Adaptive Oceanographic Sampling in a Coastal Environment Using Autonomous Gliding Vehicles
2003-08-01
cost autonomous vehicles with near-global range and modular sensor payload. Particular emphasis is placed on the development of adaptive sampling...environment. Secondary objectives include continued development of adaptive sampling strategies suitable for large fleets of slow-moving autonomous ... vehicles , and development and implementation of new oceanographic sensors and sampling methodologies. The main task completed was a complete redesign of
Path Planning Algorithms for the Adaptive Sensor Fleet
NASA Technical Reports Server (NTRS)
Stoneking, Eric; Hosler, Jeff
2005-01-01
The Adaptive Sensor Fleet (ASF) is a general purpose fleet management and planning system being developed by NASA in coordination with NOAA. The current mission of ASF is to provide the capability for autonomous cooperative survey and sampling of dynamic oceanographic phenomena such as current systems and algae blooms. Each ASF vessel is a software model that represents a real world platform that carries a variety of sensors. The OASIS platform will provide the first physical vessel, outfitted with the systems and payloads necessary to execute the oceanographic observations described in this paper. The ASF architecture is being designed for extensibility to accommodate heterogenous fleet elements, and is not limited to using the OASIS platform to acquire data. This paper describes the path planning algorithms developed for the acquisition phase of a typical ASF task. Given a polygonal target region to be surveyed, the region is subdivided according to the number of vessels in the fleet. The subdivision algorithm seeks a solution in which all subregions have equal area and minimum mean radius. Once the subregions are defined, a dynamic programming method is used to find a minimum-time path for each vessel from its initial position to its assigned region. This path plan includes the effects of water currents as well as avoidance of known obstacles. A fleet-level planning algorithm then shuffles the individual vessel assignments to find the overall solution which puts all vessels in their assigned regions in the minimum time. This shuffle algorithm may be described as a process of elimination on the sorted list of permutations of a cost matrix. All these path planning algorithms are facilitated by discretizing the region of interest onto a hexagonal tiling.
Development and Flight Testing of an Adaptable Vehicle Health-Monitoring Architecture
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.; Taylor, B. Douglas; Brett, Rube R.
2003-01-01
Development and testing of an adaptable wireless health-monitoring architecture for a vehicle fleet is presented. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle; and a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained adaptable expert system. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate, and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear.
Tele-Supervised Adaptive Ocean Sensor Fleet
NASA Technical Reports Server (NTRS)
Lefes, Alberto; Podnar, Gregg W.; Dolan, John M.; Hosler, Jeffrey C.; Ames, Troy J.
2009-01-01
The Tele-supervised Adaptive Ocean Sensor Fleet (TAOSF) is a multi-robot science exploration architecture and system that uses a group of robotic boats (the Ocean-Atmosphere Sensor Integration System, or OASIS) to enable in-situ study of ocean surface and subsurface characteristics and the dynamics of such ocean phenomena as coastal pollutants, oil spills, hurricanes, or harmful algal blooms (HABs). The OASIS boats are extended- deployment, autonomous ocean surface vehicles. The TAOSF architecture provides an integrated approach to multi-vehicle coordination and sliding human-vehicle autonomy. One feature of TAOSF is the adaptive re-planning of the activities of the OASIS vessels based on sensor input ( smart sensing) and sensorial coordination among multiple assets. The architecture also incorporates Web-based communications that permit control of the assets over long distances and the sharing of data with remote experts. Autonomous hazard and assistance detection allows the automatic identification of hazards that require human intervention to ensure the safety and integrity of the robotic vehicles, or of science data that require human interpretation and response. Also, the architecture is designed for science analysis of acquired data in order to perform an initial onboard assessment of the presence of specific science signatures of immediate interest. TAOSF integrates and extends five subsystems developed by the participating institutions: Emergent Space Tech - nol ogies, Wallops Flight Facility, NASA s Goddard Space Flight Center (GSFC), Carnegie Mellon University, and Jet Propulsion Laboratory (JPL). The OASIS Autonomous Surface Vehicle (ASV) system, which includes the vessels as well as the land-based control and communications infrastructure developed for them, controls the hardware of each platform (sensors, actuators, etc.), and also provides a low-level waypoint navigation capability. The Multi-Platform Simulation Environment from GSFC is a surrogate for the OASIS ASV system and allows for independent development and testing of higher-level software components. The Platform Communicator acts as a proxy for both actual and simulated platforms. It translates platform-independent messages from the higher control systems to the device-dependent communication protocols. This enables the higher-level control systems to interact identically with heterogeneous actual or simulated platforms.
The telesupervised adaptive ocean sensor fleet
NASA Astrophysics Data System (ADS)
Elfes, Alberto; Podnar, Gregg W.; Dolan, John M.; Stancliff, Stephen; Lin, Ellie; Hosler, Jeffrey C.; Ames, Troy J.; Moisan, John; Moisan, Tiffany A.; Higinbotham, John; Kulczycki, Eric A.
2007-09-01
We are developing a multi-robot science exploration architecture and system called the Telesupervised Adaptive Ocean Sensor Fleet (TAOSF). TAOSF uses a group of robotic boats (the OASIS platforms) to enable in-situ study of ocean surface and sub-surface phenomena. The OASIS boats are extended-deployment autonomous ocean surface vehicles, whose development is funded separately by the National Oceanic and Atmospheric Administration (NOAA). The TAOSF architecture provides an integrated approach to multi-vehicle coordination and sliding human-vehicle autonomy. It allows multiple mobile sensing assets to function in a cooperative fashion, and the operating mode of the vessels to range from autonomous control to teleoperated control. In this manner, TAOSF increases data-gathering effectiveness and science return while reducing demands on scientists for tasking, control, and monitoring. It combines and extends prior related work done by the authors and their institutions. The TAOSF architecture is applicable to other areas where multiple sensing assets are needed, including ecological forecasting, water management, carbon management, disaster management, coastal management, homeland security, and planetary exploration. The first field application chosen for TAOSF is the characterization of Harmful Algal Blooms (HABs). Several components of the TAOSF system have been tested, including the OASIS boats, the communications and control interfaces between the various hardware and software subsystems, and an airborne sensor validation system. Field tests in support of future HAB characterization were performed under controlled conditions, using rhodamine dye as a HAB simulant that was dispersed in a pond. In this paper, we describe the overall TAOSF architecture and its components, discuss the initial tests conducted and outline the next steps.
NASA Technical Reports Server (NTRS)
Elfes, Alberto; Podnar, Gregg W.; Dolan, John M.; Stancliff, Stephen; Lin, Ellie; Hosler, Jeffrey C.; Ames, Troy J.; Higinbotham, John; Moisan, John R.; Moisan, Tiffany A.;
2008-01-01
Earth science research must bridge the gap between the atmosphere and the ocean to foster understanding of Earth s climate and ecology. Ocean sensing is typically done with satellites, buoys, and crewed research ships. The limitations of these systems include the fact that satellites are often blocked by cloud cover, and buoys and ships have spatial coverage limitations. This paper describes a multi-robot science exploration software architecture and system called the Telesupervised Adaptive Ocean Sensor Fleet (TAOSF). TAOSF supervises and coordinates a group of robotic boats, the OASIS platforms, to enable in-situ study of phenomena in the ocean/atmosphere interface, as well as on the ocean surface and sub-surface. The OASIS platforms are extended deployment autonomous ocean surface vehicles, whose development is funded separately by the National Oceanic and Atmospheric Administration (NOAA). TAOSF allows a human operator to effectively supervise and coordinate multiple robotic assets using a sliding autonomy control architecture, where the operating mode of the vessels ranges from autonomous control to teleoperated human control. TAOSF increases data-gathering effectiveness and science return while reducing demands on scientists for robotic asset tasking, control, and monitoring. The first field application chosen for TAOSF is the characterization of Harmful Algal Blooms (HABs). We discuss the overall TAOSF architecture, describe field tests conducted under controlled conditions using rhodamine dye as a HAB simulant, present initial results from these tests, and outline the next steps in the development of TAOSF.
Fleets of enduring drones to probe atmospheric phenomena with clouds
NASA Astrophysics Data System (ADS)
Lacroix, Simon; Roberts, Greg; Benard, Emmanuel; Bronz, Murat; Burnet, Frédéric; Bouhoubeiny, Elkhedim; Condomines, Jean-Philippe; Doll, Carsten; Hattenberger, Gautier; Lamraoui, Fayçal; Renzaglia, Alessandro; Reymann, Christophe
2016-04-01
A full spatio-temporal four-dimensional characterization of the microphysics and dynamics of cloud formation including the onset of precipitation has never been reached. Such a characterization would yield a better understanding of clouds, e.g. to assess the dominant mixing mechanism and the main source of cloudy updraft dilution. It is the sampling strategy that matters: fully characterizing the evolution over time of the various parameters (P, T, 3D wind, liquid water content, aerosols...) within a cloud volume requires dense spatial sampling for durations of the order of one hour. A fleet of autonomous lightweight UAVs that coordinate themselves in real-time as an intelligent network can fulfill this purpose. The SkyScanner project targets the development of a fleet of autonomous UAVs to adaptively sample cumuli, so as to provide relevant data to address long standing questions in atmospheric science. It mixes basic researches and experimental developments, and gathers scientists in UAV conception, in optimal flight control, in intelligent cooperative behaviors, and of course atmospheric scientists. Two directions of researches are explored: optimal UAV conception and control, and optimal control of a fleet of UAVs. The design of UAVs for atmospheric science involves the satisfaction of trade-offs between payload, endurance, ease of deployment... A rational conception scheme that integrates the constraints to optimize a series of criteria, in particular energy consumption, would yield the definition of efficient UAVs. This requires a fine modeling of each involved sub-system and phenomenon, from the motor/propeller efficiency to the aerodynamics at small scale, including the flight control algorithms. The definition of mission profiles is also essential, considering the aerodynamics of clouds, to allow energy harvesting schemes that exploit thermals or gusts. The conception also integrates specific sensors, in particular wind sensor, for which classic technologies are challenged at the low speeds of lightweight UAVs. The overall control of the fleet so as to gather series of synchronized data in the cloud volume is a poorly informed and highly constrained adaptive sampling problem, in which the UAV motions must be defined to maximize the amount of gathered information and the mission duration. The overall approach casts the problem in a hierarchy of two modeling and decision stages. A macroscopic parametrized model of the cloud is built from the gathered data and exploited at the higher level by an operator, who sets information gathering goals. A subset of the UAV fleet is allocated to each goal, considering the current fleet state. These high level goals are handled by the lower level, which autonomously optimizes the selected UAVs trajectories using an on-line updated dense model of the variables of interest. Building the models involves Gaussian processes techniques (kriging) to fuse the gathered data with a generic cumulus conceptual model, the latter being defined from thorough statistics on realistic MesoNH cloud simulations. The model is exploited by a planner to generate trajectories that minimize the uncertainty in the map, while steering the vehicles within the air flows to save energy.
A New Black Carbon Sensor for Dense Air Quality Monitoring Networks
Caubel, Julien J.; Cados, Troy E.; Kirchstetter, Thomas W.
2018-01-01
Low-cost air pollution sensors are emerging and increasingly being deployed in densely distributed wireless networks that provide more spatial resolution than is typical in traditional monitoring of ambient air quality. However, a low-cost option to measure black carbon (BC)—a major component of particulate matter pollution associated with adverse human health risks—is missing. This paper presents a new BC sensor designed to fill this gap, the Aerosol Black Carbon Detector (ABCD), which incorporates a compact weatherproof enclosure, solar-powered rechargeable battery, and cellular communication to enable long-term, remote operation. This paper also demonstrates a data processing methodology that reduces the ABCD’s sensitivity to ambient temperature fluctuations, and therefore improves measurement performance in unconditioned operating environments (e.g., outdoors). A fleet of over 100 ABCDs was operated outdoors in collocation with a commercial BC instrument (Magee Scientific, Model AE33) housed inside a regulatory air quality monitoring station. The measurement performance of the 105 ABCDs is comparable to the AE33. The fleet-average precision and accuracy, expressed in terms of mean absolute percentage error, are 9.2 ± 0.8% (relative to the fleet average data) and 24.6 ± 0.9% (relative to the AE33 data), respectively (fleet-average ± 90% confidence interval). PMID:29494528
A New Black Carbon Sensor for Dense Air Quality Monitoring Networks.
Caubel, Julien J; Cados, Troy E; Kirchstetter, Thomas W
2018-03-01
Low-cost air pollution sensors are emerging and increasingly being deployed in densely distributed wireless networks that provide more spatial resolution than is typical in traditional monitoring of ambient air quality. However, a low-cost option to measure black carbon (BC)-a major component of particulate matter pollution associated with adverse human health risks-is missing. This paper presents a new BC sensor designed to fill this gap, the Aerosol Black Carbon Detector (ABCD), which incorporates a compact weatherproof enclosure, solar-powered rechargeable battery, and cellular communication to enable long-term, remote operation. This paper also demonstrates a data processing methodology that reduces the ABCD's sensitivity to ambient temperature fluctuations, and therefore improves measurement performance in unconditioned operating environments (e.g., outdoors). A fleet of over 100 ABCDs was operated outdoors in collocation with a commercial BC instrument (Magee Scientific, Model AE33) housed inside a regulatory air quality monitoring station. The measurement performance of the 105 ABCDs is comparable to the AE33. The fleet-average precision and accuracy, expressed in terms of mean absolute percentage error, are 9.2 ± 0.8% (relative to the fleet average data) and 24.6 ± 0.9% (relative to the AE33 data), respectively (fleet-average ± 90% confidence interval).
Identifying People with Soft-Biometrics at Fleet Week
2013-03-01
onboard sensors. This included: Color Camera: Located in the right eye, Octavia stored 640x480 RGB images at ~4 Hz from a Point Grey Firefly camera. A...Face Detection The Fleet Week experiments demonstrated the potential of soft biometrics for recognition, but all of the existing algorithms currently
New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots
Gonzalez-de-Soto, Mariano; Pajares, Gonzalo
2014-01-01
Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis. PMID:25143976
New trends in robotics for agriculture: integration and assessment of a real fleet of robots.
Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo
2014-01-01
Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis.
Development and Flight Testing of an Adaptive Vehicle Health-Monitoring Architecture
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Taylor, B. Douglas; Brett, Rube R.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.
2002-01-01
On going development and testing of an adaptable vehicle health-monitoring architecture is presented. The architecture is being developed for a fleet of vehicles. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle, and, a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained expert system. The expert system is parameterized, which makes it adaptable to be trained to both a user's subject reasoning and existing quantitative analytic tools. Communication between all levels is done with wireless radio frequency interfaces. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear. The flight tests were performed to validate the following: the wireless radio frequency communication capabilities of the system, the hardware design, command and control; software operation and, data acquisition, storage and retrieval.
Whitacre, James M; Rohlfshagen, Philipp; Bender, Axel; Yao, Xin
2012-09-01
Engineered systems are designed to deftly operate under predetermined conditions yet are notoriously fragile when unexpected perturbations arise. In contrast, biological systems operate in a highly flexible manner; learn quickly adequate responses to novel conditions, and evolve new routines and traits to remain competitive under persistent environmental change. A recent theory on the origins of biological flexibility has proposed that degeneracy-the existence of multi-functional components with partially overlapping functions-is a primary determinant of the robustness and adaptability found in evolved systems. While degeneracy's contribution to biological flexibility is well documented, there has been little investigation of degeneracy design principles for achieving flexibility in systems engineering. Actually, the conditions that can lead to degeneracy are routinely eliminated in engineering design. With the planning of transportation vehicle fleets taken as a case study, this article reports evidence that degeneracy improves the robustness and adaptability of a simulated fleet towards unpredicted changes in task requirements without incurring costs to fleet efficiency. We find that degeneracy supports faster rates of design adaptation and ultimately leads to better fleet designs. In investigating the limitations of degeneracy as a design principle, we consider decision-making difficulties that arise from degeneracy's influence on fleet complexity. While global decision-making becomes more challenging, we also find degeneracy accommodates rapid distributed decision-making leading to (near-optimal) robust system performance. Given the range of conditions where favorable short-term and long-term performance outcomes are observed, we propose that degeneracy may fundamentally alter the propensity for adaptation and is useful within different engineering and planning contexts.
A History of U.S. Navy Periscope Detection Radar, Sensor Design and Development
2014-12-31
A History of U.S. Navy Periscope Detection Radar Sensor Design and Development John G. Shannon Paul M. Moser Rite-Solutions, Inc...superiority through the years. Highly effective radar sensors used for military applications were originally large ground-based units designed, developed...automatically. Until very recently, all fleet operational periscope detection radar (PDR) sensor systems have required a skilled and alert human
Acquisition Research: Creating Synergy for Informed Change. May 15-16 2013
2013-05-01
It requires sensors to collect data on component conditions that will be used to generate condition assessments. Royal Dutch Navy Fleet...electronic counter measures (ECMs), communications, and sensors . A more complex example is the ability to load different software onto pre-defined hardware...2013; Sherborne Sensors , 2013). To add to the confusion, Thomke’s (1997) paper, which contains excellent case studies into what we would call
NASA Astrophysics Data System (ADS)
Chang, C. H.; Pietras, J.; Heppner, P.; Evans, J. D.; Wang, J.
2016-12-01
The Mobile Platform Environmental Data (MoPED) system acquires real-time data on weather conditions from commercial fleet providers and provides them to the National Weather Service (NWS) for use in operations and numerical models. The MoPED system assesses the quality of these data by comparing them to observations from airport weather stations when the mobile platforms are in sufficiently close proximity (in space and time). We have devised a set of quality control algorithms that are applied to vehicle observation datasets to qualify them for dissemination to NWS. Commercial vehicles participating in MoPED have a third-party suite of sensors for ambient air temperature, relative humidity, light level, precipitation intensity, atmospheric pressure, ozone, and road temperature. In addition, some vehicles also generate meteorological data from sensors built into the vehicles themselves (original equipment manufacturer (OEM) sensors) which conform to the SAE J1939 standard for onboard vehicle networking. These sensors, known as OEM J-data sensors, measure numerous parameters associated with emissions control and engine performance - including ambient air temperature and atmospheric pressure. Time-tagged and transmitted to the MoPED system, these OEM J-data measurements can be a tremendous source of weather data for NWS if they can be extracted and communicated in real-time from the vehicles. We are working with a commercial fleet (who have OEM J-data available) to determine suitability of these data for NWS. To ensure the overall quality of the data, we have developed a methodology for assessing the suitability of classes of vehicles and sensors for inclusion in the MoPED dissemination, for the continued assessment of individual vehicles once their class has been accepted into MoPED, and for identifying corrective measures (such as adjusting measurements to correct for individual sensor offsets). A byproduct of that methodology is a multi-component model for sources of errors in mobile meteorological data measurements. We describe this error model, and provide examples of studies of candidate OEM J-data vehicle fleets in which we measured or compensated for various components of the error model.
High resolution earth observation satellites and services in the next decade a European perspective
NASA Astrophysics Data System (ADS)
Schreier, Gunter; Dech, Stefan
2005-07-01
Projects to use very high resolution optical satellite sensor data started in the late 90s and are believed to be the major driver for the commercialisation of earth observation. The global political security situation and updated legislative frameworks created new opportunities for high resolution, dual use satellite systems. In addition to new optical sensors, very high resolution synthetic aperture radars will become in the next few years an important component in the imaging satellite fleet. The paper will review the development in this domain so far, and give perspectives on future emerging markets and opportunities. With dual-use satellite initiatives and new political frameworks agreed between the European Commission and the European Space Agency (ESA), the European market becomes very attractive for both service suppliers and customers. The political focus on "Global Monitoring for Environment and Security" (GMES) and the "European Defence and Security Policy" drive and amplify this demand which ranges from low resolution climate monitoring to very high resolution reconnaissance tasks. In order to create an operational and sustainable GMES in Europe by 2007, the European infrastructure need to be adapted and extended. This includes the ESA SENTINEL and OXYGEN programmes, aiming for a fleet of earth observation satellites and an open and operational earth observation ground segment. The harmonisation of national and regional geographic information is driven by the European Commission's INSPIRE programme. The necessary satellite capacity to complement existing systems in the delivery of space based data required for GMES is currently under definition. Embedded in a market with global competition and in the global political framework of a Global Earth Observation System of Systems, European companies, agencies and research institutions are now contributing to this joint undertaking. The paper addresses the chances, risks and options for the future.
Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Overview
NASA Technical Reports Server (NTRS)
Daniels, Taumi S.; Moninger, William R.; Mamrosh, Richard D.
2008-01-01
This paper is an overview of the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) project, giving some history on the project, various applications of the atmospheric data, and future ideas and plans. As part of NASA's Aviation Safety and Security Program, the TAMDAR project developed a small low-cost sensor that collects useful meteorological data and makes them available in near real time to improve weather forecasts. This activity has been a joint effort with FAA, NOAA, universities, and industry. A tri-agency team collaborated by developing a concept of operations, determining the sensor specifications, and evaluating sensor performance as reported by Moosakhanian et. al. (2006). Under contract with Georgia Tech Research Institute, NASA worked with AirDat of Raleigh, NC to develop the sensor. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated and true air speed, ice accretion rate, wind speed and direction, peak and average turbulence, and eddy dissipation rate. The overall development process, sensor capabilities, and performance based on ground and flight tests is reported by Daniels (2002), Daniels et. al. (2004) and by Tsoucalas et. al. (2006). An in-service evaluation of the sensor was performed called the Great Lakes Fleet Experiment (GLFE), first reported by Moninger et. al. (2004) and Mamrosh et. al. (2005). In this experiment, a Mesaba Airlines fleet was equipped to collect meteorological data over the Great Lakes region during normal revenue-producing flights.
CoBOP: Electro-Optic Identification Laser Line Sean Sensors
1998-01-01
Electro - Optic Identification Sensors Project[1] is to develop and demonstrate high resolution underwater electro - optic (EO) imaging sensors, and associated image processing/analysis methods, for rapid visual identification of mines and mine-like contacts (MLCs). Identification of MLCs is a pressing Fleet need. During MCM operations, sonar contacts are classified as mine-like if they are sufficiently similar to signatures of mines. Each contact classified as mine-like must be identified as a mine or not a mine. During MCM operations in littoral areas,
NASA Tech Briefs, January 2009
NASA Technical Reports Server (NTRS)
2009-01-01
Tech Briefs are short announcements of innovations originating from research and development activities of the National Aeronautics and Space Administration. They emphasize information considered likely to be transferable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. Topics covered include: The Radio Frequency Health Node Wireless Sensor System; Effects of Temperature on Polymer/Carbon Chemical Sensors; Small CO2 Sensors Operate at Lower Temperature; Tele-Supervised Adaptive Ocean Sensor Fleet; Synthesis of Submillimeter Radiation for Spectroscopy; 100-GHz Phase Switch/Mixer Containing a Slot-Line Transition; Generating Ka-Band Signals Using an X-Band Vector Modulator; SiC Optically Modulated Field-Effect Transistor; Submillimeter-Wave Amplifier Module with Integrated Waveguide Transitions; Metrology System for a Large, Somewhat Flexible Telescope; Economical Implementation of a Filter Engine in an FPGA; Improved Joining of Metal Components to Composite Structures; Machined Titanium Heat-Pipe Wick Structure; Gadolinia-Doped Ceria Cathodes for Electrolysis of CO2; Utilizing Ocean Thermal Energy in a Submarine Robot; Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators; Alternative OTEC Scheme for a Submarine Robot; Sensitive, Rapid Detection of Bacterial Spores; Adenosine Monophosphate-Based Detection of Bacterial Spores; Silicon Microleaks for Inlets of Mass Spectrometers; CGH Figure Testing of Aspherical Mirrors in Cold Vacuums; Series-Coupled Pairs of Silica Microresonators; Precise Stabilization of the Optical Frequency of WGMRs; Formation Flying of Components of a Large Space Telescope; Laser Metrology Heterodyne Phase-Locked Loop; Spatial Modulation Improves Performance in CTIS; High-Performance Algorithm for Solving the Diagnosis Problem; Truncation Depth Rule-of-Thumb for Convolutional Codes; Efficient Method for Optimizing Placement of Sensors.
Hansen, Jakob H; Geving, Ingunn H; Reinertsen, Randi E
2010-08-01
To determine the total phase delay and adaptation rate of 6-sulfatoxymelatonin (aMT6s) on subjective and objective sleep quality and cognitive performance after 7 days of working night shifts (1800-0600 hours). The subjects studied were offshore fleet workers (N = 7). Seven days of urine samples were collected to determine the total phase delay and adaptation rate of aMT6s. Subjective and objective sleep quality was registered with sleep diaries and actigraphy on a daily basis. Cognitive performance, as measured by vigilance and reaction time, was measured with the Vienna test system on days 1 and 7. Light exposure was measured in the vessel compartments daily. The rhythm of aMT6s shifted significantly from 4.78 +/- 0.94 h on day 1 to 8.84 +/- 1.76 h on day 7. Rate of adaptation was 0.84 h per day. Subjective sleep quality showed significant time effects on four variables, but objective sleep quality did not show any significant time effects. Vigilance and reaction time improved significantly from days 1 to 7. Light exposure intensities varied between 3 and 243 lux. This field study showed that offshore fleet workers are able to adapt to the imposed regimen of 12-h night shifts. The adaptation is slower compared to other branches of the offshore industry, which most likely is due to lower light exposure. Subjective sleep quality improved to some extent, but the results were not conclusive. No significant effects were observed in the objective measures. Cognitive performance improved significantly, which was likely to be caused by the extended working hours on day 1 and an entrainment of the suprachiasmatic nuclei (SCN).
Development and Flight Testing of an Autonomous Landing Gear Health-Monitoring System
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Taylor, B. Douglas; Brett, Rube R.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.
2003-01-01
Development and testing of an adaptable vehicle health-monitoring architecture is presented. The architecture is being developed for a fleet of vehicles. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle; and, a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained expert system. Communication between all levels is done with wireless radio frequency interfaces. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear. The flight tests were performed to validate the following: the wireless radio frequency communication capabilities of the system, the hardware design, command and control; software operation; and, data acquisition, storage and retrieval.
Map based localization to assist commercial fleet operations.
DOT National Transportation Integrated Search
2014-08-01
This report outlines key recent contributions to the state of the art in lane detection, lane departure warning, : and map-based sensor fusion algorithms. These key studies are used as a basis for a discussion about the : limitations of systems that ...
DOT National Transportation Integrated Search
2014-02-01
This study evaluated the costs and benefits of tire pressure monitoring and maintenance systems for commercial : fleets by conducting a yearlong field test. Specifically, the studys goal was to determine whether these systems : could influence mai...
Aircraft Anomaly Detection Using Performance Models Trained on Fleet Data
NASA Technical Reports Server (NTRS)
Gorinevsky, Dimitry; Matthews, Bryan L.; Martin, Rodney
2012-01-01
This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into aircraft performance models, flight-to-flight trends, and individual flight anomalies by fitting a multi-level regression model to the data. The model represents aircraft flight performance and takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, the multi-terabyte FOQA data set with half-million flights was processed in a few hours. The anomalies found include wrong values of competed variables, (e.g., aircraft weight), sensor failures and baises, failures, biases, and trends in flight actuators. These anomalies were missed by the existing airline monitoring of FOQA data exceedances.
Antisubmarine Warfare (ASW) Lexicon
1990-01-01
Communications Satellite CRT Cathode Ray Tube COMNAVSURFLANT Commander, CS Combat System; Computer Subsystem Naval Surface Force, U.S. Atlantic Fleet CSA Close...Sideband Low-Frequency Acoustic Vernier Analyzer LSD Large Screen Display LC Launch Control LSI Low Ship Impact 24 LSNSR Line-of-Bearing Sensor NCA
Exploration of Potential Future Fleet Architectures
2005-07-01
alternative architectures are those espoused by the OFT sponsoring office: flexibility, adaptability, agility, speed, and information dominance through...including naval forces, which we used. The OFT advocates flexibility, adaptability, agility, speed, and information dominance through networking...challenges and transnational threats. In future conflicts, the Navy has plans to expand strike power, realize information dominance , and transform methods
50 CFR 216.248 - Renewal of Letters of Authorization and Adaptive Management.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Atlantic Fleet Active Sonar Training (AFAST) § 216.248 Renewal of Letters of Authorization and Adaptive... AFAST or other locations). (2) Findings of the Monitoring Workshop that the Navy will convene in 2011... AFAST Study Area or other locations, and involving coincident MFAS/HFAS or explosives training or not...
50 CFR 216.248 - Renewal of Letters of Authorization and Adaptive Management.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Atlantic Fleet Active Sonar Training (AFAST) § 216.248 Renewal of Letters of Authorization and Adaptive... AFAST or other locations). (2) Findings of the Monitoring Workshop that the Navy will convene in 2011... AFAST Study Area or other locations, and involving coincident MFAS/HFAS or explosives training or not...
50 CFR 216.248 - Renewal of Letters of Authorization and Adaptive Management.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Atlantic Fleet Active Sonar Training (AFAST) § 216.248 Renewal of Letters of Authorization and Adaptive... AFAST or other locations). (2) Findings of the Monitoring Workshop that the Navy will convene in 2011... AFAST Study Area or other locations, and involving coincident MFAS/HFAS or explosives training or not...
50 CFR 216.248 - Renewal of Letters of Authorization and Adaptive Management.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Atlantic Fleet Active Sonar Training (AFAST) § 216.248 Renewal of Letters of Authorization and Adaptive... AFAST or other locations). (2) Findings of the Monitoring Workshop that the Navy will convene in 2011... AFAST Study Area or other locations, and involving coincident MFAS/HFAS or explosives training or not...
Mission specification for three generic mission classes
NASA Technical Reports Server (NTRS)
1979-01-01
Mission specifications for three generic mission classes are generated to provide a baseline for definition and analysis of data acquisition platform system concepts. The mission specifications define compatible groupings of sensors that satisfy specific earth resources and environmental mission objectives. The driving force behind the definition of sensor groupings is mission need; platform and space transportation system constraints are of secondary importance. The three generic mission classes are: (1) low earth orbit sun-synchronous; (2) geosynchronous; and (3) non-sun-synchronous, nongeosynchronous. These missions are chosen to provide a variety of sensor complements and implementation concepts. Each mission specification relates mission categories, mission objectives, measured parameters, and candidate sensors to orbits and coverage, operations compatibility, and platform fleet size.
On-Board Mining in the Sensor Web
NASA Astrophysics Data System (ADS)
Tanner, S.; Conover, H.; Graves, S.; Ramachandran, R.; Rushing, J.
2004-12-01
On-board data mining can contribute to many research and engineering applications, including natural hazard detection and prediction, intelligent sensor control, and the generation of customized data products for direct distribution to users. The ability to mine sensor data in real time can also be a critical component of autonomous operations, supporting deep space missions, unmanned aerial and ground-based vehicles (UAVs, UGVs), and a wide range of sensor meshes, webs and grids. On-board processing is expected to play a significant role in the next generation of NASA, Homeland Security, Department of Defense and civilian programs, providing for greater flexibility and versatility in measurements of physical systems. In addition, the use of UAV and UGV systems is increasing in military, emergency response and industrial applications. As research into the autonomy of these vehicles progresses, especially in fleet or web configurations, the applicability of on-board data mining is expected to increase significantly. Data mining in real time on board sensor platforms presents unique challenges. Most notably, the data to be mined is a continuous stream, rather than a fixed store such as a database. This means that the data mining algorithms must be modified to make only a single pass through the data. In addition, the on-board environment requires real time processing with limited computing resources, thus the algorithms must use fixed and relatively small amounts of processing time and memory. The University of Alabama in Huntsville is developing an innovative processing framework for the on-board data and information environment. The Environment for On-Board Processing (EVE) and the Adaptive On-board Data Processing (AODP) projects serve as proofs-of-concept of advanced information systems for remote sensing platforms. The EVE real-time processing infrastructure will upload, schedule and control the execution of processing plans on board remote sensors. These plans provide capabilities for autonomous data mining, classification and feature extraction using both streaming and buffered data sources. A ground-based testbed provides a heterogeneous, embedded hardware and software environment representing both space-based and ground-based sensor platforms, including wireless sensor mesh architectures. The AODP project explores the EVE concepts in the world of sensor-networks, including ad-hoc networks of small sensor platforms.
2014-09-01
deployed simultaneously. For example, a fleet of gliders would be able to act as an intelligence network by gathering underwater target information ...and to verify our novel method, a glider’s real underwater trajectory information must be obtained by using additional sensors like ADCP or DVL (see...lacks of inexpensive and efficient localization sensors during its subsurface mission. Therefore, knowing its precise underwater position is a
Reliability, Durability, and Safety | Transportation Research | NREL
fill results obtained in different scenarios. The animation serves as a useful tool to help fleet limitations from a performance and reliability perspective. Evaluation results for three different BIMs analysis assists in development and helps end users select and deploy appropriate sensors for different
DOT National Transportation Integrated Search
2008-02-26
A leading cause of military vehicle rollover crashes is that one or more wheels move into an area where : the terrain falls away steeply or disappears, leading to vehicle rollover. Vehicle-mounted sensors will : soon be capable of sensing such hazard...
VELOC - A new kind of information system
NASA Astrophysics Data System (ADS)
Dittloff, H. J.; Keuser, H.; Langer, H.
Based on the Global Positioning System (GPS), VELOC (Vehicle Location) is designed to be a vehicle information system for fleet management adaptable to various user groups, e.g., haulage and delivery companies, and service enterprises with vehicle fleets. The needs of these groups vary with respect to position accuracy, position update rate, and type of communication. The authors describe the requirements, specifications, and performance of VELOC. Special emphasis is placed on some substantial features of the VELOC center, namely the integration of DGPS, a comfortable user interface, and handling of vehicle positions on digital maps.
OBSIP: An Evolving Facility for the Future of Geoscience
NASA Astrophysics Data System (ADS)
Evers, B.; Aderhold, K.
2015-12-01
The Ocean Bottom Seismograph Instrument Pool "OBSIP" is a National Science Foundation (NSF) sponsored instrument facility that provides ocean bottom seismometers and technical support for research in the areas of marine geology, seismology, and geodynamics. OBSIP provides both short period instruments (for active source seismic refraction studies) and long period instruments (for long term passive experiments). OBSIP is comprised of three Institutional Instrument Contributors each of whom contribute instruments and technical support to the pool and an OBSIP Management Office. In 2015, OBSIP will provide instruments for six experiments and support nine research cruises recovering and/or deploying instruments. This includes the final recoveries for the Cascadia Initiative experiment and the Eastern North American Margin experiment, both multi-year community seismic experiments integrating large onshore and offshore deployments of instruments from multiple IICs. OBSIp supported additional experiments in New Zealand and Malawi, Africa. An active source experiment to image the magma plumbing of Santorini employs OBSIP's entire short period sensor pool. OBSIP is also incorporating new technical developments in the OBSIP fleet including long duration OBS technology, new shielding designs, and sensor upgrades. OBSIP continues to enable innovation in experiment design, instrument capabilities, and data return/QAQC tracking and adapts to the needs of a rapidly increasing and diversifying pool of users.
Some Novel Design Principles for Collective Behaviors in Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
OSBOURN, GORDON C.
2002-09-01
We present a set of novel design principles to aid in the development of complex collective behaviors in fleets of mobile robots. The key elements are: the use of a graph algorithm that we have created, with certain proven properties, that guarantee scalable local communications for fleets of arbitrary size; the use of artificial forces to simplify the design of motion control; the use of certain proximity values in the graph algorithm to simplify the sharing of robust navigation and sensor information among the robots. We describe these design elements and present a computer simulation that illustrates the behaviors readilymore » achievable with these design tools.« less
Meo, Rosa; Roglia, Elena; Bottino, Andrea
2012-12-17
In this paper, we outline the functionalities of a system that integrates and controls a fleet of Unmanned Aircraft Vehicles (UAVs). UAVs have a set of payload sensors employed for territorial surveillance, whose outputs are stored in the system and analysed by the data exploitation functions at different levels. In particular, we detail the second level data exploitation function whose aim is to improve the sensors data interpretation in the post-mission activities. It is concerned with the mosaicking of the aerial images and the cartography enrichment by human sensors--the social media users. We also describe the software architecture for the development of a mash-up (the integration of information and functionalities coming from the Web) and the possibility of using human sensors in the monitoring of the territory, a field in which, traditionally, the involved sensors were only the hardware ones.
Hybrid Topological Lie-Hamiltonian Learning in Evolving Energy Landscapes
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir G.; Reid, Darryn J.
2015-11-01
In this Chapter, a novel bidirectional algorithm for hybrid (discrete + continuous-time) Lie-Hamiltonian evolution in adaptive energy landscape-manifold is designed and its topological representation is proposed. The algorithm is developed within a geometrically and topologically extended framework of Hopfield's neural nets and Haken's synergetics (it is currently designed in Mathematica, although with small changes it could be implemented in Symbolic C++ or any other computer algebra system). The adaptive energy manifold is determined by the Hamiltonian multivariate cost function H, based on the user-defined vehicle-fleet configuration matrix W, which represents the pseudo-Riemannian metric tensor of the energy manifold. Search for the global minimum of H is performed using random signal differential Hebbian adaptation. This stochastic gradient evolution is driven (or, pulled-down) by `gravitational forces' defined by the 2nd Lie derivatives of H. Topological changes of the fleet matrix W are observed during the evolution and its topological invariant is established. The evolution stops when the W-topology breaks down into several connectivity-components, followed by topology-breaking instability sequence (i.e., a series of phase transitions).
Aircraft versus spacecraft for remote monitoring of water quality in U.S. coastal zones
NASA Technical Reports Server (NTRS)
Darnell, W. L.
1977-01-01
To provide guidance for conducting future water monitoring missions over U.S. coasts, aircraft and spacecraft approaches were defined and quantitatively compared. Sensors, aircraft and spacecraft were selected from current or developmental types for the hardware concepts and monitoring was assumed to begin in 1981-1983. Comparative data are presented on capabilities and costs to monitor both recognized pollution sites and broad shelf areas. For these mission requirements, a large fleet of light aircraft provided better coverage and at lower costs generally than one spacecraft, assuming a single, multi-spectral sensor on each platform. This result could change, however, should additional useful sensors with low cost penalties be found for the spacecraft.
Multiplatform Mission Planning and Operations Simulation Environment for Adaptive Remote Sensors
NASA Astrophysics Data System (ADS)
Smith, G.; Ball, C.; O'Brien, A.; Johnson, J. T.
2017-12-01
We report on the design and development of mission simulator libraries to support the emerging field of adaptive remote sensors. We will outline the current state of the art in adaptive sensing, provide analysis of how the current approach to performing observing system simulation experiments (OSSEs) must be changed to enable adaptive sensors for remote sensing, and present an architecture to enable their inclusion in future OSSEs.The growing potential of sensors capable of real-time adaptation of their operational parameters calls for a new class of mission planning and simulation tools. Existing simulation tools used in OSSEs assume a fixed set of sensor parameters in terms of observation geometry, frequencies used, resolution, or observation time, which allows simplifications to be made in the simulation and allows sensor observation errors to be characterized a priori. Adaptive sensors may vary these parameters depending on the details of the scene observed, so that sensor performance is not simple to model without conducting OSSE simulations that include sensor adaptation in response to varying observational environment. Adaptive sensors are of significance to resource-constrained, small satellite platforms because they enable the management of power and data volumes while providing methods for multiple sensors to collaborate.The new class of OSSEs required to utilize adaptive sensors located on multiple platforms must answer the question: If the physical act of sensing has a cost, how does the system determine if the science value of a measurement is worth the cost and how should that cost be shared among the collaborating sensors?Here we propose to answer this question using an architecture structured around three modules: ADAPT, MANAGE and COLLABORATE. The ADAPT module is a set of routines to facilitate modeling of adaptive sensors, the MANAGE module will implement a set of routines to facilitate simulations of sensor resource management when power and data volume are constrained, and the COLLABORATE module will support simulations of coordination among multiple platforms with adaptive sensors. When used together these modules will for a simulation OSSEs that can enable both the design of adaptive algorithms to support remote sensing and the prediction of the sensor performance.
WSTIAC Quarterly, Volume 7, Number 2. Naval Ship and Ship Systems Needs for Early 21st Century
2007-01-01
Radar Suite Navy Enterprise Warfare System Affordable Future Fleet 2 Intergrated Scalable Modular Open C4I Common Core B/L’s Command & Combatant Ship...discussed. System constraints, which force trade -offs in sensor design and in ultimate performance, are also covered. Time permitting, a projection of
NASA/Ames Research Center's science and applications aircraft program
NASA Technical Reports Server (NTRS)
Hall, G. Warren
1991-01-01
NASA-Ames Research Center operates a fleet of seven Science and Applications Aircraft, namely the C-141/Kuiper Airborne Observatory (KAO), DC-8, C-130, Lear Jet, and three ER-2s. These aircraft are used to satisfy two major objectives, each of equal importance. The first is to acquire remote and in-situ scientific data in astronomy, astrophysics, earth sciences, ocean processes, atmospheric physics, meteorology, materials processing and life sciences. The second major objective is to expedite the development of sensors and their attendant algorithms for ultimate use in space and to simulate from an aircraft, the data to be acquired from spaceborne sensors. NASA-Ames Science and Applications Aircraft are recognized as national and international facilities. They have performed and will continue to perform, operational missions from bases in the United States and worldwide. Historically, twice as many investigators have requested flight time than could be accommodated. This situation remains true today and is expected to increase in the years ahead. A major advantage of the existing fleet of aircraft is their ability to cover a large expanse of the earth's ecosystem from the surface to the lower stratosphere over large distances and time aloft. Their large payload capability allows a number of scientists to use multi-investigator sensor suites to permit simultaneous and complementary data gathering. In-flight changes to the sensors or data systems have greatly reduced the time required to optimize the development of new instruments. It is doubtful that spaceborne systems will ever totally replace the need for airborne science aircraft. The operations philosophy and capabilities exist at NASA-Ames Research Center.
Meo, Rosa; Roglia, Elena; Bottino, Andrea
2012-01-01
In this paper, we outline the functionalities of a system that integrates and controls a fleet of Unmanned Aircraft Vehicles (UAVs). UAVs have a set of payload sensors employed for territorial surveillance, whose outputs are stored in the system and analysed by the data exploitation functions at different levels. In particular, we detail the second level data exploitation function whose aim is to improve the sensors data interpretation in the post-mission activities. It is concerned with the mosaicking of the aerial images and the cartography enrichment by human sensors—the social media users. We also describe the software architecture for the development of a mash-up (the integration of information and functionalities coming from the Web) and the possibility of using human sensors in the monitoring of the territory, a field in which, traditionally, the involved sensors were only the hardware ones. PMID:23247415
RuCool Operational Oceanography: Using a Fleet of Autonomous Ocean Gliders
NASA Astrophysics Data System (ADS)
Graver, J.; Jones, C.; Glenn, S.; Kohut, J.; Schofield, O.; Roarty, H.; Aragon, D.; Kerfoot, J.; Haldeman, C.; Yan, A.
2007-05-01
At the Rutgers University Coastal Ocean Observation Lab (RU-COOL), we have constructed a shelf-wide ocean observatory to characterize the physical forcing of continental shelf primary productivity in the New York Bight (NYB). The system is anchored by four enabling technologies, which include the international constellation of ocean color satellites, multi-static high frequency long-range surface current radar, real-time telemetry moorings, and long duration autonomous underwater vehicles (AUVs). Operation of the observatory is through a centralized computer network dedicated to receiving, processing and visualizing the real-time data and then disseminating results to both field scientists and ocean forecasters over the World Wide Web. The system was designed to conduct cutting edge research requiring the addition of rapidly evolving technologies, and to serve society by providing sustained data delivered in real-time. Rutgers COOL continues to work closely with Webb Research Corporation (WRC) in testing and development of the Slocum underwater gliders and continues to apply Slocum gliders in field operations spanning the globe. The continued strong collaboration between WRC and Rutgers has led to advances in glider operations and applications. These include deployment/recovery techniques, improvements in durability and reliability, integrated sensors suites, salinity spike removal, and adaptive controls utilized to optimize mission goals and data return. The gliders have gathered numerous data sets including salt intrusions as seen off of New Jersey, plume tracking, biological water sample matching, and operation through Hurricane Ernesto in 2006. This talk will detail recent oceanographic experiments in which the fleet has been deployed and improvements in the operation of these novel robotic vehicles. These experiments, in locations around the world, have resulted in significant new work in operation of underwater gliders and have gathered new and unique data sets. Recent accomplishments include deployment of a glider in Antarctica for LTER, control of a fleet of gliders during the ONR sponsored Shallow Water 06, RIMPAC, LATTE, ASAP, and the continuation of long-term observation at the LEO-15 New Jersey site Endurance Line. To date Rutgers has flown close to 100 glider missions, with over 27,000 km flown over 760 calendar days and 1,350 glider days in the water. Operations around the world are orchestrated remotely from COOL at Rutgers. Computer networking allows for command and control of the glider fleet from the COOL Lab or remotely via the internet. This system has enabled new oceanographic experiments at significantly reduced cost, with increased reliability, and with extended continuous operational deployments in the global oceans since 2003.
