Science.gov

Sample records for adaptive sliding mode

  1. Adaptive sliding mode control for a class of chaotic systems

    SciTech Connect

    Farid, R.; Ibrahim, A.; Zalam, B.

    2015-03-30

    Chaos control here means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, an Adaptive Sliding Mode Controller (ASMC) is presented based on Lyapunov stability theory. The well known Chua's circuit is chosen to be our case study in this paper. The study shows the effectiveness of the proposed adaptive sliding mode controller.

  2. Adaptive robust controller based on integral sliding mode concept

    NASA Astrophysics Data System (ADS)

    Taleb, M.; Plestan, F.

    2016-09-01

    This paper proposes, for a class of uncertain nonlinear systems, an adaptive controller based on adaptive second-order sliding mode control and integral sliding mode control concepts. The adaptation strategy solves the problem of gain tuning and has the advantage of chattering reduction. Moreover, limited information about perturbation and uncertainties has to be known. The control is composed of two parts: an adaptive one whose objective is to reject the perturbation and system uncertainties, whereas the second one is chosen such as the nominal part of the system is stabilised in zero. To illustrate the effectiveness of the proposed approach, an application on an academic example is shown with simulation results.

  3. Robust observer-based adaptive fuzzy sliding mode controller

    NASA Astrophysics Data System (ADS)

    Oveisi, Atta; Nestorović, Tamara

    2016-08-01

    In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.

  4. Sliding mode control of wind-induced vibrations using fuzzy sliding surface and gain adaptation

    NASA Astrophysics Data System (ADS)

    Thenozhi, Suresh; Yu, Wen

    2016-04-01

    Although fuzzy/adaptive sliding mode control can reduce the chattering problem in structural vibration control applications, they require the equivalent control and the upper bounds of the system uncertainties. In this paper, we used fuzzy logic to approximate the standard sliding surface and designed a dead-zone adaptive law for tuning the switching gain of the sliding mode control. The stability of the proposed controller is established using Lyapunov stability theory. A six-storey building prototype equipped with an active mass damper has been used to demonstrate the effectiveness of the proposed controller towards the wind-induced vibrations.

  5. Adaptive sliding mode control - convergence and gain boundedness revisited

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Khayati, Karim

    2016-04-01

    This paper reviews the main adaptive sliding mode controller (ASMC) designs for nonlinear systems with finite uncertainties of unknown bounds. Different statements of convergence referring to uniformly ultimate boundedness (UUB), asymptotic convergence (AC) and finite-time convergence (FTC) for ASMC shown in recent papers are analysed. Weaknesses and incomplete proofs apropos FTC are pointed out. Thereafter, a new approach is proposed to successfully demonstrate FTC of the so-called sliding variable. We identify a compensating phase and a reaching phase during the ASMC process. A new explicit form for estimating the upper-bound reaching time is provided for any bounded perturbation. An amended form of the real ASMC is recalled showing improved accuracy and chattering reduction. Finally, numerical and experimental applications are performed to convey the discussed results.

  6. Adaptive second-order sliding mode control with uncertainty compensation

    NASA Astrophysics Data System (ADS)

    Bartolini, G.; Levant, A.; Pisano, A.; Usai, E.

    2016-09-01

    This paper endows the second-order sliding mode control (2-SMC) approach with additional capabilities of learning and control adaptation. We present a 2-SMC scheme that estimates and compensates for the uncertainties affecting the system dynamics. It also adjusts the discontinuous control effort online, so that it can be reduced to arbitrarily small values. The proposed scheme is particularly useful when the available information regarding the uncertainties is conservative, and the classical `fixed-gain' SMC would inevitably lead to largely oversized discontinuous control effort. Benefits from the viewpoint of chattering reduction are obtained, as confirmed by computer simulations.

  7. Adaptive backstepping slide mode control of pneumatic position servo system

    NASA Astrophysics Data System (ADS)

    Ren, Haipeng; Fan, Juntao

    2016-06-01

    With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental results show that the designed controller can achieve better tracking performance, as compared with some existing methods.

  8. Adaptive suboptimal second-order sliding mode control for microgrids

    NASA Astrophysics Data System (ADS)

    Incremona, Gian Paolo; Cucuzzella, Michele; Ferrara, Antonella

    2016-09-01

    This paper deals with the design of adaptive suboptimal second-order sliding mode (ASSOSM) control laws for grid-connected microgrids. Due to the presence of the inverter, of unpredicted load changes, of switching among different renewable energy sources, and of electrical parameters variations, the microgrid model is usually affected by uncertain terms which are bounded, but with unknown upper bounds. To theoretically frame the control problem, the class of second-order systems in Brunovsky canonical form, characterised by the presence of matched uncertain terms with unknown bounds, is first considered. Four adaptive strategies are designed, analysed and compared to select the most effective ones to be applied to the microgrid case study. In the first two strategies, the control amplitude is continuously adjusted, so as to arrive at dominating the effect of the uncertainty on the controlled system. When a suitable control amplitude is attained, the origin of the state space of the auxiliary system becomes attractive. In the other two strategies, a suitable blend between two components, one mainly working during the reaching phase, the other being the predominant one in a vicinity of the sliding manifold, is generated, so as to reduce the control amplitude in steady state. The microgrid system in a grid-connected operation mode, controlled via the selected ASSOSM control strategies, exhibits appreciable stability properties, as proved theoretically and shown in simulation.

  9. A novel adaptive sliding mode control with application to MEMS gyroscope.

    PubMed

    Fei, Juntao; Batur, Celal

    2009-01-01

    This paper presents a new adaptive sliding mode controller for MEMS gyroscope; an adaptive tracking controller with a proportional and integral sliding surface is proposed. The adaptive sliding mode control algorithm can estimate the angular velocity and the damping and stiffness coefficients in real time. A proportional and integral sliding surface, instead of a conventional sliding surface is adopted. An adaptive sliding mode controller that incorporates both matched and unmatched uncertainties and disturbances is derived and the stability of the closed-loop system is established. The numerical simulation is presented to verify the effectiveness of the proposed control scheme. It is shown that the proposed adaptive sliding mode control scheme offers several advantages such as the consistent estimation of gyroscope parameters including angular velocity and large robustness to parameter variations and external disturbances.

  10. Adaptive fuzzy sliding mode control scheme for uncertain systems

    NASA Astrophysics Data System (ADS)

    Noroozi, Navid; Roopaei, Mehdi; Jahromi, M. Zolghadri

    2009-11-01

    Most physical systems inherently contain nonlinearities which are commonly unknown to the system designer. Therefore, in modeling and analysis of such dynamic systems, one needs to handle unknown nonlinearities and/or uncertain parameters. This paper proposes a new adaptive tracking fuzzy sliding mode controller for a class of nonlinear systems in the presence of uncertainties and external disturbances. The main contribution of the proposed method is that the structure of the controlled system is partially unknown and does not require the bounds of uncertainty and disturbance of the system to be known; meanwhile, the chattering phenomenon that frequently appears in the conventional variable structure systems is also eliminated without deteriorating the system robustness. The performance of the proposed approach is evaluated for two well-known benchmark problems. The simulation results illustrate the effectiveness of our proposed controller.

  11. Tensor Product Model Transformation Based Adaptive Integral-Sliding Mode Controller: Equivalent Control Method

    PubMed Central

    Zhao, Guoliang; Li, Hongxing

    2013-01-01

    This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model. PMID:24453897

  12. Tensor product model transformation based adaptive integral-sliding mode controller: equivalent control method.

    PubMed

    Zhao, Guoliang; Sun, Kaibiao; Li, Hongxing

    2013-01-01

    This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model.

  13. Adaptive sliding mode control of tethered satellite deployment with input limitation

    NASA Astrophysics Data System (ADS)

    Ma, Zhiqiang; Sun, Guanghui

    2016-10-01

    This paper proposes a novel adaptive sliding mode tension control method for the deployment of tethered satellite, where the input tension limitation is taken into account. The underactuated governing equations of the tethered satellites system are firstly derived based on Lagrangian mechanics theory. Considering the fact that the tether can only resist axial stretching, the tension input is modelled as input limitation. New adaptive sliding mode laws are addressed to guarantee the stability of the tethered satellite deployment with input disturbance, meanwhile to eliminate the effect of the limitation features of the tension input. Compared with the classic control strategy, the newly proposed adaptive sliding mode control law can deploy the satellite with smaller overshoot of the in-plane angle and implement the tension control reasonably and effectively in engineering practice. The numerical results validate the effectiveness of the proposed methods.

  14. Adaptive uniform finite-/fixed-time convergent second-order sliding-mode control

    NASA Astrophysics Data System (ADS)

    Basin, Michael; Bharath Panathula, Chandrasekhara; Shtessel, Yuri

    2016-09-01

    This paper presents an adaptive gain algorithm for second-order sliding-mode control (2-SMC), specifically a super-twisting (STW)-like controller, with uniform finite/fixed convergence time, that is robust to perturbations with unknown bounds. It is shown that a second-order sliding mode is established as exact finite-time convergence to the origin if the adaptive gain does not have the ability to get reduced and converge to a small vicinity of the origin if the adaptation algorithm does not overestimate the control gain. The estimate of fixed convergence time of the studied adaptive STW-like controller is derived based on the Lyapunov analysis. The efficacy of the proposed adaptive algorithm is illustrated in a tutorial example, where the adaptive STW-like controller with uniform finite/fixed convergence time is compared to the adaptive STW controller with non-uniform finite convergence time.

  15. Certainty equivalence adaptation combined with super-twisting sliding-mode control

    NASA Astrophysics Data System (ADS)

    Barth, A.; Reichhartinger, M.; Wulff, K.; Horn, M.; Reger, J.

    2016-09-01

    In this paper, a Lyapunov-based control concept is presented that combines variable structure and adaptive control. The considered system class consists of nonlinear single input systems which are affected by matched structured and unstructured uncertainties. Resorting to the certainty equivalence principle, the controller exploits advantages of both the sliding-mode and the adaptive control methodology. It is demonstrated that the gains of the discontinuous control action may be reduced remarkably when compared with pure sliding-mode-based approaches. The efficiency of the presented concept is demonstrated in detail, using results of numerical simulations.

  16. Adaptive backstepping sliding mode control with fuzzy monitoring strategy for a kind of mechanical system.

    PubMed

    Song, Zhankui; Sun, Kaibiao

    2014-01-01

    A novel adaptive backstepping sliding mode control (ABSMC) law with fuzzy monitoring strategy is proposed for the tracking-control of a kind of nonlinear mechanical system. The proposed ABSMC scheme combining the sliding mode control and backstepping technique ensure that the occurrence of the sliding motion in finite-time and the trajectory of tracking-error converge to equilibrium point. To obtain a better perturbation rejection property, an adaptive control law is employed to compensate the lumped perturbation. Furthermore, we introduce fuzzy monitoring strategy to improve adaptive capacity and soften the control signal. The convergence and stability of the proposed control scheme are proved by using Lyaponov's method. Finally, numerical simulations demonstrate the effectiveness of the proposed control scheme.

  17. A fast converging robust controller using adaptive second order sliding mode.

    PubMed

    Mondal, Sanjoy; Mahanta, Chitralekha

    2012-11-01

    This paper proposes an adaptive second order sliding mode (SOSM) controller with a nonlinear sliding surface. The nonlinear sliding surface consists of a gain matrix having a variable damping ratio. Initially the sliding surface uses a low value of damping ratio to get a quick system response. As the closed loop system approaches the desired reference, the value of the damping ratio gets increased with an aim to reducing the overshoot and the settling time. The time derivative of the control signal is used to design the controller. The actual control input obtained by integrating the derivative control signal is smooth and chattering free. The adaptive tuning law used by the proposed controller eliminates the need of prior knowledge about the upper bound of system uncertainties. Simulation results demonstrate the effectiveness of the proposed control strategy.

  18. Non-linear adaptive sliding mode switching control with average dwell-time

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Zhang, Maoqing; Fei, Shumin

    2013-03-01

    In this article, an adaptive integral sliding mode control scheme is addressed for switched non-linear systems in the presence of model uncertainties and external disturbances. The control law includes two parts: a slide mode controller for the reduced model of the plant and a compensation controller to deal with the non-linear systems with parameter uncertainties. The adaptive updated laws have been derived from the switched multiple Lyapunov function method, also an admissible switching signal with average dwell-time technique is given. The simplicity of the proposed control scheme facilitates its implementation and the overall control scheme guarantees the global asymptotic stability in the Lyapunov sense such that the sliding surface of the control system is well reached. Simulation results are presented to demonstrate the effectiveness and the feasibility of the proposed approach.

  19. Adaptive terminal sliding-mode control strategy for DC-DC buck converters.

    PubMed

    Komurcugil, Hasan

    2012-11-01

    This paper presents an adaptive terminal sliding mode control (ATSMC) strategy for DC-DC buck converters. The idea behind this strategy is to use the terminal sliding mode control (TSMC) approach to assure finite time convergence of the output voltage error to the equilibrium point and integrate an adaptive law to the TSMC strategy so as to achieve a dynamic sliding line during the load variations. In addition, the influence of the controller parameters on the performance of closed-loop system is investigated. It is observed that the start up response of the output voltage becomes faster with increasing value of the fractional power used in the sliding function. On the other hand, the transient response of the output voltage, caused by the step change in the load, becomes faster with decreasing the value of the fractional power. Therefore, the value of fractional power is to be chosen to make a compromise between start up and transient responses of the converter. Performance of the proposed ATSMC strategy has been tested through computer simulations and experiments. The simulation results of the proposed ATSMC strategy are compared with the conventional SMC and TSMC strategies. It is shown that the ATSMC exhibits a considerable improvement in terms of a faster output voltage response during load changes.

  20. Adaptive discrete-time sliding-mode control of nonlinear systems described by Wiener models

    NASA Astrophysics Data System (ADS)

    Salhi, Houda; Kamoun, Samira; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2016-03-01

    In this paper, we propose an adaptive control scheme that can be applied to nonlinear systems with unknown parameters. The considered class of nonlinear systems is described by the block-oriented models, specifically, the Wiener models. These models consist of dynamic linear blocks in series with static nonlinear blocks. The proposed adaptive control method is based on the inverse of the nonlinear function block and on the discrete-time sliding-mode controller. The parameters adaptation are performed using a new recursive parametric estimation algorithm. This algorithm is developed using the adjustable model method and the least squares technique. A recursive least squares (RLS) algorithm is used to estimate the inverse nonlinear function. A time-varying gain is proposed, in the discrete-time sliding mode controller, to reduce the chattering problem. The stability of the closed-loop nonlinear system, with the proposed adaptive control scheme, has been proved. An application to a pH neutralisation process has been carried out and the simulation results clearly show the effectiveness of the proposed adaptive control scheme.

  1. Design of adaptive fuzzy wavelet neural sliding mode controller for uncertain nonlinear systems.

    PubMed

    Shahriari kahkeshi, Maryam; Sheikholeslam, Farid; Zekri, Maryam

    2013-05-01

    This paper proposes novel adaptive fuzzy wavelet neural sliding mode controller (AFWN-SMC) for a class of uncertain nonlinear systems. The main contribution of this paper is to design smooth sliding mode control (SMC) for a class of high-order nonlinear systems while the structure of the system is unknown and no prior knowledge about uncertainty is available. The proposed scheme composed of an Adaptive Fuzzy Wavelet Neural Controller (AFWNC) to construct equivalent control term and an Adaptive Proportional-Integral (A-PI) controller for implementing switching term to provide smooth control input. Asymptotical stability of the closed loop system is guaranteed, using the Lyapunov direct method. To show the efficiency of the proposed scheme, some numerical examples are provided. To validate the results obtained by proposed approach, some other methods are adopted from the literature and applied for comparison. Simulation results show superiority and capability of the proposed controller to improve the steady state performance and transient response specifications by using less numbers of fuzzy rules and on-line adaptive parameters in comparison to other methods. Furthermore, control effort has considerably decreased and chattering phenomenon has been completely removed.

  2. Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system.

    PubMed

    Lin, Faa-Jeng; Chen, Syuan-Yi; Shyu, Kuo-Kai

    2009-06-01

    In this paper, a robust dynamic sliding mode control system (RDSMC) using a recurrent Elman neural network (RENN) is proposed to control the position of a levitated object of a magnetic levitation system considering the uncertainties. First, a dynamic model of the magnetic levitation system is derived. Then, a proportional-integral-derivative (PID)-type sliding-mode control system (SMC) is adopted for tracking of the reference trajectories. Moreover, a new PID-type dynamic sliding-mode control system (DSMC) is proposed to reduce the chattering phenomenon. However, due to the hardware being limited and the uncertainty bound being unknown of the switching function for the DSMC, an RDSMC is proposed to improve the control performance and further increase the robustness of the magnetic levitation system. In the RDSMC, an RENN estimator is used to estimate an unknown nonlinear function of lumped uncertainty online and replace the switching function in the hitting control of the DSMC directly. The adaptive learning algorithms that trained the parameters of the RENN online are derived using Lyapunov stability theorem. Furthermore, a robust compensator is proposed to confront the uncertainties including approximation error, optimal parameter vectors, and higher order terms in Taylor series. Finally, some experimental results of tracking the various periodic trajectories demonstrate the validity of the proposed RDSMC for practical applications. PMID:19423437

  3. Adaptive sliding mode controller based on super-twist observer for tethered satellite system

    NASA Astrophysics Data System (ADS)

    Keshtkar, Sajjad; Poznyak, Alexander

    2016-09-01

    In this work, the sliding mode control based on the super-twist observer is presented. The parameters of the controller as well as the observer are admitted to be time-varying and depending on available current measurements. In view of that, the considered controller is referred to as an adaptive one. It is shown that the deviations of the generated state estimates from real state values together with a distance of the closed-loop system trajectories to a desired sliding surface reach a μ-zone around the origin in finite time. The application of the suggested controller is illustrated for the orientation of a tethered satellite system in a required position.

  4. Fault-tolerant nonlinear adaptive flight control using sliding mode online learning.

    PubMed

    Krüger, Thomas; Schnetter, Philipp; Placzek, Robin; Vörsmann, Peter

    2012-08-01

    An expanded nonlinear model inversion flight control strategy using sliding mode online learning for neural networks is presented. The proposed control strategy is implemented for a small unmanned aircraft system (UAS). This class of aircraft is very susceptible towards nonlinearities like atmospheric turbulence, model uncertainties and of course system failures. Therefore, these systems mark a sensible testbed to evaluate fault-tolerant, adaptive flight control strategies. Within this work the concept of feedback linearization is combined with feed forward neural networks to compensate for inversion errors and other nonlinear effects. Backpropagation-based adaption laws of the network weights are used for online training. Within these adaption laws the standard gradient descent backpropagation algorithm is augmented with the concept of sliding mode control (SMC). Implemented as a learning algorithm, this nonlinear control strategy treats the neural network as a controlled system and allows a stable, dynamic calculation of the learning rates. While considering the system's stability, this robust online learning method therefore offers a higher speed of convergence, especially in the presence of external disturbances. The SMC-based flight controller is tested and compared with the standard gradient descent backpropagation algorithm in the presence of system failures.

  5. Adaptive Actor-Critic Design-Based Integral Sliding-Mode Control for Partially Unknown Nonlinear Systems With Input Disturbances.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong

    2016-01-01

    This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor-critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.

  6. Adaptive Actor-Critic Design-Based Integral Sliding-Mode Control for Partially Unknown Nonlinear Systems With Input Disturbances.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong

    2016-01-01

    This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor-critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method. PMID:26357411

  7. Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control.

    PubMed

    Li, Le-Bao; Sun, Ling-Ling; Zhang, Sheng-Zhou; Yang, Qing-Quan

    2015-09-01

    A new control approach for speed tracking and synchronization of multiple motors is developed, by incorporating an adaptive sliding mode control (ASMC) technique into a ring coupling synchronization control structure. This control approach can stabilize speed tracking of each motor and synchronize its motion with other motors' motion so that speed tracking errors and synchronization errors converge to zero. Moreover, an adaptive law is exploited to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort and attenuate chattering. Performance comparisons with parallel control, relative coupling control and conventional PI control are investigated on a four-motor synchronization control system. Extensive simulation results show the effectiveness of the proposed control scheme.

  8. A New Controller for PMSM Servo Drive Based on the Sliding Mode Approach with Parameter Adaptation

    NASA Astrophysics Data System (ADS)

    Gjini, Orges; Kaneko, Takayuki; Ohsawa, Hiroshi

    A novel controller based on the Sliding Mode (SM) approach is designed for controlling a permanent magnet synchronous motor (PMSM) in a servo drive. After analyzing the classical SM controller, changes are made in the controller design such that its performance is substantially improved. To improve the controller performance in steady state (zero error positioning) an integral block is added to the controller resulting in a new controller configuration, which we call Sliding Mode Integral (SMI) controller. The new controller is tuned based on the results from parameter identification of the motor and the working machine. To cope with model parameter variations, especially unpredictable friction changes, gain scheduling and fuzzy based adaptive techniques are used in the control algorithm. Experiments and simulations are carried out and their results show a high performance control. The new controller offers very good tracking; it is highly robust, reaches the final position very fast and has a large stall torque. Furthermore the application of the SM ensures reduction of the system order by one. For comparison, the new controller's performance is compared with that of a PI controller. From the experimental results it is obvious the superiority of the new proposed controller.

  9. Decentralized adaptive sliding mode control for beam synchronization of tethered InSAR system

    NASA Astrophysics Data System (ADS)

    Zhang, Jinxiu; Zhang, Zhigang; Wu, Baolin

    2016-10-01

    Beam synchronization problem of tethered interferometric synthetic aperture radar (InSAR) is addressed in this paper. Two antennas of the system are carried by separate satellites connected through a tether to obtain a preferable baseline. A Total Zero Doppler Steering (TZDS) is implemented to mother-satellite to cancel the residual Doppler. Subsequently attitude reference trajectories for the two satellites are generated to achieve the beam synchronization and TZDS. Thereafter, a decentralized adaptive sliding mode control law is proposed to track these reference trajectories in the presence of model uncertainties and external disturbances. Finally, the stability of closed-loop system is proved by the corollary of Barbalat's Lemma. Simulation results show the proposed control law is effective to achieve beam synchronization of the system.

  10. Bifurcations, chaos and adaptive backstepping sliding mode control of a power system with excitation limitation

    NASA Astrophysics Data System (ADS)

    Min, Fuhong; Wang, Yaoda; Peng, Guangya; Wang, Enrong; Auth, Jane A.

    2016-08-01

    The bifurcation and Lyapunov exponent for a single-machine-infinite bus system with excitation model are carried out by varying the mechanical power, generator damping factor and the exciter gain, from which periodic motions, chaos and the divergence of system are observed respectively. From given parameters and different initial conditions, the coexisting motions are developed in power system. The dynamic behaviors in power system may switch freely between the coexisting motions, which will bring huge security menace to protection operation. Especially, the angle divergences due to the break of stable chaotic oscillation are found which causes the instability of power system. Finally, a new adaptive backstepping sliding mode controller is designed which aims to eliminate the angle divergences and make the power system run in stable orbits. Numerical simulations are illustrated to verify the effectivity of the proposed method.

