govind

    2008-02-01

    to favour the expression of genes that confer adaptive benefits in intermittently encountered sub-optimal environments. The evolution of this system may have been a secondary consequence of the selective pressure exerted by bacteriophage attack. Some biotechnological implications of bldA phenomenology are considered.

  15. Adaptive expansion of the maize maternally expressed gene (Meg) family involves changes in expression patterns and protein secondary structures of its members

    PubMed Central

    2014-01-01

    Background The Maternally expressed gene (Meg) family is a locally-duplicated gene family of maize which encodes cysteine-rich proteins (CRPs). The founding member of the family, Meg1, is required for normal development of the basal endosperm transfer cell layer (BETL) and is involved in the allocation of maternal nutrients to growing seeds. Despite the important roles of Meg1 in maize seed development, the evolutionary history of the Meg cluster and the activities of the duplicate genes are not understood. Results In maize, the Meg gene cluster resides in a 2.3 Mb-long genomic region that exhibits many features of non-centromeric heterochromatin. Using phylogenetic reconstruction and syntenic alignments, we identified the pedigree of the Meg family, in which 11 of its 13 members arose in maize after allotetraploidization ~4.8 mya. Phylogenetic and population-genetic analyses identified possible signatures suggesting recent positive selection in Meg homologs. Structural analyses of the Meg proteins indicated potentially adaptive changes in secondary structure from α-helix to β-strand during the expansion. Transcriptomic analysis of the maize endosperm indicated that 6 Meg genes are selectively activated in the BETL, and younger Meg genes are more active than older ones. In endosperms from B73 by Mo17 reciprocal crosses, most Meg genes did not display parent-specific expression patterns. Conclusions Recently-duplicated Meg genes have different protein secondary structures, and their expressions in the BETL dominate over those of older members. Together with the signs of positive selections in the young Meg genes, these results suggest that the expansion of the Meg family involves potentially adaptive transitions in which new members with novel functions prevailed over older members. PMID:25084677

  16. Analytical expressions for field astigmatism in decentered two mirror telescopes and application to the collimation of the ESO VLT

    NASA Astrophysics Data System (ADS)

    Noethe, L.; Guisard, S.

    2000-05-01

    We derive formulae for all parameters defining the field astigmatism of misaligned two mirror telescopes with arbitrary geometries and with stop positions anywhere on the line connecting the vertices of the two mirrors. The formulae show explicitly the dependence of the field astigmatism on the fundamental design parameters and characteristics of the telescope and on the stop position. Special attention is given to the particular case where such a schiefspiegler has been corrected for coma at the field center. In addition, we study the effects of the practical definition that the center of the field is the center of the adapter. Following a recent paper by McLeod, where the field dependence of astigmatism is used to collimate a Ritchey-Chretien telescope with the stop at the primary mirror, we apply our formulae to the Cassegrain focus of the ESO Very Large Telescope (VLT), where the stop is at the secondary mirror and the telescope is only corrected for spherical aberration. We present measurements of the field astigmatism and discuss the accuracy of the collimation method.

  17. A large stroke magnetic fluid deformable mirror for focus control

    NASA Astrophysics Data System (ADS)

    Min, Ling-kun; Wu, Zhi-zheng; Huang, Ming-shuang; Kong, Xiang-hui

    2016-03-01

    A liquid deformable mirror, which can provide a large stroke deflection more than 100 μm, is proposed for focus control. The deformable mirror utilizes the concept of magnetic fluid deformation shaped with electromagnetic fields to achieve concave or convex surface and to change the optical focus depth of the mirrors. The free surface of the magnetic fluid is coated with a thin layer of metal-liquid-like film (MELLF) prepared from densely packed silver nanoparticles to enhance the reflectance of the deformable mirror. The experimental results on the fabricated prototype magnetic fluid deformable mirror (MFDM) show that the desired concave/convex surface shape can be controlled precisely with a closed-loop adaptive optical system.

  18. SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code

    SciTech Connect

    Hua, D; Fowler, T

    2004-06-15

    A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrors and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior.

  19. Genomics of Sponge-Associated Streptomyces spp. Closely Related to Streptomyces albus J1074: Insights into Marine Adaptation and Secondary Metabolite Biosynthesis Potential

    PubMed Central

    Ian, Elena; Malko, Dmitry B.; Sekurova, Olga N.; Bredholt, Harald; Rückert, Christian; Borisova, Marina E.; Albersmeier, Andreas; Kalinowski, Jörn; Gelfand, Mikhail S.; Zotchev, Sergey B.

    2014-01-01

    A total of 74 actinomycete isolates were cultivated from two marine sponges, Geodia barretti and Phakellia ventilabrum collected at the same spot at the bottom of the Trondheim fjord (Norway). Phylogenetic analyses of sponge-associated actinomycetes based on the 16S rRNA gene sequences demonstrated the presence of species belonging to the genera Streptomyces, Nocardiopsis, Rhodococcus, Pseudonocardia and Micromonospora. Most isolates required sea water for growth, suggesting them being adapted to the marine environment. Phylogenetic analysis of Streptomyces spp. revealed two isolates that originated from different sponges and had 99.7% identity in their 16S rRNA gene sequences, indicating that they represent very closely related strains. Sequencing, annotation, and analyses of the genomes of these Streptomyces isolates demonstrated that they are sister organisms closely related to terrestrial Streptomyces albus J1074. Unlike S. albus J1074, the two sponge streptomycetes grew and differentiated faster on the medium containing sea water. Comparative genomics revealed several genes presumably responsible for partial marine adaptation of these isolates. Genome mining targeted to secondary metabolite biosynthesis gene clusters identified several of those, which were not present in S. albus J1074, and likely to have been retained from a common ancestor, or acquired from other actinomycetes. Certain genes and gene clusters were shown to be differentially acquired or lost, supporting the hypothesis of divergent evolution of the two Streptomyces species in different sponge hosts. PMID:24819608

  20. The Role of Anger/Hostility in Treatment-Resistant Depression: A Secondary Analysis From the ADAPT-A Study.

    PubMed

    Fisher, Lauren B; Fava, Maurizio; Doros, Gheorghe D; Alpert, Jonathan E; Henry, Michael; Huz, Ilana; Freeman, Marlene P

    2015-10-01

    Major depressive disorder is often accompanied by elevated levels of anger, hostility, and irritability, which may contribute to worse outcomes. The present study is a secondary analysis examining the role of anger/hostility in the treatment response to low-dose aripiprazole added to antidepressant therapy in 225 patients with major depressive disorder and inadequate response to antidepressant treatment. Repeated-measures model demonstrated no drug-placebo difference in treatment response across levels of anger/hostility. However, within-group analyses showed significantly lower placebo response rates in patients with high anger/hostility and a trend for lower drug response rates in patients with high anger/hostility. Pooled response rates across phases and treatments revealed a lower response rate among patients with high anger/hostility. Depressed patients with high anger/hostility demonstrate greater illness severity and lower depressive treatment response rates than patients with low anger/hostility, suggesting that patients with high anger/hostility may have poorer outcomes in response to adjunctive treatment.

  1. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  2. Physics of mirror systems

    SciTech Connect

    Post, R.F.

    1982-05-01

    In recent years the emphasis in research on the magnetic mirror approach to fusion has been shifted to address what are essentially economically-motivated issues. The introduction of the Tandem Mirror idea solved in principal the problem of low Q (low fusion power gain) of mirror-based fusion systems. In order to optimize the tandem mirror idea from an economic standpoint, some important improvements have been suggested. These improvements include the thermal barrier idea of Baldwin and Logan and the axicell concept of Kesner. These new modifications introduce some special physics considerations. Among these are (1) The MHD stability properties of high energy electron components in the end cells; (2) The optimization of end-cell magnetic field configurations with the objective of minimizing equilibrium parallel currents; (3) The suppression of microstabilities by use of sloshing ion distributions. Following a brief outline of tandem mirror concepts, the above three topics are discussed, with illustrative examples taken from earlier work or from recent design studies.

  3. Helically linked mirror arrangement

    SciTech Connect

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average ..beta.. and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned.

  4. Progress in the Fabrication and Testing of Telescope Mirrors for The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Bowers, Charles W.; Clampin, M.; Feinberg, L.; Stahl, P.; McKay, A.; Chaney, D.; Gallagher, B.

    2010-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl ≥ 0.8) at λ=2μm. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat:flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror ( 0.74m) is similarly positioned in six degrees of rigid body motion. The 0.67m, fixed tertiary and 0.17m, flat fine steering mirror complete the telescope mirror complement. All telescope mirrors are made of Be with substantial lightweighting (21kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision ( 10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. The flight mirrors are all close to readiness for this final step or have started cryo-testing at the X-Ray Calibration Facility. Each mirror will then be coated with a protected Au coating prior to attachment to the flight structure. We here review the process and status of the mirror fabrication program and discuss the predicted performance of the telescope based on initial results from cryogenic mirror measurements.

  5. Ferroelectric actuator testing for deformable-mirror applications

    NASA Astrophysics Data System (ADS)

    Costello, Thomas P.; Schell, John D.

    1992-01-01

    Low voltage ferroelectric microdisplacement actuators are excellent candidates for use in zonal correction deformable mirrors (DMs) used in adaptive optical systems. Selection/specification is a critical process, however, since the device's electro-mechanical performance largely determines the mirror performance, and its electrical load characteristics strongly influence the cost of drive electronics. Several commercially available low voltage actuator devices were tested to establish a database for new DM designs. Both quasi-static and dynamic response characteristics were investigated. Test results are presented and conclusions are drawn concerning the merits of each device for typical deformable mirror applications.

  6. Novel high-bandwidth bimorph deformable mirrors

    NASA Astrophysics Data System (ADS)

    Griffith, Michael S.; Laycock, Leslie C.; Archer, Nick J.

    2004-12-01

    Adaptive Optics (AO) is a critical underpinning technology for future laser delivery (including free-space optical communications), target illumination and imaging systems. It measures and compensates for optical distortion caused by transmission through the atmosphere, resulting in the ability to deploy smaller lasers and identify targets at greater ranges. One of the key components in an AO system is the wavefront modifier, which acts on the incoming or outgoing beam to counter the effects of the atmosphere. BAE SYSTEMS Advanced Technology Centre is developing multi-element bimorph deformable mirrors for such an applications. Our initial designs were based on a standard construction and exhibited a resonant frequency of 1kHz with a maximum stroke of +/-20μm for an active aperture of 50mm. These devices were limited by the necessity to have a 'dead space' between the inner active area and the mirror boundary; this ensured that both the requirements for the stroke and the fixed boundary conditions could be met simultaneously. However, there was a significant penalty to pay in terms of bandwidth, which is inversely proportional to the square of the full mirror diameter. In a series of iteration steps, we have created novel mounting arrangements that reduce dead space and thus provide the optimum trade-off between bandwidth and stroke. These schemes include supporting the mirror from underneath, rather than at its edge. As a result, models of 60mm active diameter mirrors predict a resonance in excess of 5kHz, combined with a maximum stroke greater than +/-40μm. This paper will discuss a number of different mirror designs and present experimental results for recently assembled devices.

  7. Transition Metal Switchable Mirror

    SciTech Connect

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  8. Mirror Measurement Device

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Small Business Innovation Research (SBIR) contract led to a commercially available instrument used to measure the shape profile of mirror surfaces in scientific instruments. Bauer Associates, Inc.'s Bauer Model 200 Profilometer is based upon a different measurement concept. The local curvature of the mirror's surface is measured at many points, and the collection of data is computer processed to yield the desired shape profile. (Earlier profilometers are based on the principle of interferometry.) The system is accurate and immune to problems like vibration and turbulence. Two profilometers are currently marketed, and a third will soon be commercialized.

  9. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2016-07-12

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  10. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2016-07-12

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  11. Flat Focusing Mirror

    PubMed Central

    Cheng, Y. C.; Kicas, S.; Trull, J.; Peckus, M.; Cojocaru, C.; Vilaseca, R.; Drazdys, R.; Staliunas, K.

    2014-01-01

    The control of spatial propagation properties of narrow light beams such as divergence, focusing or imaging are main objectives in optics and photonics. In this letter, we propose and demonstrate experimentally a flat focusing mirror, based on an especially designed dielectric structure without any optical axis. More generally, it also enables imaging any light pattern in reflection. The flat focusing mirror with a transversal invariance can largely increase the applicability of structured photonic materials for light beam propagation control in small-dimension photonic circuits. PMID:25228358

  12. Mirror neurons and mirror systems in monkeys and humans.

    PubMed

    Fabbri-Destro, Maddalena; Rizzolatti, Giacomo

    2008-06-01

    Mirror neurons are a distinct class of neurons that transform specific sensory information into a motor format. Mirror neurons have been originally discovered in the premotor and parietal cortex of the monkey. Subsequent neurophysiological (TMS, EEG, MEG) and brain imaging studies have shown that a mirror mechanism is also present in humans. According to its anatomical locations, mirror mechanism plays a role in action and intention understanding, imitation, speech, and emotion feeling.

  13. Large Telescope Segmented Primary Mirror Alignment

    NASA Technical Reports Server (NTRS)

    Rud, Mayer

    2010-01-01

    A document discusses a broadband (white light) point source, located at the telescope Cassegrain focus, which generates a cone of light limited by the hole in the secondary mirror (SM). It propagates to the aspheric null-mirror, which is optimized to make all the reflected rays to be normal to the primary mirror (PM) upon reflection. PM retro-reflects the rays back through the system for wavefront analysis. The point source and the wavefront analysis subsystems are all located behind the PM. The PM phasing is absolute (white light) and does not involve the SM. A relatively small, aspheric null-mirror located near the PM center of curvature has been designed to deliver the high level of optical wavefront correction. The phasing of the segments is absolute due to the use of a broadband source. The segmented PM is optically aligned independently and separately from the SM alignment. The separation of the PM segments alignment from the PM to the SM, and other telescope optics alignments, may be a significant advantage, eliminating the errors coupling. The point source of this concept is fully cooperative, unlike a star or laser-generated guide-star, providing the necessary brightness for the optimal S/N ratio, the spectral content, and the stable on-axis position. This concept can be implemented in the lab for the PM initial alignment, or made to be a permanent feature of the space-based or groundbased telescope.

  14. Paranal Receives New Mirror

    NASA Astrophysics Data System (ADS)

    2008-04-01

    A 4.1-metre diameter primary mirror, a vital part of the world's newest and fastest survey telescope, VISTA (the Visible and Infrared Survey Telescope for Astronomy) has been delivered to its new mountaintop home at Cerro Paranal, Chile. The mirror will now be coupled with a small camera for initial testing prior to installing the main camera in June. Full scientific operations are due to start early next year. VISTA will form part of ESO's Very Large Telescope facility. ESO PR Photo 10d/08 ESO PR Photo 10d/08 The VISTA Mirror The mirror arrived over the Easter weekend at the Paranal Observatory where the telescope is being assembled at an altitude of 2518m, in Chile's Atacama Desert. VISTA Project Manager Alistair McPherson from STFC's UK Astronomy Technology Centre (UK ATC) accompanied the mirror on its journey to Chile: "This is a major milestone for the VISTA project. The precious mirror was loaded on to a plane in a special cradle that used tennis balls to cushion it from impact for its arduous journey across three continents. " "The mirror had a difficult four-day journey, by air and by road. It arrived in perfect condition and now that it has been coated, we will install the mirror in the telescope with a small test camera for about four weeks testing. We plan to install the main camera in June," said the Project Scientist on VISTA, Will Sutherland of Queen Mary, University of London, UK. The VISTA 4.1-metre diameter primary mirror is the most strongly curved large mirror ever polished to such a precise and exacting surface accuracy - deviations from a perfect surface of less than 1/3000th of the thickness of a human hair. On arrival at Cerro Paranal it was safely craned into the telescope dome where it was washed and coated with a thin layer of protected silver in the facility's coating plant. Silver is the best metal for the purpose since it reflects over 98% of near-infrared light, better than the more commonly used aluminium. To date, the reflectivity

  15. Articulated primary mirror /APM/ for the Solar Optical Telescope /SOT/

    NASA Technical Reports Server (NTRS)

    Gowrinathan, S.; Gottesman, J.

    1981-01-01

    Allowing the location of the primary vs secondary mirrors to be movable in space, the articulated primary mirror (APM) was designed as an inexpensive alternative, providing stable imagery, for the Solar Optical Telescope (SOT). Requirements of high resolution in the sub-arc-second region, and the ability to point the telescope through the Instrument Pointing System (IPS) were satisfied. Alignment sensors, contained within the subsystem, locate the points of coincidence of the foci of the primary and secondary optics (conic foci). These are utilized as inputs for subsystem actuators to correct via the digital controller algorithm.

  16. Rearview Mirror Dimming Function

    ERIC Educational Resources Information Center

    Layton, William

    2011-01-01

    Students are often unaware of the little tab on a rear-view mirror that is used to dim headlights from the rear. Those who know about this tab are usually interested in knowing how it works. Explanations of the optics involved can be found in Serway and Jewett and Jones and Edge. An alternate explanation is given.

  17. Durable metallized polymer mirror

    DOEpatents

    Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  18. Durable metallized polymer mirror

    DOEpatents

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  19. Rearview Mirror Dimming Function

    NASA Astrophysics Data System (ADS)

    Layton, William

    2011-12-01

    Students are often unaware of the little tab on a rear-view mirror that is used to dim headlights from the rear. Those who know about this tab are usually interested in knowing how it works. Explanations of the optics involved can be found in Serway and Jewett and Jones and Edge.2 An alternate explanation is given below:

  20. Tandem mirror fusion research

    SciTech Connect

    Baldwin, D.E.

    1983-12-02

    The tandem mirror program has evolved considerably in the last decade. Of significance is the viable reactor concept embodied in the MARS design. An aggressive experimental program, culminating in the operation of MFTF-B in late 1986, will provide a firm basis for refining the MARS design as necessary for constructing a reactor prototype in the 1990s.

  1. JWST Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Since the initial Design Studies leading to JWST, Mirror Technology was identified as a (if not the) critical capability necessary to enable the next generation of large aperture space telescopes required to achieve the science goals of imaging the earliest galaxies and proto-galaxies after the big bang. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996. Achieving the desired science objectives required a never before demonstrated space telescope capability, one with an 8 meter class primary mirror that is diffraction limited at 2 micrometers and operating in deep space at temperatures well below 70K. Beryllium was identified in the NASA "Yardstick" design as the preferred material because of its ability to provide stable optical performance in the anticipated thermal environment as well as its excellent specific stiffness. Because of launch vehicle constraints, two very significant architectural constraints were placed upon the telescope: segmentation and areal density. Each of these directly resulted in specific technology capability requirements. First, because the maximum launch vehicle payload fairing diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. Second, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density specification of 20 kilograms per square meter.

  2. NIF small mirror mounts

    NASA Astrophysics Data System (ADS)

    McCarville, Tom J.

    1999-11-01

    The most prominent physical characteristics of the 192-beam NIF laser are the 123 m length of the main laser and 400 mm aperture of each beam line. The main laser is illustrated in Figure 1, which shows half the total beam lines. Less visible are the many small optics (less than 100-mm diameter) used to align and diagnose each beam line. Commercial mounts can be used for most of the small aperture turning mirrors. This paper reviews the NIF projects effort to identify suitable commercial mirror mounts. The small mirror mounts have stability, wave front, space, and cleanliness requirements similar to the large aperture optics. While cost favors use of commercial mounts, there is little other than user experience to guide the mount qualification process. At present, there is no recognizable qualification standard with which to compare various products. In a large project like NIF, different user experience leads to different product selection. In some cases the differences are justified by application needs, but more often the selection process is somewhat random due to a lack of design standards. The result is redundant design and testing by project staff and suppliers. Identification of suitable mirror mounts for large projects like NIF would be streamlined if standards for physical and performance criteria were available, reducing cost for both the project and suppliers. Such standards could distinguish mounts for performance critical applications like NIF from laboratory applications, where ease of use and flexibility is important.

  3. Cosmology with liquid mirror telescopes

    NASA Astrophysics Data System (ADS)

    Hogg, David W.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    Liquid mirrors provide an exciting means to obtain large optical telescopes for substantially lower costs than conventional technologies. The liquid mirror concept has been demonstrated in the lab with the construction of a diffraction limited 1.5 m mirror. The mirror surface, using liquid mercury, forms a perfect parabolic shape when the mirror cell is rotated at a uniform velocity. A liquid mirror must be able to support a heavy mercury load with minimal flexure and have a fundamental resonant frequency that is as high as possible, to suppress the amplitude of surface waves caused by small vibrations transmitted to the mirror. To minimize the transmission of vibrations to the liquid surface, the entire mirror rests on an air bearing. This necessitates the mirror cell being lightweight, due to the limited load capabilities of the air bearing. The mirror components must also have physical characteristics which minimize the effects of thermal expansion with ambient temperature fluctuations in the observatory. In addition, the 2.7 m mirror construction is designed so that the techniques used may be readily extended to the construction of large mirrors. To attain the goals of a lightweight, rigid mirror, a composite laminant construction was used. The mirror consists of a foam core cut to the desired parabolic shape, with an accuracy of a few mm. An aluminum hub serves as an anchor for the foam and skin, and allows precise centering of the mirror on the air bearing and drive system. Several plys of Kevlar, covered in an epoxy matrix, are then applied to the foam. A final layer of pure epoxy is formed by spin casting. This final layer is parabolic to within a fraction of a mm. An aluminum ring bonded to the circumference of the mirror retains the mercury, and incorporates stainless-steel hard-points for the attachment of balance weights.

  4. Secondary osteon size and collagen/lamellar organization ("osteon morphotypes") are not coupled, but potentially adapt independently for local strain mode or magnitude.

    PubMed

    Skedros, John G; Keenan, Kendra E; Williams, Tyler J; Kiser, Casey J

    2013-02-01

    In bone, matrix slippage that occurs at cement lines of secondary osteons during loading is an important toughening mechanism. Toughness can also be enhanced by modifications in osteon cross-sectional size (diameter) for specific load environments; for example, smaller osteons in more highly strained "compression" regions vs. larger osteons in less strained "tension" regions. Additional osteon characteristics that enhance toughness are distinctive variations in collagen/lamellar organization (i.e., "osteon morphotypes"). Interactions might exist between osteon diameter and morphotype that represent adaptations for resisting deleterious shear stresses that occur at the cement line. This may be why osteons often have a peripheral ring (or "hoop") of highly oblique/transverse collagen. We hypothesized that well developed/distinct "hoops" are compensatory adaptations in cases where increased osteon diameter is mechanically advantageous (e.g., larger osteons in "tension" regions would have well developed/distinct "hoops" in order to resist deleterious consequences of co-existing localized shear stresses). We tested this hypothesis by determining if there are correlations between osteon diameters and strongly hooped morphotypes in "tension", "compression", and "neutral axis" regions of femora (chimpanzees, humans), radii (horse, sheep) and calcanei (horse, deer). The results reject the hypothesis-larger osteons are not associated with well developed/distinct "hoops", even in "tension regions" where the effect was expected to be obvious. Although osteon diameter and morphotype are not coupled, osteon diameters seem to be associated with increased strain magnitudes in some cases, but this is inconsistent. By contrast, osteon morphotypes are more strongly correlated with the distribution of tension and compression. PMID:23123271

  5. Deployable telescope having a thin-film mirror and metering structure

    DOEpatents

    Krumel, Leslie J.; Martin, Jeffrey W.

    2010-08-24

    A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.

  6. Long Focal Length Large Mirror Fabrication System

    NASA Technical Reports Server (NTRS)

    Bennett, H. E.