Saildrone fleet could help replace aging buoys
NASA Astrophysics Data System (ADS)
Voosen, Paul
2018-03-01
In April, two semiautonomous drones, developed by Saildrone, a marine tech startup based in Alameda, California, in close collaboration with the National Oceanic and Atmospheric Administration in Washington, D.C., are set to return from an 8-month tour of the Pacific Ocean. This the first scientific test for the drones, which are powered only by the wind and sun, in the Pacific Ocean. The voyage is an important step in showing that such drones, carrying 15 different sensors, could help replace an aging and expensive array of buoys that are the main way scientists sniff out signs of climate-disrupting El Niño events. If successful, scientists envision fleets of similar drones spreading across the ocean, inviting thoughts of what it could be like to do oceanography without a ship.
Major Impact of Fleet Renewal Over Airports Located in the Most Important Region of Brazil
NASA Technical Reports Server (NTRS)
Maters, Rafael Waltz; deRoodeTorres, Roberta; Santo, Respicio A. Espirito, Jr.
2003-01-01
The present article discusses and analyses the major impacts of the Brazilian carriers fleet renewal regarding Brazilian airport infrastructure in the most important region of the country, the Southeast (SE). A brief historical overview of the country's airline fleet will be presented, demonstrating the need for its renewal (m fact, Brazilian carriers started a major fleet renewal program m the last five years), while analyzing the periods in which a new breed of aircraft was put into service by the major carriers operating in the SE region. The trend of operating the classic regional jets plus the forthcoming entry into service of the "large regional jets" (LRJ, 70-115 seaters) in several point-to-point routes are presented along with the country's carriers" reality of operating these former aircraft in several high-capacity and medium-range routes. The article will focus on the ability of four of the major Southeast's airports to cope with the fleet modernization, mainly due to the fact that the region studied is the most socioeconomic developed, by far, with the largest demand for air transportation, thus making the impacts much more perceptible for the communities and the airport management involved. With the emergence of these impacts, several new projects and investments are being discussed and pushed forward, despite budgetary constrains being a reality in almost every Brazilian city, even in the SE region. In view of this, the paper presents how the general planning could be carried out in order to adapt the airports' infrastructures in function of the proposed (and in some cases, necessary) fleet renewal. Ultimately, we will present the present picture and two future scenarios m order to determine the level of service in the existent passenger terminal facilities in the wake of the possible operation of several new aircraft. Keywords: Airline fleet planning, Airport planning, Regional development, Regional Jets.
An IoT-Based Solution for Monitoring a Fleet of Educational Buildings Focusing on Energy Efficiency.
Amaxilatis, Dimitrios; Akrivopoulos, Orestis; Mylonas, Georgios; Chatzigiannakis, Ioannis
2017-10-10
Raising awareness among young people and changing their behaviour and habits concerning energy usage is key to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examines ways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both the users (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizens' behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system's high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies and services in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer new app-based solutions that can be used either for educational purposes or for managing the energy efficiency of the building. The system is replicable and adaptable to settings that may be different than the scenarios envisioned here (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity.
An IoT-Based Solution for Monitoring a Fleet of Educational Buildings Focusing on Energy Efficiency
Akrivopoulos, Orestis
2017-01-01
Raising awareness among young people and changing their behaviour and habits concerning energy usage is key to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examines ways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both the users (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizens’ behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system’s high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies and services in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer new app-based solutions that can be used either for educational purposes or for managing the energy efficiency of the building. The system is replicable and adaptable to settings that may be different than the scenarios envisioned here (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity. PMID:28994719
Biogeochemical sensor performance in the SOCCOM profiling float array
NASA Astrophysics Data System (ADS)
Johnson, Kenneth S.; Plant, Joshua N.; Coletti, Luke J.; Jannasch, Hans W.; Sakamoto, Carole M.; Riser, Stephen C.; Swift, Dana D.; Williams, Nancy L.; Boss, Emmanuel; Haëntjens, Nils; Talley, Lynne D.; Sarmiento, Jorge L.
2017-08-01
The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) program has begun deploying a large array of biogeochemical sensors on profiling floats in the Southern Ocean. As of February 2016, 86 floats have been deployed. Here the focus is on 56 floats with quality-controlled and adjusted data that have been in the water at least 6 months. The floats carry oxygen, nitrate, pH, chlorophyll fluorescence, and optical backscatter sensors. The raw data generated by these sensors can suffer from inaccurate initial calibrations and from sensor drift over time. Procedures to correct the data are defined. The initial accuracy of the adjusted concentrations is assessed by comparing the corrected data to laboratory measurements made on samples collected by a hydrographic cast with a rosette sampler at the float deployment station. The long-term accuracy of the corrected data is compared to the GLODAPv2 data set whenever a float made a profile within 20 km of a GLODAPv2 station. Based on these assessments, the fleet average oxygen data are accurate to 1 ± 1%, nitrate to within 0.5 ± 0.5 µmol kg-1, and pH to 0.005 ± 0.007, where the error limit is 1 standard deviation of the fleet data. The bio-optical measurements of chlorophyll fluorescence and optical backscatter are used to estimate chlorophyll a and particulate organic carbon concentration. The particulate organic carbon concentrations inferred from optical backscatter appear accurate to with 35 mg C m-3 or 20%, whichever is larger. Factors affecting the accuracy of the estimated chlorophyll a concentrations are evaluated.
Simulation and Data Analytics for Mobile Road Weather Sensors
NASA Astrophysics Data System (ADS)
Chettri, S. R.; Evans, J. D.; Tislin, D.
2016-12-01
Numerous algorithmic and theoretical considerations arise in simulating a vehicle-based weather observation network known as the Mobile Platform Environmental Data (MoPED). MoPED integrates sensor data from a fleet of commercial vehicles (about 600 at last count, with thousands more to come) as they travel interstate, state and local routes and metropolitan areas throughout the conterminous United States. The MoPED simulator models a fleet of anywhere between 1000-10,000 vehicles that travel a highway network encoded in a geospatial database, starting and finishing at random times and moving at randomly-varying speeds. Virtual instruments aboard these vehicles interpolate surface weather parameters (such as temperature and pressure) from the High-Resolution Rapid Refresh (HRRR) data series, an hourly, coast-to-coast 3km grid of weather parameters modeled by the National Centers for Environmental Prediction. Whereas real MoPED sensors have noise characteristics that lead to drop-outs, drift, or physically unrealizable values, our simulation introduces a variety of noise distributions into the parameter values inferred from HRRR (Fig. 1). Finally, the simulator collects weather readings from the National Weather Service's Automated Surface Observation System (ASOS, comprised of over 800 airports around the country) for comparison, validation, and analytical experiments. The simulator's MoPED-like weather data stream enables studies like the following: Experimenting with data analysis and calibration methods - e.g., by comparing noisy vehicle data with ASOS "ground truth" in close spatial and temporal proximity (e.g., 10km, 10 min) (Fig. 2). Inter-calibrating different vehicles' sensors when they pass near each other. Detecting spatial structure in the surface weather - such as dry lines, sudden changes in humidity that accompany severe weather - and estimating how many vehicles are needed to reliably map these structures and their motion. Detecting bottlenecks in the MoPED data infrastructure to ensure real-time data filtering and dissemination as number of vehicles scales up; or tuning the data structures needed to keep track of individual sensor calibrations. Expanding the analytical and data management approach to other mobile weather sensors such as smartphones.
Communication and Control for Fleets of Autonomous Underwater Vehicles
2006-10-30
Washington State University (WSU) on fuzzy logic control systems [2-4] and autonomous vehicles [5-10]. The ALWSE-MC program developed at NAVSEA CSS was...rotating head sonar on crawlers as an additional sensor for navigation. We have previously investigated the use of video cameras on autonomous vehicles for...simulates autonomous vehicles performing mine reconnaissance/mapping, clearance, and surveillance in a littoral region. Three simulations were preformed
NASA Astrophysics Data System (ADS)
Goodwin, Thomas; Carr, Ryan; Mitra, Atindra K.; Selmic, Rastko R.
2009-05-01
We discuss the development of Position-Adaptive Sensors [1] for purposes for detecting embedded chemical substances in challenging environments. This concept is a generalization of patented Position-Adaptive Radar Concepts developed at AFRL for challenging conditions such as urban environments. For purposes of investigating the detection of chemical substances using multiple MAV (Micro-UAV) platforms, we have designed and implemented an experimental testbed with sample structures such as wooden carts that contain controlled leakage points. Under this general concept, some of the members of a MAV swarm can serve as external position-adaptive "transmitters" by blowing air over the cart and some of the members of a MAV swarm can serve as external position-adaptive "receivers" that are equipped with chemical or biological (chem/bio) sensors that function as "electronic noses". The objective can be defined as improving the particle count of chem/bio concentrations that impinge on a MAV-based position-adaptive sensor that surrounds a chemical repository, such as a cart, via the development of intelligent position-adaptive control algorithms. The overall effect is to improve the detection and false-alarm statistics of the overall system. Within the major sections of this paper, we discuss a number of different aspects of developing our initial MAV-Based Sensor Testbed. This testbed includes blowers to simulate position-adaptive excitations and a MAV from Draganfly Innovations Inc. with stable design modifications to accommodate our chem/bio sensor boom design. We include details with respect to several critical phases of the development effort including development of the wireless sensor network and experimental apparatus, development of the stable sensor boom for the MAV, integration of chem/bio sensors and sensor node onto the MAV and boom, development of position-adaptive control algorithms and initial tests at IDCAST (Institute for the Development and Commercialization of Advanced Sensor Technologies), and autonomous positionadaptive chem/bio tests and demos in the MAV Lab at AFRL Air Vehicles Directorate. For this particular MAV implementation of chem/bio sensors, we selected miniature Methane, Nitrogen Dioxide, and Carbon Monoxide sensors. To safely simulate the behavior of chem/bio substances in our laboratory environment, we used either cigarette smoke or incense. We present a set of concise parametric results along with visual demonstration of our new position-adaptive sensor capability. Two types of experiments were conducted: with sensor nodes screening the chemical contaminant (cigarette smoke or incense) without MAVs, and with a sensor node integrated with the MAV. It was shown that the MOS-based chemical sensors could be used for chemical leakage detection, as well as for position-adaptive sensors on air/ground vehicles as sniffers for chemical contaminants.
Robust PV Degradation Methodology and Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Dirk; Deline, Christopher A; Kurtz, Sarah
The degradation rate plays an important role in predicting and assessing the long-term energy generation of PV systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this manuscript, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year (YOY) rate calculation. We show the method to provide reliable degradation rate estimates even in the case ofmore » sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.« less
Robust PV Degradation Methodology and Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Dirk C.; Deline, Chris; Kurtz, Sarah R.
The degradation rate plays an important role in predicting and assessing the long-term energy generation of photovoltaics (PV) systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this paper, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year rate calculation. We show the method to provide reliable degradation rate estimates even in the case ofmore » sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.« less
XpertTrack: Precision Autonomous Measuring Device Developed for Real Time Shipments Tracker
Viman, Liviu; Daraban, Mihai; Fizesan, Raul; Iuonas, Mircea
2016-01-01
This paper proposes a software and hardware solution for real time condition monitoring applications. The proposed device, called XpertTrack, exchanges data through the GPRS protocol over a GSM network and monitories temperature and vibrations of critical merchandise during commercial shipments anywhere on the globe. Another feature of this real time tracker is to provide GPS and GSM positioning with a precision of 10 m or less. In order to interpret the condition of the merchandise, the data acquisition, analysis and visualization are done with 0.1 °C accuracy for the temperature sensor, and 10 levels of shock sensitivity for the acceleration sensor. In addition to this, the architecture allows increasing the number and the types of sensors, so that companies can use this flexible solution to monitor a large percentage of their fleet. PMID:26978360
Robust PV Degradation Methodology and Application
Jordan, Dirk C.; Deline, Chris; Kurtz, Sarah R.; ...
2017-12-21
The degradation rate plays an important role in predicting and assessing the long-term energy generation of photovoltaics (PV) systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this paper, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year rate calculation. We show the method to provide reliable degradation rate estimates even in the case ofmore » sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.« less
Advanced Image Processing for NASA Applications
NASA Technical Reports Server (NTRS)
LeMoign, Jacqueline
2007-01-01
The future of space exploration will involve cooperating fleets of spacecraft or sensor webs geared towards coordinated and optimal observation of Earth Science phenomena. The main advantage of such systems is to utilize multiple viewing angles as well as multiple spatial and spectral resolutions of sensors carried on multiple spacecraft but acting collaboratively as a single system. Within this framework, our research focuses on all areas related to sensing in collaborative environments, which means systems utilizing intracommunicating spatially distributed sensor pods or crafts being deployed to monitor or explore different environments. This talk will describe the general concept of sensing in collaborative environments, will give a brief overview of several technologies developed at NASA Goddard Space Flight Center in this area, and then will concentrate on specific image processing research related to that domain, specifically image registration and image fusion.
XpertTrack: Precision Autonomous Measuring Device Developed for Real Time Shipments Tracker.
Viman, Liviu; Daraban, Mihai; Fizesan, Raul; Iuonas, Mircea
2016-03-10
This paper proposes a software and hardware solution for real time condition monitoring applications. The proposed device, called XpertTrack, exchanges data through the GPRS protocol over a GSM network and monitories temperature and vibrations of critical merchandise during commercial shipments anywhere on the globe. Another feature of this real time tracker is to provide GPS and GSM positioning with a precision of 10 m or less. In order to interpret the condition of the merchandise, the data acquisition, analysis and visualization are done with 0.1 °C accuracy for the temperature sensor, and 10 levels of shock sensitivity for the acceleration sensor. In addition to this, the architecture allows increasing the number and the types of sensors, so that companies can use this flexible solution to monitor a large percentage of their fleet.
Mobility Performance Algorithms for Small Unmanned Ground Vehicles
2009-05-01
obstacles need to be developed; specifically, models and data for wheeled vehicle skid steering, interior building floor and roof surfaces, and stair ...an 80-lb SUGV; PackBot® at 50 lb, and GatorTM at 2500 lb. Additionally, the FCS projects that 40% of the military fleet may eventually be robotic ...sensor input analysis and decision-making time. Fields (2002a) discusses representing interaction of humans and robots in the OneSAF Testbed Baseline
Real-driving emissions of circulating Spanish car fleet in 2015 using RSD Technology.
Pujadas, M; Domínguez-Sáez, A; De la Fuente, J
2017-01-15
In this paper we present the results corresponding to on-road traffic emissions measurements obtained during two field campaigns developed in the Madrid region (Spain) during 2014 and 2015 in the framework of the CORETRA project. The experimental strategy was based on the use of a RSD 4600 remote sensor in interurban roads. These measurements have produced a global database of >190,000 vehicles with their associated emission data (NO/CO 2 , HC/CO 2 and CO/CO 2 ), which can be considered representative of the current Spanish circulating fleet. The results of M1 vehicles were analysed according to their distribution by Euro Standard and engine model. One of the relevant findings is that, despite the progressive introduction of increasingly stringent standards, no NO emission reduction is observed for diesel vehicles with time, although this behavior shows significative differences among brands and engine models. We have also investigated the presence of "high emitter" (HE) vehicles in the Spanish M1 circulating fleet and most of the HE detected corresponded to diesel vehicles with very high NO/CO 2 values. With these results at hand, we strongly propose the future incorporation of the "high emitter vehicle" definition into the European environmental legislation, as well as the establishment of specific strategies in each country/region in order to identify these anomalous vehicles. Identification and repair of HE vehicles within the European circulating fleets, although are not easy tasks, should be considered very important for the improvement of air quality in the EU. The use of non-intrusive optical technologies (i.e. RSD) is an excellent option to provide instantaneous real emission data of each individual vehicle without disturbing traffic and for on-road fleet monitoring. In summary, it is a good strategy to obtain valuable information about the long term surveillance of real vehicle emission trends, specially after the introduction of new standard. Copyright © 2016 Elsevier B.V. All rights reserved.
Geostationary Microwave Sounders: Science, Applications and the Geostar Instrument Concept
NASA Technical Reports Server (NTRS)
Lambrigtsen, Bjorn; Gaier, Todd; Kangaslahti, Pekka; Lim, Boon; Tanner, Alan
2011-01-01
Microwave atmospheric sounders have long provided some of the most imporant data for use in numerical weather prediction (NWP) and have played an important role in atmospheric weather and climate research. With 7 US satellites now carrying such sensors, we are in a 'golden age' of microwave remote sensing of the atmosphere. However, as this fleet ages and is replaced by a smaller number of new sensors in the coming yars, the main shortcoming of sensors in low Earth orbit -i.e. poor spacial and temporal converage and sampling - will become more apparent. Placing such sensors on geostationary satellites, enabling time-continuous views of large portions of the Earth disc, would solve this problem. but the GEO orbit is approximately 40 times higher than a typical LEO orbit, which requires antenna apertures also about 40 times larger than for LEO systems to maintain spatial resolution, and it has not been feasible to develop such systems. Recently, a solution to this problem has appeared in the form of aperture synthesis.
Geosensors to Support Crop Production: Current Applications and User Requirements
Thessler, Sirpa; Kooistra, Lammert; Teye, Frederick; Huitu, Hanna; Bregt, Arnold K.
2011-01-01
Sensor technology, which benefits from high temporal measuring resolution, real-time data transfer and high spatial resolution of sensor data that shows in-field variations, has the potential to provide added value for crop production. The present paper explores how sensors and sensor networks have been utilised in the crop production process and what their added-value and the main bottlenecks are from the perspective of users. The focus is on sensor based applications and on requirements that users pose for them. Literature and two use cases were reviewed and applications were classified according to the crop production process: sensing of growth conditions, fertilising, irrigation, plant protection, harvesting and fleet control. The potential of sensor technology was widely acknowledged along the crop production chain. Users of the sensors require easy-to-use and reliable applications that are actionable in crop production at reasonable costs. The challenges are to develop sensor technology, data interoperability and management tools as well as data and measurement services in a way that requirements can be met, and potential benefits and added value can be realized in the farms in terms of higher yields, improved quality of yields, decreased input costs and production risks, and less work time and load. PMID:22163978
Distributed estimation for adaptive sensor selection in wireless sensor networks
NASA Astrophysics Data System (ADS)
Mahmoud, Magdi S.; Hassan Hamid, Matasm M.
2014-05-01
Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.
Hansen, Jakob Hønborg; Geving, Ingunn Holmen; Reinertsen, Randi Eidsmo
2010-01-01
The aim of this study was to investigate the circadian adaptation of tcr (core body temperature), BP (blood pressure), HR (heart rate) and subjective sleep quality after 7 days of working 12-h night shifts in offshore fleet workers. Night workers (N = 7) (18:00-6:00) and day workers (N = 7) (6:00-18:00) were recruited from a Norwegian offshore company operating in the North Sea. We measured t(cr), BP and HR on days 1 and 7. An increase of 0.6 °C (p = .03) was observed within the group of night workers from day 1 to day 7. Between the night and day workers there was a significant difference of 0.6 °C from day 1 to day 7 (p = .01). Sleep latency and sleep length also showed significant differences between the groups (p = .01 and p = .04). There was an interaction effect in tiredness during the shift (p = .02). The significant increase in tcr indicates an adaptation in the night workers to the new working schedule, and the extended working hours and sleep deprivation are hypothesized to be the main cause of the increased t(cr). Light exposure, altered pattern of food availability and physical activity are likely to have contributed as well. Subjective sleep quality showed inconclusive results.
Wang, Shengqian; Rao, Changhui; Xian, Hao; Zhang, Jianlin; Wang, Jianxin; Liu, Zheng
2011-04-25
The feasibility and performance of the pyramid wavefront sensor without modulation used in closed-loop adaptive optics system is investigated in this paper. The theory concepts and some simulation results are given to describe the detection trend and the linearity range of such a sensor with the aim to better understand its properties, and then a laboratory setup of the adaptive optics system based on this sensor and the liquid-crystal spatial light modulator is built. The correction results for the individual Zernike aberrations and the Kolmogorov phase screens are presented to demonstrate that the pyramid wavefront sensor without modulation can work as expected for closed-loop adaptive optics system.
A Phase-Shifting Zernike Wavefront Sensor for the Palomar P3K Adaptive Optics System
NASA Technical Reports Server (NTRS)
Wallace, J. Kent; Crawford, Sam; Loya, Frank; Moore, James
2012-01-01
A phase-shifting Zernike wavefront sensor has distinct advantages over other types of wavefront sensors. Chief among them are: 1) improved sensitivity to low-order aberrations and 2) efficient use of photons (hence reduced sensitivity to photon noise). We are in the process of deploying a phase-shifting Zernike wavefront sensor to be used with the realtime adaptive optics system for Palomar. Here we present the current state of the Zernike wavefront sensor to be integrated into the high-order adaptive optics system at Mount Palomar's Hale Telescope.
Precision of FLEET Velocimetry Using High-speed CMOS Camera Systems
NASA Technical Reports Server (NTRS)
Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.
2015-01-01
Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 micro sec, precisions of 0.5 m/s in air and 0.2 m/s in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision High Speed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.
Mapping sub-surface geostrophic currents from altimetry and a fleet of gliders
NASA Astrophysics Data System (ADS)
Alvarez, A.; Chiggiato, J.; Schroeder, K.
2013-04-01
Integrating the observations gathered by different platforms into a unique physical picture of the environment is a fundamental aspect of networked ocean observing systems. These are constituted by a spatially distributed set of sensors and platforms that simultaneously monitor a given ocean region. Remote sensing from satellites is an integral part of present ocean observing systems. Due to their autonomy, mobility and controllability, underwater gliders are envisioned to play a significant role in the development of networked ocean observatories. Exploiting synergism between remote sensing and underwater gliders is expected to result on a better characterization of the marine environment than using these observational sources individually. This study investigates a methodology to estimate the three dimensional distribution of geostrophic currents resulting from merging satellite altimetry and in situ samples gathered by a fleet of Slocum gliders. Specifically, the approach computes the volumetric or three dimensional distribution of absolute dynamic height (ADH) that minimizes the total energy of the system while being close to in situ observations and matching the absolute dynamic topography (ADT) observed from satellite at the sea surface. A three dimensional finite element technique is employed to solve the minimization problem. The methodology is validated making use of the dataset collected during the field experiment called Rapid Environmental Picture-2010 (REP-10) carried out by the NATO Undersea Research Center-NURC during August 2010. A marine region off-shore La Spezia (northwest coast of Italy) was sampled by a fleet of three coastal Slocum gliders. Results indicate that the geostrophic current field estimated from gliders and altimetry significantly improves the estimates obtained using only the data gathered by the glider fleet.
NASA Technical Reports Server (NTRS)
Goldstein, H. W.; Grenda, R. N.
1977-01-01
The sensors were examined for adaptability to shuttle by reviewing pertinent information regarding sensor characteristics as they related to the shuttle and Multimission Modular Spacecraft environments. This included physical and electrical characteristics, data output and command requirements, attitude and orientation requirements, thermal and safety requirements, and adaptability and modification for space. The sensor requirements and characteristics were compared with the corresponding shuttle and Multimission Modular Spacecraft characteristics and capabilities. On this basis the adaptability and necessary modifications for each sensor were determined. A number of the sensors were examined in more detail and estimated cost for the modifications was provided.
Will future helicopters be diesel powered
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-05-01
An investigator has found that, if current gas turbine engines in helicopters are replaced by compound adiabatic diesel engines, fuel savings of 40% are possible. This would hold true if the diesel engines are retrofitted to the current helicopter fleet or adapted to new helicopter designs. Problems such as engine placement, weight, and lubrication exist but may be surmountable with proper design.
Signal coupling to embedded pitch adapters in silicon sensors
NASA Astrophysics Data System (ADS)
Artuso, M.; Betancourt, C.; Bezshyiko, I.; Blusk, S.; Bruendler, R.; Bugiel, S.; Dasgupta, R.; Dendek, A.; Dey, B.; Ely, S.; Lionetto, F.; Petruzzo, M.; Polyakov, I.; Rudolph, M.; Schindler, H.; Steinkamp, O.; Stone, S.
2018-01-01
We have examined the effects of embedded pitch adapters on signal formation in n-substrate silicon microstrip sensors with data from beam tests and simulation. According to simulation, the presence of the pitch adapter metal layer changes the electric field inside the sensor, resulting in slowed signal formation on the nearby strips and a pick-up effect on the pitch adapter. This can result in an inefficiency to detect particles passing through the pitch adapter region. All these effects have been observed in the beam test data.
NASA Astrophysics Data System (ADS)
Beedle, Amy E. M.; Lynham, Steven; Garcia-Manyes, Sergi
2016-08-01
The post-translational modification S-sulfenylation functions as a key sensor of oxidative stress. Yet the dynamics of sulfenic acid in proteins remains largely elusive due to its fleeting nature. Here we use single-molecule force-clamp spectroscopy and mass spectrometry to directly capture the reactivity of an individual sulfenic acid embedded within the core of a single Ig domain of the titin protein. Our results demonstrate that sulfenic acid is a crucial short-lived intermediate that dictates the protein's fate in a conformation-dependent manner. When exposed to the solution, sulfenic acid rapidly undergoes further chemical modification, leading to irreversible protein misfolding; when cryptic in the protein's microenvironment, it readily condenses with a neighbouring thiol to create a protective disulfide bond, which assists the functional folding of the protein. This mechanism for non-enzymatic oxidative folding provides a plausible explanation for redox-modulated stiffness of proteins that are physiologically exposed to mechanical forces, such as cardiac titin.
NASA Technical Reports Server (NTRS)
1999-01-01
Under a data purchase agreement with Goddard Space Flight Center, Orbital Sciences Corporation has been able to contract building of the Sea-Viewing Wide-Field-of-View Sensor (SeaWIFS). Orbital Sciences was then able commercialized the data that the satellite produces. These data are used to create daily fish finding maps, allowing fishing fleets to focus on locations where many commercially important surface feeding fish, like tuna and swordfish, congregate. In agriculture and forestry, SeaWIFS' images offer an alternative to direct on-site inspection or expensive serial photography.
2014-01-01
Background Extracting cardiorespiratory signals from non-invasive and non-contacting sensor arrangements, i.e. magnetic induction sensors, is a challenging task. The respiratory and cardiac signals are mixed on top of a large and time-varying offset and are likely to be disturbed by measurement noise. Basic filtering techniques fail to extract relevant information for monitoring purposes. Methods We present a real-time filtering system based on an adaptive Kalman filter approach that separates signal offsets, respiratory and heart signals from three different sensor channels. It continuously estimates respiration and heart rates, which are fed back into the system model to enhance performance. Sensor and system noise covariance matrices are automatically adapted to the aimed application, thus improving the signal separation capabilities. We apply the filtering to two different subjects with different heart rates and sensor properties and compare the results to the non-adaptive version of the same Kalman filter. Also, the performance, depending on the initialization of the filters, is analyzed using three different configurations ranging from best to worst case. Results Extracted data are compared with reference heart rates derived from a standard pulse-photoplethysmographic sensor and respiration rates from a flowmeter. In the worst case for one of the subjects the adaptive filter obtains mean errors (standard deviations) of -0.2 min −1 (0.3 min −1) and -0.7 bpm (1.7 bpm) (compared to -0.2 min −1 (0.4 min −1) and 42.0 bpm (6.1 bpm) for the non-adaptive filter) for respiration and heart rate, respectively. In bad conditions the heart rate is only correctly measurable when the Kalman matrices are adapted to the target sensor signals. Also, the reduced mean error between the extracted offset and the raw sensor signal shows that adapting the Kalman filter continuously improves the ability to separate the desired signals from the raw sensor data. The average total computational time needed for the Kalman filters is under 25% of the total signal length rendering it possible to perform the filtering in real-time. Conclusions It is possible to measure in real-time heart and breathing rates using an adaptive Kalman filter approach. Adapting the Kalman filter matrices improves the estimation results and makes the filter universally deployable when measuring cardiorespiratory signals. PMID:24886253
Foussier, Jerome; Teichmann, Daniel; Jia, Jing; Misgeld, Berno; Leonhardt, Steffen
2014-05-09
Extracting cardiorespiratory signals from non-invasive and non-contacting sensor arrangements, i.e. magnetic induction sensors, is a challenging task. The respiratory and cardiac signals are mixed on top of a large and time-varying offset and are likely to be disturbed by measurement noise. Basic filtering techniques fail to extract relevant information for monitoring purposes. We present a real-time filtering system based on an adaptive Kalman filter approach that separates signal offsets, respiratory and heart signals from three different sensor channels. It continuously estimates respiration and heart rates, which are fed back into the system model to enhance performance. Sensor and system noise covariance matrices are automatically adapted to the aimed application, thus improving the signal separation capabilities. We apply the filtering to two different subjects with different heart rates and sensor properties and compare the results to the non-adaptive version of the same Kalman filter. Also, the performance, depending on the initialization of the filters, is analyzed using three different configurations ranging from best to worst case. Extracted data are compared with reference heart rates derived from a standard pulse-photoplethysmographic sensor and respiration rates from a flowmeter. In the worst case for one of the subjects the adaptive filter obtains mean errors (standard deviations) of -0.2 min(-1) (0.3 min(-1)) and -0.7 bpm (1.7 bpm) (compared to -0.2 min(-1) (0.4 min(-1)) and 42.0 bpm (6.1 bpm) for the non-adaptive filter) for respiration and heart rate, respectively. In bad conditions the heart rate is only correctly measurable when the Kalman matrices are adapted to the target sensor signals. Also, the reduced mean error between the extracted offset and the raw sensor signal shows that adapting the Kalman filter continuously improves the ability to separate the desired signals from the raw sensor data. The average total computational time needed for the Kalman filters is under 25% of the total signal length rendering it possible to perform the filtering in real-time. It is possible to measure in real-time heart and breathing rates using an adaptive Kalman filter approach. Adapting the Kalman filter matrices improves the estimation results and makes the filter universally deployable when measuring cardiorespiratory signals.
Map Matching and Real World Integrated Sensor Data Warehousing (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, E.
2014-02-01
The inclusion of interlinked temporal and spatial elements within integrated sensor data enables a tremendous degree of flexibility when analyzing multi-component datasets. The presentation illustrates how to warehouse, process, and analyze high-resolution integrated sensor datasets to support complex system analysis at the entity and system levels. The example cases presented utilizes in-vehicle sensor system data to assess vehicle performance, while integrating a map matching algorithm to link vehicle data to roads to demonstrate the enhanced analysis possible via interlinking data elements. Furthermore, in addition to the flexibility provided, the examples presented illustrate concepts of maintaining proprietary operational information (Fleet DNA)more » and privacy of study participants (Transportation Secure Data Center) while producing widely distributed data products. Should real-time operational data be logged at high resolution across multiple infrastructure types, map matched to their associated infrastructure, and distributed employing a similar approach; dependencies between urban environment infrastructures components could be better understood. This understanding is especially crucial for the cities of the future where transportation will rely more on grid infrastructure to support its energy demands.« less
Adaptive Command and Control of Theater Air Power
1997-06-01
Industries, Citicorp, Coca-Cola, Honda, and Intel corporations practice similar techniques 19 Notes as cited in Thomas Petzinger, Jr., “The Front Lines...before the leap to personal computers and word processors occurred. Finally, anticipation takes place as the stock market adjusts current prices...Leading Marines. January 1995. Fleet Marine Force Manual 1-1. Campaigning. January 1990. Gell-Mann, Murray, The Quark and the Jaguar: Adventures
Measuring PM and related air pollutants using low-cost ...
Emerging air quality sensors may play a key role in better characterizing levels of air pollution in a variety of settings There are a wide range of low-cost (< $500 US) sensors on the market, but few have been characterized. If accurate, this new generation of inexpensive sensors can potentially allow larger fleets of monitors to be deployed to better study the spatial and temporal variability of pollutants. The small size and light weight of these sensors also allows for the possibility of wearable or drone applications. Sensor networks will very likely play a key role in future estimates of human health impacts of pollutants, in particular particulate matter (PM), and will allow for the better characterization of pollutant sources and source regions.We will present measurements from an assortment of sensors, costing $20-$700, that have been used to measure air pollution in the US, India, and China with a focus on estimating PM concentrations. Their performance has been evaluated in these very different settings with low concentrations seen in the US (up to approximately 20 ug m-3) and much higher concentrations measured in India and China (up to approximately 300 ug m-3). Based on these studies the optimal concentration ranges of these sensors have been determined. Used in conjunction with data from a carbon dioxide sensor, emissions factors were estimated in some of the locations. In addition temperature and humidity sensors can be used to calculate c
Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems.
Munera, Eduardo; Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Noguera, Juan Fco Blanes
2015-07-24
The inclusion of embedded sensors into a networked system provides useful information for many applications. A Distributed Control System (DCS) is one of the clearest examples where processing and communications are constrained by the client's requirements and the capacity of the system. An embedded sensor with advanced processing and communications capabilities supplies high level information, abstracting from the data acquisition process and objects recognition mechanisms. The implementation of an embedded sensor/actuator as a Smart Resource permits clients to access sensor information through distributed network services. Smart resources can offer sensor services as well as computing, communications and peripheral access by implementing a self-aware based adaptation mechanism which adapts the execution profile to the context. On the other hand, information integrity must be ensured when computing processes are dynamically adapted. Therefore, the processing must be adapted to perform tasks in a certain lapse of time but always ensuring a minimum process quality. In the same way, communications must try to reduce the data traffic without excluding relevant information. The main objective of the paper is to present a dynamic configuration mechanism to adapt the sensor processing and communication to the client's requirements in the DCS. This paper describes an implementation of a smart resource based on a Red, Green, Blue, and Depth (RGBD) sensor in order to test the dynamic configuration mechanism presented.
Gilliam, F Roosevelt; Giudici, Michael; Benn, Andrew; Koplan, Bruce; Berg, Kellie Jean Chase; Kraus, Stacia Merkel; Stolen, Kira Q; Alvarez, Guy E; Hopper, Donald L; Wilkoff, Bruce L
2011-02-01
Rate-adaptive sensors are designed to restore a physiologic heart rate response to activity, in particular for patients that have chronotropic incompetence (CI). Limited data exist comparing two primary types of sensors; an accelerometer (XL) sensor which detects activity or motion and a minute ventilation (MV) sensor, which detects the product of respiration rate and tidal volume. The APPROPRIATE study will evaluate the MV sensor compared with the XL sensor for superiority in improving functional capacity (peak VO(2)) in pacemaker patients that have CI. This study is a double-blind, randomized, two-arm trial that will enroll approximately 1,000 pacemaker patients. Patients will complete a 6-min walk test at the 2-week visit to screen for potential CI. Those projected to have CI will advance to a 1-month visit. At the 1-month visit, final determination of CI will be done by completing a peak exercise treadmill test while the pacemaker is programmed to DDDR with the device sensors set to passive. Patients failing to meet the study criteria for CI will not continue further in the trial. Patients that demonstrate CI will be randomized to program their rate-adaptive sensors to either MV or XL in a 1:1 ratio. The rate-adaptive sensor will be optimized for each patient using a short walk to determine the appropriate response factor. At a 2-month visit, patients will complete a CPX test with the rate-adaptive sensors in their randomized setting.
NASA Astrophysics Data System (ADS)
Tougher, B. B.
2011-12-01
Monterey Bay Aquarium Research Institute's (MBARI) evolving fleet of ocean observing systems has made it possible to collect information and data about a wide variety of ocean parameters, enabling researchers to better understand marine ecosystems. In collaboration with Liquid Robotics Inc, the designer of the Wave Glider autonomous surface vehicle (ASV), MBARI is adding a new capability to its suite of ocean observing tools. This new technology will augment MBARI research programs that use satellites, ships, moorings, drifters, autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) to improve data collection of temporally and spatially variable oceanographic features. The Wave Glider ASV derives its propulsion from wave energy, while sensors and communications are powered through the use of two solar panels and batteries, enabling it to remain at sea indefinitely. Wave Gliders are remotely controlled via real-time Iridium burst communications, which also permit real-time data telemetry. MBARI has developed Ocean Acidification (OA) moorings to continuously monitor the chemical and physical changes occurring in the ocean as a result of increased levels of atmospheric carbon dioxide (CO2). The moorings are spatially restricted by being anchored to the seafloor, so during the summer of 2011 the ocean acidification sensor suite designed for moorings was integrated into a Wave Glider ASV to increase both temporal and spatial ocean observation capabilities. The OA sensor package enables the measurement of parameters essential to better understanding the changing acidity of the ocean, specifically pCO2, pH, oxygen, salinity and temperature. The Wave Glider will also be equipped with a meteorological sensor suite that will measure air temperature, air pressure, and wind speed and direction. The OA sensor integration into a Wave Glider was part of MBARI's 2011 summer internship program. This project involved designing a new layout for the OA sensors within a Wave Glider aft payload dry box. The Wave Glider OA sensor suite includes the addition of a pCO2 standard tank not included within the current OA moorings. Communication links between MBARI electronics and Liquid Robotics Control and Communications were successfully established in the laboratory, however further steps to fully integrate and test the OA system into a Wave Glider ASV are still needed. In the future these ASVs will provide platforms for additional surface and subsurface instrumentation, particularly with MBARI's upcoming Controlled, Agile, and Novel, Observing Network (CANON) projects. The integration of the OA sensor package into a Wave Glider ASV will make it possible to continuously monitor the marine environment during adverse weather conditions which are often difficult to document but scientifically important.
Multi-Modalities Sensor Science
2015-02-28
enhanced multi-mode sensor science. bio -sensing, cross-discipling, multi-physics, nano-technology sailing He +46-8790 8465 1 Final Report for SOARD Project...spectroscopy, nano-technology, biophotonics and multi-physics modeling to produce adaptable bio -nanostructure enhanced multi-mode sensor science. 1...adaptable bio -nanostructure enhanced multi-mode sensor science. The accomplishments includes 1) A General Method for Designing a Radome to Enhance
HEAT Sensor: Harsh Environment Adaptable Thermionic Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Limb, Scott J.
2016-05-31
This document is the final report for the “HARSH ENVIRONMENT ADAPTABLE THERMIONIC SENSOR” project under NETL’s Crosscutting contract DE-FE0013062. This report addresses sensors that can be made with thermionic thin films along with the required high temperature hermetic packaging process. These sensors can be placed in harsh high temperature environments and potentially be wireless and self-powered.
NASA Astrophysics Data System (ADS)
Saqib, Najam us; Faizan Mysorewala, Muhammad; Cheded, Lahouari
2017-12-01
In this paper, we propose a novel monitoring strategy for a wireless sensor networks (WSNs)-based water pipeline network. Our strategy uses a multi-pronged approach to reduce energy consumption based on the use of two types of vibration sensors and pressure sensors, all having different energy levels, and a hierarchical adaptive sampling mechanism to determine the sampling frequency. The sampling rate of the sensors is adjusted according to the bandwidth of the vibration signal being monitored by using a wavelet-based adaptive thresholding scheme that calculates the new sampling frequency for the following cycle. In this multimodal sensing scheme, the duty-cycling approach is used for all sensors to reduce the sampling instances, such that the high-energy, high-precision (HE-HP) vibration sensors have low duty cycles, and the low-energy, low-precision (LE-LP) vibration sensors have high duty cycles. The low duty-cycling (HE-HP) vibration sensor adjusts the sampling frequency of the high duty-cycling (LE-LP) vibration sensor. The simulated test bed considered here consists of a water pipeline network which uses pressure and vibration sensors, with the latter having different energy consumptions and precision levels, at various locations in the network. This is all the more useful for energy conservation for extended monitoring. It is shown that by using the novel features of our proposed scheme, a significant reduction in energy consumption is achieved and the leak is effectively detected by the sensor node that is closest to it. Finally, both the total energy consumed by monitoring as well as the time to detect the leak by a WSN node are computed, and show the superiority of our proposed hierarchical adaptive sampling algorithm over a non-adaptive sampling approach.
Adaptive responses of tropical tuna purse-seiners under temporal regulations.
Torres-Irineo, Edgar; Dreyfus-León, Michel; Gaertner, Daniel; Salas, Silvia; Marchal, Paul
2017-02-01
The failure to achieve fisheries management objectives has been broadly discussed in international meetings. Measuring the effects of fishery regulations is difficult due to the lack of detailed information. The yellowfin tuna fishery in the eastern Pacific Ocean offers an opportunity to evaluate the fishers' responses to temporal regulations. We used data from observers on-board Mexican purse-seine fleet, which is the main fleet fishing on dolphin-associated tuna schools. In 2002, the Inter-American Tropical Tuna Commission implemented a closed season to reduce fishing effort for this fishery. For the period 1992-2008, we analysed three fishery indicators using generalized estimating equations to evaluate the fishers' response to the closure. We found that purse-seiners decreased their time spent in port, increased their fishing sets, and maintained their proportion of successful fishing sets. Our results highlight the relevance of accounting for the fisher behaviour to understand fisheries dynamics when establishing management regulations.
Soft Thermal Sensor with Mechanical Adaptability.
Yang, Hui; Qi, Dianpeng; Liu, Zhiyuan; Chandran, Bevita K; Wang, Ting; Yu, Jiancan; Chen, Xiaodong
2016-11-01
A soft thermal sensor with mechanical adaptability is fabricated by the combination of single-wall carbon nanotubes with carboxyl groups and self-healing polymers. This study demonstrates that this soft sensor has excellent thermal response and mechanical adaptability. It shows tremendous promise for improving the service life of soft artificial-intelligence robots and protecting thermally sensitive electronics from the risk of damage by high temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Apparatus and method for imaging metallic objects using an array of giant magnetoresistive sensors
Chaiken, Alison
2000-01-01
A portable, low-power, metallic object detector and method for providing an image of a detected metallic object. In one embodiment, the present portable low-power metallic object detector an array of giant magnetoresistive (GMR) sensors. The array of GMR sensors is adapted for detecting the presence of and compiling image data of a metallic object. In the embodiment, the array of GMR sensors is arranged in a checkerboard configuration such that axes of sensitivity of alternate GMR sensors are orthogonally oriented. An electronics portion is coupled to the array of GMR sensors. The electronics portion is adapted to receive and process the image data of the metallic object compiled by the array of GMR sensors. The embodiment also includes a display unit which is coupled to the electronics portion. The display unit is adapted to display a graphical representation of the metallic object detected by the array of GMR sensors. In so doing, a graphical representation of the detected metallic object is provided.
Generating Artificial Reference Images for Open Loop Correlation Wavefront Sensors
NASA Astrophysics Data System (ADS)
Townson, M. J.; Love, G. D.; Saunter, C. D.
2018-05-01
Shack-Hartmann wavefront sensors for both solar and laser guide star adaptive optics (with elongated spots) need to observe extended objects. Correlation techniques have been successfully employed to measure the wavefront gradient in solar adaptive optics systems and have been proposed for laser guide star systems. In this paper we describe a method for synthesising reference images for correlation Shack-Hartmann wavefront sensors with a larger field of view than individual sub-apertures. We then show how these supersized reference images can increase the performance of correlation wavefront sensors in regimes where large relative shifts are induced between sub-apertures, such as those observed in open-loop wavefront sensors. The technique we describe requires no external knowledge outside of the wavefront-sensor images, making it available as an entirely "software" upgrade to an existing adaptive optics system. For solar adaptive optics we show the supersized reference images extend the magnitude of shifts which can be accurately measured from 12% to 50% of the field of view of a sub-aperture and in laser guide star wavefront sensors the magnitude of centroids that can be accurately measured is increased from 12% to 25% of the total field of view of the sub-aperture.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... relative humidity sensors and adaptive control anti-sweat heaters. The rationale for granting these waivers is equally applicable to LG, which has products containing similar relative humidity sensors and anti... humidity sensors and adaptive control anti-sweat heaters. Therefore, it is ordered that: The application...