  11. Mean deviation coupling synchronous control for multiple motors via second-order adaptive sliding mode control.

    PubMed

    Li, Lebao; Sun, Lingling; Zhang, Shengzhou

    2016-05-01

    A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master-slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme. PMID:26899554

  12. 6-DOF robust adaptive terminal sliding mode control for spacecraft formation flying

    NASA Astrophysics Data System (ADS)

    Wang, Jianying; Sun, Zhaowei

    2012-04-01

    This paper addresses the tracking control problem of the leader-follower spacecraft formation, by which we mean that the relative motion between the leader and the follower is required to track a desired time-varying trajectory given in advance. Using dual number, the six-degree-of-freedom motion of the follower spacecraft relative to the leader spacecraft is modeled, where the coupling effect between the translational motion and the rotational one is accounted. A robust adaptive terminal sliding mode control law, including the adaptive algorithms, is proposed to ensure the finite time convergence of the relative motion tracking errors despite the presence of model uncertainties and external disturbances, based on which a modified controller is furthermore developed to solve the dual-equilibrium problem caused by dual quaternion representation. In addition, to alleviate the chattering, hyperbolic tangent function is adopted to substitute for the sign function. And by theoretical analysis, it is proved that the tracking error in such case will converge to a neighborhood of the origin in finite time. Finally, numerical simulations are performed to demonstrate the validity of the proposed approaches.

  13. Mean deviation coupling synchronous control for multiple motors via second-order adaptive sliding mode control.

    PubMed

    Li, Lebao; Sun, Lingling; Zhang, Shengzhou

    2016-05-01

    A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master-slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme.

  14. A novel adaptive switching function on fault tolerable sliding mode control for uncertain stochastic systems.

    PubMed

    Zahiripour, Seyed Ali; Jalali, Ali Akbar

    2014-09-01

    A novel switching function based on an optimization strategy for the sliding mode control (SMC) method has been provided for uncertain stochastic systems subject to actuator degradation such that the closed-loop system is globally asymptotically stable with probability one. In the previous researches the focus on sliding surface has been on proportional or proportional-integral function of states. In this research, from a degree of freedom that depends on designer choice is used to meet certain objectives. In the design of the switching function, there is a parameter which the designer can regulate for specified objectives. A sliding-mode controller is synthesized to ensure the reachability of the specified switching surface, despite actuator degradation and uncertainties. Finally, the simulation results demonstrate the effectiveness of the proposed method.

  15. Adaptive backstepping sliding mode control of flexible ball screw drives with time-varying parametric uncertainties and disturbances.

    PubMed

    Dong, Liang; Tang, Wen Cheng

    2014-01-01

    This paper presents a method to model and design servo controllers for flexible ball screw drives with dynamic variations. A mathematical model describing the structural flexibility of the ball screw drive containing time-varying uncertainties and disturbances with unknown bounds is proposed. A mode-compensating adaptive backstepping sliding mode controller is designed to suppress the vibration. The time-varying uncertainties and disturbances represented in finite-term Fourier series can be estimated by updating the Fourier coefficients through function approximation technique. Adaptive laws are obtained from Lyapunov approach to guarantee the convergence and stability of the closed loop system. The simulation results indicate that the tracking accuracy is improved considerably with the proposed scheme when the time-varying parametric uncertainties and disturbances exist.

  16. A novel discrete adaptive sliding-mode-like control method for ionic polymer-metal composite manipulators

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyong; Hao, Lina; Chen, Wenlin; Li, Zhi; Liu, Liqun

    2013-09-01

    Ionic polymer-metal composite (IPMC), also called artificial muscle, is an EAP material which can generate a relatively large deformation with a low driving voltage (generally less than 5 V). Like other EAP materials, IPMC possesses strong nonlinear properties, which can be described as a hybrid of back-relaxation (BR) and hysteresis characteristics, which also vary with water content, environmental temperature and even the usage consumption. Nowadays, many control approaches have been developed to tune the IPMC actuators, among which adaptive methods show a particular striking performance. To deal with IPMCs’ nonlinear problem, this paper represents a robust discrete adaptive inverse (AI) control approach, which employs an on-line identification technique based on the BR operator and Prandtl-Ishlinskii (PI) hysteresis operator hybrid model estimation method. Here the newly formed control approach is called discrete adaptive sliding-mode-like control (DASMLC) due to the similarity of its design method to that of a sliding mode controller. The weighted least mean squares (WLMS) identification method was employed to estimate the hybrid IPMC model because of its advantage of insensitivity to environmental noise. Experiments with the DASMLC approach and a conventional PID controller were carried out to compare and demonstrate the proposed controller’s better performance.

  17. Design and Experimental Evaluation of a Robust Position Controller for an Electrohydrostatic Actuator Using Adaptive Antiwindup Sliding Mode Scheme

    PubMed Central

    Lee, Ji Min; Park, Sung Hwan; Kim, Jong Shik

    2013-01-01

    A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. PMID:23983640

  18. Design and experimental evaluation of a robust position controller for an electrohydrostatic actuator using adaptive antiwindup sliding mode scheme.

    PubMed

    Lee, Ji Min; Park, Sung Hwan; Kim, Jong Shik

    2013-01-01

    A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities.

  19. Active Pneumatic Vibration Control by Using Pressure and Velocity Measurements and Adaptive Fuzzy Sliding-Mode Controller

    PubMed Central

    Chen, Hung-Yi; Liang, Jin-Wei; Wu, Jia-Wei

    2013-01-01

    This paper presents an intelligent control strategy to overcome nonlinear and time-varying characteristics of a diaphragm-type pneumatic vibration isolator (PVI) system. By combining an adaptive rule with fuzzy and sliding-mode control, the method has online learning ability when it faces the system's nonlinear and time-varying behaviors during an active vibration control process. Since the proposed scheme has a simple structure, it is easy to implement. To validate the proposed scheme, a composite control which adopts both chamber pressure and payload velocity as feedback signal is implemented. During experimental investigations, sinusoidal excitation at resonance and random-like signal are input on a floor base to simulate ground vibration. Performances obtained from the proposed scheme are compared with those obtained from passive system and PID scheme to illustrate the effectiveness of the proposed intelligent control. PMID:23820746

  20. Designing adaptive integral sliding mode control for heart rate regulation during cycle-ergometer exercise using bio-feedback.

    PubMed

    Argha, Ahmadreza; Su, Steven W; Nguyen, Hung; Celler, Branko G

    2015-01-01

    This paper considers our developed control system which aims to regulate the exercising subjects' heart rate (HR) to a predefined profile. The controller would be an adaptive integral sliding mode controller. Here it is assumed that the controller commands are interpreted as biofeedback auditory commands. These commands can be heard and implemented by the exercising subject as a part of the control-loop. However, transmitting a feedback signal while the pedals are not in the appropriate position to efficiently exert force may lead to a cognitive disengagement of the user from the feedback controller. To address this problem this paper will employ a different form of control system regarding as "actuator-based event-driven control system". This paper will claim that the developed event-driven controller makes it possible to effectively regulate HR to a predetermined HR profile.

  1. An experimental comparison of proportional-integral, sliding mode, and robust adaptive control for piezo-actuated nanopositioning stages.

    PubMed

    Gu, Guo-Ying; Zhu, Li-Min

    2014-05-01

    This paper presents a comparative study of the proportional-integral (PI) control, sliding mode control (SMC), and robust adaptive control (RAC) for applications to piezo-actuated nanopositioning stages without the inverse hysteresis construction. For a fair comparison, the control parameters of the SMC and RAC are selected on the basis of the well-tuned parameters of the PI controller under same desired trajectories and sampling frequencies. The comparative results show that the RAC improves the tracking performance by 17 and 37 times than the PI controller in terms of the maximum tracking error e(m) and the root mean tracking error e(rms), respectively, while the RAC improves the tracking performance by 7 and 9 times than the SMC in terms of e(m) and e(rms), respectively.

  2. Design of an adaptive fuzzy sliding mode control for uncertain discrete-time nonlinear systems based on noisy measurements

    NASA Astrophysics Data System (ADS)

    Yoshimura, Toshio

    2016-02-01

    This paper presents the design of an adaptive fuzzy sliding mode control (AFSMC) for uncertain discrete-time nonlinear dynamic systems. The dynamic systems are described by a discrete-time state equation with nonlinear uncertainties, and the uncertainties include the modelling errors and the external disturbances to be unknown but nonlinear with the bounded properties. The states are measured by the restriction of measurement sensors and the contamination with independent measurement noises. The nonlinear uncertainties are approximated by using the fuzzy IF-THEN rules based on the universal approximation theorem, and the approximation error is compensated by adding an adaptive complementary term to the proposed AFSMC. The fuzzy inference approach based on the extended single input rule modules is proposed to reduce the number of the fuzzy IF-THEN rules. The estimates for the un-measurable states and the adjustable parameters are obtained by using the weighted least squares estimator and its simplified one. It is proved that under some conditions the estimation errors will remain in the vicinity of zero as time increases, and the states are ultimately bounded subject to the proposed AFSMC. The effectiveness of the proposed method is indicated through the simulation experiment of a simple numerical system.

  3. Synchronization analysis and control of three eccentric rotors in a vibrating system using adaptive sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo

    2016-05-01

    In this paper, self- and controlled synchronizations of three eccentric rotors (ERs) in line driven by induction motors rotating in the same direction in a vibrating system are investigated. The vibrating system is a typical underactuated mechanical-electromagnetic coupling system. The analysis and control of the vibrating system convert to the synchronization motion problem of three ERs. Firstly, the self-synchronization motion of three ERs is analyzed according to self-synchronization theory. The criterions of synchronization and stability of self-synchronous state are obtained by using a modified average perturbation method. The significant synchronization motion of three ERs with zero phase differences cannot be implemented according to self-synchronization theory through analysis and simulations. To implement the synchronization motion of three ERs with zero phase differences, an adaptive sliding mode control (ASMC) algorithm based on a modified master-slave control strategy is employed to design the controllers. The stability of the controllers is verified by using Lyapunov theorem. The performances of the controlled synchronization system are presented by simulations to demonstrate the effectiveness of controllers. Finally, the effects of reference speed and non-zero phase differences on the controlled system are discussed to show the strong robustness of the proposed controllers. Additionally, the dynamic responses of the vibrating system in different synchronous states are analyzed.

  4. A vehicle ABS adaptive sliding-mode control algorithm based on the vehicle velocity estimation and tyre/road friction coefficient estimations

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangwen; Xu, Yong; Pan, Ming; Ren, Fenghua

    2014-04-01

    A sliding-mode observer is designed to estimate the vehicle velocity with the measured vehicle acceleration, the wheel speeds and the braking torques. Based on the Burckhardt tyre model, the extended Kalman filter is designed to estimate the parameters of the Burckhardt model with the estimated vehicle velocity, the measured wheel speeds and the vehicle acceleration. According to the estimated parameters of the Burckhardt tyre model, the tyre/road friction coefficients and the optimal slip ratios are calculated. A vehicle adaptive sliding-mode control (SMC) algorithm is presented with the estimated vehicle velocity, the tyre/road friction coefficients and the optimal slip ratios. And the adjustment method of the sliding-mode gain factors is discussed. Based on the adaptive SMC algorithm, a vehicle's antilock braking system (ABS) control system model is built with the Simulink Toolbox. Under the single-road condition as well as the different road conditions, the performance of the vehicle ABS system is simulated with the vehicle velocity observer, the tyre/road friction coefficient estimator and the adaptive SMC algorithm. The results indicate that the estimated errors of the vehicle velocity and the tyre/road friction coefficients are acceptable and the vehicle ABS adaptive SMC algorithm is effective. So the proposed adaptive SMC algorithm can be used to control the vehicle ABS without the information of the vehicle velocity and the road conditions.

  5. Tracking with asymptotic sliding mode and adaptive input delay effect compensation of nonlinearly perturbed delayed systems applied to traffic feedback control

    NASA Astrophysics Data System (ADS)

    Mirkin, Boris; Haddad, Jack; Shtessel, Yuri

    2016-09-01

    Asymptotical sliding mode-model reference adaptive control design for a class of systems with parametric uncertainty, unknown nonlinear perturbation and external disturbance, and with known input and state delays is proposed. To overcome the difficulty to directly predict the plant state under uncertainties, a control design is based on a developed decomposition procedure, where a 'generalised error' in conjunction with auxiliary linear dynamic blocks with adjustable gains is introduced and the sliding variable is formed on the basis of this error. The effect of such a decomposition is to pull the input delay out of first step of the design procedure. As a result, similarly to the classical Smith predictor, the adaptive control architecture based only on the lumped-delays, i.e. without conventional in such cases difficult-implemented distributed-delay blocks. Two new adaptive control schemes are proposed. A linearisation-based control design is constructed for feedback control of an urban traffic region model with uncertain dynamics. Simulation results demonstrate the effectiveness of the developed adaptive control method.

  6. Supersonic flutter suppression of electrorheological fluid-based adaptive panels resting on elastic foundations using sliding mode control

    NASA Astrophysics Data System (ADS)

    Hasheminejad, Seyyed M.; Nezami, M.; Aryaee Panah, M. E.

    2012-04-01

    Brief reviews on suppressing panel flutter vibrations by various active control strategies as well as utilization tunable electrorheological fluids (ERFs) for vibration control of structural systems are presented. Active suppression of the supersonic flutter motion of a simply supported sandwich panel with a tunable ERF interlayer, and coupled to an elastic foundation, is subsequently investigated. The structural formulation is based on the classical beam theory along with the Winkler-Pasternak foundation model, the ER fluid core is modeled as a first-order Kelvin-Voigt material, and the quasi-steady first-order supersonic piston theory is employed to describe the aerodynamic loading. Hamilton’s principle is used to derive a set of fully coupled dynamic equations of motion. The generalized Fourier expansions in conjunction with the Galerkin method are then employed to formulate the governing equations in the state space domain. The critical dynamic pressures at which unstable panel oscillations (coalescence of eigenvalues) occur are obtained via the p-method for selected applied electric field strengths (E = 0,2,4 kV mm-1). The classical Runge-Kutta time integration algorithm is subsequently used to calculate the open-loop aeroelastic response of the system in various basic loading configurations (i.e. uniformly distributed blast, gust, sonic boom, and step loads), with or without an interacting soft/stiff elastic foundation. Finally, a sliding mode control synthesis (SMC) involving the first six natural modes of the structural system is set up to actively suppress the closed-loop system response in supersonic flight conditions and under the imposed excitations. Simulation results demonstrate performance, effectiveness, and insensitivity with respect to the spillover of the proposed SMC-based control system. Limiting cases are considered and good agreements with the data available in the literature as well as with the computations made by using the Rayleigh

  7. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    PubMed

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine.

  8. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    PubMed

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. PMID:26303957

  9. Hybrid neural network fraction integral terminal sliding mode control of an Inchworm robot manipulator

    NASA Astrophysics Data System (ADS)

    Rahmani, Mehran; Ghanbari, Ahmad; Ettefagh, Mir Mohammad

    2016-12-01

    This paper proposes a control scheme based on the fraction integral terminal sliding mode control and adaptive neural network. It deals with the system model uncertainties and the disturbances to improve the control performance of the Inchworm robot manipulator. A fraction integral terminal sliding mode control applies to the Inchworm robot manipulator to obtain the initial stability. Also, an adaptive neural network is designed to approximate the system uncertainties and unknown disturbances to reduce chattering phenomena. The weight matrix of the proposed adaptive neural network can be updated online, according to the current state error information. The stability of the proposed control method is proved by Lyapunov theory. The performance of the adaptive neural network fraction integral terminal sliding mode control is compared with three other conventional controllers such as sliding mode control, integral terminal sliding mode control and fraction integral terminal sliding mode control. Simulation results show the effectiveness of the proposed control method.

  10. Adaptive fuzzy sliding mode control for uncertain multi-input multi-output discrete-time systems using a set of noisy measurements

    NASA Astrophysics Data System (ADS)

    Yoshimura, Toshio

    2015-01-01

    This paper is concerned with the design of an adaptive fuzzy sliding mode control (AFSMC) for uncertain nonlinear multi-input multi-output (MIMO) dynamic systems using a set of noisy measurements. The dynamic systems to be considered here are described by a discrete-time nonlinear state equation with mismatched uncertainties, and the states are measured by the restriction of measurement sensors and the contamination of independent random noises. The estimates for the unmeasurable states and the uncertainties are obtained by using the weighted extended Kalman filter. In the design of the proposed AFSMC, the adaptive switching factor characterising the switching control is designed using the fuzzy inference approach where the unknown gain of the switching control is assumed to be a positive definite matrix. It is proved that under some conditions the estimation errors will converge to zero as the time tends to infinity, and the states are ultimately bounded under the action of the proposed AFSMC. The effectiveness of the proposed method is indicated through the simulation experiment of an active suspension system for a half-car model.

  11. Theory of sliding-mode triboelectric nanogenerators.

    PubMed

    Niu, Simiao; Liu, Ying; Wang, Sihong; Lin, Long; Zhou, Yu Sheng; Hu, Youfan; Wang, Zhong Lin

    2013-11-20

    The triboelectric nanogenerator (TENG) is a powerful approach toward new energy technology, especially for portable electronics. A theoretical model for the sliding-mode TENG is presented in this work. The finite element method was utilized to characterize the distributions of electric potential, electric field, and charges on the metal electrodes of the TENG. Based on the FEM calculation, the semi-analytical results from the interpolation method and the analytical V-Q-x relationship are built to study the sliding-mode TENG. The analytical V-Q-x equation is validated through comparison with the semi-analytical results. Furthermore, based on the analytical V-Q-x equation, dynamic output performance of sliding-mode TENG is calculated with arbitrary load resistance, and good agreement with experimental data is achieved. The theory presented here is a milestone work for in-depth understanding of the working mechanism of the sliding-mode TENG, and provides a theoretical basis for further enhancement of the sliding-mode TENG for both energy scavenging and self-powered sensor applications.

  12. Optimal second order sliding mode control for nonlinear uncertain systems.

    PubMed

    Das, Madhulika; Mahanta, Chitralekha

    2014-07-01

    In this paper, a chattering free optimal second order sliding mode control (OSOSMC) method is proposed to stabilize nonlinear systems affected by uncertainties. The nonlinear optimal control strategy is based on the control Lyapunov function (CLF). For ensuring robustness of the optimal controller in the presence of parametric uncertainty and external disturbances, a sliding mode control scheme is realized by combining an integral and a terminal sliding surface. The resulting second order sliding mode can effectively reduce chattering in the control input. Simulation results confirm the supremacy of the proposed optimal second order sliding mode control over some existing sliding mode controllers in controlling nonlinear systems affected by uncertainty.

  13. Finite-time control of DC-DC buck converters via integral terminal sliding modes

    NASA Astrophysics Data System (ADS)

    Chiu, Chian-Song; Shen, Chih-Teng

    2012-05-01

    This article presents novel terminal sliding modes for finite-time output tracking control of DC-DC buck converters. Instead of using traditional singular terminal sliding mode, two integral terminal sliding modes are introduced for robust output voltage tracking of uncertain buck converters. Different from traditional sliding mode control (SMC), the proposed controller assures finite convergence time for the tracking error and integral tracking error. Furthermore, the singular problem in traditional terminal SMC is removed from this article. When considering worse modelling, adaptive integral terminal SMC is derived to guarantee finite-time convergence under more relaxed stability conditions. In addition, several experiments show better start-up performance and robustness.

  14. Analysis and Synthesis of Memory-Based Fuzzy Sliding Mode Controllers.

    PubMed

    Zhang, Jinhui; Lin, Yujuan; Feng, Gang

    2015-12-01

    This paper addresses the sliding mode control problem for a class of Takagi-Sugeno fuzzy systems with matched uncertainties. Different from the conventional memoryless sliding surface, a memory-based sliding surface is proposed which consists of not only the current state but also the delayed state. Both robust and adaptive fuzzy sliding mode controllers are designed based on the proposed memory-based sliding surface. It is shown that the sliding surface can be reached and the closed-loop control system is asymptotically stable. Furthermore, to reduce the chattering, some continuous sliding mode controllers are also presented. Finally, the ball and beam system is used to illustrate the advantages and effectiveness of the proposed approaches. It can be seen that, with the proposed control approaches, not only can the stability be guaranteed, but also its transient performance can be improved significantly.

  15. Interpolating sliding mode observer for a ball and beam system

    NASA Astrophysics Data System (ADS)

    Luai Hammadih, Mohammad; Hosani, Khalifa Al; Boiko, Igor

    2016-09-01

    A principle of interpolating sliding mode observer is introduced in this paper. The observer incorporates multiple linear observers through interpolation of multiple estimates, which is treated as a type of adaptation. The principle is then applied to the ball and beam system for observation of the slope of the beam from the measurement of the ball position. The linearised model of the ball and beam system using multiple linearisation points is developed. The observer dynamics implemented in Matlab/Simulink Real Time Workshop environment. Experiments conducted on the ball and beam experimental setup demonstrate excellent performance of the designed novel interpolating (adaptive) observer.

  16. Sliding mode control with PID sliding surface and experimental application to an electromechanical plant.

    PubMed

    Eker, Ilyas

    2006-01-01

    In this study, a sliding mode control system with a proportional+integral+derivative (PID) sliding surface is adopted to control the speed of an electromechanical plant. A robust sliding mode controller is derived so that the actual trajectory tracks the desired trajectory despite uncertainty, nonlinear dynamics, and external disturbances. The proposed sliding mode controller is chosen to ensure the stability of overall dynamics during the reaching phase and sliding phase. The stability of the system is guaranteed in the sense of the Lyapunov stability theorem. The chattering problem is overcome using a hyperbolic function for the sliding surface. Experimental results that are compared with the results of conventional PID verify that the proposed sliding mode controller can achieve favorable tracking performance, and it is robust with regard to uncertainties and disturbances.

  17. Multivariable robust adaptive sliding mode control of an industrial boiler-turbine in the presence of modeling imprecisions and external disturbances: A comparison with type-I servo controller.

    PubMed

    Ghabraei, Soheil; Moradi, Hamed; Vossoughi, Gholamreza

    2015-09-01

    To guarantee the safety and efficient performance of the power plant, a robust controller for the boiler-turbine unit is needed. In this paper, a robust adaptive sliding mode controller (RASMC) is proposed to control a nonlinear multi-input multi-output (MIMO) model of industrial boiler-turbine unit, in the presence of unknown bounded uncertainties and external disturbances. To overcome the coupled nonlinearities and investigate the zero dynamics, input-output linearization is performed, and then the new decoupled inputs are derived. To tackle the uncertainties and external disturbances, appropriate adaption laws are introduced. For constructing the RASMC, suitable sliding surface is considered. To guarantee the sliding motion occurrence, appropriate control laws are constructed. Then the robustness and stability of the proposed RASMC is proved via Lyapunov stability theory. To compare the performance of the purposed RASMC with traditional control schemes, a type-I servo controller is designed. To evaluate the performance of the proposed control schemes, simulation studies on nonlinear MIMO dynamic system in the presence of high frequency bounded uncertainties and external disturbances are conducted and compared. Comparison of the results reveals the superiority of proposed RASMC over the traditional control schemes. RAMSC acts efficiently in disturbance rejection and keeping the system behavior in desirable tracking objectives, without the existence of unstable quasi-periodic solutions. PMID:25983065

  18. Multivariable robust adaptive sliding mode control of an industrial boiler-turbine in the presence of modeling imprecisions and external disturbances: A comparison with type-I servo controller.