    2003-01-01

    The goals of this ambitious program are (1) to develop systems to make large superpolished optical mirrors, (2) to develop low scatter polishing techniques using centrifugal elutriation, (3) to develop a means of measuring scatter at any point on the mirror, (4) to polish a Hindle sphere to measure the optical figure of a one meter diameter convex mandrel, and (5) to fabricate low scatter, large adaptive optic graphite filled, cyanate ester replica transfer mirrors using these mandrels. Deliverables are a 30 cm diameter superpolished composite AO mirror. We fabricated a 1/3rd meter superpolished zerodur flat mandrel and with the support of our major subcontractor, Composite Mirror Applications Inc (CMA) we have demonstrated a 30 cm lightweight cyanate ester mirror with an rms microroughness between 0.6 and 0.8 nm and 8 faceplate influence function of 5 cm. The influence function was chosen to be comparable to the atmospheric correlation coefficient r(sub 0) which is about 5 cm at sea level. There was no print-thru of the graphite fibers in the cyanate ester surface (the bane of many previous efforts to use cyanate ester mirrors). Our subcontractor has devised a means for developing a 30-50 nm thick layer of graphite free pure ester resin on the surface of the mirrors. This graphite fiber filled material has a thermal expansion coefficient in the 10(exp -8) centimeter per Kelvin range (the same range of expansion coefficient as Zerodur and ULE glasses) and does not take up water and swell, so it is a nearly ideal mirror material in these areas. Unfortunately for these 0.8mm thick faceplates, the number of plies is not enough to result in isometric coverage. Isolated figure irregularities can appear, making it necessary to go to thicker faceplates. The influence function will then only approximate the length of r(sub 0), at higher altitudes or longer wavelengths. The influence function goes as the cube of the thickness, so we are now making a faceplate optimized for

  7. Understanding the role of mirror neurons in action understanding will require more than a domain-general account.

    PubMed

    Martin, Alia; Santos, Laurie R

    2014-04-01

    Cook et al. propose that mirror neurons emerge developmentally through a domain-general associative mechanism. We argue that experience-sensitivity does not rule out an adaptive or genetic argument for mirror neuron function, and that current evidence suggests that mirror neurons are more specialized than the authors' account would predict. We propose that future work integrate behavioral and neurophysiological techniques used with primates to examine the proposed functions of mirror neurons in action understanding.

  8. White-Light Phase-Conjugate Mirrors as Distortion Correctors

    NASA Technical Reports Server (NTRS)

    Frazier, Donald; Smith, W. Scott; Abdeldayem, Hossin; Banerjee, Partha

    2010-01-01

    White-light phase-conjugate mirrors would be incorporated into some optical systems, according to a proposal, as means of correcting for wavefront distortions caused by imperfections in large optical components. The proposal was given impetus by a recent demonstration that white, incoherent light can be made to undergo phase conjugation, whereas previously, only coherent light was known to undergo phase conjugation. This proposal, which is potentially applicable to almost any optical system, was motivated by a need to correct optical aberrations of the primary mirror of the Hubble Space telescope. It is difficult to fabricate large optical components like the Hubble primary mirror and to ensure the high precision typically required of such components. In most cases, despite best efforts, the components as fabricated have small imperfections that introduce optical aberrations that adversely affect imaging quality. Correcting for such aberrations is difficult and costly. The proposed use of white-light phase conjugate mirrors offers a relatively simple and inexpensive solution of the aberration-correction problem. Indeed, it should be possible to simplify the entire approach to making large optical components because there would be no need to fabricate those components with extremely high precision in the first place: A white-light phase-conjugate mirror could correct for all the distortions and aberrations in an optical system. The use of white-light phase-conjugate mirrors would be essential for ensuring high performance in optical systems containing lightweight membrane mirrors, which are highly deformable. As used here, "phase-conjugate mirror" signifies, more specifically, an optical component in which incident light undergoes time-reversal phase conjugation. In practice, a phase-conjugate mirror would typically be implemented by use of a suitably positioned and oriented photorefractive crystal. In the case of a telescope comprising a primary and secondary

  9. Nanolaminate Mirrors With "Piston" Figure-Control Actuators

    NASA Technical Reports Server (NTRS)

    Lowman, Andrew; Redding, David; Hickey, Gregory; Knight, Jennifer; Moynihan, Philip; Lih, Shyh0Shiuh; Barbee, Troy

    2003-01-01

    Efforts are under way to develop a special class of thin-shell curved mirrors for high-resolution imaging in visible and infrared light in a variety of terrestrial or extraterrestrial applications. These mirrors can have diameters of the order of a meter and include metallic film reflectors on nanolaminate substrates supported by multiple distributed piezoceramic gpiston h-type actuators for micron-level figure control. Whereas conventional glass mirrors of equivalent size and precision have areal mass densities between 50 and 150 kg/sq m, the nanolaminate mirrors, including not only the reflector/ shell portions but also the actuators and the backing structures needed to react the actuation forces, would have areal mass densities that may approach .5 kg/m2. Moreover, whereas fabrication of a conventional glass mirror of equivalent precision takes several years, the reflector/shell portion of a nanolaminate mirror can be fabricated in less than a week, and its actuation system can be fabricated in 1 to 2 months. The engineering of these mirrors involves a fusion of the technological heritage of multisegmented adaptive optics and deformable mirrors with more recent advances in metallic nanolaminates and in mathematical modeling of the deflections of thin, curved shells in response to displacements by multiple, distributed actuators. Because a nanolaminate shell is of the order of 10 times as strong as an otherwise identical shell made of a single, high-strength, non-nanolaminate metal suitable for mirror use, a nanolaminate mirror can be made very thin (typically between 100 and 150 m from the back of the nanolaminate substrate to the front reflecting surface). The thinness and strength of the nanolaminate are what make it possible to use distributed gpiston h-type actuators for surface figure control with minimal local concentrated distortion (called print-through in the art) at the actuation points.

  10. Prototype Development of the GMT Fast Steering Mirror

    NASA Astrophysics Data System (ADS)

    Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.

    2013-06-01

    A Fast Steering Mirror (FSM) is going to be produced as a secondary mirror of the Giant Magellan Telescope (GMT). FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m. It also contains tip-tilt actuators which would compensate wind effect and structure jitter. An FSM prototype (FSMP) has been developed, which consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The main purpose of the FSMP development is to achieve key technologies, such as fabrication of highly aspheric off-axis mirror and tip-tilt actuation. The development has been conducted by a consortium of five institutions in Korea and USA, and led by Korea Astronomy and Space Science Institute. The mirror was light-weighted and grinding of the front surface was finished. Polishing is in progress with computer generated hologram tests. The tip-tilt test-bed has been manufactured and assembled. Frequency tests are being performed and optical tilt set-up is arranged for visual demonstration. In this paper, we present progress of the prototype development, and future works.

  11. Performance prediction of the TMT tertiary mirror support system

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.

    2008-07-01

    The Ritchey-Chretien (RC) optical design of Thirty Meter Telescope (TMT) calls for a 3.1m diameter secondary mirror (M2M) and an elliptical tertiary mirror (M3M) of 3.5m along its major axis and 2.5m along its minor axis. The M3M is a thin, large, flat, solid elliptical mirror which directs the f/15 beam from the M2M to the multiple instruments on both Nasmyth platforms. The M3M will weigh approximately two metric tons and the mirror support system will maintain the mirror figure at different gravity orientations. A recent reduction of the field of view to 15 arc minutes allows a reduction in the size of the M3M, which in turn requires re-optimization of the mirror support system. The proposed M3M optimized support system consists of 60 tri-axial supports mounted at the mirror back surface. These tri-axial supports accommodate motions of M3M in three gravity directions. The print-though RMS surface errors of M3M are 10nm for axial gravity loadings and 1nm for lateral gravity loadings. The M3 system (M3S) has an active optics (aO) capability to accommodate potential mechanical or thermal errors; its ability to correct low-order aberrations has been analyzed. A structure function (SF) of the axial gravity support print-through was calculated.

  12. Mirror Image Agnosia

    PubMed Central

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor

    2014-01-01

    Background: Gnosis is a modality-specific ability to access semantic knowledge of an object or stimulus in the presence of normal perception. Failure of this is agnosia or disorder of recognition. It can be highly selective within a mode. self-images are different from others as none has seen one's own image except in reflection. Failure to recognize this image can be labeled as mirror image agnosia or Prosopagnosia for reflected self-image. Whereas mirror agnosia is a well-recognized situation where the person while looking at reflected images of other objects in the mirror he imagines that the objects are in fact inside the mirror and not outside. Material and Methods:: Five patients, four females, and one male presented with failure to recognize reflected self-image, resulting in patients conversing with the image as a friend, fighting because the person in mirror is wearing her nose stud, suspecting the reflected self-image to be an intruder; but did not have prosopagnosia for others faces, non living objects on self and also apraxias except dressing apraxia in one patient. This phenomena is new to our knowledge. Results: Mirror image agnosia is an unique phenomena which is seen in patients with parietal lobe atrophy without specificity to a category of dementing illness and seems to disappear as disease advances. Discussion: Reflected self-images probably have a specific neural substrate that gets affected very early in posterior dementias specially the ones which predominantly affect the right side. At that phase most patients are mistaken as suffering from psychiatric disorder as cognition is moderately preserved. As disease becomes more widespread this symptom becomes masked. A high degree of suspicion and proper assessment might help physicians to recognize the organic cause of the symptom so that early therapeutic interventions can be initiated. Further assessment of the symptom with FMRI and PET scan is likely to solve the mystery of how brain handles

  13. A Novel Effect of Scattered-Light Interference in Misted Mirrors

    ERIC Educational Resources Information Center

    Bridge, N. James

    2005-01-01

    Interference rings can be observed in mirrors clouded by condensation, even in diffuse lighting. The effect depends on individual droplets acting as point sources by refracting light into the mirror, so producing coherent wave-trains which are reflected and then scattered again by diffraction round the same source droplet. The secondary wave-train…

  14. Congenital mirror movements.

    PubMed Central

    Schott, G D; Wyke, M A

    1981-01-01

    In this report are described seven patients assessed clinically and neuropsychologically in whom mirror movements affecting predominantly the hands occurred as a congenital disorder. These mirror movements, representing a specific type of abnormal synkinesia, may arise as a hereditary condition, in the presence of a recognisable underlying neurological abnormality, and sporadically, and the seven patients provide more or less satisfactory examples of each of these three groups. Despite the apparent uniformity of the disorder, the heterogeneity and variability may be marked, examples in some of our patients including the pronounced increase in tone that developed with arm movement, and the capacity for modulation of the associated movement by alteration of neck position and bio-feedback. Various possible mechanisms are considered; these include impaired cerebral inhibition of unwanted movements, and functioning of abnormal motor pathways. Emphasis has been placed on the putative role of the direct, crossed corticomotoneurone pathways and on the unilateral and bilateral cerebral events that precede movement. PMID:7288446

  15. Dynamic coherent backscattering mirror

    PubMed Central

    Xu, M.

    2016-01-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation. PMID:26937296

  16. Skin mirrors human aging.

    PubMed

    Nikolakis, Georgios; Makrantonaki, Evgenia; Zouboulis, Christos C

    2013-12-01

    Abstract Aged skin exhibits disturbed lipid barrier, angiogenesis, production of sweat, immune functions, and calcitriol synthesis as well as the tendency towards development of certain benign or malignant diseases. These complex biological processes comprise endogenous and exogenous factors. Ethnicity also markedly influences the phenotype of skin aging. The theories of cellular senescence, telomere shortening and decreased proliferative capacity, mitochondrial DNA single mutations, the inflammation theory, and the free radical theory try to explain the biological background of the global aging process, which is mirrored in the skin. The development of advanced glycation end-products and the declining hormonal levels are major factors influencing intrinsic aging. Chronic photodamage of the skin is the prime factor leading to extrinsic skin aging. The deterioration of important skin functions, due to intrinsic and extrinsic aging, leads to clinical manifestations, which mirror several internal age-associated diseases such as diabetes, arterial hypertension and malignancies.

  17. Improved cryogenic aluminum mirrors

    NASA Astrophysics Data System (ADS)

    Vukobratovich, Daniel; Don, Ken; Sumner, Richard E.

    1998-09-01

    Optical surface deformation of metal mirrors used at cryogenic temperatures is reduced through the use of a new process of plating amorphous aluminum on aluminum. The AlumiPlateTM process (produced by AlumiPlate, Inc. in Minneapolis, MN) plates a layer of 99.9+% high purity aluminum about 125 micrometers thick atop the substrate. Very good surface finishes are produced by direct diamond turning of the plating, with some samples below 40 angstroms RMS. Optical testing of a 175-mm diameter, 550-mm optical radius of curvature 6061-T651/AlumiPlateTM aluminum sphere was performed at 65 K to determine cryogenic optical surface figure stability. In five cycles from 300 to 65 K, an average optical surface change of 0.047 wave RMS (1 wave equals 633 nm) was observed. A total optical figure change of 0.03 wave RMS at 65 K was observed from the first to last cycle. The cause of this relatively small long-term change is not yet determined. The test mirror is bi-concave, with a semi- kinematic toroidal mount, and is machined from the axis of a billet. An `uphill quench' heat treatment consisting of five cycles from liquid nitrogen to boiling water temperatures is used to minimize residual stress in the test mirror. Initial diamond turning of the mirror by the Optical Filter Corp., Keene, NH, produced a 300 K unmounted optical surface figure of 0.380 wave peak-to-valley and 0.059 wave RMS. A second effort at diamond turning by II-VI, Inc., Saxonburg, PA produced a 300 K optical figure of 0.443 wave peak-to-valley and 0.066 wave RMS, with a surface roughness varying from 29 to 42 angstroms.

  18. Lightweight Substrates For Mirrors

    NASA Technical Reports Server (NTRS)

    Brown, D. Kyle

    1991-01-01

    New substrate uses conventional quasi-isotropic fabric laminate with surfacing layer of carbon-fiber paper consisting of randomly oriented chopped carbon fibers. Layered structure of fabric and paper relatively easy to manufacture. When impregnated with carbon, structure rigid and stable. Substrates of this type made quite thin, thus keeping areal weights to minimum. Mirrors of this type made faster, and cost less, than predecessors.

  19. Complex/Symplectic Mirrors

    SciTech Connect

    Chuang, Wu-yen; Kachru, Shamit; Tomasiello, Alessandro; /Stanford U., ITP

    2005-10-28

    We construct a class of symplectic non-Kaehler and complex non-Kaehler string theory vacua, extending and providing evidence for an earlier suggestion by Polchinski and Strominger. The class admits a mirror pairing by construction. Comparing hints from a variety of sources, including ten-dimensional supergravity and KK reduction on SU(3)-structure manifolds, suggests a picture in which string theory extends Reid's fantasy to connect classes of both complex non-Kaehler and symplectic non-Kaehler manifolds.

  20. Joined Beryllium Mirror Demonstrator

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Parsonage, Tom; Burdine, Robert (Technical Monitor)

    2001-01-01

    Fabrications of large Beryllium optical components are fundamentally limited by available facility capabilities. To overcome this limitation, NASA funded Brush Wellman Corp to study a Be joining process. Four 76 mm diameters samples and a 0.5 mm diameter Joined Beryllium Mirror Demonstrator (JBMD) were fabricated. This presentation will review the fabrication of these samples and summarize the results of their cryogenic testing at MSFCs XRCF.

  1. A method for measuring the radius of curvature of a spherical mirror

    NASA Astrophysics Data System (ADS)

    Engelen, J.; El-Zaiat, S. Y.; Missotten, L.

    1992-01-01

    Evan's method for measuring the radius of curvature of both convex and concave spherical mirrors is adapted and applied. The optical set-up is modified by adding a beam splitter, and a screen with two pinholes at a distance d apart. The laser source and the mirror under test remain fixed; this greatly facilitates the displacement measurements. The quartic equation of which one of the roots gives the radius of curvature of the mirror under test is derived without approximation.

  2. Replication of lightweight mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Ming Y.; Matson, Lawrence E.; Lee, Heedong; Chen, Chenggang

    2009-08-01

    The fabrication of lightweight mirror assemblages via a replication technique offers great potential for eliminating the high cost and schedule associated with the grinding and polishing steps needed for conventional glass or SiC mirrors. A replication mandrel is polished to an inverse figure shape and to the desired finish quality. It is then, coated with a release layer, the appropriate reflective layer, and followed by a laminate for coefficient of thermal expansion (CTE) tailorability and strength. This optical membrane is adhered to a mirror structural substrate with a low shrinkage, CTE tailored adhesive. Afterwards, the whole assembly is separated from the mandrel. The mandrel is then cleaned and reused for the next replication run. The ultimate goal of replication is to preserve the surface finish and figure of the optical membrane upon its release from the mandrel. Successful replication requires a minimization of the residual stresses within the optical coating stack, the curing stresses from the adhesive and the thermal stress resulting from CTE mismatch between the structural substrate, the adhesive, and the optical membrane. In this paper, the results on replicated trials using both metal/metal and ceramic/ceramic laminates adhered to light weighted structural substrates made from syntactic foams (both inorganic and organic) will be discussed.

  3. Strehl Ratio Meter for Focusing Segmented Mirrors 1

    NASA Technical Reports Server (NTRS)

    Olivier, Philip D.

    1996-01-01

    Initial focusing segmented mirrors that must be deployed in space, such as the Next Generation Space Telescope (NGST), provide challenges not faced before in the area of adaptive optics. The devices used to focus the mirror must minimize the power used and unnecessary mechanical movement. The device described in this report requires no movable parts except for the essential actuators required to move the mirror segments. Detail description of the components can be found in Coker, 1996. The primary mirror of the NGST will consist of 9 segments, a central annular segment, surrounded by 8 segments. The entire mirror assembly will be an 8 meter nearly filled circle (with the corners of the segments clipped to allow for storage in an Atlas IIe shroud). As the segments of the primary mirror are deployed to their operational positions, they must be positioned to within small fractions of a wavelength of near infrared light. When focused, the NGST will put most of its collected li-ht into the small region near the center of its focal plane. The ratio of the total light in the diffraction limited spot about the center of the focal plane to the total light in the focal plane. The purpose of this research effort is to design and build a device that will measure Strehl ratio and to use demonstrate that the Strehl ratio can be used to focus a segmented mirror.

  4. Progress in the Fabrication and Testing of Telescope Mirrors for The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Bowers, Charles W.; Clampin, M.; Feinberg, L.; Keski-Kuha, R.; McKay, A.; Chaney, D.; Gallagher, B.; Ha, K.

    2012-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl ≥ 0.8) at λ=2μm. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat:flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror ( 0.74m) is similarly positioned in six degrees of rigid body motion. The .70x.51m, fixed tertiary and 0.17m, flat fine steering mirror complete the telescope mirror complement. The telescope is supported by a composite structure optimized for performance at cryogenic temperatures. All telescope mirrors are made of Be with substantial lightweighting (21kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision ( 10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. All flight mirrors have now completed polishing, coating with protected Au and final cryo testing, and the telescope is on track to meet all system requirements. We here review the measured performance of the component mirrors and the predicted performance of the flight telescope.

  5. Progress in the Fabrication and Testing of Telescope Mirrors for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Bowers, Charles

    2012-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl > or = 0.8) at .=2 m. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror (approx.0.74m) is similarly positioned in six degrees of rigid body motion. The approx..70x.51m, fixed tertiary and approx. 0.17m, flat fine steering mirror complete the telescope mirror complement. The telescope is supported by a composite structure optimized for performance at cryogenic temperatures. All telescope mirrors are made of Be with substantial light-weighting (21 kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision (approx.10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. All flight mirrors have now completed polishing, coating with protected Au and final cryo testing, and the telescope is on track to meet all system requirements. We here review the measured performance of the component mirrors and the predicted performance of the flight telescope.

  6. Language comprehension warps the mirror neuron system.

    PubMed

    Zarr, Noah; Ferguson, Ryan; Glenberg, Arthur M

    2013-01-01

    Is the mirror neuron system (MNS) used in language understanding? According to embodied accounts of language comprehension, understanding sentences describing actions makes use of neural mechanisms of action control, including the MNS. Consequently, repeatedly comprehending sentences describing similar actions should induce adaptation of the MNS thereby warping its use in other cognitive processes such as action recognition and prediction. To test this prediction, participants read blocks of multiple sentences where each sentence in the block described transfer of objects in a direction away or toward the reader. Following each block, adaptation was measured by having participants predict the end-point of videotaped actions. The adapting sentences disrupted prediction of actions in the same direction, but (a) only for videos of biological motion, and (b) only when the effector implied by the language (e.g., the hand) matched the videos. These findings are signatures of the MNS.

  7. Design of optical mirror structures

    NASA Technical Reports Server (NTRS)

    Soosaar, K.

    1971-01-01

    The structural requirements for large optical telescope mirrors was studied with a particular emphasis placed on the three-meter Large Space Telescope primary mirror. Analysis approaches through finite element methods were evaluated with the testing and verification of a number of element types suitable for particular mirror loadings and configurations. The environmental conditions that a mirror will experience were defined and a candidate list of suitable mirror materials with their properties compiled. The relation of the mirror mechanical behavior to the optical performance is discussed and a number of suitable design criteria are proposed and implemented. A general outline of a systematic method to obtain the best structure for the three-meter diffraction-limited system is outlined. Finite element programs, using the STRUDL 2 analysis system, were written for specific mirror structures encompassing all types of active and passive mirror designs. Parametric studies on support locations, effects of shear deformation, diameter to thickness ratios, lightweight and sandwich mirror configurations, and thin shell active mirror needs were performed.

  8. A spectrum of shadowed mirroring.

    PubMed

    Wanamaker, Melissa C

    2012-04-01

    The central focus of this paper is to explore and extend Kohut's theory of maternal mirroring and to place it within the current context of psychoanalytic thinking. Kohut believed a child must experience "positive" mirroring from his or her mother in infancy and beyond to ensure development of a healthy self. Kohut alludes, however, to a possible situation in which the mother's face, metaphorically a mirror, can appear "faceless" to her child. From this I have inferred the concept of what I shall call "shadowed mirroring." Clinical and literary examples show that distorted, "shadowed" mirroring appears on a spectrum, with passive mirroring at one end and hostile (either verbal or nonverbal) mirroring on the other; some individuals experience both. I then consider how "shadowed mirroring," especially hostile mirroring, can be understood within the twin contexts of the overall mother-child relationship and present-day Intersubjective/Relational thinking that is both bidirectional and co-constructed. Shadowed mirroring can lead to severe personality dysfunction along the borderline-narcissistic range, as well as to difficulties in the areas of identity formation, failure of self-cohesiveness, and the blunting of certain humane qualities like empathy.

  9. A spectrum of shadowed mirroring.

    PubMed

    Wanamaker, Melissa C

    2012-04-01

    The central focus of this paper is to explore and extend Kohut's theory of maternal mirroring and to place it within the current context of psychoanalytic thinking. Kohut believed a child must experience "positive" mirroring from his or her mother in infancy and beyond to ensure development of a healthy self. Kohut alludes, however, to a possible situation in which the mother's face, metaphorically a mirror, can appear "faceless" to her child. From this I have inferred the concept of what I shall call "shadowed mirroring." Clinical and literary examples show that distorted, "shadowed" mirroring appears on a spectrum, with passive mirroring at one end and hostile (either verbal or nonverbal) mirroring on the other; some individuals experience both. I then consider how "shadowed mirroring," especially hostile mirroring, can be understood within the twin contexts of the overall mother-child relationship and present-day Intersubjective/Relational thinking that is both bidirectional and co-constructed. Shadowed mirroring can lead to severe personality dysfunction along the borderline-narcissistic range, as well as to difficulties in the areas of identity formation, failure of self-cohesiveness, and the blunting of certain humane qualities like empathy. PMID:22489812

  10. Relating the "mirrorness" of mirror neurons to their origins.

    PubMed

    Kilner, James M; Friston, Karl J

    2014-04-01

    Ever since their discovery, mirror neurons have generated much interest and debate. A commonly held view of mirror neuron function is that they transform "visual information into knowledge," thus enabling action understanding and non-verbal social communication between con-specifics (Rizzolatti & Craighero 2004). This functionality is thought to be so important that it has been argued that mirror neurons must be a result of selective pressure.