Speech Adaptation to Kinematic Recording Sensors: Perceptual and Acoustic Findings
ERIC Educational Resources Information Center
Dromey, Christopher; Hunter, Elise; Nissen, Shawn L.
2018-01-01
Purpose: This study used perceptual and acoustic measures to examine the time course of speech adaptation after the attachment of electromagnetic sensor coils to the tongue, lips, and jaw. Method: Twenty native English speakers read aloud stimulus sentences before the attachment of the sensors, immediately after attachment, and again 5, 10, 15,…
Active Hearing Mechanisms Inspire Adaptive Amplification in an Acoustic Sensor System.
Guerreiro, Jose; Reid, Andrew; Jackson, Joseph C; Windmill, James F C
2018-06-01
Over many millions of years of evolution, nature has developed some of the most adaptable sensors and sensory systems possible, capable of sensing, conditioning and processing signals in a very power- and size-effective manner. By looking into biological sensors and systems as a source of inspiration, this paper presents the study of a bioinspired concept of signal processing at the sensor level. By exploiting a feedback control mechanism between a front-end acoustic receiver and back-end neuronal based computation, a nonlinear amplification with hysteretic behavior is created. Moreover, the transient response of the front-end acoustic receiver can also be controlled and enhanced. A theoretical model is proposed and the concept is prototyped experimentally through an embedded system setup that can provide dynamic adaptations of a sensory system comprising a MEMS microphone placed in a closed-loop feedback system. It faithfully mimics the mosquito's active hearing response as a function of the input sound intensity. This is an adaptive acoustic sensor system concept that can be exploited by sensor and system designers within acoustics and ultrasonic engineering fields.
Precision of FLEET Velocimetry Using High-Speed CMOS Camera Systems
NASA Technical Reports Server (NTRS)
Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.
2015-01-01
Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 microseconds, precisions of 0.5 meters per second in air and 0.2 meters per second in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision HighSpeed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.
NASA Astrophysics Data System (ADS)
Beecham, J. A.; Engelhard, G. H.
2007-10-01
An ecological economic model of trawling is presented to demonstrate the effect of trawling location choice strategy on net input (rate of economic gain of fish caught per time spent less costs). Fishing location choice is considered to be a dynamic process whereby trawlers chose from among a repertoire of plastic strategies that they modify if their gains fall below a fixed proportion of the mean gains of the fleet as a whole. The distribution of fishing across different areas of a fishery follows an approximate ideal free distribution (IFD) with varying noise due to uncertainty. The least-productive areas are not utilised because initial net input never reaches the mean yield of better areas subject to competitive exploitation. In cases, where there is a weak temporal autocorrelation between fish stocks in a specific location, a plastic strategy of local translocation between trawls mixed with longer-range translocation increases realised input. The trawler can change its translocation strategy in the light of information about recent trawling success compared to its long-term average but, in contrast to predictions of the Marginal Value Theorem (MVT) model, does not know for certain what it will find by moving, so may need to sample new patches. The combination of the two types of translocation mirrored beam-trawling strategies used by the Dutch fleet and the resultant distribution of trawling effort is confirmed by analysis of historical effort distribution of British otter trawling fleets in the North Sea. Fisheries exploitation represents an area where dynamic agent-based adaptive models may be a better representation of the economic dynamics of a fleet than classically inspired optimisation models.
41 CFR 102-34.330 - What is the Federal Fleet Report?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Fleet Report? 102-34.330 Section 102-34.330 Public Contracts and Property Management Federal Property... MANAGEMENT Federal Fleet Report § 102-34.330 What is the Federal Fleet Report? The Federal Fleet Report (FFR..., in evaluating the effectiveness of the operation and management of individual fleets to determine...
Thinking Outside of the Blue Marble: Novel Ocean Applications Using the VIIRS Sensor
NASA Technical Reports Server (NTRS)
Vandermeulen, Ryan A.; Arnone, Robert
2016-01-01
While planning for future space-borne sensors will increase the quality, quantity, and duration of ocean observations in the years to come, efforts to extend the limits of sensors currently in orbit can help shed light on future scientific gains as well as associated uncertainties. Here, we present several applications that are unique to the polar orbiting Visual Infrared Imaging Radiometer Suite (VIIRS), each of which challenge the threshold capabilities of the sensor and provide lessons for future missions. For instance, while moderate resolution polar orbiters typically have a one day revisit time, we are able to obtain multiple looks of the same area by focusing on the extreme zenith angles where orbital views overlap, and pair these observations with those from other sensors to create pseudo-geostationary data sets. Or, by exploiting high spatial resolution (imaging) channels and analyzing patterns of synoptic covariance across the visible spectrum, we can obtain higher spatial resolution bio-optical products. Alternatively, non-traditional products can illuminate important biological interactions in the ocean, such as the use of the Day-Night-Band to provide some quantification of phototactic behavior of marine life along light polluted beaches, as well as track the location of marine fishing vessel fleets along ocean fronts. In this talk, we explore ways to take full advantage of the capabilities of existing sensors in order to maximize insights for future missions.
Intelligent multi-sensor integrations
NASA Technical Reports Server (NTRS)
Volz, Richard A.; Jain, Ramesh; Weymouth, Terry
1989-01-01
Growth in the intelligence of space systems requires the use and integration of data from multiple sensors. Generic tools are being developed for extracting and integrating information obtained from multiple sources. The full spectrum is addressed for issues ranging from data acquisition, to characterization of sensor data, to adaptive systems for utilizing the data. In particular, there are three major aspects to the project, multisensor processing, an adaptive approach to object recognition, and distributed sensor system integration.
NASA Technical Reports Server (NTRS)
Kelly, W. L.; Howle, W. M.; Meredith, B. D.
1980-01-01
The Information Adaptive System (IAS) is an element of the NASA End-to-End Data System (NEEDS) Phase II and is focused toward onbaord image processing. Since the IAS is a data preprocessing system which is closely coupled to the sensor system, it serves as a first step in providing a 'Smart' imaging sensor. Some of the functions planned for the IAS include sensor response nonuniformity correction, geometric correction, data set selection, data formatting, packetization, and adaptive system control. The inclusion of these sensor data preprocessing functions onboard the spacecraft will significantly improve the extraction of information from the sensor data in a timely and cost effective manner and provide the opportunity to design sensor systems which can be reconfigured in near real time for optimum performance. The purpose of this paper is to present the preliminary design of the IAS and the plans for its development.
A Unified Nonlinear Adaptive Approach for Detection and Isolation of Engine Faults
NASA Technical Reports Server (NTRS)
Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong; Farfan-Ramos, Luis; Simon, Donald L.
2010-01-01
A challenging problem in aircraft engine health management (EHM) system development is to detect and isolate faults in system components (i.e., compressor, turbine), actuators, and sensors. Existing nonlinear EHM methods often deal with component faults, actuator faults, and sensor faults separately, which may potentially lead to incorrect diagnostic decisions and unnecessary maintenance. Therefore, it would be ideal to address sensor faults, actuator faults, and component faults under one unified framework. This paper presents a systematic and unified nonlinear adaptive framework for detecting and isolating sensor faults, actuator faults, and component faults for aircraft engines. The fault detection and isolation (FDI) architecture consists of a parallel bank of nonlinear adaptive estimators. Adaptive thresholds are appropriately designed such that, in the presence of a particular fault, all components of the residual generated by the adaptive estimator corresponding to the actual fault type remain below their thresholds. If the faults are sufficiently different, then at least one component of the residual generated by each remaining adaptive estimator should exceed its threshold. Therefore, based on the specific response of the residuals, sensor faults, actuator faults, and component faults can be isolated. The effectiveness of the approach was evaluated using the NASA C-MAPSS turbofan engine model, and simulation results are presented.
NEEDS - Information Adaptive System
NASA Technical Reports Server (NTRS)
Kelly, W. L.; Benz, H. F.; Meredith, B. D.
1980-01-01
The Information Adaptive System (IAS) is an element of the NASA End-to-End Data System (NEEDS) Phase II and is focused toward onboard image processing. The IAS is a data preprocessing system which is closely coupled to the sensor system. Some of the functions planned for the IAS include sensor response nonuniformity correction, geometric correction, data set selection, data formatting, packetization, and adaptive system control. The inclusion of these sensor data preprocessing functions onboard the spacecraft will significantly improve the extraction of information from the sensor data in a timely and cost effective manner, and provide the opportunity to design sensor systems which can be reconfigured in near real-time for optimum performance. The purpose of this paper is to present the preliminary design of the IAS and the plans for its development.
A 3D image sensor with adaptable charge subtraction scheme for background light suppression
NASA Astrophysics Data System (ADS)
Shin, Jungsoon; Kang, Byongmin; Lee, Keechang; Kim, James D. K.
2013-02-01
We present a 3D ToF (Time-of-Flight) image sensor with adaptive charge subtraction scheme for background light suppression. The proposed sensor can alternately capture high resolution color image and high quality depth map in each frame. In depth-mode, the sensor requires enough integration time for accurate depth acquisition, but saturation will occur in high background light illumination. We propose to divide the integration time into N sub-integration times adaptively. In each sub-integration time, our sensor captures an image without saturation and subtracts the charge to prevent the pixel from the saturation. In addition, the subtraction results are cumulated N times obtaining a final result image without background illumination at full integration time. Experimental results with our own ToF sensor show high background suppression performance. We also propose in-pixel storage and column-level subtraction circuit for chiplevel implementation of the proposed method. We believe the proposed scheme will enable 3D sensors to be used in out-door environment.
NASA Astrophysics Data System (ADS)
Olivares, A.; Górriz, J. M.; Ramírez, J.; Olivares, G.
2011-02-01
Inertial sensors are widely used in human body motion monitoring systems since they permit us to determine the position of the subject's limbs. Limb angle measurement is carried out through the integration of the angular velocity measured by a rate sensor and the decomposition of the components of static gravity acceleration measured by an accelerometer. Different factors derived from the sensors' nature, such as the angle random walk and dynamic bias, lead to erroneous measurements. Dynamic bias effects can be reduced through the use of adaptive filtering based on sensor fusion concepts. Most existing published works use a Kalman filtering sensor fusion approach. Our aim is to perform a comparative study among different adaptive filters. Several least mean squares (LMS), recursive least squares (RLS) and Kalman filtering variations are tested for the purpose of finding the best method leading to a more accurate and robust limb angle measurement. A new angle wander compensation sensor fusion approach based on LMS and RLS filters has been developed.
Advanced Sensor and Packaging Technologies for Intelligent Adaptive Engine Controls (Preprint)
2013-05-01
combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high - temperature electronics, and advanced harsh...with simultaneous pressure measurements up to 1,000 psi. The combination of a high - temperature , high -pressure-ratio compressor system, and adaptive...combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high temperature electronics, and advanced harsh
Robert, Clélia; Michau, Vincent; Fleury, Bruno; Magli, Serge; Vial, Laurent
2012-07-02
Adaptive optics provide real-time compensation for atmospheric turbulence. The correction quality relies on a key element: the wavefront sensor. We have designed an adaptive optics system in the mid-infrared range providing high spatial resolution for ground-to-air applications, integrating a Shack-Hartmann infrared wavefront sensor operating on an extended source. This paper describes and justifies the design of the infrared wavefront sensor, while defining and characterizing the Shack-Hartmann wavefront sensor camera. Performance and illustration of field tests are also reported.
NASA Astrophysics Data System (ADS)
Arabshahi, P.; Chao, Y.; Chien, S.; Gray, A.; Howe, B. M.; Roy, S.
2008-12-01
In many areas of Earth science, including climate change research, there is a need for near real-time integration of data from heterogeneous and spatially distributed sensors, in particular in-situ and space- based sensors. The data integration, as provided by a smart sensor web, enables numerous improvements, namely, 1) adaptive sampling for more efficient use of expensive space-based sensing assets, 2) higher fidelity information gathering from data sources through integration of complementary data sets, and 3) improved sensor calibration. The specific purpose of the smart sensor web development presented here is to provide for adaptive sampling and calibration of space-based data via in-situ data. Our ocean-observing smart sensor web presented herein is composed of both mobile and fixed underwater in-situ ocean sensing assets and Earth Observing System (EOS) satellite sensors providing larger-scale sensing. An acoustic communications network forms a critical link in the web between the in-situ and space-based sensors and facilitates adaptive sampling and calibration. After an overview of primary design challenges, we report on the development of various elements of the smart sensor web. These include (a) a cable-connected mooring system with a profiler under real-time control with inductive battery charging; (b) a glider with integrated acoustic communications and broadband receiving capability; (c) satellite sensor elements; (d) an integrated acoustic navigation and communication network; and (e) a predictive model via the Regional Ocean Modeling System (ROMS). Results from field experiments, including an upcoming one in Monterey Bay (October 2008) using live data from NASA's EO-1 mission in a semi closed-loop system, together with ocean models from ROMS, are described. Plans for future adaptive sampling demonstrations using the smart sensor web are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemmens, W.B.; Koupal, J.W.; Sabourin, M.A.
1993-07-20
Apparatus is described for detecting motor vehicle exhaust gas catalytic converter deterioration comprising a first exhaust gas oxygen sensor adapted for communication with an exhaust stream before passage of the exhaust stream through a catalytic converter and a second exhaust gas oxygen sensor adapted for communication with the exhaust stream after passage of the exhaust stream through the catalytic converter, an on-board vehicle computational means, said computational means adapted to accept oxygen content signals from the before and after catalytic converter oxygen sensors and adapted to generate signal threshold values, said computational means adapted to compare over repeated time intervalsmore » the oxygen content signals to the signal threshold values and to store the output of the compared oxygen content signals, and in response after a specified number of time intervals for a specified mode of motor vehicle operation to determine and indicate a level of catalyst deterioration.« less
FDR Soil Moisture Sensor for Environmental Testing and Evaluation
NASA Astrophysics Data System (ADS)
Linmao, Ye; longqin, Xue; guangzhou, Zhang; haibo, Chen; likuai, Shi; zhigang, Wu; gouhe, Yu; yanbin, Wang; sujun, Niu; Jin, Ye; Qi, Jin
To test the affect of environmental stresses on a adaptability of soil moisture capacitance sensor(FDR) a number of stresses were induced including vibrational shock as well as temperature and humidity through the use of a CH-I constant humidity chamber with variable temperature. A Vibrational platform was used to exam the resistance and structural integrity of the sensor after vibrations simulating the process of using, transporting and handling the sensor. A Impactive trial platform was used to test the resistance and structural integrity of the sensor after enduring repeated mechanical shocks. An CH-I constant humidity chamber with high-low temperature was used to test the adaptability of sensor in different environments with high temperature, low temperature and constant humidity. Otherwise, scope of magnetic force line of sensor was also tested in this paper. Test show:the capacitance type soil moisture sensor spread a feeling machine to bear heat, high wet and low temperature, at bear impact and vibration experiment in pass an examination, is a kind of environment to adapt to ability very strong instrument;Spread a feeling machine moreover electric field strength function radius scope 7 cms.
Systems and methods for measuring component matching
NASA Technical Reports Server (NTRS)
Courter, Kelly J. (Inventor); Slenk, Joel E. (Inventor)
2006-01-01
Systems and methods for measuring a contour match between adjacent components are disclosed. In one embodiment, at least two pressure sensors are located between adjacent components. Each pressure sensor is adapted to obtain a pressure measurement at a location a predetermined distance away from the other pressure sensors, and to output a pressure measurement for each sensor location. An output device is adapted to receive the pressure measurements from at least two pressure sensors and display the pressure measurements. In one aspect, the pressure sensors include flexible thin film pressure sensors. In accordance with other aspects of the invention, a method is provided for measuring a contour match between two interfacing components including measuring at least one pressure applied to at least one sensor between the interfacing components.
Gu, Changzhan; Li, Ruijiang; Zhang, Hualiang; Fung, Albert Y C; Torres, Carlos; Jiang, Steve B; Li, Changzhi
2012-11-01
Accurate respiration measurement is crucial in motion-adaptive cancer radiotherapy. Conventional methods for respiration measurement are undesirable because they are either invasive to the patient or do not have sufficient accuracy. In addition, measurement of external respiration signal based on conventional approaches requires close patient contact to the physical device which often causes patient discomfort and undesirable motion during radiation dose delivery. In this paper, a dc-coupled continuous-wave radar sensor was presented to provide a noncontact and noninvasive approach for respiration measurement. The radar sensor was designed with dc-coupled adaptive tuning architectures that include RF coarse-tuning and baseband fine-tuning, which allows the radar sensor to precisely measure movement with stationary moment and always work with the maximum dynamic range. The accuracy of respiration measurement with the proposed radar sensor was experimentally evaluated using a physical phantom, human subject, and moving plate in a radiotherapy environment. It was shown that respiration measurement with radar sensor while the radiation beam is on is feasible and the measurement has a submillimeter accuracy when compared with a commercial respiration monitoring system which requires patient contact. The proposed radar sensor provides accurate, noninvasive, and noncontact respiration measurement and therefore has a great potential in motion-adaptive radiotherapy.
Cooperative Autonomous Observation of Volcanic Environments with sUAS
NASA Astrophysics Data System (ADS)
Ravela, S.
2015-12-01
The Cooperative Autonomous Observing System Project (CAOS) at the MIT Earth Signals and Systems Group has developed methodology and systems for dynamically mapping coherent fluids such as plumes using small unmanned aircraft systems (sUAS). In the CAOS approach, two classes of sUAS, one remote the other in-situ, implement a dynamic data-driven mapping system by closing the loop between Modeling, Estimation, Sampling, Planning and Control (MESPAC). The continually gathered measurements are assimilated to produce maps/analyses which also guide the sUAS network to adaptively resample the environment. Rather than scan the volume in fixed Eulerian or Lagrangian flight plans, the adaptive nature of the sampling process enables objectives for efficiency and resilience to be incorporated. Modeling includes realtime prediction using two types of reduced models, one based on nowcasting remote observations of plume tracer using scale-cascaded alignment, and another based on dynamically-deformable EOF/POD developed for coherent structures. Ensemble-based Information-theoretic machine learning approaches are used for the highly non-linear/non-Gaussian state/parameter estimation, and for planning. Control of the sUAS is based on model reference control coupled with hierarchical PID. MESPAC is implemented in part on a SkyCandy platform, and implements an airborne mesh that provides instantaneous situational awareness and redundant communication to an operating fleet. SkyCandy is deployed on Itzamna Aero's I9X/W UAS with low-cost sensors, and is currently being used to study the Popocatepetl volcano. Results suggest that operational communities can deploy low-cost sUAS to systematically monitor whilst optimizing for efficiency/maximizing resilience. The CAOS methodology is applicable to many other environments where coherent structures are present in the background. More information can be found at caos.mit.edu.
Optical fiber pressure sensors for adaptive wings
NASA Astrophysics Data System (ADS)
Duncan, Paul G.; Jones, Mark E.; Shinpaugh, Kevin A.; Poland, Stephen H.; Murphy, Kent A.; Claus, Richard O.
1997-06-01
Optical fiber pressure sensors have been developed for use on a structurally-adaptive `smart wing'; further details of the design, fabrication and testing of the smart wing concept are presented in companion papers. This paper describes the design, construction, and performance of the pressure sensor and a combined optical and electronic signal processing system implemented to permit the measurement of a large number of sensors distributed over the control surfaces of a wing. Optical fiber pressure sensors were implemented due to anticipated large electromagnetic interference signals within the operational environment. The sensors utilized the principle of the extrinsic Fabry-Perot interferometer (EFPI) already developed for the measurement of strain and temperature. Here, the cavity is created inside a micromachined hollow-core tube with a silicon diaphragm at one end. The operation of the sensor is similar to that of the EFPI strain gage also discussed in several papers at this conference. The limitations placed upon the performance of the digital signal processing system were determined by the required pressure range of the sensors and the cycle time of the control system used to adaptively modify the shape of the wing. Sensor calibration and the results of testing performed are detailed.
Contributing Data to the Fleet DNA Project (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-09-01
The Fleet DNA clearinghouse of commercial fleet transportation data helps vehicle manufacturers and developers optimize vehicle designs and helps fleet managers choose advanced technologies for their fleets. This online tool - available at www.nrel.gov/fleetdna - provides data summaries and visualizations similar to real-world 'genetics' for medium- and heavy-duty commercial fleet vehicles operating within a variety of vocations. To contribute your fleet data, please contact Adam Duran of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) at adam.duran@nrel.gov or 303-275-4586.
Adaptive sensor-fault tolerant control for a class of multivariable uncertain nonlinear systems.
Khebbache, Hicham; Tadjine, Mohamed; Labiod, Salim; Boulkroune, Abdesselem
2015-03-01
This paper deals with the active fault tolerant control (AFTC) problem for a class of multiple-input multiple-output (MIMO) uncertain nonlinear systems subject to sensor faults and external disturbances. The proposed AFTC method can tolerate three additive (bias, drift and loss of accuracy) and one multiplicative (loss of effectiveness) sensor faults. By employing backstepping technique, a novel adaptive backstepping-based AFTC scheme is developed using the fact that sensor faults and system uncertainties (including external disturbances and unexpected nonlinear functions caused by sensor faults) can be on-line estimated and compensated via robust adaptive schemes. The stability analysis of the closed-loop system is rigorously proven using a Lyapunov approach. The effectiveness of the proposed controller is illustrated by two simulation examples. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
An adaptive distributed data aggregation based on RCPC for wireless sensor networks
NASA Astrophysics Data System (ADS)
Hua, Guogang; Chen, Chang Wen
2006-05-01
One of the most important design issues in wireless sensor networks is energy efficiency. Data aggregation has significant impact on the energy efficiency of the wireless sensor networks. With massive deployment of sensor nodes and limited energy supply, data aggregation has been considered as an essential paradigm for data collection in sensor networks. Recently, distributed source coding has been demonstrated to possess several advantages in data aggregation for wireless sensor networks. Distributed source coding is able to encode sensor data with lower bit rate without direct communication among sensor nodes. To ensure reliable and high throughput transmission with the aggregated data, we proposed in this research a progressive transmission and decoding of Rate-Compatible Punctured Convolutional (RCPC) coded data aggregation with distributed source coding. Our proposed 1/2 RSC codes with Viterbi algorithm for distributed source coding are able to guarantee that, even without any correlation between the data, the decoder can always decode the data correctly without wasting energy. The proposed approach achieves two aspects in adaptive data aggregation for wireless sensor networks. First, the RCPC coding facilitates adaptive compression corresponding to the correlation of the sensor data. When the data correlation is high, higher compression ration can be achieved. Otherwise, lower compression ratio will be achieved. Second, the data aggregation is adaptively accumulated. There is no waste of energy in the transmission; even there is no correlation among the data, the energy consumed is at the same level as raw data collection. Experimental results have shown that the proposed distributed data aggregation based on RCPC is able to achieve high throughput and low energy consumption data collection for wireless sensor networks
Wavefront sensorless adaptive optics ophthalmoscopy in the human eye
Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason
2011-01-01
Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains. PMID:21934779
Adaptive AOA-aided TOA self-positioning for mobile wireless sensor networks.
Wen, Chih-Yu; Chan, Fu-Kai
2010-01-01
Location-awareness is crucial and becoming increasingly important to many applications in wireless sensor networks. This paper presents a network-based positioning system and outlines recent work in which we have developed an efficient principled approach to localize a mobile sensor using time of arrival (TOA) and angle of arrival (AOA) information employing multiple seeds in the line-of-sight scenario. By receiving the periodic broadcasts from the seeds, the mobile target sensors can obtain adequate observations and localize themselves automatically. The proposed positioning scheme performs location estimation in three phases: (I) AOA-aided TOA measurement, (II) Geometrical positioning with particle filter, and (III) Adaptive fuzzy control. Based on the distance measurements and the initial position estimate, adaptive fuzzy control scheme is applied to solve the localization adjustment problem. The simulations show that the proposed approach provides adaptive flexibility and robust improvement in position estimation.
NASA Astrophysics Data System (ADS)
Kirikera, G. R.; Balogun, O.; Krishnaswamy, S.
2008-02-01
A network of Fiber-Bragg Grating (FBG) sensors is developed as part of a Structural Health Monitoring system to identify impact damage. The sensor signals are adaptively demodulated using two-wave mixing (TWM) technology. The signals from multiple FBG sensors are multiplexed into a single TWM demodulator. The FBG sensor network is mounted on a plate, and the structure is subjected to impacts generated by dropping small ball bearings. Impact locations are identified based on time frequency analysis.
NASA Astrophysics Data System (ADS)
Helsen, Jan; Gioia, Nicoletta; Peeters, Cédric; Jordaens, Pieter-Jan
2017-05-01
Particularly offshore there is a trend to cluster wind turbines in large wind farms, and in the near future to operate such a farm as an integrated power production plant. Predictability of individual turbine behavior across the entire fleet is key in such a strategy. Failure of turbine subcomponents should be detected well in advance to allow early planning of all necessary maintenance actions; Such that they can be performed during low wind and low electricity demand periods. In order to obtain the insights to predict component failure, it is necessary to have an integrated clean dataset spanning all turbines of the fleet for a sufficiently long period of time. This paper illustrates our big-data approach to do this. In addition, advanced failure detection algorithms are necessary to detect failures in this dataset. This paper discusses a multi-level monitoring approach that consists of a combination of machine learning and advanced physics based signal-processing techniques. The advantage of combining different data sources to detect system degradation is in the higher certainty due to multivariable criteria. In order to able to perform long-term acceleration data signal processing at high frequency a streaming processing approach is necessary. This allows the data to be analysed as the sensors generate it. This paper illustrates this streaming concept on 5kHz acceleration data. A continuous spectrogram is generated from the data-stream. Real-life offshore wind turbine data is used. Using this streaming approach for calculating bearing failure features on continuous acceleration data will support failure propagation detection.
Position-adaptive explosive detection concepts for swarming micro-UAVs
NASA Astrophysics Data System (ADS)
Selmic, Rastko R.; Mitra, Atindra
2008-04-01
We have formulated a series of position-adaptive sensor concepts for explosive detection applications using swarms of micro-UAV's. These concepts are a generalization of position-adaptive radar concepts developed for challenging conditions such as urban environments. For radar applications, this concept is developed with platforms within a UAV swarm that spatially-adapt to signal leakage points on the perimeter of complex clutter environments to collect information on embedded objects-of-interest. The concept is generalized for additional sensors applications by, for example, considering a wooden cart that contains explosives. We can formulate system-of-systems concepts for a swarm of micro-UAV's in an effort to detect whether or not a given cart contains explosives. Under this new concept, some of the members of the UAV swarm can serve as position-adaptive "transmitters" by blowing air over the cart and some of the members of the UAV swarm can serve as position-adaptive "receivers" that are equipped with chem./bio sensors that function as "electronic noses". The final objective can be defined as improving the particle count for the explosives in the air that surrounds a cart via development of intelligent position-adaptive control algorithms in order to improve the detection and false-alarm statistics. We report on recent simulation results with regard to designing optimal sensor placement for explosive or other chemical agent detection. This type of information enables the development of intelligent control algorithms for UAV swarm applications and is intended for the design of future system-of-systems with adaptive intelligence for advanced surveillance of unknown regions. Results are reported as part of a parametric investigation where it is found that the probability of contaminant detection depends on the air flow that carries contaminant particles, geometry of the surrounding space, leakage areas, and other factors. We present a concept of position-adaptive detection (i.e. based on the example in the previous paragraph) consisting of position-adaptive fluid actuators (fans) and position-adaptive sensors. Based on these results, a preliminary analysis of sensor requirements for these fluid actuators and sensors is presented for small-UAVs in a field-enabled explosive detection environment. The computational fluid dynamics (CFD) simulation software Fluent is used to simulate the air flow in the corridor model containing a box with explosive particles. It is found that such flow is turbulent with Reynolds number greater than 106. Simulation methods and results are presented which show particle velocity and concentration distribution throughout the closed box. The results indicate that the CFD-based method can be used for other sensor placement and deployment optimization problems. These techniques and results can be applied towards the development of future system-of-system UAV swarms for defense, homeland defense, and security applications.
Ensemble machine learning and forecasting can achieve 99% uptime for rural handpumps
Thomas, Evan A.
2017-01-01
Broken water pumps continue to impede efforts to deliver clean and economically-viable water to the global poor. The literature has demonstrated that customers’ health benefits and willingness to pay for clean water are best realized when clean water infrastructure performs extremely well (>99% uptime). In this paper, we used sensor data from 42 Afridev-brand handpumps observed for 14 months in western Kenya to demonstrate how sensors and supervised ensemble machine learning could be used to increase total fleet uptime from a best-practices baseline of about 70% to >99%. We accomplish this increase in uptime by forecasting pump failures and identifying existing failures very quickly. Comparing the costs of operating the pump per functional year over a lifetime of 10 years, we estimate that implementing this algorithm would save 7% on the levelized cost of water relative to a sensor-less scheduled maintenance program. Combined with a rigorous system for dispatching maintenance personnel, implementing this algorithm in a real-world program could significantly improve health outcomes and customers’ willingness to pay for water services. PMID:29182673
NASA Astrophysics Data System (ADS)
Williams, George M.
2017-03-01
Newly emerging accident-reducing, driver-assistance, and autonomous-navigation technology for automobiles is based on real-time three-dimensional mapping and object detection, tracking, and classification using lidar sensors. Yet, the lack of lidar sensors suitable for meeting application requirements appreciably limits practical widespread use of lidar in trucking, public livery, consumer cars, and fleet automobiles. To address this need, a system-engineering perspective to eyesafe lidar-system design for high-level advanced driver-assistance sensor systems and a design trade study including 1.5-μm spot-scanned, line-scanned, and flash-lidar systems are presented. A cost-effective lidar instrument design is then proposed based on high-repetition-rate diode-pumped solid-state lasers and high-gain, low-excess-noise InGaAs avalanche photodiode receivers and focal plane arrays. Using probabilistic receiver-operating-characteristic analysis, derived from measured component performance, a compact lidar system is proposed that is capable of 220 m ranging with 5-cm accuracy, which can be readily scaled to a 360-deg field of regard.
41 CFR 101-39.104-1 - Consolidations into a fleet management system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fleet management system. 101-39.104-1 Section 101-39.104-1 Public Contracts and Property Management..., TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.104-1 Consolidations into a fleet management...
An approach to the drone fleet survivability assessment based on a stochastic continues-time model
NASA Astrophysics Data System (ADS)
Kharchenko, Vyacheslav; Fesenko, Herman; Doukas, Nikos
2017-09-01
An approach and the algorithm to the drone fleet survivability assessment based on a stochastic continues-time model are proposed. The input data are the number of the drones, the drone fleet redundancy coefficient, the drone stability and restoration rate, the limit deviation from the norms of the drone fleet recovery, the drone fleet operational availability coefficient, the probability of the drone failure-free operation, time needed for performing the required tasks by the drone fleet. The ways for improving the recoverable drone fleet survivability taking into account amazing factors of system accident are suggested. Dependencies of the drone fleet survivability rate both on the drone stability and the number of the drones are analysed.
NASA Astrophysics Data System (ADS)
Harrison, Paul; Erry, Gavin R. G.; Otten, Leonard J.; Cuevas, Desirae M.; Weaver, Lawrence D.
2004-11-01
Earlier research reported a comparison of the wavefronts recorded simultaneously by a Shack-Hartmann and a Distorted Grating Wavefront Sensor (DGWFS). In this paper we present the results of a continuation of this earlier work where we have now closed an adaptive optics loop under simulated propagation conditions using the Advanced Concept Laboratory (ACL) at Lincoln Laboratory. For these measurements only one wavefront sensor controlled the deformable mirror at a time. To make direct comparisons between the sensors we took advantage of the ACL's ability to exactly replicate a time varying propagation simulation. Time varying and static comparisons of the two sensors controlling the ACL adaptive system under conditions that ranged from a benign path, D/r0 = 2, to a propagation condition with significant scintillation, D/r0 =9, will be shown using the corrected far field spot as a measure of performance. The paper includes a description of the DGWFS used for these tests and describes the procedure used to align and calibrate the sensor.
NASA Astrophysics Data System (ADS)
Harrison, Paul; Erry, Gavin R. G.; Otten, Leonard J., III; Cuevas, D. M.; Weaver, Lawrence D.
2004-02-01
Earlier research reported a comparison of the wavefronts recorded simultaneously by a Shack-Hartmann and a Distorted Grating Wavefront Sensor (DGWFS). In this paper we present the results of a continuation of this earlier work where we have now closed an adaptive optics loop under simulated propagation conditions using the Advanced Concept Laboratory (ACL) at Lincoln Laboratory. For these measurements only one wavefront sensor controlled the deformable mirror at a time. To make direct comparisons between the sensors we took advantage of the ACL"s ability to exactly replicate a time varying propagation simulation. Time varying and static comparisons of the two sensors controlling the ACL adaptive system under conditions that ranged from a benign path, D/r0 = 2, to a propagation condition with significant scintillation, D/r0 =9, will be shown using the corrected far field spot as a measure of performance. The paper includes a description of the DGWFS used for these tests and describes the procedure used to align and calibrate the sensor.
Plenoptic camera wavefront sensing with extended sources
NASA Astrophysics Data System (ADS)
Jiang, Pengzhi; Xu, Jieping; Liang, Yonghui; Mao, Hongjun
2016-09-01
The wavefront sensor is used in adaptive optics to detect the atmospheric distortion, which feeds back to the deformable mirror to compensate for this distortion. Different from the Shack-Hartmann sensor that has been widely used with point sources, the plenoptic camera wavefront sensor has been proposed as an alternative wavefront sensor adequate for extended objects in recent years. In this paper, the plenoptic camera wavefront sensing with extended sources is discussed systematically. Simulations are performed to investigate the wavefront measurement error and the closed-loop performance of the plenoptic sensor. The results show that there are an optimal lenslet size and an optimal number of pixels to make the best performance. The RMS of the resulting corrected wavefront in closed-loop adaptive optics system is less than 108 nm (0.2λ) when D/r0 ≤ 10 and the magnitude M ≤ 5. Our investigation indicates that the plenoptic sensor is efficient to operate on extended sources in the closed-loop adaptive optics system.
Adaptive Control in the Presence of Simultaneous Sensor Bias and Actuator Failures
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.
2012-01-01
The problem of simultaneously accommodating unknown sensor biases and unknown actuator failures in uncertain systems is considered in a direct model reference adaptive control (MRAC) setting for state tracking using state feedback. Sensor biases and actuator faults may be present at the outset or may occur at unknown instants of time during operation. A modified MRAC law is proposed, which combines sensor bias estimation with control gain adaptation for accommodation of sensor biases and actuator failures. This control law is shown to provide signal boundedness in the resulting system. For the case when an external asymptotically stable sensor bias estimator is available, an MRAC law is developed to accomplish asymptotic state tracking and signal boundedness. For a special case wherein biases are only present in the rate measurements and bias-free position measurements are available, an MRAC law is developed using a model-independent bias estimator, and is shown to provide asymptotic state tracking with signal boundedness.
SVAS3: Strain Vector Aided Sensorization of Soft Structures.
Culha, Utku; Nurzaman, Surya G; Clemens, Frank; Iida, Fumiya
2014-07-17
Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations.
A novel method to increase LinLog CMOS sensors' performance in high dynamic range scenarios.
Martínez-Sánchez, Antonio; Fernández, Carlos; Navarro, Pedro J; Iborra, Andrés
2011-01-01
Images from high dynamic range (HDR) scenes must be obtained with minimum loss of information. For this purpose it is necessary to take full advantage of the quantification levels provided by the CCD/CMOS image sensor. LinLog CMOS sensors satisfy the above demand by offering an adjustable response curve that combines linear and logarithmic responses. This paper presents a novel method to quickly adjust the parameters that control the response curve of a LinLog CMOS image sensor. We propose to use an Adaptive Proportional-Integral-Derivative controller to adjust the exposure time of the sensor, together with control algorithms based on the saturation level and the entropy of the images. With this method the sensor's maximum dynamic range (120 dB) can be used to acquire good quality images from HDR scenes with fast, automatic adaptation to scene conditions. Adaptation to a new scene is rapid, with a sensor response adjustment of less than eight frames when working in real time video mode. At least 67% of the scene entropy can be retained with this method.
Color constancy: enhancing von Kries adaption via sensor transformations
NASA Astrophysics Data System (ADS)
Finlayson, Graham D.; Drew, Mark S.; Funt, Brian V.
1993-09-01
Von Kries adaptation has long been considered a reasonable vehicle for color constancy. Since the color constancy performance attainable via the von Kries rule strongly depends on the spectral response characteristics of the human cones, we consider the possibility of enhancing von Kries performance by constructing new `sensors' as linear combinations of the fixed cone sensitivity functions. We show that if surface reflectances are well-modeled by 3 basis functions and illuminants by 2 basis functions then there exists a set of new sensors for which von Kries adaptation can yield perfect color constancy. These new sensors can (like the cones) be described as long-, medium-, and short-wave sensitive; however, both the new long- and medium-wave sensors have sharpened sensitivities -- their support is more concentrated. The new short-wave sensor remains relatively unchanged. A similar sharpening of cone sensitivities has previously been observed in test and field spectral sensitivities measured for the human eye. We present simulation results demonstrating improved von Kries performance using the new sensors even when the restrictions on the illumination and reflectance are relaxed.
Adaptive Sampling in Autonomous Marine Sensor Networks
2006-06-01
Analog Processing Section A high-performance preamplifier with low noise characteristics is vital to obtaining quality sonar data. The preamplifier ...research assistantships through the Generic Ocean Array Technology Sonar (GOATS) project, contract N00014-97-1-0202 and contract N00014-05-G-0106 Delivery...Formation Behavior ..................................... 60 5 An AUV Intelligent Sensor for Real-Time Adaptive Sensing 63 5.1 A Logical Sonar Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daley, R.; Ahdieh, N.; Bentley, J.
2014-01-01
A comprehensive Federal Fleet Management Handbook that builds upon the "Guidance for Federal Agencies on E.O. 13514 Section 12-Federal Fleet Management" and provides information to help fleet managers select optimal greenhouse gas and petroleum reduction strategies for each location, meeting or exceeding related fleet requirements, acquiring vehicles to support these strategies while minimizing fleet size and vehicle miles traveled, and refining strategies based on agency performance.
NASA Astrophysics Data System (ADS)
Yoon, Hyuk-Jin; Costantini, Daniele M.; Michaud, Veronique; Limberger, Hans G.; Manson, Jan-Anders; Salathe, Rene P.; Kim, Chun-Gon; Hong, Chang-Sun
2005-05-01
An optical fiber sensor to simultaneously measure strain and temperature was designed and embedded into an adaptive composite laminate which exhibits a shape change upon thermal activation. The sensor is formed by two fiber Bragg gratings, which are written in optical fibers with different core dopants. The two gratings were spliced close to each other and a sensing element resulted with Bragg gratings of similar strain sensitivity but different response to temperature. This is due to the dependence of the fiber thermo-optic coefficient on core dopants and relative concentrations. The sensor was tested on an adaptive composite laminate made of unidirectional Kevlar-epoxy pre-preg plies. Several 150μm diameter pre-strained NiTiCu shape memory alloy wires were embedded in the composite laminate together with one fiber sensor. Simultaneous monitoring of strain and temperature during the curing process and activation in an oven was demonstrated.
Nurzaman, Surya G.
2016-01-01
Sensor morphology, the morphology of a sensing mechanism which plays a role of shaping the desired response from physical stimuli from surroundings to generate signals usable as sensory information, is one of the key common aspects of sensing processes. This paper presents a structured review of researches on bioinspired sensor morphology implemented in robotic systems, and discusses the fundamental design principles. Based on literature review, we propose two key arguments: first, owing to its synthetic nature, biologically inspired robotics approach is a unique and powerful methodology to understand the role of sensor morphology and how it can evolve and adapt to its task and environment. Second, a consideration of an integrative view of perception by looking into multidisciplinary and overarching mechanisms of sensor morphology adaptation across biology and engineering enables us to extract relevant design principles that are important to extend our understanding of the unfinished concepts in sensing and perception. PMID:27499843
Fleet Management | Climate Neutral Research Campuses | NREL
Fleet Management Fleet Management Research campuses often own and operate vehicles to carry out Sample Project Related Links Fleet Management Options The goal of fleet management within climate action alternative fuel use. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) outlines
48 CFR 51.204 - Use of interagency fleet management system (IFMS) vehicles and related services.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Contractor Use of Interagency Fleet Management System (IFMS) 51.204 Use of interagency fleet management system (IFMS) vehicles and related services. Contractors authorized to use interagency fleet management... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Use of interagency fleet...
Sensor response rate accelerator
Vogt, Michael C.
2002-01-01
An apparatus and method for sensor signal prediction and for improving sensor signal response time, is disclosed. An adaptive filter or an artificial neural network is utilized to provide predictive sensor signal output and is further used to reduce sensor response time delay.
Gandarias, Juan M; Gómez-de-Gabriel, Jesús M; García-Cerezo, Alfonso J
2018-02-26
The use of tactile perception can help first response robotic teams in disaster scenarios, where visibility conditions are often reduced due to the presence of dust, mud, or smoke, distinguishing human limbs from other objects with similar shapes. Here, the integration of the tactile sensor in adaptive grippers is evaluated, measuring the performance of an object recognition task based on deep convolutional neural networks (DCNNs) using a flexible sensor mounted in adaptive grippers. A total of 15 classes with 50 tactile images each were trained, including human body parts and common environment objects, in semi-rigid and flexible adaptive grippers based on the fin ray effect. The classifier was compared against the rigid configuration and a support vector machine classifier (SVM). Finally, a two-level output network has been proposed to provide both object-type recognition and human/non-human classification. Sensors in adaptive grippers have a higher number of non-null tactels (up to 37% more), with a lower mean of pressure values (up to 72% less) than when using a rigid sensor, with a softer grip, which is needed in physical human-robot interaction (pHRI). A semi-rigid implementation with 95.13% object recognition rate was chosen, even though the human/non-human classification had better results (98.78%) with a rigid sensor.
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter
Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Gu, Chengfan
2018-01-01
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation. PMID:29415509
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.
Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan
2018-02-06
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.
National Clean Fleets Partnership (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-01-01
Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with localmore » stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.« less
Obsa, Bulti Tesso; Eglinton, Jason; Coventry, Stewart; March, Timothy; Guillaume, Maxime; Le, Thanh Phuoc; Hayden, Matthew; Langridge, Peter
2017-01-01
Identifying yield and grain plumpness QTL that are independent of developmental variation or phenology is of paramount importance for developing widely adapted and stable varieties through the application of marker assisted selection. The current study was designed to dissect the genetic basis of yield performance and grain plumpness in southern Australia using three doubled haploid (DH) populations developed from crosses between adapted parents that are similar in maturity and overall plant development. Three interconnected genetic populations, Commander x Fleet (CF), Commander x WI4304 (CW), and Fleet x WI4304 (FW) developed from crossing of Australian elite barley genotypes, were used to map QTL controlling yield and grain plumpness. QTL for grain plumpness and yield were analysed using genetic linkage maps made of genotyping-by-sequencing markers and major phenology genes, and field trials at three drought prone environments for two growing seasons. Seventeen QTL were detected for grain plumpness. Eighteen yield QTL explaining from 1.2% to 25.0% of the phenotypic variation were found across populations and environments. Significant QTL x environment interaction was observed for all grain plumpness and yield QTL, except QPlum.FW-4H.1 and QYld.FW-2H.1. Unlike previous yield QTL studies in barley, none of the major developmental genes, including Ppd-H1, Vrn-H1, Vrn-H2 and Vrn-H3, that drive barley adaption significantly affected grain plumpness and yield here. Twenty-two QTL controlled yield or grain plumpness independently of known maturity QTL or genes. Adjustment for maturity effects through co-variance analysis had no major effect on these yield QTL indicating that they control yield per se. PMID:28542571
Obsa, Bulti Tesso; Eglinton, Jason; Coventry, Stewart; March, Timothy; Guillaume, Maxime; Le, Thanh Phuoc; Hayden, Matthew; Langridge, Peter; Fleury, Delphine
2017-01-01
Identifying yield and grain plumpness QTL that are independent of developmental variation or phenology is of paramount importance for developing widely adapted and stable varieties through the application of marker assisted selection. The current study was designed to dissect the genetic basis of yield performance and grain plumpness in southern Australia using three doubled haploid (DH) populations developed from crosses between adapted parents that are similar in maturity and overall plant development. Three interconnected genetic populations, Commander x Fleet (CF), Commander x WI4304 (CW), and Fleet x WI4304 (FW) developed from crossing of Australian elite barley genotypes, were used to map QTL controlling yield and grain plumpness. QTL for grain plumpness and yield were analysed using genetic linkage maps made of genotyping-by-sequencing markers and major phenology genes, and field trials at three drought prone environments for two growing seasons. Seventeen QTL were detected for grain plumpness. Eighteen yield QTL explaining from 1.2% to 25.0% of the phenotypic variation were found across populations and environments. Significant QTL x environment interaction was observed for all grain plumpness and yield QTL, except QPlum.FW-4H.1 and QYld.FW-2H.1. Unlike previous yield QTL studies in barley, none of the major developmental genes, including Ppd-H1, Vrn-H1, Vrn-H2 and Vrn-H3, that drive barley adaption significantly affected grain plumpness and yield here. Twenty-two QTL controlled yield or grain plumpness independently of known maturity QTL or genes. Adjustment for maturity effects through co-variance analysis had no major effect on these yield QTL indicating that they control yield per se.