    PubMed

    Ghabraei, Soheil; Moradi, Hamed; Vossoughi, Gholamreza

    2015-09-01

    To guarantee the safety and efficient performance of the power plant, a robust controller for the boiler-turbine unit is needed. In this paper, a robust adaptive sliding mode controller (RASMC) is proposed to control a nonlinear multi-input multi-output (MIMO) model of industrial boiler-turbine unit, in the presence of unknown bounded uncertainties and external disturbances. To overcome the coupled nonlinearities and investigate the zero dynamics, input-output linearization is performed, and then the new decoupled inputs are derived. To tackle the uncertainties and external disturbances, appropriate adaption laws are introduced. For constructing the RASMC, suitable sliding surface is considered. To guarantee the sliding motion occurrence, appropriate control laws are constructed. Then the robustness and stability of the proposed RASMC is proved via Lyapunov stability theory. To compare the performance of the purposed RASMC with traditional control schemes, a type-I servo controller is designed. To evaluate the performance of the proposed control schemes, simulation studies on nonlinear MIMO dynamic system in the presence of high frequency bounded uncertainties and external disturbances are conducted and compared. Comparison of the results reveals the superiority of proposed RASMC over the traditional control schemes. RAMSC acts efficiently in disturbance rejection and keeping the system behavior in desirable tracking objectives, without the existence of unstable quasi-periodic solutions.

  19. Sliding Mode Control of Steerable Needles

    PubMed Central

    Rucker, D. Caleb; Das, Jadav; Gilbert, Hunter B.; Swaney, Philip J.; Miga, Michael I.; Sarkar, Nilanjan; Webster, Robert J.

    2014-01-01

    Steerable needles can potentially increase the accuracy of needle-based diagnosis and therapy delivery, provided they can be adequately controlled based on medical image information. We propose a novel sliding mode control law that can be used to deliver the tip of a flexible asymmetric-tipped needle to a desired point, or to track a desired trajectory within tissue. The proposed control strategy requires no a priori knowledge of model parameters, has bounded input speeds, and requires little computational resources. We show that if the standard nonholonomic model for tip-steered needles holds, then the control law will converge to desired targets in a reachable workspace, within a tolerance that can be defined by the control parameters. Experimental results validate the control law for target points and trajectory following in phantom tissue and ex vivo liver. Experiments with targets that move during insertion illustrate robustness to disturbances caused by tissue deformation. PMID:25400527

  20. Sliding Mode Control of Steerable Needles.

    PubMed

    Rucker, D Caleb; Das, Jadav; Gilbert, Hunter B; Swaney, Philip J; Miga, Michael I; Sarkar, Nilanjan; Webster, Robert J

    2013-10-01

    Steerable needles can potentially increase the accuracy of needle-based diagnosis and therapy delivery, provided they can be adequately controlled based on medical image information. We propose a novel sliding mode control law that can be used to deliver the tip of a flexible asymmetric-tipped needle to a desired point, or to track a desired trajectory within tissue. The proposed control strategy requires no a priori knowledge of model parameters, has bounded input speeds, and requires little computational resources. We show that if the standard nonholonomic model for tip-steered needles holds, then the control law will converge to desired targets in a reachable workspace, within a tolerance that can be defined by the control parameters. Experimental results validate the control law for target points and trajectory following in phantom tissue and ex vivo liver. Experiments with targets that move during insertion illustrate robustness to disturbances caused by tissue deformation.

  1. Optimal second order sliding mode control for linear uncertain systems.

    PubMed

    Das, Madhulika; Mahanta, Chitralekha

    2014-11-01

    In this paper an optimal second order sliding mode controller (OSOSMC) is proposed to track a linear uncertain system. The optimal controller based on the linear quadratic regulator method is designed for the nominal system. An integral sliding mode controller is combined with the optimal controller to ensure robustness of the linear system which is affected by parametric uncertainties and external disturbances. To achieve finite time convergence of the sliding mode, a nonsingular terminal sliding surface is added with the integral sliding surface giving rise to a second order sliding mode controller. The main advantage of the proposed OSOSMC is that the control input is substantially reduced and it becomes chattering free. Simulation results confirm superiority of the proposed OSOSMC over some existing.

  2. Phase and speed synchronization control of four eccentric rotors driven by induction motors in a linear vibratory feeder with unknown time-varying load torques using adaptive sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo

    2016-05-01

    In this paper, phase and speed synchronization control of four eccentric rotors (ERs) driven by induction motors in a linear vibratory feeder with unknown time-varying load torques is studied. Firstly, the electromechanical coupling model of the linear vibratory feeder is established by associating induction motor's model with the dynamic model of the system, which is a typical under actuated model. According to the characteristics of the linear vibratory feeder, the complex control problem of the under actuated electromechanical coupling model converts to phase and speed synchronization control of four ERs. In order to keep the four ERs operating synchronously with zero phase differences, phase and speed synchronization controllers are designed by employing adaptive sliding mode control (ASMC) algorithm via a modified master-slave structure. The stability of the controllers is proved by Lyapunov stability theorem. The proposed controllers are verified by simulation via Matlab/Simulink program and compared with the conventional sliding mode control (SMC) algorithm. The results show the proposed controllers can reject the time-varying load torques effectively and four ERs can operate synchronously with zero phase differences. Moreover, the control performance is better than the conventional SMC algorithm and the chattering phenomenon is attenuated. Furthermore, the effects of reference speed and parametric perturbations are discussed to show the strong robustness of the proposed controllers. Finally, experiments on a simple vibratory test bench are operated by using the proposed controllers and without control, respectively, to validate the effectiveness of the proposed controllers further.

  3. Application of partial sliding mode in guidance problem.

    PubMed

    Shafiei, M H; Binazadeh, T

    2013-03-01

    In this paper, the problem of 3-dimensional guidance law design is considered and a new guidance law based on partial sliding mode technique is presented. The approach is based on the classification of the state variables within the guidance system dynamics with respect to their required stabilization properties. In the proposed law by using a partial sliding mode technique, only trajectories of a part of states variables are forced to reach the partial sliding surfaces and slide on them. The resulting guidance law enables the missile to intercept highly maneuvering targets within a finite interception time. Effectiveness of the proposed guidance law is demonstrated through analysis and simulations.

  4. A Sliding Mode Control with Optimized Sliding Surface for Aircraft Pitch Axis Control System

    NASA Astrophysics Data System (ADS)

    Lee, Sangchul; Kim, Kwangjin; Kim, Youdan

    A sliding mode controller with an optimized sliding surface is proposed for an aircraft control system. The quadratic type of performance index for minimizing the angle of attack and the angular rate of the aircraft in the longitudinal motion is used to design the sliding surface. For optimization of the sliding surface, a Hamilton-Jacobi-Bellman (HJB) equation is formulated and it is solved through a numerical algorithm using a Generalized HJB (GHJB) equation and the Galerkin spectral method. The solution of this equation denotes a nonlinear sliding surface, on which the trajectory of the system approximately satisfies the optimality condition. Numerical simulation is performed for a nonlinear aircraft model with an optimized sliding surface and a simple linear sliding surface. The simulation result demonstrates that the proposed controller can be effectively applied to the longitudinal maneuver of an aircraft.

  5. Compensation of significant parametric uncertainties using sliding mode online learning

    NASA Astrophysics Data System (ADS)

    Schnetter, Philipp; Kruger, Thomas

    An augmented nonlinear inverse dynamics (NID) flight control strategy using sliding mode online learning for a small unmanned aircraft system (UAS) is presented. Because parameter identification for this class of aircraft often is not valid throughout the complete flight envelope, aerodynamic parameters used for model based control strategies may show significant deviations. For the concept of feedback linearization this leads to inversion errors that in combination with the distinctive susceptibility of small UAS towards atmospheric turbulence pose a demanding control task for these systems. In this work an adaptive flight control strategy using feedforward neural networks for counteracting such nonlinear effects is augmented with the concept of sliding mode control (SMC). SMC-learning is derived from variable structure theory. It considers a neural network and its training as a control problem. It is shown that by the dynamic calculation of the learning rates, stability can be guaranteed and thus increase the robustness against external disturbances and system failures. With the resulting higher speed of convergence a wide range of simultaneously occurring disturbances can be compensated. The SMC-based flight controller is tested and compared to the standard gradient descent (GD) backpropagation algorithm under the influence of significant model uncertainties and system failures.

  6. Robust sliding mode control applied to double Inverted pendulum system

    SciTech Connect

    Mahjoub, Sonia; Derbel, Nabil; Mnif, Faical

    2009-03-05

    A three hierarchical sliding mode control is presented for a class of an underactuated system which can overcome the mismatched perturbations. The considered underactuated system is a double inverted pendulum (DIP), can be modeled by three subsystems. Such structure allows the construction of several designs of hierarchies for the controller. For all hierarchical designs, the asymptotic stability of every layer sliding mode surface and the sliding mode surface of subsystems are proved theoretically by Barbalat's lemma. Simulation results show the validity of these methods.

  7. Robust sliding mode control applied to double Inverted pendulum system

    NASA Astrophysics Data System (ADS)

    Mahjoub, Sonia; Mnif, Faiçal; Derbel, Nabil

    2009-03-01

    A three hierarchical sliding mode control is presented for a class of an underactuated system which can overcome the mismatched perturbations. The considered underactuated system is a double inverted pendulum (DIP), can be modeled by three subsystems. Such structure allows the construction of several designs of hierarchies for the controller. For all hierarchical designs, the asymptotic stability of every layer sliding mode surface and the sliding mode surface of subsystems are proved theoretically by Barbalat's lemma. Simulation results show the validity of these methods.

  8. Second-order sliding mode control with experimental application.

    PubMed

    Eker, Ilyas

    2010-07-01

    In this article, a second-order sliding mode control (2-SMC) is proposed for second-order uncertain plants using equivalent control approach to improve the performance of control systems. A Proportional + Integral + Derivative (PID) sliding surface is used for the sliding mode. The sliding mode control law is derived using direct Lyapunov stability approach and asymptotic stability is proved theoretically. The performance of the closed-loop system is analysed through an experimental application to an electromechanical plant to show the feasibility and effectiveness of the proposed second-order sliding mode control and factors involved in the design. The second-order plant parameters are experimentally determined using input-output measured data. The results of the experimental application are presented to make a quantitative comparison with the traditional (first-order) sliding mode control (SMC) and PID control. It is demonstrated that the proposed 2-SMC system improves the performance of the closed-loop system with better tracking specifications in the case of external disturbances, better behavior of the output and faster convergence of the sliding surface while maintaining the stability.

  9. Sliding Mode Thermal Control System for Space Station Furnace Facility

    NASA Technical Reports Server (NTRS)

    Jackson Mark E.; Shtessel, Yuri B.

    1998-01-01

    The decoupled control of the nonlinear, multiinput-multioutput, and highly coupled space station furnace facility (SSFF) thermal control system is addressed. Sliding mode control theory, a subset of variable-structure control theory, is employed to increase the performance, robustness, and reliability of the SSFF's currently designed control system. This paper presents the nonlinear thermal control system description and develops the sliding mode controllers that cause the interconnected subsystems to operate in their local sliding modes, resulting in control system invariance to plant uncertainties and external and interaction disturbances. The desired decoupled flow-rate tracking is achieved by optimization of the local linear sliding mode equations. The controllers are implemented digitally and extensive simulation results are presented to show the flow-rate tracking robustness and invariance to plant uncertainties, nonlinearities, external disturbances, and variations of the system pressure supplied to the controlled subsystems.

  10. Sliding mode control application in ABWR plant pressure regulation

    SciTech Connect

    Huang, Zhengyu; Edwards, Robert M.

    2002-07-01

    A sliding mode controller is designed for an ABWR nuclear power plant turbine throttle pressure regulation. To avoid chattering problem, which is common to conventional sliding mode controllers, and estimation of uncertainties and disturbances, the recursive-form sliding mode control algorithm is developed. To apply the sliding mode control technique, the original plant's 11.-order dynamics model is first transformed to a canonical form differential equation of a relative order of 2 for turbine throttle pressure's dynamics. Simulation results show that the design objectives are achieved and the resulting controller is superior to the existing PI controller in many aspects, including settling time, overshoot/undershoot in response to setpoint step input and fluctuation amplitude in the presence of external disturbances. (authors)

  11. Sliding mode observers for automotive alternator

    NASA Astrophysics Data System (ADS)

    Chen, De-Shiou

    Estimator development for synchronous rectification of the automotive alternator is a desirable approach for estimating alternator's back electromotive forces (EMFs) without a direct mechanical sensor of the rotor position. Recent theoretical studies show that estimation of the back EMF may be observed based on system's phase current model by sensing electrical variables (AC phase currents and DC bus voltage) of the synchronous rectifier. Observer design of the back EMF estimation has been developed for constant engine speed. In this work, we are interested in nonlinear observer design of the back EMF estimation for the real case of variable engine speed. Initial back EMF estimate can be obtained from a first-order sliding mode observer (SMO) based on the phase current model. A fourth-order nonlinear asymptotic observer (NAO), complemented by the dynamics of the back EMF with time-varying frequency and amplitude, is then incorporated into the observer design for chattering reduction. Since the cost of required phase current sensors may be prohibitive, the most applicable approach in real implementation by measuring DC current of the synchronous rectifier is carried out in the dissertation. It is shown that the DC link current consists of sequential "windows" with partial information of the phase currents, hence, the cascaded NAO is responsible not only for the purpose of chattering reduction but also for necessarily accomplishing the process of estimation. Stability analyses of the proposed estimators are considered for most linear and time-varying cases. The stability of the NAO without speed information is substantiated by both numerical and experimental results. Prospective estimation algorithms for the case of battery current measurements are investigated. Theoretical study indicates that the convergence of the proposed LAO may be provided by high gain inputs. Since the order of the LAO/NAO for the battery current case is one order higher than that of the link

  12. Second order sliding mode control for a quadrotor UAV.

    PubMed

    Zheng, En-Hui; Xiong, Jing-Jing; Luo, Ji-Liang

    2014-07-01

    A method based on second order sliding mode control (2-SMC) is proposed to design controllers for a small quadrotor UAV. For the switching sliding manifold design, the selection of the coefficients of the switching sliding manifold is in general a sophisticated issue because the coefficients are nonlinear. In this work, in order to perform the position and attitude tracking control of the quadrotor perfectly, the dynamical model of the quadrotor is divided into two subsystems, i.e., a fully actuated subsystem and an underactuated subsystem. For the former, a sliding manifold is defined by combining the position and velocity tracking errors of one state variable, i.e., the sliding manifold has two coefficients. For the latter, a sliding manifold is constructed via a linear combination of position and velocity tracking errors of two state variables, i.e., the sliding manifold has four coefficients. In order to further obtain the nonlinear coefficients of the sliding manifold, Hurwitz stability analysis is used to the solving process. In addition, the flight controllers are derived by using Lyapunov theory, which guarantees that all system state trajectories reach and stay on the sliding surfaces. Extensive simulation results are given to illustrate the effectiveness of the proposed control method.

  13. Sliding mode controllers for a tempered glass furnace.

    PubMed

    Almutairi, Naif B; Zribi, Mohamed

    2016-01-01

    This paper investigates the design of two sliding mode controllers (SMCs) applied to a tempered glass furnace system. The main objective of the proposed controllers is to regulate the glass plate temperature, the upper-wall temperature and the lower-wall temperature in the furnace to a common desired temperature. The first controller is a conventional sliding mode controller. The key step in the design of this controller is the introduction of a nonlinear transformation that maps the dynamic model of the tempered glass furnace into the generalized controller canonical form; this step facilitates the design of the sliding mode controller. The second controller is based on a state-dependent coefficient (SDC) factorization of the tempered glass furnace dynamic model. Using an SDC factorization, a simplified sliding mode controller is designed. The simulation results indicate that the two proposed control schemes work very well. Moreover, the robustness of the control schemes to changes in the system's parameters as well as to disturbances is investigated. In addition, a comparison of the proposed control schemes with a fuzzy PID controller is performed; the results show that the proposed SDC-based sliding mode controller gave better results.

  14. Vehicle Hybrid Braking Control Using Sliding Mode Control

    NASA Astrophysics Data System (ADS)

    Kasahara, Misawa; Kanai, Yuki; Shiraki, Ryoko; Mori, Yasuchika

    Anti-lock brake system and brake-by-wire are proposed in the vehicle control using a brake, and the braking power is expected to be improved more than ever. The researches such as an application to the ABS of Siliding mode control which considered a actuator dynamics and a hybrid control of the brake using model reference adaptive control are done so far. However, in the former case, speed following that becomes a target exists physically impossible situation by saturation of tire frictional force because only speed following is done. In the latter, the model error is caused because the simulation model and the controller design model are different. Therefore, there is a problem that an accurate follow cannot be done. In this paper, the braking control is performed using the sliding mode control which has high robustness for disturbance that fulfils matching conditions. In so doing, it aims at the achievement of optimal braking control to switch wheel speed following to slip ratio following.

  15. Adaptive fuzzy switched swing-up and sliding control for the double-pendulum-and-cart system.

    PubMed

    Tao, Chin Wang; Taur, Jinshiuh; Chang, J H; Su, Shun-Feng

    2010-02-01

    In this paper, an adaptive fuzzy switched swing-up and sliding controller (AFSSSC) is proposed for the swing-up and position controls of a double-pendulum-and-cart system. The proposed AFSSSC consists of a fuzzy switching controller (FSC), an adaptive fuzzy swing-up controller (FSUC), and an adaptive hybrid fuzzy sliding controller (HFSC). To simplify the design of the adaptive HFSC, the double-pendulum-and-cart system is reformulated as a double-pendulum and a cart subsystem with matched time-varying uncertainties. In addition, an adaptive mechanism is provided to learn the parameters of the output fuzzy sets for the adaptive HFSC. The FSC is designed to smoothly switch between the adaptive FSUC and the adaptive HFSC. Moreover, the sliding mode and the stability of the fuzzy sliding control systems are guaranteed. Simulation results are included to illustrate the effectiveness of the proposed AFSSSC. PMID:19661002

  16. Fuzzy logic sliding mode control for command guidance law design.

    PubMed

    Elhalwagy, Y Z; Tarbouchi, M

    2004-04-01

    Recently, the combination of sliding mode and fuzzy logic techniques has emerged as a promising methodology for dealing with nonlinear, uncertain, dynamical systems. In this paper, a sliding mode control algorithm combined with a fuzzy control scheme is developed for the trajectory control of a command guidance system. The acceleration command input is mathematically derived. The proposed controller is used to compensate for the influence of unmodeled dynamics and to alleviate chattering. Simulation results show that the proposed controller gives good system performance in the face of system parameters variation and external disturbances. In addition, they show the effectiveness of the proposed missile guidance law against different engagement scenarios where the results demonstrate better performance over the conventional sliding mode control.

  17. A sliding mode controller for vehicular traffic flow

    NASA Astrophysics Data System (ADS)

    Li, Yongfu; Kang, Yuhao; Yang, Bin; Peeta, Srinivas; Zhang, Li; Zheng, Taixong; Li, Yinguo

    2016-11-01

    This study proposes a sliding mode controller for vehicular traffic flow based on a car-following model to enhance the smoothness and stability of traffic flow evolution. In particular, the full velocity difference (FVD) model is used to capture the characteristics of vehicular traffic flow. The proposed sliding mode controller is designed in terms of the error between the desired space headway and the actual space headway. The stability of the controller is guaranteed using the Lyapunov technique. Numerical experiments are used to compare the performance of sliding mode control (SMC) with that of feedback control. The results illustrate the effectiveness of the proposed SMC method in terms of the distribution smoothness and stability of the space headway, velocity, and acceleration profiles. They further illustrate that the SMC strategy is superior to that of the feedback control strategy, while enabling computational efficiency that can aid in practical applications.

  18. Robust sliding mode continuous control of an IM drive

    SciTech Connect

    Jezernik, K.; Hren, A.; Drevensek, D.

    1995-12-31

    A control approach for robust trajectory tracking of IM servodrive based on the variable structure systems (VSS) is described. A new discrete-time control algorithm has been developed by combining VSS and Lyapunov design. It possesses all the good properties of the sliding mode and avoids the unnecessary discontinuity of the control input, thus eliminating chattering which has been considering as serious obstacles for applications of VSS. A unified control approach for current, torque and motion control based on the discrete-time sliding mode for application in indirect vector control of an IM drive is developed. The sliding mode approach can be applied to the control of an Im drive due to the replacement of the hysteresis controller with widely used PWM technique. All the theoretical issues are verified by experiment. The experimental system consists of a transputer and a microcontroller, thus allowing parallel processing.

  19. Tensor product model transformation based decoupled terminal sliding mode control

    NASA Astrophysics Data System (ADS)

    Zhao, Guoliang; Li, Hongxing; Song, Zhankui

    2016-06-01

    The main objective of this paper is to propose a tensor product model transformation based decoupled terminal sliding mode controller design methodology. The methodology is divided into two steps. In the first step, tensor product model transformation is applied to the single-input-multi-output system and a parameter-varying weighted linear time-invariant system is obtained. Then, decoupled terminal sliding mode controller is designed based on the linear time-invariant systems. The main novelty of this paper is that the nonsingular terminal sliding mode control design is based on a numerical model rather than an analytical one. Finally, simulations are tested on cart-pole system and translational oscillations with a rotational actuator system.

  20. Composite fuzzy sliding mode control of nonlinear singularly perturbed systems.

    PubMed

    Nagarale, Ravindrakumar M; Patre, B M

    2014-05-01

    This paper deals with the robust asymptotic stabilization for a class of nonlinear singularly perturbed systems using the fuzzy sliding mode control technique. In the proposed approach the original system is decomposed into two subsystems as slow and fast models by the singularly perturbed method. The composite fuzzy sliding mode controller is designed for stabilizing the full order system by combining separately designed slow and fast fuzzy sliding mode controllers. The two-time scale design approach minimizes the effect of boundary layer system on the full order system. A stability analysis allows us to provide sufficient conditions for the asymptotic stability of the full order closed-loop system. The simulation results show improved system performance of the proposed controller as compared to existing methods. The experimentation results validate the effectiveness of the proposed controller.

  1. Output feedback sliding mode control under networked environment

    NASA Astrophysics Data System (ADS)

    Zhang, Jinhui; Lam, James; Xia, Yuanqing

    2013-04-01

    This article considers the problem of sliding mode output feedback control for networked control systems (NCSs). The key idea is to make use of not only the current and previous measurements, but also previous inputs for the reconstruction of the state variables. Using this idea, sliding mode controllers are designed for systems with constant or time-varying network delay. The approach is not only more practical but also easy to implement. To illustrate this, the design technique is applied to an inverted pendulum system.