  11. Two-mirror telescope design with third-order coma insensitive to decenter misalignment.

    PubMed

    Scaduto, Lucimara Cristina Nakata; Sasian, Jose; Stefani, Mario Antonio; Neto, Jarbas Caiado de Castro

    2013-03-25

    Misalignments always occur in real optical systems. These misalignments do not generate new aberration forms, but they change the aberration field dependence. Two-mirror telescopes have been used in several applications. We analyze a two-mirror telescope configuration that has negligible sensitivity to decenter misalignments. By applying the wave aberration theory for plane-symmetric optical systems it is shown that the asphericity in the secondary mirror, if properly chosen, can compensate for any decenter perturbation allowing third-order coma unchanged across the field of view. For any two-mirror system it is possible to find a configuration in which decenter misalignments do not generate field-uniform coma.

  12. Carbon fibre composite deformable mirrors: developments at UCL

    NASA Astrophysics Data System (ADS)

    Kendrew, Sarah; Doel, Peter; Brooks, David; King, Andrew M.; Dorn, Chris; Dwan, Richard M.; Yates, Chris; Dando, Glyn; Richardson, Ian; Evans, Glynn

    2006-06-01

    Adaptive optics performance is essential for achieving the demanding science goals set for the ground-based optical telescopes of the future - the so-called extremely large telescopes (ELTs). Research into novel technologies for lightweight and robust active and adaptive mirrors is crucial for ensuring this capability. Surface quality, form, and a high level of stability during operation are very important criteria for such mirrors. In 2004 we reported initial results from a project into the design and manufacture of a prototype carbon fibre reinforced polymer (CFRP) deformable mirror. This system has now been extensively characterised and tested, and results of dynamical testing and influence function measurements are discussed here. Manual grinding and polishing resulted in a residual form error of the order of 10 μm P-V and a surface roughness of approximately 5 nm rms. A good agreement was observed between the modeling data and experimental results.

  13. Variable focal length deformable mirror

    DOEpatents

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  14. JWST Mirror Technology Development Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology is a critical enabling capability for the James Webb Space Telescope (JWST). JWST requires a Primary Mirror Segment Assembly (PMSA) that can survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured and demonstrated mirror technology for JWST. Directly traceable prototypes or flight hardware has been built, tested and operated in a relevant environment. This paper summarizes that technology development effort.

  15. Poco Graphite Mirror Metrology Report

    NASA Technical Reports Server (NTRS)

    Kester, Thomas J.

    2005-01-01

    Recently a lightweight mirror technology was tested at Marshall Space Flight Center's Space Optic Manufacturing Technology Center (MSFC, SOMTC). The mirror is a Poco Graphite CVD Si clad SiC substrate. It was tested for cryogenic (cryo) survivability to 20deg Kelvin in SOMTC's X-ray Calibration and Cryogenic Test Facility. The surface figure of the mirror was measured before and after cry0 cycling. The test technique and results are discussed.

  16. Single Crystal Silicon Instrument Mirrors

    NASA Technical Reports Server (NTRS)

    Bly, Vince

    2007-01-01

    The goals for the fabrication of single crystal silicon instrument mirrors include the following: 1) Develop a process for fabricating lightweight mirrors from single crystal silicon (SCS); 2) Modest lightweighting: 3X to 4X less than equivalent solid mirror; 3) High surface quality, better than lambda/40 RMS @ 633nm; 4) Significantly less expensive than current technology; and 5) Negligible distortion when cooled to cryogenic temperatures.

  17. SXI prototype mirror mount

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  18. SXI prototype mirror mount

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  19. Multilayer Active Shell Mirrors

    NASA Astrophysics Data System (ADS)

    Steeves, John

    This thesis presents a novel active mirror technology based on carbon fiber composites and replication manufacturing processes. Multiple additional layers are implemented into the structure in order to provide the reflective layer, actuation capabilities and electrode routing. The mirror is thin, lightweight, and has large actuation capabilities. These features, along with the associated manufacturing processes, represent a significant change in design compared to traditional optics. Structural redundancy in the form of added material or support structures is replaced by thin, unsupported lightweight substrates with large actuation capabilities. Several studies motivated by the desire to improve as-manufactured figure quality are performed. Firstly, imperfections in thin CFRP laminates and their effect on post-cure shape errors are studied. Numerical models are developed and compared to experimental measurements on flat laminates. Techniques to mitigate figure errors for thicker laminates are also identified. A method of properly integrating the reflective facesheet onto the front surface of the CFRP substrate is also presented. Finally, the effect of bonding multiple initially flat active plates to the backside of a curved CFRP substrate is studied. Figure deformations along with local surface defects are predicted and characterized experimentally. By understanding the mechanics behind these processes, significant improvements to the overall figure quality have been made. Studies related to the actuation response of the mirror are also performed. The active properties of two materials are characterized and compared. Optimal active layer thicknesses for thin surface-parallel schemes are determined. Finite element simulations are used to make predictions on shape correction capabilities, demonstrating high correctabiliity and stroke over low-order modes. The effect of actuator saturation is studied and shown to significantly degrade shape correction performance. The

  20. SXI Prototype mirror mount

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This final report describes the work performed from June 1993 to January 1995. The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule.

  1. JWST Primary Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Mirror Technology was identified as a (if not the) critical capability necessary to achieve the Level 1 science goals. A never before demonstrated space telescope capability was required: 6 to 8 meter class pri mary mirror, diffraction limited at 2 micrometers and operates at temperatures below 50K. Launch vehicle constraints placed significant architectural constraints: deployed/segmented primary mirror (4.5 meter fairing diameter) 20 kg/m2 areal density (PM 1000 kg mass) Such mirror technology had never been demonstrated - and did not exist

  2. Mirror development for CTA

    NASA Astrophysics Data System (ADS)

    Förster, A.; Doro, M.; Brun, P.; Canestrari, R.; Chadwick, P.; Font, L.; Ghigo, M.; Lorenz, E.; Mariotti, M.; Michalowski, J.; Niemiec, J.; Pareschi, G.; Peyaud, B.; Seweryn, K.

    2009-08-01

    The Cherenkov Telescope Array (CTA), currently in its early design phase, is a proposed new project for groundbased gamma-ray astronomy with at least 10 times higher sensitivity than current instruments. CTA is planned to consist of several tens of large Imaging Atmospheric Cherenkov Telescopes (IACTs) with a combined reflective surface of up to 10,000 m2. The challenge for the future CTA array is to develop lightweight and cost efficient mirrors with high production rates, good longterm durability and adequate optical properties. The technologies currently under investigation comprise different methods of carbon fibre/epoxy based substrates, sandwich concepts with cold-slumped surfaces made of thin float glass and different structural materials like aluminum honeycomb, glass foam or PU foam inside, and aluminum sandwich structures with either diamond milled surfaces or reflective foils. The current status of the mirror development for CTA will be summarized together with investigations on the improvement of the reflective surfaces and their protection against degradation.

  3. Spectroscopic survey telescope design. I - Primary mirror structure and support

    NASA Astrophysics Data System (ADS)

    Ray, F. B.; Krishnamachari, S. V.

    1988-09-01

    The present design for a spectroscopic survey telescope uses a spherical primary mirror whose figure requires that a secondary focus assembly be driven at the tracking rate in an attitude normal to the spherical focal surface, while the telescope, being tilted at a predetermined angular zenith distance, need only be 'set' (and clamped) occasionally in azimuth. The spherical primary mirror segments are configured to an identical radius-of-curvature and supported on a fully triangulated stainless steel space frame; a structural analysis using finite elements indicates that the expected static performance of both the individual segments and the overall space frame present reasonable goals for current engineering practice.

  4. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  5. Acoustic Models of Optical Mirrors

    ERIC Educational Resources Information Center

    Mayer, V. V.; Varaksina, E. I.

    2014-01-01

    Students form a more exact idea of the action of optical mirrors if they can observe the wave field being formed during reflection. For this purpose it is possible to organize model experiments with flexural waves propagating in thin elastic plates. The direct and round edges of the plates are used as models of plane, convex and concave mirrors.…

  6. Eliminating mirror responses by instructions.

    PubMed

    Bardi, Lara; Bundt, Carsten; Notebaert, Wim; Brass, Marcel

    2015-09-01

    The observation of an action leads to the activation of the corresponding motor plan in the observer. This phenomenon of motor resonance has an important role in social interaction, promoting imitation, learning and action understanding. However, mirror responses not always have a positive impact on our behavior. An automatic tendency to imitate others can introduce interference in action execution and non-imitative or opposite responses have an advantage in some contexts. Previous studies suggest that mirror tendencies can be suppressed after extensive practice or in complementary joint action situations revealing that mirror responses are more flexible than previously thought. The aim of the present study was to gain insight into the mechanisms that allow response flexibility of motor mirroring. Here we show that the mere instruction of a counter-imitative mapping changes mirror responses as indexed by motor evoked potentials (MEPs) enhancement induced by transcranial magnetic stimulation (TMS). Importantly, mirror activation was measured while participants were passively watching finger movements, without having the opportunity to execute the task. This result suggests that the implementation of task instructions activates stimulus-response association that can overwrite the mirror representations. Our outcome reveals one of the crucial mechanisms that might allow flexible adjustments of mirror responses in different contexts. The implications of this outcome are discussed.

  7. Forming Mirrors on Composite Materials

    NASA Technical Reports Server (NTRS)

    Gauldin, R. E.; Ramohalli, K.

    1983-01-01

    Smooth coatings deposited on hard-to-polish substrates. Lightweight mirror, leaning against conventional glass mirror, consists of metallic relective layer on substrate coated with polyester resin. Smooth surface of polyester resin made by covering freshly applied resin with piece of smooth glass coated with release agent.

  8. Polishing technique for beryllium mirror

    NASA Technical Reports Server (NTRS)

    Froechtenigt, J. F.

    1976-01-01

    Performance tests, accomplished by inserting entire X ray telescope and polished mirror into vacuum line 67 m long and taking photographs of an X ray resolution source, indicate that polishing increases mirror efficiency from 0.06 percent for X rays at 0.8 nm and increases resolution from 15 to 3.75 arc-seconds.

  9. Gemini primary mirror support system

    NASA Astrophysics Data System (ADS)

    Stepp, Larry M.; Huang, Eugene W.; Cho, Myung K.

    1994-06-01

    The primary mirror selected for the Gemini 8-m Telescopes is a thin meniscus made of Corning ULE(superscript TM) glass. The conceptual design of the Gemini support system has evolved in response to the properties of the meniscus mirror and the functional requirements of the Gemini Telescopes. This paper describes the design requirements, the design features, and predicted performance of this system.

  10. National mirror fusion program plan

    NASA Astrophysics Data System (ADS)

    Borchers, R. R.; Vanatta, C. M.

    1980-01-01

    Experiments are under way in the Tandem Mirror Experiment (TMX) facility at Livermore. Recently this idea was greatly improved by incorporating a new element called the thermal barrier, a concept that promises a higher power gain factor (Q = 10 to 20) with much less demanding neutral beam and magnet technology and a higher fusion power density in the reactor. In addition to the tandem-mirror experiments in TMX, a new attempt will be made in the Beta 2 facility during FY 1980 to create and sustain a field-reversed mirror configuration, which is a different mirror fusion approach that could lead to early commercialization of small reactors. The plan presented here is designed to exploit the results of these and other mirror experiments and theoretical developments toward a variety of applications. The main objective is electric power generation.

  11. More questions for mirror neurons.

    PubMed

    Borg, Emma

    2013-09-01

    The mirror neuron system is widely held to provide direct access to the motor goals of others. This paper critically investigates this idea, focusing on the so-called 'intentional worry'. I explore two answers to the intentional worry: first that the worry is premised on too limited an understanding of mirror neuron behaviour (Sections 2 and 3), second that the appeal made to mirror neurons can be refined in such a way as to avoid the worry (Section 4). I argue that the first response requires an account of the mechanism by which small-scale gestures are supposedly mapped to larger chains of actions but that none of the extant accounts of this mechanism are plausible. Section 4 then briefly examines refinements of the mirror neuron-mindreading hypothesis which avoid the intentional worry. I conclude that these refinements may well be plausible but that they undermine many of the claims standardly made for mirror neurons.

  12. Electrons and Mirror Symmetry

    ScienceCinema

    Kumar, Krishna

    2016-07-12

    The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

  13. Point Relay Scanner Utilizing Ellipsoidal Mirrors

    NASA Technical Reports Server (NTRS)

    Manhart, Paul K. (Inventor); Pagano, Robert J. (Inventor)

    1997-01-01

    A scanning system uses a polygonal mirror assembly with each facet of the polygon having an ellipsoidal mirror located thereon. One focal point of each ellipsoidal mirror is located at a common point on the axis of rotation of the polygonal mirror assembly. As the mirror assembly rotates. a second focal point of the ellipsoidal mirrors traces out a scan line. The scanner can be utilized for scanned output display of information or for scanning information to be detected.

  14. Mirror man: a case of skilled deliberate mirror writing.

    PubMed

    McIntosh, Robert D; De Lucia, Natascia; Della Sala, Sergio

    2014-01-01

    Mirror writing is a striking behaviour that is common in children and can reemerge in adults following brain damage. Skilled deliberate mirror writing has also been reported, but only anecdotally. We provide the first quantitative study of skilled deliberate mirror writing. K.B. can write forward or backward, vertically upright or inverted, with the hands acting alone or simultaneously. K.B. is predominantly left handed, but writes habitually with his right hand. Of his writing formats, his left hand mirror writing is by far the most similar in style to his normal handwriting. When writing bimanually, he performs better when his two hands make mirror-symmetrical movements to write opposite scripts than if they move in the same direction to write similar scripts. He has no special facility for reading mirrored text. These features are consistent with prior anecdotal cases and support a motor basis for K.B.'s ability, according to which his skilled mirror writing results from the left hand execution of a low-level motor program for a right hand abductive writing action. Our methods offer a novel framework for investigating the sharing of motor representations across effectors.

  15. Commissioning results of MMT-POL: the 1-5um imaging polarimeter leveraged from the AO secondary of the 6.5m MMT

    NASA Astrophysics Data System (ADS)

    Packham, C.; Jones, T. J.; Warner, C.; Krejny, M.; Shenoy, D.; Vonderharr, T.; Lopez-Rodriguez, E.; DeWahl, K.

    2012-09-01

    MMT-POL is an adaptive optics optimized imaging polarimeter designed for use at the 6.5m MMT. By taking full advantage of the adaptive optics secondary mirror of the MMT, this polarimeter offers diffraction-limited polarimetry with very low instrumental polarization and minimal thermal background. MMT-POL permits observations as diverse as protoplanetary discs, comets, red giant winds, (super)novae and ejecta, galaxies, and AGN. We report on the initial on-sky commissioning results of the instrument including a description of the instrument.

  16. Adaptive Optics Facility Status Report: When First Light Is Produced Rather Than Captured

    NASA Astrophysics Data System (ADS)

    Arsenault, R.; Madec, P.-Y.; Vernet, E.; Hackenberg, W.; Bonaccini Calia, D.; La Penna, P.; Paufique, J.; Kuntschner, H.; Pirard, J.-F.; Sarazin, M.; Haguenauer, P.; Hubin, N.; Vera, I.

    2016-06-01

    First light for the 4 Laser Guide Star Facility (4LGSF) took place in Paranal on 26 April 2016 with four laser units in operation for the first time. A combined test with the first laser guide star unit and the Ground Layer Adaptive optics Assisted by Lasers (GRAAL) instrument in October 2015 demonstrated the whole acquisition sequence of the Adaptive Optics Facility (AOF). Many tools that will support the operation of the AOF for science observations have meanwhile been implemented. GALACSI was granted Provisional Acceptance in Europe in April 2016, completing the system tests and qualification in Garching of the adaptive optics modules GRAAL and GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), their real-time computers and the deformable secondary mirror (DSM). Results of tests both in the laboratory and on sky are presented. The installation of the DSM and GALACSI will be completed by early 2017, to be followed by commissioning of all AOF systems.

  17. High repetition rate plasma mirror device for attosecond science

    SciTech Connect

    Borot, A.; Douillet, D.; Iaquaniello, G.; Lefrou, T.; Lopez-Martens, R.; Audebert, P.; Geindre, J.-P.

    2014-01-15

    This report describes an active solid target positioning device for driving plasma mirrors with high repetition rate ultra-high intensity lasers. The position of the solid target surface with respect to the laser focus is optically monitored and mechanically controlled on the nm scale to ensure reproducible interaction conditions for each shot at arbitrary repetition rate. We demonstrate the target capabilities by driving high-order harmonic generation from plasma mirrors produced on glass targets with a near-relativistic intensity few-cycle pulse laser system operating at 1 kHz. During experiments, residual target surface motion can be actively stabilized down to 47 nm (root mean square), which ensures sub-300-as relative temporal stability of the plasma mirror as a secondary source of coherent attosecond extreme ultraviolet radiation in pump-probe experiments.

  18. Observational physics of mirror world

    NASA Technical Reports Server (NTRS)

    Khlopov, M. YA.; Beskin, G. M.; Bochkarev, N. E.; Pustilnik, L. A.; Pustilnik, S. A.

    1989-01-01

    The existence of the whole world of shadow particles, interacting with each other and having no mutual interactions with ordinary particles except gravity is a specific feature of modern superstring models, being considered as models of the theory of everything. The presence of shadow particles is the necessary condition in the superstring models, providing compensation of the asymmetry of left and right chirality states of ordinary particles. If compactification of additional dimensions retains the symmetry of left and right states, shadow world turns to be the mirror one, with particles and fields having properties strictly symmetrical to the ones of corresponding ordinary particles and fields. Owing to the strict symmetry of physical laws for ordinary and mirror particles, the analysis of cosmological evolution of mirror matter provides rather definite conclusions on possible effects of mirror particles in the universe. A general qualitative discussion of possible astronomical impact of mirror matter is given, in order to make as wide as possible astronomical observational searches for the effects of mirror world, being the unique way to test the existence of mirror partners of ordinary particles in the Nature.

  19. Advanced Mirror & Modelling Technology Development

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  20. JWST NIRCam flight mirror assemblies

    NASA Astrophysics Data System (ADS)

    Mammini, Paul V.; Holmes, Howard C.; Huff, Lynn; Jacoby, Mike S.; Lopez, Frank

    2011-10-01

    The Near Infrared Camera (NIRCam) instrument for NASA's James Webb Space Telescope (JWST) has an optical prescription which includes numerous fold mirror assemblies. The instrument will operate at 35K after experiencing launch loads at ~293K. The optic mounts must accommodate all associated thermal and mechanical stresses, plus maintain exceptional optical quality during operation. Lockheed Martin Space Systems Company (LMSSC) conceived, designed, analyzed, assembled, tested, and integrated the mirror assemblies for the NIRCam instrument. This paper covers the design, analysis, assembly, and test of two of the instruments key fold mirrors.

  1. Structural materials for space mirrors

    NASA Astrophysics Data System (ADS)

    Capitanio, C.

    1990-06-01

    Work leading to the development of XMM telescope mirrors is described. Although a carbon/epoxy composite structure was specified, a hot type of material was proposed. The further use of such technology in the development of substrates for space mirrors is discussed. The specifications for the plane plates used for the XMM telescope are presented. The advantages and disadvantages of various other materials in producing substrates for space mirrors are discussed. The potential uses of glass matrix ceramics reinforced with carbon or silicon carbide fibers is given particular attention.

  2. Evanescent Wave Atomic Mirror

    NASA Astrophysics Data System (ADS)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  3. Performance of the optical communication adaptive optics testbed

    NASA Technical Reports Server (NTRS)

    Troy, Mitchell; Roberts, Jennifer; Guiwits, Steve; Azevedo, Steve; Bikkannavar, Siddarayappa; Brack, Gary; Garkanian, Vachik; Palmer, Dean; Platt, Benjamin; Truong, Tuan; Wilson, Keith; Wallace, Kent

    2005-01-01

    We describe the current performance of an adaptive optics testbed for optical communication. This adaptive optics system allows for simulation of night and day-time observing on a 1 meter telescope with a 97 actuator deformable mirror.

  4. Deformable mirror with combined piezoelectric and electrostatic actuators

    NASA Astrophysics Data System (ADS)

    Merkle, F.; Freischlad, K.; Reischmann, H.-L.

    1982-10-01

    An adaptive optics system with modal phase correction for reconstituting astronomical images passing through the atmosphere is described. An active mirror in a gimbal mount houses an electrostatic deformable membrane for the modal corrections. Piezoelectric actuators are attached behind the mirror for tilt correction. Wavefronts triggering the electrode detectors in the mirror also result in generation of a map of the wave-front errors. Compensating phase distributions for successive waves are calculated automatically by an expansion of the phase distortions into modes of a set of basis functions. Turbulence compensation is accomplished with Zernike polynomials if only a small number of modes is present, while Karhunen-Loeve functions serve for any number of modes. Phase aberrations are detected by diode arrays connected to amplifier tubes. Actual measurement of the wavefront phase is performed by a shearing interferometer and by use of an iterative algorithm to assay the intensity distribution of the image.

  5. A new piston control strategy for segmented mirrors

    NASA Technical Reports Server (NTRS)

    Olivier, Philip D.

    1994-01-01

    One approach to the adaptive control of large segmented mirrors involves sending tilt commands to each segment and allowing each segment to minimize the distance between its edges and those of (all or some of) its neighbors. This approach has been adopted in the Phased Array Mirror, Extendible Large Aperture (PAMELA) testbed now located at NASA's Marshall Space Flight Center, Huntsville, AL. This approach minimizes (1) the communication between the sensors and the segment actuators and (2) computations required by the central controlling computer. This report discusses issues that large segmented mirrors built around the PAMELA concept (such as SELENE) will face when they migrate to integrated, and presumably to digital, on-segment computational ability and high bandwidth response.

  6. Tinbergen on mirror neurons.

    PubMed

    Heyes, Cecilia

    2014-01-01

    Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology-the discovery of mirror neurons (MNs). Here, I use Tinbergen's original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible 'best explanation' for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of 'survival value', should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding-or another social cognitive function-by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories. PMID:24778376

  7. Responder fast steering mirror

    NASA Astrophysics Data System (ADS)

    Bullard, Andrew; Shawki, Islam

    2013-10-01

    Raytheon Space and Airborne Systems (SAS) has designed, built and tested a 3.3-inch diameter fast steering mirror (FSM) for space application. This 2-axis FSM operates over a large angle (over 10 degree range), has a very high servo bandwidth (over 3.3 Khz closed loop bandwidth), has nanoradian-class noise, and is designed to support microradian class line of sight accuracy. The FSM maintains excellent performance over large temperature ranges (which includes wave front error) and has very high reliability with the help of fully redundant angle sensors and actuator circuits. The FSM is capable of achieving all its design requirements while also being reaction-compensated. The reaction compensation is achieved passively and does not need a separate control loop. The FSM has undergone various environmental testing which include exported forces and torques and thermal vacuum testing that support the FSM design claims. This paper presents the mechanical design and test results of the mechanism which satisfies the rigorous vacuum and space application requirements.

  8. Responder fast steering mirror

    NASA Astrophysics Data System (ADS)

    Bullard, Andrew; Shawki, Islam

    2013-09-01

    Raytheon Space and Airborne Systems (SAS) has designed, built and tested a 3.3-inch diameter fast steering mirror (FSM) for space application. This 2-axis FSM operates over a large angle (over 10 degree range), has a very high servo bandwidth (over 3.3 Khz closed loop bandwidth), has nanoradian-class noise, and is designed to support microradian class line of sight accuracy. The FSM maintains excellent performance over large temperature ranges (which includes wave front error) and has very high reliability with the help of fully redundant angle sensors and actuator circuits. The FSM is capable of achieving all its design requirements while also being reaction-compensated. The reaction compensation is achieved passively and does not need a separate control loop. The FSM has undergone various environmental testing which include exported forces and torques and thermal vacuum testing that support the FSM design claims. This paper presents the mechanical design and test results of the mechanism which satisfies the rigorous vacuum and space application requirements.