Embedded pitch adapters: A high-yield interconnection solution for strip sensors
NASA Astrophysics Data System (ADS)
Ullán, M.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Hommels, L. B. A.; Fleta, C.; Fernandez-Tejero, J.; Quirion, D.; Bloch, I.; Díez, S.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.
2016-09-01
A proposal to fabricate large area strip sensors with integrated, or embedded, pitch adapters is presented for the End-cap part of the Inner Tracker in the ATLAS experiment. To implement the embedded pitch adapters, a second metal layer is used in the sensor fabrication, for signal routing to the ASICs. Sensors with different embedded pitch adapters have been fabricated in order to optimize the design and technology. Inter-strip capacitance, noise, pick-up, cross-talk, signal efficiency, and fabrication yield have been taken into account in their design and fabrication. Inter-strip capacitance tests taking into account all channel neighbors reveal the important differences between the various designs considered. These tests have been correlated with noise figures obtained in full assembled modules, showing that the tests performed on the bare sensors are a valid tool to estimate the final noise in the full module. The full modules have been subjected to test beam experiments in order to evaluate the incidence of cross-talk, pick-up, and signal loss. The detailed analysis shows no indication of cross-talk or pick-up as no additional hits can be observed in any channel not being hit by the beam above 170 mV threshold, and the signal in those channels is always below 1% of the signal recorded in the channel being hit, above 100 mV threshold. First results on irradiated mini-sensors with embedded pitch adapters do not show any change in the interstrip capacitance measurements with only the first neighbors connected.
Alternative Fleet Architecture Design
2005-08-01
Alternative Fleet Architecture Design Stuart E. Johnson and Arthur K. Cebrowski Center...2005 4. TITLE AND SUBTITLE Alternative Fleet Architecture Design 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...these principles in mind. An alternative fleet architecture design and three examples of future fleet platform architectures are presented in this
Compliant tactile sensor for generating a signal related to an applied force
NASA Technical Reports Server (NTRS)
Torres-Jara, Eduardo (Inventor)
2012-01-01
Tactile sensor. The sensor includes a compliant convex surface disposed above a sensor array, the sensor array adapted to respond to deformation of the convex surface to generate a signal related to an applied force vector.
Song, Fang; Zheng, Chuantao; Yan, Wanhong; Ye, Weilin; Wang, Yiding; Tittel, Frank K
2017-12-11
To suppress sensor noise with unknown statistical properties, a novel self-adaptive direct laser absorption spectroscopy (SA-DLAS) technique was proposed by incorporating a recursive, least square (RLS) self-adaptive denoising (SAD) algorithm and a 3291 nm interband cascade laser (ICL) for methane (CH 4 ) detection. Background noise was suppressed by introducing an electrical-domain noise-channel and an expectation-known-based RLS SAD algorithm. Numerical simulations and measurements were carried out to validate the function of the SA-DLAS technique by imposing low-frequency, high-frequency, White-Gaussian and hybrid noise on the ICL scan signal. Sensor calibration, stability test and dynamic response measurement were performed for the SA-DLAS sensor using standard or diluted CH 4 samples. With the intrinsic sensor noise considered only, an Allan deviation of ~43.9 ppbv with a ~6 s averaging time was obtained and it was further decreased to 6.3 ppbv with a ~240 s averaging time, through the use of self-adaptive filtering (SAF). The reported SA-DLAS technique shows enhanced sensitivity compared to a DLAS sensor using a traditional sensing architecture and filtering method. Indoor and outdoor atmospheric CH 4 measurements were conducted to validate the normal operation of the reported SA-DLAS technique.
PADF electromagnetic source localization using extremum seeking control
NASA Astrophysics Data System (ADS)
Al Issa, Huthaifa A.; Ordóñez, Raúl
2014-10-01
Wireless Sensor Networks (WSNs) are a significant technology attracting considerable research interest. Recent advances in wireless communications and electronics have enabled the development of low-cost, low-power and multi-functional sensors that are small in size and communicate over short distances. Most WSN applications require knowing or measuring locations of thousands of sensors accurately. For example, sensing data without knowing the sensor location is often meaningless. Locations of sensor nodes are fundamental to providing location stamps, locating and tracking objects, forming clusters, and facilitating routing. This research focused on the modeling and implementation of distributed, mobile radar sensor networks. In particular, we worked on the problem of Position-Adaptive Direction Finding (PADF), to determine the location of a non- collaborative transmitter, possibly hidden within a structure, by using a team of cooperative intelligent sensor networks. Position-Adaptive radar concepts have been formulated and investigated at the Air Force Research Laboratory (AFRL) within the past few years. In this paper, we present the simulation performance analysis on the application aspect. We apply Extremum Seeking Control (ESC) schemes by using the swarm seeking problem, where the goal is to design a control law for each individual sensor that can minimize the error metric by adapting the sensor positions in real-time, thereby minimizing the unknown estimation error. As a result we achieved source seeking and collision avoidance of the entire group of the sensor positions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy (DOE) regulates covered state government and alternative fuel provider fleets, pursuant to the Energy Policy Act of 1992 (EPAct), as amended. Covered fleets may meet their EPAct requirements through one of two compliance methods: Standard Compliance or Alternative Compliance. For model year (MY) 2015, the compliance rate with this program for the more than 3011 reporting fleets was 100%. More than 294 fleets used Standard Compliance and exceeded their aggregate MY 2015 acquisition requirements by 8% through acquisitions alone. The seven covered fleets that used Alternative Compliance exceeded their aggregate MY 2015 petroleum use reductionmore » requirements by 46%.« less
Initial development of a practical safety audit tool to assess fleet safety management practices.
Mitchell, Rebecca; Friswell, Rena; Mooren, Lori
2012-07-01
Work-related vehicle crashes are a common cause of occupational injury. Yet, there are few studies that investigate management practices used for light vehicle fleets (i.e. vehicles less than 4.5 tonnes). One of the impediments to obtaining and sharing information on effective fleet safety management is the lack of an evidence-based, standardised measurement tool. This article describes the initial development of an audit tool to assess fleet safety management practices in light vehicle fleets. The audit tool was developed by triangulating information from a review of the literature on fleet safety management practices and from semi-structured interviews with 15 fleet managers and 21 fleet drivers. A preliminary useability assessment was conducted with 5 organisations. The audit tool assesses the management of fleet safety against five core categories: (1) management, systems and processes; (2) monitoring and assessment; (3) employee recruitment, training and education; (4) vehicle technology, selection and maintenance; and (5) vehicle journeys. Each of these core categories has between 1 and 3 sub-categories. Organisations are rated at one of 4 levels on each sub-category. The fleet safety management audit tool is designed to identify the extent to which fleet safety is managed in an organisation against best practice. It is intended that the audit tool be used to conduct audits within an organisation to provide an indicator of progress in managing fleet safety and to consistently benchmark performance against other organisations. Application of the tool by fleet safety researchers is now needed to inform its further development and refinement and to permit psychometric evaluation. Copyright © 2012 Elsevier Ltd. All rights reserved.
An Adaptive Sensor Mining Framework for Pervasive Computing Applications
NASA Astrophysics Data System (ADS)
Rashidi, Parisa; Cook, Diane J.
Analyzing sensor data in pervasive computing applications brings unique challenges to the KDD community. The challenge is heightened when the underlying data source is dynamic and the patterns change. We introduce a new adaptive mining framework that detects patterns in sensor data, and more importantly, adapts to the changes in the underlying model. In our framework, the frequent and periodic patterns of data are first discovered by the Frequent and Periodic Pattern Miner (FPPM) algorithm; and then any changes in the discovered patterns over the lifetime of the system are discovered by the Pattern Adaptation Miner (PAM) algorithm, in order to adapt to the changing environment. This framework also captures vital context information present in pervasive computing applications, such as the startup triggers and temporal information. In this paper, we present a description of our mining framework and validate the approach using data collected in the CASAS smart home testbed.
Phase Contrast Wavefront Sensing for Adaptive Optics
NASA Technical Reports Server (NTRS)
Bloemhof, E. E.; Wallace, J. K.; Bloemhof, E. E.
2004-01-01
Most ground-based adaptive optics systems use one of a small number of wavefront sensor technologies, notably (for relatively high-order systems) the Shack-Hartmann sensor, which provides local measurements of the phase slope (first-derivative) at a number of regularly-spaced points across the telescope pupil. The curvature sensor, with response proportional to the second derivative of the phase, is also sometimes used, but has undesirable noise propagation properties during wavefront reconstruction as the number of actuators becomes large. It is interesting to consider the use for astronomical adaptive optics of the "phase contrast" technique, originally developed for microscopy by Zemike to allow convenient viewing of phase objects. In this technique, the wavefront sensor provides a direct measurement of the local value of phase in each sub-aperture of the pupil. This approach has some obvious disadvantages compared to Shack-Hartmann wavefront sensing, but has some less obvious but substantial advantages as well. Here we evaluate the relative merits in a practical ground-based adaptive optics system.
Volatile organic compound sensing devices
Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.
1995-08-29
Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.
Volatile organic compound sensing devices
Lancaster, Gregory D.; Moore, Glenn A.; Stone, Mark L.; Reagen, William K.
1995-01-01
Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.
Variational Lagrangian data assimilation in open channel networks
NASA Astrophysics Data System (ADS)
Wu, Qingfang; Tinka, Andrew; Weekly, Kevin; Beard, Jonathan; Bayen, Alexandre M.
2015-04-01
This article presents a data assimilation method in a tidal system, where data from both Lagrangian drifters and Eulerian flow sensors were fused to estimate water velocity. The system is modeled by first-order, hyperbolic partial differential equations subject to periodic forcing. The estimation problem can then be formulated as the minimization of the difference between the observed variables and model outputs, and eventually provide the velocity and water stage of the hydrodynamic system. The governing equations are linearized and discretized using an implicit discretization scheme, resulting in linear equality constraints in the optimization program. Thus, the flow estimation can be formed as an optimization problem and efficiently solved. The effectiveness of the proposed method was substantiated by a large-scale field experiment in the Sacramento-San Joaquin River Delta in California. A fleet of 100 sensors developed at the University of California, Berkeley, were deployed in Walnut Grove, CA, to collect a set of Lagrangian data, a time series of positions as the sensors moved through the water. Measurements were also taken from Eulerian sensors in the region, provided by the United States Geological Survey. It is shown that the proposed method can effectively integrate Lagrangian and Eulerian measurement data, resulting in a suited estimation of the flow variables within the hydraulic system.
Implementation of a rapid correction algorithm for adaptive optics using a plenoptic sensor
NASA Astrophysics Data System (ADS)
Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.
2016-09-01
Adaptive optics relies on the accuracy and speed of a wavefront sensor in order to provide quick corrections to distortions in the optical system. In weaker cases of atmospheric turbulence often encountered in astronomical fields, a traditional Shack-Hartmann sensor has proved to be very effective. However, in cases of stronger atmospheric turbulence often encountered near the surface of the Earth, atmospheric turbulence no longer solely causes small tilts in the wavefront. Instead, lasers passing through strong or "deep" atmospheric turbulence encounter beam breakup, which results in interference effects and discontinuities in the incoming wavefront. In these situations, a Shack-Hartmann sensor can no longer effectively determine the shape of the incoming wavefront. We propose a wavefront reconstruction and correction algorithm based around the plenoptic sensor. The plenoptic sensor's design allows it to match and exceed the wavefront sensing capabilities of a Shack-Hartmann sensor for our application. Novel wavefront reconstruction algorithms can take advantage of the plenoptic sensor to provide a rapid wavefront reconstruction necessary for real time turbulence. To test the integrity of the plenoptic sensor and its reconstruction algorithms, we use artificially generated turbulence in a lab scale environment to simulate the structure and speed of outdoor atmospheric turbulence. By analyzing the performance of our system with and without the closed-loop plenoptic sensor adaptive optics system, we can show that the plenoptic sensor is effective in mitigating real time lab generated atmospheric turbulence.
Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas
Santa Fe Metro Fleet Runs on Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Santa Fe Metro Fleet Runs on Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Santa Fe Metro Fleet
Wavefront detection method of a single-sensor based adaptive optics system.
Wang, Chongchong; Hu, Lifa; Xu, Huanyu; Wang, Yukun; Li, Dayu; Wang, Shaoxin; Mu, Quanquan; Yang, Chengliang; Cao, Zhaoliang; Lu, Xinghai; Xuan, Li
2015-08-10
In adaptive optics system (AOS) for optical telescopes, the reported wavefront sensing strategy consists of two parts: a specific sensor for tip-tilt (TT) detection and another wavefront sensor for other distortions detection. Thus, a part of incident light has to be used for TT detection, which decreases the light energy used by wavefront sensor and eventually reduces the precision of wavefront correction. In this paper, a single Shack-Hartmann wavefront sensor based wavefront measurement method is presented for both large amplitude TT and other distortions' measurement. Experiments were performed for testing the presented wavefront method and validating the wavefront detection and correction ability of the single-sensor based AOS. With adaptive correction, the root-mean-square of residual TT was less than 0.2 λ, and a clear image was obtained in the lab. Equipped on a 1.23-meter optical telescope, the binary stars with angle distance of 0.6″ were clearly resolved using the AOS. This wavefront measurement method removes the separate TT sensor, which not only simplifies the AOS but also saves light energy for subsequent wavefront sensing and imaging, and eventually improves the detection and imaging capability of the AOS.
SVAS3: Strain Vector Aided Sensorization of Soft Structures
Culha, Utku; Nurzaman, Surya G.; Clemens, Frank; Iida, Fumiya
2014-01-01
Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations. PMID:25036332
Biomimetic micromechanical adaptive flow-sensor arrays
NASA Astrophysics Data System (ADS)
Krijnen, Gijs; Floris, Arjan; Dijkstra, Marcel; Lammerink, Theo; Wiegerink, Remco
2007-05-01
We report current developments in biomimetic flow-sensors based on flow sensitive mechano-sensors of crickets. Crickets have one form of acoustic sensing evolved in the form of mechanoreceptive sensory hairs. These filiform hairs are highly perceptive to low-frequency sound with energy sensitivities close to thermal threshold. In this work we describe hair-sensors fabricated by a combination of sacrificial poly-silicon technology, to form silicon-nitride suspended membranes, and SU8 polymer processing for fabrication of hairs with diameters of about 50 μm and up to 1 mm length. The membranes have thin chromium electrodes on top forming variable capacitors with the substrate that allow for capacitive read-out. Previously these sensors have been shown to exhibit acoustic sensitivity. Like for the crickets, the MEMS hair-sensors are positioned on elongated structures, resembling the cercus of crickets. In this work we present optical measurements on acoustically and electrostatically excited hair-sensors. We present adaptive control of flow-sensitivity and resonance frequency by electrostatic spring stiffness softening. Experimental data and simple analytical models derived from transduction theory are shown to exhibit good correspondence, both confirming theory and the applicability of the presented approach towards adaptation.
An investigation of rental rates for centralized fleet vehicles.
DOT National Transportation Integrated Search
1999-01-01
This report details a study to investigate the current rental rate structure used by the Division of Fleet Management (Fleet Management) to charge state agencies for the use of centralized fleet vehicles. The researchers conducted a literature review...
CleanFleet final report. Volume 8, fleet economics
DOT National Transportation Integrated Search
1995-12-01
The costs that face a fleet operator in implementing alternative motor fuels : into fleet operations are examined. The cost assessment is built upon a list of thirteen cost factors grouped into the three catagories: infrastructure costs, vehicle owni...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, Mark R
2017-09-06
FleetDASH helps federal fleet managers maximize their use of alternative fuel. This presentation explains how the dashboard works and demonstrates the newest capabilities added to the tool. It also reviews complementary online tools available to fleet managers on the Alternative Fuel Data Center.
Stable Odor Recognition by a neuro-adaptive Electronic Nose
Martinelli, Eugenio; Magna, Gabriele; Polese, Davide; Vergara, Alexander; Schild, Detlev; Di Natale, Corrado
2015-01-01
Sensitivity, selectivity and stability are decisive properties of sensors. In chemical gas sensors odor recognition can be severely compromised by poor signal stability, particularly in real life applications where the sensors are exposed to unpredictable sequences of odors under changing external conditions. Although olfactory receptor neurons in the nose face similar stimulus sequences under likewise changing conditions, odor recognition is very stable and odorants can be reliably identified independently from past odor perception. We postulate that appropriate pre-processing of the output signals of chemical sensors substantially contributes to the stability of odor recognition, in spite of marked sensor instabilities. To investigate this hypothesis, we use an adaptive, unsupervised neural network inspired by the glomerular input circuitry of the olfactory bulb. Essentially the model reduces the effect of the sensors’ instabilities by utilizing them via an adaptive multicompartment feed-forward inhibition. We collected and analyzed responses of a 4 × 4 gas sensor array to a number of volatile compounds applied over a period of 18 months, whereby every sensor was sampled episodically. The network conferred excellent stability to the compounds’ identification and was clearly superior over standard classifiers, even when one of the sensors exhibited random fluctuations or stopped working at all. PMID:26043043
Next Generation Environmentally-Friendly Driving Feedback Systems Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Matthew; Boriboonsomsin, Kanok
2014-12-31
The objective of this project is to design, develop, and demonstrate a next-generation, federal safety- and emission-complaint driving feedback system that can be deployed across the existing vehicle fleet and improve fleet average fuel efficiency by at least 2%. The project objective was achieved with the driving feedback system that encourages fuel-efficient vehicle travel and operation through: 1) Eco-Routing Navigation module that suggests the most fuel-efficient route from one stop to the next, 2) Eco-Driving Feedback module that provides sensible information, recommendation, and warning regarding fuel-efficient vehicle operation, and 3) Eco-Score and Eco-Rank module that provides a means for drivingmore » performance tracking, self-evaluation, and peer comparison. The system also collects and stores vehicle travel and operation data, which are used by Algorithm Updating module to customize the other modules for specific vehicles and adapts them to specific drivers over time. The driving feedback system was designed and developed as an aftermarket technology that can be retrofitted to vehicles in the existing fleet. It consists of a mobile application for smart devices running Android operating system, a vehicle on-board diagnostics connector, and a data server. While the system receives and utilizes real-time vehicle and engine data from the vehicle’s controller area network bus through the vehicle’s on-board diagnostic connector, it does not modify or interfere with the vehicle’s controller area network bus, and thus, is in compliance with federal safety and emission regulations. The driving feedback system was demonstrated and then installed on 45 vehicles from three different fleets for field operational test. These include 15 private vehicles of the general public, 15 pickup trucks of the California Department of Transportation that are assigned to individual employees for business use, and 15 shuttle buses of the Riverside Transit Agency that are used for paratransit service. Detailed vehicle travel and operation data including route taken, driving speed, acceleration, braking, and the corresponding fuel consumption, were collected both before and during the test period. The data analysis results show that the fleet average fuel efficiency improvements for the three fleets with the use of the driving feedback system are in the range of 2% to 9%. The economic viability of the driving feedback system is high. A fully deployed system would require capital investment in smart device ($150-$350) and on-board diagnostics connector ($50-$100) as well as paying operating costs for wireless data plan and subscription fees ($20-$30 per month) for connecting to the data server and receiving various system services. For individual consumers who already own a smart device (such as smartphone) and commercial fleets that already use some kind of telematics services, the costs for deploying this driving feedback system would be much lower.« less
41 CFR 101-39.106 - Unlimited exemptions.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.106 Unlimited exemptions. Unlimited exemptions from inclusion in the fleet... below. Unlimited exemptions do not preclude agencies from requesting fleet management services, if...
Increasing Fleet Readiness Through Improved Distance Support
2013-03-01
gis tic s D ata Pro ce ss Tra ini ng Da ta An aly ze Da ta An...Format Fleet Maintenance Formatted Data /sData F.2.2 • ... Fleet Support Infrastructure Data ~ Formatted Trainin~ ata l Obtain and Format Fleet...system either by using a form or a spreadsheet F.2.2 Obtain Data from Fleet Recorded System Performance Data is downloaded from ship either manually
Routes for GMR-Sensor Design in Non-Destructive Testing
Pelkner, Matthias; Neubauer, Andreas; Reimund, Verena; Kreutzbruck, Marc; Schütze, Andreas
2012-01-01
GMR sensors are widely used in many industrial segments such as information technology, automotive, automation and production, and safety applications. Each area requires an adaption of the sensor arrangement in terms of size adaption and alignment with respect to the field source involved. This paper deals with an analysis of geometric sensor parameters and the arrangement of GMR sensors providing a design roadmap for non-destructive testing (NDT) applications. For this purpose we use an analytical model simulating the magnetic flux leakage (MFL) distribution of surface breaking defects and investigate the flux leakage signal as a function of various sensor parameters. Our calculations show both the influence of sensor length and height and that when detecting the magnetic flux leakage of μm sized defects a gradiometer base line of 250 μm leads to a signal strength loss of less than 10% in comparison with a magnetometer response. To validate the simulation results we finally performed measurements with a GMR magnetometer sensor on a test plate with artificial μm-range cracks. The differences between simulation and measurement are below 6%. We report on the routes for a GMR gradiometer design as a basis for the fabrication of NDT-adapted sensor arrays. The results are also helpful for the use of GMR in other application when it comes to measure positions, lengths, angles or electrical currents.
Performance Evaluation of a Prototyped Wireless Ground Sensor Network
2005-03-01
the network was capable of dynamic adaptation to failure and degradation. 14. SUBJECT TERMS: Wireless Sensor Network , Unmanned Sensor, Unattended...2 H. WIRELESS SENSOR NETWORKS .................................................................... 3...zation, and network traffic. The evaluated scenarios included outdoor, urban and indoor environments. The characteristics of wireless sensor networks , types
Communal Sensor Network for Adaptive Noise Reduction in Aircraft Engine Nacelles
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Nark, Douglas M.; Jones, Michael G.
2011-01-01
Emergent behavior, a subject of much research in biology, sociology, and economics, is a foundational element of Complex Systems Science and is apropos in the design of sensor network systems. To demonstrate engineering for emergent behavior, a novel approach in the design of a sensor/actuator network is presented maintaining optimal noise attenuation as an adaptation to changing acoustic conditions. Rather than use the conventional approach where sensors are managed by a central controller, this new paradigm uses a biomimetic model where sensor/actuators cooperate as a community of autonomous organisms, sharing with neighbors to control impedance based on local information. From the combination of all individual actions, an optimal attenuation emerges for the global system.
41 CFR 101-39.102 - Determinations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.102 Determinations. Each determination to establish a fleet management system... name of the executive agency designated to be responsible for operating the fleet management system and...
Alternative fuel options and costs for use in Kansas and surrounding states
DOT National Transportation Integrated Search
1998-09-01
To meet state and federal mandates, state fleets, federal fleets, and fuel provider fleets must acquire alternatively fueled vehicles (AFVs). The Kansas House Bill 95-2161 exceeds the federal energy policy act regulations for state fleets. AFVs inclu...
NASA Astrophysics Data System (ADS)
Pattabhiraman, Sriram
Airplane fuselage structures are designed with the concept of damage tolerance, wherein small damage are allowed to remain on the airplane, and damage that otherwise affect the safety of the structure are repaired. The damage critical to the safety of the fuselage are repaired by scheduling maintenance at pre-determined intervals. Scheduling maintenance is an interesting trade-off between damage tolerance and cost. Tolerance of larger damage would require less frequent maintenance and hence, a lower cost, to maintain a certain level of reliability. Alternatively, condition-based maintenance techniques have been developed using on-board sensors, which track damage continuously and request maintenance only when the damage size crosses a particular threshold. This effects a tolerance of larger damage than scheduled maintenance, leading to savings in cost. This work quantifies the savings of condition-based maintenance over scheduled maintenance. The work also quantifies converting the cost savings into weight savings. Structural health monitoring will need time to be able to establish itself as a stand-alone system for maintenance, due to concerns on its diagnosis accuracy and reliability. This work also investigates the effect of synchronizing structural health monitoring system with scheduled maintenance. This work uses on-board SHM equipment skip structural airframe maintenance (a subsect of scheduled maintenance), whenever deemed unnecessary while maintain a desired level of safety of structure. The work will also predict the necessary maintenance for a fleet of airplanes, based on the current damage status of the airplanes. The work also analyses the possibility of false alarm, wherein maintenance is being requested with no critical damage on the airplane. The work use SHM as a tool to identify lemons in a fleet of airplanes. Lemons are those airplanes that would warrant more maintenance trips than the average behavior of the fleet.
National Clean Fleets Partnership (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2014-01-01
Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.
Sensor trustworthiness in uncertain time varying stochastic environments
NASA Astrophysics Data System (ADS)
Verma, Ajay; Fernandes, Ronald; Vadakkeveedu, Kalyan
2011-06-01
Persistent surveillance applications require unattended sensors deployed in remote regions to track and monitor some physical stimulant of interest that can be modeled as output of time varying stochastic process. However, the accuracy or the trustworthiness of the information received through a remote and unattended sensor and sensor network cannot be readily assumed, since sensors may get disabled, corrupted, or even compromised, resulting in unreliable information. The aim of this paper is to develop information theory based metric to determine sensor trustworthiness from the sensor data in an uncertain and time varying stochastic environment. In this paper we show an information theory based determination of sensor data trustworthiness using an adaptive stochastic reference sensor model that tracks the sensor performance for the time varying physical feature, and provides a baseline model that is used to compare and analyze the observed sensor output. We present an approach in which relative entropy is used for reference model adaptation and determination of divergence of the sensor signal from the estimated reference baseline. We show that that KL-divergence is a useful metric that can be successfully used in determination of sensor failures or sensor malice of various types.
Rolling Deck to Repository (R2R): Products and Services for the U.S. Research Fleet Community
NASA Astrophysics Data System (ADS)
Arko, R. A.; Carbotte, S. M.; Chandler, C. L.; Smith, S. R.; Stocks, K. I.
2016-02-01
The Rolling Deck to Repository (R2R) program is working to ensure open access to environmental sensor data routinely acquired by the U.S. academic research fleet. Currently 25 vessels deliver 7 TB/year of data to R2R from a suite of geophysical, oceanographic, meteorological, and navigational sensors on over 400 cruises worldwide. R2R ensures these data are preserved in trusted repositories, discoverable via standard protocols, and adequately documented for reuse. R2R has recently expanded to include the vessels Sikuliaq, operated by the University of Alaska; Falkor, operated by the Schmidt Ocean Institute; and Ronald H. Brown and Okeanos Explorer, operated by NOAA. R2R maintains a master catalog of U.S. research cruises, currently holding over 4,670 expeditions including vessel and cruise identifiers, start/end dates and ports, project titles and funding awards, science parties, dataset inventories with instrument types and file formats, data quality assessments, and links to related content at other repositories. Standard post-field cruise products are published including shiptrack navigation, near-real-time MET/TSG data, underway geophysical profiles, and CTD profiles. Software tools available to users include the R2R Event Logger and the R2R Nav Manager. A Digital Object Identifier (DOI) is published for each cruise, original field sensor dataset, standard post-field product, and document (e.g. cruise report) submitted by the science party. Scientists are linked to personal identifiers such as ORCIDs where available. Using standard identifiers such as DOIs and ORCIDs facilitates linking with journal publications and generation of citation metrics. R2R collaborates in the Ocean Data Interoperability Platform (ODIP) to strengthen links among regional and national data systems, populates U.S. cruises in the POGO global catalog, and is working toward membership in the DataONE alliance. It is a lead partner in the EarthCube GeoLink project, developing Semantic Web technologies to share data and documentation between repositories, and in the newly-launched EarthCube SeaView project, delivering data from R2R and other ocean data facilities to scientists using the Ocean Data View (ODV) software tool.
A Programmable Plug & Play Sensor Interface for WSN Applications
Vera, Sergio D.; Bayo, Alberto; Medrano, Nicolás; Calvo, Belén; Celma, Santiago
2011-01-01
Cost reduction in wireless sensor networks (WSN) becomes a priority when extending their application to fields where a great number of sensors is needed, such as habitat monitoring, precision agriculture or diffuse greenhouse emission measurement. In these cases, the use of smart sensors is expensive, consequently requiring the use of low-cost sensors. The solution to convert such generic low-cost sensors into intelligent ones leads to the implementation of a versatile system with enhanced processing and storage capabilities to attain a plug and play electronic interface able to adapt to all the sensors used. This paper focuses on this issue and presents a low-voltage plug & play reprogrammable interface capable of adapting to different sensor types and achieving an optimum reading performance for every sensor. The proposed interface, which includes both electronic and software elements so that it can be easily integrated in WSN nodes, is described and experimental test results to validate its performance are given. PMID:22164118
DOT National Transportation Integrated Search
1997-05-01
In todays increasingly competitive economic environment, effective management of commercial vehicle fleets is important for all types of carriers and for the trucking industry as a whole. To meet fleet management needs, carriers increasingly are t...
41 CFR 101-39.203 - Obtaining motor vehicles for short-term use.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management... Fleet Management System (IFMS). Short-term use vehicles may be provided through Military Traffic... General Services Administration IFMS fleet management center. [56 FR 59888, Nov. 26, 1991] ...
41 CFR 101-39.202 - Contractor authorized services.
Code of Federal Regulations, 2010 CFR
2010-07-01
... VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management System Services... related GSA Interagency Fleet Management System (IFMS) services solely for official purposes. (b) To the... -leased equipment which is not controlled by a GSA IFMS fleet management center, or for authorized...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
...; Information Collection; Contractor Use of Interagency Fleet Management System Vehicles AGENCY: Department of... previously approved information collection requirement concerning contractor use of interagency fleet... Collection 9000- 0032, Contractor Use of Interagency Fleet Management System Vehicles, by any of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
...; Submission for OMB Review; Contractor Use of Interagency Fleet Management System Vehicles AGENCY: Department... previously approved information collection requirement concerning contractor use of interagency fleet... comments identified by Information Collection 9000- 0032, Contractor Use of Interagency Fleet Management...
Feng, Qiang; Chen, Yiran; Sun, Bo; Li, Songjie
2014-01-01
An optimization method for condition based maintenance (CBM) of aircraft fleet considering prognostics uncertainty is proposed. The CBM and dispatch process of aircraft fleet is analyzed first, and the alternative strategy sets for single aircraft are given. Then, the optimization problem of fleet CBM with lower maintenance cost and dispatch risk is translated to the combinatorial optimization problem of single aircraft strategy. Remain useful life (RUL) distribution of the key line replaceable Module (LRM) has been transformed into the failure probability of the aircraft and the fleet health status matrix is established. And the calculation method of the costs and risks for mission based on health status matrix and maintenance matrix is given. Further, an optimization method for fleet dispatch and CBM under acceptable risk is proposed based on an improved genetic algorithm. Finally, a fleet of 10 aircrafts is studied to verify the proposed method. The results shows that it could realize optimization and control of the aircraft fleet oriented to mission success.
Chen, Yiran; Sun, Bo; Li, Songjie
2014-01-01
An optimization method for condition based maintenance (CBM) of aircraft fleet considering prognostics uncertainty is proposed. The CBM and dispatch process of aircraft fleet is analyzed first, and the alternative strategy sets for single aircraft are given. Then, the optimization problem of fleet CBM with lower maintenance cost and dispatch risk is translated to the combinatorial optimization problem of single aircraft strategy. Remain useful life (RUL) distribution of the key line replaceable Module (LRM) has been transformed into the failure probability of the aircraft and the fleet health status matrix is established. And the calculation method of the costs and risks for mission based on health status matrix and maintenance matrix is given. Further, an optimization method for fleet dispatch and CBM under acceptable risk is proposed based on an improved genetic algorithm. Finally, a fleet of 10 aircrafts is studied to verify the proposed method. The results shows that it could realize optimization and control of the aircraft fleet oriented to mission success. PMID:24892046
Cross-sensor iris recognition through kernel learning.
Pillai, Jaishanker K; Puertas, Maria; Chellappa, Rama
2014-01-01
Due to the increasing popularity of iris biometrics, new sensors are being developed for acquiring iris images and existing ones are being continuously upgraded. Re-enrolling users every time a new sensor is deployed is expensive and time-consuming, especially in applications with a large number of enrolled users. However, recent studies show that cross-sensor matching, where the test samples are verified using data enrolled with a different sensor, often lead to reduced performance. In this paper, we propose a machine learning technique to mitigate the cross-sensor performance degradation by adapting the iris samples from one sensor to another. We first present a novel optimization framework for learning transformations on iris biometrics. We then utilize this framework for sensor adaptation, by reducing the distance between samples of the same class, and increasing it between samples of different classes, irrespective of the sensors acquiring them. Extensive evaluations on iris data from multiple sensors demonstrate that the proposed method leads to improvement in cross-sensor recognition accuracy. Furthermore, since the proposed technique requires minimal changes to the iris recognition pipeline, it can easily be incorporated into existing iris recognition systems.
An automated geometric correction system for airborne multispectral scanner imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis-King, E.; Tinney, L.; Brickey, D.
1996-10-01
The United States Department of Energy (USDOE) maintains a Remote Sensing Laboratory (RSL) to support nuclear related programs of the US Government. The mission of the organization includes both emergency response and more routine environmental assessments of nuclear facilities. The USDOE RSL maintains a small fleet of specially equipped aircraft that are used as platforms for remote sensor systems. The aircraft include helicopters, light aircraft, and a business jet suitable for high altitude acquisitions. Multispectral scanners flown on these platforms are subject to geometric distortions related to variations in aircraft orientation (pitch, roll, and yaw), position, and velocity during datamore » acquistions.« less
Application of Strategic Planning Process with Fleet Level Analysis Methods
NASA Technical Reports Server (NTRS)
Mavris, Dimitri N.; Pfaender, Holger; Jimenez, Hernando; Garcia, Elena; Feron, Eric; Bernardo, Jose
2016-01-01
The goal of this work is to quantify and characterize the potential system-wide reduction of fuel consumption and corresponding CO2 emissions, resulting from the introduction of N+2 aircraft technologies and concepts into the fleet. Although NASA goals for this timeframe are referenced against a large twin aisle aircraft we consider their application across all vehicle classes of the commercial aircraft fleet, from regional jets to very large aircraft. In this work the authors describe and discuss the formulation and implementation of the fleet assessment by addressing the main analytical components: forecasting, operations allocation, fleet retirement, fleet replacement, and environmental performance modeling.
Fuel-Efficient Green Fleets Policy and Fleet Management Program Development The Alabama Green Fleets Review Committee (Committee) established a Green Fleets Policy (Policy) outlining a procedure for managers must classify their vehicle inventory for compliance with the Policy and submit annual plans for
Evolution of the deep-sea fleet that supports Canada's international trade
DOT National Transportation Integrated Search
2002-01-01
This study identifies the flag-related trends of fleets used in Canada's international sea-borne trade relative to the world fleet during the 15-year period from 1985 to 1999. The goal is to determine if there is any indication that fleets that serve...
A methodology to enable rapid evaluation of aviation environmental impacts and aircraft technologies
NASA Astrophysics Data System (ADS)
Becker, Keith Frederick
Commercial aviation has become an integral part of modern society and enables unprecedented global connectivity by increasing rapid business, cultural, and personal connectivity. In the decades following World War II, passenger travel through commercial aviation quickly grew at a rate of roughly 8% per year globally. The FAA's most recent Terminal Area Forecast predicts growth to continue at a rate of 2.5% domestically, and the market outlooks produced by Airbus and Boeing generally predict growth to continue at a rate of 5% per year globally over the next several decades, which translates into a need for up to 30,000 new aircraft produced by 2025. With such large numbers of new aircraft potentially entering service, any negative consequences of commercial aviation must undergo examination and mitigation by governing bodies so that growth may still be achieved. Options to simultaneously grow while reducing environmental impact include evolution of the commercial fleet through changes in operations, aircraft mix, and technology adoption. Methods to rapidly evaluate fleet environmental metrics are needed to enable decision makers to quickly compare the impact of different scenarios and weigh the impact of multiple policy options. As the fleet evolves, interdependencies may emerge in the form of tradeoffs between improvements in different environmental metrics as new technologies are brought into service. In order to include the impacts of these interdependencies on fleet evolution, physics-based modeling is required at the appropriate level of fidelity. Evaluation of environmental metrics in a physics-based manner can be done at the individual aircraft level, but will then not capture aggregate fleet metrics. Contrastingly, evaluation of environmental metrics at the fleet level is already being done for aircraft in the commercial fleet, but current tools and approaches require enhancement because they currently capture technology implementation through post-processing, which does not capture physical interdependencies that may arise at the aircraft-level. The goal of the work that has been conducted here was the development of a methodology to develop surrogate fleet approaches that leverage the capability of physics-based aircraft models and the development of connectivity to fleet-level analysis tools to enable rapid evaluation of fuel burn and emissions metrics. Instead of requiring development of an individual physics-based model for each vehicle in the fleet, the surrogate fleet approaches seek to reduce the number of such models needed while still accurately capturing performance of the fleet. By reducing the number of models, both development time and execution time to generate fleet-level results may also be reduced. The initial steps leading to surrogate fleet formulation were a characterization of the commercial fleet into groups based on capability followed by the selection of a reference vehicle model and a reference set of operations for each group. Next, three potential surrogate fleet approaches were formulated. These approaches include the parametric correction factor approach, in which the results of a reference vehicle model are corrected to match the aggregate results of each group; the average replacement approach, in which a new vehicle model is developed to generate aggregate results of each group, and the best-in-class replacement approach, in which results for a reference vehicle are simply substituted for the entire group. Once candidate surrogate fleet approaches were developed, they were each applied to and evaluated over the set of reference operations. Then each approach was evaluated for their ability to model variations in operations. Finally, the ability of each surrogate fleet approach to capture implementation of different technology suites along with corresponding interdependencies between fuel burn and emissions was evaluated using the concept of a virtual fleet to simulate the technology response of multiple aircraft families. The results of experimentation led to a down selection to the best approach to use to rapidly characterize the performance of the commercial fleet for accurately in the context of acceptability of current fleet evaluation methods. The parametric correction factor and average replacement approaches were shown to be successful in capturing reference fleet results as well as fleet performance with variations in operations. The best-in-class replacement approach was shown to be unacceptable as a model for the larger fleet in each of the scenarios tested. Finally, the average replacement approach was the only one that was successful in capturing the impact of technologies on a larger fleet. These results are meaningful because they show that it is possible to calculate the fuel burn and emissions of a larger fleet with a reduced number of physics-based models within acceptable bounds of accuracy. At the same time, the physics-based modeling also provides the ability to evaluate the impact of technologies on fleet-level fuel burn and emissions metrics. The value of such a capability is that multiple future fleet scenarios involving changes in both aircraft operations and technology levels may now be rapidly evaluated to inform and equip policy makers of the implications of impacts of changes on fleet-level metrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Matthew; Draelos, Timothy; Knox, Hunter
2017-05-02
The AST software includes numeric methods to 1) adjust STA/LTA signal detector trigger level (TL) values and 2) filter detections for a network of sensors. AST adapts TL values to the current state of the environment by leveraging cooperation within a neighborhood of sensors. The key metric that guides the dynamic tuning is consistency of each sensor with its nearest neighbors: TL values are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The AST algorithm adapts in near real-time to changing conditions in an attempt tomore » automatically self-tune a signal detector to identify (detect) only signals from events of interest.« less
A Framework for Creating Value from Fleet Data at Ecosystem Level
NASA Astrophysics Data System (ADS)
Kinnunen, Sini-Kaisu; Hanski, Jyri; Marttonen-Arola, Salla; Kärri, Timo
2017-09-01
As companies have recently gotten more interested in utilizing the increasingly gathered data and realizing the potential of data analysis, the ability to upgrade data into value for business has been recognized as an advantage. Companies gain competitive advantage if they are able to benefit from the fleet data that is produced both in and outside the boundaries of the company. Benefits of fleet management are based on the possibility to have access to the massive amounts of asset data that can then be utilized e.g. to gain cost savings and to develop products and services. The ambition of the companies is to create value from fleet data but this requires that different actors in ecosystem are working together for a common goal - to get the most value out of fleet data for the ecosystem. In order that this could be possible, we need a framework to meet the requirements of the fleet life-cycle data utilization. This means that the different actors in the ecosystem need to understand their role in the fleet data refining process in order to promote the value creation from fleet data. The objective of this paper is to develop a framework for knowledge management in order to create value from fleet data in ecosystems. As a result, we present a conceptual framework which helps companies to develop their asset management practices related to the fleet of assets.
Comparison of the Shack-Hartmann and plenoptic sensor in closed-loop adaptive optics system
NASA Astrophysics Data System (ADS)
Jiang, Pengzhi; Xu, Jieping; Liang, Yonghui; Mao, Hongjun
2016-03-01
The wavefront sensor is used in adaptive optics (AO) to detect the atmospheric distortion, which feeds back to the deformable mirror to compensate for this distortion. While the Shack-Hartmann sensor has been widely used, the plenoptic sensor was proposed in recent years. The two different wavefront sensing methods have different interpretations and numerical consequences, though they are both slope-based. The plenoptic sensor is compared with the Shack-Hartmann sensor in a closed-loop AO system. Simulations are performed to investigate their performances under closed-loop conditions. The plenoptic sensors both without and with modulation are discussed. The results show that the closed-loop performance of the plenoptic sensor without modulation is worse than that of the Shack-Hartmann sensor when the star for observation is brighter than magnitude 7, but better when the star is fainter. The closed-loop performance of the plenoptic sensor could be improved by modulation, except for the faint star. In summary, the limiting magnitude of the astronomical AO system may be improved by using the plenoptic sensor instead of the Shack-Hartmann sensor, and the modulation of the plenoptic sensor is more suitable for the bright star.
33 CFR 162.270 - Restricted areas in vicinity of Maritime Administration Reserve Fleets.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Maritime Administration Reserve Fleets. 162.270 Section 162.270 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.270 Restricted areas in vicinity of Maritime Administration Reserve Fleets. (a) The... National Defense Reserve Fleets of the Maritime Administration, Department of Transportation: (1) James...
Alternative Fuels Data Center: Fleet Application for Public Transit
Vehicles Public Transit Vehicles to someone by E-mail Share Alternative Fuels Data Center : Fleet Application for Public Transit Vehicles on Facebook Tweet about Alternative Fuels Data Center : Fleet Application for Public Transit Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fleet
77 FR 14482 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-12
... agencies to use this methodology to determine fleet inventory targets and to prepare fleet management plans.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Federal Energy Management Program (EE... DOE receives will be made available on the Federal Energy Management Program's Federal Fleet...
Alternative Fuels Data Center: Fleet Applications for Vehicles
Applications for Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fleet Applications for Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fleet Applications for Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fleet Applications for Vehicles on Google
41 CFR 101-39.208 - Vehicles removed from defined areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management System Services... operated outside the geographical area served by the issuing GSA IFMS fleet management center. However... shall notify the issuing GSA IFMS fleet management center of the following: (1) The location at which...
50 CFR 660.338 - Limited entry permits-small fleet.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Limited entry permits-small fleet. 660.338 Section 660.338 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Groundfish Fisheries § 660.338 Limited entry permits-small fleet. (a) Small limited entry fisheries fleets...
41 CFR 101-39.107 - Limited exemptions.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet... incorporated in the fleet management system, if the exemption has been mutually agreed upon by the... of the fleet management system. [51 FR 11023, Apr. 1, 1986, as amended at 56 FR 59888, Nov. 26, 1991] ...
41 CFR 101-39.204 - Obtaining motor vehicles for indefinite assignment.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management... related services of the GSA Interagency Fleet Management System (IFMS) are provided to requesting agencies... have been consolidated into the supporting GSA IFMS fleet management center, and no agency-owned...