  2. Sliding mode control of an FRC plasma axial position

    NASA Astrophysics Data System (ADS)

    Romero, Jesus Antonio; TAE Team

    2015-11-01

    We study the problem of controlling the position of an axially unstable FRC configuration by acting on discrete voltage levels applied to radial field coil actuators. Due to the discrete, on/off nature of the actuators, the control problem is treated using sliding mode control theory. In sliding mode control, we don't usually design the controllers (usually based on a hystheresis type control logic), but find instead a function of system states (sliding surface) that will act as the error signal with the desired asymptotically stable (sliding) behavior. A simplified rigid plasma model for axial position including perturbations is developed and used to derive a suitable sliding surface for the system. The asymptotic stability of this surface is demonstrated using Liapunov theory, and is shown to be fairly insensitive to plant parameter values. The result is that the proposed control can be used for both axially stable or unstable plasmas without the need to re-tune the parameters used in the sliding surface. This property is important because the equilibrium may have to transit between an axially stable and unstable equilibria on different phases of the FRC discharge. Numerical simulations show the robustness of the control scheme against plant uncertainties and perturbations.

  3. Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri; Hall, Charles; Jackson, Mark

    2000-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.

  4. Application of Sliding Mode Methods to the Design of Reconfigurable Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Wells, Scott R.

    2002-01-01

    Observer-based sliding mode control is investigated for application to aircraft reconfigurable flight control. A comprehensive overview of reconfigurable flight control is given, including, a review of the current state-of-the-art within the subdisciplines of fault detection, parameter identification, adaptive control schemes, and dynamic control allocation. Of the adaptive control methods reviewed, sliding mode control (SMC) appears very promising due its property of invariance to matched uncertainty. An overview of sliding mode control is given and its remarkable properties are demonstrated by example. Sliding mode methods, however, are difficult to implement because unmodeled parasitic dynamics cause immediate and severe instability. This presents a challenge for all practical applications with limited bandwidth actuators. One method to deal with parasitic dynamics is the use of an asymptotic observer in the feedback path. Observer-based SMC is investigated, and a method for selecting observer gains is offered. An additional method for shaping the feedback loop using a filter is also developed. It is shown that this SMC prefilter is equivalent to a form of model reference hedging. A complete design procedure is given which takes advantage of the sliding mode boundary layer to recast the SMC as a linear control law. Frequency domain loop shaping is then used to design the sliding manifold. Finally, three aircraft applications are demonstrated. An F-18/HARV is used to demonstrate a SISO pitch rate tracking controller. It is also used to demonstrate a MIMO lateral-directional roll rate tracking controller. The last application is a full linear six degree-of-freedom advanced tailless fighter model. The observer-based SMC is seen to provide excellent tracking with superior robustness to parameter changes and actuator failures.

  5. Robust Neural Sliding Mode Control of Robot Manipulators

    SciTech Connect

    Nguyen Tran Hiep; Pham Thuong Cat

    2009-03-05

    This paper proposes a robust neural sliding mode control method for robot tracking problem to overcome the noises and large uncertainties in robot dynamics. The Lyapunov direct method has been used to prove the stability of the overall system. Simulation results are given to illustrate the applicability of the proposed method.

  6. Sliding Mode Control (SMC) of Robot Manipulator via Intelligent Controllers

    NASA Astrophysics Data System (ADS)

    Kapoor, Neha; Ohri, Jyoti

    2016-06-01

    Inspite of so much research, key technical problem, naming chattering of conventional, simple and robust SMC is still a challenge to the researchers and hence limits its practical application. However, newly developed soft computing based techniques can provide solution. In order to have advantages of conventional and heuristic soft computing based control techniques, in this paper various commonly used intelligent techniques, neural network, fuzzy logic and adaptive neuro fuzzy inference system (ANFIS) have been combined with sliding mode controller (SMC). For validation, proposed hybrid control schemes have been implemented for tracking a predefined trajectory by robotic manipulator, incorporating structured and unstructured uncertainties in the system. After reviewing numerous papers, all the commonly occurring uncertainties like continuous disturbance, uniform random white noise, static friction like coulomb friction and viscous friction, dynamic friction like Dhal friction and LuGre friction have been inserted in the system. Various performance indices like norm of tracking error, chattering in control input, norm of input torque, disturbance rejection, chattering rejection have been used. Comparative results show that with almost eliminated chattering the intelligent SMC controllers are found to be more efficient over simple SMC. It has also been observed from results that ANFIS based controller has the best tracking performance with the reduced burden on the system. No paper in the literature has found to have all these structured and unstructured uncertainties together for motion control of robotic manipulator.

  7. Anomaly Detection in Test Equipment via Sliding Mode Observers

    NASA Technical Reports Server (NTRS)

    Solano, Wanda M.; Drakunov, Sergey V.

    2012-01-01

    Nonlinear observers were originally developed based on the ideas of variable structure control, and for the purpose of detecting disturbances in complex systems. In this anomaly detection application, these observers were designed for estimating the distributed state of fluid flow in a pipe described by a class of advection equations. The observer algorithm uses collected data in a piping system to estimate the distributed system state (pressure and velocity along a pipe containing liquid gas propellant flow) using only boundary measurements. These estimates are then used to further estimate and localize possible anomalies such as leaks or foreign objects, and instrumentation metering problems such as incorrect flow meter orifice plate size. The observer algorithm has the following parts: a mathematical model of the fluid flow, observer control algorithm, and an anomaly identification algorithm. The main functional operation of the algorithm is in creating the sliding mode in the observer system implemented as software. Once the sliding mode starts in the system, the equivalent value of the discontinuous function in sliding mode can be obtained by filtering out the high-frequency chattering component. In control theory, "observers" are dynamic algorithms for the online estimation of the current state of a dynamic system by measurements of an output of the system. Classical linear observers can provide optimal estimates of a system state in case of uncertainty modeled by white noise. For nonlinear cases, the theory of nonlinear observers has been developed and its success is mainly due to the sliding mode approach. Using the mathematical theory of variable structure systems with sliding modes, the observer algorithm is designed in such a way that it steers the output of the model to the output of the system obtained via a variety of sensors, in spite of possible mismatches between the assumed model and actual system. The unique properties of sliding mode control

  8. Sliding Mode Control Applied to Reconfigurable Flight Control Design

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Wells, S. R.; Bacon, Barton (Technical Monitor)

    2002-01-01

    Sliding mode control is applied to the design of a flight control system capable of operating with limited bandwidth actuators and in the presence of significant damage to the airframe and/or control effector actuators. Although inherently robust, sliding mode control algorithms have been hampered by their sensitivity to the effects of parasitic unmodeled dynamics, such as those associated with actuators and structural modes. It is known that asymptotic observers can alleviate this sensitivity while still allowing the system to exhibit significant robustness. This approach is demonstrated. The selection of the sliding manifold as well as the interpretation of the linear design that results after introduction of a boundary layer is accomplished in the frequency domain. The design technique is exercised on a pitch-axis controller for a simple short-period model of the High Angle of Attack F-18 vehicle via computer simulation. Stability and performance is compared to that of a system incorporating a controller designed by classical loop-shaping techniques.

  9. Multi-mode sliding mode control for precision linear stage based on fixed or floating stator

    NASA Astrophysics Data System (ADS)

    Fang, Jiwen; Long, Zhili; Wang, Michael Yu; Zhang, Lufan; Dai, Xufei

    2016-02-01

    This paper presents the control performance of a linear motion stage driven by Voice Coil Motor (VCM). Unlike the conventional VCM, the stator of this VCM is regulated, which means it can be adjusted as a floating-stator or fixed-stator. A Multi-Mode Sliding Mode Control (MMSMC), including a conventional Sliding Mode Control (SMC) and an Integral Sliding Mode Control (ISMC), is designed to control the linear motion stage. The control is switched between SMC and IMSC based on the error threshold. To eliminate the chattering, a smooth function is adopted instead of a signum function. The experimental results with the floating stator show that the positioning accuracy and tracking performance of the linear motion stage are improved with the MMSMC approach.

  10. Multi-mode sliding mode control for precision linear stage based on fixed or floating stator.

    PubMed

    Fang, Jiwen; Long, Zhili; Wang, Michael Yu; Zhang, Lufan; Dai, Xufei

    2016-02-01

    This paper presents the control performance of a linear motion stage driven by Voice Coil Motor (VCM). Unlike the conventional VCM, the stator of this VCM is regulated, which means it can be adjusted as a floating-stator or fixed-stator. A Multi-Mode Sliding Mode Control (MMSMC), including a conventional Sliding Mode Control (SMC) and an Integral Sliding Mode Control (ISMC), is designed to control the linear motion stage. The control is switched between SMC and IMSC based on the error threshold. To eliminate the chattering, a smooth function is adopted instead of a signum function. The experimental results with the floating stator show that the positioning accuracy and tracking performance of the linear motion stage are improved with the MMSMC approach.

  11. Real-time misfire detection via sliding mode observer

    NASA Astrophysics Data System (ADS)

    Wang, Yunsong; Chu, Fulei

    2005-07-01

    A new method to detect misfire in internal combustion engines is presented. It is based on the estimation of the cylinder deviation torque by using sliding mode observer. The input estimation problem is transformed into the control tracking problem. The sliding controller is utilised to continuously track the measured varying crank speed by changing the estimated deviation torque. During the process of tracking, the speed estimation errors decrease and the gradual stability of the dynamics is assured. The mean deviation torque during the power stroke derived from the estimated deviation torque can be employed to detect easily engine misfires. Experimental results for a four-cylinder engine indicate that the method is a suitable tool for real-time misfire detection on board vehicle under various working conditions.

  12. Passivity-based sliding mode control for a polytopic stochastic differential inclusion system.

    PubMed

    Liu, Leipo; Fu, Zhumu; Song, Xiaona

    2013-11-01

    Passivity-based sliding mode control for a polytopic stochastic differential inclusion (PSDI) system is considered. A control law is designed such that the reachability of sliding motion is guaranteed. Moreover, sufficient conditions for mean square asymptotic stability and passivity of sliding mode dynamics are obtained by linear matrix inequalities (LMIs). Finally, two examples are given to illustrate the effectiveness of the proposed method.

  13. Neuro-sliding mode control with its applications to seesaw systems.

    PubMed

    Tsai, Chun-Hsien; Chung, Hung-Yuan; Yu, Fang-Ming

    2004-01-01

    This paper proposes an approach of cooperative control that is based on the concept of combining neural networks and the methodology of sliding mode control (SMC). The main purpose is to eliminate the chattering phenomenon. Next, the system performance can be improved by using the method of SMC. In the present approach, two parallel Neural Networks are utilized to realize a neuro-sliding mode control (NSMC), where the equivalent control and the corrective control are the outputs of neural network 1 and neural network 2, respectively. Based on expressions of the SMC, the weight adaptations of neural network can be determined. Furthermore, the gradient descent method is used to minimize the control force so that the chattering phenomenon can be eliminated. Finally, experimental results are given to show the effectiveness and feasibility of the approach.

  14. Sliding Mode Control of a Slewing Flexible Beam

    NASA Technical Reports Server (NTRS)

    Wilson, David G.; Parker, Gordon G.; Starr, Gregory P.; Robinett, Rush D., III

    1997-01-01

    An output feedback sliding mode controller (SMC) is proposed to minimize the effects of vibrations of slewing flexible manipulators. A spline trajectory is used to generate ideal position and velocity commands. Constrained nonlinear optimization techniques are used to both calibrate nonlinear models and determine optimized gains to produce a rest-to-rest, residual vibration-free maneuver. Vibration-free maneuvers are important for current and future NASA space missions. This study required the development of the nonlinear dynamic system equations of motion; robust control law design; numerical implementation; system identification; and verification using the Sandia National Laboratories flexible robot testbed. Results are shown for a slewing flexible beam.

  15. Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch

    NASA Astrophysics Data System (ADS)

    Safa, Khari; Zahra, Rahmani; Behrooz, Rezaie

    2016-05-01

    An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system. In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov’s stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response, and robustness against uncertainties.

  16. Sliding mode control of electromagnetic tethered satellite formation

    NASA Astrophysics Data System (ADS)

    Hallaj, Mohammad Amin Alandi; Assadian, Nima

    2016-08-01

    This paper investigates the control of tethered satellite formation actuated by electromagnetic dipoles and reaction wheels using the robust sliding mode control technique. Generating electromagnetic forces and moments by electric current coils provides an attractive control actuation alternative for tethered satellite system due to the advantages of no propellant consumption and no obligatory rotational motion. Based on a dumbbell model of tethered satellite in which the flexibility and mass of the tether is neglected, the equations of motion in Cartesian coordinate are derived. In this model, the J2 perturbation is taken into account. The far-field and mid-field models of electromagnetic forces and moments of two satellites on each other and the effect of the Earth's magnetic field are presented. A robust sliding mode controller is designed for precise trajectory tracking purposes and to deal with the electromagnetic force and moment uncertainties and external disturbances due to the Earth's gravitational and magnetic fields inaccuracy. Numerical simulation results are presented to validate the effectiveness of the developed controller and its superiority over the linear controller.

  17. Flexible Modes Control Using Sliding Mode Observers: Application to Ares I

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri B.; Hall, Charles E.; Baev, Simon; Orr, Jeb S.

    2010-01-01

    The launch vehicle dynamics affected by bending and sloshing modes are considered. Attitude measurement data that are corrupted by flexible modes could yield instability of the vehicle dynamics. Flexible body and sloshing modes are reconstructed by sliding mode observers. The resultant estimates are used to remove the undesirable dynamics from the measurements, and the direct effects of sloshing and bending modes on the launch vehicle are compensated by means of a controller that is designed without taking the bending and sloshing modes into account. A linearized mathematical model of Ares I launch vehicle was derived based on FRACTAL, a linear model developed by NASA/MSFC. The compensated vehicle dynamics with a simple PID controller were studied for the launch vehicle model that included two bending modes, two slosh modes and actuator dynamics. A simulation study demonstrated stable and accurate performance of the flight control system with the augmented simple PID controller without the use of traditional linear bending filters.

  18. Frequency-Shaped Sliding Mode Control for Rudder Roll Damping System of Robotic Boat

    NASA Astrophysics Data System (ADS)

    Bao, Xinping; Yu, Zhenyu; Nonami, Kenzo

    In this paper, a robotic boat model of combined yaw and roll rate is obtained by a system identification approach. The identified system is designed with frequency-shaped sliding mode control. The control scheme is composed of a sliding mode observer and a sliding mode controller. The stability and reachability of the switching function are proved by Lyapunov theory. Computer simulations and experiment carried out at INAGE offshore show that successful course keeping and roll reduction results are achieved.

  19. Robust fuzzy control for stochastic Markovian jumping systems via sliding mode method

    NASA Astrophysics Data System (ADS)

    Chen, Bei; Jia, Tinggang; Niu, Yugang

    2016-07-01

    This paper considers the problem of sliding mode control for stochastic Markovian jumping systems by means of fuzzy method. The Takagi-Sugeno (T-S) fuzzy stochastic model subject to state-dependent noise is presented. A key feature in this work is to remove the restricted condition that each local system model had to share the same input channel, which is usually assumed in some existing results. The integral sliding surface is constructed for every mode and the connections among various sliding surfaces are established via a set of coupled matrices. Moreover, the present sliding mode controller including the transition rates of modes can cope with the effect of Markovian switching. It is shown that both the reachability of sliding surfaces and the stability of sliding mode dynamics can be ensured. Finally, numerical simulation results are given.

  20. A new optimal sliding mode controller design using scalar sign function.

    PubMed

    Singla, Mithun; Shieh, Leang-San; Song, Gangbing; Xie, Linbo; Zhang, Yongpeng

    2014-03-01

    This paper presents a new optimal sliding mode controller using the scalar sign function method. A smooth, continuous-time scalar sign function is used to replace the discontinuous switching function in the design of a sliding mode controller. The proposed sliding mode controller is designed using an optimal Linear Quadratic Regulator (LQR) approach. The sliding surface of the system is designed using stable eigenvectors and the scalar sign function. Controller simulations are compared with another existing optimal sliding mode controller. To test the effectiveness of the proposed controller, the controller is implemented on an aluminum beam with piezoceramic sensor and actuator for vibration control. This paper includes the control design and stability analysis of the new optimal sliding mode controller, followed by simulation and experimental results. The simulation and experimental results show that the proposed approach is very effective.

  1. Robust fault tolerant control based on sliding mode method for uncertain linear systems with quantization.

    PubMed

    Hao, Li-Ying; Yang, Guang-Hong

    2013-09-01

    This paper is concerned with the problem of robust fault-tolerant compensation control problem for uncertain linear systems subject to both state and input signal quantization. By incorporating novel matrix full-rank factorization technique with sliding surface design successfully, the total failure of certain actuators can be coped with, under a special actuator redundancy assumption. In order to compensate for quantization errors, an adjustment range of quantization sensitivity for a dynamic uniform quantizer is given through the flexible choices of design parameters. Comparing with the existing results, the derived inequality condition leads to the fault tolerance ability stronger and much wider scope of applicability. With a static adjustment policy of quantization sensitivity, an adaptive sliding mode controller is then designed to maintain the sliding mode, where the gain of the nonlinear unit vector term is updated automatically to compensate for the effects of actuator faults, quantization errors, exogenous disturbances and parameter uncertainties without the need for a fault detection and isolation (FDI) mechanism. Finally, the effectiveness of the proposed design method is illustrated via a model of a rocket fairing structural-acoustic.

  2. Sliding Mode Control of a Thermal Mixing Process

    NASA Technical Reports Server (NTRS)

    Richter, Hanz; Figueroa, Fernando

    2004-01-01

    In this paper we consider the robust control of a thermal mixer using multivariable Sliding Mode Control (SMC). The mixer consists of a mixing chamber, hot and cold fluid valves, and an exit valve. The commanded positions of the three valves are the available control inputs, while the controlled variables are total mass flow rate, chamber pressure and the density of the mixture inside the chamber. Unsteady thermodynamics and linear valve models are used in deriving a 5th order nonlinear system with three inputs and three outputs, An SMC controller is designed to achieve robust output tracking in the presence of unknown energy losses between the chamber and the environment. The usefulness of the technique is illustrated with a simulation.

  3. Adaptive Batch Mode Active Learning.

    PubMed

    Chakraborty, Shayok; Balasubramanian, Vineeth; Panchanathan, Sethuraman

    2015-08-01

    Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar and representative instances to be selected for manual annotation. More recently, there have been attempts toward a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. Real-world applications require adaptive approaches for batch selection in active learning, depending on the complexity of the data stream in question. However, the existing work in this field has primarily focused on static or heuristic batch size selection. In this paper, we propose two novel optimization-based frameworks for adaptive batch mode active learning (BMAL), where the batch size as well as the selection criteria are combined in a single formulation. We exploit gradient-descent-based optimization strategies as well as properties of submodular functions to derive the adaptive BMAL algorithms. The solution procedures have the same computational complexity as existing state-of-the-art static BMAL techniques. Our empirical results on the widely used VidTIMIT and the mobile biometric (MOBIO) data sets portray the efficacy of the proposed frameworks and also certify the potential of these approaches in being used for real-world biometric recognition applications.

  4. Sliding mode observer based incipient sensor fault detection with application to high-speed railway traction device.

    PubMed

    Zhang, Kangkang; Jiang, Bin; Yan, Xing-Gang; Mao, Zehui

    2016-07-01

    This paper considers incipient sensor fault detection issue for a class of nonlinear systems with "observer unmatched" uncertainties. A particular fault detection sliding mode observer is designed for the augmented system formed by the original system and incipient sensor faults. The designed parameters are obtained using LMI and line filter techniques to guarantee that the generated residuals are robust to uncertainties and that sliding motion is not destroyed by faults. Then, three levels of novel adaptive thresholds are proposed based on the reduced order sliding mode dynamics, which effectively improve incipient sensor faults detectability. Case study of on the traction system in China Railway High-speed is presented to demonstrate the effectiveness of the proposed incipient senor faults detection schemes. PMID:27156675

  5. Sliding mode observer based incipient sensor fault detection with application to high-speed railway traction device.

    PubMed

    Zhang, Kangkang; Jiang, Bin; Yan, Xing-Gang; Mao, Zehui

    2016-07-01

    This paper considers incipient sensor fault detection issue for a class of nonlinear systems with "observer unmatched" uncertainties. A particular fault detection sliding mode observer is designed for the augmented system formed by the original system and incipient sensor faults. The designed parameters are obtained using LMI and line filter techniques to guarantee that the generated residuals are robust to uncertainties and that sliding motion is not destroyed by faults. Then, three levels of novel adaptive thresholds are proposed based on the reduced order sliding mode dynamics, which effectively improve incipient sensor faults detectability. Case study of on the traction system in China Railway High-speed is presented to demonstrate the effectiveness of the proposed incipient senor faults detection schemes.

  6. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    NASA Astrophysics Data System (ADS)

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.

  7. Sliding mode control of magnetic suspensions for precision pointing and tracking applications

    NASA Technical Reports Server (NTRS)

    Misovec, Kathleen M.; Flynn, Frederick J.; Johnson, Bruce G.; Hedrick, J. Karl

    1991-01-01

    A recently developed nonlinear control method, sliding mode control, is examined as a means of advancing the achievable performance of space-based precision pointing and tracking systems that use nonlinear magnetic actuators. Analytic results indicate that sliding mode control improves performance compared to linear control approaches. In order to realize these performance improvements, precise knowledge of the plant is required. Additionally, the interaction of an estimating scheme and the sliding mode controller has not been fully examined in the literature. Estimation schemes were designed for use with this sliding mode controller that do not seriously degrade system performance. The authors designed and built a laboratory testbed to determine the feasibility of utilizing sliding mode control in these types of applications. Using this testbed, experimental verification of the authors' analyses is ongoing.

  8. Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller.

    PubMed

    Ding, Zhixia; Shen, Yi

    2016-04-01

    This paper investigates global projective synchronization of nonidentical fractional-order neural networks (FNNs) based on sliding mode control technique. We firstly construct a fractional-order integral sliding surface. Then, according to the sliding mode control theory, we design a sliding mode controller to guarantee the occurrence of the sliding motion. Based on fractional Lyapunov direct methods, system trajectories are driven to the proposed sliding surface and remain on it evermore, and some novel criteria are obtained to realize global projective synchronization of nonidentical FNNs. As the special cases, some sufficient conditions are given to ensure projective synchronization of identical FNNs, complete synchronization of nonidentical FNNs and anti-synchronization of nonidentical FNNs. Finally, one numerical example is given to demonstrate the effectiveness of the obtained results.

  9. Designing for Damage: Robust Flight Control Design using Sliding Mode Techniques

    NASA Technical Reports Server (NTRS)

    Vetter, T. K.; Wells, S. R.; Hess, Ronald A.; Bacon, Barton (Technical Monitor); Davidson, John (Technical Monitor)

    2002-01-01

    A brief review of sliding model control is undertaken, with particular emphasis upon the effects of neglected parasitic dynamics. Sliding model control design is interpreted in the frequency domain. The inclusion of asymptotic observers and control 'hedging' is shown to reduce the effects of neglected parasitic dynamics. An investigation into the application of observer-based sliding mode control to the robust longitudinal control of a highly unstable is described. The sliding mode controller is shown to exhibit stability and performance robustness superior to that of a classical loop-shaped design when significant changes in vehicle and actuator dynamics are employed to model airframe damage.