  9. Tinbergen on mirror neurons.

    PubMed

    Heyes, Cecilia

    2014-01-01

    Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology-the discovery of mirror neurons (MNs). Here, I use Tinbergen's original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible 'best explanation' for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of 'survival value', should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding-or another social cognitive function-by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories.

  10. Congenital mirror movements

    PubMed Central

    Méneret, Aurélie; Depienne, Christel; Riant, Florence; Trouillard, Oriane; Bouteiller, Delphine; Cincotta, Massimo; Bitoun, Pierre; Wickert, Julia; Lagroua, Isabelle; Westenberger, Ana; Borgheresi, Alessandra; Doummar, Diane; Romano, Marcello; Rossi, Simone; Defebvre, Luc; De Meirleir, Linda; Espay, Alberto J.; Fiori, Simona; Klebe, Stephan; Quélin, Chloé; Rudnik-Schöneborn, Sabine; Plessis, Ghislaine; Dale, Russell C.; Sklower Brooks, Susan; Dziezyc, Karolina; Pollak, Pierre; Golmard, Jean-Louis; Vidailhet, Marie; Brice, Alexis

    2014-01-01

    Objective: We screened a large series of individuals with congenital mirror movements (CMM) for mutations in the 2 identified causative genes, DCC and RAD51. Methods: We studied 6 familial and 20 simplex CMM cases. Each patient had a standardized neurologic assessment. Analysis of DCC and RAD51 coding regions included Sanger sequencing and a quantitative method allowing detection of micro rearrangements. We then compared the frequency of rare variants predicted to be pathogenic by either the PolyPhen-2 or the SIFT algorithm in our population and in the 4,300 controls of European origin on the Exome Variant Server. Results: We found 3 novel truncating mutations of DCC that segregate with CMM in 4 of the 6 families. Among the 20 simplex cases, we found one exonic deletion of DCC, one DCC mutation leading to a frameshift, 5 missense variants in DCC, and 2 missense variants in RAD51. All 7 missense variants were predicted to be pathogenic by one or both algorithms. Statistical analysis showed that the frequency of variants predicted to be deleterious was significantly different between patients and controls (p < 0.001 for both RAD51 and DCC). Conclusion: Mutations and variants in DCC and RAD51 are strongly associated with CMM, but additional genes causing CMM remain to be discovered. PMID:24808016

  11. Tinbergen on mirror neurons

    PubMed Central

    Heyes, Cecilia

    2014-01-01

    Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology—the discovery of mirror neurons (MNs). Here, I use Tinbergen's original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible ‘best explanation’ for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of ‘survival value’, should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding—or another social cognitive function—by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories. PMID:24778376

  12. Issues in the design and optimization of adaptive optics and laser guide stars for the Keck Telescopes

    SciTech Connect

    Max, C.E.; Gavel, D.T.; Olivier, S.S.

    1994-03-01

    We discuss issues in optimizing the design of adaptive optics and laser guide star systems for the Keck Telescope. The initial tip-tilt system will use Keck`s chopping secondary mirror. We describe design constraints, choice of detector, and expected performance of this tip-tilt system as well as its sky coverage. The adaptive optics system is being optimized for wavelengths of I-2.2{mu}m. We are studying adaptive optics concepts which use a wavefront sensor with varying numbers of subapertures, so as to respond to changing turbulence conditions. The goal is to be able to ``gang together`` groups of deformable mirror subapertures under software control, when conditions call for larger subapertures. We present performance predictions as a function of sky coverage and the number of deformable mirror degrees of freedom. We analyze the predicted brightness several candidate laser guide star systems, as a function of laser power and pulse format. These predictions are used to examine the resulting Strehl as a function of observing wavelength and laser type. We discuss laser waste heat and thermal management issues, and conclude with an overview of instruments under design to take advantage of the Keck adaptive optics system.

  13. Honeycomb mirrors of borosilicate glass

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Hill, J. M.

    1982-01-01

    The fabrication of different types of honeycomb mirrors with various kinds of borosilicate glass is discussed. Borosilicate glass is much less expensive to make than zero expansion glass, and can be used for ground-based applications. A mirror 60 cm in diameter made with a slotted strut or egg-crate honeycomb of 6 mm polished Pyrex plate is shown. The faceplates are 12 mm thick, laminated from the same 6 mm sheet. The result of an interferometric test is shown, with residual errors of about wavelength/8 RMS. An alternative fabrication technique for very large mirrors which require high quality bonds between separate sheets of thick Pyrex is described. The result of a recent test casting of a 60 cm honeycomb structure made in a mold with towers 14 cm square and 6 mm gaps between is shown, and methods to cast an entire mirror in one operation are discussed.

  14. The magic of relay mirrors

    NASA Astrophysics Data System (ADS)

    Duff, Edward A.; Washburn, Donald C.

    2004-09-01

    Laser weapon systems would be significantly enhanced with the addition of high altitude or space-borne relay mirrors. Such mirrors, operating alone with a directed energy source, or many in a series fashion, can be shown to effectively move the laser source to the last, so-called fighting mirror. This "magically" reduces the range to target and offers to enhance the performance of directed energy systems like the Airborne Laser and even ground-based or ship-based lasers. Recent development of high altitude airships will be shown to provide stationary positions for such relay mirrors thereby enabling many new and important applications for laser weapons. The technical challenges to achieve this capability are discussed.

  15. JWST Primary Mirror Installation Complete

    NASA Video Gallery

    Completing the assembly of the primary mirror, which took place at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is a significant milestone and the culmination of over a decade of desi...

  16. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  17. Evolution of the mirror machine

    SciTech Connect

    Damm, C. C.

    1983-08-18

    The history of the magnetic-mirror approach to a fusion reactor is primarily the history of our understanding and control of several crucial physics issues, coupled with progress in the technology of heating and confining a reacting plasma. The basic requirement of an MHD-stable plasma equilibrium was achieved following the early introduction of minimum-B multipolar magnetic fields. In refined form, the same magnetic-well principle carries over to our present experiments and to reactor designs. The higher frequency microinstabilities, arising from the non-Maxwellian particle distributions inherent in mirror machines, have gradually come under control as theoretical prescriptions for distribution functions have been applied in the experiments. Even with stability, the classical plasma leakage through the mirrors posed a serious question for reactor viability until the principle of electrostatic axial stoppering was applied in the tandem mirror configuration. Experiments to test this principle successfully demonstrated the substantial improvement in confinement predicted. Concurrent with advances in mirror plasma physics, development of both high-power neutral beam injectors and high-speed vacuum pumping techniques has played a crucial role in ongoing experiments. Together with superconducting magnets, cryogenic pumping, and high-power radiofrequency heating, these technologies have evolved to a level that extrapolates readily to meet the requirements of a tandem mirror fusion reactor.

  18. Directly polished lightweight aluminum mirror

    NASA Astrophysics Data System (ADS)

    ter Horst, Rik; Tromp, Niels; de Haan, Menno; Navarro, Ramon; Venema, Lars; Pragt, Johan

    2008-07-01

    During the last ten years, Astron has been a major contractor for the design and manufacturing of astronomical instruments for Space- and Earth based observatories, such as VISIR, MIDI, SPIFFI, X-Shooter and MIRI. The collaboration between optical- and mechanical designers at Astron led to new design philosophies and strategies. Driven by the need to reduce the weight of optically ultra-stiff structures, two promising techniques have been developed in the last years: ASTRON Extreme Lightweighting for mechanical structures and an improved Polishing Technique for Aluminum Mirrors. Using one single material for both optical components and mechanical structure simplifies the design of a cryogenic instrument significantly, it is very beneficial during instrument test and verification, and makes the instrument insensitive to temperature changes. Aluminum has been the main material used for cryogenic optical instruments, and optical aluminum mirrors are generally diamond turned. The application of a polishable hard top coating like nickel removes excess stray light caused by the groove pattern, but limits the degree of lightweighting of the mirrors due to the bi-metal effect. By directly polishing the aluminum mirror surface, the recent developments at Astron allow for using a non-exotic material for light weighted yet accurate optical mirrors, with a lower surface roughness (~1nm RMS), higher surface accuracy and reduced light scattering. This paper presents the techniques, obtained results and a global comparison with alternative lightweight mirror solutions.

  19. Membrane mirror light modulator technology

    NASA Astrophysics Data System (ADS)

    Warde, Cardinal; McCann, James T.; Shrauger, Vern; Ieong, H.-H.; Ersen, Ali; Wang, X. Y.; Hubbard, J.

    2000-03-01

    We have incorporated membrane mirror technology over a discrete array of pixel wells to create both high-efficiency optical shutters and spatial light modulators (SLM). A continuous metalized-membrane mirror with greater than 98% reflectivity minimizes optical insertion loss. This mirror is electrostatically deformed into the wells with either a common electrode (shutter) or pixilated electrodes (SLM). By using a spatial filter, analog intensity optical modulation is realized. Both 1-D (linear) and 2-D grating pixel patterns have been investigated. With the appropriate pixel dimensions, both coherent monochromatic and broadband incoherent light within the 0.25 to 10.6 micron range can be modulated with contrast ratios up to 1000:1. Small well sizes (approximately 10-micron diameter) allow for modulation speeds up to 1 MHz. The theoretical foundations for the well layout, the membrane mirror deformation and its diffraction properties, and the design trade-offs are detailed. We have applied our membrane mirror technology to CMOS VLSI circuits creating a high-speed, high-efficiency spatial light modulator capable of 80 X 64 resolution and scalable to HDTV standards. The membrane mirror SLM provides either amplitude or phase modulation. In the phase modulation mode, at least two waves of stroke per discrete well are possible.

  20. Modulations of mirroring activity by desire for social connection and relevance of movement

    PubMed Central

    Sharer, Elizabeth A.; Bargh, John A.; Pineda, Jaime A.

    2014-01-01

    Mirroring neurons fire both when an individual moves and observes another move in kind. This simulation of others’ movements is thought to effortlessly and ubiquitously support empathetic connection and social understanding. However, at times this could be maladaptive. How could a boxer mirror a losing opponent’s expressions of fatigue, feeling his weariness, precisely when strength is required? Clearly, the boxer must emotionally disconnect from his opponent and those expressions of fatigue must become irrelevant and not mirrored. But, movements that inform of his opponent’s intentions to deliver an incoming blow are quite relevant and still should require mirroring. We tested these dimensions of emotional connectedness and relevance of movement in an electroencephalography experiment, where participants’ desires to socially connect with a confederate were manipulated. Before manipulation, all participants mirrored the confederate’s purely kinematic (a hand opening and closing) and goal-directed (a hand opening and closing around a token that the participant desired) hand movements. After manipulation, unfairly treated subjects ceased to mirror the purely kinematic movements but continued to mirror goal-relevant movements. Those treated fairly continued to mirror all movements. The results suggest that social mirroring can be adaptive in order to meet the demands of a varied social environment. PMID:24194581

  1. A segmented mirror antenna for radiometers

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Houshmand, B.; Zimmerman, M.; Acosta, R.

    1989-01-01

    An antenna is designed for the radiometer application of the planned NASA Earth Science Geostationary Platforms in the 1990's. The antenna consists of two parts: a regular parabolic dish of 5 meters in diameter which converts the radiation from feeds into a collimated beam, and a movable mirror that redirects the beam to a prescribed scan direction. The mirror is composed of 28 segmented planar conducting plates, mostly one square meter in size. The secondary pattern of the antenna was analyzed based on a physical optics analysis. For frequencies between 50 and 230 GHz, and for a scan range of + or -8 deg (270 beamwidths scan at 230 GHz), the worst calculated beam efficiency is 95 percent. To cover such a wide frequency and scan range, each of the 28 plates is individually controlled for a tilting less than 4 deg, and for a sliding less than 0.5 cm. The sliding is done at discrete steps. At 230 GHz, a step size of 2 mil is sufficient. The plate positions must be reset for each frequency and for each scan direction. Once the position is set, the frequency bandwidth of the antenna is very narrow.

  2. Space ten-meter telescope (STMT) - Structural and thermal feasibility study of the primary mirror

    NASA Technical Reports Server (NTRS)

    Bely, Pierre Y.; Bolton, John F.; Neeck, Steven P.; Tulkoff, Philip J.

    1987-01-01

    The structural and thermal behavior of a ten-meter primary mirror for a space optical/near-IR telescope in geosynchronous orbit is studied. The glass-type lightweighted mirror is monolithic, of the double arch type, and is supported at only three points. The computer programs SSPTA (thermal), NASTRAN (finite element), and ACCOS V (optical) are used in sequence to determine the temperature, deformation, and optical performance of the mirror. A mirror temperature of 130 K or less appears to be obtainable by purely passive means. With a fused silica or standard Zerodur blank, thermally-induced deformation is unacceptable and cannot be fully corrected by an active secondary mirror over the desired field. Either active thermal control or a blank of lower thermal expansion coefficient would be required.

  3. Alignment Mirror Mechanisms for Space Use

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; McKinney, Colin M.; Smythe, Robert F.; Palmer, Dean

    2011-01-01

    The paper describes an optical Alignment Mirror Mechanism (AMM), and discusses its control scheme. The mirror's angular positioning accuracy requirement is +/- 0.2 arc-sec. This requires the mirror's linear positioning actuators to have a positioning accuracy of +/- 109 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are +/- 35 nm linear positioning capability at the actuator, which translates into +/- 0.07 arc-sec angular mirror positioning accuracy.

  4. Design and fabrication of a continuous membrane deformable mirror

    NASA Astrophysics Data System (ADS)

    Hammer, Jay A.; Banish, Michele R.; Whitley, Michael R.; Hao, Zhili; Warren, Keith O.; Sanchez, Sharon; Harchanko, John S.

    2003-01-01

    Adaptive optics systems are used to maintain an optical system at its optimum performance through real time corrections of a wavefront. Deformable mirrors have traditionally been relatively large, expensive devices, suitable for systems such as large telescopes. The objective of the present work is to expand the range of systems that can employ adaptive optics by developing a small, low-cost MEMS deformable mirror. This deformable mirror uses a continuous membrane and has 61 actuators arranged in to approximate a circular pattern. Each actuator has an associated spring suspension, allowing it to push as well as pull on the membrane, producing locally convex or concave curvature. The folded springs are positioned so as to maximize the lateral stability. Maximum actuator displacement is six microns at less than 200 volts. The actuator resonant frequency, is greater than 10 kHz, allowing high-frequency updates of the mirror shape. To operate at high speed, the device must be sealed in a low-pressure environment. Each microactuator uses a vertical comb drive to achieve large travel at a reasonable voltage. The continuous membranes are made of silicon or silicon nitride. Both the actuator and membrane are fabricated with bulk micromachine process technologies. The design targets laser based communication specifications and medical imaging applications.

  5. Fabrication of nested elliptical KB mirrors using profile coating for synchrotron radiation X-ray focusing

    SciTech Connect

    Liu, Chian; Ice, Gene E; Liu, Wenjun; Assoufid, Lahsen; Qian, J; Shi, B.; Khachatryan, Ruben; Wieczorek, M.; Zschack, P.; Tischler, Jonathan Zachary

    2012-01-01

    This paper describes fabrication methods used to demonstrate the advantages of nested or Montel optics for micro/nanofocusing of synchrotron X-ray beams. A standard Kirkpatrick-Baez (KB) mirror system uses two separated elliptical mirrors at glancing angles to the X-ray beam and sequentially arranged at 90{sup o} to each other to focus X-rays successively in the vertical and horizontal directions. A nested KB mirror system has the two mirrors positioned perpendicular and side-by-side to each other. Compared to a standard KB mirror system, Montel optics can focus a larger divergence and the mirrors can have a shorter focal length. As a result, nested mirrors can be fabricated with improved demagnification factor and ultimately smaller focal spot, than with a standard KB arrangement. The nested system is also more compact with an increased working distance, and is more stable, with reduced complexity of mirror stages. However, although Montel optics is commercially available for laboratory X-ray sources, due to technical difficulties they have not been used to microfocus synchrotron radiation X-rays, where ultra-precise mirror surfaces are essential. The main challenge in adapting nested optics for synchrotron microfocusing is to fabricate mirrors with a precise elliptical surface profile at the very edge where the two mirrors meet and where X-rays scatter. For example, in our application to achieve a sub-micron focus with high efficiency, a surface figure root-mean-square (rms) error on the order of 1 nm is required in the useable area along the X-ray footprint with a {approx} 0.1 mm-diameter cross section. In this paper we describe promising ways to fabricate precise nested KB mirrors using our profile coating technique and inexpensive flat Si substrates.

  6. Test results for an AOA-Xinetics grazing incidence x-ray deformable mirror

    NASA Astrophysics Data System (ADS)

    Lillie, Charles; Egan, Richard; Landers, Franklin; Cavaco, Jeffrey; Ezzo, Kevin; Khounsary, Ali

    2014-09-01

    X-ray telescopes use grazing incidence mirrors to focus X-ray photons from celestial objects. To achieve the large collecting areas required to image faint sources, thousands of thin, doubly curved mirrors are arranged in nested cylindrical shells to approximate a filled aperture. These mirrors require extremely smooth surfaces with precise figures to provide well-focused beams and small image spot sizes. The Generation-X telescope proposed by SAO would have a 12-meter aperture, a 50 m2 collecting area and 0.1 arc-second spatial resolution. This resolution would be obtained by actively controlling the mirror figure with piezoelectric actuators deposited on the back of each 0.4 mm thick mirror segment. To support SAO's Generation-X study, Northrop Grumman used internal funds to look at the feasibility of using Xinetics deformable mirror technologies to meet the Generation-X requirements. We designed and fabricated two 10 x 30 cm Platinum-coated silicon mirrors with 108 surface-parallel electrostrictive Lead Magnesium Niobate (PMN) actuators bonded to the mirror substrates. These mirrors were tested at optical wavelengths by Xinetics to assess the actuator's performance, but no funds were available for X-ray tests. In 2013, after receiving an invitation to evaluate the mirror's performance at Argonne National Laboratory, the mirrors were taken out of storage, refurbished, retested at Xinetics and transported to ANL for metrology measurements with a Long Trace Profilometer, a Fizeau laser interferometer, and X-ray tests. This paper describes the development and testing of the adaptive x-ray mirrors at AOAXinetics. Marathe, et al, will present the results of the tests at Argonne.

  7. Phasing software for a free flyer space-based sparse mirror array not requiring laser interferometry

    NASA Astrophysics Data System (ADS)

    Maker, David J.

    2004-10-01

    This paper presents new software (and simulations) that would phase a space based free flyer sparse array telescope. This particular sparse array method uses mirrors that are far enough away for sensors at the focal point module to detect tip tilt by simply using the deflection of the beam from each mirror. Also the large distance allows these circle six array mirrors to be actuated flats. For piston the secondary actuated mirrors (one for each large mirror segment of these widely spaced sparse array mirrors distributed on a parabola) are moved in real time to maximize the Strehle ratio using the light from the star the planet is revolving around since that star usually has an extremely high SNR (Signal to Noise Ratio). There is then no need for a 6DOF spider web of laser interferometric beams and deep dish mirrors (as in the competing Darwin and JPL methods) to accomplish this. Also the distance between the six 3 meter aperture mirrors could be large (kilometer range) guaranteeing a high resolution and also substantial light gathering power (with these 6 large mirrors) for imaging the details on the surface of extrasolar terrestrial type planets. In any case such a multisatellite free flyer concept would then be no more complex than the European cluster which is now operational. This is a viable concept and a compelling way to image surface detail on extra solar earthlike planets. It is the ideal engineering solution to the problem of space based large baseline sparse arrays. Significant details of the software requirements have been recently developed. In this paper the Fortran code needed to both simulate and operate the actuators in the secondary mirror for this type of sparse array is discussed.

  8. An alignment and integration technique for mirror segment pairs on the Constellation-X telescope

    NASA Astrophysics Data System (ADS)

    Hadjimichael, Theo; Owens, Scott; Lehan, John; Olsen, Larry; Saha, Timo; Wallace, Tom; Zhang, Will

    2007-09-01

    We present the concepts behind the current alignment and integration technique for a Constellation-X primary-secondary mirror segment pair prior to an x-ray beam line test. We examine the effects of a passive mount on thin glass x-ray mirror segments, and the issues of mount shape and environment on alignment. We also investigate how bonding and transfer to a permanent housing affects the quality of the final image.

  9. Soiling and degradation analysis of solar mirrors

    NASA Astrophysics Data System (ADS)

    Delord, Christine; Blaise, Anthony; Fernandez-García, Aránzazu; Martínez-Arcos, Lucía; Sutter, Florian; Reche-Navarro, Tomás Jesús

    2016-05-01

    The degradation and the soiling of the mirrors are dependent of the solar field and the mirrors technologies, the local climate, the meteorological events, the O&M tasks and the human activities around the site. In the frame of the European project SFERA II, the SODAM project has been the opportunity to compare the soiling and the degradation mechanisms on a Fresnel solar field installed in the South of France and on a parabolic-through solar field installed in the South of Spain. The analysis of the soiling has shown equivalent maximum weekly reflectance loss due to soiling in both sites but a double mean weekly reflectance loss in Spain respect to France, as well as typical meteorological events to be taken into account to adapt the cleaning strategies. Among the meteorological parameters mainly influencing the soiling, the study has revealed the effect of the rain and of the DNI. In parallel, the analysis of the degradation mechanisms has highlighted a common chalking of the protective back paint layers due to the irradiation. This chalking being associated to a leaching of the paint layers in the site of Cadarache due to the high presence of liquid water. A difference in the speed of corrosion of the silver layer has been also noticed, leading to a difference in the mechanisms of delamination of the paints layers.

  10. Hyperbola-parabola primary mirror in Cassegrain optical antenna to improve transmission efficiency.

    PubMed

    Zhang, Li; Chen, Lu; Yang, HuaJun; Jiang, Ping; Mao, Shengqian; Caiyang, Weinan

    2015-08-20

    An optical model with a hyperbola-parabola primary mirror added in the Cassegrain optical antenna, which can effectively improve the transmission efficiency, is proposed in this paper. The optimum parameters of a hyperbola-parabola primary mirror and a secondary mirror for the optical antenna system have been designed and analyzed in detail. The parabola-hyperbola primary structure optical antenna is obtained to improve the transmission efficiency of 10.60% in theory, and the simulation efficiency changed 9.359%. For different deflection angles to the receiving antenna with the emit antenna, the coupling efficiency curve of the optical antenna has been obtained. PMID:26368746

  11. Adaptation and Validation of the Inventory of Learning Styles for Quality Assurance in a Hong Kong Post-Secondary Education Context

    ERIC Educational Resources Information Center

    Law, Dennis C. S.; Meyer, Jan H. F.

    2010-01-01

    A Chinese translation of the Inventory of Learning Styles (ILS), a quantitative instrument employed mainly in Western higher education contexts for collecting students' feedback on their learning patterns (in the form of students' processing strategies, regulation strategies, learning orientations and conceptions of learning), was adapted and…

  12. Ultra-lightweight telescope with MEMS adaptive optic for distortion correction.

    SciTech Connect

    Spahn, Olga Blum; Cowan, William D.; Shaw, Michael J.; Adams, David Price; Sweatt, William C.; Dagel, Daryl James; Grine, Alejandro J.; Mani, Seethambal S.; Resnick, Paul James; Gass, Fawn Renee; Grossetete, Grant David

    2004-12-01

    Recent world events have underscored the need for a satellite based persistent global surveillance capability. To be useful, the satellite must be able to continuously monitor objects the size of a person anywhere on the globe and do so at a low cost. One way to satisfy these requirements involves a constellation of satellites in low earth orbit capable of resolving a spot on the order of 20 cm. To reduce cost of deployment, such a system must be dramatically lighter than a traditional satellite surveillance system with a high spatial resolution. The key to meeting this requirement is a lightweight optics system with a deformable primary and secondary mirrors and an adaptive optic subsystem correction of wavefront distortion. This proposal is concerned with development of MEMS micromirrors for correction of aberrations in the primary mirror and improvement of image quality, thus reducing the optical requirements on the deployable mirrors. To meet this challenge, MEMS micromirrors must meet stringent criteria on their performance in terms of flatness, roughness and resolution of position. Using Sandia's SUMMIT foundry which provides the world's most sophisticated surface MEMS technology as well as novel designs optimized by finite element analysis will meet severe requirements on mirror travel range and accuracy.