48 CFR 970.5223-5 - DOE motor vehicle fleet fuel efficiency.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and Contract Clauses for Management and Operating Contracts 970.5223-5 DOE motor vehicle fleet fuel..., insert the following clause in contracts providing for Contractor management of the motor vehicle fleet... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false DOE motor vehicle fleet...
AQS-20 through-the-sensor environmental data sharing
NASA Astrophysics Data System (ADS)
Steed, Chad A.; Sample, John; Harris, Mike; Avera, Will; Bibee, L. Dale
2005-05-01
The Naval Research Laboratory (NRL) has developed an advanced architecture for connecting many maturing Through-The-Sensor (TTS) efforts for an end-to-end demonstration using the AQS-20 mine hunting sensor. The goal of TTS technologies is to exploit tactical sensors to characterize the battlespace environment for Navy Fleet Tactical Decision Aids (TDAs) with minimal impact on tactical systems. The AQS-20 Rapid Transition Process (RTP) will utilize the AQS-20 to demonstrate sensor data collection, processing, fusion, storage, distribution and use in a tactical decision aid. In recent years, NRL has shown that the AQS-20 can be used to obtain swath bathymetry and bottom sediment information in a single flight. In the AQS-20 RTP, these data will be processed and fused with historical databases to provide an improved environmental picture. The RTP will also utilize the Geophysical Data Base Variable resolution (GDBV) dynamic format for storing local datasets. The GDBV dynamic has been developed in prior years to provide an extensible, efficient data storage format for TTS systems. To provide the interconnectivity that is critical to Network Centric Warfare (NCW), the GDBV will be connected to the SPAWAR funded Tactical Environmental Data Services (TEDServices). To complete the flow of information from sensor to user, the RTP will transmit information to the MEDAL TDA through existing connections in The Naval Oceanographic Office"s (NAVOCEANO) Bottom Mapping Workstation (BMW). In addition, TEDServices will handle transmission of the AQS-20 data to NAVOCEANO who serves as the domain authority for oceanographic datasets in the U.S. Navy.
2014-09-17
AFRL-OSR-VA-TR-2014-0255 ADAPTIVE PIEZOELECTRIC CIRCUITRY SENSOR NETWORK KON -WELL WANG MICHIGAN UNIV ANN ARBOR Final Report 09/17/2014 DISTRIBUTION A...Harmonics Interrogation for Structural Damage Detection FA9550-11-1-0072 Kon -Well Wang and Jiong Tang The Regents of the University of Michigan, 3003...mechanism. These efforts have yielded a complete methodology of adaptive high-frequency piezoelectric self-sensing interrogation. None None None SAR Kon
Li, Jiang; Bifano, Thomas G.; Mertz, Jerome
2016-01-01
Abstract. We describe a wavefront sensor strategy for the implementation of adaptive optics (AO) in microscope applications involving thick, scattering media. The strategy is based on the exploitation of multiple scattering to provide oblique back illumination of the wavefront-sensor focal plane, enabling a simple and direct measurement of the flux-density tilt angles caused by aberrations at this plane. Advantages of the sensor are that it provides a large measurement field of view (FOV) while requiring no guide star, making it particularly adapted to a type of AO called conjugate AO, which provides a large correction FOV in cases when sample-induced aberrations arise from a single dominant plane (e.g., the sample surface). We apply conjugate AO here to widefield (i.e., nonscanning) fluorescence microscopy for the first time and demonstrate dynamic wavefront correction in a closed-loop implementation. PMID:27653793
CubeSat Nighttime Earth Observations
NASA Astrophysics Data System (ADS)
Pack, D. W.; Hardy, B. S.; Longcore, T.
2017-12-01
Satellite monitoring of visible emissions at night has been established as a useful capability for environmental monitoring and mapping the global human footprint. Pioneering work using Defense Meteorological Support Program (DMSP) sensors has been followed by new work using the more capable Visible Infrared Imaging Radiometer Suite (VIIRS). Beginning in 2014, we have been investigating the ability of small visible light cameras on CubeSats to contribute to nighttime Earth science studies via point-and-stare imaging. This paper summarizes our recent research using a common suite of simple visible cameras on several AeroCube satellites to carry out nighttime observations of urban areas and natural gas flares, nighttime weather (including lighting), and fishing fleet lights. Example results include: urban image examples, the utility of color imagery, urban lighting change detection, and multi-frame sequences imaging nighttime weather and large ocean areas with extensive fishing vessel lights. Our results show the potential for CubeSat sensors to improve monitoring of urban growth, light pollution, energy usage, the urban-wildland interface, the improvement of electrical power grids in developing countries, light-induced fisheries, and oil industry flare activity. In addition to orbital results, the nighttime imaging capabilities of new CubeSat sensors scheduled for launch in October 2017 are discussed.
Evolving RBF neural networks for adaptive soft-sensor design.
Alexandridis, Alex
2013-12-01
This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.
2015-12-01
B. THE PROSPECTIVE 2040 7TH FLEET FORCES Based on the current and planned naval forces allocated to 7th Fleet, it is assumed that the Navy’s 2040...approximately 15 percent of The Advanced Surface Force Fleet, or 20 ships, are allocated to 7th Fleet. Furthermore, 12 of The Advanced Surface...production, personnel support for cleanup and recovery efforts, berthing capability, and medical support.90 After determining the critical missions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiyko, V V; Kislov, V I; Ofitserov, E N
2015-08-31
In the framework of a statistical model of an adaptive optics system (AOS) of phase conjugation, three algorithms based on an integrated mathematical approach are considered, each of them intended for minimisation of one of the following characteristics: the sensor error (in the case of an ideal corrector), the corrector error (in the case of ideal measurements) and the compensation error (with regard to discreteness and measurement noises and to incompleteness of a system of response functions of the corrector actuators). Functional and statistical relationships between the algorithms are studied and a relation is derived to ensure calculation of themore » mean-square compensation error as a function of the errors of the sensor and corrector with an accuracy better than 10%. Because in adjusting the AOS parameters, it is reasonable to proceed from the equality of the sensor and corrector errors, in the case the Hartmann sensor is used as a wavefront sensor, the required number of actuators in the absence of the noise component in the sensor error turns out 1.5 – 2.5 times less than the number of counts, and that difference grows with increasing measurement noise. (adaptive optics)« less
An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.
Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel
2016-03-28
Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.
Cho, Sunghyun; Choi, Ji-Woong; You, Cheolwoo
2013-10-02
Mobile wireless multimedia sensor networks (WMSNs), which consist of mobile sink or sensor nodes and use rich sensing information, require much faster and more reliable wireless links than static wireless sensor networks (WSNs). This paper proposes an adaptive multi-node (MN) multiple input and multiple output (MIMO) transmission to improve the transmission reliability and capacity of mobile sink nodes when they experience spatial correlation. Unlike conventional single-node (SN) MIMO transmission, the proposed scheme considers the use of transmission antennas from more than two sensor nodes. To find an optimal antenna set and a MIMO transmission scheme, a MN MIMO channel model is introduced first, followed by derivation of closed-form ergodic capacity expressions with different MIMO transmission schemes, such as space-time transmit diversity coding and spatial multiplexing. The capacity varies according to the antenna correlation and the path gain from multiple sensor nodes. Based on these statistical results, we propose an adaptive MIMO mode and antenna set switching algorithm that maximizes the ergodic capacity of mobile sink nodes. The ergodic capacity of the proposed scheme is compared with conventional SN MIMO schemes, where the gain increases as the antenna correlation and path gain ratio increase.
Cho, Sunghyun; Choi, Ji-Woong; You, Cheolwoo
2013-01-01
Mobile wireless multimedia sensor networks (WMSNs), which consist of mobile sink or sensor nodes and use rich sensing information, require much faster and more reliable wireless links than static wireless sensor networks (WSNs). This paper proposes an adaptive multi-node (MN) multiple input and multiple output (MIMO) transmission to improve the transmission reliability and capacity of mobile sink nodes when they experience spatial correlation. Unlike conventional single-node (SN) MIMO transmission, the proposed scheme considers the use of transmission antennas from more than two sensor nodes. To find an optimal antenna set and a MIMO transmission scheme, a MN MIMO channel model is introduced first, followed by derivation of closed-form ergodic capacity expressions with different MIMO transmission schemes, such as space-time transmit diversity coding and spatial multiplexing. The capacity varies according to the antenna correlation and the path gain from multiple sensor nodes. Based on these statistical results, we propose an adaptive MIMO mode and antenna set switching algorithm that maximizes the ergodic capacity of mobile sink nodes. The ergodic capacity of the proposed scheme is compared with conventional SN MIMO schemes, where the gain increases as the antenna correlation and path gain ratio increase. PMID:24152920
Alternative Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys
Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys Success on Facebook Tweet about Alternative Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys Success on Twitter Bookmark Alternative Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys Success on Google Bookmark Alternative Fuels
41 CFR 101-39.105-1 - Transfers from discontinued or curtailed fleet management systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... discontinued or curtailed fleet management systems. 101-39.105-1 Section 101-39.105-1 Public Contracts and... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.105-1 Transfers from...
Alternative Fuels Data Center: New Mexico Utility Sparks Change with Fleet
Electrification New Mexico Utility Sparks Change with Fleet Electrification to someone by E -mail Share Alternative Fuels Data Center: New Mexico Utility Sparks Change with Fleet Electrification on Facebook Tweet about Alternative Fuels Data Center: New Mexico Utility Sparks Change with Fleet
75 FR 8563 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-25
...-AA00 Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA AGENCY: Coast Guard... Fleet Week Maritime Festival. Entry into, transit through, mooring, or anchoring within these zones is... Fleet Week Maritime Festival. This safety zone is necessary as these events have historically resulted...
75 FR 71638 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliot Bay, Seattle, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
...-AA00 Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliot Bay, Seattle, WA AGENCY: Coast Guard...) entitled ``Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliot Bay, Seattle, WA'' (Docket number...; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, Washington. (a) Location. The following...
Modelling the spatial behaviour of a tropical tuna purse seine fleet.
Davies, Tim K; Mees, Chris C; Milner-Gulland, E J
2014-01-01
Industrial tuna fisheries operate in the Indian, Atlantic and Pacific Oceans, but concerns over sustainability and environmental impacts of these fisheries have resulted in increased scrutiny of how they are managed. An important but often overlooked factor in the success or failure of tuna fisheries management is the behaviour of fishers and fishing fleets. Uncertainty in how a fishing fleet will respond to management or other influences can be reduced by anticipating fleet behaviour, although to date there has been little research directed at understanding and anticipating the human dimension of tuna fisheries. The aim of this study was to address gaps in knowledge of the behaviour of tuna fleets, using the Indian Ocean tropical tuna purse seine fishery as a case study. We use statistical modelling to examine the factors that influence the spatial behaviour of the purse seine fleet at broad spatiotemporal scales. This analysis reveals very high consistency between years in the use of seasonal fishing grounds by the fleet, as well as a forcing influence of biophysical ocean conditions on the distribution of fishing effort. These findings suggest strong inertia in the spatial behaviour of the fleet, which has important implications for predicting the response of the fleet to natural events or management measures (e.g., spatial closures).
Zeng, Yuanyuan; Sreenan, Cormac J; Sitanayah, Lanny; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin
2011-01-01
Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work.
Zeng, Yuanyuan; Sreenan, Cormac J.; Sitanayah, Lanny; Xiong, Naixue; Park, Jong Hyuk; Zheng, Guilin
2011-01-01
Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work. PMID:22163774
Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes.
Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul
2018-04-05
In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90-94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models.
Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes
Ahmed, Faisal
2018-01-01
In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90–94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models. PMID:29621169
Enhancing the capability of the research fleet.
NASA Astrophysics Data System (ADS)
Pinkel, R.
2012-12-01
While the performance and economics of our vessels and manned platforms are fixed by fundamental principles, their scientific capabilities can be considerably extended through the development of new technology. Potential future systems include multi-beam swath- mapping sonars for 3-D imaging of plankton patchiness, wire-guided profiling velocity sensors for establishing full-ocean-depth velocity profiles, shipboard HF radar (CODAR) for mapping energetic currents, and shipboard Doppler radar for mapping the surface wave spectrum. Research vessel users should have access to undersea gliders and autonomous aircraft as well as the current AUVs. In addition, the use of manned stable platforms in an observatory setting deserves further consideration. As well as providing an ideal mount for meteorological and oceanographic sensors, the platforms can provide electrical power and a "heavy lift" capability for sea floor and water column studies. Concerted community effort will be required to develop these new technologies, not all of which will be commercially viable. A strong academic technology base is necessary.
NASA Astrophysics Data System (ADS)
Perry, Alexander R.
2002-06-01
Low Frequency Eddy Current (EC) probes are capable of measurement from 5 MHz down to DC through the use of Magnetoresistive (MR) sensors. Choosing components with appropriate electrical specifications allows them to be matched to the power and impedance characteristics of standard computer connectors. This permits direct attachment of the probe to inexpensive computers, thereby eliminating external power supplies, amplifiers and modulators that have heretofore precluded very low system purchase prices. Such price reduction is key to increased market penetration in General Aviation maintenance and consequent reduction in recurring costs. This paper examines our computer software CANDETECT, which implements this approach and permits effective probe operation. Results are presented to show the intrinsic sensitivity of the software and demonstrate its practical performance when seeking cracks in the underside of a thick aluminum multilayer structure. The majority of the General Aviation light aircraft fleet uses rivets and screws to attach sheet aluminum skin to the airframe, resulting in similar multilayer lap joints.
Adaptive inferential sensors based on evolving fuzzy models.
Angelov, Plamen; Kordon, Arthur
2010-04-01
A new technique to the design and use of inferential sensors in the process industry is proposed in this paper, which is based on the recently introduced concept of evolving fuzzy models (EFMs). They address the challenge that the modern process industry faces today, namely, to develop such adaptive and self-calibrating online inferential sensors that reduce the maintenance costs while keeping the high precision and interpretability/transparency. The proposed new methodology makes possible inferential sensors to recalibrate automatically, which reduces significantly the life-cycle efforts for their maintenance. This is achieved by the adaptive and flexible open-structure EFM used. The novelty of this paper lies in the following: (1) the overall concept of inferential sensors with evolving and self-developing structure from the data streams; (2) the new methodology for online automatic selection of input variables that are most relevant for the prediction; (3) the technique to detect automatically a shift in the data pattern using the age of the clusters (and fuzzy rules); (4) the online standardization technique used by the learning procedure of the evolving model; and (5) the application of this innovative approach to several real-life industrial processes from the chemical industry (evolving inferential sensors, namely, eSensors, were used for predicting the chemical properties of different products in The Dow Chemical Company, Freeport, TX). It should be noted, however, that the methodology and conclusions of this paper are valid for the broader area of chemical and process industries in general. The results demonstrate that well-interpretable and with-simple-structure inferential sensors can automatically be designed from the data stream in real time, which predict various process variables of interest. The proposed approach can be used as a basis for the development of a new generation of adaptive and evolving inferential sensors that can address the challenges of the modern advanced process industry.
Introduction to the Special Issue on "State-of-the-Art Sensor Technology in Japan 2015".
Tokumitsu, Masahiro; Ishida, Yoshiteru
2016-08-23
This Special Issue, "State-of-the-Art Sensor Technology in Japan 2015", collected papers on different kinds of sensing technology: fundamental technology for intelligent sensors, information processing for monitoring humans, and information processing for adaptive and survivable sensor systems.[...].
A Novel Method to Increase LinLog CMOS Sensors’ Performance in High Dynamic Range Scenarios
Martínez-Sánchez, Antonio; Fernández, Carlos; Navarro, Pedro J.; Iborra, Andrés
2011-01-01
Images from high dynamic range (HDR) scenes must be obtained with minimum loss of information. For this purpose it is necessary to take full advantage of the quantification levels provided by the CCD/CMOS image sensor. LinLog CMOS sensors satisfy the above demand by offering an adjustable response curve that combines linear and logarithmic responses. This paper presents a novel method to quickly adjust the parameters that control the response curve of a LinLog CMOS image sensor. We propose to use an Adaptive Proportional-Integral-Derivative controller to adjust the exposure time of the sensor, together with control algorithms based on the saturation level and the entropy of the images. With this method the sensor’s maximum dynamic range (120 dB) can be used to acquire good quality images from HDR scenes with fast, automatic adaptation to scene conditions. Adaptation to a new scene is rapid, with a sensor response adjustment of less than eight frames when working in real time video mode. At least 67% of the scene entropy can be retained with this method. PMID:22164083
Onboard Nonlinear Engine Sensor and Component Fault Diagnosis and Isolation Scheme
NASA Technical Reports Server (NTRS)
Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong
2011-01-01
A method detects and isolates in-flight sensor, actuator, and component faults for advanced propulsion systems. In sharp contrast to many conventional methods, which deal with either sensor fault or component fault, but not both, this method considers sensor fault, actuator fault, and component fault under one systemic and unified framework. The proposed solution consists of two main components: a bank of real-time, nonlinear adaptive fault diagnostic estimators for residual generation, and a residual evaluation module that includes adaptive thresholds and a Transferable Belief Model (TBM)-based residual evaluation scheme. By employing a nonlinear adaptive learning architecture, the developed approach is capable of directly dealing with nonlinear engine models and nonlinear faults without the need of linearization. Software modules have been developed and evaluated with the NASA C-MAPSS engine model. Several typical engine-fault modes, including a subset of sensor/actuator/components faults, were tested with a mild transient operation scenario. The simulation results demonstrated that the algorithm was able to successfully detect and isolate all simulated faults as long as the fault magnitudes were larger than the minimum detectable/isolable sizes, and no misdiagnosis occurred
Gholami, Mohammad; Brennan, Robert W
2016-01-06
In this paper, we investigate alternative distributed clustering techniques for wireless sensor node tracking in an industrial environment. The research builds on extant work on wireless sensor node clustering by reporting on: (1) the development of a novel distributed management approach for tracking mobile nodes in an industrial wireless sensor network; and (2) an objective comparison of alternative cluster management approaches for wireless sensor networks. To perform this comparison, we focus on two main clustering approaches proposed in the literature: pre-defined clusters and ad hoc clusters. These approaches are compared in the context of their reconfigurability: more specifically, we investigate the trade-off between the cost and the effectiveness of competing strategies aimed at adapting to changes in the sensing environment. To support this work, we introduce three new metrics: a cost/efficiency measure, a performance measure, and a resource consumption measure. The results of our experiments show that ad hoc clusters adapt more readily to changes in the sensing environment, but this higher level of adaptability is at the cost of overall efficiency.
Adaptive neural network/expert system that learns fault diagnosis for different structures
NASA Astrophysics Data System (ADS)
Simon, Solomon H.
1992-08-01
Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.
Gholami, Mohammad; Brennan, Robert W.
2016-01-01
In this paper, we investigate alternative distributed clustering techniques for wireless sensor node tracking in an industrial environment. The research builds on extant work on wireless sensor node clustering by reporting on: (1) the development of a novel distributed management approach for tracking mobile nodes in an industrial wireless sensor network; and (2) an objective comparison of alternative cluster management approaches for wireless sensor networks. To perform this comparison, we focus on two main clustering approaches proposed in the literature: pre-defined clusters and ad hoc clusters. These approaches are compared in the context of their reconfigurability: more specifically, we investigate the trade-off between the cost and the effectiveness of competing strategies aimed at adapting to changes in the sensing environment. To support this work, we introduce three new metrics: a cost/efficiency measure, a performance measure, and a resource consumption measure. The results of our experiments show that ad hoc clusters adapt more readily to changes in the sensing environment, but this higher level of adaptability is at the cost of overall efficiency. PMID:26751447
System and method for cognitive processing for data fusion
NASA Technical Reports Server (NTRS)
Duong, Tuan A. (Inventor); Duong, Vu A. (Inventor)
2012-01-01
A system and method for cognitive processing of sensor data. A processor array receiving analog sensor data and having programmable interconnects, multiplication weights, and filters provides for adaptive learning in real-time. A static random access memory contains the programmable data for the processor array and the stored data is modified to provide for adaptive learning.
Baranec, Christoph; Dekany, Richard
2008-10-01
We introduce a Shack-Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbitrarily by redefining the segment grouping. Control over the spatial sampling of the wavefront allows for the minimization of wavefront reconstruction error for different intensities of guide source and different atmospheric conditions, which in turn maximizes an adaptive optics system's delivered Strehl ratio. Requirements for the MEMS devices needed in this Shack-Hartmann wavefront sensor are also presented.
Wang, HongYi; Fan, Youyou; Lu, Zhijian; Luo, Tao; Fu, Houqiang; Song, Hongjiang; Zhao, Yuji; Christen, Jennifer Blain
2017-10-02
This paper provides a solution for a self-powered light direction detection with digitized output. Light direction sensors, energy harvesting photodiodes, real-time adaptive tracking digital output unit and other necessary circuits are integrated on a single chip based on a standard 0.18 µm CMOS process. Light direction sensors proposed have an accuracy of 1.8 degree over a 120 degree range. In order to improve the accuracy, a compensation circuit is presented for photodiodes' forward currents. The actual measurement precision of output is approximately 7 ENOB. Besides that, an adaptive under voltage protection circuit is designed for variable supply power which may undulate with temperature and process.
Ma, Zhiyuan; Luo, Guangchun; Qin, Ke; Wang, Nan; Niu, Weina
2018-03-01
Sensor drift is a common issue in E-Nose systems and various drift compensation methods have received fruitful results in recent years. Although the accuracy for recognizing diverse gases under drift conditions has been largely enhanced, few of these methods considered online processing scenarios. In this paper, we focus on building online drift compensation model by transforming two domain adaptation based methods into their online learning versions, which allow the recognition models to adapt to the changes of sensor responses in a time-efficient manner without losing the high accuracy. Experimental results using three different settings confirm that the proposed methods save large processing time when compared with their offline versions, and outperform other drift compensation methods in recognition accuracy.
Alternative Fuels Data Center: Golden Eagle Distributors Inc. to Convert
several years. Golden Eagle will convert all fleet vehicles to CNG in their six branch operations Entire Fleet to CNG Golden Eagle Distributors Inc. to Convert Entire Fleet to CNG to someone by E-mail Share Alternative Fuels Data Center: Golden Eagle Distributors Inc. to Convert Entire Fleet
41 CFR 102-34.340 - Do we need a fleet management information system?
Code of Federal Regulations, 2010 CFR
2010-07-01
... management information system? 102-34.340 Section 102-34.340 Public Contracts and Property Management Federal... VEHICLE MANAGEMENT Federal Fleet Report § 102-34.340 Do we need a fleet management information system? Yes, you must have a fleet management information system at the department or agency level that — (a...
Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas
New Hampshire Fleet Revs up With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas on Twitter Bookmark Alternative Fuels Data Center
Alternative Fuels Data Center: District of Columbia's Government Fleet Uses
a Wide Variety of Alternative FuelsA> District of Columbia's Government Fleet Uses a Wide Variety Government Fleet Uses a Wide Variety of Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: District of Columbia's Government Fleet Uses a Wide Variety of Alternative Fuels on Twitter
75 FR 20778 - Security Zone; Portland Rose Festival Fleet Week, Willamette River, Portland, OR
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
...-AA87 Security Zone; Portland Rose Festival Fleet Week, Willamette River, Portland, OR AGENCY: Coast... during the Portland Rose Festival Fleet Week from June 2, 2010, through June 7, 2010. The security zone... is a need to provide a security zone for the 2010 Portland Rose Festival Fleet Week, and there is...
76 FR 30014 - Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
...-AA00 Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA AGENCY: Coast Guard...) entitled ``Safety Zone; Fleet Week Maritime Festival, Pier 66, Elliott Bay, Seattle, WA'' in the Federal... is added to read as follows: Sec. 165.1330 Safety Zone; Fleet Week Maritime Festival, Pier 66...
41 CFR 102-34.340 - Do we need a fleet management information system?
Code of Federal Regulations, 2011 CFR
2011-01-01
... management information system? 102-34.340 Section 102-34.340 Public Contracts and Property Management Federal... VEHICLE MANAGEMENT Federal Fleet Report § 102-34.340 Do we need a fleet management information system? Yes, you must have a fleet management information system at the department or agency level that — (a...
41 CFR 102-34.340 - Do we need a fleet management information system?
Code of Federal Regulations, 2013 CFR
2013-07-01
... management information system? 102-34.340 Section 102-34.340 Public Contracts and Property Management Federal... VEHICLE MANAGEMENT Federal Fleet Report § 102-34.340 Do we need a fleet management information system? Yes, you must have a fleet management information system at the department or agency level that — (a...
41 CFR 102-34.340 - Do we need a fleet management information system?
Code of Federal Regulations, 2012 CFR
2012-01-01
... management information system? 102-34.340 Section 102-34.340 Public Contracts and Property Management Federal... VEHICLE MANAGEMENT Federal Fleet Report § 102-34.340 Do we need a fleet management information system? Yes, you must have a fleet management information system at the department or agency level that — (a...
41 CFR 102-34.340 - Do we need a fleet management information system?
Code of Federal Regulations, 2014 CFR
2014-01-01
... management information system? 102-34.340 Section 102-34.340 Public Contracts and Property Management Federal... VEHICLE MANAGEMENT Federal Fleet Report § 102-34.340 Do we need a fleet management information system? Yes, you must have a fleet management information system at the department or agency level that — (a...
77 FR 75257 - Proposed Collection of Information: Medium- and Heavy-Duty Truck Fleet Survey
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-19
...-0170] Proposed Collection of Information: Medium- and Heavy-Duty Truck Fleet Survey AGENCY: National... collection of information will be in the form of a one-time survey of medium- and heavy-duty truck fleet... collection. OMB Control Number: To be issued at time of approval. Title: Medium- and Heavy-Duty Truck Fleet...
Assessment and Correlation of Customer and Rater Response to Cold-Start and Warmup Driveability
1993-08-01
Customer satisfaction fleet Year N % 1986 13 18 1988 10 14 1987 12 18 1988 12 16 1989 14 19 1990 9 12 1991 3 4 Consumer I Rater Fleet Hydrocarbon fuel...2 4 1991 0 0 Fuel system * Customer satisfaction fleet Fuel system N % Carbureted 19 26 PFI 33 48 1T1 21 29 Consumer I Rater Fleet Hydrooarbon fuel...between the customer fleet and one of the consumer /rater subfleets; these vehicles are included in both places in the tables above. 30 TABLE 2 AVERAGE
Plantet, C; Meimon, S; Conan, J-M; Fusco, T
2015-11-02
Exoplanet direct imaging with large ground based telescopes requires eXtreme Adaptive Optics that couples high-order adaptive optics and coronagraphy. A key element of such systems is the high-order wavefront sensor. We study here several high-order wavefront sensing approaches, and more precisely compare their sensitivity to noise. Three techniques are considered: the classical Shack-Hartmann sensor, the pyramid sensor and the recently proposed LIFTed Shack-Hartmann sensor. They are compared in a unified framework based on precise diffractive models and on the Fisher information matrix, which conveys the information present in the data whatever the estimation method. The diagonal elements of the inverse of the Fisher information matrix, which we use as a figure of merit, are similar to noise propagation coefficients. With these diagonal elements, so called "Fisher coefficients", we show that the LIFTed Shack-Hartmann and pyramid sensors outperform the classical Shack-Hartmann sensor. In photon noise regime, the LIFTed Shack-Hartmann and modulated pyramid sensors obtain a similar overall noise propagation. The LIFTed Shack-Hartmann sensor however provides attractive noise properties on high orders.
ContextProvider: Context awareness for medical monitoring applications.
Mitchell, Michael; Meyers, Christopher; Wang, An-I Andy; Tyson, Gary
2011-01-01
Smartphones are sensor-rich and Internet-enabled. With their on-board sensors, web services, social media, and external biosensors, smartphones can provide contextual information about the device, user, and environment, thereby enabling the creation of rich, biologically driven applications. We introduce ContextProvider, a framework that offers a unified, query-able interface to contextual data on the device. Unlike other context-based frameworks, ContextProvider offers interactive user feedback, self-adaptive sensor polling, and minimal reliance on third-party infrastructure. ContextProvider also allows for rapid development of new context and bio-aware applications. Evaluation of ContextProvider shows the incorporation of an additional monitoring sensor into the framework with fewer than 100 lines of Java code. With adaptive sensor monitoring, power consumption per sensor can be reduced down to 1% overhead. Finally, through the use of context, accuracy of data interpretation can be improved by up to 80%.
Emergent Adaptive Noise Reduction from Communal Cooperation of Sensor Grid
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Jones, Michael G.; Nark, Douglas M.; Lodding, Kenneth N.
2010-01-01
In the last decade, the realization of small, inexpensive, and powerful devices with sensors, computers, and wireless communication has promised the development of massive sized sensor networks with dense deployments over large areas capable of high fidelity situational assessments. However, most management models have been based on centralized control and research has concentrated on methods for passing data from sensor devices to the central controller. Most implementations have been small but, as it is not scalable, this methodology is insufficient for massive deployments. Here, a specific application of a large sensor network for adaptive noise reduction demonstrates a new paradigm where communities of sensor/computer devices assess local conditions and make local decisions from which emerges a global behaviour. This approach obviates many of the problems of centralized control as it is not prone to single point of failure and is more scalable, efficient, robust, and fault tolerant
NASA Astrophysics Data System (ADS)
Wietsma, T.; Minsker, B. S.
2012-12-01
Increased sensor throughput combined with decreasing hardware costs has led to a disruptive growth in data volume. This disruption, popularly termed "the data deluge," has placed new demands for cyberinfrastructure and information technology skills among researchers in many academic fields, including the environmental sciences. Adaptive sampling has been well established as an effective means of improving network resource efficiency (energy, bandwidth) without sacrificing sample set quality relative to traditional uniform sampling. However, using adaptive sampling for the explicit purpose of improving resolution over events -- situations displaying intermittent dynamics and unique hydrogeological signatures -- is relatively new. In this paper, we define hot spots and hot moments in terms of sensor signal activity as measured through discrete Fourier analysis. Following this frequency-based approach, we apply the Nyquist-Shannon sampling theorem, a fundamental contribution from signal processing that led to the field of information theory, for analysis of uni- and multivariate environmental signal data. In the scope of multi-scale environmental sensor networks, we present several sampling control algorithms, derived from the Nyquist-Shannon theorem, that operate at local (field sensor), regional (base station for aggregation of field sensor data), and global (Cloud-based, computationally intensive models) scales. Evaluated over soil moisture data, results indicate significantly greater sample density during precipitation events while reducing overall sample volume. Using these algorithms as indicators rather than control mechanisms, we also discuss opportunities for spatio-temporal modeling as a tool for planning/modifying sensor network deployments. Locally adaptive model based on Nyquist-Shannon sampling theorem Pareto frontiers for local, regional, and global models relative to uniform sampling. Objectives are (1) overall sampling efficiency and (2) sampling efficiency during hot moments as identified using heuristic approach.
Developing a Fleet Standardization Index for Airline Planning
NASA Technical Reports Server (NTRS)
deBorgesPan, Alexis George; EspiritoSanto, Respicio A., Jr.
2003-01-01
Quantifying subjective aspects is a difficult task that requires a great dedication of time from researchers and analysts. Nevertheless, one of the main objectives of it is to pave the way for a better understanding of the focused aspects. Fleet standardization is one of these subjective aspects that is extremely difficult to mm into numbers. Although, it is of great importance to know the benefits that may come with a higher level of standardization for airlines, which may be economical advantages, maintenance facilitation and others. A more standardized fleet may represent lower costs of operations and maintenance facilitation and others. A more standardized fleet may represent lower costs of operations and maintenance plus a much better planning of routes and flights. This study presents the first step on developing an index, hereto called "Fleet Standardization Index" or FSI (or IPF in Portuguese, for "Indice de Padronizacao de Frotas"), that will allow senior airline planners to compare different fleets and also simulate some results from maintaining or renewing their fleets. Although being a preliminary study, the results obtained may already be tested to compare different fleets (different airlines) and also analyze some possible impacts of a fleet renewal before it takes place. Therefore, the main objective of this paper is to introduce the proposed IPF index and to demonstrate that it is inversely proportional to the number of different airplane models, engines and other equipment, such as avionics.
Haugen, Molly J; Bishop, Gary A
2018-05-15
Two California heavy-duty fleets have been measured in 2013, 2015, and 2017 using the On-Road Heavy-Duty Measurement System. The Port of Los Angeles drayage fleet has increased in age by 3.3 model years (4.2-7.5 years old) since 2013, with little fleet turnover. Large increases in fuel-specific particle emissions (PM) observed in 2015 were reversed in 2017, returning to near 2013 levels, suggesting repairs and or removal of high emitting vehicles. Fuel-specific oxides of nitrogen (NO x ) emissions of this fleet have increased, and NO x after-treatment systems do not appear to perform ideally in this setting. At the Cottonwood weigh station in northern California, the fleet age has declined (7.8 to 6 years old) since 2013 due to fleet turnover, significantly lowering the average fuel-specific emissions for PM (-87%), black carbon (-76%), and particle number (-64%). Installations of retrofit-diesel particulate filters in model year 2007 and older vehicles have further decreased particle emissions. Cottonwood fleet fuel-specific NO x emissions have decreased slightly (-8%) during this period; however, newer technology vehicles with selective catalytic reduction systems (SCR) promise an additional factor of 4-5 further reductions in the long-haul fleet emissions as California transitions to an all SCR-equipped fleet.
Alternative Fuels Data Center: Kansas City Greens Its Fleet With Natural
Gas and Biodiesel Kansas City Greens Its Fleet With Natural Gas and Biodiesel to someone by E -mail Share Alternative Fuels Data Center: Kansas City Greens Its Fleet With Natural Gas and Biodiesel and Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Kansas City Greens Its Fleet With
Pages - U.S. Fleet Cyber Command
Links Expand Links : U.S. Fleet Cyber Command Help (new window) Site Help Page Content Website 2nd Banner.jpg Since its establishment on Jan. 29, 2010, U.S. Fleet Cyber Command (FCC)/U.S. TENTH Fleet (C10F civilians organized into 26 active commands, 40 Cyber Mission Force units, and 27 reserve commands around
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela
2015-03-05
This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations.
Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela
2015-01-01
This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations. PMID:25751079
Benchmarking Gas Path Diagnostic Methods: A Public Approach
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Bird, Jeff; Davison, Craig; Volponi, Al; Iverson, R. Eugene
2008-01-01
Recent technology reviews have identified the need for objective assessments of engine health management (EHM) technology. The need is two-fold: technology developers require relevant data and problems to design and validate new algorithms and techniques while engine system integrators and operators need practical tools to direct development and then evaluate the effectiveness of proposed solutions. This paper presents a publicly available gas path diagnostic benchmark problem that has been developed by the Propulsion and Power Systems Panel of The Technical Cooperation Program (TTCP) to help address these needs. The problem is coded in MATLAB (The MathWorks, Inc.) and coupled with a non-linear turbofan engine simulation to produce "snap-shot" measurements, with relevant noise levels, as if collected from a fleet of engines over their lifetime of use. Each engine within the fleet will experience unique operating and deterioration profiles, and may encounter randomly occurring relevant gas path faults including sensor, actuator and component faults. The challenge to the EHM community is to develop gas path diagnostic algorithms to reliably perform fault detection and isolation. An example solution to the benchmark problem is provided along with associated evaluation metrics. A plan is presented to disseminate this benchmark problem to the engine health management technical community and invite technology solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy (DOE) and U.S. General Services Administration (GSA) are issuing comprehensive guidance on the federal fleet requirements of Executive Order (E.O.) 13693, Planning for Federal Sustainability in the Next Decade (E.O. 13693), to help federal agencies subject to the executive order develop an overall approach for reducing total fleet greenhouse gas (GHG) emissions and fleet-wide per-mile GHG emissions, and ensure the approach helps these agencies meet their requirements. Three key GHG emissions reduction strategies - right-sizing fleets to mission, increasing fleet fuel efficiency, and displacing petroleum with alternative fuel use - are essential to meeting themore » requirements and are discussed further in this document. This guidance document is intended to help agency Chief Sustainability Officers (CSOs) and headquarters fleet managers craft tailored executable plans that achieve the purpose of E.O. 13693. The guidance will assist agencies in completing the first phase of a comprehensive fleet management framework by identifying the strategies each agency will then implement to meet or exceed its requirements.« less
Data dissemination using gossiping in wireless sensor networks
NASA Astrophysics Data System (ADS)
Medidi, Muralidhar; Ding, Jin; Medidi, Sirisha
2005-06-01
Disseminating data among sensors is a fundamental operation in energy-constrained wireless sensor networks. We present a gossip-based adaptive protocol for data dissemination to improve energy efficiency of this operation. To overcome the data implosion problems associated with dissemination operation, our protocol uses meta-data to name the data using high-level data descriptors and negotiation to eliminate redundant transmissions of duplicate data in the network. Further, we adapt the gossiping with data aggregation possibilities in sensor networks. We simulated our data dissemination protocol, and compared it to the SPIN protocol. We find that our protocol improves on the energy consumption by about 20% over others, while improving significantly over the data dissemination rate of gossiping.
An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors
Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel
2016-01-01
Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559
Fixation light hue bias revisited: implications for using adaptive optics to study color vision.
Hofer, H J; Blaschke, J; Patolia, J; Koenig, D E
2012-03-01
Current vision science adaptive optics systems use near infrared wavefront sensor 'beacons' that appear as red spots in the visual field. Colored fixation targets are known to influence the perceived color of macroscopic visual stimuli (Jameson, D., & Hurvich, L. M. (1967). Fixation-light bias: An unwanted by-product of fixation control. Vision Research, 7, 805-809.), suggesting that the wavefront sensor beacon may also influence perceived color for stimuli displayed with adaptive optics. Despite its importance for proper interpretation of adaptive optics experiments on the fine scale interaction of the retinal mosaic and spatial and color vision, this potential bias has not yet been quantified or addressed. Here we measure the impact of the wavefront sensor beacon on color appearance for dim, monochromatic point sources in five subjects. The presence of the beacon altered color reports both when used as a fixation target as well as when displaced in the visual field with a chromatically neutral fixation target. This influence must be taken into account when interpreting previous experiments and new methods of adaptive correction should be used in future experiments using adaptive optics to study color. Copyright © 2012 Elsevier Ltd. All rights reserved.
Jeffrey Yang, Y; Haught, Roy C; Goodrich, James A
2009-06-01
Accurate detection and identification of natural or intentional contamination events in a drinking water pipe is critical to drinking water supply security and health risk management. To use conventional water quality sensors for the purpose, we have explored a real-time event adaptive detection, identification and warning (READiw) methodology and examined it using pilot-scale pipe flow experiments of 11 chemical and biological contaminants each at three concentration levels. The tested contaminants include pesticide and herbicides (aldicarb, glyphosate and dicamba), alkaloids (nicotine and colchicine), E. coli in terrific broth, biological growth media (nutrient broth, terrific broth, tryptic soy broth), and inorganic chemical compounds (mercuric chloride and potassium ferricyanide). First, through adaptive transformation of the sensor outputs, contaminant signals were enhanced and background noise was reduced in time-series plots leading to detection and identification of all simulated contamination events. The improved sensor detection threshold was 0.1% of the background for pH and oxidation-reduction potential (ORP), 0.9% for free chlorine, 1.6% for total chlorine, and 0.9% for chloride. Second, the relative changes calculated from adaptively transformed residual chlorine measurements were quantitatively related to contaminant-chlorine reactivity in drinking water. We have shown that based on these kinetic and chemical differences, the tested contaminants were distinguishable in forensic discrimination diagrams made of adaptively transformed sensor measurements.
The feasibility of a fluidic respiratory flow meter
NASA Technical Reports Server (NTRS)
Neradka, V. F.; Bray, H. C., Jr.
1974-01-01
A study was undertaken to determine the feasibility of adapting a fluidic airspeed sensor for use as a respiratory flowmeter. A Pulmonary Function Testing Flowmeter was developed which should prove useful for mass screening applications. The fluidic sensor threshold level was not reduced sufficiently to permit its adaptation to measuring the low respiratory flow rates encountered in many respiratory disorders.
An Autonomous Self-Aware and Adaptive Fault Tolerant Routing Technique for Wireless Sensor Networks
Abba, Sani; Lee, Jeong-A
2015-01-01
We propose an autonomous self-aware and adaptive fault-tolerant routing technique (ASAART) for wireless sensor networks. We address the limitations of self-healing routing (SHR) and self-selective routing (SSR) techniques for routing sensor data. We also examine the integration of autonomic self-aware and adaptive fault detection and resiliency techniques for route formation and route repair to provide resilience to errors and failures. We achieved this by using a combined continuous and slotted prioritized transmission back-off delay to obtain local and global network state information, as well as multiple random functions for attaining faster routing convergence and reliable route repair despite transient and permanent node failure rates and efficient adaptation to instantaneous network topology changes. The results of simulations based on a comparison of the ASAART with the SHR and SSR protocols for five different simulated scenarios in the presence of transient and permanent node failure rates exhibit a greater resiliency to errors and failure and better routing performance in terms of the number of successfully delivered network packets, end-to-end delay, delivered MAC layer packets, packet error rate, as well as efficient energy conservation in a highly congested, faulty, and scalable sensor network. PMID:26295236
NASA Astrophysics Data System (ADS)
Mieloszyk, M.; Krawczuk, M.; Zak, A.; Ostachowicz, W.
2010-08-01
In this paper a concept of an adaptive wing for small-aircraft applications with an array of fibre Bragg grating (FBG) sensors has been presented and discussed. In this concept the shape of the wing can be controlled and altered thanks to the wing design and the use of integrated shape memory alloy actuators. The concept has been tested numerically by the use of the finite element method. For numerical calculations the commercial finite element package ABAQUS® has been employed. A finite element model of the wing has been prepared in order to estimate the values of the wing twisting angles and distributions of the twist for various activation scenarios. Based on the results of numerical analysis the locations and numbers of the FBG sensors have also been determined. The results of numerical calculations obtained by the authors confirmed the usefulness of the assumed wing control strategy. Based on them and the concept developed of the adaptive wing, a wing demonstration stand has been designed and built. The stand has been used to verify experimentally the performance of the adaptive wing and the usefulness of the FBG sensors for evaluation of the wing condition.
An Autonomous Self-Aware and Adaptive Fault Tolerant Routing Technique for Wireless Sensor Networks.
Abba, Sani; Lee, Jeong-A
2015-08-18
We propose an autonomous self-aware and adaptive fault-tolerant routing technique (ASAART) for wireless sensor networks. We address the limitations of self-healing routing (SHR) and self-selective routing (SSR) techniques for routing sensor data. We also examine the integration of autonomic self-aware and adaptive fault detection and resiliency techniques for route formation and route repair to provide resilience to errors and failures. We achieved this by using a combined continuous and slotted prioritized transmission back-off delay to obtain local and global network state information, as well as multiple random functions for attaining faster routing convergence and reliable route repair despite transient and permanent node failure rates and efficient adaptation to instantaneous network topology changes. The results of simulations based on a comparison of the ASAART with the SHR and SSR protocols for five different simulated scenarios in the presence of transient and permanent node failure rates exhibit a greater resiliency to errors and failure and better routing performance in terms of the number of successfully delivered network packets, end-to-end delay, delivered MAC layer packets, packet error rate, as well as efficient energy conservation in a highly congested, faulty, and scalable sensor network.
Yu, Jerry
2016-11-01
Many airway sensory units respond to both lung inflation and deflation. Whether those responses to opposite stimuli come from one sensor (one-sensor theory) or more than one sensor (multiple-sensor theory) is debatable. One-sensor theory is commonly presumed in the literature. This article proposes a multiple-sensor theory in which a sensory unit contains different sensors for sensing different forces. Two major types of mechanical sensors operate in the lung: inflation- and deflation-activated receptors (DARs). Inflation-activated sensors can be further divided into slowly adapting receptors (SARs) and rapidly adapting receptors (RARs). Many SAR and RAR units also respond to lung deflation because they contain DARs. Pure DARs, which respond to lung deflation only, are rare in large animals but are easily identified in small animals. Lung deflation-induced reflex effects previously attributed to RARs should be assigned to DARs (including pure DARs and DARs associated with SARs and RARs) if the multiple-sensor theory is accepted. Thus, based on the information, it is proposed that activation of DARs can attenuate lung deflation, shorten expiratory time, increase respiratory rate, evoke inspiration, and cause airway secretion and dyspnea.
Intelligent Sensors for Integrated Systems Health Management (ISHM)
NASA Technical Reports Server (NTRS)
Schmalzel, John L.