  10. Dynamic output feedback sliding mode control for uncertain mechanical systems without velocity measurements.

    PubMed

    Chang, Jeang-Lin

    2010-04-01

    For MIMO mechanical systems using position measurements only, this paper presents a dynamic output feedback sliding mode control algorithm in which an additional dynamics is introduced into the design of the sliding surface. Although the system has the mismatched uncertainty and external disturbance, once the system is in the sliding mode, the proposed method can guarantee robust stabilization and sustain the nature of performing disturbance attenuation through utilizing H(infinity) control analytical technique. A controller is then designed to drive the system to the sliding surface in a finite time and stay on it thereafter. Finally, a numerical example is explained for demonstrating the applicability of the proposed scheme.

  11. Cytopathology whole slide images and adaptive tutorials for postgraduate pathology trainees: a randomized crossover trial.

    PubMed

    Van Es, Simone L; Kumar, Rakesh K; Pryor, Wendy M; Salisbury, Elizabeth L; Velan, Gary M

    2015-09-01

    To determine whether cytopathology whole slide images and virtual microscopy adaptive tutorials aid learning by postgraduate trainees, we designed a randomized crossover trial to evaluate the quantitative and qualitative impact of whole slide images and virtual microscopy adaptive tutorials compared with traditional glass slide and textbook methods of learning cytopathology. Forty-three anatomical pathology registrars were recruited from Australia, New Zealand, and Malaysia. Online assessments were used to determine efficacy, whereas user experience and perceptions of efficiency were evaluated using online Likert scales and open-ended questions. Outcomes of online assessments indicated that, with respect to performance, learning with whole slide images and virtual microscopy adaptive tutorials was equivalent to using traditional methods. High-impact learning, efficiency, and equity of learning from virtual microscopy adaptive tutorials were strong themes identified in open-ended responses. Participants raised concern about the lack of z-axis capability in the cytopathology whole slide images, suggesting that delivery of z-stacked whole slide images online may be important for future educational development. In this trial, learning cytopathology with whole slide images and virtual microscopy adaptive tutorials was found to be as effective as and perceived as more efficient than learning from glass slides and textbooks. The use of whole slide images and virtual microscopy adaptive tutorials has the potential to provide equitable access to effective learning from teaching material of consistently high quality. It also has broader implications for continuing professional development and maintenance of competence and quality assurance in specialist practice.

  12. Sliding mode pulse-width modulation technique for direct torque controlled induction motor drive

    NASA Astrophysics Data System (ADS)

    Bounadja, M.; Belarbi, A. W.; Belmadani, B.

    2010-05-01

    This paper presents a novel pulse-width modulation technique based sliding mode approach for direct torque control of an induction machine drive. Methodology begins with a sliding mode control of machine's torque and stator flux to generate the reference voltage vector and to reduce parameters sensitivity. Then, the switching control of the three-phase inverter is developed using sliding mode concept to make the system tracking reference voltage inputs. The main features of the proposed methodologies are the high tracking accuracy and the much easier implementation compared to the space vector modulation. Simulations are carried out to confirm the effectiveness of proposed control algorithms.

  13. Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control.

    PubMed

    Wang, Jia-Jun

    2012-11-01

    X-Z inverted pendulum is a new kind of inverted pendulum which can move with the combination of the vertical and horizontal forces. Through a new transformation, the X-Z inverted pendulum is decomposed into three simple models. Based on the simple models, sliding-mode control is applied to stabilization and tracking control of the inverted pendulum. The performance of the sliding mode control is compared with that of the PID control. Simulation results show that the design scheme of sliding-mode control is effective for the stabilization and tracking control of the X-Z inverted pendulum.

  14. Neural Feedback Passivity of Unknown Nonlinear Systems via Sliding Mode Technique.

    PubMed

    Yu, Wen

    2015-07-01

    Passivity method is very effective to analyze large-scale nonlinear systems with strong nonlinearities. However, when most parts of the nonlinear system are unknown, the published neural passivity methods are not suitable for feedback stability. In this brief, we propose a novel sliding mode learning algorithm and sliding mode feedback passivity control. We prove that for a wide class of unknown nonlinear systems, this neural sliding mode control can passify and stabilize them. This passivity method is validated with a simulation and real experiment tests.

  15. Sliding mode output feedback control based on tracking error observer with disturbance estimator.

    PubMed

    Xiao, Lingfei; Zhu, Yue

    2014-07-01

    For a class of systems who suffers from disturbances, an original output feedback sliding mode control method is presented based on a novel tracking error observer with disturbance estimator. The mathematical models of the systems are not required to be with high accuracy, and the disturbances can be vanishing or nonvanishing, while the bounds of disturbances are unknown. By constructing a differential sliding surface and employing reaching law approach, a sliding mode controller is obtained. On the basis of an extended disturbance estimator, a creative tracking error observer is produced. By using the observation of tracking error and the estimation of disturbance, the sliding mode controller is implementable. It is proved that the disturbance estimation error and tracking observation error are bounded, the sliding surface is reachable and the closed-loop system is robustly stable. The simulations on a servomotor positioning system and a five-degree-of-freedom active magnetic bearings system verify the effect of the proposed method.

  16. Space-based line-of-sight tracking control of GEO target using nonsingular terminal sliding mode

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenglong; Yan, Ye

    2014-09-01

    This paper addresses the issue of high-precision line-of-sight (LOS) tracking of geosynchronous earth orbit target in highly dynamic conditions via spacecraft attitude maneuver. First, characteristics of the LOS motion are analyzed by a simplified linear relative motion model. Second, after transforming the quaternion-based attitude model into a double integrator system, a new nonsingular terminal sliding mode controller is proposed for spacecraft attitude tracking in a nominal case without parametric uncertainties and external disturbances. Third, an adaptive new nonsingular terminal mode controller is proposed for spacecraft attitude tracking in an uncertain case, which is done via constructing a pair of adaptive laws to estimate the parametric uncertainties and external disturbances online. The robust stability and finite time convergence property of the closed-loop system are demonstrated by Lyapunov theorem. Under control of the proposed controller, zero steady state error tracking of LOS with a smooth transition phase can be achieved in scheduled time, regardless of parametric uncertainties and external disturbances online. Finally, detailed numerical simulation results are presented to illustrate the effectiveness and performance of the proposed controllers. Contrasting simulation results shows that proposed controllers can track the desired trajectories effectively and have better performance against the controllers based on linear sliding mode and the existing fast nonsingular terminal sliding mode.

  17. A multi-mode operation control strategy for flexible microgrid based on sliding-mode direct voltage and hierarchical controls.

    PubMed

    Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning

    2016-03-01

    Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. PMID:26686458

  18. A multi-mode operation control strategy for flexible microgrid based on sliding-mode direct voltage and hierarchical controls.

    PubMed

    Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning

    2016-03-01

    Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results.

  19. Finite time control for MIMO nonlinear system based on higher-order sliding mode.

    PubMed

    Liu, Xiangjie; Han, Yaozhen

    2014-11-01

    Considering a class of MIMO uncertain nonlinear system, a novel finite time stable control algorithm is proposed based on higher-order sliding mode concept. The higher-order sliding mode control problem of MIMO nonlinear system is firstly transformed into finite time stability problem of multivariable system. Then continuous control law, which can guarantee finite time stabilization of nominal integral chain system, is employed. The second-order sliding mode is used to overcome the system uncertainties. High frequency chattering phenomenon of sliding mode is greatly weakened, and the arbitrarily fast convergence is reached. The finite time stability is proved based on the quadratic form Lyapunov function. Examples concerning the triple integral chain system with uncertainty and the hovercraft trajectory tracking are simulated respectively to verify the effectiveness and the robustness of the proposed algorithm. PMID:25277626

  20. Discrete sliding mode control for robust tracking of higher order delay time systems with experimental application.

    PubMed

    Khandekar, A A; Malwatkar, G M; Patre, B M

    2013-01-01

    In this paper, a discrete time sliding mode controller (DSMC) is proposed for higher order plus delay time (HOPDT) processes. A sliding mode surface is selected as a function of system states and error and the tuning parameters of sliding mode controller are determined using dominant pole placement strategy. The condition for the existence of stable sliding mode is obtained by using Lyapunov function. The proposed method is applicable to HOPDT processes with oscillatory and integrating behavior, open loop instability or non-minimum phase characteristics and works satisfactory under the effect of parametric uncertainty. The method does not require reduced order model and provides simple way to design the controllers. The simulation and experimentation results show that the proposed method ensures desired tracking dynamics.

  1. Finite time control for MIMO nonlinear system based on higher-order sliding mode.

    PubMed

    Liu, Xiangjie; Han, Yaozhen

    2014-11-01

    Considering a class of MIMO uncertain nonlinear system, a novel finite time stable control algorithm is proposed based on higher-order sliding mode concept. The higher-order sliding mode control problem of MIMO nonlinear system is firstly transformed into finite time stability problem of multivariable system. Then continuous control law, which can guarantee finite time stabilization of nominal integral chain system, is employed. The second-order sliding mode is used to overcome the system uncertainties. High frequency chattering phenomenon of sliding mode is greatly weakened, and the arbitrarily fast convergence is reached. The finite time stability is proved based on the quadratic form Lyapunov function. Examples concerning the triple integral chain system with uncertainty and the hovercraft trajectory tracking are simulated respectively to verify the effectiveness and the robustness of the proposed algorithm.

  2. Robust Second Order Sliding mode Observer for the Estimation of the Vehicle States

    NASA Astrophysics Data System (ADS)

    Chaibet, A.; Nouveliere, L.; Hima, S.; Mammar, S.

    2008-06-01

    This paper is dedicated to the observation of non measurable variables for automotive systems. A non linear observer, based on a sliding mode approach, is presented for the estimation of the dynamic states of the vehicle. The considered technique is applied to the estimation problem for an automated vehicle following. Both the simulation and the experimental results are addressed to demonstrate the effectiveness of the sliding mode observer for different maneuvers, in terms of performances and robustness.

  3. Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems.

    PubMed

    Chen, Mou; Wu, Qing-Xian; Cui, Rong-Xin

    2013-03-01

    In this paper, the terminal sliding mode tracking control is proposed for the uncertain single-input and single-output (SISO) nonlinear system with unknown external disturbance. For the unmeasured disturbance of nonlinear systems, terminal sliding mode disturbance observer is presented. The developed disturbance observer can guarantee the disturbance approximation error to converge to zero in the finite time. Based on the output of designed disturbance observer, the terminal sliding mode tracking control is presented for uncertain SISO nonlinear systems. Subsequently, terminal sliding mode tracking control is developed using disturbance observer technique for the uncertain SISO nonlinear system with control singularity and unknown non-symmetric input saturation. The effects of the control singularity and unknown input saturation are combined with the external disturbance which is approximated using the disturbance observer. Under the proposed terminal sliding mode tracking control techniques, the finite time convergence of all closed-loop signals are guaranteed via Lyapunov analysis. Numerical simulation results are given to illustrate the effectiveness of the proposed terminal sliding mode tracking control.

  4. Universal fuzzy integral sliding-mode controllers for stochastic nonlinear systems.

    PubMed

    Gao, Qing; Liu, Lu; Feng, Gang; Wang, Yong

    2014-12-01

    In this paper, the universal integral sliding-mode controller problem for the general stochastic nonlinear systems modeled by Itô type stochastic differential equations is investigated. One of the main contributions is that a novel dynamic integral sliding mode control (DISMC) scheme is developed for stochastic nonlinear systems based on their stochastic T-S fuzzy approximation models. The key advantage of the proposed DISMC scheme is that two very restrictive assumptions in most existing ISMC approaches to stochastic fuzzy systems have been removed. Based on the stochastic Lyapunov theory, it is shown that the closed-loop control system trajectories are kept on the integral sliding surface almost surely since the initial time, and moreover, the stochastic stability of the sliding motion can be guaranteed in terms of linear matrix inequalities. Another main contribution is that the results of universal fuzzy integral sliding-mode controllers for two classes of stochastic nonlinear systems, along with constructive procedures to obtain the universal fuzzy integral sliding-mode controllers, are provided, respectively. Simulation results from an inverted pendulum example are presented to illustrate the advantages and effectiveness of the proposed approaches.

  5. Semi-active sliding mode control of vehicle suspension with magneto-rheological damper

    NASA Astrophysics Data System (ADS)

    Zhang, Hailong; Wang, Enrong; Zhang, Ning; Min, Fuhong; Subash, Rakheja; Su, Chunyi

    2015-01-01

    The vehicle semi-active suspension with magneto-rheological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, a new semi-active controller based upon the inverse model and sliding mode control (SMC) strategies is proposed for the quarter-vehicle suspension with the magneto-rheological (MR) damper, wherein an ideal skyhook suspension is employed as the control reference model and the vehicle sprung mass is considered as an uncertain parameter. According to the asymptotical stability of SMC, the dynamic errors between the plant and reference systems are used to derive the control damping force acquired by the MR quarter-vehicle suspension system. The proposed modified Bouc-wen hysteretic force-velocity ( F- v) model and its inverse model of MR damper, as well as the proposed continuous modulation (CM) filtering algorithm without phase shift are employed to convert the control damping force into the direct drive current of the MR damper. Moreover, the proposed semi-active sliding mode controller (SSMC)-based MR quarter-vehicle suspension is systematically evaluated through comparing the time and frequency domain responses of the sprung and unsprung mass displacement accelerations, suspension travel and the tire dynamic force with those of the passive quarter-vehicle suspension, under three kinds of varied amplitude harmonic, rounded pulse and real-road measured random excitations. The evaluation results illustrate that the proposed SSMC can greatly suppress the vehicle suspension vibration due to uncertainty of the load, and thus improve the ride comfort and handling safety. The study establishes a solid theoretical foundation as the universal control scheme for the adaptive semi-active control of the MR full-vehicle suspension decoupled into four MR quarter-vehicle sub-suspension systems.

  6. Microgravity Isolation Control System Design Via High-Order Sliding Mode Control

    NASA Technical Reports Server (NTRS)

    Shkolnikov, Ilya; Shtessel, Yuri; Whorton, Mark S.; Jackson, Mark

    2000-01-01

    Vibration isolation control system design for a microgravity experiment mount is considered. The controller design based on dynamic sliding manifold (DSM) technique is proposed to attenuate the accelerations transmitted to an isolated experiment mount either from a vibrating base or directly generated by the experiment, as well as to stabilize the internal dynamics of this nonminimum phase plant. An auxiliary DSM is employed to maintain the high-order sliding mode on the primary sliding manifold in the presence of uncertain actuator dynamics of second order. The primary DSM is designed for the closed-loop system in sliding mode to be a filter with given characteristics with respect to the input external disturbances.

  7. Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique.

    PubMed

    Song, Zhankui; Li, Hongxing; Sun, Kaibiao

    2014-01-01

    In this paper, a fast terminal sliding mode control (FTSMC) scheme with double closed loops is proposed for the spacecraft attitude control. The FTSMC laws are included both in an inner control loop and an outer control loop. Firstly, a fast terminal sliding surface (FTSS) is constructed, which can drive the inner loop tracking-error and the outer loop tracking-error on the FTSS to converge to zero in finite time. Secondly, FTSMC strategy is designed by using Lyaponov's method for ensuring the occurrence of the sliding motion in finite time, which can hold the character of fast transient response and improve the tracking accuracy. It is proved that FTSMC can guarantee the convergence of tracking-error in both approaching and sliding mode surface. Finally, simulation results demonstrate the effectiveness of the proposed control scheme.

  8. Second-order sliding mode control for DFIG-based wind turbines fault ride-through capability enhancement.

    PubMed

    Benbouzid, Mohamed; Beltran, Brice; Amirat, Yassine; Yao, Gang; Han, Jingang; Mangel, Hervé

    2014-05-01

    This paper deals with the fault ride-through capability assessment of a doubly fed induction generator-based wind turbine using a high-order sliding mode control. Indeed, it has been recently suggested that sliding mode control is a solution of choice to the fault ride-through problem. In this context, this paper proposes a second-order sliding mode as an improved solution that handle the classical sliding mode chattering problem. Indeed, the main and attractive features of high-order sliding modes are robustness against external disturbances, the grids faults in particular, and chattering-free behavior (no extra mechanical stress on the wind turbine drive train). Simulations using the NREL FAST code on a 1.5-MW wind turbine are carried out to evaluate ride-through performance of the proposed high-order sliding mode control strategy in case of grid frequency variations and unbalanced voltage sags.

  9. Sliding mode control for multi-agent systems under a time-varying topology

    NASA Astrophysics Data System (ADS)

    Dong, Lijing; Chai, Senchun; Zhang, Baihai; Kiong Nguang, Sing

    2016-07-01

    This paper addresses the tracking problem of a class of multi-agent systems under uncertain communication environments which has been modelled by a finite number of constant Laplacian matrices together with their corresponding scheduling functions. Sliding mode control method is applied to solve this nonlinear tracking problem under a time-varying topology. The controller of each tracking agent has been designed by using only its own and neighbours' information. Sufficient conditions for the existence of a sliding mode control tracking strategy have been provided by the solvability of linear matrix inequalities. At the end of this work, numerical simulations are employed to demonstrate the effectiveness of the proposed sliding mode control tracking strategy.

  10. Sliding-mode control design for nonlinear systems using probability density function shaping.

    PubMed

    Liu, Yu; Wang, Hong; Hou, Chaohuan

    2014-02-01

    In this paper, we propose a sliding-mode-based stochastic distribution control algorithm for nonlinear systems, where the sliding-mode controller is designed to stabilize the stochastic system and stochastic distribution control tries to shape the sliding surface as close as possible to the desired probability density function. Kullback-Leibler divergence is introduced to the stochastic distribution control, and the parameter of the stochastic distribution controller is updated at each sample interval rather than using a batch mode. It is shown that the estimated weight vector will converge to its ideal value and the system will be asymptotically stable under the rank-condition, which is much weaker than the persistent excitation condition. The effectiveness of the proposed algorithm is illustrated by simulation.

  11. Integral backstepping sliding mode control for underactuated systems: swing-up and stabilization of the Cart-Pendulum System.

    PubMed

    Adhikary, Nabanita; Mahanta, Chitralekha

    2013-11-01

    In this paper an integral backstepping sliding mode controller is proposed for controlling underactuated systems. A feedback control law is designed based on backstepping algorithm and a sliding surface is introduced in the final stage of the algorithm. The backstepping algorithm makes the controller immune to matched and mismatched uncertainties and the sliding mode control provides robustness. The proposed controller ensures asymptotic stability. The effectiveness of the proposed controller is compared against a coupled sliding mode controller for swing-up and stabilization of the Cart-Pendulum System. Simulation results show that the proposed integral backstepping sliding mode controller is able to reject both matched and mismatched uncertainties with a chattering free control law, while utilizing less control effort than the sliding mode controller.

  12. Unknown Input and Sensor Fault Estimation Using Sliding-Mode Observers

    SciTech Connect

    Kalsi, Karanjit; Hui, Stefen; Zak, Stanislaw

    2011-06-29

    Sliding-mode observers are used to construct unknown input estimators. Then, these unknown input estimators are combined with sensor fault estimation schemes into one architecture that employs two sliding-mode observers for simultaneously estimating the plant’s actuator faults (part of the unknown input) and detecting sensor faults. Closed form expressions are presented for the estimates of unknown inputs and sensor faults. A benchmark example of a controlled inverted pendulum system from the literature is utilized in the simulation study. The study shows that the observers analyzed in this paper generate good estimates of the unknown input and sensor faults signals in noisy environments for nonlinear plants.

  13. Sliding Mode Control of the X-33 with an Engine Failure

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri B.; Hall, Charles E.

    2000-01-01

    Ascent flight control of the X-3 is performed using two XRS-2200 linear aerospike engines. in addition to aerosurfaces. The baseline control algorithms are PID with gain scheduling. Flight control using an innovative method. Sliding Mode Control. is presented for nominal and engine failed modes of flight. An easy to implement, robust controller. requiring no reconfiguration or gain scheduling is demonstrated through high fidelity flight simulations. The proposed sliding mode controller utilizes a two-loop structure and provides robust. de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of engine failure, bounded external disturbances (wind gusts) and uncertain matrix of inertia. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues. Conditions that restrict engine failures to robustness domain of the sliding mode controller are derived. Overall stability of a two-loop flight control system is assessed. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in the presence of external disturbances and vehicle inertia uncertainties, as well as the single engine failed case. The designed robust controller will significantly reduce the time and cost associated with flying new trajectory profiles or orbits, with new payloads, and with modified vehicles

  14. A multitask sliding mode control for mismatched uncertain large-scale systems

    NASA Astrophysics Data System (ADS)

    Tsai, Yao-Wen; Van Huynh, Van

    2015-09-01

    A new sliding mode control (SMC) approach, output variables only, single phase only and chattering phenomenon free, is presented for a class of mismatched uncertain large-scale systems. For a new multitask SMC, it is not required that the system states are available. Moreover, the sliding function in this study just depends on output variables. Using an exponential type sliding surface, the system states are always in the sliding mode at the beginning time t = 0. Using a newly appropriate linear matrix inequality stability conditions by the Lyapunov method are derived such that each subsystem in the new sliding mode is completely invariant to matched uncertainties. As a result, robustness of the mismatched uncertain large-scale systems can be assured throughout an entire response of the system starting from the initial time t = 0. In every subsystem, a scheme of decentralised control using only output states is proposed. In addition, a continuous controller is finally designed for chattering removal. Finally, a numerical example is used to demonstrate the efficacy of the proposed method.

  15. Smith predictor based-sliding mode controller for integrating processes with elevated deadtime.

    PubMed

    Camacho, Oscar; De la Cruz, Francisco

    2004-04-01

    An approach to control integrating processes with elevated deadtime using a Smith predictor sliding mode controller is presented. A PID sliding surface and an integrating first-order plus deadtime model have been used to synthesize the controller. Since the performance of existing controllers with a Smith predictor decrease in the presence of modeling errors, this paper presents a simple approach to combining the Smith predictor with the sliding mode concept, which is a proven, simple, and robust procedure. The proposed scheme has a set of tuning equations as a function of the characteristic parameters of the model. For implementation of our proposed approach, computer based industrial controllers that execute PID algorithms can be used. The performance and robustness of the proposed controller are compared with the Matausek-Micić scheme for linear systems using simulations. PMID:15098585

  16. Smith predictor based-sliding mode controller for integrating processes with elevated deadtime.

    PubMed

    Camacho, Oscar; De la Cruz, Francisco

    2004-04-01

    An approach to control integrating processes with elevated deadtime using a Smith predictor sliding mode controller is presented. A PID sliding surface and an integrating first-order plus deadtime model have been used to synthesize the controller. Since the performance of existing controllers with a Smith predictor decrease in the presence of modeling errors, this paper presents a simple approach to combining the Smith predictor with the sliding mode concept, which is a proven, simple, and robust procedure. The proposed scheme has a set of tuning equations as a function of the characteristic parameters of the model. For implementation of our proposed approach, computer based industrial controllers that execute PID algorithms can be used. The performance and robustness of the proposed controller are compared with the Matausek-Micić scheme for linear systems using simulations.