  13. Wavefront Compensation Segmented Mirror Sensing and Control

    NASA Technical Reports Server (NTRS)

    Redding, David C.; Lou, John Z.; Kissil, Andrew; Bradford, Charles M.; Woody, David; Padin, Stephen

    2012-01-01

    of optical edge sensors are used per segment-to-segment edge, separated by a finite distance along the segment edge, for four optical heads, each with an imager and a collimator. By orienting the beam direction of one edge sensor pair to be +45 away from the segment edge direction, and the other sensor pair to be oriented -45 away from the segment edge direction, all six degrees of freedom of relative motion between the segments can be measured with some redundancy. The software resides in a computer that receives each of the optical edge sensor signals, as well as telescope pointing commands. It feeds back the edge sensor signals to keep the primary mirror figure within specification. It uses a feed-forward control to compensate for global effects such as decollimation of the primary and secondary mirrors due to gravity sag as the telescope pointing changes to track science objects. Three segment position actuators will be provided per segment to enable controlled motions in the piston, tip, and tilt degrees of freedom. These actuators are driven by the software, providing the optical changes needed to keep the telescope phased.

  14. The ERIS adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marchetti, Enrico; Fedrigo, Enrico; Le Louarn, Miska; Madec, Pierre-Yves; Soenke, Christian; Brast, Roland; Conzelmann, Ralf; Delabre, Bernard; Duchateau, Michel; Frank, Christoph; Klein, Barbara; Amico, Paola; Hubin, Norbert; Esposito, Simone; Antichi, Jacopo; Carbonaro, Luca; Puglisi, Alfio; Quirós-Pacheco, Fernando; Riccardi, Armando; Xompero, Marco

    2014-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the new Adaptive Optics based instrument for ESO's VLT aiming at replacing NACO and SINFONI to form a single compact facility with AO fed imaging and integral field unit spectroscopic scientific channels. ERIS completes the instrument suite at the VLT adaptive telescope. In particular it is equipped with a versatile AO system that delivers up to 95% Strehl correction in K band for science observations up to 5 micron It comprises high order NGS and LGS correction enabling the observation from exoplanets to distant galaxies with a large sky coverage thanks to the coupling of the LGS WFS with the high sensitivity of its visible WFS and the capability to observe in dust embedded environment thanks to its IR low order WFS. ERIS will be installed at the Cassegrain focus of the VLT unit hosting the Adaptive Optics Facility (AOF). The wavefront correction is provided by the AOF deformable secondary mirror while the Laser Guide Star is provided by one of the four launch units of the 4 Laser Guide Star Facility for the AOF. The overall layout of the ERIS AO system is extremely compact and highly optimized: the SPIFFI spectrograph is fed directly by the Cassegrain focus and both the NIX's (IR imager) and SPIFFI's entrance windows work as visible/infrared dichroics. In this paper we describe the concept of the ERIS AO system in detail, starting from the requirements and going through the estimated performance, the opto-mechanical design and the Real-Time Computer design.

  15. Non-linear mirror instability

    NASA Astrophysics Data System (ADS)

    Rincon, F.; Schekochihin, A. A.; Cowley, S. C.

    2015-02-01

    Slow dynamical changes in magnetic-field strength and invariance of the particles' magnetic moments generate ubiquitous pressure anisotropies in weakly collisional, magnetized astrophysical plasmas. This renders them unstable to fast, small-scale mirror and firehose instabilities, which are capable of exerting feedback on the macroscale dynamics of the system. By way of a new asymptotic theory of the early non-linear evolution of the mirror instability in a plasma subject to slow shearing or compression, we show that the instability does not saturate quasi-linearly at a steady, low-amplitude level. Instead, the trapping of particles in small-scale mirrors leads to non-linear secular growth of magnetic perturbations, δB/B ∝ t2/3. Our theory explains recent collisionless simulation results, provides a prediction of the mirror evolution in weakly collisional plasmas and establishes a foundation for a theory of non-linear mirror dynamics with trapping, valid up to δB/B = O(1).

  16. Large mirror ratio tandem mirror magnetic design studies

    SciTech Connect

    Francis, G.L.; Myra, J.R.; D'lppolito, D.A.; Catto, P.J.; Aamodt, R.E.

    1986-04-01

    A systematic study of magnetic designs has been carried out for three-cell quadrupole-stabilized tandem mirror reactors comparable in size to the (octupole) mini-MARS design. In these designs, a single mirror cell at each end of the device serves as end plug, thermal barrier and MHD anchor. The multiple functions of the end plugs make it difficult to simultaneously optimize the physics properties of the plasma (stability, radial confinement, and good particle drift orbits). Two different design approaches have been studied using recently developed magnetic optimization techniques. Typical physics figures of merit are given and critical issues discussed for each design.

  17. Compact neutron imaging system using axisymmetric mirrors

    DOEpatents

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  18. The manufacturing and metrology of off-axis mirrors

    NASA Astrophysics Data System (ADS)

    Penzkofer, Karlheinz; Rascher, Rolf; Küpper, Lutz; Liebl, Johannes

    2015-10-01

    Especially in the area of the large mirror manufacturing only a few manufacturers are capable to produce optical surfaces of high quality. Therefore a deterministic process should be developed in the project IFasO. In the field of telescope optics off-axis optical systems are becoming increasingly important. These systems try to avoid an obstructing of the incoming light by moving the secondary mirror out of the primary mirror's optical axis. This advantage leads to an increasing market for this type of optical surface. Until now off-axis mirrors were difficult or almost impossible to produce. With the processes developed in IFasO, high quality mirrors become possible. For this reason, this paper describes the manufacturing of off-axis surfaces and its problems. The mirror production used in the project IFasO is based on the specific design of the CNC center developed by the company Optotech. This center UPG2000 is capable of grinding, polishing, sagitta measurement and interferometric measurement in one mounting of the specimen. Usually a large optics has to be transported during their manufacturing after every individual process step. There is always a risk of damage of the specimen. The exact orientation of the surface relatively to the tool position is also required. This takes a huge amount of time and makes up most of the production time. In this presentation the use of UPG2000 and the next steps within the process development are described. In the current status the manufacturing of large off-axis elements with a PV < λ/10 rms is reproducible.

  19. Operation of the adaptive optics system at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Miller, Douglas L.; Guerra, Juan Carlos; Boutsia, Konstantina; Fini, Luca; Argomedo, Javier; Biddick, Chris; Agapito, Guido; Arcidiacono, Carmelo; Briguglio, Runa; Brusa, Guido; Busoni, Lorenzo; Esposito, Simone; Hill, John; Kulesa, Craig; McCarthy, Don; Pinna, Enrico; Puglisi, Alfio T.; Quiros-Pacheco, Fernando; Riccardi, Armando; Xompero, Marco

    2012-07-01

    The Adaptive Optics System at the Large Binocular Telescope Observatory consists of two Adaptive Secondary (ASM) mirrors and two Pyramid Wavefront sensors. The first ASM/Pyramid pair has been commissioned and is being used for science operation using the NIR camera PISCES on the right side of the binocular telescope. The left side ASM/Pyramid system is currently being commissioned, with completion scheduled for the Fall of 2012. We will discuss the operation of the first Adaptive Optics System at the LBT Observatory including interactions of the AO system with the telescope and its TCS, observational modes, user interfaces, observational scripting language, time requirement for closed loop and offsets and observing efficiency.

  20. Parasitic driven heliostat mirror declinator

    SciTech Connect

    Rhodes, W.A.

    1983-09-06

    An automatic parasitically driven declinator is disclosed for changing the tilt angle of the mirror of a heliostat to provide solar declination tracking by the heliostat. The declinator includes an axial gear drive train coupled to the polar axial shaft of the heliostat, which shaft is rotated. A pendulum arrangement coupled via an input shaft to the axial gear drive train is substantially held in plumb position by gravity wherein the gear drive train is driven as it is rotated about the polar axis by the polar axial shaft. An output shaft coupled to the gear train is rotated to drive a skew bar linkage assembly that is connected to the mirror mounting assembly of the heliostat. The gear ratio of the gear drive train assembly is made 365:1 so that the mirror angle is annually nutated a predetermined number of degrees corresponding to the cyclic variations of solar declination.

  1. Alpha Channeling in Mirror Machines

    SciTech Connect

    Fisch N.J.

    2005-10-19

    Because of their engineering simplicity, high-β, and steady-state operation, mirror machines and related open-trap machines such as gas dynamic traps, are an attractive concept for achieving controlled nuclear fusion. In these open-trap machines, the confinement occurs by means of magnetic mirroring, without the magnetic field lines closing upon themselves within the region of particle confinement. Unfortunately, these concepts have not achieved to date very spectacular laboratory results, and their reactor prospects are dimmed by the prospect of a low Q-factor, the ratio of fusion power produced to auxiliary power. Nonetheless, because of its engineering promise, over the years numerous improvements have been proposed to enhance the reactor prospects of mirror fusion, such as tandem designs, end-plugging, and electric potential barriers.

  2. Metrology of IXO Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing

    2011-01-01

    For future x-ray astrophysics mission that demands optics with large throughput and excellent angular resolution, many telescope concepts build around assembling thin mirror segments in a Wolter I geometry, such as that originally proposed for the International X-ray Observatory. The arc-second resolution requirement posts unique challenges not just for fabrication, mounting but also for metrology of these mirror segments. In this paper, we shall discuss the metrology of these segments using normal incidence metrological method with interferometers and null lenses. We present results of the calibration of the metrology systems we are currently using, discuss their accuracy and address the precision in measuring near-cylindrical mirror segments and the stability of the measurements.

  3. Fused silica mirror development for SIRTF

    NASA Technical Reports Server (NTRS)

    Barnes, W. P., Jr.

    1983-01-01

    An advanced design, lightweight, fuse-quartz mirror of sandwich construction was evaluated for optical figure performance at cryogenic temperatures. A low temperature shroud was constructed with an integral mirror mount and interface to a cryostat for use in a vacuum chamber. The mirror was tested to 13 K. Cryogenic distortion of the mirror was measured interferometrically. Separate interferometry of the chamber window during the test permitted subtraction of the small window distortions from the data. Results indicate that the imaging performance of helium cooled, infrared telescopes will be improved using this type of mirror without correction of cryogenic distortion of the primary mirror.

  4. Fokker-Planck equation in mirror research

    SciTech Connect

    Post, R.F.

    1983-08-11

    Open confinement systems based on the magnetic mirror principle depend on the maintenance of particle distributions that may deviate substantially from Maxwellian distributions. Mirror research has therefore from the beginning relied on theoretical predictions of non-equilibrium rate processes obtained from solutions to the Fokker-Planck equation. The F-P equation plays three roles: Design of experiments, creation of classical standards against which to compare experiment, and predictions concerning mirror based fusion power systems. Analytical and computational approaches to solving the F-P equation for mirror systems will be reviewed, together with results and examples that apply to specific mirror systems, such as the tandem mirror.

  5. Northop Grumman/Xinetics Deformable Mirrors: Enabling Reliable Advanced Imaging for 20 Years and Beyond

    NASA Astrophysics Data System (ADS)

    Matijevich, Russ; Jeff Cavaco, Northrop Grumman Xinetics

    2015-01-01

    Adaptive Optics Xinetics (AOX), a wholly-owned subsidiary of Northrop Grumman, has manufactured and delivered more than 300 deformable mirrors (DMs) since 1995. With more than 32 gigacycles of use, these mirrors have significantly increased the scientific return of ground based astronomical telescopes by removing atmospheric distortion from the image plane. AOX deformable mirrors exhibit little or no hysteresis, aging or creep, making them highly reliable and predictable. A range of space -based applications are currently in development or under consideration as key enablers for future astronomical missions. We will review a variety of AOX DMs and discuss a number of their real world applications and results.

  6. Pre-construction of giant steerable science mirror for TMT

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Zhao, Hongchao; Guo, Peng; An, Qichang; Jiang, Haibo

    2015-09-01

    The Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP) team is developing the Giant Steerable Science Mirror (GSSM) for Thirty Meter Telescope (TMT) which will get into the preliminary design phase in 2016. To develop the passive support structure system for the largest elliptic-plan flat mirror and smoothest tracking mechanism for the gravity-invariant condition, CIOMP is designing and building a 1/4 scale, functionally accurate version of the GSSM prototype. The prototype will incorporate the same optical-mechanical system and electric control system as the GSSM. The size of the prototype mirror is 898.5mm×634mm×12.5mm with elliptic-plan figure and will be supported by 18 points whiffletree on axial and 12 points whiffletree on lateral. The mirror surface figure will be evaluated by SlopeRMS which is the final evaluation method used in the actual GSSM. The prototype allows the mirror point to and be tested in five specified gravity orientations and meet the requirements of SlopeRMS. The prototype testing platform will have the interfaces with direct drive systems. The jitter testing will be implemented on the prototype system to verify the bearing, the encoder, the servo control algorithm in the low speed up to 5 arcsecond per second. The total prototype system configured mirror surface figure will be better than 1 micro radian SlopeRMS in each tested orientation. The positioner jitter will be less than 0.1 arcsecond RMS for tilt and rotator axis respectively and will be analyzed with frequency domain to meet the requirements of the TMT adaptive optics system. The pre-construction will be completed at the beginning of 2016 and provide the technical support to the preliminary design of GSSM.

  7. Controllable objective with deformable mirrors

    SciTech Connect

    Agafonov, V V; Safronov, A G

    2004-03-31

    A new optical device - an objective with deformable mirrors and parameters controlled in the dynamic regime is proposed. The computer simulation of the objective is performed. The dependences of some parameters of the objective on the control voltage are determined. The simulation showed that the ranges of control of the rear focal segment and the focal distance for the objective with the focal distance 602 mm were 1057 and 340 mm, respectively, which is substantially greater than in the control of an equivalent deformable mirror. (laser applications and other topics in quantum electronics)

  8. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  9. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  10. NASA CONNECT: Algebra: Mirror, Mirror on the Universe

    NASA Technical Reports Server (NTRS)

    2000-01-01

    'Algebra: Mirror, Mirror on the Universe' is the last of seven programs in the 1999-2000 NASA CONNECT series. Produced by NASA Langley Research Center's Office of Education, NASA CONNECT is an award-winning series of instructional programs designed to enhance the teaching of math, science and technology concepts in grades 5-8. NASA CONNECT establishes the 'connection' between the mathematics, science, and technology concepts taught in the classroom and NASA research. Each program in the series supports the national mathematics, science, and technology standards; includes a resource-rich teacher guide; and uses a classroom experiment and web-based activity to complement and enhance the math, science, and technology concepts presented in the program. NASA CONNECT is FREE and the programs in the series are in the public domain. Visit our web site and register. http://connect.larc.nasa.gov In 'Algebra: Mirror, Mirror on the Universe', students will learn how algebra is used to explore the universe.

  11. Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation.

    PubMed

    Cavallo, Andrea; Heyes, Cecilia; Becchio, Cristina; Bird, Geoffrey; Catmur, Caroline

    2014-08-01

    The human mirror system has been the subject of much research over the past two decades, but little is known about the timecourse of mirror responses. In addition, it is unclear whether mirror and counter-mirror effects follow the same timecourse. We used single-pulse transcranial magnetic stimulation to investigate the timecourse of mirror and counter-mirror responses in the human brain. Experiment 1 demonstrated that mirror responses can be measured from around 200 ms after observed action onset. Experiment 2 demonstrated significant effects of counter-mirror sensorimotor training at all timepoints at which a mirror response was found in Experiment 1 (i.e. from 200 ms onward), indicating that mirror and counter-mirror responses follow the same timecourse. By suggesting similarly direct routes for mirror and counter-mirror responses, these results support the associative account of mirror neuron origins whereby mirror responses arise as a result of correlated sensorimotor experience during development. More generally, they contribute to theorizing regarding mirror neuron function by providing some constraints on how quickly mirror responses can influence social cognition. PMID:23709352

  12. Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation.

    PubMed

    Cavallo, Andrea; Heyes, Cecilia; Becchio, Cristina; Bird, Geoffrey; Catmur, Caroline

    2014-08-01

    The human mirror system has been the subject of much research over the past two decades, but little is known about the timecourse of mirror responses. In addition, it is unclear whether mirror and counter-mirror effects follow the same timecourse. We used single-pulse transcranial magnetic stimulation to investigate the timecourse of mirror and counter-mirror responses in the human brain. Experiment 1 demonstrated that mirror responses can be measured from around 200 ms after observed action onset. Experiment 2 demonstrated significant effects of counter-mirror sensorimotor training at all timepoints at which a mirror response was found in Experiment 1 (i.e. from 200 ms onward), indicating that mirror and counter-mirror responses follow the same timecourse. By suggesting similarly direct routes for mirror and counter-mirror responses, these results support the associative account of mirror neuron origins whereby mirror responses arise as a result of correlated sensorimotor experience during development. More generally, they contribute to theorizing regarding mirror neuron function by providing some constraints on how quickly mirror responses can influence social cognition.

  13. Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation

    PubMed Central

    Cavallo, Andrea; Heyes, Cecilia; Becchio, Cristina; Bird, Geoffrey

    2014-01-01

    The human mirror system has been the subject of much research over the past two decades, but little is known about the timecourse of mirror responses. In addition, it is unclear whether mirror and counter-mirror effects follow the same timecourse. We used single-pulse transcranial magnetic stimulation to investigate the timecourse of mirror and counter-mirror responses in the human brain. Experiment 1 demonstrated that mirror responses can be measured from around 200 ms after observed action onset. Experiment 2 demonstrated significant effects of counter-mirror sensorimotor training at all timepoints at which a mirror response was found in Experiment 1 (i.e. from 200 ms onward), indicating that mirror and counter-mirror responses follow the same timecourse. By suggesting similarly direct routes for mirror and counter-mirror responses, these results support the associative account of mirror neuron origins whereby mirror responses arise as a result of correlated sensorimotor experience during development. More generally, they contribute to theorizing regarding mirror neuron function by providing some constraints on how quickly mirror responses can influence social cognition. PMID:23709352

  14. Alignment and Integration Techniques for Mirror Segment Pairs on the Constellation X Telescope

    NASA Technical Reports Server (NTRS)

    Hadjimichael, Theo; Lehan, John; Olsen, Larry; Owens, Scott; Saha, Timo; Wallace, Tom; Zhang, Will

    2007-01-01

    We present the concepts behind current alignment and integration techniques for testing a Constellation-X primary-secondary mirror segment pair in an x-ray beam line test. We examine the effects of a passive mount on thin glass x-ray mirror segments, and the issues of mount shape and environment on alignment. We also investigate how bonding and transfer to a permanent housing affects the quality of the final image, comparing predicted results to a full x-ray test on a primary secondary pair.

  15. [The ontogeny of the mirror neuron system].

    PubMed

    Myowa-Yamakoshi, Masako

    2014-06-01

    Abstract Humans utilize the mirror neuron system to understand and predict others' actions. However, the ontogeny of the mirror neuron system remains unknown. Whether mirror neuron function is an innate trait or whether mirror neurons acquire their sensorimotor matching properties ontogenetically remains to be clarified. In this paper, I review the ontogenetic theory of the mirror neuron system. I then discuss the functioning of the mirror neuron system in the context of social cognitive abilities, which are unique to humans. Recently, some researchers argue that it is too early to interpret the function of mirror neurons as an understanding of the underlying psychological states of others. They imply that such functioning would require inferential cognitive processes that are known to involve areas outside the mirror neuron system. Filling in this missing link may be the key to elucidating the unique ability of humans to understand others' actions.

  16. Modeling of Intellite 3 Layer Deformable Mirror

    SciTech Connect

    Papavasiliou, A

    2002-04-15

    This is a report on modeling of the Intellite three layer membrane mirror design. The goal of this project was to provide Intellite with a model that will allow them to design a mirror with confidence.

  17. Mirror with thermally controlled radius of curvature

    DOEpatents

    Neil, George R.; Shinn, Michelle D.

    2010-06-22

    A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.

  18. Alignment of two mirror astronomical telescopes (the astigmatic component)

    NASA Astrophysics Data System (ADS)

    Schmid, Tobias; Thompson, Kevin; Rolland, Jannick

    2008-07-01

    The effects of alignment perturbations on the aberration fields of two mirror astronomical telescopes are discussed. It is demonstrated that expressions describing alignment induced field-linear astigmatism, published by McLeod based on the work of Schroeder, can be obtained using nodal aberration theory. Rather than merely providing a different derivation for alignment induced astigmatism, it is shown that nodal theory can provide several insights that are significant for the development of effective alignment techniques. In the example of a specific telescope sited on Mt. Hopkins (Ritchey- Chretien), two approaches to identify misalignments of the secondary mirror are demonstrated. One approach utilizes the eccentricity of defocused star images and their orientation angles to calculate the misalignment of the secondary mirror after axial coma is removed. A second approach based on the location of the two zeros of the astigmatic aberration field is then shown to give equivalent results, but at the same time ensuring a complete model of all possible effects of misalignment on the performance of the telescope.

  19. Collodion technique of mirror cleaning

    NASA Technical Reports Server (NTRS)

    Tyndall, J. B.

    1970-01-01

    Cleaning method is modified by addition of a layer of cheesecloth between thin coatings of U.S.P. collodion. After drying, the collodion is peeled off by an even pull on the cheesecloth, leaving the mirror clean and ready for use.

  20. The "Rear View Mirror" Approach.

    ERIC Educational Resources Information Center

    Nord, James R.

    1987-01-01

    The new interactive videodisk systems with augmented audio capabilities have great potential for improving the teaching of foreign languages. At present that potential is unfulfilled because the profession is following a "rear view mirror" approach to media use: first, to fixate current practice; second, to distribute it broadly; and last, to…

  1. Hartmann test of aspherical mirrors.

    PubMed

    Malacara, D

    1972-01-01

    Astronomical aspherical mirrors may be tested in the optical shop with a Hartmann null test. A null test is obtained by placing small wedges over each hole of the Hartmann screen. The wedges have an angle between the two faces such that the spherical aberration with the object and the image at the center of curvature is just compensated.

  2. Mounting and Alignment of IXO Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, William; Evans, Tyler; McClelland, Ryan; Hong, Melinda; Mazzarella, James; Saha, Timo; Jalota, Lalit; Olsen, Lawrence; Byron, Glenn

    2010-01-01

    A suspension-mounting scheme is developed for the IXO (International X-ray Observatory) mirror segments in which the figure of the mirror segment is preserved in each stage of mounting. The mirror, first fixed on a thermally compatible strongback, is subsequently transported, aligned and transferred onto its mirror housing. In this paper, we shall outline the requirement, approaches, and recent progress of the suspension mount processes.

  3. Detecting surface faults on solar mirrors

    NASA Technical Reports Server (NTRS)

    Argoud, M. J.; Shumate, M. S.; Walker, W. L.; Zanteson, R. A.

    1980-01-01

    Two quality control tests determine reflectivity and curvature faults of concave solar mirrors. Curvature defects in solar mirrors are easily revealed by photographing mirror surface. Calibrated aperture placed in front of camera lens admits rays reflecting only from acceptable areas of mirror, blocking out diverging rays reflected from defective areas. Defects can pinpoint problems that may exist in production. Same photograph can be obtained using calibrated disk instead of aperture, except that, this time, only defective areas would be exposed.