2008-01-01
IEEE 1451 Smart Sensors contribute to a number of ISHM goals including cost reduction achieved through: a) Improved configuration management (TEDS); and b) Plug-and-play re-configuration. Intelligent Sensors are adaptation of Smart Sensors to include ISHM algorithms; this offers further benefits: a) Sensor validation. b) Confidence assessment of measurement, and c) Distributed ISHM processing. Space-qualified intelligent sensors are possible a) Size, mass, power constraints. b) Bus structure/protocol.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...
75 FR 34927 - Safety Zone; Parade of Ships, Seattle SeaFair Fleet Week, Pier 66, Elliott Bay, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-21
...-AA00 Safety Zone; Parade of Ships, Seattle SeaFair Fleet Week, Pier 66, Elliott Bay, WA AGENCY: Coast... Seattle SeaFair Fleet Week. This action is intended to restrict vessel traffic movement and entry into... of Ships for the annual Seattle SeaFair Fleet Week. For the purposes of this rule the Parade of Ships...
Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers
to Its Fleet Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet on Twitter Bookmark
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...
Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture
NASA Technical Reports Server (NTRS)
Armstrong, Jeffrey B.; Simon, Donald L.
2012-01-01
An on-board diagnostic architecture for aircraft turbofan engine performance trending, parameter estimation, and gas-path fault detection and isolation has been developed and evaluated in a simulation environment. The architecture incorporates two independent models: a realtime self-tuning performance model providing parameter estimates and a performance baseline model for diagnostic purposes reflecting long-term engine degradation trends. This architecture was evaluated using flight profiles generated from a nonlinear model with realistic fleet engine health degradation distributions and sensor noise. The architecture was found to produce acceptable estimates of engine health and unmeasured parameters, and the integrated diagnostic algorithms were able to perform correct fault isolation in approximately 70 percent of the tested cases
SOCIB Glider toolbox: from sensor to data repository
NASA Astrophysics Data System (ADS)
Pau Beltran, Joan; Heslop, Emma; Ruiz, Simón; Troupin, Charles; Tintoré, Joaquín
2015-04-01
Nowadays in oceanography, gliders constitutes a mature, cost-effective technology for the acquisition of measurements independently of the sea state (unlike ships), providing subsurface data during sustained periods, including extreme weather events. The SOCIB glider toolbox is a set of MATLAB/Octave scripts and functions developed in order to manage the data collected by a glider fleet. They cover the main stages of the data management process, both in real-time and delayed-time modes: metadata aggregation, downloading, processing, and automatic generation of data products and figures. The toolbox is distributed under the GNU licence (http://www.gnu.org/copyleft/gpl.html) and is available at http://www.socib.es/users/glider/glider_toolbox.
Study of an automatic trajectory following control system
NASA Technical Reports Server (NTRS)
Vanlandingham, H. F.; Moose, R. L.; Zwicke, P. E.; Lucas, W. H.; Brinkley, J. D.
1983-01-01
It is shown that the estimator part of the Modified Partitioned Adaptive Controller, (MPAC) developed for nonlinear aircraft dynamics of a small jet transport can adapt to sensor failures. In addition, an investigation is made into the potential usefulness of the configuration detection technique used in the MPAC and the failure detection filter is developed that determines how a noise plant output is associated with a line or plane characteristic of a failure. It is shown by computer simulation that the estimator part and the configuration detection part of the MPAC can readily adapt to actuator and sensor failures and that the failure detection filter technique cannot detect actuator or sensor failures accurately for this type of system because of the plant modeling errors. In addition, it is shown that the decision technique, developed for the failure detection filter, can accurately determine that the plant output is related to the characteristic line or plane in the presence of sensor noise.
Luo, Guangchun; Qin, Ke; Wang, Nan; Niu, Weina
2018-01-01
Sensor drift is a common issue in E-Nose systems and various drift compensation methods have received fruitful results in recent years. Although the accuracy for recognizing diverse gases under drift conditions has been largely enhanced, few of these methods considered online processing scenarios. In this paper, we focus on building online drift compensation model by transforming two domain adaptation based methods into their online learning versions, which allow the recognition models to adapt to the changes of sensor responses in a time-efficient manner without losing the high accuracy. Experimental results using three different settings confirm that the proposed methods save large processing time when compared with their offline versions, and outperform other drift compensation methods in recognition accuracy. PMID:29494543
Wearable sensors for human health monitoring
NASA Astrophysics Data System (ADS)
Asada, H. Harry; Reisner, Andrew
2006-03-01
Wearable sensors for continuous monitoring of vital signs for extended periods of weeks or months are expected to revolutionize healthcare services in the home and workplace as well as in hospitals and nursing homes. This invited paper describes recent research progress in wearable health monitoring technology and its clinical applications, with emphasis on blood pressure and circulatory monitoring. First, a finger ring-type wearable blood pressure sensor based on photo plethysmogram is presented. Technical issues, including motion artifact reduction, power saving, and wearability enhancement, will be addressed. Second, sensor fusion and sensor networking for integrating multiple sensors with diverse modalities will be discussed for comprehensive monitoring and diagnosis of health status. Unlike traditional snap-shot measurements, continuous monitoring with wearable sensors opens up the possibility to treat the physiological system as a dynamical process. This allows us to apply powerful system dynamics and control methodologies, such as adaptive filtering, single- and multi-channel system identification, active noise cancellation, and adaptive control, to the monitoring and treatment of highly complex physiological systems. A few clinical trials illustrate the potentials of the wearable sensor technology for future heath care services.
Yi, Wei-Ying; Leung, Kwong-Sak; Leung, Yee
2017-12-22
Urban air pollution has caused public concern globally because it seriously affects human life. Modern monitoring systems providing pollution information with high spatio-temporal resolution have been developed to identify personal exposures. However, these systems' hardware specifications and configurations are usually fixed according to the applications. They can be inconvenient to maintain, and difficult to reconfigure and expand with respect to sensing capabilities. This paper aims at tackling these issues by adopting the proposed Modular Sensor System (MSS) architecture and Universal Sensor Interface (USI), and modular design in a sensor node. A compact MSS sensor node is implemented and evaluated. It has expandable sensor modules with plug-and-play feature and supports multiple Wireless Sensor Networks (WSNs). Evaluation results show that MSS sensor nodes can easily fit in different scenarios, adapt to reconfigurations dynamically, and detect low concentration air pollution with high energy efficiency and good data accuracy. We anticipate that the efforts on system maintenance, adaptation, and evolution can be significantly reduced when deploying the system in the field.
2017-01-01
Urban air pollution has caused public concern globally because it seriously affects human life. Modern monitoring systems providing pollution information with high spatio-temporal resolution have been developed to identify personal exposures. However, these systems’ hardware specifications and configurations are usually fixed according to the applications. They can be inconvenient to maintain, and difficult to reconfigure and expand with respect to sensing capabilities. This paper aims at tackling these issues by adopting the proposed Modular Sensor System (MSS) architecture and Universal Sensor Interface (USI), and modular design in a sensor node. A compact MSS sensor node is implemented and evaluated. It has expandable sensor modules with plug-and-play feature and supports multiple Wireless Sensor Networks (WSNs). Evaluation results show that MSS sensor nodes can easily fit in different scenarios, adapt to reconfigurations dynamically, and detect low concentration air pollution with high energy efficiency and good data accuracy. We anticipate that the efforts on system maintenance, adaptation, and evolution can be significantly reduced when deploying the system in the field. PMID:29271952
Fleet logistics system : data administration plans and procedures manual
DOT National Transportation Integrated Search
1996-01-23
This manual provides data administration (DA) procedures for developers and maintainers of Coast Guard fleet logistics information systems. Fleet logistics includes a community of supply, logistics, maintenance, and shipboard functions. The informati...
ADAPTING FTIR MEASUREMENT TECHNOLOGY TO HOMELAND SECURITY APPLICATIONS
Open-path Fourier transform infrared (OP-FTIR) sensors have numerous advantages for measuring chemical plumes over wide areas compared to point detection sensors. Extractive FTIR sensors have been used for industrial stack monitoring and are attractive for building ventilation sy...
Airport-Based Alternative Fuel Vehicle Fleets
DOT National Transportation Integrated Search
2001-01-01
Airports represent attractive opportunities for the expanded use of alternative fuel vehicles (AFVs). They are commonly served by dozens of fleets operating thousands of vehicles. These fleets include both ground service equipment such as tugs, tows,...
Fleet equipment performance measure preventive maintenance model.
DOT National Transportation Integrated Search
2013-02-28
The Texas Department of Transportation : (TxDOT) operates a large fleet of on-road and : off-road equipment. Consequently, fleet : maintenance procedures (specifically preventive : maintenance such as oil changes) represent a : significant cost to th...
41 CFR 109-39.107 - Limited exemptions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 109-39.107 Limited exemptions. The Director, Office of... exemptions from the fleet management system. ...
Optimized deployment of emission reduction technologies for large fleets.
DOT National Transportation Integrated Search
2011-06-01
This research study produced an optimization framework for determining the most efficient emission : reduction strategies among vehicles and equipment in a large fleet. The Texas Department of : Transportations (TxDOTs) fleet data were utilized...
CleanFleet final report. Volume 7, vehicle emissions
DOT National Transportation Integrated Search
1995-12-01
CleanFleet, formally known as the South Coast Alternative Fuels Demonstration, : was a comprehensive demonstration of alternative fuel vehicles (AFVs) in daily : commercial service. Measurements of exhaust and evaporative emissions from CleanFleet va...
Clean Cities case study : Barwood Cab Fleet study summary
DOT National Transportation Integrated Search
1999-05-21
Barwood Cab Fleet Study Summary is the second in a new series called 'Alternative Fuel Information Case Studies', designed to present real-world experiences with alternative fuels to fleet managers and other industry stakeholders.
Sensor Web Dynamic Measurement Techniques and Adaptive Observing Strategies
NASA Technical Reports Server (NTRS)
Talabac, Stephen J.
2004-01-01
Sensor Web observing systems may have the potential to significantly improve our ability to monitor, understand, and predict the evolution of rapidly evolving, transient, or variable environmental features and events. This improvement will come about by integrating novel data collection techniques, new or improved instruments, emerging communications technologies and protocols, sensor mark-up languages, and interoperable planning and scheduling systems. In contrast to today's observing systems, "event-driven" sensor webs will synthesize real- or near-real time measurements and information from other platforms and then react by reconfiguring the platforms and instruments to invoke new measurement modes and adaptive observation strategies. Similarly, "model-driven" sensor webs will utilize environmental prediction models to initiate targeted sensor measurements or to use a new observing strategy. The sensor web concept contrasts with today's data collection techniques and observing system operations concepts where independent measurements are made by remote sensing and in situ platforms that do not share, and therefore cannot act upon, potentially useful complementary sensor measurement data and platform state information. This presentation describes NASA's view of event-driven and model-driven Sensor Webs and highlights several research and development activities at the Goddard Space Flight Center.
An Illumination-Adaptive Colorimetric Measurement Using Color Image Sensor
NASA Astrophysics Data System (ADS)
Lee, Sung-Hak; Lee, Jong-Hyub; Sohng, Kyu-Ik
An image sensor for a use of colorimeter is characterized based on the CIE standard colorimetric observer. We use the method of least squares to derive a colorimetric characterization matrix between RGB output signals and CIE XYZ tristimulus values. This paper proposes an adaptive measuring method to obtain the chromaticity of colored scenes and illumination through a 3×3 camera transfer matrix under a certain illuminant. Camera RGB outputs, sensor status values, and photoelectric characteristic are used to obtain the chromaticity. Experimental results show that the proposed method is valid in the measuring performance.
Malkin, Stephen; Gao, Robert; Guo, Changsheng; Varghese, Biju; Pathare, Sumukh
2003-08-05
A grinding wheel system includes a grinding wheel with at least one embedded sensor. The system also includes an adapter disk containing electronics that process signals produced by each embedded sensor and that transmits sensor information to a data processing platform for further processing of the transmitted information.
Malkin, Stephen; Gao, Robert; Guo, Changsheng; Varghese, Biju; Pathare, Sumukh
2006-01-10
A grinding wheel system includes a grinding wheel with at least one embedded sensor. The system also includes an adapter disk containing electronics that process signals produced by each embedded sensor and that transmits sensor information to a data processing platform for further processing of the transmitted information.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management... fleet management systems. (a) Based on these studies, the Administrator of General Services, with the...
Telematics Framework for Federal Agencies: Lessons from the Marine Corps Fleet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Cabell; Singer, Mark R.
Executive Order 13693 requires federal agencies to acquire telematics for their light- and medium-duty vehicles as appropriate. This report is intended to help agencies that are deploying telematics systems and seeking to integrate them into their fleet management process. It provides an overview of telematics capabilities, lessons learned from the deployment of telematics in the Marine Corps fleet, and recommendations for federal fleet managers to maximize value from telematics.
Structural integrated sensor and actuator systems for active flow control
NASA Astrophysics Data System (ADS)
Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael
2016-04-01
An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.
Electron tunneling infrared sensor module with integrated control circuitry
NASA Technical Reports Server (NTRS)
Boyadzhyan-Sevak, Vardkes V. (Inventor)
2001-01-01
In an integrated electron tunneling sensor, an automatic tunneling control circuit varies a high voltage bias applied to the sensor deflection electrode in response to changes in sensor output to maintain the proper gap between the sensor tip and membrane. The control circuit ensures stable tunneling activity in the presence of large signals and other disturbances to the sensor. Output signals from the module may be derived from the amplified sensor output. The integrated sensor module is particularly well adapted for use in blood glucose measurement and monitoring system.
MODIS on-orbit thermal emissive bands lifetime performance
NASA Astrophysics Data System (ADS)
Madhavan, Sriharsha; Wu, Aisheng; Chen, Na; Xiong, Xiaoxiong
2016-05-01
MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 μm - 14.4 μm, of which wavelengths ranging from 3.7 μm - 14. 4 μm cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.
Market Assessment of Forward-Looking Turbulence Sensing Systems
NASA Technical Reports Server (NTRS)
Kauffmann, Paul; Sousa-Poza, Andres
2001-01-01
In recognition of the importance of turbulence mitigation as a tool to improve aviation safety, NASA's Aviation Safety Program developed a Turbulence Detection and Mitigation Sub-element. The objective of this effort is to develop highly reliable turbulence detection technologies for commercial transport aircraft to sense dangerous turbulence with sufficient time warning so that defensive measures can be implemented and prevent passenger and crew injuries. Current research involves three forward sensing products to improve the cockpit awareness of possible turbulence hazards. X-band radar enhancements will improve the capabilities of current weather radar to detect turbulence associated with convective activity. LIDAR (Light Detection and Ranging) is a laser-based technology that is capable of detecting turbulence in clear air. Finally, a possible Radar-LIDAR hybrid sensor is envisioned to detect the full range of convective and clear air turbulence. To support decisions relating to the development of these three forward-looking turbulence sensor technologies, the objective of this study was defined as examination of cost and implementation metrics. Tasks performed included the identification of cost factors and certification issues, the development and application of an implementation model, and the development of cost budget/targets for installing the turbulence sensor and associated software devices into the commercial transport fleet.
MODIS On-Orbit Thermal Emissive Bands Lifetime Performance
NASA Technical Reports Server (NTRS)
Madhavan, Sriharsha; Xiong, Xiaoxiong
2016-01-01
MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 micron 14.4 micron, of which wavelengths ranging from 3.7 micron 14. 4 micron cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.
NASA Technical Reports Server (NTRS)
Soreide, David; Bogue, Rodney K.; Ehernberger, L. J.; Seidel, Jonathan
1997-01-01
Inlet unstart causes a disturbance akin to severe turbulence for a supersonic commercial airplane. Consequently, the current goal for the frequency of unstarts is a few times per fleet lifetime. For a mixed-compression inlet, there is a tradeoff between propulsion system efficiency and unstart margin. As the unstart margin decreases, propulsion system efficiency increases, but so does the unstart rate. This paper intends to first, quantify that tradeoff for the High Speed Civil Transport (HSCT) and second, to examine the benefits of using a sensor to detect turbulence ahead of the airplane. When the presence of turbulence is known with sufficient lead time to allow the propulsion system to adjust the unstart margin, then inlet un,starts can be minimized while overall efficiency is maximized. The NASA Airborne Coherent Lidar for Advanced In-Flight Measurements program is developing a lidar system to serve as a prototype of the forward-looking sensor. This paper reports on the progress of this development program and its application to the prevention of inlet unstart in a mixed-compression supersonic inlet. Quantified benefits include significantly reduced takeoff gross weight (TOGW), which could increase payload, reduce direct operating costs, or increase range for the HSCT.
Fleet equipment performance measurement preventive maintenance model : final report.
DOT National Transportation Integrated Search
2014-04-01
The concept of preventive maintenance is very important in the effective management and deployment of : vehicle fleets. The Texas Department of Transportation (TxDOT) operates a large fleet of on-road and offroad : equipment. Newer engines and vehicl...
41 CFR 101-39.001 - Authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET... establishing fleet management systems to serve the needs of executive agencies; and (b) provide for the establishment, maintenance, and operation (including servicing and storage) of fleet management systems for...
Ohio's first ethanol-fueled light-duty fleet
DOT National Transportation Integrated Search
1998-12-31
In 1996, the State of Ohio established a : project to demonstrate the effectiveness of : ethanol as an alternative to gasoline in : fleet operations. The state purchased and : incorporated a number of flexible-fuel : vehicles (FFVs) into its fleet. F...
Testing the pyramid truth wavefront sensor for NFIRAOS in the lab
NASA Astrophysics Data System (ADS)
Mieda, Etsuko; Rosensteiner, Matthias; van Kooten, Maaike; Veran, Jean-Pierre; Lardiere, Olivier; Herriot, Glen
2016-07-01
For today and future adaptive optics observations, sodium laser guide stars (LGSs) are crucial; however, the LGS elongation problem due to the sodium layer has to be compensated, in particular for extremely large telescopes. In this paper, we describe the concept of truth wavefront sensing as a solution and present its design using a pyramid wavefront sensor (PWFS) to improve NFIRAOS (Narrow Field InfraRed Adaptive Optics System), the first light adaptive optics system for Thirty Meter Telescope. We simulate and test the truth wavefront sensor function under a controlled environment using the HeNOS (Herzberg NFIRAOS Optical Simulator) bench, a scaled-down NFIRAOS bench at NRC-Herzberg. We also touch on alternative pyramid component options because despite recent high demands for PWFSs, we suffer from the lack of pyramid supplies due to engineering difficulties.
Design and adaptation of a folded split ring resonator antenna for use in an animal-borne sensor
NASA Astrophysics Data System (ADS)
Dodson, S. C.; Wiid, P. G.; Niesler, T. R.
2018-03-01
We present the design, optimisation and practical evaluation of a folded split ring resonator (FSRR) antenna for the purpose of radio communication with an animal-borne sensor. We show that the measurements agree with the simulated results and that we are able to produce an electrically small antenna with low mismatch, high radiation efficiency and a quasi-isotropic radiation pattern. We then adapt the topology of the design from a circular to a rectangular shape, to completely fit inside the sensor enclosure. A quasi-isotropic pattern is maintained as well as low mismatch by appropriate tuning. There is a decrease in radiation efficiency which may be countered by a thinner substrate and retuning. We conclude that the adapted FSRR antenna is a suitable design for our application.
Illumination adaptation with rapid-response color sensors
NASA Astrophysics Data System (ADS)
Zhang, Xinchi; Wang, Quan; Boyer, Kim L.
2014-09-01
Smart lighting solutions based on imaging sensors such as webcams or time-of-flight sensors suffer from rising privacy concerns. In this work, we use low-cost non-imaging color sensors to measure local luminous flux of different colors in an indoor space. These sensors have much higher data acquisition rate and are much cheaper than many o_-the-shelf commercial products. We have developed several applications with these sensors, including illumination feedback control and occupancy-driven lighting.
Sensor device and methods for using same
Rothgeb, Timothy Michael; Gansle, Kristina Marie Rohal; Joyce, Jonathan Livingston; Jordan, James Madison; Rohwer, Tedd Addison; Lockhart, Randal Ray; Smith, Christopher Lawrence; Trinh, Toan; Cipollone, Mark Gary
2005-10-25
A sensor device and method of employment is provided. More specifically, a sensor device adapted to detect, identify and/or measure a chemical and/or physical characteristic upon placement of the device into an environment, especially a liquid medium for which monitoring is sought is provided.
Accommodating Sensor Bias in MRAC for State Tracking
NASA Technical Reports Server (NTRS)
Patre, Parag; Joshi, Suresh M.
2011-01-01
The problem of accommodating unknown sensor bias is considered in a direct model reference adaptive control (MRAC) setting for state tracking using state feedback. Sensor faults can occur during operation, and if the biased state measurements are directly used with a standard MRAC control law, neither closed-loop signal boundedness, nor asymptotic tracking can be guaranteed and the resulting tracking errors may be unbounded or unacceptably large. A modified MRAC law is proposed, which combines a bias estimator with control gain adaptation, and it is shown that signal boundedness can be accomplished, although the tracking error may not go to zero. Further, for the case wherein an asymptotically stable sensor bias estimator is available, an MRAC control law is proposed to accomplish asymptotic tracking and signal boundedness. Such a sensor bias estimator can be designed if additional sensor measurements are available, as illustrated for the case wherein bias is present in the rate gyro and airspeed measurements. Numerical example results are presented to illustrate each of the schemes.
An Indirect Adaptive Control Scheme in the Presence of Actuator and Sensor Failures
NASA Technical Reports Server (NTRS)
Sun, Joy Z.; Josh, Suresh M.
2009-01-01
The problem of controlling a system in the presence of unknown actuator and sensor faults is addressed. The system is assumed to have groups of actuators, and groups of sensors, with each group consisting of multiple redundant similar actuators or sensors. The types of actuator faults considered consist of unknown actuators stuck in unknown positions, as well as reduced actuator effectiveness. The sensor faults considered include unknown biases and outages. The approach employed for fault detection and estimation consists of a bank of Kalman filters based on multiple models, and subsequent control reconfiguration to mitigate the effect of biases caused by failed components as well as to obtain stability and satisfactory performance using the remaining actuators and sensors. Conditions for fault identifiability are presented, and the adaptive scheme is applied to an aircraft flight control example in the presence of actuator failures. Simulation results demonstrate that the method can rapidly and accurately detect faults and estimate the fault values, thus enabling safe operation and acceptable performance in spite of failures.
Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.
A flexible geospatial sensor observation service for diverse sensor data based on Web service
NASA Astrophysics Data System (ADS)
Chen, Nengcheng; Di, Liping; Yu, Genong; Min, Min
Achieving a flexible and efficient geospatial Sensor Observation Service (SOS) is difficult, given the diversity of sensor networks, the heterogeneity of sensor data storage, and the differing requirements of users. This paper describes development of a service-oriented multi-purpose SOS framework. The goal is to create a single method of access to the data by integrating the sensor observation service with other Open Geospatial Consortium (OGC) services — Catalogue Service for the Web (CSW), Transactional Web Feature Service (WFS-T) and Transactional Web Coverage Service (WCS-T). The framework includes an extensible sensor data adapter, an OGC-compliant geospatial SOS, a geospatial catalogue service, a WFS-T, and a WCS-T for the SOS, and a geospatial sensor client. The extensible sensor data adapter finds, stores, and manages sensor data from live sensors, sensor models, and simulation systems. Abstract factory design patterns are used during design and implementation. A sensor observation service compatible with the SWE is designed, following the OGC "core" and "transaction" specifications. It is implemented using Java servlet technology. It can be easily deployed in any Java servlet container and automatically exposed for discovery using Web Service Description Language (WSDL). Interaction sequences between a Sensor Web data consumer and an SOS, between a producer and an SOS, and between an SOS and a CSW are described in detail. The framework has been successfully demonstrated in application scenarios for EO-1 observations, weather observations, and water height gauge observations.
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Muroyama, Masanori
2018-01-15
For installing many sensors in a limited space with a limited computing resource, the digitization of the sensor output at the site of sensation has advantages such as a small amount of wiring, low signal interference and high scalability. For this purpose, we have developed a dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) (referred to as "sensor platform LSI") for bus-networked Micro-Electro-Mechanical-Systems (MEMS)-LSI integrated sensors. In this LSI, collision avoidance, adaptation and event-driven functions are simply implemented to relieve data collision and congestion in asynchronous serial bus communication. In this study, we developed a network system with 48 sensor platform LSIs based on Printed Circuit Board (PCB) in a backbone bus topology with the bus length being 2.4 m. We evaluated the serial communication performance when 48 LSIs operated simultaneously with the adaptation function. The number of data packets received from each LSI was almost identical, and the average sampling frequency of 384 capacitance channels (eight for each LSI) was 73.66 Hz.
NASA Astrophysics Data System (ADS)
Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar
2010-09-01
This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Document contains guidance on the federal fleet requirements of Executive Order 13693: Planning for Federal Sustainability in the Next Decade and helps federal agencies subject to the executive order develop an overall approach for reducing total fleet greenhouse gas (GHG) emissions and fleet-wide per-mile GHG emissions.
Municipal Fleet Vehicle Electrification and Photovoltaic Power In the City of Pittsburgh.
DOT National Transportation Integrated Search
2016-01-01
This document reports the results of a cost benefit analysis on potential photovoltaic projects : in Pittsburgh and electrifying the citys light duty civilian vehicle fleet. Currently the : city of Pittsburgh has a civilian passenger vehicle fleet...
The Retrofit Puzzle Extended: Optimal Fleet Owner Behavior over Multiple Time Periods
DOT National Transportation Integrated Search
2009-08-04
In "The Retrofit Puzzle: Optimal Fleet Owner Behavior in the Context of Diesel Retrofit Incentive Programs" (1) an integer program was developed to model profit-maximizing diesel fleet owner behavior when selecting pollution reduction retrofits. Flee...
Code of Federal Regulations, 2010 CFR
2010-10-01
... GOVERNMENT SOURCES BY CONTRACTORS Contractor Use of Interagency Fleet Management System (IFMS) 51.201 Policy... contractors to obtain, for official purposes only, interagency fleet management system (IFMS) vehicles and... instance. (c) Government contractors shall not be authorized to obtain interagency fleet management system...
41 CFR 101-39.003 - Financing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET..., and operation of fleet management systems. (b) When an agency other than GSA operates an interagency fleet management system, the financing and accounting methods shall be developed by GSA in cooperation...
CleanFleet final report. Volume 2, project design and implementation
DOT National Transportation Integrated Search
1995-12-01
The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The project evaluated five alternative motor fuels in commercial fleet service over a two-year period. T...
Reserve fleet manual [3rd ed., 1st rev.
DOT National Transportation Integrated Search
2003-03-17
The purpose of this document is to provide policy to the Regional Headquarters regarding vessel maintenance in the National Defense Reserve Fleet anchorages (fleet sites). This policy is for the acceptance of ships into, the maintenance of ships in, ...
Rolling Deck to Repository (R2R): Standards and Semantics for Open Access to Research Data
NASA Astrophysics Data System (ADS)
Arko, Robert; Carbotte, Suzanne; Chandler, Cynthia; Smith, Shawn; Stocks, Karen
2015-04-01
In recent years, a growing number of funding agencies and professional societies have issued policies calling for open access to research data. The Rolling Deck to Repository (R2R) program is working to ensure open access to the environmental sensor data routinely acquired by the U.S. academic research fleet. Currently 25 vessels deliver 7 terabytes of data to R2R each year, acquired from a suite of geophysical, oceanographic, meteorological, and navigational sensors on over 400 cruises worldwide. R2R is working to ensure these data are preserved in trusted repositories, discoverable via standard protocols, and adequately documented for reuse. R2R maintains a master catalog of cruises for the U.S. academic research fleet, currently holding essential documentation for over 3,800 expeditions including vessel and cruise identifiers, start/end dates and ports, project titles and funding awards, science parties, dataset inventories with instrument types and file formats, data quality assessments, and links to related content at other repositories. A Digital Object Identifier (DOI) is published for 1) each cruise, 2) each original field sensor dataset, 3) each post-field data product such as quality-controlled shiptrack navigation produced by the R2R program, and 4) each document such as a cruise report submitted by the science party. Scientists are linked to personal identifiers, such as the Open Researcher and Contributor ID (ORCID), where known. Using standard global identifiers such as DOIs and ORCIDs facilitates linking with journal publications and generation of citation metrics. Since its inception, the R2R program has worked in close collaboration with other data repositories in the development of shared semantics for oceanographic research. The R2R cruise catalog uses community-standard terms and definitions hosted by the NERC Vocabulary Server, and publishes ISO metadata records for each cruise that use community-standard profiles developed with the NOAA Data Centers and the EU SeaDataNet project. R2R is a partner in the Ocean Data Interoperability Platform (ODIP), working to strengthen links among regional and national data systems, as well as a lead partner in the EarthCube "GeoLink" project, developing a standard set of ontology design patterns for publishing research data using Semantic Web protocols.
High-Mileage Light-Duty Fleet Vehicle Emissions: Their Potentially Overlooked Importance.
Bishop, Gary A; Stedman, Donald H; Burgard, Daniel A; Atkinson, Oscar
2016-05-17
State and local agencies in the United States use activity-based computer models to estimate mobile source emissions for inventories. These models generally assume that vehicle activity levels are uniform across all of the vehicle emission level classifications using the same age-adjusted travel fractions. Recent fuel-specific emission measurements from the SeaTac Airport, Los Angeles, and multi-year measurements in the Chicago area suggest that some high-mileage fleets are responsible for a disproportionate share of the fleet's emissions. Hybrid taxis at the airport show large increases in carbon monoxide, hydrocarbon, and oxide of nitrogen emissions in their fourth year when compared to similar vehicles from the general population. Ammonia emissions from the airport shuttle vans indicate that catalyst reduction capability begins to wane after 5-6 years, 3 times faster than is observed in the general population, indicating accelerated aging. In Chicago, the observed, on-road taxi fleet also had significantly higher emissions and an emissions share that was more than double their fleet representation. When compounded by their expected higher than average mileage accumulation, we estimate that these small fleets (<1% of total) may be overlooked as a significant emission source (>2-5% of fleet emissions).
Adaptive behaviors in multi-agent source localization using passive sensing.
Shaukat, Mansoor; Chitre, Mandar
2016-12-01
In this paper, the role of adaptive group cohesion in a cooperative multi-agent source localization problem is investigated. A distributed source localization algorithm is presented for a homogeneous team of simple agents. An agent uses a single sensor to sense the gradient and two sensors to sense its neighbors. The algorithm is a set of individualistic and social behaviors where the individualistic behavior is as simple as an agent keeping its previous heading and is not self-sufficient in localizing the source. Source localization is achieved as an emergent property through agent's adaptive interactions with the neighbors and the environment. Given a single agent is incapable of localizing the source, maintaining team connectivity at all times is crucial. Two simple temporal sampling behaviors, intensity-based-adaptation and connectivity-based-adaptation, ensure an efficient localization strategy with minimal agent breakaways. The agent behaviors are simultaneously optimized using a two phase evolutionary optimization process. The optimized behaviors are estimated with analytical models and the resulting collective behavior is validated against the agent's sensor and actuator noise, strong multi-path interference due to environment variability, initialization distance sensitivity and loss of source signal.
1 kHz 2D Visual Motion Sensor Using 20 × 20 Silicon Retina Optical Sensor and DSP Microcontroller.
Liu, Shih-Chii; Yang, MinHao; Steiner, Andreas; Moeckel, Rico; Delbruck, Tobi
2015-04-01
Optical flow sensors have been a long running theme in neuromorphic vision sensors which include circuits that implement the local background intensity adaptation mechanism seen in biological retinas. This paper reports a bio-inspired optical motion sensor aimed towards miniature robotic and aerial platforms. It combines a 20 × 20 continuous-time CMOS silicon retina vision sensor with a DSP microcontroller. The retina sensor has pixels that have local gain control and adapt to background lighting. The system allows the user to validate various motion algorithms without building dedicated custom solutions. Measurements are presented to show that the system can compute global 2D translational motion from complex natural scenes using one particular algorithm: the image interpolation algorithm (I2A). With this algorithm, the system can compute global translational motion vectors at a sample rate of 1 kHz, for speeds up to ±1000 pixels/s, using less than 5 k instruction cycles (12 instructions per pixel) per frame. At 1 kHz sample rate the DSP is 12% occupied with motion computation. The sensor is implemented as a 6 g PCB consuming 170 mW of power.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.300 General. (a) The objective of the General Services Administration (GSA) Interagency Fleet Management System...
Code of Federal Regulations, 2010 CFR
2010-07-01
... FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.302 Rotation. GSA Interagency Fleet Management System (IFMS) vehicles on high mileage assignments may be...
41 CFR 109-39.103 - Agency appeals.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 109-39.103 Agency appeals. The Director, Office of... request exemption from, a determination made by GSA concerning the establishment of a fleet management...
48 CFR 51.203 - Means of obtaining service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MANAGEMENT USE OF GOVERNMENT SOURCES BY CONTRACTORS Contractor Use of Interagency Fleet Management System... interagency fleet management system (IFMS) vehicles and related services in writing to the appropriate GSA regional Federal Supply Service Bureau, Attention: Regional fleet manager, except that requests for more...
41 CFR 101-39.403 - Investigation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET... Interagency Fleet Management System (IFMS) vehicle shall be investigated and a report furnished to the manager of the GSA IFMS fleet management center which issued the vehicle. (b) The agency employing the...
48 CFR 51.205 - Contract clause.
Code of Federal Regulations, 2010 CFR
2010-10-01
... USE OF GOVERNMENT SOURCES BY CONTRACTORS Contractor Use of Interagency Fleet Management System (IFMS... Fleet Management System (IFMS) Vehicles and Related Services, in solicitations and contracts when a cost... interagency fleet management system (IFMS) vehicles and related services. [48 FR 42476, Sept. 19, 1983, as...
2009-09-01
Large, Medium-speed, Roll-on/Roll-off Ships T- AKR ,” 2009) The ships can support humanitarian missions as well. LMSRs normally have a crew size of 26...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited A MANPOWER...COMPARISON OF THREE U. S. NAVIES: THE CURRENT FLEET, A PROJECTED 313 SHIP FLEET, AND A MORE DISTRIBUTED BIMODAL ALTERNATIVE by Juan L. Carrasco
Electric vehicles look promising for use in utility fleets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minner, D.
1984-06-01
The Electric Vehicle Development Corp. (EVDV) expects EV fleets to find a market for urban driving, especially among service fleets, once mass production begins. Electric utilities joined to form EVDC in order to keep abreast of research developments and the results of demonstrations taking place in several cities, where driver acceptance in utility demonstration programs is high. Major auto makers still need persuasion to develop a commercial prototype. Marketing will focus on controlled fleets having the management skills and the motivation to make the program work.
Navy Force Structure: A Bigger Fleet Background and Issues for Congress
2016-10-20
20, 2016; Hope Hodge Seck, “Overtaxed Fleet Needs Shorter Deployments,” Military.com, March 19, 2016; David Larter, “Carrier Scramble: CENTCOM, PACOM...example, Hope Hodge Seck, “CNO: Navy to Hit Seven-Month Deployments by End of Year,” Military.com, February 12, 2016; Chris Church, “Analysts: Truman...Will Harm the Fleet,” Navy Times, April 20, 2016; Hope Hodge Seck, “Overtaxed Fleet Needs Shorer Deployments,” Military.com, March 19, 2016; Bryan
A slow-adapting microfluidic-based tactile sensor
NASA Astrophysics Data System (ADS)
Tseng, W.-Y.; Fisher, J. S.; Prieto, J. L.; Rinaldi, K.; Alapati, G.; Lee, A. P.
2009-08-01
We present a microfluidic-based tactile sensor mimicking the human slow-adapting mechanoreceptor such as Merkel's disc. The sensor is composed of a polyimide (PI)/polydimethylsiloxane (PDMS) multilayer structure. The device uses a hemispherical reservoir filled with electrolyte solution in the PDMS layer, a microchannel in the PI layer and a pair of sensing electrodes below the microchannel as the force transducer. The tactile signal is detected as the impedance change resulting predominantly from the resistance variance due to the electrodes coverage by the 1M NaCl solution and is measured across the electrode pair. The sensor response is linear and the working range is shown to be in the range of 0-1.8 N. The characterization results also demonstrate the sensing of various levels of forces and its long-term signal stability.
Dynamic Reconfiguration of Security Policies in Wireless Sensor Networks
Pinto, Mónica; Gámez, Nadia; Fuentes, Lidia; Amor, Mercedes; Horcas, José Miguel; Ayala, Inmaculada
2015-01-01
Providing security and privacy to wireless sensor nodes (WSNs) is very challenging, due to the heterogeneity of sensor nodes and their limited capabilities in terms of energy, processing power and memory. The applications for these systems run in a myriad of sensors with different low-level programming abstractions, limited capabilities and different routing protocols. This means that applications for WSNs need mechanisms for self-adaptation and for self-protection based on the dynamic adaptation of the algorithms used to provide security. Dynamic software product lines (DSPLs) allow managing both variability and dynamic software adaptation, so they can be considered a key technology in successfully developing self-protected WSN applications. In this paper, we propose a self-protection solution for WSNs based on the combination of the INTER-TRUST security framework (a solution for the dynamic negotiation and deployment of security policies) and the FamiWare middleware (a DSPL approach to automatically configure and reconfigure instances of a middleware for WSNs). We evaluate our approach using a case study from the intelligent transportation system domain. PMID:25746093
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, andmore » emerging technologies.« less
Electron beam diagnostic system using computed tomography and an annular sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmer, John W.; Teruya, Alan T.
2015-08-11
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by themore » annular sensor structure.« less
Electron beam diagnostic system using computed tomography and an annular sensor
Elmer, John W.; Teruya, Alan T.
2014-07-29
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.
Isolating Gas Sensor From Pressure And Temperature Effects
NASA Technical Reports Server (NTRS)
Sprinkle, Danny R.; Chen, Tony T. D.; Chaturvedi, Sushi K.
1994-01-01
Two-stage flow system enables oxygen sensor in system to measure oxygen content of low-pressure, possibly-high-temperature atmosphere in test environment while protecting sensor against possibly high temperature and fluctuations in pressure of atmosphere. Sensor for which flow system designed is zirconium oxide oxygen sensor sampling atmospheres in high-temperature wind tunnels. Also adapted to other gas-analysis instruments that must be isolated from pressure and temperature effects of test environments.
2010-01-01
target kinematics for multiple sensor detections is referred to as the track - before - detect strategy, and is commonly adopted in multi-sensor surveillance...of moving targets. Wettergren [4] presented an application of track - before - detect strategies to undersea distributed sensor networks. In de- signing...the deployment of a distributed passive sensor network that employs this track - before - detect procedure, it is impera- tive that the placement of
2015-03-01
Wireless Sensor Network Using Unreliable GPS Signals Daniel R. Fuhrmann*, Joshua Stomberg§, Saeid Nooshabadi*§ Dustin McIntire†, William Merill... wireless sensor network , when the timing jitter is subject to a empirically determined bimodal non-Gaussian distribution. Specifically, we 1) estimate the...over a nominal 19.2 MHz frequency with an adjustment made every four hours. Index Terms— clock synchronization, GPS, wireless sensor networks , Kalman
Soft Sensors: Chemoinformatic Model for Efficient Control and Operation in Chemical Plants.
Funatsu, Kimito
2016-12-01
Soft sensor is statistical model as an essential tool for controlling pharmaceutical, chemical and industrial plants. I introduce soft sensor, the roles, the applications, the problems and the research examples such as adaptive soft sensor, database monitoring and efficient process control. The use of soft sensor enables chemical industrial plants to be operated more effectively and stably. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wavefront sensor and wavefront corrector matching in adaptive optics
Dubra, Alfredo
2016-01-01
Matching wavefront correctors and wavefront sensors by minimizing the condition number and mean wavefront variance is proposed. The particular cases of two continuous-sheet deformable mirrors and a Shack-Hartmann wavefront sensor with square packing geometry are studied in the presence of photon noise, background noise and electronics noise. Optimal number of lenslets across each actuator are obtained for both deformable mirrors, and a simple experimental procedure for optimal alignment is described. The results show that high-performance adaptive optics can be achieved even with low cost off-the-shelf Shack-Hartmann arrays with lenslet spacing that do not necessarily match those of the wavefront correcting elements. PMID:19532513
Wavefront sensor and wavefront corrector matching in adaptive optics.
Dubra, Alfredo
2007-03-19
Matching wavefront correctors and wavefront sensors by minimizing the condition number and mean wavefront variance is proposed. The particular cases of two continuous-sheet deformable mirrors and a Shack-Hartmann wavefront sensor with square packing geometry are studied in the presence of photon noise, background noise and electronics noise. Optimal number of lenslets across each actuator are obtained for both deformable mirrors, and a simple experimental procedure for optimal alignment is described. The results show that high-performance adaptive optics can be achieved even with low cost off-the-shelf Shack-Hartmann arrays with lenslet spacing that do not necessarily match those of the wavefront correcting elements.
Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-04-01
Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.
48 CFR 970.2307-1 - Motor vehicle fleet operations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency... that the Federal motor vehicle fleet will serve as an example and provide a leadership role in the... management contracts which include Federal motor vehicle fleet operations. Section 506 of Executive Order...
Telematics Options and Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Cabell
This presentation describes the data tracking and analytical capabilities of telematics devices. Federal fleet managers can use the systems to keep their drivers safe, maintain a fuel efficient fleet, ease their reporting burden, and save money. The presentation includes an example of how much these capabilities can save fleets.
41 CFR 101-39.104-1 - Consolidations into a fleet management system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fleet management system. 101-39.104-1 Section 101-39.104-1 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and...
DOT National Transportation Integrated Search
1997-10-01
The FHWA has commissioned the Commercial Vehicle Fleet Management and Information Systems study to determine if there are fleet management needs that the public sector can address through the development of ITS for commercial vehicle operations. As p...
41 CFR 101-39.105-2 - Agency requests to withdraw participation.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.105-2 Agency requests to withdraw participation. (a) Executive agencies receiving motor vehicle services from fleet management systems may request...
41 CFR 109-39.106 - Unlimited exemptions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 109-39.106 Unlimited exemptions. The Director, Office of... determination that an unlimited exemption from inclusion of a motor vehicle in a fleet management system is...
Alternative Fuels Data Center: Tools
Calculator Compare cost of ownership and emissions for most vehicle models. mobile Petroleum Reduction ROI and payback period for natural gas vehicles and infrastructure. AFLEET Tool Calculate a fleet's , hydrogen, or fuel cell infrastructure. GREET Fleet Footprint Calculator Calculate your fleet's petroleum
Fleet Feedback and Fleet Efficiency Metrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, Mark R
The Marine Corps have 10 years of experience implementing a telematics program and several lessons to share with partner agencies. This presentation details results of a Marine Corps survey as well as methods of using telematics to promote fleet efficiency and optimize the vehicle acquisition process.
Tug fleet and ground operations schedules and controls. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1975-01-01
This study presents Tug Fleet and Ground Operations Schedules and Controls plan. This plan was developed and optimized out of a combination of individual Tug program phased subplans, special emphasis studies, contingency analyses and sensitivity analyses. The subplans cover the Tug program phases: (1) Tug operational, (2) Interim Upper Stage (IUS)/Tug fleet utilization, (3) and IUS/Tug payload integration, (4) Tug site activation, (5) IUS/Tug transition, (6) Tug acquisition. Resource requirements (facility, GSE, TSE, software, manpower, logistics) are provided in each subplan, as are appropriate Tug processing flows, active and total IUS and Tug fleet requirements, fleet management and Tug payload integration concepts, facility selection recommendations, site activation and IUS to Tug transition requirements. The impact of operational concepts on Tug acquisition is assessed and the impact of operating Tugs out of KSC and WTR is analyzed and presented showing WTR as a delta. Finally, cost estimates for fleet management and ground operations of the DDT&E and operational phases of the Tug program are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waddell, Lucas; Muldoon, Frank; Henry, Stephen Michael
In order to effectively plan the management and modernization of their large and diverse fleets of vehicles, Program Executive Office Ground Combat Systems (PEO GCS) and Program Executive Office Combat Support and Combat Service Support (PEO CS&CSS) commis- sioned the development of a large-scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This paper contains a thor-more » ough documentation of the terminology, parameters, variables, and constraints that comprise the fleet management mixed integer linear programming (MILP) mathematical formulation. This paper, which is an update to the original CPAT formulation document published in 2015 (SAND2015-3487), covers the formulation of important new CPAT features.« less
Game Theory in Fleet Management
NASA Astrophysics Data System (ADS)
Dulai, Tibor; Jaskó, Szilárd; Muhi, Dániel
2008-11-01
In this survey we attempt to apply the results of cooperative game theory on fleet management problems. We deal with the aspect of a fleet where the members have their own goal, however the fleet has a common purpose too. These goals are to reach all destinations and get back to the center as quickly as possible. If we draw the map of the area-which contains the destination points and their environment-as a graph, we should determinate circles in it for each member of the fleet. Separating the nodes for each member, we should find Hamilton-circles of the sub-graphs. How to separate the destination points between the fleet members? How to route the members? What happens if there is an accident on a road which changes the way of a member? It may influence the other members' route too. What to communicate for getting the relevant information? How to change the routes in real time? We use cooperative game theory to find the solution.