  17. A sliding mode control proposal for open-loop unstable processes.

    PubMed

    Rojas, Rubén; Camacho, Oscar; González, Luis

    2004-04-01

    This papers presents a sliding mode controller based on a first-order-plus-dead-time model of the process for controlling open-loop unstable systems. The proposed controller has a simple and fixed structure with a set of tuning equations as a function of the desired performance. Both linear and nonlinear models were used to study the controller performance by computer simulations.

  18. Model-based Sliding Mode Controller of Anti-lock Braking System

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Luo, Yue-Gang; Kang, Jing; Shi, Zhan-Qun

    2016-05-01

    The anti-lock braking system (ABS) used in automobiles is used to prevent wheel from lockup and to maintain the steering ability and stability. The sliding mode controller is able to control nonlinear system steadily. In this research, a one-wheel dynamic model with ABS control is built up using model-based method. Using the sliding model controller, the simulation results by using Matlab/Simulink show qualified data compared with optimal slip rate. By using this method, the ABS brake efficiency is improved efficiently.

  19. Sliding-Mode Control Applied for Robust Control of a Highly Unstable Aircraft

    NASA Technical Reports Server (NTRS)

    Vetter, Travis Kenneth

    2002-01-01

    An investigation into the application of an observer based sliding mode controller for robust control of a highly unstable aircraft and methods of compensating for actuator dynamics is performed. After a brief overview of some reconfigurable controllers, sliding mode control (SMC) is selected because of its invariance properties and lack of need for parameter identification. SMC is reviewed and issues with parasitic dynamics, which cause system instability, are addressed. Utilizing sliding manifold boundary layers, the nonlinear control is converted to a linear control and sliding manifold design is performed in the frequency domain. An additional feedback form of model reference hedging is employed which is similar to a prefilter and has large benefits to system performance. The effects of inclusion of actuator dynamics into the designed plant is heavily investigated. Multiple Simulink models of the full longitudinal dynamics and wing deflection modes of the forward swept aero elastic vehicle (FSAV) are constructed. Additionally a linear state space models to analyze effects from various system parameters. The FSAV has a pole at +7 rad/sec and is non-minimum phase. The use of 'model actuators' in the feedback path, and varying there design, is heavily investigated for the resulting effects on plant robustness and tolerance to actuator failure. The use of redundant actuators is also explored and improved robustness is shown. All models are simulated with severe failure and excellent tracking, and task dependent handling qualities, and low pilot induced oscillation tendency is shown.

  20. Time-varying sliding-coefficient-based decoupled terminal sliding-mode control for a class of fourth-order systems.

    PubMed

    Bayramoglu, Husnu; Komurcugil, Hasan

    2014-07-01

    A time-varying sliding-coefficient-based decoupled terminal sliding mode control strategy is presented for a class of fourth-order systems. First, the fourth-order system is decoupled into two second-order subsystems. The sliding surface of each subsystem was designed by utilizing time-varying coefficients. Then, the control target of one subsystem to another subsystem was embedded. Thereafter, a terminal sliding mode control method was utilized to make both subsystems converge to their equilibrium points in finite time. The simulation results on the inverted pendulum system demonstrate that the proposed method exhibits a considerable improvement in terms of a faster dynamic response and lower IAE and ITAE values as compared with the existing decoupled control methods.

  1. An adaptive supervisory sliding fuzzy cerebellar model articulation controller for sensorless vector-controlled induction motor drive systems.

    PubMed

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-01-01

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes--the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC--were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes. PMID:25815450

  2. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    PubMed Central

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-01-01

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes. PMID:25815450

  3. Event-triggered sliding mode control for a class of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Behera, Abhisek K.; Bandyopadhyay, Bijnan

    2016-09-01

    Event-triggering strategy is one of the real-time control implementation techniques which aims at achieving minimum resource utilisation while ensuring the satisfactory performance of the closed-loop system. In this paper, we address the problem of robust stabilisation for a class of nonlinear systems subject to external disturbances using sliding mode control (SMC) by event-triggering scheme. An event-triggering scheme is developed for SMC to ensure the sliding trajectory remains confined in the vicinity of sliding manifold. The event-triggered SMC brings the sliding mode in the system and thus the steady-state trajectories of the system also remain bounded within a predesigned region in the presence of disturbances. The design of event parameters is also given considering the practical constraints on control execution. We show that the next triggering instant is larger than its immediate past triggering instant by a given positive constant. The analysis is also presented with taking delay into account in the control updates. An upper bound for delay is calculated to ensure stability of the system. It is shown that with delay steady-state bound of the system is increased than that of the case without delay. However, the system trajectories remain bounded in the case of delay, so stability is ensured. The performance of this event-triggered SMC is demonstrated through a numerical simulation.

  4. Observer-based robust finite time H∞ sliding mode control for Markovian switching systems with mode-dependent time-varying delay and incomplete transition rate.

    PubMed

    Gao, Lijun; Jiang, Xiaoxiao; Wang, Dandan

    2016-03-01

    This paper investigates the problem of robust finite time H∞ sliding mode control for a class of Markovian switching systems. The system is subjected to the mode-dependent time-varying delay, partly unknown transition rate and unmeasurable state. The main difficulty is that, a sliding mode surface cannot be designed based on the unknown transition rate and unmeasurable state directly. To overcome this obstacle, the set of modes is firstly divided into two subsets standing for known transition rate subset and unknown one, based on which a state observer is established. A component robust finite-time sliding mode controller is also designed to cope with the effect of partially unknown transition rate. It is illustrated that the reachability, finite-time stability, finite-time boundedness, finite-time H∞ state feedback stabilization of sliding mode dynamics can be ensured despite the unknown transition rate. Finally, the simulation results verify the effectiveness of robust finite time control problem.

  5. Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.

    PubMed

    Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour

    2015-09-01

    The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. PMID:26243440

  6. Output feedback sliding mode control for a linear multi-compartment lung mechanics system

    NASA Astrophysics Data System (ADS)

    Hou, Saing Paul; Meskin, Nader; Haddad, Wassim M.

    2014-10-01

    In this paper, we develop a sliding mode control architecture to control lung volume and minute ventilation in the presence of modelling system uncertainties. Since the applied input pressure to the lungs is, in general, nonnegative and cannot be arbitrarily large, as not to damage the lungs, a sliding mode control with bounded nonnegative control inputs is proposed. The controller only uses output information (i.e., the total volume of the lungs) and automatically adjusts the applied input pressure so that the system is able to track a given reference signal in the presence of parameter uncertainty (i.e., modelling uncertainty of the lung resistances and lung compliances) and system disturbances. Controllers for both matched and unmatched uncertainties are presented. Specifically, a Lyapunov-based approach is presented for the stability analysis of the system and the proposed control framework is applied to a two-compartment lung model to show the efficacy of the proposed control method.

  7. Biomolecular implementation of a quasi sliding mode feedback controller based on DNA strand displacement reactions.

    PubMed

    Sawlekar, Rucha; Montefusco, Francesco; Kulkarni, Vishwesh; Bates, Declan G

    2015-08-01

    A fundamental aim of synthetic biology is to achieve the capability to design and implement robust embedded biomolecular feedback control circuits. An approach to realize this objective is to use abstract chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks. Here, we employ this approach to facilitate the implementation of a class of nonlinear feedback controllers based on sliding mode control theory. We show how a set of two-step irreversible reactions with ultrasensitive response dynamics can provide a biomolecular implementation of a nonlinear quasi sliding mode (QSM) controller. We implement our controller in closed-loop with a prototype of a biological pathway and demonstrate that the nonlinear QSM controller outperforms a traditional linear controller by facilitating faster tracking response dynamics without introducing overshoots in the transient response. PMID:26736420

  8. Consideration on Elastic Vibration Control of a Magnetically Levitated Thin Steel Plate Using Sliding Mode Control

    NASA Astrophysics Data System (ADS)

    Hasegawa, Shinya; Oshinoya, Yasuo; Ishibashi, Kazuhisa

    We have proposed a magnetic levitation control system for a sheet steel and confirmed the realization by a digital control experiment. However, because of the strong nonlineality of the attractive force of the electromagnet and the various uncertainties in the circuit current such as changes in the resistance due to heat generation of the electromagnet, stability of levitation has not been sufficiently ensured. In this study, we aim to develop a noncontact support system for thin steel plates with high robustness using sliding mode control, which is tolerant to factors such as disturbances within control signals and external forces affecting the system. As a result, it was verified that the suppressive effect of the sliding mode control on disturbances is sufficient, and that the application of the continuous model provides the construction of a system with robustness to the disturbance of the external forces.

  9. Sliding mode control of the space nuclear reactor system TOPAZ II

    SciTech Connect

    Shtessel, Y.B.; Wyant, F.J.

    1996-03-01

    The Automatic Control System (ACS) of the space nuclear reactor power system TOPAZ II that generates electricity from nuclear heat using in-core thermionic converters is considered. Sliding Mode Control Technique was applied to the reactor system controller design in order to provide the robust high accuracy following of a neutron (thermal) power reference profile in a start up regime and a payload electric power (current) reference profile following in an operation regime. Extensive simulations of the TOPAZ II reactor system with the designed sliding mode controllers showed improved accuracy and robustness of the reactor system performances in a start up regime and in an electric power supply regime as well. {copyright} {ital 1996 American Institute of Physics.}

  10. Analysis and design of sliding mode controller gains for boost power factor corrector.

    PubMed

    Kessal, Abdelhalim; Rahmani, Lazhar

    2013-09-01

    This paper presents a systematic procedure to compute the gains of sliding mode controller based on an optimization scheme. This controller is oriented to drive an AC-DC converter operating in continuous mode with power factor near unity, and in order to improve static and dynamic performances with large variations of reference voltage and load. This study shows the great influence of the controller gains on the global performances of the system. Hence, a methodology for choosing the gains is detailed. The sliding surface used in this study contains two state variables, input current and output voltage; the advantage of this surface is getting reactions against various disturbances-at the power source, the reference of the output, or the value of the load. The controller is experimentally confirmed for steady-state performance and transient response. PMID:23735439

  11. A novel guidance law using fast terminal sliding mode control with impact angle constraints.

    PubMed

    Sun, Lianghua; Wang, Weihong; Yi, Ran; Xiong, Shaofeng

    2016-09-01

    This paper is concerned with the question of, for a missile interception with impact angle constraints, how to design a guidance law. Firstly, missile interception with impact angle constraints is modeled; secondly, a novel guidance law using fast terminal sliding mode control based on extended state observer is proposed to optimize the trajectory and time of interception; finally, for stationary targets, constant velocity targets and maneuvering targets, the guidance law and the stability of the closed loop system is analyzed and the stability of the closed loop system is analyzed, respectively. Simulation results show that when missile and target are on a collision course, the novel guidance law using fast terminal sliding mode control with extended state observer has more optimized trajectory and effectively reduces the time of interception which has a great significance in modern warfare. PMID:27238736

  12. A novel guidance law using fast terminal sliding mode control with impact angle constraints.

    PubMed

    Sun, Lianghua; Wang, Weihong; Yi, Ran; Xiong, Shaofeng

    2016-09-01

    This paper is concerned with the question of, for a missile interception with impact angle constraints, how to design a guidance law. Firstly, missile interception with impact angle constraints is modeled; secondly, a novel guidance law using fast terminal sliding mode control based on extended state observer is proposed to optimize the trajectory and time of interception; finally, for stationary targets, constant velocity targets and maneuvering targets, the guidance law and the stability of the closed loop system is analyzed and the stability of the closed loop system is analyzed, respectively. Simulation results show that when missile and target are on a collision course, the novel guidance law using fast terminal sliding mode control with extended state observer has more optimized trajectory and effectively reduces the time of interception which has a great significance in modern warfare.

  13. Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.

    PubMed

    Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour

    2015-09-01

    The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques.

  14. Smooth integral sliding mode controller for the position control of Stewart platform.

    PubMed

    Kumar P, Ramesh; Chalanga, Asif; Bandyopadhyay, B

    2015-09-01

    This paper proposes the application of a new algorithm for the position control of a Stewart platform. The conventional integral sliding mode controller is a combination of nominal control and discontinuous feedback control hence the overall control is discontinuous in nature. The discontinuity in the feedback control is undesirable for practical applications due to chattering which causes the wear and tear of the mechanical actuators. In this paper the existing integral sliding mode control law for systems with matched disturbances is modified by replacing the discontinuous part by a continuous modified twisting control. This proposed controller is continuous in nature due to the combinations of two continuous controls. The desired position of the platform has been achieved using the proposed controller even in the presence of matched disturbances. The effectiveness of the proposed controller has been proved with the simulation results.

  15. Analysis and design of sliding mode controller gains for boost power factor corrector.

    PubMed

    Kessal, Abdelhalim; Rahmani, Lazhar

    2013-09-01

    This paper presents a systematic procedure to compute the gains of sliding mode controller based on an optimization scheme. This controller is oriented to drive an AC-DC converter operating in continuous mode with power factor near unity, and in order to improve static and dynamic performances with large variations of reference voltage and load. This study shows the great influence of the controller gains on the global performances of the system. Hence, a methodology for choosing the gains is detailed. The sliding surface used in this study contains two state variables, input current and output voltage; the advantage of this surface is getting reactions against various disturbances-at the power source, the reference of the output, or the value of the load. The controller is experimentally confirmed for steady-state performance and transient response.

  16. Observation and sliding mode observer for nonlinear fractional-order system with unknown input.

    PubMed

    Djeghali, Nadia; Djennoune, Said; Bettayeb, Maamar; Ghanes, Malek; Barbot, Jean-Pierre

    2016-07-01

    The main purpose of this paper is twofold. First, the observability and the left invertibility properties and the observable canonical form for nonlinear fractional-order systems are introduced. By using a transformation, we show that these properties can be deduced from an equivalent nonlinear integer-order system. Second, a step by step sliding mode observer for fault detection and estimation in nonlinear fractional-order systems is proposed. Starting with a chained fractional-order integrators form, a step by step first-order sliding mode observer is designed. The finite time convergence of the observer is established by using Lyapunov stability theory. A numerical example is given to illustrate the performance of the proposed approach.

  17. Biomolecular implementation of a quasi sliding mode feedback controller based on DNA strand displacement reactions.

    PubMed

    Sawlekar, Rucha; Montefusco, Francesco; Kulkarni, Vishwesh; Bates, Declan G

    2015-08-01

    A fundamental aim of synthetic biology is to achieve the capability to design and implement robust embedded biomolecular feedback control circuits. An approach to realize this objective is to use abstract chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks. Here, we employ this approach to facilitate the implementation of a class of nonlinear feedback controllers based on sliding mode control theory. We show how a set of two-step irreversible reactions with ultrasensitive response dynamics can provide a biomolecular implementation of a nonlinear quasi sliding mode (QSM) controller. We implement our controller in closed-loop with a prototype of a biological pathway and demonstrate that the nonlinear QSM controller outperforms a traditional linear controller by facilitating faster tracking response dynamics without introducing overshoots in the transient response.

  18. Intelligent nonsingular terminal sliding-mode control using MIMO Elman neural network for piezo-flexural nanopositioning stage.

    PubMed

    Lin, Faa-Jeng; Lee, Shih-Yang; Chou, Po-Huan

    2012-12-01

    The objective of this study is to develop an intelligent nonsingular terminal sliding-mode control (INTSMC) system using an Elman neural network (ENN) for the threedimensional motion control of a piezo-flexural nanopositioning stage (PFNS). First, the dynamic model of the PFNS is derived in detail. Then, to achieve robust, accurate trajectory-tracking performance, a nonsingular terminal sliding-mode control (NTSMC) system is proposed for the tracking of the reference contours. The steady-state response of the control system can be improved effectively because of the addition of the nonsingularity in the NTSMC. Moreover, to relax the requirements of the bounds and discard the switching function in NTSMC, an INTSMC system using a multi-input-multioutput (MIMO) ENN estimator is proposed to improve the control performance and robustness of the PFNS. The ENN estimator is proposed to estimate the hysteresis phenomenon and lumped uncertainty, including the system parameters and external disturbance of the PFNS online. Furthermore, the adaptive learning algorithms for the training of the parameters of the ENN online are derived using the Lyapunov stability theorem. In addition, two robust compensators are proposed to confront the minimum reconstructed errors in INTSMC. Finally, some experimental results for the tracking of various contours are given to demonstrate the validity of the proposed INTSMC system for PFNS.

  19. A new design of robust H∞ sliding mode control for uncertain stochastic T-S fuzzy time-delay systems.

    PubMed

    Gao, Qing; Feng, Gang; Xi, Zhiyu; Wang, Yong; Qiu, Jianbin

    2014-09-01

    In this paper, a novel dynamic sliding mode control scheme is proposed for a class of uncertain stochastic nonlinear time-delay systems represented by Takagi-Sugeno fuzzy models. The key advantage of the proposed scheme is that two very restrictive assumptions in most existing sliding mode control approaches for stochastic fuzzy systems have been removed. It is shown that the closed-loop control system trajectories can be driven onto the sliding surface in finite time almost certainly. It is also shown that the stochastic stability of the resulting sliding motion can be guaranteed in terms of linear matrix inequalities; moreover, the sliding-mode controller can be obtained simultaneously. Simulation results illustrating the advantages and effectiveness of the proposed approaches are also provided.

  20. A sliding mode control proposal for open-loop unstable processes.

    PubMed

    Rojas, Rubén; Camacho, Oscar; González, Luis

    2004-04-01

    This papers presents a sliding mode controller based on a first-order-plus-dead-time model of the process for controlling open-loop unstable systems. The proposed controller has a simple and fixed structure with a set of tuning equations as a function of the desired performance. Both linear and nonlinear models were used to study the controller performance by computer simulations. PMID:15098584

  1. Hybrid sliding mode position control for a piston air motor ball screw table.

    PubMed

    Lu, Chia-Hua; Hwang, Yean-Ren

    2012-05-01

    Air motors have been generally applied in the automation industry. Since air motors operate without electricity, they will not produce sparks, explosions or short circuit phenomenon. The purpose of this paper is to analyze the behavior of a ball screw table actuated by a piston air motor and design a hybrid (backstepping and fuzzy) sliding mode controller for accomplishing accurate position performance. The experimental results validate the proposed position control strategy.

  2. Sliding mode control with self-tuning law for uncertain nonlinear systems.

    PubMed

    Kuo, Tzu-Chun; Huang, Ying-Jeh; Chang, Shin-Hung

    2008-04-01

    A robust sliding mode control that follows a self-tuning law for nonlinear systems possessing uncertain parameters is proposed. The adjustable control gain and a bipolar sigmoid function are on-line tuned to force the tracking error to approach zero. Control system stability is ensured using the Lyapunov method. Both simulation and experimental application of a planetary gear type inverted pendulum control system verify the effectiveness of the developed approach.

  3. RTDS implementation of an improved sliding mode based inverter controller for PV system.

    PubMed

    Islam, Gazi; Muyeen, S M; Al-Durra, Ahmed; Hasanien, Hany M

    2016-05-01

    This paper proposes a novel approach for testing dynamics and control aspects of a large scale photovoltaic (PV) system in real time along with resolving design hindrances of controller parameters using Real Time Digital Simulator (RTDS). In general, the harmonic profile of a fast controller has wide distribution due to the large bandwidth of the controller. The major contribution of this paper is that the proposed control strategy gives an improved voltage harmonic profile and distribute it more around the switching frequency along with fast transient response; filter design, thus, becomes easier. The implementation of a control strategy with high bandwidth in small time steps of Real Time Digital Simulator (RTDS) is not straight forward. This paper shows a good methodology for the practitioners to implement such control scheme in RTDS. As a part of the industrial process, the controller parameters are optimized using particle swarm optimization (PSO) technique to improve the low voltage ride through (LVRT) performance under network disturbance. The response surface methodology (RSM) is well adapted to build analytical models for recovery time (Rt), maximum percentage overshoot (MPOS), settling time (Ts), and steady state error (Ess) of the voltage profile immediate after inverter under disturbance. A systematic approach of controller parameter optimization is detailed. The transient performance of the PSO based optimization method applied to the proposed sliding mode controlled PV inverter is compared with the results from genetic algorithm (GA) based optimization technique. The reported real time implementation challenges and controller optimization procedure are applicable to other control applications in the field of renewable and distributed generation systems. PMID:26606852

  4. RTDS implementation of an improved sliding mode based inverter controller for PV system.

    PubMed

    Islam, Gazi; Muyeen, S M; Al-Durra, Ahmed; Hasanien, Hany M

    2016-05-01

    This paper proposes a novel approach for testing dynamics and control aspects of a large scale photovoltaic (PV) system in real time along with resolving design hindrances of controller parameters using Real Time Digital Simulator (RTDS). In general, the harmonic profile of a fast controller has wide distribution due to the large bandwidth of the controller. The major contribution of this paper is that the proposed control strategy gives an improved voltage harmonic profile and distribute it more around the switching frequency along with fast transient response; filter design, thus, becomes easier. The implementation of a control strategy with high bandwidth in small time steps of Real Time Digital Simulator (RTDS) is not straight forward. This paper shows a good methodology for the practitioners to implement such control scheme in RTDS. As a part of the industrial process, the controller parameters are optimized using particle swarm optimization (PSO) technique to improve the low voltage ride through (LVRT) performance under network disturbance. The response surface methodology (RSM) is well adapted to build analytical models for recovery time (Rt), maximum percentage overshoot (MPOS), settling time (Ts), and steady state error (Ess) of the voltage profile immediate after inverter under disturbance. A systematic approach of controller parameter optimization is detailed. The transient performance of the PSO based optimization method applied to the proposed sliding mode controlled PV inverter is compared with the results from genetic algorithm (GA) based optimization technique. The reported real time implementation challenges and controller optimization procedure are applicable to other control applications in the field of renewable and distributed generation systems.

  5. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems

    PubMed Central

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui

    2015-01-01

    This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:25970258

  6. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems.

    PubMed

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui

    2015-01-01

    This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:25970258

  7. Flight Control Design for an Autonomous Rotorcraft Using Pseudo-Sliding Mode Control and Waypoint Navigation

    NASA Astrophysics Data System (ADS)

    Mallory, Nicolas Joseph

    The design of robust automated flight control systems for aircraft of varying size and complexity is a topic of continuing interest for both military and civilian industries. By merging the benefits of robustness from sliding mode control (SMC) with the familiarity and transparency of design tradeoff offered by frequency domain approaches, this thesis presents pseudo-sliding mode control as a viable option for designing automated flight control systems for complex six degree-of-freedom aircraft. The infinite frequency control switching of SMC is replaced, by necessity, with control inputs that are continuous in nature. An introduction to SMC theory is presented, followed by a detailed design of a pseudo-sliding mode control and automated flight control system for a six degree-of-freedom model of a Hughes OH6 helicopter. This model is then controlled through three different waypoint missions that demonstrate the stability of the system and the aircraft's ability to follow certain maneuvers despite time delays, large changes in model parameters and vehicle dynamics, actuator dynamics, sensor noise, and atmospheric disturbances.