  4. The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group

    SciTech Connect

    Simonen, T; Cohen, R; Correll, D; Fowler, K; Post, D; Berk, H; Horton, W; Hooper, E B; Fisch, N; Hassam, A; Baldwin, D; Pearlstein, D; Logan, G; Turner, B; Moir, R; Molvik, A; Ryutov, D; Ivanov, A A; Kesner, J; Cohen, B; McLean, H; Tamano, T; Tang, X Z; Imai, T

    2008-10-24

    Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT

  5. HIGH-CONTRAST IMAGING VIA MODAL CONVERGENCE OF DEFORMABLE MIRROR

    SciTech Connect

    Wang Feiling

    2012-06-01

    For extremely high contrast imaging, such as direct observation of faint stellar companions, an adaptive optics system is required to produce low-halo and low-speckle regions in the focal plane. A method for deformable mirror control is proposed to achieve this goal. The method relies on a modal convergence of the deformable mirror driven by a focal-plane metric. The modal sets are derived from the Walsh functions. The Walsh-function modes serve two purposes: the expansion of the actuator displacements and the expansion of the phase functions. Taking advantage of the unique properties of the modal functions, a universal control algorithm is devised for the realization of high-contrast focal planes with and without the help of conventional coronagraphy. Numerical modeling is conducted to simulate complete imaging systems under various scenarios. It is shown that the proposed method reliably produces high-contrast focal planes using either a segmented or a membrane mirror. In the presence of random aberration the method is shown to be able to maintain high-contrast focal planes. Requiring neither retrieval of electric fields nor detailed knowledge of the deformable mirrors, this technique may allow high-contrast imaging in real time.

  6. Design and construction of the VLT primary mirror cell: support of the large, thin primary mirror

    NASA Astrophysics Data System (ADS)

    Stanghellini, Stefano; Legrand, P.; Baty, A.; Hovsepian, T.

    1997-03-01

    The primary mirror cell of the very large telescope supports the primary mirror, the tertiary tower and mirror, and the Cassegrain instrumentation. Stringent requirements have been set to achieve the desired image quality, flexibility of use, and the necessary mirror safety. This paper describes the most important requirements set on the system and some of the design solutions which were chosen.

  7. Development of large aperture composite adaptive optics

    NASA Astrophysics Data System (ADS)

    Kmetik, Viliam; Vitovec, Bohumil; Jiran, Lukas; Nemcova, Sarka; Zicha, Josef; Inneman, Adolf; Mikulickova, Lenka; Pavlica, Richard

    2015-01-01

    Large aperture composite adaptive optics for laser applications is investigated in cooperation of Institute of Plasma Physic, Department of Instrumentation and Control Engineering FME CTU and 5M Ltd. We are exploring opportunity of a large-size high-power-laser deformable-mirror production using a lightweight bimorph actuated structure with a composite core. In order to produce a sufficiently large operational free aperture we are developing new technologies for production of flexible core, bimorph actuator and deformable mirror reflector. Full simulation of a deformable-mirrors structure was prepared and validated by complex testing. A deformable mirror actuation and a response of a complicated structure are investigated for an accurate control of the adaptive optics. An original adaptive optics control system and a bimorph deformable mirror driver were developed. Tests of material samples, components and sub-assemblies were completed. A subscale 120 mm bimorph deformable mirror prototype was designed, fabricated and thoroughly tested. A large-size 300 mm composite-core bimorph deformable mirror was simulated and optimized, fabrication of a prototype is carried on. A measurement and testing facility is modified to accommodate large sizes optics.

  8. 21 CFR 886.1500 - Headband mirror.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Headband mirror. 886.1500 Section 886.1500 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1500 Headband mirror. (a) Identification. A headband mirror is a device intended to be strapped to the head of the user to reflect light for use...

  9. 21 CFR 886.1500 - Headband mirror.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Headband mirror. 886.1500 Section 886.1500 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1500 Headband mirror. (a) Identification. A headband mirror is a device intended to be strapped to the head of the user to reflect light for use...

  10. 21 CFR 886.1500 - Headband mirror.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Headband mirror. 886.1500 Section 886.1500 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1500 Headband mirror. (a) Identification. A headband mirror is a device intended to be strapped to the head of the user to reflect light for use...

  11. 21 CFR 886.1500 - Headband mirror.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Headband mirror. 886.1500 Section 886.1500 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1500 Headband mirror. (a) Identification. A headband mirror is a device intended to be strapped to the head of the user to reflect light for use...

  12. 21 CFR 886.1500 - Headband mirror.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Headband mirror. 886.1500 Section 886.1500 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1500 Headband mirror. (a) Identification. A headband mirror is a device intended to be strapped to the head of the user to reflect light for use...

  13. Finite element analysis of a meniscus mirror

    NASA Astrophysics Data System (ADS)

    Yamashita, Y.

    1989-10-01

    Finite element analyses were carried out for a 7.5 m meniscus mirror of 20 cm thickness. Calculations were made for deformations of the mirror surface due to the gravity and the effect of a hole through which a lateral supporting mechanism would be installed. Vibrational eigenmodes were also calculated when the mirror is fixed by three axial and three lateral hard points.

  14. Light Weight Silicon Mirrors for Space Instrumentation

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T.; Hill, Peter C.; Hagopian, John G.; Strojay, Carl R.; Miller, Timothy

    2012-01-01

    Each mirror is a monolithic structure from a single crystal of silicon. The mirrors are light weighted after the optical surface is ground and polished. Mirrors made during the initial phase of this work were typically 1/50 lambda or better (RMS at 633 n m)

  15. Tandem mirror next step conceptual design

    SciTech Connect

    Doggett, J.N.; Damm, C.C.; Bulmer, R.H.

    1980-10-14

    A study was made to define the features of the experimental mirror fusion device - The Tandem Mirror Next Step, or TMNS - that will bridge the gap between present mirror confinement experiments and a power-producing reactor. We outline the project goals, describe some initial device parameters, and relate the technological requirements to ongoing development programs.

  16. Axial Electron Heat Loss From Mirror Devices Revisited

    SciTech Connect

    Ryutov, D

    2004-08-16

    An issue of the axial electron heat loss is of a significant importance for mirror-based fusion devices. This problem has been considered in a number of publications but it is still shrouded in misconceptions. In this paper we revisit it once again. We discuss the following issues: (1) Formation of the electron distribution function in the end tank at large expansion ratios; (2) The secondary emission from the end plates and the ways of suppressing it (if needed); (3) Ionization and charge exchange in the presence of neutrals in the end tanks; (4) Instabilities caused by the peculiar shape of the electron distribution function and their possible impact on the electron heat losses; (5) Electron heat losses in the pulsed mode of operation of mirror devices.

  17. Axial Electron Heat Loss from Mirror Devices Revisited

    SciTech Connect

    Ryutov, D.D.

    2005-01-15

    An issue of the axial electron heat loss is of a significant importance for mirror-based fusion devices. This problem has been considered in a number of publications but it is still shrouded in misconceptions. In this paper we revisit it once again. We discuss the following issues: 1) Formation of the electron distribution function in the end tank at large expansion ratios; 2) The secondary emission from the end plates and the ways of suppressing it (if needed); 3) Ionization and charge exchange in the presence of neutrals in the end tanks; 4) Instabilities caused by the peculiar shape of the electron distribution function and their possible impact on the electron heat losses; 5) Electron heat losses in the pulsed mode of operation of mirror devices.

  18. Secondary parkinsonism

    MedlinePlus

    Parkinsonism - secondary; Atypical Parkinson disease ... to be less responsive to medical therapy than Parkinson disease. ... Unlike Parkinson disease, some types of secondary parkinsonism may stabilize or even improve if the underlying cause is treated. Brain ...

  19. Case study of an inter-professional and inter-organisational programme to adapt, implement and evaluate clinical guidelines in secondary care.

    PubMed

    Hall, L; Eccles, M

    2000-01-01

    This paper describes the implementation of a clinical guideline across three acute Trusts. A Clinical Effectiveness Steering Group identified prevention of venous thromboembolism as a health priority. A local guideline development group adapted the recommendations of an existing review and produced a local guideline. Then, a multidisciplinary implementation group developed the practical aspects of implementing guidelines into routine daily practice. They identified appropriate staff to carry out risk assessment and to administer appropriate prophylaxis, as necessary. They also produced a "guideline pack" containing a training resource manual and implementation aids. Following this a multiple strategy implementation programme was used to introduce the guidelines, and an evaluation was carried out eight to ten months after the introduction of the guidelines. The evaluation identified a number of areas for improving current practice. Guideline implementation is a complex, time-consuming process.

  20. Physics issues in mirror and tandem mirror systems

    SciTech Connect

    Post, R.F.

    1984-06-15

    Over the years the study of the confinement of high temperature plasma in magnetic mirror systems has presented researchers with many unusual physics problems. Many of these issues are by now understood theoretically and documented experimentally. With the advent of the tandem mirror idea, some new issues have emerged and are now under intensive study. These include: (1) the generation and control of ambipolar confining potentials and their effect on axial confinement and, (2) the combined influence of nonaxisymmetric magnetic fields (used to ensure MHD stability) and electric magnetic particle drifts on radial transport. Physics considerations associated with these two categories of issues will be reviewed, including concepts for the control of radial transport, under study or proposed.

  1. ADAPTIVE EYE MODEL - Poster Paper

    NASA Astrophysics Data System (ADS)

    Galetskiy, Sergey O.; Kudryashov, Alexey V.

    2008-01-01

    We propose experimental adaptive eye model based on flexible 18-electrode bimorph mirror reproducing human eye aberrations up to 4th radial order of Zernike polynomials at frequency of 10Hz. The accuracy of aberrations reproduction in most cases is better than λ/10 RMS. The model is introduced to aberrometer for human eye aberrations compensation to improve visual acuity test.

  2. Solar tomography adaptive optics.

    PubMed

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  3. Optical Analysis of an Ultra-High resolution Two-Mirror Soft X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Wang, Cheng; Hoover, Richard B.

    1994-01-01

    This work has summarized for a Schwarzschild microscope some relationships between numerical aperture (NA), magnification, diameter of the primary mirror, radius of curvature of the secondary mirror, and the total length of the microscope. To achieve resolutions better than a spherical Schwarzschild microscope of 3.3 Lambda for a perfectly aligned and fabricated system. it is necessary to use aspherical surfaces to control higher-order aberrations. For an NA of 0.35, the aspherical Head microscope provides diffraction limited resolution of 1.4 Lambda where the aspherical surfaces differ from the best fit spherical surface by approximately 1 micrometer. However, the angle of incidence varies significantly over the primary and the secondary mirrors, which will require graded multilayer coatings to operate near peak reflectivities. For higher numerical apertures, the variation of the angle of incidence over the secondary mirror surface becomes a serious problem which must be solved before multilayer coatings can be used for this application. Tolerance analysis of the spherical Schwarzschild microscope has shown that water window operations will require 2-3 times tighter tolerances to achieve a similar performance for operations with 130 A radiation. Surface contour errors have been shown to have a significant impact on the MTF and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror.

  4. SIRTF primary mirror design, analysis, and testing

    NASA Technical Reports Server (NTRS)

    Sarver, George L., III; Maa, Scott; Chang, LI

    1990-01-01

    The primary mirror assembly (PMA) requirements and concepts for the Space Infrared Telescope Facility (SIRTF) program are discussed. The PMA studies at NASA/ARC resulted in the design of two engineering test articles, the development of a mirror mount cryogenic static load testing system, and the procurement and partial testing of a full scale spherical mirror mounting system. Preliminary analysis and testing of the single arch mirror with conical mount design and the structured mirror with the spherical mount design indicate that the designs will meet all figure and environmental requirements of the SIRTF program.

  5. TRL-6 Qualification of JWST Mirror Segments

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2009-01-01

    Since 1996, all key mirror technology for a JWST Primary Mirror Segment Assembly (PMSA), as defined directly from the JWST Level 1 Science Requirements, have been developed and matured from a Technology Readiness Level (TRL) of 3 to 6. This has occurred as the result of a highly successful technology development program including sub-scale Beryllium Mirror Demonstrator (SBMD), Advanced Mirror System Demonstrator (AMSD), and JWST flight mirror fabrication. Directly traceable prototypes (and in some cases the flight hardware itself) has been built, tested and operated in a relevant environment.

  6. Integrated modeling of the GMT laser tomography adaptive optics system

    NASA Astrophysics Data System (ADS)

    Piatrou, Piotr

    2014-08-01

    Laser Tomography Adaptive Optics (LTAO) is one of adaptive optics systems planned for the Giant Magellan Telescope (GMT). End-to-end simulation tools that are able to cope with the complexity and computational burden of the AO systems to be installed on the extremely large telescopes such as GMT prove to be an integral part of the GMT LTAO system development endeavors. SL95, the Fortran 95 Simulation Library, is one of the software tools successfully used for the LTAO system end-to-end simulations. The goal of SL95 project is to provide a complete set of generic, richly parameterized mathematical models for key elements of the segmented telescope wavefront control systems including both active and adaptive optics as well as the models for atmospheric turbulence, extended light sources like Laser Guide Stars (LGS), light propagation engines and closed-loop controllers. The library is implemented as a hierarchical collection of classes capable of mutual interaction, which allows one to assemble complex wavefront control system configurations with multiple interacting control channels. In this paper we demonstrate the SL95 capabilities by building an integrated end-to-end model of the GMT LTAO system with 7 control channels: LGS tomography with Adaptive Secondary and on-instrument deformable mirrors, tip-tilt and vibration control, LGS stabilization, LGS focus control, truth sensor-based dynamic noncommon path aberration rejection, pupil position control, SLODAR-like embedded turbulence profiler. The rich parameterization of the SL95 classes allows to build detailed error budgets propagating through the system multiple errors and perturbations such as turbulence-, telescope-, telescope misalignment-, segment phasing error-, non-common path-induced aberrations, sensor noises, deformable mirror-to-sensor mis-registration, vibration, temporal errors, etc. We will present a short description of the SL95 architecture, as well as the sample GMT LTAO system simulation

  7. [What mirror neurons have revealed: revisited].

    PubMed

    Murata, Akira; Maeda, Kazutaka

    2014-06-01

    The first paper on mirror neurons was published in 1992. In the span of over two decades since then, much knowledge about the relationship between social cognitive function and the motor control system has been accumulated. Direct matching of visual actions and their corresponding motor representations is the most important functional property of mirror neuron. Many studies have emphasized intrinsic simulation as a core concept for mirror neurons. Mirror neurons are thought to play a role in social cognitive function. However, the function of mirror neurons in the macaque remains unclear, because such cognitive functions are limited or lacking in macaque monkeys. It is therefore important to discuss these neurons in the context of motor function. Rizzolatti and colleagues have stressed that the most important function of mirror neurons in macaques is recognition of actions performed by other individuals. I suggest that mirror neurons in the Macaque inferior pariental lobule might be correlated with body schema. In the parieto-premotor network, matching of corollary discharge and actual sensory feedback is an essential neuronal operation. Recently, neurons showing mirror properties were found in some cortical areas outside the mirror neuron system. The current work would revisit the outcomes of mirror neuron studies to discuss the function of mirror neurons in the monkey.

  8. Do monkey F5 mirror neurons show changes in firing rate during repeated observation of natural actions?

    PubMed Central

    Kraskov, A.; Lemon, R. N.

    2013-01-01

    Mirror neurons were first discovered in area F5 of macaque monkeys. In humans, noninvasive studies have demonstrated an increased blood oxygen level-dependent (BOLD) signal in homologous motor areas during action observation. One approach to demonstrating that this indicates the existence of mirror neurons in humans has been to employ functional (f)MRI adaptation to test whether the same population of neurons is active during both observation and execution conditions. Although a number of human studies have reported fMRI adaptation in these areas, a recent study has shown that macaque mirror neurons do not attenuate their firing rate with two repetitions. Here we investigated whether mirror neurons modulate their firing rate when monkeys observed the same repeated natural action multiple times. We recorded from 67 mirror neurons in area F5 of two macaque monkeys while they observed an experimenter perform a reach-to-grasp action on a small food reward using a precision grip. Although no changes were detectable for the first two repetitions, we show that both the firing rate and the latency at which mirror neurons discharged during observation were subtly modulated by the repetition of the observed action over 7–10 trials. Significant adaption was mostly found in the period immediately before the grasp was performed. We also found that the local field potential activity in F5 (beta-frequency range, 16–23 Hz), which is attenuated during action observation, also showed systematic changes with repeated observation. These LFP changes occurred well in advance of the mirror neuron adaptation. We conclude that macaque mirror neurons can show intra-modal adaptation, but whether this is related to fMRI adaptation of the BOLD signal requires further investigation. PMID:24371289

  9. Do monkey F5 mirror neurons show changes in firing rate during repeated observation of natural actions?

    PubMed

    Kilner, J M; Kraskov, A; Lemon, R N

    2014-03-01

    Mirror neurons were first discovered in area F5 of macaque monkeys. In humans, noninvasive studies have demonstrated an increased blood oxygen level-dependent (BOLD) signal in homologous motor areas during action observation. One approach to demonstrating that this indicates the existence of mirror neurons in humans has been to employ functional (f)MRI adaptation to test whether the same population of neurons is active during both observation and execution conditions. Although a number of human studies have reported fMRI adaptation in these areas, a recent study has shown that macaque mirror neurons do not attenuate their firing rate with two repetitions. Here we investigated whether mirror neurons modulate their firing rate when monkeys observed the same repeated natural action multiple times. We recorded from 67 mirror neurons in area F5 of two macaque monkeys while they observed an experimenter perform a reach-to-grasp action on a small food reward using a precision grip. Although no changes were detectable for the first two repetitions, we show that both the firing rate and the latency at which mirror neurons discharged during observation were subtly modulated by the repetition of the observed action over 7-10 trials. Significant adaption was mostly found in the period immediately before the grasp was performed. We also found that the local field potential activity in F5 (beta-frequency range, 16-23 Hz), which is attenuated during action observation, also showed systematic changes with repeated observation. These LFP changes occurred well in advance of the mirror neuron adaptation. We conclude that macaque mirror neurons can show intra-modal adaptation, but whether this is related to fMRI adaptation of the BOLD signal requires further investigation.

  10. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (Light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror.

  11. Mirror neurons: their implications for group psychotherapy.

    PubMed

    Schermer, Victor L

    2010-10-01

    Recently discovered mirror neurons in the motor cortex of the brain register the actions and intentions of both the organism and others in the environment. As such, they may play a significant role in social behavior and groups. This paper considers the potential implications of mirror neurons and related neural networks for group therapists, proposing that mirror neurons and mirror systems provide "hard-wired" support for the group therapist's belief in the centrality of relationships in the treatment process and exploring their value in accounting for group-as-a-whole phenomena. Mirror neurons further confirm the holistic, social nature of perception, action, and intention as distinct from a stimulus-response behaviorism. The implications of mirror neurons and mirroring processes for the group therapist role, interventions, and training are also discussed.

  12. What do fish make of mirror images?

    PubMed Central

    Desjardins, Julie K.; Fernald, Russell D.

    2010-01-01

    Fish act aggressively towards their mirror image suggesting that they consider it another individual, whereas in some mammals behavioural response to mirrors may be an evidence of self-recognition. Since fish cannot self-recognize, we asked whether they could distinguish between fighting a mirror image and fighting a real fish. We compared molecular, physiological and behavioural responses in each condition and found large differences in brain gene expression levels. Although neither levels of aggressive behaviour nor circulating androgens differed between these conditions, males fighting a mirror image had higher immediate early gene (IEG) expression in brain areas homologous to the amygdala and hippocampus than controls. Since amygdalar responses are associated with fear and fear conditioning in other species, higher levels of brain activation when fighting a mirror suggest fish experience fear in response to fights with a mirror image. Clearly, the fish recognize something unusual about the mirror image and the differential brain response may reflect a cognitive distinction. PMID:20462889

  13. JWST Lightweight Mirror TRL-6 Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology for a Primary Mirror Segment Assembly (PMSA) is a system of components: reflective coating; polished optical surface; mirror substrate; actuators, mechanisms and flexures; and reaction structure. The functional purpose of a PMSA is to survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance for the anticipated thermal environment. At the inception of JWST in 1996, such a capability was at a Technology Readiness Level (TRL) of 3. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured mirror technology for JWST to TRL-6. A directly traceable prototype (and in some cases the flight hardware itself) has been built, tested and operated in a relevant environment.

  14. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55-m-diameter, proof-of-concept mirror.

  15. Hubble Space Telescope Primary Mirror

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This photograph shows the Hubble Space Telescope's (HST's) Primary Mirror being polished at the the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025-micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  16. Hubble Space Telescope Primary Mirror

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This photograph shows engineers inspecting the Hubble Space Telescope's (HST's) Primary Mirror at the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025- micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  17. Hubble Space Telescope Primary Mirror

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This photograph shows the Hubble Space Telescope's (HST's) Primary Mirror being ground at the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025-micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  18. Radius of curvature controlled mirror

    DOEpatents

    Neil, George R.; Rathke, John Wickham; Schultheiss, Thomas John; Shinn, Michelle D.; Dillon-Townes, Lawrence A.

    2006-01-17

    A controlled radius of curvature mirror assembly comprising: a distortable mirror having a reflective surface and a rear surface; and in descending order from the rear surface; a counter-distortion plate; a flow diverter having a flow diverter aperture at the center thereof; a flow return plate having a flow return aperture at the center thereof; a thermal isolation plate having a thermal isolation plate aperture at the center thereof and a flexible heater having a rear surface and a flexible heater aperture at the center thereof; a double walled tube defining a coolant feed chamber and a coolant return chamber; said coolant feed chamber extending to and through the flow diverter aperture and terminating at the counter-distortion plate and the coolant return chamber extending to and through the thermal isolation backplate and terminating at the flow diverter; and a coolant feed and a coolant return exit at the rear of said flexible heater.

  19. Beautiful mirrors at the LHC

    NASA Astrophysics Data System (ADS)

    Kumar, Kunal; Shepherd, William; Tait, Tim M. P.; Vega-Morales, Roberto

    2010-08-01

    We explore the “Beautiful Mirrors” model, which aims to explain the measured value of A b FB , discrepant at the 2.9σ level. This scenario introduces vector-like quarks which mix with the bottom, subtly affecting its coupling to the Z. The spectrum of the new particles consists of two bottom-like quarks and a charge -4/3 quark, all of which have electroweak interactions with the third generation. We explore the phenomenology and discovery reach for these new particles at the LHC, exploring single mirror quark production modes whose rates are proportional to the same mixing parameters which resolve the A b FB anomaly. We find that for mirror quark masses ≲ 500 GeV, a 14 TeV LHC with 300 fb-1 is required to reasonably establish the scenario and extract the relevant mixing parameters.

  20. Mirror fusion vacuum technology developments

    SciTech Connect

    Batzer, T.H.; Call, W.R.

    1983-11-21

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10/sup 7/ to 10/sup 8/ l/s for D/sub 2/, T/sub 2/ and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility.

  1. Two-mirrored galvanometer laser light sheet generator

    NASA Technical Reports Server (NTRS)

    Leighty, B. D.; Franke, J. M.; Jones, S. B.; Rhodes, D. B.

    1988-01-01

    Light sheets generated with either laser or noncoherent sources have found widespread application to flow visualization. Previous light sheet generating systems were usually dedicated to a specific viewing geometry. The technique with the most flexibility is the galvanometer mirror based laser light sheet system. A two-mirrored system was designed and developed to provide flexibility and adaptability to a wide range of applications. The design includes the capability to control the size and location of the laser light sheet in real time, to generate horizontal or vertical sheets, to sweep the sheet repeatedly through a volume, to generate multiple sheets with controllable separation and to rotate single or multiple laser light sheets. The system is capable of producing up to 12 sheets of laser light at an angular divergence of + or - 20 degrees. Maximum scan rate of any one line is 500 Hertz. This system has proven to be uniquely versatile and a patent has been applied for.

  2. A twin-mirrored galvanometer laser light sheet generator

    NASA Technical Reports Server (NTRS)

    Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Leighty, Bradley D.