Fiber optic temperature sensor
NASA Technical Reports Server (NTRS)
Quick, William H. (Inventor); August, Rudolf R. (Inventor); James, Kenneth A. (Inventor); Strahan, Jr., Virgil H. (Inventor); Nichols, Donald K. (Inventor)
1980-01-01
An inexpensive, lightweight fiber optic micro-sensor that is suitable for applications which may require remote temperature sensing. The disclosed temperature sensor includes a phosphor material that, after receiving incident light stimulation, is adapted to emit phosphorescent radiation output signals, the amplitude decay rate and wavelength of which are functions of the sensed temperature.
Optoelectronic and other conventional water quality sensors offer a potential for real-time online detection of chemical and biological contaminants in a drinking water supply and distribution system. The nature of the application requires sensors of detection capabilities at lo...
Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics.
Wang, Lianqi; Andersen, David; Ellerbroek, Brent
2012-06-01
The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the sky coverage for the laser guide star multiconjugate adaptive optics system, the Narrow Field Infrared Adaptive Optics System (NFIRAOS), being designed for the Thirty Meter Telescope project. We show that NFIRAOS can achieve more than 70% sky coverage over most of the accessible sky with the requirement of 191 nm total rms wavefront.
Tracking Objects with Networked Scattered Directional Sensors
NASA Astrophysics Data System (ADS)
Plarre, Kurt; Kumar, P. R.
2007-12-01
We study the problem of object tracking using highly directional sensors—sensors whose field of vision is a line or a line segment. A network of such sensors monitors a certain region of the plane. Sporadically, objects moving in straight lines and at a constant speed cross the region. A sensor detects an object when it crosses its line of sight, and records the time of the detection. No distance or angle measurements are available. The task of the sensors is to estimate the directions and speeds of the objects, and the sensor lines, which are unknown a priori. This estimation problem involves the minimization of a highly nonconvex cost function. To overcome this difficulty, we introduce an algorithm, which we call "adaptive basis algorithm." This algorithm is divided into three phases: in the first phase, the algorithm is initialized using data from six sensors and four objects; in the second phase, the estimates are updated as data from more sensors and objects are incorporated. The third phase is an optional coordinated transformation. The estimation is done in an "ad-hoc" coordinate system, which we call "adaptive coordinate system." When more information is available, for example, the location of six sensors, the estimates can be transformed to the "real-world" coordinate system. This constitutes the third phase.
Radiometric Normalization of Large Airborne Image Data Sets Acquired by Different Sensor Types
NASA Astrophysics Data System (ADS)
Gehrke, S.; Beshah, B. T.
2016-06-01
Generating seamless mosaics of aerial images is a particularly challenging task when the mosaic comprises a large number of im-ages, collected over longer periods of time and with different sensors under varying imaging conditions. Such large mosaics typically consist of very heterogeneous image data, both spatially (different terrain types and atmosphere) and temporally (unstable atmo-spheric properties and even changes in land coverage). We present a new radiometric normalization or, respectively, radiometric aerial triangulation approach that takes advantage of our knowledge about each sensor's properties. The current implementation supports medium and large format airborne imaging sensors of the Leica Geosystems family, namely the ADS line-scanner as well as DMC and RCD frame sensors. A hierarchical modelling - with parameters for the overall mosaic, the sensor type, different flight sessions, strips and individual images - allows for adaptation to each sensor's geometric and radiometric properties. Additional parameters at different hierarchy levels can compensate radiome-tric differences of various origins to compensate for shortcomings of the preceding radiometric sensor calibration as well as BRDF and atmospheric corrections. The final, relative normalization is based on radiometric tie points in overlapping images, absolute radiometric control points and image statistics. It is computed in a global least squares adjustment for the entire mosaic by altering each image's histogram using a location-dependent mathematical model. This model involves contrast and brightness corrections at radiometric fix points with bilinear interpolation for corrections in-between. The distribution of the radiometry fixes is adaptive to each image and generally increases with image size, hence enabling optimal local adaptation even for very long image strips as typi-cally captured by a line-scanner sensor. The normalization approach is implemented in HxMap software. It has been successfully applied to large sets of heterogeneous imagery, including the adjustment of original sensor images prior to quality control and further processing as well as radiometric adjustment for ortho-image mosaic generation.
Display integration for ground combat vehicles
NASA Astrophysics Data System (ADS)
Busse, David J.
1998-09-01
The United States Army's requirement to employ high resolution target acquisition sensors and information warfare to increase its dominance over enemy forces has led to the need to integrate advanced display devices into ground combat vehicle crew stations. The Army's force structure require the integration of advanced displays on both existing and emerging ground combat vehicle systems. The fielding of second generation target acquisition sensors, color digital terrain maps and high volume digital command and control information networks on these platforms define display performance requirements. The greatest challenge facing the system integrator is the development and integration of advanced displays that meet operational, vehicle and human computer interface performance requirements for the ground combat vehicle fleet. The subject of this paper is to address those challenges: operational and vehicle performance, non-soldier centric crew station configurations, display performance limitations related to human computer interfaces and vehicle physical environments, display technology limitations and the Department of Defense (DOD) acquisition reform initiatives. How the ground combat vehicle Program Manager and system integrator are addressing these challenges are discussed through the integration of displays on fielded, current and future close combat vehicle applications.
2012-02-01
available for interrogation. Although commercially available fibre Bragg grating ( FBG ) sensors have emerged in the marketplace over the past decade...the results from a preliminary trial investigating the feasibility of using embedded FBG arrays in a shape adaptive composite foil to characterise...The response from the FBG sensors was also monitored during fabrication of the foil during the resin infusion and curing stages of the process
Laboratory and telescope demonstration of the TP3-WFS for the adaptive optics segment of AOLI
NASA Astrophysics Data System (ADS)
Colodro-Conde, C.; Velasco, S.; Fernández-Valdivia, J. J.; López, R.; Oscoz, A.; Rebolo, R.; Femenía, B.; King, D. L.; Labadie, L.; Mackay, C.; Muthusubramanian, B.; Pérez Garrido, A.; Puga, M.; Rodríguez-Coira, G.; Rodríguez-Ramos, L. F.; Rodríguez-Ramos, J. M.; Toledo-Moreo, R.; Villó-Pérez, I.
2017-05-01
Adaptive Optics Lucky Imager (AOLI) is a state-of-the-art instrument that combines adaptive optics (AO) and lucky imaging (LI) with the objective of obtaining diffraction-limited images in visible wavelength at mid- and big-size ground-based telescopes. The key innovation of AOLI is the development and use of the new Two Pupil Plane Positions Wavefront Sensor (TP3-WFS). The TP3-WFS, working in visible band, represents an advance over classical wavefront sensors such as the Shack-Hartmann WFS because it can theoretically use fainter natural reference stars, which would ultimately provide better sky coverages to AO instruments using this newer sensor. This paper describes the software, algorithms and procedures that enabled AOLI to become the first astronomical instrument performing real-time AO corrections in a telescope with this new type of WFS, including the first control-related results at the William Herschel Telescope.
Intelligent Control and Health Monitoring. Chapter 3
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Kumar, Aditya; Mathews, H. Kirk; Rosenfeld, Taylor; Rybarik, Pavol; Viassolo, Daniel E.
2009-01-01
Advanced model-based control architecture overcomes the limitations state-of-the-art engine control and provides the potential of virtual sensors, for example for thrust and stall margin. "Tracking filters" are used to adapt the control parameters to actual conditions and to individual engines. For health monitoring standalone monitoring units will be used for on-board analysis to determine the general engine health and detect and isolate sudden faults. Adaptive models open up the possibility of adapting the control logic to maintain desired performance in the presence of engine degradation or to accommodate any faults. Improved and new sensors are required to allow sensing at stations within the engine gas path that are currently not instrumented due in part to the harsh conditions including high operating temperatures and to allow additional monitoring of vibration, mass flows and energy properties, exhaust gas composition, and gas path debris. The environmental and performance requirements for these sensors are summarized.
Quantifying Soiling Loss Directly From PV Yield
Deceglie, Michael G.; Micheli, Leonardo; Muller, Matthew
2018-01-23
Soiling of photovoltaic (PV) panels is typically quantified through the use of specialized sensors. Here, we describe and validate a method for estimating soiling loss experienced by PV systems directly from system yield without the need for precipitation data. The method, termed the stochastic rate and recovery (SRR) method, automatically detects soiling intervals in a dataset, then stochastically generates a sample of possible soiling profiles based on the observed characteristics of each interval. In this paper, we describe the method, validate it against soiling station measurements, and compare it with other PV-yield-based soiling estimation methods. The broader application of themore » SRR method will enable the fleet scale assessment of soiling loss to facilitate mitigation planning and risk assessment.« less
An automated calibration laboratory - Requirements and design approach
NASA Technical Reports Server (NTRS)
O'Neil-Rood, Nora; Glover, Richard D.
1990-01-01
NASA's Dryden Flight Research Facility (Ames-Dryden), operates a diverse fleet of research aircraft which are heavily instrumented to provide both real time data for in-flight monitoring and recorded data for postflight analysis. Ames-Dryden's existing automated calibration (AUTOCAL) laboratory is a computerized facility which tests aircraft sensors to certify accuracy for anticipated harsh flight environments. Recently, a major AUTOCAL lab upgrade was initiated; the goal of this modernization is to enhance productivity and improve configuration management for both software and test data. The new system will have multiple testing stations employing distributed processing linked by a local area network to a centralized database. The baseline requirements for the new AUTOCAL lab and the design approach being taken for its mechanization are described.
Quantifying Soiling Loss Directly From PV Yield
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deceglie, Michael G.; Micheli, Leonardo; Muller, Matthew
Soiling of photovoltaic (PV) panels is typically quantified through the use of specialized sensors. Here, we describe and validate a method for estimating soiling loss experienced by PV systems directly from system yield without the need for precipitation data. The method, termed the stochastic rate and recovery (SRR) method, automatically detects soiling intervals in a dataset, then stochastically generates a sample of possible soiling profiles based on the observed characteristics of each interval. In this paper, we describe the method, validate it against soiling station measurements, and compare it with other PV-yield-based soiling estimation methods. The broader application of themore » SRR method will enable the fleet scale assessment of soiling loss to facilitate mitigation planning and risk assessment.« less
Clean Cities Plug-In Electric Vehicle Handbook for Fleet Managers
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-04-01
Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.
advanced lean burn vehicles. Fleets that use fuel blends containing at least 20% biodiesel (B20) may earn Energy Independence and Security Act of 2007, including fleet management plan requirements (Section 142 infrastructure installation requirements (Section 246). For more information, see the Federal Fleet Management
41 CFR 101-39.105 - Discontinuance or curtailment of service.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.105 Discontinuance or curtailment of service. (a... efficiencies are realized from the operation of any fleet management system, the Administrator, GSA, will...
41 CFR 109-39.101-1 - Agency cooperation.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 109-39.101-1 Agency cooperation. The Director, Office of... representatives to coordinate with GSA concerning the establishment of a GSA fleet management system to serve...
41 CFR 109-39.105-2 - Agency requests to withdraw participation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 109-39.105-2 Agency requests to... of participation by a DOE organization of a given interagency fleet management system, the...
48 CFR 251.205 - Contract clause.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Fleet Management System (IFMS) Vehicles 251.205 Contract clause. Use the clause at 252.251-7001, Use of Interagency Fleet Management System (IFMS)Vehicles and Related Services, in solicitations and contracts which include the clause at FAR 52.251-2, Interagency Fleet Management System (IFMS) Vehicles and Related...
41 CFR 101-39.201 - Services available.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management System Services § 101-39.201 Services available. GSA Interagency Fleet Management System (IFMS) vehicles and services shall be used in... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Services available. 101...
49 CFR 531.5 - Fuel economy standards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.5 Fuel... automobiles shall comply with the fleet average fuel economy standards in Table I, expressed in miles per... passenger automobile fleet shall comply with the fleet average fuel economy level calculated for that model...
49 CFR 531.5 - Fuel economy standards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.5 Fuel... automobiles shall comply with the fleet average fuel economy standards in Table I, expressed in miles per... passenger automobile fleet shall comply with the fleet average fuel economy level calculated for that model...
Adaptive System Modeling for Spacecraft Simulation
NASA Technical Reports Server (NTRS)
Thomas, Justin
2011-01-01
This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).
Fleet Grants The Texas Commission on Environmental Quality (TCEQ) administers the Texas Clean Fleet Program (TCFP) as part of the Texas Emissions Reduction Plan (TERP). TCFP encourages owners of fleets current application periods, see the TCEQ TERP website. (Reference Senate Bill 1731, 2017, Texas Statutes
41 CFR 101-39.104 - Notice of establishment of a fleet management system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... management system in order to work out any problems pertaining to establishing and operating fleet management... of a fleet management system. 101-39.104 Section 101-39.104 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION...
41 CFR 101-39.104 - Notice of establishment of a fleet management system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... management system in order to work out any problems pertaining to establishing and operating fleet management... of a fleet management system. 101-39.104 Section 101-39.104 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION...
41 CFR 101-39.104 - Notice of establishment of a fleet management system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... management system in order to work out any problems pertaining to establishing and operating fleet management... of a fleet management system. 101-39.104 Section 101-39.104 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION...
41 CFR 101-39.104 - Notice of establishment of a fleet management system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... management system in order to work out any problems pertaining to establishing and operating fleet management... of a fleet management system. 101-39.104 Section 101-39.104 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS AVIATION...
ARMY CYBER STRUCTURE ALIGNMENT
2016-02-16
Director of Navy Staff Vice Admiral J. M. Bird , Missions, Functions, and Tasks of Commander, U.S. Fleet Cyber Command and Commander, U.S. Tenth Fleet...www.doncio.navy.mil/ContentView.aspx?ID=649. Director of Navy Staff Vice Admiral J. M. Bird , Missions, Functions, and Tasks of Commander, U.S. Fleet Cyber
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-04
... period within which vehicle manufacturers could comply with the program's fleet average non-methane... year meets the specified phase-in requirements according to the fleet average non- methane hydrocarbon requirement for that year. The fleet average non- methane hydrocarbon emission limits become progressively...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... EPA that it has adopted amendments to its emission standards for fleets that operate nonroad, diesel..., CARB requested that EPA authorize California to enforce its In-Use Off-Road Diesel-Fueled Fleets... through 2449.3). CARB's regulations require fleets that operate nonroad, diesel-fueled equipment with...
41 CFR 101-39.304 - Modification or installation of accessory equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.304 Modification or installation of accessory equipment. The modification of a GSA Interagency Fleet Management System (IFMS) vehicle or the permanent installation of...
41 CFR 101-39.206 - Seasonal or unusual requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.2-GSA Interagency Fleet Management System Services... requirements for vehicles or related services shall inform the GSA IFMS fleet management center as far in... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Seasonal or unusual...
41 CFR 101-39.102-1 - Records, facilities, personnel, and appropriations.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.102-1 Records, facilities, personnel, and appropriations. (a) If GSA decides to establish a fleet management system, GSA, with the assistance of the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System... operators and passengers in GSA Interagency Fleet Management System (IFMS) motor vehicles are aware of the... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false General. 109-39.300...
DOT National Transportation Integrated Search
1994-11-04
THE ECONOMIC WELL-BEING AND COMPETITIVENESS OF THE U.S. ECONOMY DEPEND HEAVILY ON RELIABLE AND EFFICIENT FREIGHT MOVEMENTS. TRUCKING ACCOUNTS FOR ABOUT 75 PERCENT ($270 BILLION) OF THE $350 BILLION SPENT ANNUALLY ON FREIGHT TRANSPORTATION. THE APPLIC...
DOT National Transportation Integrated Search
1994-05-01
This report documents an analysis performed in support of the United States Coast Guard in managing its fleet of construction tenders (WLICs). The project was sponsored by the Coast Guard's Office of Navigation Safety and Waterway Services, Short Ran...
Code of Federal Regulations, 2010 CFR
2010-07-01
... certification; test fleet selections; determinations of parameters subject to adjustment for certification and..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas...; test fleet selections; determinations of parameters subject to adjustment for certification and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... certification; test fleet selections; determinations of parameters subject to adjustment for certification and..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas...; test fleet selections; determinations of parameters subject to adjustment for certification and...
47 CFR 87.25 - Filing of applications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... rules. (c) One application may be submitted for the total number of aircraft stations in the fleet (fleet license). (d) One application for aeronautical land station license may be submitted for the total number of stations in the fleet. (e) One application for modification or transfer of control may be...
47 CFR 87.25 - Filing of applications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... rules. (c) One application may be submitted for the total number of aircraft stations in the fleet (fleet license). (d) One application for aeronautical land station license may be submitted for the total number of stations in the fleet. (e) One application for modification or transfer of control may be...
47 CFR 87.25 - Filing of applications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... rules. (c) One application may be submitted for the total number of aircraft stations in the fleet (fleet license). (d) One application for aeronautical land station license may be submitted for the total number of stations in the fleet. (e) One application for modification or transfer of control may be...
47 CFR 87.25 - Filing of applications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... rules. (c) One application may be submitted for the total number of aircraft stations in the fleet (fleet license). (d) One application for aeronautical land station license may be submitted for the total number of stations in the fleet. (e) One application for modification or transfer of control may be...
From Concept to Design: Progress on the J-2X Upper Stage Engine for the Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Byrd, Thomas
2008-01-01
In accordance with national policy and NASA's Global Exploration Strategy, the Ares Projects Office is embarking on development of a new launch vehicle fleet to fulfill the national goals of replacing the space shuttle fleet, returning to the moon, and exploring farther destinations like Mars. These goals are shaped by the decision to retire the shuttle fleet by 2010, budgetary constraints, and the requirement to create a new fleet that is safer, more reliable, operationally more efficient than the shuttle fleet, and capable of supporting long-range exploration goals. The present architecture for the Constellation Program is the result of extensive trades during the Exploration Systems Architecture Study and subsequent refinement by the Ares Projects Office at Marshall Space Flight Center.
AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2015-06-01
Collect and evaluate data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization Study. The Advanced Vehicle Testing Activity study seeks to collect and evaluate data to validate the utilization of advanced plug-in electric vehicle (PEV) transportation. This report summarizes the fleets studied to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a batterymore » electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walkokwicz, K.; Duran, A.
2014-06-01
The Fleet DNA project objectives include capturing and quantifying drive cycle and technology variation for the multitude of medium- and heavy-duty vocations; providing a common data storage warehouse for medium- and heavy-duty vehicle fleet data across DOE activities and laboratories; and integrating existing DOE tools, models, and analyses to provide data-driven decision making capabilities. Fleet DNA advantages include: for Government - providing in-use data for standard drive cycle development, R&D, tech targets, and rule making; for OEMs - real-world usage datasets provide concrete examples of customer use profiles; for fleets - vocational datasets help illustrate how to maximize return onmore » technology investments; for Funding Agencies - ways are revealed to optimize the impact of financial incentive offers; and for researchers -a data source is provided for modeling and simulation.« less
Adaptive weld control for high-integrity welding applications
NASA Technical Reports Server (NTRS)
Powell, Bradley W.
1993-01-01
An advanced adaptive control weld system for high-integrity welding applications is presented. The system consists of a state-of-the-art weld control subsystem, motion control subsystem, and sensor subsystem which closes the loop on the process. The adaptive control subsystem (ACS), which is required to totally close the loop on weld process control, consists of a multiprocessor system, data acquisition hardware, and three welding sensors which provide measurements from all areas around the torch in real time. The ACS acquires all 'measurables' and feeds offset trims back into the weld control and motion control subsystems to modify the 'controllables' in order to maintain a previously defined weld quality.
A Low-Complexity Circuit for On-Sensor Concurrent A/D Conversion and Compression
NASA Technical Reports Server (NTRS)
Leon-Salas, Walter D.; Balkir, Sina; Sayood, Khalid; Schemm, Nathan; Hoffman, Michael W.
2007-01-01
A low-complexity circuit for on-sensor compression is presented. The proposed circuit achieves complexity savings by combining a single-slope analog-to-digital converter with a Golomb-Rice entropy encoder and by implementing a low-complexity adaptation rule. The adaptation rule monitors the output codewords and minimizes their length by incrementing or decrementing the value of the Golomb-Rice coding parameter k. Its hardware implementation is one order of magnitude lower than existing adaptive algorithms. The compression circuit has been fabricated using a 0.35 micrometers CMOS technology and occupies an area of 0.0918 mm2. Test measurements confirm the validity of the design
Using two MEMS deformable mirrors in an adaptive optics test bed for multiconjugate correction
NASA Astrophysics Data System (ADS)
Andrews, Jonathan R.; Martinez, Ty; Teare, Scott W.; Restaino, Sergio R.; Wilcox, Christopher C.; Santiago, Freddie; Payne, Don M.
2010-02-01
Adaptive optics systems have advanced considerably over the past decade and have become common tools for optical engineers. The most recent advances in adaptive optics technology have lead to significant reductions in the cost of most of the key components. Most significantly, the cost of deformable elements and wavefront sensor components have dropped to the point where multiple deformable mirrors and Shack- Hartmann array based wavefront sensor cameras can be included in a single system. Matched with the appropriate hardware and software, formidable systems can be operating in nearly any sized research laboratory. The significant advancement of MEMS deformable mirrors has made them very popular for use as the active corrective element in multi-conjugate adaptive optics systems so that, in particular for astronomical applications, this allows correction in more than one plane. The NRL compact AO system and atmospheric simulation systems has now been expanded to support Multi Conjugate Adaptive Optics (MCAO), taking advantage of using the liquid crystal spatial light modulator (SLM) driven aberration generators in two conjugate planes that are well separated spatially. Thus, by using two SLM based aberration generators and two separate wavefront sensors, the system can measure and apply wavefront correction with two MEMS deformable mirrors. This paper describes the multi-conjugate adaptive optics system and the testing and calibration of the system and demonstrates preliminary results with this system.
Laser diodes for sensing applications: adaptive cruise control and more
NASA Astrophysics Data System (ADS)
Heerlein, Joerg; Morgott, Stefan; Ferstl, Christian
2005-02-01
Adaptive Cruise Controls (ACC) and pre-crash sensors require an intelligent eye which can recognize traffic situations and deliver a 3-dimensional view. Both microwave RADAR and "Light RADAR" (LIDAR) systems are well suited as sensors. In order to utilize the advantages of LIDARs -- such as lower cost, simpler assembly and high reliability -- the key component, the laser diode, is of primary importance. Here, we present laser diodes which meet the requirements of the automotive industry.
Wearable sensors: modalities, challenges, and prospects.
Heikenfeld, J; Jajack, A; Rogers, J; Gutruf, P; Tian, L; Pan, T; Li, R; Khine, M; Kim, J; Wang, J; Kim, J
2018-01-16
Wearable sensors have recently seen a large increase in both research and commercialization. However, success in wearable sensors has been a mix of both progress and setbacks. Most of commercial progress has been in smart adaptation of existing mechanical, electrical and optical methods of measuring the body. This adaptation has involved innovations in how to miniaturize sensing technologies, how to make them conformal and flexible, and in the development of companion software that increases the value of the measured data. However, chemical sensing modalities have experienced greater challenges in commercial adoption, especially for non-invasive chemical sensors. There have also been significant challenges in making significant fundamental improvements to existing mechanical, electrical, and optical sensing modalities, especially in improving their specificity of detection. Many of these challenges can be understood by appreciating the body's surface (skin) as more of an information barrier than as an information source. With a deeper understanding of the fundamental challenges faced for wearable sensors and of the state-of-the-art for wearable sensor technology, the roadmap becomes clearer for creating the next generation of innovations and breakthroughs.
Autonomic and Coevolutionary Sensor Networking
NASA Astrophysics Data System (ADS)
Boonma, Pruet; Suzuki, Junichi
(WSNs) applications are often required to balance the tradeoffs among conflicting operational objectives (e.g., latency and power consumption) and operate at an optimal tradeoff. This chapter proposes and evaluates a architecture, called BiSNET/e, which allows WSN applications to overcome this issue. BiSNET/e is designed to support three major types of WSN applications: , and hybrid applications. Each application is implemented as a decentralized group of, which is analogous to a bee colony (application) consisting of bees (agents). Agents collect sensor data or detect an event (a significant change in sensor reading) on individual nodes, and carry sensor data to base stations. They perform these data collection and event detection functionalities by sensing their surrounding network conditions and adaptively invoking behaviors such as pheromone emission, reproduction, migration, swarming and death. Each agent has its own behavior policy, as a set of genes, which defines how to invoke its behaviors. BiSNET/e allows agents to evolve their behavior policies (genes) across generations and autonomously adapt their performance to given objectives. Simulation results demonstrate that, in all three types of applications, agents evolve to find optimal tradeoffs among conflicting objectives and adapt to dynamic network conditions such as traffic fluctuations and node failures/additions. Simulation results also illustrate that, in hybrid applications, data collection agents and event detection agents coevolve to augment their adaptability and performance.
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki
2018-01-01
For installing many sensors in a limited space with a limited computing resource, the digitization of the sensor output at the site of sensation has advantages such as a small amount of wiring, low signal interference and high scalability. For this purpose, we have developed a dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) (referred to as “sensor platform LSI”) for bus-networked Micro-Electro-Mechanical-Systems (MEMS)-LSI integrated sensors. In this LSI, collision avoidance, adaptation and event-driven functions are simply implemented to relieve data collision and congestion in asynchronous serial bus communication. In this study, we developed a network system with 48 sensor platform LSIs based on Printed Circuit Board (PCB) in a backbone bus topology with the bus length being 2.4 m. We evaluated the serial communication performance when 48 LSIs operated simultaneously with the adaptation function. The number of data packets received from each LSI was almost identical, and the average sampling frequency of 384 capacitance channels (eight for each LSI) was 73.66 Hz. PMID:29342923
Adaptive Sampling of Time Series During Remote Exploration
NASA Technical Reports Server (NTRS)
Thompson, David R.
2012-01-01
This work deals with the challenge of online adaptive data collection in a time series. A remote sensor or explorer agent adapts its rate of data collection in order to track anomalous events while obeying constraints on time and power. This problem is challenging because the agent has limited visibility (all its datapoints lie in the past) and limited control (it can only decide when to collect its next datapoint). This problem is treated from an information-theoretic perspective, fitting a probabilistic model to collected data and optimizing the future sampling strategy to maximize information gain. The performance characteristics of stationary and nonstationary Gaussian process models are compared. Self-throttling sensors could benefit environmental sensor networks and monitoring as well as robotic exploration. Explorer agents can improve performance by adjusting their data collection rate, preserving scarce power or bandwidth resources during uninteresting times while fully covering anomalous events of interest. For example, a remote earthquake sensor could conserve power by limiting its measurements during normal conditions and increasing its cadence during rare earthquake events. A similar capability could improve sensor platforms traversing a fixed trajectory, such as an exploration rover transect or a deep space flyby. These agents can adapt observation times to improve sample coverage during moments of rapid change. An adaptive sampling approach couples sensor autonomy, instrument interpretation, and sampling. The challenge is addressed as an active learning problem, which already has extensive theoretical treatment in the statistics and machine learning literature. A statistical Gaussian process (GP) model is employed to guide sample decisions that maximize information gain. Nonsta tion - ary (e.g., time-varying) covariance relationships permit the system to represent and track local anomalies, in contrast with current GP approaches. Most common GP models are stationary, e.g., the covariance relationships are time-invariant. In such cases, information gain is independent of previously collected data, and the optimal solution can always be computed in advance. Information-optimal sampling of a stationary GP time series thus reduces to even spacing, and such models are not appropriate for tracking localized anomalies. Additionally, GP model inference can be computationally expensive.
Compliant tactile sensor that delivers a force vector
NASA Technical Reports Server (NTRS)
Torres-Jara, Eduardo (Inventor)
2010-01-01
Tactile Sensor. The sensor includes a compliant convex surface disposed above a sensor array, the sensor array adapted to respond to deformation of the convex surface to generate a signal related to an applied force vector. The applied force vector has three components to establish the direction and magnitude of an applied force. The compliant convex surface defines a dome with a hollow interior and has a linear relation between displacement and load including a magnet disposed substantially at the center of the dome above a sensor array that responds to magnetic field intensity.
Zhang, Lanqiang; Guo, Youming; Rao, Changhui
2017-02-20
Multi-conjugate adaptive optics (MCAO) is the most promising technique currently developed to enlarge the corrected field of view of adaptive optics for astronomy. In this paper, we propose a new configuration of solar MCAO based on high order ground layer adaptive optics and low order high altitude correction, which result in a homogeneous correction effect in the whole field of view. An individual high order multiple direction Shack-Hartmann wavefront sensor is employed in the configuration to detect the ground layer turbulence for low altitude correction. Furthermore, the other low order multiple direction Shack-Hartmann wavefront sensor supplies the wavefront information caused by high layers' turbulence through atmospheric tomography for high altitude correction. Simulation results based on the system design at the 1-meter New Vacuum Solar Telescope show that the correction uniform of the new scheme is obviously improved compared to conventional solar MCAO configuration.
Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.
Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu
2015-08-01
This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm.
Autonomous sensor manager agents (ASMA)
NASA Astrophysics Data System (ADS)
Osadciw, Lisa A.
2004-04-01
Autonomous sensor manager agents are presented as an algorithm to perform sensor management within a multisensor fusion network. The design of the hybrid ant system/particle swarm agents is described in detail with some insight into their performance. Although the algorithm is designed for the general sensor management problem, a simulation example involving 2 radar systems is presented. Algorithmic parameters are determined by the size of the region covered by the sensor network, the number of sensors, and the number of parameters to be selected. With straight forward modifications, this algorithm can be adapted for most sensor management problems.
NASA Astrophysics Data System (ADS)
McGillivary, P. A.; Borges de Sousa, J.; Martins, R.; Rajan, K.
2012-12-01
Autonomous platforms are increasingly used as components of Integrated Ocean Observing Systems and oceanographic research cruises. Systems deployed can include gliders or propeller-driven autonomous underwater vessels (AUVs), autonomous surface vessels (ASVs), and unmanned aircraft systems (UAS). Prior field campaigns have demonstrated successful communication, sensor data fusion and visualization for studies using gliders and AUVs. However, additional requirements exist for incorporating ASVs and UASs into ship operations. For these systems to be optimally integrated into research vessel data management and operational planning systems involves addressing three key issues: real-time field data availability, platform coordination, and data archiving for later analysis. A fleet of AUVs, ASVs and UAS deployed from a research vessel is best operated as a system integrated with the ship, provided communications among them can be sustained. For this purpose, Disruptive Tolerant Networking (DTN) software protocols for operation in communication-challenged environments help ensure reliable high-bandwidth communications. Additionally, system components need to have considerable onboard autonomy, namely adaptive sampling capabilities using their own onboard sensor data stream analysis. We discuss Oceanographic Decision Support System (ODSS) software currently used for situational awareness and planning onshore, and in the near future event detection and response will be coordinated among multiple vehicles. Results from recent field studies from oceanographic research vessels using AUVs, ASVs and UAS, including the Rapid Environmental Picture (REP-12) cruise, are presented describing methods and results for use of multi-vehicle communication and deliberative control networks, adaptive sampling with single and multiple platforms, issues relating to data management and archiving, and finally challenges that remain in addressing these technological issues. Significantly, the use of UAS on oceanographic research vessels is just beginning. We report on several initial field efforts which demonstrated that UAS improve spatial and temporal mapping of ocean features, as well as monitoring marine mammal populations, ocean color, sea ice and wave fields and air-sea gas exchange. These studies however also confirm the challenges for shipboard computer systems ingesting and archiving UAS high resolution video, SAR and lidar data. We describe the successful inclusion of DTN communications for: 1) passing video data between two UAS or a UAS and ship; 2) for inclusion of ASVs as communication nodes for AUVs; as well as, 3) enabling extension of adaptive sampling software from AUVs and ASVs to include UAS. In conclusion, we describe how autonomous sampling systems may be best integrated into shipboard oceanographic vessel research to provide new and more comprehensive time-space ocean and atmospheric data collection that is important not only for scientific study, but also for sustainable ocean management, including emergency response capabilities. The recent examples of such integrated studies highlighted confirm ocean and atmospheric studies can more cost-effectively pursued, and in some cases only accomplished, by combining underwater, surface and aircraft autonomous systems with research vessel operations.
Alternative Fuels Data Center: Publications
report is a summary of the project design and results of the analysis of data collected during the hygiene, emissions, and fleet economics. CleanFleet Final Report Project Design and Implementation, Vol. 2 CleanFleet findings, the design and implementation of the project are summarized. Clean Cities Drive - Fall
baseline 2005. In baseline 2005, the fleet used 6,521 gasoline gallon equivalent (GGE) of E-85, in 2016 the fleet emitted 422 grams of carbon dioxide equivalent per mile. In 2017, it emitted 329 grams of carbon dioxide equivalent per mile. In 2005, NREL's fleet included 20 E-85 vehicles, 13 compressed natural gas
Code of Federal Regulations, 2011 CFR
2011-10-01
... Management System (IFMS) vehicles and related services. 252.251-7001 Section 252.251-7001 Federal Acquisition... Fleet Management System (IFMS) vehicles and related services. As prescribed in 251.205, use the following clause: Use of Interagency Fleet Management System (IFMS) Vehicles and Related Services (DEC 1991...
Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative
Fuels in Its Fleet Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative
40 CFR 86.1865-12 - How to comply with the fleet average CO2 standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... different strategies are and why they are used. (i) Calculating the fleet average carbon-related exhaust emissions. (1) Manufacturers must compute separate production-weighted fleet average carbon-related exhaust... as defined in § 86.1818-12. The model type carbon-related exhaust emission results determined...
40 CFR 86.1865-12 - How to comply with the fleet average CO2 standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... different strategies are and why they are used. (i) Calculating the fleet average carbon-related exhaust emissions. (1) Manufacturers must compute separate production-weighted fleet average carbon-related exhaust... as defined in § 86.1818-12. The model type carbon-related exhaust emission results determined...
40 CFR 86.1865-12 - How to comply with the fleet average CO2 standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... different strategies are and why they are used. (i) Calculating the fleet average carbon-related exhaust emissions. (1) Manufacturers must compute separate production-weighted fleet average carbon-related exhaust... as defined in § 86.1818-12. The model type carbon-related exhaust emission results determined...
40 CFR 86.421-78 - Test fleet.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Test fleet. 86.421-78 Section 86.421... Later New Motorcycles, General Provisions § 86.421-78 Test fleet. (a) A test vehicle will be selected by... to operate and test additional vehicles which are identical to those selected by the Administrator...
40 CFR 86.421-78 - Test fleet.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Test fleet. 86.421-78 Section 86.421... Later New Motorcycles, General Provisions § 86.421-78 Test fleet. (a) A test vehicle will be selected by... to operate and test additional vehicles which are identical to those selected by the Administrator...
40 CFR 86.421-78 - Test fleet.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Test fleet. 86.421-78 Section 86.421... Later New Motorcycles, General Provisions § 86.421-78 Test fleet. (a) A test vehicle will be selected by... to operate and test additional vehicles which are identical to those selected by the Administrator...
Alternative Fuels Data Center: Alpha Baking Company Augments Its Fleet With
Propane Delivery Trucks Alpha Baking Company Augments Its Fleet With Propane Delivery Trucks to someone by E-mail Share Alternative Fuels Data Center: Alpha Baking Company Augments Its Fleet With Propane Delivery Trucks on Facebook Tweet about Alternative Fuels Data Center: Alpha Baking Company
41 CFR 101-39.404 - Claims in favor of the Government.
Code of Federal Regulations, 2010 CFR
2010-07-01
... VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.4-Accidents and Claims § 101-39.404 Claims in favor of... Interagency Fleet Management System (IFMS) vehicle is at fault and that party can be reasonably identified... pertaining to the accident and its investigation to the servicing GSA IFMS fleet management center. The GSA...
Fleet DNA Brings Fleet Data to Life, Informs R&D | NREL
understand the broad operational range of commercial vehicles across vocations and weight classes. This commercial vehicle and equipment manufacturing realm-including Cummins, Robert Bosch, Peterbilt, Volvo, Ford Rosa, NREL 34672 The Fleet DNA clearinghouse of commercial vehicle operations data features over 11.5
40 CFR 86.421-78 - Test fleet.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Later New Motorcycles, General Provisions § 86.421-78 Test fleet. (a) A test vehicle will be selected by... Administrator believes has the greatest probability of exceeding the standards will be selected. (b) At the... prior to the start of testing and not later than 30 days following notification of the test fleet...
40 CFR 86.421-78 - Test fleet.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Later New Motorcycles, General Provisions § 86.421-78 Test fleet. (a) A test vehicle will be selected by... Administrator believes has the greatest probability of exceeding the standards will be selected. (b) At the... prior to the start of testing and not later than 30 days following notification of the test fleet...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Management System (IFMS) vehicles and related services. 252.251-7001 Section 252.251-7001 Federal Acquisition... Fleet Management System (IFMS) vehicles and related services. As prescribed in 251.205, use the following clause: Use of Interagency Fleet Management System (IFMS) Vehicles and Related Services (DEC 1991...
47 CFR 80.55 - Application for a fleet station license.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Application for a fleet station license. 80.55... SERVICES STATIONS IN THE MARITIME SERVICES Applications and Licenses § 80.55 Application for a fleet station license. (a) An applicant may apply for licenses for two or more radiotelephone stations aboard...
47 CFR 80.55 - Application for a fleet station license.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Application for a fleet station license. 80.55... SERVICES STATIONS IN THE MARITIME SERVICES Applications and Licenses § 80.55 Application for a fleet station license. (a) An applicant may apply for licenses for two or more radiotelephone stations aboard...
47 CFR 80.55 - Application for a fleet station license.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Application for a fleet station license. 80.55... SERVICES STATIONS IN THE MARITIME SERVICES Applications and Licenses § 80.55 Application for a fleet station license. (a) An applicant may apply for licenses for two or more radiotelephone stations aboard...
47 CFR 80.55 - Application for a fleet station license.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Application for a fleet station license. 80.55... SERVICES STATIONS IN THE MARITIME SERVICES Applications and Licenses § 80.55 Application for a fleet station license. (a) An applicant may apply for licenses for two or more radiotelephone stations aboard...
47 CFR 80.55 - Application for a fleet station license.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Application for a fleet station license. 80.55... SERVICES STATIONS IN THE MARITIME SERVICES Applications and Licenses § 80.55 Application for a fleet station license. (a) An applicant may apply for licenses for two or more radiotelephone stations aboard...
NREL Document Profiles Natural Gas Fueling, Fleet Operation
, Waste Management's LNG Truck Fleet Start-Up Experience, offers solid evidence that LNG-powered vehicles program from concept to start-up to present-day operation, describing the vehicle, engine and fueling . The document Waste Management's LNG Truck Fleet Start-Up Experience is one of a series of NREL
14 CFR 21.4 - ETOPS reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... with more than two engines, the system must be in place for the first 250,000 world fleet engine-hours... place for the first 250,000 world fleet engine-hours for the approved airplane-engine combination and after that until— (i) The world fleet 12-month rolling average IFSD rate is at or below the rate...
Simple broadband implementation of a phase contrast wavefront sensor for adaptive optics
NASA Technical Reports Server (NTRS)
Bloemhof, E. E.; Wallace, J. K.
2004-01-01
The most critical element of an adaptive optics system is its wavefront sensor, which must measure the closed-loop difference between the corrected wavefront and an ideal template at high speed, in real time, over a dense sampling of the pupil. Most high-order systems have used Shack-Hartmann wavefront sensors, but a novel approach based on Zernike's phase contrast principle appears promising. In this paper we discuss a simple way to achromatize such a phase contrast wavefront sensor, using the pi/2 phase difference between reflected and transmitted rays in a thin, symmetric beam splitter. We further model the response at a range of wavelengths to show that the required transverse dimension of the focal-plane phase-shifting spot, nominally lambda/D, may not be very sensitive to wavelength, and so in practice additional optics to introduce wavelength-dependent transverse magnification achromatizing this spot diameter may not be required. A very simple broadband implementation of the phase contrast wavefront sensor results.
Subsurface Intrusion Detection System
2014-02-25
deployed along the boundary. The outputs of the vibration sensors are taken as an indication of underground activity and can therefore be used to...for detecting underground activity. The system has a first sensor located at a first depth below the surface of the ground and a second sensor...and the second sensor has a second output indicative of vibrations at the second depth. A processor adapted to detect underground activity compares
2012-04-18
ISS030-E-236919 (18 April 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, works with the Oxygen Generator System (OGS) rack in the Tranquility node of the International Space Station. Burbank unpowered the OGS, purged the hydrogen sensor Orbital Replacement Unit (ORU) with the Hydrogen Sensor ORU Purge Adapter (HOPA) for return to Earth, and replaced the hydrogen sensor with a new spare, then cleaned the rack Avionics Air Assembly (AAA).
Adaptive wavefront sensor based on the Talbot phenomenon.
Podanchuk, Dmytro V; Goloborodko, Andrey A; Kotov, Myhailo M; Kovalenko, Andrey V; Kurashov, Vitalij N; Dan'ko, Volodymyr P
2016-04-20
A new adaptive method of wavefront sensing is proposed and demonstrated. The method is based on the Talbot self-imaging effect, which is observed in an illuminating light beam with strong second-order aberration. Compensation of defocus and astigmatism is achieved with an appropriate choice of size of the rectangular unit cell of the diffraction grating, which is performed iteratively. A liquid-crystal spatial light modulator is used for this purpose. Self-imaging of rectangular grating in the astigmatic light beam is demonstrated experimentally. High-order aberrations are detected with respect to the compensated second-order aberration. The comparative results of wavefront sensing with a Shack-Hartmann sensor and the proposed sensor are adduced.
Distance-Based and Low Energy Adaptive Clustering Protocol for Wireless Sensor Networks
Gani, Abdullah; Anisi, Mohammad Hossein; Ab Hamid, Siti Hafizah; Akhunzada, Adnan; Khan, Muhammad Khurram
2016-01-01
A wireless sensor network (WSN) comprises small sensor nodes with limited energy capabilities. The power constraints of WSNs necessitate efficient energy utilization to extend the overall network lifetime of these networks. We propose a distance-based and low-energy adaptive clustering (DISCPLN) protocol to streamline the green issue of efficient energy utilization in WSNs. We also enhance our proposed protocol into the multi-hop-DISCPLN protocol to increase the lifetime of the network in terms of high throughput with minimum delay time and packet loss. We also propose the mobile-DISCPLN protocol to maintain the stability of the network. The modelling and comparison of these protocols with their corresponding benchmarks exhibit promising results. PMID:27658194
Tomographic wavefront retrieval by combined use of geometric and plenoptic sensors
NASA Astrophysics Data System (ADS)
Trujillo-Sevilla, J. M.; Rodríguez-Ramos, L. F.; Fernández-Valdivia, Juan J.; Marichal-Hernández, José G.; Rodríguez-Ramos, J. M.
2014-05-01
Modern astronomic telescopes take advantage of multi-conjugate adaptive optics, in which wavefront sensors play a key role. A single sensor capable of measuring wavefront phases at any angle of observation would be helpful when improving atmospheric tomographic reconstruction. A new sensor combining both geometric and plenoptic arrangements is proposed, and a simulation demonstrating its working principle is also shown. Results show that this sensor is feasible, and also that single extended objects can be used to perform tomography of atmospheric turbulence.