  8. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems.

    PubMed

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui

    2015-05-11

    This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method.

  9. Darkfield adapter for whole slide imaging: adapting a darkfield internal reflection illumination system to extend WSI applications.

    PubMed

    Kawano, Yoshihiro; Higgins, Christopher; Yamamoto, Yasuhito; Nyhus, Julie; Bernard, Amy; Dong, Hong-Wei; Karten, Harvey J; Schilling, Tobias

    2013-01-01

    We present a new method for whole slide darkfield imaging. Whole Slide Imaging (WSI), also sometimes called virtual slide or virtual microscopy technology, produces images that simultaneously provide high resolution and a wide field of observation that can encompass the entire section, extending far beyond any single field of view. For example, a brain slice can be imaged so that both overall morphology and individual neuronal detail can be seen. We extended the capabilities of traditional whole slide systems and developed a prototype system for darkfield internal reflection illumination (DIRI). Our darkfield system uses an ultra-thin light-emitting diode (LED) light source to illuminate slide specimens from the edge of the slide. We used a new type of side illumination, a variation on the internal reflection method, to illuminate the specimen and create a darkfield image. This system has four main advantages over traditional darkfield: (1) no oil condenser is required for high resolution imaging (2) there is less scatter from dust and dirt on the slide specimen (3) there is less halo, providing a more natural darkfield contrast image, and (4) the motorized system produces darkfield, brightfield and fluorescence images. The WSI method sometimes allows us to image using fewer stains. For instance, diaminobenzidine (DAB) and fluorescent staining are helpful tools for observing protein localization and volume in tissues. However, these methods usually require counter-staining in order to visualize tissue structure, limiting the accuracy of localization of labeled cells within the complex multiple regions of typical neurohistological preparations. Darkfield imaging works on the basis of light scattering from refractive index mismatches in the sample. It is a label-free method of producing contrast in a sample. We propose that adapting darkfield imaging to WSI is very useful, particularly when researchers require additional structural information without the use of

  10. Sliding-mode control of single input multiple output DC-DC converter

    NASA Astrophysics Data System (ADS)

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  11. Sensorless control of ship propulsion interior permanent magnet synchronous motor based on a new sliding mode observer.

    PubMed

    Ren, Jun-Jie; Liu, Yan-Cheng; Wang, Ning; Liu, Si-Yuan

    2015-01-01

    This paper proposes a sensorless speed control strategy for ship propulsion interior permanent magnet synchronous motor (IPMSM) based on a new sliding-mode observer (SMO). In the SMO the low-pass filter and the method of arc-tangent calculation of extended electromotive force (EMF) or phase-locked loop (PLL) technique are not used. The calculation of the rotor speed is deduced from the Lyapunov function stability analysis. In order to reduce system chattering, sigmoid functions with switching gains being adaptively updated by fuzzy logic systems are innovatively incorporated into the SMO. Finally, simulation results for a 4.088 MW ship propulsion IPMSM and experimental results from a 7.5 kW IPMSM drive are provided to verify the effectiveness of the proposed SMO method.

  12. Sliding-mode control of a six-phase series/parallel connected two induction motors drive.

    PubMed

    Abjadi, Navid R

    2014-11-01

    In this paper, a parallel configuration is proposed for two quasi six-phase induction motors (QIMs) to feed them from a single six-phase voltage source inverter (VSI). A direct torque control (DTC) based on input-output feedback linearization (IOFL) combined with sliding mode (SM) control is used for each QIM in stationary reference frame. In addition, an adaptive scheme is employed to solve the motor resistances mismatching problem. The effectiveness and capability of the proposed method are shown by practical results obtained for two QIMs in series/parallel connections supplied from a single VSI. The decoupling control of QIMs and the feasibility of their torque and flux control are investigated. Moreover, a complete comparison between series and parallel connections of two QIMs is given.

  13. Sliding mode based fault detection, reconstruction and fault tolerant control scheme for motor systems.

    PubMed

    Mekki, Hemza; Benzineb, Omar; Boukhetala, Djamel; Tadjine, Mohamed; Benbouzid, Mohamed

    2015-07-01

    The fault-tolerant control problem belongs to the domain of complex control systems in which inter-control-disciplinary information and expertise are required. This paper proposes an improved faults detection, reconstruction and fault-tolerant control (FTC) scheme for motor systems (MS) with typical faults. For this purpose, a sliding mode controller (SMC) with an integral sliding surface is adopted. This controller can make the output of system to track the desired position reference signal in finite-time and obtain a better dynamic response and anti-disturbance performance. But this controller cannot deal directly with total system failures. However an appropriate combination of the adopted SMC and sliding mode observer (SMO), later it is designed to on-line detect and reconstruct the faults and also to give a sensorless control strategy which can achieve tolerance to a wide class of total additive failures. The closed-loop stability is proved, using the Lyapunov stability theory. Simulation results in healthy and faulty conditions confirm the reliability of the suggested framework.

  14. Nonsingular decoupled terminal sliding-mode control for a class of fourth-order nonlinear systems

    NASA Astrophysics Data System (ADS)

    Bayramoglu, Husnu; Komurcugil, Hasan

    2013-09-01

    This paper presents a nonsingular decoupled terminal sliding mode control (NDTSMC) method for a class of fourth-order nonlinear systems. First, the nonlinear fourth-order system is decoupled into two second-order subsystems which are referred to as the primary and secondary subsystems. The sliding surface of each subsystem was designed by utilizing time-varying coefficients which are computed by linear functions derived from the input-output mapping of the one-dimensional fuzzy rule base. Then, the control target of the secondary subsystem was embedded to the primary subsystem by the help of an intermediate signal. Thereafter, a nonsingular terminal sliding mode control (NTSMC) method was utilized to make both subsystems converge to their equilibrium points in finite time. The simulation results on the inverted pendulum system are given to show the effectiveness of the proposed method. It is seen that the proposed method exhibits a considerable improvement in terms of a faster dynamic response and lower IAE and ITAE values as compared with the existing decoupled control methods.

  15. MIMO Sliding Mode Control for a Tailless Fighter Aircraft, An Alternative to Reconfigurable Architectures

    NASA Technical Reports Server (NTRS)

    Wells, S. R.; Hess, R. A.

    2002-01-01

    A frequency-domain procedure for the design of sliding mode controllers for multi-input, multi-output (MIMO) systems is presented. The methodology accommodates the effects of parasitic dynamics such as those introduced by unmodeled actuators through the introduction of multiple asymptotic observers and model reference hedging. The design procedure includes a frequency domain approach to specify the sliding manifold, the observer eigenvalues, and the hedge model. The procedure is applied to the development of a flight control system for a linear model of the Innovative Control Effector (ICE) fighter aircraft. The stability and performance robustness of the resulting design is demonstrated through the introduction of significant degradation in the control effector actuators and variation in vehicle dynamics.

  16. Variable speed wind turbine control by discrete-time sliding mode approach.

    PubMed

    Torchani, Borhen; Sellami, Anis; Garcia, Germain

    2016-05-01

    The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time sliding mode approach. This methodology is designed for linear saturated system. The saturation constraint is reported on inputs vector. To this end, the back stepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It is well known that the mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are presented. PMID:26804750

  17. Variable speed wind turbine control by discrete-time sliding mode approach.

    PubMed

    Torchani, Borhen; Sellami, Anis; Garcia, Germain

    2016-05-01

    The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time sliding mode approach. This methodology is designed for linear saturated system. The saturation constraint is reported on inputs vector. To this end, the back stepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It is well known that the mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are presented.

  18. Second-order integral sliding-mode control with experimental application.

    PubMed

    Furat, Murat; Eker, İlyas

    2014-09-01

    In the present study, a second-order sliding-mode controller is proposed for single-input single-output (SISO) uncertain real systems. The proposed controller successively overcomes the variations caused by the uncertainties and external load disturbances although an approximate model of the system is used in the design procedure. An integral type sliding surface is used and the stability and robustness properties of the proposed controller are proved by means of Lyapunov stability theorem. The chattering phenomenon is significantly reduced adopting the switching gain with the known parameters of the system. Thus, the proposed controller is suitable for long-term application to the real systems. The performance of the proposed control scheme is validated by a real system experiments and the results are compared with the similar controllers presented in the literature.

  19. Adaptive Control of Flexible Structures Using Residual Mode Filters

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Frost, Susan

    2010-01-01

    Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter. We have proposed a modified adaptive controller with a residual mode filter. The RMF is used to accommodate troublesome modes in the system that might otherwise inhibit the adaptive controller, in particular the ASPR condition. This new theory accounts for leakage of the disturbance term into the Q modes. A simple three-mode example shows that the RMF can restore stability to an otherwise unstable adaptively controlled system. This is done without modifying the adaptive controller design.

  20. Nonlinear H ∞ control of a Quadrotor (UAV), using high order sliding mode disturbance estimator

    NASA Astrophysics Data System (ADS)

    Kerma, Mokhtar; Mokhtari, Abdellah; Abdelaziz, Benallegue; Orlov, Yuri

    2012-12-01

    A nonlinear H ∞ output feedback controller is proposed and coupled to a high-order sliding mode estimator to regulate an UAV in the presence of the unmatched perturbations. The plant to be controlled is a Quadrotor helicopter described by nonlinear dynamics with plant uncertainties due to the variations of inertia moments and payload operation. A robust state estimation is considered under model uncertainties as well as external/measurement disturbances. Performance issues of the controller are illustrated in a simulation study made for an UAV prototype.

  1. A modified integral sliding mode control to lateral stabilisation of 4-wheel independent drive electric vehicles

    NASA Astrophysics Data System (ADS)

    Alipour, Hasan; Bagher Bannae Sharifian, Mohammad; Sabahi, Mehran

    2014-12-01

    This paper presents a novel sliding mode controller (SMC) and its application in the lateral stability control of a 4-wheel independent drive electric vehicle. The structure of the SMC is modified and online-tuned to ensure vehicle system stability, and to track the desired vehicle motion references when an in-wheel motor fault happens. The proposed controller is faster, more accurate, more robust, and with smaller chattering than common SMCs chatter. The effectiveness of the introduced approach is investigated through conducted simulations in the CARSIM and MATLAB software environments.

  2. Sensorless sliding mode observer for a five-phase permanent magnet synchronous motor drive.

    PubMed

    Hosseyni, Anissa; Trabelsi, Ramzi; Mimouni, Med Faouzi; Iqbal, Atif; Alammari, Rashid

    2015-09-01

    This paper deals with the sensorless vector controlled five-phase permanent magnet synchronous motor (PMSM) drive based on a sliding mode observer (SMO). The observer is designed considering the back electromotive force (EMF) of five-phase permanent magnet synchronous motor. The SMO structure and design are illustrated. Stability of the proposed observer is demonstrated using Lyapunov stability criteria. The proposed strategy is asymptotically stable in the context of Lyapunov theory. Simulated results on a five-phase PMSM drive are displayed to validate the feasibility and the effectiveness of the proposed control strategy.

  3. A swarm intelligence-based tuning method for the Sliding Mode Generalized Predictive Control.

    PubMed

    Oliveira, J B; Boaventura-Cunha, J; Moura Oliveira, P B; Freire, H

    2014-09-01

    This work presents an automatic tuning method for the discontinuous component of the Sliding Mode Generalized Predictive Controller (SMGPC) subject to constraints. The strategy employs Particle Swarm Optimization (PSO) to minimize a second aggregated cost function. The continuous component is obtained by the standard procedure, by Quadratic Programming (QP), thus yielding an online dual optimization scheme. Simulations and performance indexes for common process models in industry, such as nonminimum phase and time delayed systems, result in a better performance, improving robustness and tracking accuracy.

  4. Drag-based composite super-twisting sliding mode control law design for Mars entry guidance

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenhua; Yang, Jun; Li, Shihua; Guo, Lei

    2016-06-01

    In this paper, the drag-based trajectory tracking guidance problem is investigated for Mars entry vehicle subject to uncertainties. A composite super twisting sliding mode control method based on finite-time disturbance observer is proposed for guidance law design. The proposed controller not only eliminates the effects of matched and mismatched disturbances due to uncertainties of atmospheric models and vehicle aerodynamics but also guarantees the continuity of control action. Numerical simulations are carried out on the basis of Mars Science Laboratory mission, where the results show that the proposed methods can improve the Mars entry guidance precision as compared with some existing guidance methods including PID and ADRC.

  5. Robust Sliding Mode Control Based on GA Optimization and CMAC Compensation for Lower Limb Exoskeleton.

    PubMed

    Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Dong, Wei

    2016-01-01

    A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems. PMID:27069353

  6. Robust Sliding Mode Control Based on GA Optimization and CMAC Compensation for Lower Limb Exoskeleton

    PubMed Central

    Long, Yi; Du, Zhi-jiang; Wang, Wei-dong; Dong, Wei

    2016-01-01

    A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems. PMID:27069353

  7. Robust Sliding Mode Control Based on GA Optimization and CMAC Compensation for Lower Limb Exoskeleton.

    PubMed

    Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Dong, Wei

    2016-01-01

    A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems.

  8. Photonic lantern adaptive spatial mode control in LMA fiber amplifiers.

    PubMed

    Montoya, Juan; Aleshire, Chris; Hwang, Christopher; Fontaine, Nicolas K; Velázquez-Benítez, Amado; Martz, Dale H; Fan, T Y; Ripin, Dan

    2016-02-22

    We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.

  9. Analytical impact time and angle guidance via time-varying sliding mode technique.

    PubMed

    Zhao, Yao; Sheng, Yongzhi; Liu, Xiangdong

    2016-05-01

    To concretely provide a feasible solution for homing missiles with the precise impact time and angle, this paper develops a novel guidance law, based on the nonlinear engagement dynamics. The guidance law is firstly designed with the prior assumption of a stationary target, followed by the practical extension to a moving target scenario. The time-varying sliding mode (TVSM) technique is applied to fulfill the terminal constraints, in which a specific TVSM surface is constructed with two unknown coefficients. One is tuned to meet the impact time requirement and the other one is targeted with a global sliding mode, so that the impact angle constraint as well as the zero miss distance can be satisfied. Because the proposed law possesses three guidance gain as design parameters, the intercept trajectory can be shaped according to the operational conditions and missile׳s capability. To improve the tolerance of initial heading errors and broaden the application, a new frame of reference is also introduced. Furthermore, the analytical solutions of the flight trajectory, heading angle and acceleration command can be totally expressed for the prediction and offline parameter selection by solving a first-order linear differential equation. Numerical simulation results for various scenarios validate the effectiveness of the proposed guidance law and demonstrate the accuracy of the analytic solutions.

  10. Estimation of the shear force in transverse dynamic force microscopy using a sliding mode observer

    NASA Astrophysics Data System (ADS)

    Nguyen, Thang; Hatano, Toshiaki; Khan, Said G.; Zhang, Kaiqiang; Edwards, Christopher; Harniman, Robert; Burgess, Stuart C.; Antognozzi, Massimo; Miles, Mervyn; Herrmann, Guido

    2015-09-01

    In this paper, the problem of estimating the shear force affecting the tip of the cantilever in a Transverse Dynamic Force Microscope (TDFM) using a real-time implementable sliding mode observer is addressed. The behaviour of a vertically oriented oscillated cantilever, in close proximity to a specimen surface, facilitates the imaging of the specimen at nano-metre scale. Distance changes between the cantilever tip and the specimen can be inferred from the oscillation amplitudes, but also from the shear force acting at the tip. Thus, the problem of accurately estimating the shear force is of significance when specimen images and mechanical properties need to be obtained at submolecular precision. A low order dynamic model of the cantilever is derived using the method of lines, for the purpose of estimating the shear force. Based on this model, an estimator using sliding mode techniques is presented to reconstruct the unknown shear force, from only tip position measurements and knowledge of the excitation signal applied to the top of the cantilever. Comparisons to methods assuming a quasi-static harmonic balance are made.

  11. Output Feedback Fractional-Order Nonsingular Terminal Sliding Mode Control of Underwater Remotely Operated Vehicles

    PubMed Central

    Chen, Jiawang; Gu, Linyi

    2014-01-01

    For the 4-DOF (degrees of freedom) trajectory tracking control problem of underwater remotely operated vehicles (ROVs) in the presence of model uncertainties and external disturbances, a novel output feedback fractional-order nonsingular terminal sliding mode control (FO-NTSMC) technique is introduced in light of the equivalent output injection sliding mode observer (SMO) and TSMC principle and fractional calculus technology. The equivalent output injection SMO is applied to reconstruct the full states in finite time. Meanwhile, the FO-NTSMC algorithm, based on a new proposed fractional-order switching manifold, is designed to stabilize the tracking error to equilibrium points in finite time. The corresponding stability analysis of the closed-loop system is presented using the fractional-order version of the Lyapunov stability theory. Comparative numerical simulation results are presented and analyzed to demonstrate the effectiveness of the proposed method. Finally, it is noteworthy that the proposed output feedback FO-NTSMC technique can be used to control a broad range of nonlinear second-order dynamical systems in finite time. PMID:24983004

  12. Robust fuzzy neural network sliding mode control scheme for IPMSM drives

    NASA Astrophysics Data System (ADS)

    Leu, V. Q.; Mwasilu, F.; Choi, H. H.; Lee, J.; Jung, J. W.

    2014-07-01

    This article proposes a robust fuzzy neural network sliding mode control (FNNSMC) law for interior permanent magnet synchronous motor (IPMSM) drives. The proposed control strategy not only guarantees accurate and fast command speed tracking but also it ensures the robustness to system uncertainties and sudden speed and load changes. The proposed speed controller encompasses three control terms: a decoupling control term which compensates for nonlinear coupling factors using nominal parameters, a fuzzy neural network (FNN) control term which approximates the ideal control components and a sliding mode control (SMC) term which is proposed to compensate for the errors of that approximation. Next, an online FNN training methodology, which is developed using the Lyapunov stability theorem and the gradient descent method, is proposed to enhance the learning capability of the FNN. Moreover, the maximum torque per ampere (MTPA) control is incorporated to maximise the torque generation in the constant torque region and increase the efficiency of the IPMSM drives. To verify the effectiveness of the proposed robust FNNSMC, simulations and experiments are performed by using MATLAB/Simulink platform and a TI TMS320F28335 DSP on a prototype IPMSM drive setup, respectively. Finally, the simulated and experimental results indicate that the proposed design scheme can achieve much better control performances (e.g. more rapid transient response and smaller steady-state error) when compared to the conventional SMC method, especially in the case that there exist system uncertainties.

  13. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    NASA Astrophysics Data System (ADS)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  14. Two modified discrete PID-based sliding mode controllers for piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Chen, X. B.

    2014-01-01

    Hysteresis is a nonlinear effect that can result in the degraded performance of piezoelectric actuators (PEAs). To counteract the effect, several control methods have been developed and reported in the literature. One promising method for compensation is the use of a proportional-integral-derivative (PID)-based sliding mode control (SMC), in which the PEA hysteresis is treated as an unknown disturbance to the PEA input. If the hysteresis can be modelled or partially modelled, the integration of the hysteresis models into the control schemes may lead to further improved performance. On this philosophy, this paper presents the development of two modified discrete PID-based sliding mode controllers (PID-SMCs) for the PEAs, namely an inversion-based PID-SMC and a disturbance-observer (DOB)-based PID-SMC, in which the PEA hysteresis is predicted or partially predicted through the use of existing models for the PEA hysteresis. Experiments were performed to verify the effectiveness of the proposed control schemes. The results were compared to those of the nominal PID-SMC. By employing the inversion hysteresis and the DOB, the PEA performance was greatly improved.

  15. Analytical impact time and angle guidance via time-varying sliding mode technique.

    PubMed

    Zhao, Yao; Sheng, Yongzhi; Liu, Xiangdong

    2016-05-01

    To concretely provide a feasible solution for homing missiles with the precise impact time and angle, this paper develops a novel guidance law, based on the nonlinear engagement dynamics. The guidance law is firstly designed with the prior assumption of a stationary target, followed by the practical extension to a moving target scenario. The time-varying sliding mode (TVSM) technique is applied to fulfill the terminal constraints, in which a specific TVSM surface is constructed with two unknown coefficients. One is tuned to meet the impact time requirement and the other one is targeted with a global sliding mode, so that the impact angle constraint as well as the zero miss distance can be satisfied. Because the proposed law possesses three guidance gain as design parameters, the intercept trajectory can be shaped according to the operational conditions and missile׳s capability. To improve the tolerance of initial heading errors and broaden the application, a new frame of reference is also introduced. Furthermore, the analytical solutions of the flight trajectory, heading angle and acceleration command can be totally expressed for the prediction and offline parameter selection by solving a first-order linear differential equation. Numerical simulation results for various scenarios validate the effectiveness of the proposed guidance law and demonstrate the accuracy of the analytic solutions. PMID:26952314

  16. Dynamic fast terminal sliding mode control of a shape memory alloy actuated system

    NASA Astrophysics Data System (ADS)

    Marathe, Meeshawn S.; Srinivasan, S. M.

    2016-04-01

    In this paper we address the chattering phenomenon which is a common drawback associated with the normal Sliding Mode Control (SMC) law for a basic shape memory alloy (SMA) actuated system. A new method has been proposed to counter this effect by combining the concepts of Fast Terminal SMC and Dynamic controller. A phenomenological model is developed for the SMA which incorporates a piecewise linear hysteresis behavior. This model is used for both open loop as well as closed loop simulations for a linear motion control system. Based on this model, a dynamic terminal sliding mode control law is derived and applied to the system. A normal SMC law with saturation function which is known to reduce chattering is compared with the proposed control law for its effectiveness to curb the issue of chattering versus its ability to faithfully track a desired trajectory. Numerical Simulations indicate that the proposed law is able to reduce the chattering effect sufficiently and at par with the control technique involving saturation function.

  17. Output feedback fractional-order nonsingular terminal sliding mode control of underwater remotely operated vehicles.

    PubMed

    Wang, Yaoyao; Chen, Jiawang; Gu, Linyi

    2014-01-01

    For the 4-DOF (degrees of freedom) trajectory tracking control problem of underwater remotely operated vehicles (ROVs) in the presence of model uncertainties and external disturbances, a novel output feedback fractional-order nonsingular terminal sliding mode control (FO-NTSMC) technique is introduced in light of the equivalent output injection sliding mode observer (SMO) and TSMC principle and fractional calculus technology. The equivalent output injection SMO is applied to reconstruct the full states in finite time. Meanwhile, the FO-NTSMC algorithm, based on a new proposed fractional-order switching manifold, is designed to stabilize the tracking error to equilibrium points in finite time. The corresponding stability analysis of the closed-loop system is presented using the fractional-order version of the Lyapunov stability theory. Comparative numerical simulation results are presented and analyzed to demonstrate the effectiveness of the proposed method. Finally, it is noteworthy that the proposed output feedback FO-NTSMC technique can be used to control a broad range of nonlinear second-order dynamical systems in finite time.