    1988-01-01

    A galvanometer mirror-based laser light sheet system has been developed for use in the Basic Aerodynamics Research Tunnel at NASA Langley. This system generates and positions single or multiple light sheets over aeronautical research models being tested in the low speed tunnel. This report describes a twin mirrored galvanometer laser light sheet generator and shows typical light sheet arrangements in use. With this system, illumination of smoke entrained in the flow over a delta wing model reveals the vortical flow produced by the separation of the flow at the leading edge of the model. The light sheet system has proven to be very adaptable and easy to use in sizing and positioning light sheets in wind tunnel applications.

  3. Flextensional Single Crystal Piezoelectric Actuators for Membrane Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Sahul, Raffi; Hackenberger, Wesley S.

    2006-01-01

    Large aperture and light weight space telescopes requires adaptive optics with deformable mirrors capable of large amplitude aberration corrections at a broad temperature range for space applications including NASA missions such as SAFIR, TPF, Con-X, etc. The single crystal piezoelectric actuators produced at TRS offer large stroke, low hysteresis, and an excellent cryogenic strain response. Specifically, the recently developed low profile, low voltage flextensional single crystal piezoelectric actuators with dimensions of 18 x 5 x 1 mm showed stroke larger than 95 microns under 300 V. Furthermore, flextensional actuator retained approx. 40-50% of its room temperature strain at liquid Nitrogen environment. In this paper, ATILA FEM design of flextensional actuators, actuator fabrication, and characterization results will be presented for the future work on membrane deformable mirror.

  4. The ESO Adaptive Optics Facility under Test

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-François; Hackenberg, Wolfgang; Kuntschner, Harald; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Rob; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andrea; Duchateau, Michel; Downing, Mark; Moreno, Javier; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Max; Pfrommer, Thomas; Garcia-Rissmann, Aurea; Biasi, Roberto; Gallieni, Daniele; Stuik, Remko

    2013-12-01

    The Adaptive Optics Facility project has received most of its subsystems in Garching and the ESO Integration Hall has become the central operation location for the next phase of the project. The main test bench ASSIST and the 2nd Generation M2-Unit (hosting the Deformable Secondary Mirror) have been granted acceptance late 2012. The DSM will now undergo a series of tests on ASSIST to qualify its optical performance which launches the System Test Phase of the AOF. The tests will validate the AO modules operation with the DSM: first the GRAAL adaptive optics module for Hawk-I in natural guide star AO mode on-axis and then its Ground Layer AO mode. This will be followed by the GALACSI (for MUSE) Wide-Field-Mode (GLAO) and then the more challenging Narrow-Field-Mode (LTAO). We will report on the status of the subsystems at the time of the conference but also on the performance of the delivered ASSIST test bench, the DSM and the 20 Watt Sodium fiber Laser pre-production unit which has validated all specifications before final manufacturing of the serial units. We will also present some considerations and tools to ensure an efficient operation of the Facility in Paranal.

  5. Manufacturability of compact synchrotron mirrors

    NASA Astrophysics Data System (ADS)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  6. Construction of Prototype Lightweight Mirrors

    NASA Technical Reports Server (NTRS)

    Robinson, William G.

    1997-01-01

    This contract and the work described was in support of a Seven Segment Demonstrator (SSD) and demonstration of a different technology for construction of lightweight mirrors. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities; Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form space telescope with large aperture. Provide very large (less than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or quaternary mirror into a quasi-continuous surface with individual subapertures phased so that near diffraction limited imaging in the visible wavelength region is achieved. Continuous compensation of optical wavefront due to perturbations caused by imperfections, natural disturbances, and equipment induced vibrations/deflections to provide near diffraction limited imaging performance in the visible wavelength region. Demonstrate the feasibility of fabricating such systems with reduced mass and cost compared to past approaches. While the SSD could not be expected to satisfy all of the above capabilities, the intent was to start identifying and understanding new technologies that might be applicable to these goals.

  7. Deflectometric measurement of large mirrors

    NASA Astrophysics Data System (ADS)

    Olesch, Evelyn; Häusler, Gerd; Wörnlein, André; Stinzing, Friedrich; van Eldik, Christopher

    2014-06-01

    We discuss the inspection of large-sized, spherical mirror tiles by `Phase Measuring Deflectometry' (PMD). About 10 000 of such mirror tiles, each satisfying strict requirements regarding the spatial extent of the point-spread-function (PSF), are planned to be installed on the Cherenkov Telescope Array (CTA), a future ground-based instrument to observe the sky in very high energy gamma-rays. Owing to their large radii of curvature of up to 60 m, a direct PSF measurement of these mirrors with concentric geometry requires large space. We present a PMD sensor with a footprint of only 5×2×1.2 m3 that overcomes this limitation. The sensor intrinsically acquires the surface slope; the shape data are calculated by integration. In this way, the PSF can be calculated for real case scenarios, e.g., when the light source is close to infinity and off-axis. The major challenge is the calibration of the PMD sensor, specifically because the PSF data have to be reconstructed from different camera views. The calibration of the setup is described, and measurements presented and compared to results obtained with the direct approach.

  8. Simple yet accurate noncontact device for measuring the radius of curvature of a spherical mirror

    SciTech Connect

    Spiridonov, Maxim; Toebaert, David

    2006-09-10

    An easily reproducible device is demonstrated to be capable of measuring the radii of curvature of spherical mirrors, both convex and concave, without resorting to high-end interferometric or tactile devices. The former are too elaborate for our purposes,and the latter cannot be used due to the delicate nature of the coatings applied to mirrors used in high-power CO2 laser applications. The proposed apparatus is accurate enough to be useful to anyone using curved optics and needing a quick way to assess the values of the radii of curvature, be it for entrance quality control or trouble shooting an apparently malfunctioning optical system. Specifically, the apparatus was designed for checking 50 mm diameter resonator(typically flat or tens of meters concave) and telescope (typically some meters convex and concave) mirrors for a high-power CO2 laser, but it can easily be adapted to any other type of spherical mirror by a straightforward resizing.

  9. Simple yet accurate noncontact device for measuring the radius of curvature of a spherical mirror

    NASA Astrophysics Data System (ADS)

    Spiridonov, Maxim; Toebaert, David

    2006-09-01

    An easily reproducible device is demonstrated to be capable of measuring the radii of curvature of spherical mirrors, both convex and concave, without resorting to high-end interferometric or tactile devices. The former are too elaborate for our purposes, and the latter cannot be used due to the delicate nature of the coatings applied to mirrors used in high-power CO2 laser applications. The proposed apparatus is accurate enough to be useful to anyone using curved optics and needing a quick way to assess the values of the radii of curvature, be it for entrance quality control or trouble shooting an apparently malfunctioning optical system. Specifically, the apparatus was designed for checking 50 mm diameter resonator (typically flat or tens of meters concave) and telescope (typically some meters convex and concave) mirrors for a high-power CO2 laser, but it can easily be adapted to any other type of spherical mirror by a straightforward resizing.

  10. Aligning Three Off-Axis Mirrors with Help of a DOE

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Wilson, Daniel

    2003-01-01

    A proposed method based on the use of a special-purpose diffractive optical element (DOE) would simplify (relative to prior methods) the alignment of three off-axis mirrors that constitute an imaging optical system. The method would exploit the fact that a DOE can be fabricated lithographically with high accuracy by electron-beam lithography in a thin film of poly(methyl methacrylate). The method would effectively transfer much of the problem of obtaining the needed accuracy from the mechanical-mirror-alignment domain to the lithographic domain. Unlike other methods that depend on specific symmetries (e.g., sphericity and/or concentricity), this method is expected to apply with equal ease and accuracy to mirrors of any configuration including aspherical, decentered mirrors. Assuming that one of the mirrors of a general three-mirror imaging optical system can serve as a reference for the alignment of the other two mirrors, such a system has 12 degrees of freedom in alignment. In the proposed method, one would use an interferometer in combination with a DOE to effect precise and relatively rapid and easy alignment of two of the mirrors with respect to each other, thus reducing the alignment task to that of the six degrees of freedom of the remaining mirror. The figure depicts a representative three-mirror off-axis imaging system, wherein the primary and tertiary mirrors (M1 and M3, respectively) are concave and the secondary mirror (M2) is convex. The DOE for aligning this system would be fabricated on the right surface of an optical flat and could be made to have either negative or positive focusing power, depending on the requirements of the specific application. The DOE could be designed to be placed at any convenient distance from M1 and M3 - again, depending on the application. The DOE would be illuminated with light coming from the left, generated by an interferometer. First, assuming the optical flat is of high quality, the plane of the DOE would be aligned

  11. Design Study of an 8 Meter Monolithic Mirror UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    This paper will review a recent NASA MSFC preliminary study that demonstrated the feasibility of launching a 6 to 8 meter class monolithic primary mirror telescope to Sun-Earth L2 using an Ares V. The study started with the unique capabilities of the Ares V vehicle and examined the feasibility of launching a large aperture low cost low risk telescope based on a conventional ground based glass primary mirror. Specific technical areas studied included optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; launch vehicle performance and trajectory; spacecraft including structure, propulsion, GN & C, avionics, power systems and reaction wheels; operations & servicing, mass budget and system cost. The study telescope was an on-axis three-mirror anastigmatic design with a fine steering mirror. The observatory has a 100 arc-minute (8.4 X 12 arc-minutes) of diffraction limited field of view at a wavelength les than 500 nm. The study assumed that the primary mirror would be fabricated from an existing Schott Zerodur residual VLT blank edged to 6.2 meters, 175 mm thick at the edge with a mass of 11,000 kg. The entire mass budget for the observatory including primary mirror, structure, light baffle tube, instruments, space craft, avionics, etc. is less than 40,000 kg - a 33% mass margin on the Ares V's 60,000 kg Sun-Earth L2 capability. An 8 meter class observatory would have a total mass of less than 60,000 kg of which the primary mirror is the largest contributor.

  12. Performance of a collimating L-shaped laterally graded multilayer mirror for the IXS analyzer system at NSLS-II.

    PubMed

    Suvorov, Alexey; Coburn, David S; Cunsolo, Alessandro; Keister, Jeffrey W; Upton, Mary H; Cai, Yong Q

    2014-05-01

    The L-shaped laterally graded multilayer mirror is a vital part of the ultrahigh-energy and momentum-resolution inelastic X-ray scattering spectrometer at the National Synchrotron Light Source II. This mirror was designed and implemented as a two-dimensional collimating optic for the analyzer system. Its performance was characterized using a secondary large-divergence source at the 30-ID beamline of the Advanced Photon Source, which yielded an integrated reflectivity of 47% and a collimated beam divergence of 78 µrad with a source size of 10 µm. Numerical simulations of the mirror performance in tandem with the analyzer crystal optics provided details on the acceptance sample volume in forward scattering and defined the technical requirements on the mirror stability and positioning precision. It was shown that the mirror spatial and angular stability must be in the range <8.4 µm and <21.4 µrad, respectively, for reliable operation of the analyzer.

  13. Mirror Metrology Using Nano-Probe Supports

    NASA Technical Reports Server (NTRS)

    Robinson, David; Hong, Maoling; Byron, Glenn; McClelland, Ryan; Chan, Kai-Wing

    2012-01-01

    Thin, lightweight mirrors are needed for future x-ray space telescopes in order to increase x-ray collecting area while maintaining a reduced mass and volume capable of being launched on existing rockets. However, it is very difficult to determine the undistorted shape of such thin mirrors because the mounting of the mirror during measurement causes distortion. Traditional kinematic mounts have insufficient supports to control the distortion to measurable levels and prevent the mirror from vibrating during measurement. Over-constrained mounts (non-kinematic) result in an unknown force state causing mirror distortion that cannot be determined or analytically removed. In order to measure flexible mirrors, it is necessary to over-constrain the mirror. Over-constraint causes unknown distortions to be applied to the mirror. Even if a kinematic constraint system can be used, necessary imperfections in the kinematic assumption can lead to an unknown force state capable of distorting the mirror. Previously, thicker, stiffer, and heavier mirrors were used to achieve low optical figure distortion. These mirrors could be measured to an acceptable level of precision using traditional kinematic mounts. As lighter weight precision optics have developed, systems such as the whiffle tree or hydraulic supports have been used to provide additional mounting supports while maintaining the kinematic assumption. The purpose of this invention is to over-constrain a mirror for optical measurement without causing unacceptable or unknown distortions. The invention uses force gauges capable of measuring 1/10,000 of a Newton attached to nano-actuators to support a thin x-ray optic with known and controlled forces to allow for figure measurement and knowledge of the undeformed mirror figure. The mirror is hung from strings such that it is minimally distorted and in a known force state. However, the hanging mirror cannot be measured because it is both swinging and vibrating. In order to

  14. Symmetry breaking: a compact disc reflected in a mirror

    NASA Astrophysics Data System (ADS)

    Lúcio Prados Ribeiro, Jair

    2016-11-01

    If a compact disc (CD) is placed in front of a plane mirror, its image displays different colours from the ones observed in the real CD. This fact occurs because a CD surface is a diffraction grating which disperses the incident wavelengths. As the object and its image are seen from different viewing angles, the observed colours are not the same, so the image cannot be considered symmetrical to the object. A theoretical discussion on the topic and a simple experimental activity, adequate to secondary school, are presented.

  15. High voltage, high resolution, digital-to-analog converter for driving deformable mirrors

    NASA Astrophysics Data System (ADS)

    Kittredge, Jeffrey

    Digital-to-analog converters with a range over 50 volts are required for driving micro-electro mechanical system deformable mirrors used in adaptive optics. An existing tested and deployed DM driver has 1024 channels and resolution of 15mV per Least Significant Bit. DMs used in the search for exoplanets require 3mV per LSB resolution. A technique is presented to employ a secondary high resolution and low voltage DAC which has for it's ground the output of the high voltage DAC. The entire system then has the range of high voltage DAC yet the resolution of the low voltage DAC. A method for providing signal and power to the floating system is given. Rudimentary micro controller firmware and also PC software is presented to achieve complete functionality. The technique uses all off-the-shelf components. Resolution of 1.6mV per LSB, 60V range and 36mW of power per channel is achieved.

  16. Mirror illumination and spillover measurements of the Atacama Cosmology Telescope

    NASA Astrophysics Data System (ADS)

    Gallardo, Patricio; Dünner, Rolando; Wollack, Edward; Henriquez, Fernando; Jerez-Hanckes, Carlos

    2012-09-01

    The Atacama Cosmology Telescope (ACT) is a 6 m telescope designed to map the Cosmic Microwave Background (CMB) simultaneously at 145 GHz, 220 GHz and 280GHz. The receiver in ACT, the Millimeter Bolometer Array Camera, features 1000 TES bolometers in each band. The detector performance depends critically on the total optical loading, requiring the spillover contributions from the optics to be minimal. This inspired the use of a cold Lyot stop to limit the illumination of the primary and the use of guard rings surrounding the primary and secondary reflectors. Here, we present a direct measurement of the illumination aperture for both reflectors and of the attenuation level outside the main optical path. We used a 145 GHz, 1mW source and a chopper wheel to produce a time-varying signal with a broad beam profile. We sampled the response of the camera for different locations of the source, placed in front and beside the primary and secondary mirrors. The aperture of the primary was measured to be 5.72 ± 0.17m in diameter (95 ± 3% of its geometrical size), while the aperture of the secondary yielded 2 ± 0.12m in diameter. Both apertures are consistent with the optical design. Comparing to previous measurements of the beam solid angle from planet observations, we estimate an optical efficiency of 72.3 ± 4.8%. We found that the attenuation outside the primary aperture was -16 ± 2 dB, which is below the theoretical expectations, and -22 ± 1 dB outside the secondary aperture, which is consistent with simulations. These results motivated the extension of the baffles surrounding the secondary mirror, with the following reduction in detector optical loading from 2.24pW to 1.88 pW.

  17. Mirror Illumination and Spillover Measurements of the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Gallardo, Patricio; Dunner, Rolando; Wollack, Ed; Jerez-Hanckes, Carlos

    2012-01-01

    The Atacama Cosmology Telescope (ACT) is a 6 m telescope designed to map the Cosmic Microwave Background (CMB) simultaneously at 145 GHz, 220GHz and 280GHz, The receiver in ACT, the Millimeter Bolometer Array Camera, features 1000 TES bolometers in each band, The detector performance depends critically on the total optical loading, requiring the spmover contributions from the optics to be minimal. This inspired the use of a cold Lyot stop to limit the illumination of the primary and the use of guard rings surrounding the primary and secondary reflectors. Here, we present a direct measurement of the illumination aperture for both reflectors and of the attenuation level outside the main optical path. We used a 145 GHz, 1 m W source and a chopper wheel to produce a time-varying signal with a broad heam proflle, We sampled the response of the camera for different locations of the source, placed in front and beside the primary and secondary mirrors. The aperture of the primary was measured to be 5,72 plus or minus 0,17m in diameter (95 plus or minus 3% of its geometrical size), while the aperture of the secondary yielded 2 plus or minus 0.12m in diameter. Both apertures are consistent with the optical design. Comparing to previous measurements of the beam solid angle from planet observations, we estimate an optical efficiency of 72.3 plus or minus 4,8%. We found that the attenuation outside the primary aperture was -16 plus or minus 2dB, which is below the theoretical expectations, and -22 plus or minus 1 dB outside the secondary aperture, which is consistent with simulations. These results motivated the extension of the baffles surrounding the secondary mirror, with the following reduction in detector optical loading from 2,24 pW to 188pW.

  18. [Secondary hypertension].

    PubMed

    Yoshida, Yuichi; Shibata, Hirotaka

    2015-11-01

    Hypertension is a common disease and a crucial predisposing factor of cardiovascular diseases. Approximately 10% of hypertensive patients are secondary hypertension, a pathogenetic factor of which can be identified. Secondary hypertension consists of endocrine, renal, and other diseases. Primary aldosteronism, Cushing's syndrome, pheochromocytoma, hyperthyroidism, and hypothyroidism result in endocrine hypertension. Renal parenchymal hypertension and renovascular hypertension result in renal hypertension. Other diseases such as obstructive sleep apnea syndrome are also very prevalent in secondary hypertension. It is very crucial to find and treat secondary hypertension at earlier stages since most secondary hypertension is curable or can be dramatically improved by specific treatment. One should keep in mind that screening of secondary hypertension should be done at least once in a daily clinical practice. PMID:26619670

  19. Mirrors, mirrors on the wall…the ubiquitous multiple reflection error.

    PubMed

    Lawson, Rebecca

    2012-01-01

    Participants decided when somebody, Janine, could see their face in a horizontal row of adjacent mirrors mounted flat on the same wall. They saw real mirrors and a shop-dummy representing Janine. Such coplanar mirrors reflect different, non-overlapping areas of a scene. However, almost everybody made an unexpected error: they claimed that Janine would see her face reflected in multiple mirrors simultaneously. They therefore responded as if each mirror showed similar information and thus grossly overestimated how much each mirror revealed. Further studies established that this multiple reflection error also occurred for vertical rows of mirrors and for different areas of a single, large mirror. The error was even common if the participant themselves sat in front of a set of covered-up mirrors and indicated where they would be able to see their own reflection. In the latter case, people often made multiple reflection errors despite having seen all the mirrors uncovered immediately before they responded. People's gross overestimation of how much of a scene a mirror reflects and their inability to learn to correct this false belief explains why, despite a lifetime's experience of mirrors, they incorrectly think they will see themselves in all nearby mirrors.

  20. Culture, the Crack'd Mirror, and the Neuroethics of Disease.

    PubMed

    Gillett, Grant

    2016-10-01

    Human beings are sensorimotor coupled to the actual world and also attuned to the symbolic world of culture and the techniques of adaptation that culture provides. The self-image and self-shaping mediated by that mirror directly affects the neurocognitive structures that integrate human neural activity and reshape its processing capacities through top-down or autopoietic effects. Thus a crack'd mirror, which disrupts the processes of enactive self-configuration, can be disabling for an individual. That is exactly what happens in postcolonial or immigration contexts in which individuals' cultural adaptations are marginalized and disconnected in diverse and often painful and disorienting ways. The crack'd mirror is therefore a powerful trope for neuroethics and helps us understand the social and moral pathologies of many indigenous and immigrant communities. PMID:27634715

  1. Culture, the Crack'd Mirror, and the Neuroethics of Disease.

    PubMed

    Gillett, Grant

    2016-10-01

    Human beings are sensorimotor coupled to the actual world and also attuned to the symbolic world of culture and the techniques of adaptation that culture provides. The self-image and self-shaping mediated by that mirror directly affects the neurocognitive structures that integrate human neural activity and reshape its processing capacities through top-down or autopoietic effects. Thus a crack'd mirror, which disrupts the processes of enactive self-configuration, can be disabling for an individual. That is exactly what happens in postcolonial or immigration contexts in which individuals' cultural adaptations are marginalized and disconnected in diverse and often painful and disorienting ways. The crack'd mirror is therefore a powerful trope for neuroethics and helps us understand the social and moral pathologies of many indigenous and immigrant communities.

  2. Passivation coating for flexible substrate mirrors

    DOEpatents

    Tracy, C. Edwin; Benson, David K.

    1990-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, lightweight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention.

  3. Magnetic mirror fusion: status and prospects

    SciTech Connect

    Post, R.F.

    1980-02-11

    Two improved mirror systems, the tandem mirror (TM) and the field-reversed mirror (FRM) are being intensively studied. The twin practical aims of these studies: to improve the economic prospects for mirror fusion power plants and to reduce the size and/or complexity of such plants relative to earlier approaches to magnetic fusion. While at the present time the program emphasis is still strongly oriented toward answering scientific questions, the emphasis is shifting as the data accumulates and as larger facilities - ones with a heavy technological and engineering orientation - are being prepared. The experimental and theoretical progress that led to the new look in mirror fusion research is briefly reviewed, the new TM and the FRM ideas are outlined, and the projected future course of mirror fusion research is discussed.

  4. Adaptive Optics for Industry and Medicine

    NASA Astrophysics Data System (ADS)

    Dainty, Christopher

    2008-01-01

    pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead

  5. Design of smart composite platforms for adaptive trust vector control and adaptive laser telescope for satellite applications

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.

    2013-04-01

    This paper presents design of smart composite platforms for adaptive trust vector control (TVC) and adaptive laser telescope for satellite applications. To eliminate disturbances, the proposed adaptive TVC and telescope systems will be mounted on two analogous smart composite platform with simultaneous precision positioning (pointing) and vibration suppression (stabilizing), SPPVS, with micro-radian pointing resolution, and then mounted on a satellite in two different locations. The adaptive TVC system provides SPPVS with large tip-tilt to potentially eliminate the gimbals systems. The smart composite telescope will be mounted on a smart composite platform with SPPVS and then mounted on a satellite. The laser communication is intended for the Geosynchronous orbit. The high degree of directionality increases the security of the laser communication signal (as opposed to a diffused RF signal), but also requires sophisticated subsystems for transmission and acquisition. The shorter wavelength of the optical spectrum increases the data transmission rates, but laser systems require large amounts of power, which increases the mass and complexity of the supporting systems. In addition, the laser communication on the Geosynchronous orbit requires an accurate platform with SPPVS capabilities. Therefore, this work also addresses the design of an active composite platform to be used to simultaneously point and stabilize an intersatellite laser communication telescope with micro-radian pointing resolution. The telescope is a Cassegrain receiver that employs two mirrors, one convex (primary) and the other concave (secondary). The distance, as well as the horizontal and axial alignment of the mirrors, must be precisely maintained or else the optical properties of the system will be severely degraded. The alignment will also have to be maintained during thruster firings, which will require vibration suppression capabilities of the system as well. The innovative platform has been

  6. Process for preparing improved silvered glass mirrors

    DOEpatents

    Buckwalter, C.Q. Jr.

    1980-01-28

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

  7. Process for preparing improved silvered glass mirrors

    DOEpatents

    Buckwalter, Jr., Charles Q.

    1981-01-01

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

  8. Future engineering needs of mirror fusion reactors

    SciTech Connect

    Thomassen, K.I.