NREL Evaluates Performance of Fast-Charge Electric Buses
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-09-16
This real-world performance evaluation is designed to enhance understanding of the overall usage and effectiveness of electric buses in transit operation and to provide unbiased technical information to other agencies interested in adding such vehicles to their fleets. Initial results indicate that the electric buses under study offer significant fuel and emissions savings. The final results will help Foothill Transit optimize the energy-saving potential of its transit fleet. NREL's performance evaluations help vehicle manufacturers fine-tune their designs and help fleet managers select fuel-efficient, low-emission vehicles that meet their bottom line and operational goals. help Foothill Transit optimize the energy-saving potentialmore » of its transit fleet. NREL's performance evaluations help vehicle manufacturers fine-tune their designs and help fleet managers select fuel-efficient, low-emission vehicles that meet their bottom line and operational goals.« less
Fidan, Barış; Umay, Ilknur
2015-01-01
Accurate signal-source and signal-reflector target localization tasks via mobile sensory units and wireless sensor networks (WSNs), including those for environmental monitoring via sensory UAVs, require precise knowledge of specific signal propagation properties of the environment, which are permittivity and path loss coefficients for the electromagnetic signal case. Thus, accurate estimation of these coefficients has significant importance for the accuracy of location estimates. In this paper, we propose a geometric cooperative technique to instantaneously estimate such coefficients, with details provided for received signal strength (RSS) and time-of-flight (TOF)-based range sensors. The proposed technique is integrated to a recursive least squares (RLS)-based adaptive localization scheme and an adaptive motion control law, to construct adaptive target localization and adaptive target tracking algorithms, respectively, that are robust to uncertainties in aforementioned environmental signal propagation coefficients. The efficiency of the proposed adaptive localization and tracking techniques are both mathematically analysed and verified via simulation experiments. PMID:26690441
Designing a Methodology for Future Air Travel Scenarios
NASA Technical Reports Server (NTRS)
Wuebbles, Donald J.; Baughcum, Steven L.; Gerstle, John H.; Edmonds, Jae; Kinnison, Douglas E.; Krull, Nick; Metwally, Munir; Mortlock, Alan; Prather, Michael J.
1992-01-01
The growing demand on air travel throughout the world has prompted several proposals for the development of commercial aircraft capable of transporting a large number of passengers at supersonic speeds. Emissions from a projected fleet of such aircraft, referred to as high-speed civil transports (HSCT's), are being studied because of their possible effects on the chemistry and physics of the global atmosphere, in particular, on stratospheric ozone. At the same time, there is growing concern about the effects on ozone from the emissions of current (primarily subsonic) aircraft emissions. Evaluating the potential atmospheric impact of aircraft emissions from HSCT's requires a scientifically sound understanding of where the aircraft fly and under what conditions the aircraft effluents are injected into the atmosphere. A preliminary set of emissions scenarios are presented. These scenarios will be used to understand the sensitivity of environment effects to a range of fleet operations, flight conditions, and aircraft specifications. The baseline specifications for the scenarios are provided: the criteria to be used for developing the scenarios are defined, the required data base for initiating the development of the scenarios is established, and the state of the art for those scenarios that have already been developed is discussed. An important aspect of the assessment will be the evaluation of realistic projections of emissions as a function of both geographical distribution and altitude from an economically viable commercial HSCT fleet. With an assumed introduction date of around the year 2005, it is anticipated that there will be no HSCT aircraft in the global fleet at that time. However, projections show that, by 2015, the HSCT fleet could reach significant size. We assume these projections of HSCT and subsonic fleets for about 2015 can the be used as input to global atmospheric chemistry models to evaluate the impact of the HSCT fleets, relative to an all-subsonic future fleet. The methodology, procedures, and recommendations for the development of future HSCT and the subsonic fleet scenarios used for this evaluation are discussed.
Safety assurance of non-deterministic flight controllers in aircraft applications
NASA Astrophysics Data System (ADS)
Noriega, Alfonso
Loss of control is a serious problem in aviation that primarily affects General Aviation. Technological advancements can help mitigate the problem, but the FAA certification process makes certain solutions economically unfeasible. This investigation presents the design of a generic adaptive autopilot that could potentially lead to a single certification for use in several makes and models of aircraft. The autopilot consists of a conventional controller connected in series with a robust direct adaptive model reference controller. In this architecture, the conventional controller is tuned once to provide outer-loop guidance and navigation to a reference model. The adaptive controller makes unknown aircraft behave like the reference model, allowing the conventional controller to successfully provide navigation without the need for retuning. A strong theoretical foundation is presented as an argument for the safety and stability of the controller. The stability proof of direct adaptive controllers require that the plant being controlled has no unstable transmission zeros and has a nonzero high frequency gain. Because most conventional aircraft do not readily meet these requirements, a process known as sensor blending was used. Sensor blending consists of using a linear combination of the plant's outputs that has no unstable transmission zeros and has a nonzero high frequency gain to drive the adaptive controller. Although this method does not present a problem for regulators, it can lead to a steady state error in tracking applications. The sensor blending theory was expanded to take advantage of the system's dynamics to allow for zero steady state error tracking. This method does not need knowledge of the specific system's dynamics, but instead uses the structure of the A and B matrices to perform the blending for the general case. The generic adaptive autopilot was tested in two high-fidelity nonlinear simulators of two typical General Aviation aircraft. The results show that the autopilot was able to adapt appropriately to the different aircraft and was able to perform three-dimensional navigation and an ILS approach, without any modification to the controller. The autopilot was tested in moderate atmospheric turbulence, using consumer-grade sensors and actuators currently available in General Aviation aircraft. The generic adaptive autopilot was shown to be robust to atmospheric turbulence and sensor and actuator random noise. In both aircraft simulators, the autopilot adapted successfully to changes in airspeed, altitude, and configuration. This investigation proves the feasibility of a generic autopilot using direct adaptive controller. The autopilot does not need a priori information of the specific aircraft's dynamics to maintain its safety and stability arguments. Real-time parameter estimation of the aircraft dynamics are not needed. Recommendations for future work are provided.
Medium- and Heavy-Duty Vehicle Field Evaluations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Kenneth J; Prohaska, Robert S
This presentation provides information about NREL's real-world evaluations of commercial vehicle technologies, which compare the performance of advanced medium- and heavy-duty fleet vehicles to conventional vehicles. NREL conducts these customized evaluations in partnership with commercial and government fleets across the nation. Current fleet and industry partners include UPS, Workhorse, Parker Hannifin, Proterra, Foothill Transit, Long Beach Transit, BYD, Odyne, Duke Energy, Miami-Dade, TransPower, Eaton, Cummins, Bosch, and Clean Cities/National Clean Fleet Partnership. The presentation focuses on two particular vehicle evaluation projects -- hydraulic hybrid refuse haulers operated by Miami-Dade and electric transit buses operated by Foothill Transit.
Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions.
Tao, Lu-Qi; Wang, Dan-Yang; Tian, He; Ju, Zhen-Yi; Liu, Ying; Pang, Yu; Chen, Yuan-Quan; Yang, Yi; Ren, Tian-Ling
2017-06-22
Conventional strain sensors rarely have both a high gauge factor and a large strain range simultaneously, so they can only be used in specific situations where only a high sensitivity or a large strain range is required. However, for detecting human motions that include both subtle and large motions, these strain sensors can't meet the diverse demands simultaneously. Here, we come up with laser patterned graphene strain sensors with self-adapted and tunable performance for the first time. A series of strain sensors with either an ultrahigh gauge factor or a preferable strain range can be fabricated simultaneously via one-step laser patterning, and are suitable for detecting all human motions. The strain sensors have a GF of up to 457 with a strain range of 35%, or have a strain range of up to 100% with a GF of 268. Most importantly, the performance of the strain sensors can be easily tuned by adjusting the patterns of the graphene, so that the sensors can meet diverse demands in both subtle and large motion situations. The graphene strain sensors show significant potential in applications such as wearable electronics, health monitoring and intelligent robots. Furthermore, the facile, fast and low-cost fabrication method will make them possible and practical to be used for commercial applications in the future.
Pokkuluri, P Raj; Dwulit-Smith, Jeff; Duke, Norma E; Wilton, Rosemarie; Mack, Jamey C; Bearden, Jessica; Rakowski, Ella; Babnigg, Gyorgy; Szurmant, Hendrik; Joachimiak, Andrzej; Schiffer, Marianne
2013-01-01
Anaeromyxobacter dehalogenans is a δ-proteobacterium found in diverse soils and sediments. It is of interest in bioremediation efforts due to its dechlorination and metal-reducing capabilities. To gain an understanding on A. dehalogenans' abilities to adapt to diverse environments we analyzed its signal transduction proteins. The A. dehalogenans genome codes for a large number of sensor histidine kinases (HK) and methyl-accepting chemotaxis proteins (MCP); among these 23 HK and 11 MCP proteins have a sensor domain in the periplasm. These proteins most likely contribute to adaptation to the organism's surroundings. We predicted their three-dimensional folds and determined the structures of two of the periplasmic sensor domains by X-ray diffraction. Most of the domains are predicted to have either PAS-like or helical bundle structures, with two predicted to have solute-binding protein fold, and another predicted to have a 6-phosphogluconolactonase like fold. Atomic structures of two sensor domains confirmed the respective fold predictions. The Adeh_2942 sensor (HK) was found to have a helical bundle structure, and the Adeh_3718 sensor (MCP) has a PAS-like structure. Interestingly, the Adeh_3718 sensor has an acetate moiety bound in a binding site typical for PAS-like domains. Future work is needed to determine whether Adeh_3718 is involved in acetate sensing by A. dehalogenans. PMID:23897711
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaClair, Tim J; Gao, Zhiming; Fu, Joshua S.
2014-01-01
Quantifying the fuel savings that can be achieved from different truck fuel efficiency technologies for a fleet s specific usage allows the fleet to select the combination of technologies that will yield the greatest operational efficiency and profitability. This paper presents an analysis of vehicle usage in a commercial vehicle fleet and an assessment of advanced efficiency technologies using an analysis of measured drive cycle data for a class 8 regional commercial shipping fleet. Drive cycle measurements during a period of a full year from six tractor-trailers in normal operations in a less-than-truckload (LTL) carrier were analyzed to develop amore » characteristic drive cycle that is highly representative of the fleet s usage. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. The drive cycle and mass data were analyzed using a tractive energy analysis to quantify the fuel efficiency and CO2 emissions benefits that can be achieved on class 8 tractor-trailers when using advanced efficiency technologies, either individually or in combination. Although differences exist among class 8 tractor-trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application.« less
A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks.
Gui, Jinsong; Zhou, Kai; Xiong, Naixue
2016-09-25
Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.
A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms.
Caldas, Rafael; Mundt, Marion; Potthast, Wolfgang; Buarque de Lima Neto, Fernando; Markert, Bernd
2017-09-01
The conventional methods to assess human gait are either expensive or complex to be applied regularly in clinical practice. To reduce the cost and simplify the evaluation, inertial sensors and adaptive algorithms have been utilized, respectively. This paper aims to summarize studies that applied adaptive also called artificial intelligence (AI) algorithms to gait analysis based on inertial sensor data, verifying if they can support the clinical evaluation. Articles were identified through searches of the main databases, which were encompassed from 1968 to October 2016. We have identified 22 studies that met the inclusion criteria. The included papers were analyzed due to their data acquisition and processing methods with specific questionnaires. Concerning the data acquisition, the mean score is 6.1±1.62, what implies that 13 of 22 papers failed to report relevant outcomes. The quality assessment of AI algorithms presents an above-average rating (8.2±1.84). Therefore, AI algorithms seem to be able to support gait analysis based on inertial sensor data. Further research, however, is necessary to enhance and standardize the application in patients, since most of the studies used distinct methods to evaluate healthy subjects. Copyright © 2017 Elsevier B.V. All rights reserved.
A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks
Gui, Jinsong; Zhou, Kai; Xiong, Naixue
2016-01-01
Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude. PMID:27681731
Using continuous in-situ measurements to adaptively trigger urban storm water samples
NASA Astrophysics Data System (ADS)
Wong, B. P.; Kerkez, B.
2015-12-01
Until cost-effective in-situ sensors are available for biological parameters, nutrients and metals, automated samplers will continue to be the primary source of reliable water quality measurements. Given limited samples bottles, however, autosamplers often obscure insights on nutrient sources and biogeochemical processes which would otherwise be captured using a continuous sampling approach. To that end, we evaluate the efficacy a novel method to measure first-flush nutrient dynamics in flashy, urban watersheds. Our approach reduces the number of samples required to capture water quality dynamics by leveraging an internet-connected sensor node, which is equipped with a suite of continuous in-situ sensors and an automated sampler. To capture both the initial baseflow as well as storm concentrations, a cloud-hosted adaptive algorithm analyzes the high-resolution sensor data along with local weather forecasts to optimize a sampling schedule. The method was tested in a highly developed urban catchment in Ann Arbor, Michigan and collected samples of nitrate, phosphorus, and suspended solids throughout several storm events. Results indicate that the watershed does not exhibit first flush dynamics, a behavior that would have been obscured when using a non-adaptive sampling approach.
Adaptive Optics for Industry and Medicine
NASA Astrophysics Data System (ADS)
Dainty, Christopher
2008-01-01
pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead at Iris AO (poster paper) / Michael A. Helmbrecht ... [et al.]. Electrostatic push pull mirror improvernents in visual optics (poster paper) / S. Bonora and L. Poletto. 25cm bimorph mirror for petawatt laser / S. Bonora ... [et al.]. Hysteresis compensation for piezo deformable mirror (poster paper) / H. Song ... [et al.]. Static and dynamic responses of an adaptive optics ferrofluidic mirror (poster paper) / A. Seaman ... [et al.]. New HDTV (1920 x 1080) phase-only SLM (poster paper) / Stefan Osten and Sven Krueger. Monomorph large aperture deformable mirror for laser applications (poster paper) / J-C Sinquin, J-M Lurcon, C. Guillemard. Low cost, high speed for adaptive optics control (oral paper) / Christopher D. Saunter and Gordon D. Love. Open loop woofer-tweeter adaptive control on the LAO multi-conjugate adaptive optics testbed (oral paper) / Edward Laag, Don Gavel and Mark Ammons -- pt. 2. Wavefront sensors. Wave front sensorless adaptive optics for imaging and microscopy (invited paper) / Martin J. Booth, Delphine Débarre and Tony Wilson. A fundamental limit for wavefront sensing (oral paper) / Carl Paterson. Coherent fibre-bundle wavefront sensor (oral paper) / Brian Vohnsen, I. Iglesias and Pablo Artal. Maximum-likelihood methods in wave-front sensing: nuisance parameters (oral paper) / David Lara, Harrison H. Barrett, and Chris Dainty. Real-time wavefront sensing for ultrafast high-power laser beams (oral paper) / Juan M. Bueno ... [et al.]. Wavefront sensing using a random phase screen (oral paper) / M. Loktev, G. Vdovin and O. Soloviev. Quadri-Wave Lateral Shearing Interferometry: a new mature technique for wave front sensing in adaptive optics (oral paper) / Benoit Wattellier ... [et al.]. In vivo measurement of ocular aberrations with a distorted grating wavefront sensor (oral paper) / P. Harrison ... [et al.]. Position-sensitive detector designed with unusual CMOS layout strategies for a Hartman-Shack wavefront sensor (oral Paper) / Davies W. de Lima Monteiro ... [et al.]. Adaptive optics system to compensate complex-shaped wavefronts (oral paper) / Miguel Ares, and Santiago Royo. A kind of novel linear phase retrieval wavefront sensor and its application in close-loop adaptive optics system (oral paper) / Xinyang Li ... [et al.]. Ophthalmic Shack-Hatmann wavefront sensor applications (oral paper) / Daniel R. Neal. Wave front sensing of an optical vortex and its correction with the help of bimorph mirror (poster paper) / F. A. Starikov ... [et al.]. Recent advances in laser metrology and correction of high numerical aperture laser beams using quadri-wave lateral shearing-interferometry (poster paper) / Benoit Wattellier, Ivan Doudet and William Boucher. Thin film optical metrology using principles of wavefront sensing and interference (poster paper) / D. M. Faichnie, A. H. Greenaway and I. Bain. Direct diffractive image simulation (poster paper) / A. P. Maryasov, N. P. Maryasov, A. P. Layko. High speed smart CMOS sensor for adaptive optics (poster paper) / T. D. Raymond ... [et al.]. Traceable astigmatism measurements for wavefront sensors (poster paper) / S. R. G. Hall, S. D. Knox, R. F. Stevens -- pt. 3. Adaptive optics in vision science. Dual-conjugate adaptive optics instrument for wide-field retinal imaging (oral paper) / Jörgen Thaung, Mette-Owner Petersen and Zoran Popovic. Visual simulation using electromagnetic adaptive-optics (oral paper) / Laurent Vabre ... [et al.]. High-resolution field-of-view widening in human eye retina imaging (oral paper) / Alexander V. Dubinin, Tatyana Yu. Cherezova, Alexis V. Kudryashov. Psychophysical experiments on visual performance with an ocular adaptive optics system (oral paper) / E. Dalimier, J. C. Dainty and J. Barbur. Does the accommodative mechanism of the eye calibrate itself using aberration dynamics? (oral paper) / K. M. Hampson, S. S. Chin and E. A. H. Mallen. A study of field aberrations in the human eye (oral paper) / Alexander V. Goncharov ... [et al.]. Dual wavefront corrector ophthalmic adaptive optics: design and alignment (oral paper) / Alfredo Dubra and David Williams. High speed simultaneous SLO/OCT imaging of the human retina with adaptive optics (oral paper) / M. Pircher ... [et al.]. Characterization of an AO-OCT system (oral paper) / Julia W. Evans ... [et al.]. Adaptive optics optical coherence tomography for retina imaging (oral paper) / Guohua Shi ... [et al.]. Development, calibration and performance of an electromagnetic-mirror-based adaptive optics system for visual optics (oral paper) / Enrique Gambra ... [et al.]. Adaptive eye model (poster paper) / Sergey O. Galetskzy and Alexty V. Kudryashov. Adaptive optics system for retinal imaging based on a pyramid wavefront sensor (poster paper) / Sabine Chiesa ... [et al.]. Modeling of non-stationary dynamic ocular aberrations (poster paper) / Conor Leahy and Chris Dainty. High-order aberrations and accommodation of human eye (poster paper) / Lixia Xue ... [et al.]. Electromagnetic deformable mirror: experimental assessment and first ophthalmic applications (poster paper) / L. Vabre ... [et al.]. Correcting ocular aberrations in optical coherence tomography (poster paper) / Simon Tuohy ... [et al.] -- pt. 4. Adaptive optics in optical storage and microscopy. The application of liquid crystal aberration compensator for the optical disc systems (invited paper) / Masakazu Ogasawara. Commercialization of the adaptive scanning optical microscope (ASOM) (oral paper) / Benjamin Potsaid ... [et al.]. A practical implementation of adaptive optics for aberration compensation in optical microscopy (oral paper) / A. J. Wright ... [et al.]. Active focus locking in an optically sectioning microscope using adaptive optics (poster paper) / S. Poland, A. J. Wright, J. M. Girkin. Towards four dimensional particle tracking for biological applications / Heather I. Campbell ... [et al.]. Adaptive optics for microscopy (poster paper) / Xavier Levecq -- pt. 5. Adaptive optics in lasers. Improved beam quality of a high power Yb: YAG laser (oral paper) / Dennis G. Harris ... [et al.]. Intracavity adaptive optics optimization of an end-pumped Nd:YVO4 laser (oral paper) / Petra Welp, Ulrich Wittrock. New results in high power lasers beam correction (oral paper) / Alexis Kudryashov ... [et al.]. Adaptive optical systems for the Shenguang-III prototype facility (oral paper) / Zeping Yang ... [et al.]. Adaptive optics control of solid-state lasers (poster paper) / Walter Lubeigt ... [et al.]. Gerchberg-Saxton algorithm for multimode beam reshaping (poster paper) / Inna V. Ilyina, Tatyana Yu. Cherezova. New algorithm of combining for spatial coherent beams (poster paper) / Ruofu Yang ... [et al.]. Intracavity mode control of a solid-state laser using a 19-element deformable mirror (poster paper) / Ping Yang ... [et al.] -- pt. 6. Adaptive optics in communication and atmospheric compensation. Fourier image sharpness sensor for laser communications (oral paper) / Kristin N. Walker and Robert K. Tyson. Fast closed-loop adaptive optics system for imaging through strong turbulence layers (oral paper) / Ivo Buske and Wolfgang Riede. Correction of wavefront aberrations and optical communication using aperture synthesis (oral paper) / R. J. Eastwood ... [et al.]. Adaptive optics system for a small telescope (oral paper) / G. Vdovin, M. Loktev and O. Soloviev. Fast correction of atmospheric turbulence using a membrane deformable mirror (poster paper) / Ivan Capraro, Stefano Bonora, Paolo Villoresi. Atmospheric turbulence measurements over a 3km horizontal path with a Shack-Hartmann wavefront sensor (poster paper) / Ruth Mackey, K. Murphy and Chris Dainty. Field-oriented wavefront sensor for laser guide stars (poster paper) / Lidija Bolbasova, Alexander Goncharov and Vladimir Lukin.
Sensor selection and chemo-sensory optimization: toward an adaptable chemo-sensory system.
Vergara, Alexander; Llobet, Eduard
2011-01-01
Over the past two decades, despite the tremendous research on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors), environment monitoring (widely distributed sensor networks), and security/threat detection (chemo/bio warfare agents), simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro- and nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change. The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to "adapt" in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the field may evolve.
A configurable sensor network applied to ambient assisted living.
Villacorta, Juan J; Jiménez, María I; Del Val, Lara; Izquierdo, Alberto
2011-01-01
The rising older people population has increased the interest in ambient assisted living systems. This article presents a system for monitoring the disabled or older persons developed from an existing surveillance system. The modularity and adaptability characteristics of the system allow an easy adaptation for a different purpose. The proposed system uses a network of sensors capable of motion detection that includes fall warning, identification of persons and a configurable control system which allows its use in different scenarios.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-31
...The Coast Guard announces the availability of Office of Vessel Activities Policy Letter 11-05 regarding Distant Water Tuna Fleet vessels manning exemption eligibility and safety requirements. This final policy clarifies the requirements to allow a distant water tuna fleet vessel to engage foreign citizens under a temporary manning exemption.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
...Pursuant to Section 904 of the 2010 Coast Guard Authorization Act, the Coast Guard announces the availability of a draft policy regarding distant water tuna fleet vessels manning exemption eligibility and safety requirements. We request your comments on the Safety Requirements and Manning Exemption Eligibility on Distant Water Tuna Fleet Vessels.
Navy Force Structure: A Bigger Fleet Background and Issues for Congress
2016-09-16
Aircraft Carrier Gap in the Gulf,” Washington Institute for Near East Policy, October 5, 2015. 8 See, for example, Hope Hodge Seck, “CNO: Navy to Hit...Long Deployments Will Harm the Fleet,” Navy Times, April 20, 2016; Hope Hodge Seck, “Overtaxed Fleet Needs Shorer Deployments,” Military.com, March
40 CFR 86.1865-12 - How to comply with the fleet average CO2 standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Calculating the fleet average carbon-related exhaust emissions. (1) Manufacturers must compute separate production-weighted fleet average carbon-related exhaust emissions at the end of the model year for passenger... for sale, and certifying model types to standards as defined in § 86.1818-12. The model type carbon...
Alternative Fuels Data Center: Phoenix Utility Fleet Drives Smarter with
electric car. College Students Engineer Efficient Vehicles in EcoCAR 2 Competition Aug. 2, 2014 Photo of a BiodieselA> Phoenix Utility Fleet Drives Smarter with Biodiesel to someone by E-mail Share ... Aug. 26, 2017 Phoenix Utility Fleet Drives Smarter with Biodiesel Watch how a utility company in
fueled for the fleet to be subject to the regulatory requirements. Under Standard Compliance, the AFVs that may be used toward compliance or banked once the fleet achieves compliance for investments in composition. For more information, visit the EPAct State and Alternative Fuel Provider Fleets website
77 FR 76597 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-28
... fleet to the age exploration M7 waiver. FRA assigned the petition Docket Number FRA-2004-17099. MNR is...). The MNR M7 fleet is currently undergoing age exploration tests. The MNR M7 fleet is averaging 68,000... only those components not yet captured by the KB-CT1 (M7) age exploration testing in support of this...
Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction,
Ethanol Use, Fuel Efficiency County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel , Ethanol Use, Fuel Efficiency on Facebook Tweet about Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel Efficiency on Twitter Bookmark Alternative Fuels Data Center
. FOURTH Fleet (USNAVSO/FOURTHFLT) employs maritime forces in cooperative maritime security operations in (Hidden)⬠USNAVSO/4th Fleet News Retrieving Data Links Secretary of the Navy Chief of Naval Operations Department of Defense U.S. Southern Command SOCIAL MEDIA Quick Links US Navy Recruiting | No Fear Act Data
Hydraulic Hybrid Fleet Vehicle Testing | Transportation Research | NREL
Hydraulic Hybrid Fleet Vehicle Evaluations Hydraulic Hybrid Fleet Vehicle Evaluations How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a low
to achieve the Replacement Fuel Goal. For more information on the Private and Local Government Fleet Private and Local Government Fleets Under the Energy Policy Act (EPAct) of 1992, the U.S . Department of Energy (DOE) was directed to determine whether private and local government fleets should be
Alternative Fuels Data Center: City of Cincinnati Turns Sustainable Fleet
Plan into On-Road Reality City of Cincinnati Turns Sustainable Fleet Plan into On-Road Reality Plan into On-Road Reality on Facebook Tweet about Alternative Fuels Data Center: City of Cincinnati Turns Sustainable Fleet Plan into On-Road Reality on Twitter Bookmark Alternative Fuels Data Center
41 CFR 101-39.104 - Notice of establishment of a fleet management system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... system. GSA will inform each affected agency of the time schedule for establishment of a fleet management... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Notice of establishment of a fleet management system. 101-39.104 Section 101-39.104 Public Contracts and Property Management...
77 FR 18718 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... Statistical Tool Web-based reporting system (FAST) for FY 2005. Moreover, section 438.102(b) would require... reflected in FY 2005 FAST data, or (2) the lesser of (a) five percent of total Federal fleet vehicle fuel... event that the Federal fleet's alternative fuel use value for FY 2005 submitted through FAST did not...
Ephrin-A/EphA specific co-adaptation as a novel mechanism in topographic axon guidance
Fiederling, Felix; Weschenfelder, Markus; Fritz, Martin; von Philipsborn, Anne; Bastmeyer, Martin; Weth, Franco
2017-01-01
Genetic hardwiring during brain development provides computational architectures for innate neuronal processing. Thus, the paradigmatic chick retinotectal projection, due to its neighborhood preserving, topographic organization, establishes millions of parallel channels for incremental visual field analysis. Retinal axons receive targeting information from quantitative guidance cue gradients. Surprisingly, novel adaptation assays demonstrate that retinal growth cones robustly adapt towards ephrin-A/EphA forward and reverse signals, which provide the major mapping cues. Computational modeling suggests that topographic accuracy and adaptability, though seemingly incompatible, could be reconciled by a novel mechanism of coupled adaptation of signaling channels. Experimentally, we find such ‘co-adaptation’ in retinal growth cones specifically for ephrin-A/EphA signaling. Co-adaptation involves trafficking of unliganded sensors between the surface membrane and recycling endosomes, and is presumably triggered by changes in the lipid composition of membrane microdomains. We propose that co-adaptative desensitization eventually relies on guidance sensor translocation into cis-signaling endosomes to outbalance repulsive trans-signaling. DOI: http://dx.doi.org/10.7554/eLife.25533.001 PMID:28722651
Novel tip-tilt sensing strategies for the laser tomography adaptive optics system of the GMT
NASA Astrophysics Data System (ADS)
van Dam, Marcos A.; Bouchez, Antonin H.; Conan, Rodolphe
2016-07-01
We investigate the tip-tilt sensor for the laser tomography adaptive optics system of the Giant Magellan Telescope. In the case of the GMTIFS instrument, we require high Strehl over a moderate region of the sky and high throughput with very high sky coverage. In this paper, we simulate the performance of a K-band tip-tilt sensor using an eAPD array. The paper presents a comparison of different centroiding techniques and servo controllers. In addition, we explore the possibility of using the wavefront sensors (WFSs) used in the ground layer adaptive optics (GLAO) mode to supplement the tip-tilt sensor measurement. The imaging requirement is almost met using the correlation algorithm to estimate the displacement of the spot, along with a high-order controller tailored to the telescope wind shake. This requires a sufficiently bright star to be able to run at 500 Hz, so the sky coverage is limited. In the absence of wind, then the star can be fainter and the requirement is met. The spectroscopy requirement is met even in the case of high wind. The results are even better if we use the GLAO WFSs as well as the tip-tilt sensors. Further work will explore the viability of inserting a DM in the OIWFS and the resulting tip-tilt performance.
MAGNETOMETER - TRI-AXIS SENSOR UNIT - GEMINI-TITAN (GT)-12 EXPERIMENT MSC-3 (M405) - MSC
1966-10-01
S66-09379 (1 Oct. 1966) --- Tri-Axis Magnetometer-Sensor Unit mounted on telescoping boom. Cable connects Sensor Unit with Electronics Unit mounted on retrograde beam in retrograde adapter section. Objective of experiment is to monitor the direction and amplitude of Earth's magnetic field (Gemini-12). Photo credit: NASA
Hug, T; Maurer, M
2012-01-01
Distributed (decentralized) wastewater treatment can, in many situations, be a valuable alternative to a centralized sewer network and wastewater treatment plant. However, it is critical for its acceptance whether the same overall treatment performance can be achieved without on-site staff, and whether its performance can be measured. In this paper we argue and illustrate that the system performance depends not only on the design performance and reliability of the individual treatment units, but also significantly on the monitoring scheme, i.e. on the reliability of the process information. For this purpose, we present a simple model of a fleet of identical treatment units. Thereby, their performance depends on four stochastic variables: the reliability of the treatment unit, the respond time for the repair of failed units, the reliability of on-line sensors, and the frequency of routine inspections. The simulated scenarios show a significant difference between the true performance and the observations by the sensors and inspections. The results also illustrate the trade-off between investing in reactor and sensor technology and in human interventions in order to achieve a certain target performance. Modeling can quantify such effects and thereby support the identification of requirements for the centralized monitoring of distributed treatment units. The model approach is generic and can be extended and applied to various distributed wastewater treatment technologies and contexts.
NASA Technical Reports Server (NTRS)
Sjoegreen, B.; Yee, H. C.
2001-01-01
The recently developed essentially fourth-order or higher low dissipative shock-capturing scheme of Yee, Sandham and Djomehri (1999) aimed at minimizing nu- merical dissipations for high speed compressible viscous flows containing shocks, shears and turbulence. To detect non smooth behavior and control the amount of numerical dissipation to be added, Yee et al. employed an artificial compression method (ACM) of Harten (1978) but utilize it in an entirely different context than Harten originally intended. The ACM sensor consists of two tuning parameters and is highly physical problem dependent. To minimize the tuning of parameters and physical problem dependence, new sensors with improved detection properties are proposed. The new sensors are derived from utilizing appropriate non-orthogonal wavelet basis functions and they can be used to completely switch to the extra numerical dissipation outside shock layers. The non-dissipative spatial base scheme of arbitrarily high order of accuracy can be maintained without compromising its stability at all parts of the domain where the solution is smooth. Two types of redundant non-orthogonal wavelet basis functions are considered. One is the B-spline wavelet (Mallat & Zhong 1992) used by Gerritsen and Olsson (1996) in an adaptive mesh refinement method, to determine regions where re nement should be done. The other is the modification of the multiresolution method of Harten (1995) by converting it to a new, redundant, non-orthogonal wavelet. The wavelet sensor is then obtained by computing the estimated Lipschitz exponent of a chosen physical quantity (or vector) to be sensed on a chosen wavelet basis function. Both wavelet sensors can be viewed as dual purpose adaptive methods leading to dynamic numerical dissipation control and improved grid adaptation indicators. Consequently, they are useful not only for shock-turbulence computations but also for computational aeroacoustics and numerical combustion. In addition, these sensors are scheme independent and can be stand alone options for numerical algorithm other than the Yee et al. scheme.
Self-Supervised Learning of Terrain Traversability from Proprioceptive Sensors
NASA Technical Reports Server (NTRS)
Bajracharya, Max; Howard, Andrew B.; Matthies, Larry H.
2009-01-01
Robust and reliable autonomous navigation in unstructured, off-road terrain is a critical element in making unmanned ground vehicles a reality. Existing approaches tend to rely on evaluating the traversability of terrain based on fixed parameters obtained via testing in specific environments. This results in a system that handles the terrain well that it trained in, but is unable to process terrain outside its test parameters. An adaptive system does not take the place of training, but supplements it. Whereas training imprints certain environments, an adaptive system would imprint terrain elements and the interactions amongst them, and allow the vehicle to build a map of local elements using proprioceptive sensors. Such sensors can include velocity, wheel slippage, bumper hits, and accelerometers. Data obtained by the sensors can be compared to observations from ranging sensors such as cameras and LADAR (laser detection and ranging) in order to adapt to any kind of terrain. In this way, it could sample its surroundings not only to create a map of clear space, but also of what kind of space it is and its composition. By having a set of building blocks consisting of terrain features, a vehicle can adapt to terrain that it has never seen before, and thus be robust to a changing environment. New observations could be added to its library, enabling it to infer terrain types that it wasn't trained on. This would be very useful in alien environments, where many of the physical features are known, but some are not. For example, a seemingly flat, hard plain could actually be soft sand, and the vehicle would sense the sand and avoid it automatically.
Kirpich, Julia S; Chang, Che-Wei; Madsen, Dorte; Gottlieb, Sean M; Martin, Shelley S; Rockwell, Nathan C; Lagarias, J Clark; Larsen, Delmar S
2018-05-08
Forward and reverse primary (<10 ns) and secondary (>10 ns) photodynamics of cyanobacteriochrome (CBCR) NpF2164g7 were characterized by global analysis of ultrafast broadband transient absorption measurements. NpF2164g7 is the most C-terminal bilin-binding GAF domain in the Nostoc punctiforme phototaxis sensor PtxD (locus Npun_F2164). Although a member of the canonical red/green CBCR subfamily phylogenetically, NpF2164g7 exhibits an orange-absorbing 15Z P o dark-adapted state instead of the typical red-absorbing 15Z P r dark-adapted state characteristic of this subfamily. The green-absorbing 15E P g photoproduct of NpF2164g7 is unstable, allowing this CBCR domain to function as a power sensor. Photoexcitation of the 15Z P o state triggers inhomogeneous excited-state dynamics with three spectrally and temporally distinguishable pathways to generate the light-adapted 15E P g state in high yield (estimated at 25-30%). Although observed in other CBCR domains, the inhomogeneity in NpF2164g7 extends far into secondary relaxation dynamics (10 ns -1 ms) through to formation of 15E P g . In the reverse direction, the primary dynamics after photoexcitation of 15E P g are qualitatively similar to those of other red/green CBCRs, but secondary dynamics involve a "pre-equilibrium" step before regenerating 15Z P o . The anomalous photodynamics of NpF2164g7 may reflect an evolutionary adaptation of CBCR sensors that function as broadband light intensity sensors.
An Approach to Automated Fusion System Design and Adaptation
Fritze, Alexander; Mönks, Uwe; Holst, Christoph-Alexander; Lohweg, Volker
2017-01-01
Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum. PMID:28300762
An Approach to Automated Fusion System Design and Adaptation.
Fritze, Alexander; Mönks, Uwe; Holst, Christoph-Alexander; Lohweg, Volker
2017-03-16
Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum.
Bounemeur, Abdelhamid; Chemachema, Mohamed; Essounbouli, Najib
2018-05-10
In this paper, an active fuzzy fault tolerant tracking control (AFFTTC) scheme is developed for a class of multi-input multi-output (MIMO) unknown nonlinear systems in the presence of unknown actuator faults, sensor failures and external disturbance. The developed control scheme deals with four kinds of faults for both sensors and actuators. The bias, drift, and loss of accuracy additive faults are considered along with the loss of effectiveness multiplicative fault. A fuzzy adaptive controller based on back-stepping design is developed to deal with actuator failures and unknown system dynamics. However, an additional robust control term is added to deal with sensor faults, approximation errors, and external disturbances. Lyapunov theory is used to prove the stability of the closed loop system. Numerical simulations on a quadrotor are presented to show the effectiveness of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Sensor modeling and demonstration of a multi-object spectrometer for performance-driven sensing
NASA Astrophysics Data System (ADS)
Kerekes, John P.; Presnar, Michael D.; Fourspring, Kenneth D.; Ninkov, Zoran; Pogorzala, David R.; Raisanen, Alan D.; Rice, Andrew C.; Vasquez, Juan R.; Patel, Jeffrey P.; MacIntyre, Robert T.; Brown, Scott D.
2009-05-01
A novel multi-object spectrometer (MOS) is being explored for use as an adaptive performance-driven sensor that tracks moving targets. Developed originally for astronomical applications, the instrument utilizes an array of micromirrors to reflect light to a panchromatic imaging array. When an object of interest is detected the individual micromirrors imaging the object are tilted to reflect the light to a spectrometer to collect a full spectrum. This paper will present example sensor performance from empirical data collected in laboratory experiments, as well as our approach in designing optical and radiometric models of the MOS channels and the micromirror array. Simulation of moving vehicles in a highfidelity, hyperspectral scene is used to generate a dynamic video input for the adaptive sensor. Performance-driven algorithms for feature-aided target tracking and modality selection exploit multiple electromagnetic observables to track moving vehicle targets.
Geometric Theory of Moving Grid Wavefront Sensor
1977-06-30
Identify by block numbot) Adaptive Optics WaVefront Sensor Geometric Optics Analysis Moving Ronchi Grid "ABSTRACT (Continue an revere sdde If nooessaY...ad Identify by block nucber)A geometric optics analysis is made for a wavefront sensor that uses a moving Ronchi grid. It is shown that by simple data... optical systems being considered or being developed -3 for imaging an object through a turbulent atmosphere. Some of these use a wavefront sensor to
Topology Optimization for Energy Management in Underwater Sensor Networks
2015-02-01
1 To appear in International Journal of Control as a regular paper Topology Optimization for Energy Management in Underwater Sensor Networks ⋆ Devesh...K. Jha1 Thomas A. Wettergren2 Asok Ray1 Kushal Mukherjee3 Keywords: Underwater Sensor Network , Energy Management, Pareto Optimization, Adaptation...Optimization for Energy Management in Underwater Sensor Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d
Sensors for rate responsive pacing
Dell'Orto, Simonetta; Valli, Paolo; Greco, Enrico Maria
2004-01-01
Advances in pacemaker technology in the 1980s have generated a wide variety of complex multiprogrammable pacemakers and pacing modes. The aim of the present review is to address the different rate responsive pacing modalities presently available in respect to physiological situations and pathological conditions. Rate adaptive pacing has been shown to improve exercise capacity in patients with chronotropic incompetence. A number of activity and metabolic sensors have been proposed and used for rate control. However, all sensors used to optimize pacing rate metabolic demands show typical limitations. To overcome these weaknesses the use of two sensors has been proposed. Indeed an unspecific but fast reacting sensor is combined with a more specific but slower metabolic one. Clinical studies have demonstrated that this methodology is suitable to reproduce normal sinus behavior during different types and loads of exercise. Sensor combinations require adequate sensor blending and cross checking possibly controlled by automatic algorithms for sensors optimization and simplicity of programming. Assessment and possibly deactivation of some automatic functions should be also possible to maximize benefits from the dual sensor system in particular conditions. This is of special relevance in patient whose myocardial contractility is limited such as in subjects with implantable defibrillators and biventricular pacemakers. The concept of closed loop pacing, implementing a negative feedback relating pacing rate and the control signal, will provide new opportunities to optimize dual-sensors system and deserves further investigation. The integration of rate adaptive pacing into defibrillators is the natural consequence of technical evolution. PMID:16943981
RIMPAC 08: Naval Oceanographic Office glider operations
NASA Astrophysics Data System (ADS)
Mahoney, Kevin L.; Grembowicz, Ken; Bricker, Bruce; Crossland, Steve; Bryant, Danielle; Torres, Marc; Giddings, Tom
2009-05-01
The Naval Oceanographic Office (NAVOCEANO) Glider Operations Center (GOC) supported its first joint-mission exercise during Rim of the Pacific (RIMPAC) 08, a multi-national naval exercise conducted during July 2008 near the Hawaiian Islands. NAVOCEANO personnel deployed four Seagliders from USNS SUMNER for Anti-submarine Warfare (ASW) operations and four Slocum gliders for Mine Warfare (MIW) operations. Each Seaglider was equipped with a Sea-Bird Electronics (SBE) 41cp CTD and Wet Labs, Inc. bb2fl ECO-puck optical sensor. The instrumentation suite on the Slocum gliders varied, but each Slocum glider had an SBE 41cp CTD combined with one of the following optical sensors: a Wet Labs, Inc. AUVb scattering sensor, a Wet Labs, Inc. bb3slo ECO-puck backscattering sensor, or a Satlantic, Inc. OCR radiometer. Using Iridium communications, the GOC had command and control of all eight gliders, with Department of Defense (DoD) personnel and DoD contractors serving as glider pilots. Raw glider data were transmitted each time a glider surfaced, and the subsequent data flow included processing, quality-control procedures, and the generation of operational and tactical products. The raw glider data were also sent to the Naval Research Laboratory at Stennis Space Center (NRLSSC) for fusion with satellite data and modeled data (currents, tides, etc.) to create optical forecasting, optical volume, and electro-optical identification (EOID) performance surface products. The glider-based products were delivered to the ASW and MIW Reach Back Cells for incorporation into METOC products and for dissemination to the Fleet. Based on the metrics presented in this paper, the inaugural joint-mission operation was a success.
Terahertz adaptive optics with a deformable mirror.
Brossard, Mathilde; Sauvage, Jean-François; Perrin, Mathias; Abraham, Emmanuel
2018-04-01
We report on the wavefront correction of a terahertz (THz) beam using adaptive optics, which requires both a wavefront sensor that is able to sense the optical aberrations, as well as a wavefront corrector. The wavefront sensor relies on a direct 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. By measuring the phase variation of the THz electric field in the crystal, we were able to minimize the geometrical aberrations of the beam, thanks to the action of a deformable mirror. This phase control will open the route to THz adaptive optics in order to optimize the THz beam quality for both practical and fundamental applications.
An Adaptive Technique for a Redundant-Sensor Navigation System. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chien, T. T.
1972-01-01
An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. The gyro navigation system is modeled as a Gauss-Markov process, with degradation modes defined as changes in characteristics specified by parameters associated with the model. The adaptive system is formulated as a multistage stochastic process: (1) a detection system, (2) an identification system and (3) a compensation system. It is shown that the sufficient statistics for the partially observable process in the detection and identification system is the posterior measure of the state of degradation, conditioned on the measurement history.
Lei, Xusheng; Li, Jingjing
2012-01-01
This paper presents an adaptive information fusion method to improve the accuracy and reliability of the altitude measurement information for small unmanned aerial rotorcraft during the landing process. Focusing on the low measurement performance of sensors mounted on small unmanned aerial rotorcraft, a wavelet filter is applied as a pre-filter to attenuate the high frequency noises in the sensor output. Furthermore, to improve altitude information, an adaptive extended Kalman filter based on a maximum a posteriori criterion is proposed to estimate measurement noise covariance matrix in real time. Finally, the effectiveness of the proposed method is proved by static tests, hovering flight and autonomous landing flight tests. PMID:23201993
Design of limited-stop service based on the degree of unbalance of passenger demand
2018-01-01
This paper presents a limited-stop service for a bus fleet to meet the unbalanced demand of passengers on a bus route and to improve the transit service of the bus route. This strategy includes two parts: a degree assessment of unbalanced passenger demand and an optimization of the limited-stop service. The degree assessment of unbalanced passenger demand, which is based on the different passenger demand between stations and the unbalance of passengers within the station, is used to judge whether implementing the limited-stop service is necessary for a bus route. The optimization of limited-stop service considers the influence of stop skipping action and bus capacity on the left-over passengers to determine the proper skipping stations for the bus fleet serving the entire route by minimizing both the waiting time and in-vehicle time of passengers and the running time of vehicles. A solution algorithm based on genetic algorithm is also presented to evaluate the degree of unbalanced passenger demand and optimize the limited-stop scheme. Then, the proper strategy is tested on a bus route in Changchun city of China. The threshold of degree assessment of unbalanced passenger demand can be calibrated and adapted to different passenger demands. PMID:29505585