    1982-07-30

    Fusion research has matured during the last decade and significant insight into the future program needs has emerged. While some will properly note that the crystal ball is cloudy, it is equally important to note that the shape and outline of our course is discernable. In this short summary paper, I will draw upon the National Mirror Program Plan for mirror projects and on available design studies of these projects to put the specific needs of the mirror program in perspective.

  9. Deformable mirror for short wavelength applications

    DOEpatents

    Chapman, Henry N.; Sweeney, Donald W.

    1999-01-01

    A deformable mirror compatible with short wavelength (extreme ultraviolet) radiation that can be precisely controlled to nanometer and subnanometer accuracy is described. Actuators are coupled between a reaction plate and a face plate which has a reflective coating. A control system adjusts the voltage supplied to the actuators; by coordinating the voltages supplied to the actuators, the reflective surface of the mirror can be deformed to correct for dimensional errors in the mirror or to produce a desired contour.

  10. Advanced Mirror System Demonstrator (AMSD) Risk Management

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Kaukler, Donna; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    This paper will report risk issues associated with designing, manufacturing, and testing the Advanced Mirror System Demonstrator (AMSD). The Advanced Mirror System Demonstrator (AMSD) will be developed as a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. This technology will add to the knowledge base for selection for the Next Generation Space Telescope (NGST), Space Based Laser (SBL), Research Laboratory mission (AFRL), and other government agency programs.

  11. The Physical Mirror Equivalence for the Local

    NASA Astrophysics Data System (ADS)

    Cacciatori, Sergio Luigi; Compagnoni, Marco; Guerra, Stefano

    2015-01-01

    In this paper we consider the total space of the canonical bundle of and we use a proposal by Hosono, together with results of Seidel and Auroux-Katzarkov-Orlov, to deduce the physical mirror equivalence between and the derived Fukaya category of its mirror which assigns the expected central charge to BPS states. By construction, our equivalence is compatible with the mirror map relating the complex and the Kähler moduli spaces and with the computation of Gromov-Witten invariants.

  12. Tandem mirror technology demonstration facility

    SciTech Connect

    Not Available

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  13. Effect of Gemini primary mirror position relative to the lateral support on mirror figure

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; Stepp, Larry M.

    2000-07-01

    The Gemini primary mirror support incorporates a system of hydraulic whiffletrees to carry the mirror weight and define its position. The six orthogonal kinematic degrees of freedom are controlled by six hydraulic zones--three axial, two lateral, plus a transverse lateral. By varying the fluid volumes in these hydraulic zones the mirror position can be adjusted in all six degrees of freedom. Because of the finite lengths of the linkages that connect the mirror to the lateral supports, any shift in mirror position changes the amplitudes and directions of the applied forces with a resulting effect on the static balance and mirror figure. These effects have been calculated for mirror translations and rotations in all six degrees of freedom, resulting in predictions of the changes in the axial and lateral support forces and in the mirror figure. This paper describes the modeling as well as experimental verification of the results.

  14. Zero Density of Open Paths in the Lorentz Mirror Model for Arbitrary Mirror Probability

    NASA Astrophysics Data System (ADS)

    Kraemer, Atahualpa S.; Sanders, David P.

    2014-09-01

    We show, incorporating results obtained from numerical simulations, that in the Lorentz mirror model, the density of open paths in any finite box tends to 0 as the box size tends to infinity, for any mirror probability.

  15. Simulation of segmented mirror telescope and calculating asphericity of segmented mirror

    NASA Astrophysics Data System (ADS)

    Liao, Zhou; Qiu, Qi; Zhang, Yudong

    2014-09-01

    To determine parameters of the Segmented Mirror Telescope is quite essential for the design, manufacture, testing and construct of the telescope system, especially the F-number parameters and curvature radius of the primary mirror, as well as the asphericity. A model of Sub-segmented mirror was established in this paper, based on which, using the feature points combined with lagrange condition extreme, the asphericity calculation of the asymmetrical hexagon off-axis parabolic mirror in different central points is solved. The 8m and 11m segmented mirror telescope were taken for example in the calculation, and got the relation curve between F-number of primary mirror and Asphericity of segmented mirror, respectively. This work is useful for the design, manufacturing and testing of the large diameter Segmented Mirror Telescope.

  16. Mounting with compliant cylinders for deformable mirrors.

    PubMed

    Reinlein, Claudia; Goy, Matthias; Lange, Nicolas; Appelfelder, Michael

    2015-04-01

    A method is presented to mount large aperture unimorph deformable mirrors by compliant cylinders (CC). The CCs are manufactured from a soft silicone, and shear testing is performed in order to evaluate the Young's modulus. A scale mirror model is assembled to evaluate mount-induced change of piezoelectric deformation, and its applicability for tightly focusing mirrors. Experiments do not show any decrease of piezoelectric stroke. Further it is shown that the changes of surface fidelity by the attachment of the deformable mirror to its mount are neglectable.

  17. First mirrors for diagnostic systems of ITER

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Voitsenya, V. S.; Costley, A.; Donné, A. J. H.; SWG on First Mirrors of the ITPA Topical Group on Diagnostics

    2007-08-01

    The majority of optical diagnostics presently foreseen for ITER will implement in-vessel metallic mirrors as plasma-viewing components. Mirrors are used for the observation of the plasma radiation in a very wide wavelength range: from about 1 nm up to a few mm. In the hostile ITER environment, mirrors are subject to erosion, deposition, particle implantation and other adverse effects which will change their optical properties, affecting the entire performance of the respective diagnostic systems. The Specialists Working Group (SWG) on first mirrors was established under the wings of the International Tokamak Physics Activity (ITPA) Topical Group (TG) on Diagnostics to coordinate and guide the investigations on diagnostic mirrors towards the development of optimal, robust and durable solutions for ITER diagnostic systems. The results of tests of various ITER-candidate mirror materials, performed in Tore-Supra, TEXTOR, DIII-D, TCV, T-10, TRIAM-1M and LHD under various plasma conditions, as well as an overview of laboratory investigations of mirror performance and mirror cleaning techniques are presented in the paper. The current tasks in the R&D of diagnostic mirrors will be addressed.

  18. Composite technology for lightweight optical mirrors

    NASA Astrophysics Data System (ADS)

    Abt, Bernd; Helwig, Gunter; Scheulen, Dietmar

    1990-07-01

    Reflectors for antennas using fiber-composite technology today represent the state of the art, and mirrors for radio telescopes occasionally are already made using this technology. For even shorter wavelengths, including the visible light, glass mirrors have been used almost exclusively and, rarely, metal mirrors (for example made of beryllium). In general a surface contour accuracy of about 1/20 wavelength is required. Years of development work based on experience gained in aircraft construction and space technology made it possible to improve fiber-composite technology to such an extent that a substitute for heavy glass has become feasible, opening up new applications for lighter and/or larger mirrors.

  19. Are mirror-sensations really synesthetic?

    PubMed

    Derbyshire, Stuart W G

    2015-01-01

    Mirror-sensations, including touch and pain, are often referred to as synesthetic. The term can be challenged, however, because mirror-sensations lack the incongruency and saliency of synesthesia, may involve problems of perspective rather than entangled sensations, and may be easier to generate with suggestion. If mirror-sensations are truly sensations then they might be expected to act like the true sensation and mirror-pain, for example, might inhibit pain at a distance or itch in the same location. These predictions are highly testable. PMID:25997924

  20. Adaptive optical ghost imaging through atmospheric turbulence.

    PubMed

    Shi, Dongfeng; Fan, Chengyu; Zhang, Pengfei; Zhang, Jinghui; Shen, Hong; Qiao, Chunhong; Wang, Yingjian

    2012-12-17

    We demonstrate for the first time (to our knowledge) that a high-quality image can still be obtained in atmospheric turbulence by applying adaptive optical ghost imaging (AOGI) system even when conventional ghost imaging system fails to produce an image. The performance of AOGI under different strength of atmospheric turbulence is investigated by simulation. The influence of adaptive optics system with different numbers of adaptive mirror elements on obtained image quality is also studied.

  1. Twin-Mirrored-Galvanometer Laser-Light-Sheet Generator

    NASA Technical Reports Server (NTRS)

    Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Leighty, Bradley D.

    1991-01-01

    Multiple, rotating laser-light sheets generated to illuminate flows in wind tunnels. Designed and developed to provide flexibility and adaptability to wide range of applications. Design includes capability to control size and location of laser-light sheet in real time, to generate horizontal or vertical sheets, to sweep sheet repeatedly through volume, to generate multiple sheets with controllable separation, and to rotate single or multiple laser-light sheets. Includes electronic equipment and laser mounted on adjustable-height platform. Twin-mirrored galvanometer unit supported by tripod to reduce vibration. Other possible applications include use in construction industry to align beams of building. Artistic or display applications also possible.

  2. Primary mirror dynamic disturbance models for TMT: vibration and wind

    NASA Astrophysics Data System (ADS)

    MacMynowski, Douglas G.; Colavita, M. Mark; Skidmore, Warren; Vogiatzis, Konstantinos

    2010-07-01

    The principal dynamic disturbances acting on a telescope segmented primary mirror are unsteady wind pressure (turbulence) and narrowband vibration from rotating equipment. Understanding these disturbances is essential for the design of the segment support assembly (SSA), segment actuators, and primary mirror control system (M1CS). The wind disturbance is relatively low frequency, and is partially compensated by M1CS; the response depends on the control bandwidth and the quasi-static stiffness of the actuator and SSA. Equipment vibration is at frequencies higher than the M1CS bandwidth; the response depends on segment damping, and the proximity of segment support resonances to dominant vibration tones. We present here both disturbance models and parametric response. Wind modeling is informed by CFD and based on propagation of a von Karman pressure screen. The vibration model is informed by analysis of accelerometer and adaptive optics data from Keck. This information is extrapolated to TMT and applied to the telescope structural model to understand the response dependence on actuator design parameters in particular. Whether the vibration response or the wind response is larger depends on these design choices; "soft" (e.g. voice-coil) actuators provide better vibration reduction but require high servo bandwidth for wind rejection, while "hard" (e.g. piezo-electric) actuators provide good wind rejection but require damping to avoid excessive vibration transmission to the primary mirror segments. The results for both nominal and worst-case disturbances and design parameters are incorporated into the TMT actuator performance assessment.

  3. James Webb Space Telescope (JWST) Primary Mirror Material Selection

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Feinberg, Lee D.; Russell, Kevin; Texter, Scott

    2004-01-01

    The James Webb Space Telescope (JWST) conducted a phase down select process via the Advanced Mirror System Demonstrator (AMSD) project to assess the Technology Readiness Level of various candidate mirror materials. This process culminated in the selection of Beryllium as the JWST primary mirror material. This paper outlines the mirror evaluation process, defines the selection criteria and summarizes the candidate mirror's performances.

  4. Plasma confinement apparatus using solenoidal and mirror coils

    DOEpatents

    Fowler, T. Kenneth; Condit, William C.

    1979-01-01

    A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

  5. Mirrors, Mirrors on the Wall...The Ubiquitous Multiple Reflection Error

    ERIC Educational Resources Information Center

    Lawson, Rebecca

    2012-01-01

    Participants decided when somebody, Janine, could see their face in a horizontal row of adjacent mirrors mounted flat on the same wall. They saw real mirrors and a shop-dummy representing Janine. Such coplanar mirrors reflect different, non-overlapping areas of a scene. However, almost everybody made an unexpected error: they claimed that Janine…

  6. Shape memory composite deformable mirrors

    NASA Astrophysics Data System (ADS)

    Riva, M.; Bettini, P.; Di Landro, L.; Sala, G.

    2009-03-01

    This paper deals with some of the critical aspects regarding Shape Memory Composite (SMC) design: firstly some technological aspects concerning embedding technique and their efficiency secondarily the lack of useful numerical tools for this peculiar design. It has been taken into account as a possible application a deformable panel which is devoted to act as a substrate for a deformable mirror. The activity has been mainly focused to the study of embedding technologies, activation and authority. In detail it will be presented the "how to" manufacturing of some smart panels with embedded NiTiNol wires in order to show the technology developed for SMC structures. The first part of the work compares non conventional pull-out tests on wires embedded in composites laminates (real condition of application), with standard pull-out in pure epoxy resin blocks. Considering the numerical approach some different modeling techniques to be implemented in commercial codes (ABAQUS) have been investigated. The Turner's thermo-mechanical model has been adopted for the modeling of the benchmark: A spherical panel devoted to work as an active substrate for a Carbon Fiber Reinforced Plastic (CFRP) deformable mirror has been considered as a significant technological demonstrator and possible future application (f=240mm, r.o.c.=1996mm).

  7. Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). This device would operate at much higher plasma densities and with much larger LD ratios than previous mirror machines. Several advantages accrue from such a design. First, the high LA:) ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. Second, the high plasma density will result in the plasma behaving much more Re a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with "loss cone" microinstabilities. An experimental GDM device is currently being constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. Initial experiments are expected to commence in the late fall of 2000.

  8. Barstow heliostat mirror glass characterization

    SciTech Connect

    Lind, M.A.; Buckwalter, C.Q.

    1980-09-01

    The technical analysis performed on the special run of low iron float glass procured from the Ford Glass Division for the ten megawatt solar thermal/electric pilot power plant to be constructed at Barstow, California is discussed. The topics that are addressed include the optical properties and the relative durability of the glass. Two optical parameters, solar transmittance and optical flatness, were measured as referenced in the specification and found to be better than the stated tolerances. The average solar transmittance exceeded 0.890 transmittance units. The glass also exhibited optical angular flatness deviations less than +-1.0 mrad as required. Both qualitative and quantitative accelerated weathering tests were performed on the glass in order to compare its durability to other soda lime float glass and alternate composition glasses of interest to the solar community. In both the quantitative leaching experiments and the more qualitative room temperature and elevated temperature water vapor exposure experiments the heliostat glass exhibited the same characteristics as the other soda-lime silicate float glasses. As a final test for mirroring compatability, selected samples of the production run of the glass were sent to four different commercial manufacturers for mirror coating. None of the manufacturers reported any difficulty silvering the glass. Based on the tests performed, the glass meets or exceeds all optical specifications for the Barstow heliostat field.

  9. Neurodegeneration and Mirror Image Agnosia

    PubMed Central

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor

    2014-01-01

    Background: Normal Percept with abnormal meaning (Agnosias) has been described from nineteenth century onwards. Later literature became abundant with information on the spectrum of Prosopagnosias. However, selective difficulty in identifying reflected self images with relatively better cognitive functions leads to problems in differentiating it from non-organic psychosis. Aim: In the present study, we investigated patients with dementia who showed difficulty in identifying reflected self images while they were being tested for problems in gnosis with reference to identification of reflected objects, animals, relatives, and themselves and correlate with neuropsychological and radiological parameters. Patients and Methods: Five such patients were identified and tested with a 45 cm × 45 cm mirror kept at 30-cm distance straight ahead of them. Results: Mirror image agnosia is seen in patients with moderate stage posterior dementias who showed neuropsychological and radiological evidence of right parietal dysfunction. Conclusion: Interpretation of reflected self images perception in real time probably involves distinct data-linking circuits in the right parietal lobe, which may get disrupted early in the course of the disease. PMID:25317393

  10. Explaining mirror-touch synesthesia.

    PubMed

    Ward, Jamie; Banissy, Michael J

    2015-01-01

    Mirror-touch synesthesia (MTS) is the conscious experience of tactile sensations induced by seeing someone else touched. This paper considers two different, although not mutually exclusive, theoretical explanations and, in the final section, considers the relation between MTS and other forms of synesthesia and also other kinds of vicarious perception (e.g., contagious yawning). The Threshold Theory explains MTS in terms of hyper-activity within a mirror system for touch and/or pain. This offers a good account for some of the evidence (e.g., from fMRI) but fails to explain the whole pattern (e.g., structural brain differences outside of this system; performance on some tests of social cognition). The Self-Other Theory explains MTS in terms of disturbances in the ability to distinguish the self from others. This can be construed in terms of over-extension of the bodily self in to others, or as difficulties in the control of body-based self-other representations. In this account, MTS is a symptom of a broader cognitive profile. We suggest this meets the criteria for synesthesia, despite the proximal causal mechanisms remaining largely unknown, and that the tendency to localize vicarious sensory experiences distinguishes it from other kinds of seemingly related phenomena (e.g., non-localized affective responses to observing pain).

  11. Explaining mirror-touch synesthesia.

    PubMed

    Ward, Jamie; Banissy, Michael J

    2015-01-01

    Mirror-touch synesthesia (MTS) is the conscious experience of tactile sensations induced by seeing someone else touched. This paper considers two different, although not mutually exclusive, theoretical explanations and, in the final section, considers the relation between MTS and other forms of synesthesia and also other kinds of vicarious perception (e.g., contagious yawning). The Threshold Theory explains MTS in terms of hyper-activity within a mirror system for touch and/or pain. This offers a good account for some of the evidence (e.g., from fMRI) but fails to explain the whole pattern (e.g., structural brain differences outside of this system; performance on some tests of social cognition). The Self-Other Theory explains MTS in terms of disturbances in the ability to distinguish the self from others. This can be construed in terms of over-extension of the bodily self in to others, or as difficulties in the control of body-based self-other representations. In this account, MTS is a symptom of a broader cognitive profile. We suggest this meets the criteria for synesthesia, despite the proximal causal mechanisms remaining largely unknown, and that the tendency to localize vicarious sensory experiences distinguishes it from other kinds of seemingly related phenomena (e.g., non-localized affective responses to observing pain). PMID:25893437

  12. Relativistic Tennis Using Flying Mirror

    SciTech Connect

    Pirozhkov, A. S.; Kando, M.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Kimura, T.; Kato, Y.; Tajima, T.; Esirkepov, T. Zh.; Bulanov, S. V.

    2008-06-24

    Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic 'flying mirror', which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of {approx_equal}4-6x10{sup 19} cm{sup -3}. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are {approx}55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3x10{sup 7} photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.

  13. Relativistic Tennis Using Flying Mirror

    NASA Astrophysics Data System (ADS)

    Pirozhkov, A. S.; Kando, M.; Esirkepov, T. Zh.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Bulanov, S. V.; Kimura, T.; Kato, Y.; Tajima, T.

    2008-06-01

    Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic "flying mirror", which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of ≈4-6×1019 cm-3. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are ˜55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3×107 photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.

  14. Procedure for computer-controlled milling of accurate surfaces of revolution for millimeter and far-infrared mirrors

    NASA Technical Reports Server (NTRS)

    Emmons, Louisa; De Zafra, Robert

    1991-01-01

    A simple method for milling accurate off-axis parabolic mirrors with a computer-controlled milling machine is discussed. For machines with a built-in circle-cutting routine, an exact paraboloid can be milled with few computer commands and without the use of the spherical or linear approximations. The proposed method can be adapted easily to cut off-axis sections of elliptical or spherical mirrors.

  15. An Automated SVD for Alignment and Control of James Webb Space Telescope Mirrors

    NASA Technical Reports Server (NTRS)

    Shiri, Sharam; Howard, Joseph M.; Aronstein, David L.; Ha, Kong; Smith, J. Scott; Dean, Bruce

    2008-01-01

    The James Webb Space Telescope (JWST) is a three-mirror anastigmatic telescope. The alignment of the segmented primary and secondary mirrors in the wavefront sensing and control process involves a series of actuators to control the six degrees-of-freedom motion on each surface in addition to the radius of curvature. The control matrix developed from the alignment parameters is over-determined and singular value decomposition (SVD) method is used to solve it in the least square sense. An automated SVD scheme has been developed to identify the most contributing modes in a typical alignment process and reduce the impact of error-prone modes from the control process.

  16. Does dysfunction of the mirror neuron system contribute to symptoms in amyotrophic lateral sclerosis?

    PubMed

    Eisen, Andrew; Lemon, Roger; Kiernan, Matthew C; Hornberger, Michael; Turner, Martin R

    2015-07-01

    There is growing evidence that mirror neurons, initially discovered over two decades ago in the monkey, are present in the human brain. In the monkey, mirror neurons characteristically fire not only when it is performing an action, such as grasping an object, but also when observing a similar action performed by another agent (human or monkey). In this review we discuss the origin, cortical distribution and possible functions of mirror neurons as a background to exploring their potential relevance in amyotrophic lateral sclerosis (ALS). We have recently proposed that ALS (and the related condition of frontotemporal dementia) may be viewed as a failure of interlinked functional complexes having their origins in key evolutionary adaptations. This can include loss of the direct projections from the corticospinal tract, and this is at least part of the explanation for impaired motor control in ALS. Since, in the monkey, corticospinal neurons also show mirror properties, ALS in humans might also affect the mirror neuron system. We speculate that a defective mirror neuron system might contribute to other ALS deficits affecting motor imagery, gesture, language and empathy.

  17. Does dysfunction of the mirror neuron system contribute to symptoms in amyotrophic lateral sclerosis?

    PubMed

    Eisen, Andrew; Lemon, Roger; Kiernan, Matthew C; Hornberger, Michael; Turner, Martin R

    2015-07-01

    There is growing evidence that mirror neurons, initially discovered over two decades ago in the monkey, are present in the human brain. In the monkey, mirror neurons characteristically fire not only when it is performing an action, such as grasping an object, but also when observing a similar action performed by another agent (human or monkey). In this review we discuss the origin, cortical distribution and possible functions of mirror neurons as a background to exploring their potential relevance in amyotrophic lateral sclerosis (ALS). We have recently proposed that ALS (and the related condition of frontotemporal dementia) may be viewed as a failure of interlinked functional complexes having their origins in key evolutionary adaptations. This can include loss of the direct projections from the corticospinal tract, and this is at least part of the explanation for impaired motor control in ALS. Since, in the monkey, corticospinal neurons also show mirror properties, ALS in humans might also affect the mirror neuron system. We speculate that a defective mirror neuron system might contribute to other ALS deficits affecting motor imagery, gesture, language and empathy. PMID:25727900

  18. Variable Curvature Mirrors for ELT Laser Guide Star refocusing systems

    NASA Astrophysics Data System (ADS)

    Challita, Zalpha; Hugot, Emmanuel; Ferrari, Marc; Madec, Fabrice; Le Mignant, David; Cuby, Jean-Gabriel

    2011-09-01

    The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, LGS defocusing is one of the system issues that can be tackled using active refocusing mirrors such as Variable Curvature Mirrors (VCM). Indeed, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope, and induces a large defocusing at the LGS wave-front sensor focal plane. To compensate for that, we propose an original concept including a VCM specifically designed to keep a focused spot on the wave-front sensor: the mirror is made of a thin meniscus bend using a pressure applied on its back face. Due to the large defocusing, the LGS-VCM must be able to change its shape from F/12.5 to F/5, leading to more than 1 mm sag. The VCM benefits of a specific shape with a variable radial thickness distribution, allowing keeping an optical quality better than λ/5 over this very large range of deformation. The work presented here details the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Two prototypes have been manufactured to compare the real behaviour of the mirror and the simulations data. Results obtained on the prototypes show that the deformation of the VCM is very close to the simulation, and leads to a realistic concept.

  19. Foil Panel Mirrors for Nonimaging Applications

    NASA Technical Reports Server (NTRS)

    Kuyper, D. J.; Castillo, A. A.

    1984-01-01

    Large durable, lightweight mirrors made by bonding thick aluminum foil to honeycomb panels or other rigid, flat backings. Mirrors suitable for use as infrared shields, telescope doors, solar-furnance doors, advertising displays, or other reflectors that require low thermal emissivity and high specularity but do not require precise surface figure necessary for imaging.

  20. Technology for large tandem mirror experiments

    SciTech Connect

    Thomassen, K.I.

    1980-09-04

    Construction of a large tandem mirror (MFTF-B) will soon begin at Lawrence Livermore National Laboratory (LLNL). Designed to reach break-even plasma conditions, the facility will significantly advance the physics and technology of magnetic-mirror-based fusion reactors. This paper describes the objectives and the design of the facility.