  18. A sliding mode-based starling-like controller for implantable rotary blood pumps.

    PubMed

    Bakouri, Mohsen A; Salamonsen, Robert F; Savkin, Andrey V; AlOmari, Abdul-Hakeem H; Lim, Einly; Lovell, Nigel H

    2014-07-01

    Clinically adequate implementation of physiological control of a rotary left ventricular assist device requires a sophisticated technique such as the recently proposed method based on the Frank-Starling mechanism. In this mechanism, the stroke volume of the heart increases in response to an increase in the volume of blood filling the left ventricle at the end of diastole. To emulate this process, changes in pump speed need to automatically regulate pump flow to ensure that the combined output of the left ventricle and pump match the output of the right ventricle across changing cardiovascular states. In this approach, we exploit the linear relationship between estimated mean pump flow (Q ̅ est) and pump flow pulsatility (PIQp) in a tracking control algorithm based on sliding mode control. The immediate response of the controller was assessed using a lumped parameter model of the cardiovascular system (CVS) and pump from which could be extracted both Q ̅ est and PIQp. Two different perturbations from the resting state in the presence of left ventricular failure were tested. The first was blood loss requiring a reduction in pump flow to match the reduced output from the right ventricle and to avoid the complication of ventricular suction. The second was exercise, requiring an increase in pump flow. The sliding mode controller induced the required changes in Qp within approximately five heart beats in the blood loss simulation and eight heart beats in the exercise simulation without clinically significant transients or steady-state errors.

  19. Regulation of Blood Glucose Concentration in Type 1 Diabetics Using Single Order Sliding Mode Control Combined with Fuzzy On-line Tunable Gain, a Simulation Study.

    PubMed

    Dinani, Soudabeh Taghian; Zekri, Maryam; Kamali, Marzieh

    2015-01-01

    Diabetes is considered as a global affecting disease with an increasing contribution to both mortality rate and cost damage in the society. Therefore, tight control of blood glucose levels has gained significant attention over the decades. This paper proposes a method for blood glucose level regulation in type 1 diabetics. The control strategy is based on combining the fuzzy logic theory and single order sliding mode control (SOSMC) to improve the properties of sliding mode control method and to alleviate its drawbacks. The aim of the proposed controller that is called SOSMC combined with fuzzy on-line tunable gain is to tune the gain of the controller adaptively. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. As a result, this method can decline the risk of hypoglycemia, a lethal phenomenon in regulating blood glucose level in diabetics caused by a low blood glucose level. Moreover, it attenuates the chattering observed in SOSMC significantly. It is worth noting that in this approach, a mathematical model called minimal model is applied instead of the intravenously infused insulin-blood glucose dynamics. The simulation results demonstrate a good performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. In addition, this method is compared to fuzzy high-order sliding mode control (FHOSMC) and the superiority of the new method compared to FHOSMC is shown in the results.

  20. Decoupling control based on terminal sliding mode and wavelet network for the speed and tension system of reversible cold strip rolling mill

    NASA Astrophysics Data System (ADS)

    Fang, Yiming; Liu, Le; Li, Jianxiong; Xu, Yanze

    2015-08-01

    To weaken the nonlinear coupling influences among the variables in the speed and tension system of reversible cold strip rolling mill, a novel dynamic decoupling control strategy is proposed based on nonsingular fast terminal sliding mode (NFTSM) and wavelet neural network (WNN). First, nonlinear disturbance observers are developed to counteract the mismatched uncertainties, and then input/output dynamic decoupling and linearisation for the speed and tension nonlinear coupling system are realised by utilising the inverse system theory. Second, nonsingular fast terminal sliding mode controller (NFTSMC) for each pseudo linear subsystem is presented based on backstepping and two-power reaching law, so as to improve the global convergence speed and robust stability of the system. Third, adaptive WNNs are used to approximate the uncertain items of the system, so as to improve the control precision of the speed and tension of reversible cold strip rolling mill. Theoretical analyses show that the NFTSMs satisfy reachability condition, the system error variables can converge to equilibrium point in finite time, and the resulting closed-loop system is globally asymptotically stable. Finally, simulation research is carried out on the speed and tension system of a 1422 mm reversible cold strip rolling mill by using the actual data, and results show the superiority of the proposed control strategy in comparison with the strategies of cascade PI, linear sliding mode control and internal model control.

  1. Regulation of Blood Glucose Concentration in Type 1 Diabetics Using Single Order Sliding Mode Control Combined with Fuzzy On-line Tunable Gain, a Simulation Study

    PubMed Central

    Dinani, Soudabeh Taghian; Zekri, Maryam; Kamali, Marzieh

    2015-01-01

    Diabetes is considered as a global affecting disease with an increasing contribution to both mortality rate and cost damage in the society. Therefore, tight control of blood glucose levels has gained significant attention over the decades. This paper proposes a method for blood glucose level regulation in type 1 diabetics. The control strategy is based on combining the fuzzy logic theory and single order sliding mode control (SOSMC) to improve the properties of sliding mode control method and to alleviate its drawbacks. The aim of the proposed controller that is called SOSMC combined with fuzzy on-line tunable gain is to tune the gain of the controller adaptively. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. As a result, this method can decline the risk of hypoglycemia, a lethal phenomenon in regulating blood glucose level in diabetics caused by a low blood glucose level. Moreover, it attenuates the chattering observed in SOSMC significantly. It is worth noting that in this approach, a mathematical model called minimal model is applied instead of the intravenously infused insulin–blood glucose dynamics. The simulation results demonstrate a good performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. In addition, this method is compared to fuzzy high-order sliding mode control (FHOSMC) and the superiority of the new method compared to FHOSMC is shown in the results. PMID:26284169

  2. Adaptive mode control of a few-mode fiber by real-time mode decomposition.

    PubMed

    Huang, Liangjin; Leng, Jinyong; Zhou, Pu; Guo, Shaofeng; Lü, Haibin; Cheng, Xiang'ai

    2015-10-19

    A novel approach to adaptively control the beam profile in a few-mode fiber is experimentally demonstrated. We stress the fiber through an electric-controlled polarization controller, whose driven voltage depends on the current and target modal content difference obtained with the real-time mode decomposition. We have achieved selective excitations of LP01 and LP11 modes, as well as significant improvement of the beam quality factor, which may play crucial roles for high-power fiber lasers, fiber based telecommunication systems and other fundamental researches and applications. PMID:26480466

  3. Fuzzy fast terminal sliding mode vibration control of a two-connected flexible plate using laser sensors

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-cheng; Zhang, Si-ma

    2016-10-01

    A kind of non-contact vibration measurement method for a two-connected flexible piezoelectric plate using laser sensors is proposed. Decoupling of the bending and torsional vibration on measurement and driving control is carried out via using two laser displacement sensors and piezoelectric actuators. The fuzzy fast terminal sliding mode controller (FFTSMC) is investigated to suppress both the larger and the smaller amplitude vibrations quickly. In order to alleviate the chattering phenomenon and enhance the control effect, the fuzzy logic adaptive algorithm is used to adjust the switching control gain for softening the signum function adaptively. To verify the non-contact measurement method and the designed controller, the experimental setup is built up. Experiments on active vibration control using the designed FFTSMC are conducted, compared with the classical proportional derivative (PD) control algorithm. The experimental identification results demonstrate that the laser displacement sensors can detect the low-frequency bending and torsional vibration effectively, after using the decoupling method. Furthermore, the designed FFTSMC can suppress both bending and torsional vibration more quickly than the designed PD controller owing to the adjustment of the switching control gains and the softening factors, especially for the small amplitude residual vibrations.

  4. Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor.

    PubMed

    Zhang, BiTao; Pi, YouGuo; Luo, Ying

    2012-09-01

    A fractional order sliding mode control (FROSMC) scheme based on parameters auto-tuning for the velocity control of permanent magnet synchronous motor (PMSM) is proposed in this paper. The control law of the proposed F(R)OSMC scheme is designed according to Lyapunov stability theorem. Based on the property of transferring energy with adjustable type in F(R)OSMC, this paper analyzes the chattering phenomenon in classic sliding mode control (SMC) is attenuated with F(R)OSMC system. A fuzzy logic inference scheme (FLIS) is utilized to obtain the gain of switching control. Simulations and experiments demonstrate that the proposed FROSMC not only achieve better control performance with smaller chatting than that with integer order sliding mode control, but also is robust to external load disturbance and parameter variations.

  5. Least square based sliding mode control for a quad-rotor helicopter and energy saving by chattering reduction

    NASA Astrophysics Data System (ADS)

    Sumantri, Bambang; Uchiyama, Naoki; Sano, Shigenori

    2016-01-01

    In this paper, a new control structure for a quad-rotor helicopter that employs the least squares method is introduced. This proposed algorithm solves the overdetermined problem of the control input for the translational motion of a quad-rotor helicopter. The algorithm allows all six degrees of freedom to be considered to calculate the control input. The sliding mode controller is applied to achieve robust tracking and stabilization. A saturation function is designed around a boundary layer to reduce the chattering phenomenon that is a common problem in sliding mode control. In order to improve the tracking performance, an integral sliding surface is designed. An energy saving effect because of chattering reduction is also evaluated. First, the dynamics of the quad-rotor helicopter is derived by the Newton-Euler formulation for a rigid body. Second, a constant plus proportional reaching law is introduced to increase the reaching rate of the sliding mode controller. Global stability of the proposed control strategy is guaranteed based on the Lyapunov's stability theory. Finally, the robustness and effectiveness of the proposed control system are demonstrated experimentally under wind gusts, and are compared with a regular sliding mode controller, a proportional-differential controller, and a proportional-integral-differential controller.

  6. Reducing False Negative Reads in RFID Data Streams Using an Adaptive Sliding-Window Approach

    PubMed Central

    Massawe, Libe Valentine; Kinyua, Johnson D. M.; Vermaak, Herman

    2012-01-01

    Unreliability of the data streams generated by RFID readers is among the primary factors which limit the widespread adoption of the RFID technology. RFID data cleaning is, therefore, an essential task in the RFID middleware systems in order to reduce reading errors, and to allow these data streams to be used to make a correct interpretation and analysis of the physical world they are representing. In this paper we propose an adaptive sliding-window based approach called WSTD which is capable of efficiently coping with both environmental variation and tag dynamics. Our experimental results demonstrate the efficacy of the proposed approach. PMID:22666027

  7. Sliding mode based trajectory linearization control for hypersonic reentry vehicle via extended disturbance observer.

    PubMed

    Xingling, Shao; Honglun, Wang

    2014-11-01

    This paper proposes a novel hybrid control framework by combing observer-based sliding mode control (SMC) with trajectory linearization control (TLC) for hypersonic reentry vehicle (HRV) attitude tracking problem. First, fewer control consumption is achieved using nonlinear tracking differentiator (TD) in the attitude loop. Second, a novel SMC that employs extended disturbance observer (EDO) to counteract the effect of uncertainties using a new sliding surface which includes the estimation error is integrated to address the tracking error stabilization issues in the attitude and angular rate loop, respectively. In addition, new results associated with EDO are examined in terms of dynamic response and noise-tolerant performance, as well as estimation accuracy. The key feature of the proposed compound control approach is that chattering free tracking performance with high accuracy can be ensured for HRV in the presence of multiple uncertainties under control constraints. Based on finite time convergence stability theory, the stability of the resulting closed-loop system is well established. Also, comparisons and extensive simulation results are presented to demonstrate the effectiveness of the control strategy.

  8. Sliding mode-based lateral vehicle dynamics control using tyre force measurements

    NASA Astrophysics Data System (ADS)

    Kunnappillil Madhusudhanan, Anil; Corno, Matteo; Holweg, Edward

    2015-11-01

    In this work, a lateral vehicle dynamics control based on tyre force measurements is proposed. Most of the lateral vehicle dynamics control schemes are based on yaw rate whereas tyre forces are the most important variables in vehicle dynamics as tyres are the only contact points between the vehicle and road. In the proposed method, active front steering is employed to uniformly distribute the required lateral force among the front left and right tyres. The force distribution is quantified through the tyre utilisation coefficients. In order to address the nonlinearities and uncertainties of the vehicle model, a gain scheduling sliding-mode control technique is used. In addition to stabilising the lateral dynamics, the proposed controller is able to maintain maximum lateral acceleration. The proposed method is tested and validated on a multi-body vehicle simulator.

  9. A reduced-order nonlinear sliding mode observer for vehicle slip angle and tyre forces

    NASA Astrophysics Data System (ADS)

    Chen, Yuhang; Ji, Yunfeng; Guo, Konghui

    2014-12-01

    In this paper, a reduced-order sliding mode observer (RO-SMO) is developed for vehicle state estimation. Several improvements are achieved in this paper. First, the reference model accuracy is improved by considering vehicle load transfers and using a precise nonlinear tyre model 'UniTire'. Second, without the reference model accuracy degraded, the computing burden of the state observer is decreased by a reduced-order approach. Third, nonlinear system damping is integrated into the SMO to speed convergence and reduce chattering. The proposed RO-SMO is evaluated through simulation and experiments based on an in-wheel motor electric vehicle. The results show that the proposed observer accurately predicts the vehicle states.

  10. Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle.

    PubMed

    Wang, Jie; Zong, Qun; Su, Rui; Tian, Bailing

    2014-05-01

    This paper investigates the problem of tracking control with uncertainties for a flexible air-breathing hypersonic vehicle (FAHV). In order to overcome the analytical intractability of this model, an Input-Output linearization model is constructed for the purpose of feedback control design. Then, the continuous finite time convergence high order sliding mode controller is designed for the Input-Output linearization model without uncertainties. In addition, a nonlinear disturbance observer is applied to estimate the uncertainties in order to compensate the controller and disturbance suppression, where disturbance observer and controller synthesis design is obtained. Finally, the synthesis of controller and disturbance observer is used to achieve the tracking for the velocity and altitude of the FAHV and simulations are presented to illustrate the effectiveness of the control strategies.

  11. Impedance Control of the Rehabilitation Robot Based on Sliding Mode Control

    NASA Astrophysics Data System (ADS)

    Zhou, Jiawang; Zhou, Zude; Ai, Qingsong

    As an auxiliary treatment, the 6-DOF parallel robot plays an important role in lower limb rehabilitation. In order to improve the efficiency and flexibility of the lower limb rehabilitation training, this paper studies the impedance controller based on the position control. A nonsingular terminal sliding mode control is developed to ensure the trajectory tracking precision and in contrast to traditional PID control strategy in the inner position loop, the system will be more stable. The stability of the system is proved by Lyapunov function to guarantee the convergence of the control errors. Simulation results validate the effectiveness of the target impedance model and show that the parallel robot can adjust gait trajectory online according to the human-machine interaction force to meet the gait request of patients, and changing the impedance parameters can meet the demands of different stages of rehabilitation training.

  12. Fault-Tolerant Control of Wind Turbines using a Takagi-Sugeno Sliding Mode Observer

    NASA Astrophysics Data System (ADS)

    Georg, Sören; Schulte, Horst

    2014-06-01

    In this paper, observer-based fault-tolerant control schemes for actuator and sensor faults are implemented within dynamic wind turbine simulations. The faults are directly reconstructed by means of a Takagi-Sugeno sliding mode observer. As simulation models, both a reduced-order model with 4 degrees of freedom and the aero-elastic code FAST by NREL are used. A fault-tolerant control scheme is set up by subtracting the reconstructed fault from the faulty control signal respectively sensor value. With these fault compensation schemes, the corrected controller behaviour is close to the fault-free case. The global stability of the controller in the full-load region in the presence of faults and with active fault compensation is shown by analysing the derivative of an appropriate Lyapunov function.

  13. Fault tolerant control based on interval type-2 fuzzy sliding mode controller for coaxial trirotor aircraft.

    PubMed

    Zeghlache, Samir; Kara, Kamel; Saigaa, Djamel

    2015-11-01

    In this paper, a robust controller for a Six Degrees of Freedom (6 DOF) coaxial trirotor helicopter control is proposed in presence of defects in the system. A control strategy based on the coupling of the interval type-2 fuzzy logic control and sliding mode control technique are used to design a controller. The main purpose of this work is to eliminate the chattering phenomenon and guaranteeing the stability and the robustness of the system. In order to achieve this goal, interval type-2 fuzzy logic control has been used to generate the discontinuous control signal. The simulation results have shown that the proposed control strategy can greatly alleviate the chattering effect, and perform good reference tracking in presence of defects in the system. PMID:26428878

  14. Experimental Study of Flexible Plate Vibration Control by Using Two-Loop Sliding Mode Control Strategy

    NASA Astrophysics Data System (ADS)

    Yang, Jingyu; Lin, Jiahui; Liu, Yuejun; Yang, Kang; Zhou, Lanwei; Chen, Guoping

    2016-06-01

    It is well known that intelligent control theory has been used in many research fields, novel modeling method (DROMM) is used for flexible rectangular active vibration control, and then the validity of new model is confirmed by comparing finite element model with new model. In this paper, taking advantage of the dynamics of flexible rectangular plate, a two-loop sliding mode (TSM) MIMO approach is introduced for designing multiple-input multiple-output continuous vibration control system, which can overcome uncertainties, disturbances or unstable dynamics. An illustrative example is given in order to show the feasibility of the method. Numerical simulations and experiment confirm the effectiveness of the proposed TSM MIMO controller.

  15. Fault tolerant control based on interval type-2 fuzzy sliding mode controller for coaxial trirotor aircraft.

    PubMed

    Zeghlache, Samir; Kara, Kamel; Saigaa, Djamel

    2015-11-01

    In this paper, a robust controller for a Six Degrees of Freedom (6 DOF) coaxial trirotor helicopter control is proposed in presence of defects in the system. A control strategy based on the coupling of the interval type-2 fuzzy logic control and sliding mode control technique are used to design a controller. The main purpose of this work is to eliminate the chattering phenomenon and guaranteeing the stability and the robustness of the system. In order to achieve this goal, interval type-2 fuzzy logic control has been used to generate the discontinuous control signal. The simulation results have shown that the proposed control strategy can greatly alleviate the chattering effect, and perform good reference tracking in presence of defects in the system.

  16. Cytopathology whole slide images and virtual microscopy adaptive tutorials: A software pilot

    PubMed Central

    Van Es, Simone L.; Pryor, Wendy M.; Belinson, Zack; Salisbury, Elizabeth L.; Velan, Gary M.

    2015-01-01

    Background: The constant growth in the body of knowledge in medicine requires pathologists and pathology trainees to engage in continuing education. Providing them with equitable access to efficient and effective forms of education in pathology (especially in remote and rural settings) is important, but challenging. Methods: We developed three pilot cytopathology virtual microscopy adaptive tutorials (VMATs) to explore a novel adaptive E-learning platform (AeLP) which can incorporate whole slide images for pathology education. We collected user feedback to further develop this educational material and to subsequently deploy randomized trials in both pathology specialist trainee and also medical student cohorts. Cytopathology whole slide images were first acquired then novel VMATs teaching cytopathology were created using the AeLP, an intelligent tutoring system developed by Smart Sparrow. The pilot was run for Australian pathologists and trainees through the education section of Royal College of Pathologists of Australasia website over a period of 9 months. Feedback on the usability, impact on learning and any technical issues was obtained using 5-point Likert scale items and open-ended feedback in online questionnaires. Results: A total of 181 pathologists and pathology trainees anonymously attempted the three adaptive tutorials, a smaller proportion of whom went on to provide feedback at the end of each tutorial. VMATs were perceived as effective and efficient E-learning tools for pathology education. User feedback was positive. There were no significant technical issues. Conclusion: During this pilot, the user feedback on the educational content and interface and the lack of technical issues were helpful. Large scale trials of similar online cytopathology adaptive tutorials were planned for the future. PMID:26605119

  17. Sliding mode control based impact angle control guidance considering the seeker׳s field-of-view constraint.

    PubMed

    Wang, Xingliang; Zhang, Youan; Wu, Huali

    2016-03-01

    The problem of impact angle control guidance for a field-of-view constrained missile against non-maneuvering or maneuvering targets is solved by using the sliding mode control theory. The existing impact angle control guidance laws with field-of-view constraint are only applicable against stationary targets and most of them suffer abrupt-jumping of guidance command due to the application of additional guidance mode switching logic. In this paper, the field-of-view constraint is handled without using any additional switching logic. In particular, a novel time-varying sliding surface is first designed to achieve zero miss distance and zero impact angle error without violating the field-of-view constraint during the sliding mode phase. Then a control integral barrier Lyapunov function is used to design the reaching law so that the sliding mode can be reached within finite time and the field-of-view constraint is not violated during the reaching phase as well. A nonlinear extended state observer is constructed to estimate the disturbance caused by unknown target maneuver, and the undesirable chattering is alleviated effectively by using the estimation as a compensation item in the guidance law. The performance of the proposed guidance law is illustrated with simulations. PMID:26782929

  18. Sliding mode control based impact angle control guidance considering the seeker׳s field-of-view constraint.

    PubMed

    Wang, Xingliang; Zhang, Youan; Wu, Huali

    2016-03-01

    The problem of impact angle control guidance for a field-of-view constrained missile against non-maneuvering or maneuvering targets is solved by using the sliding mode control theory. The existing impact angle control guidance laws with field-of-view constraint are only applicable against stationary targets and most of them suffer abrupt-jumping of guidance command due to the application of additional guidance mode switching logic. In this paper, the field-of-view constraint is handled without using any additional switching logic. In particular, a novel time-varying sliding surface is first designed to achieve zero miss distance and zero impact angle error without violating the field-of-view constraint during the sliding mode phase. Then a control integral barrier Lyapunov function is used to design the reaching law so that the sliding mode can be reached within finite time and the field-of-view constraint is not violated during the reaching phase as well. A nonlinear extended state observer is constructed to estimate the disturbance caused by unknown target maneuver, and the undesirable chattering is alleviated effectively by using the estimation as a compensation item in the guidance law. The performance of the proposed guidance law is illustrated with simulations.

  19. Adaptive Control Using Residual Mode Filters Applied to Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.

  20. Design and implementation of a new modified sliding mode controller for grid-connected inverter to controlling the voltage and frequency.

    PubMed

    Ghanbarian, Mohammad Mehdi; Nayeripour, Majid; Rajaei, Amirhossein; Mansouri, Mohammad Mahdi

    2016-03-01

    As the output power of a microgrid with renewable energy sources should be regulated based on the grid conditions, using robust controllers to share and balance the power in order to regulate the voltage and frequency of microgrid is critical. Therefore a proper control system is necessary for updating the reference signals and determining the proportion of each inverter in the microgrid control. This paper proposes a new adaptive method which is robust while the conditions are changing. This controller is based on a modified sliding mode controller which provides adapting conditions in linear and nonlinear loads. The performance of the proposed method is validated by representing the simulation results and experimental lab results. PMID:26704720

  1. Design and implementation of a new modified sliding mode controller for grid-connected inverter to controlling the voltage and frequency.

    PubMed

    Ghanbarian, Mohammad Mehdi; Nayeripour, Majid; Rajaei, Amirhossein; Mansouri, Mohammad Mahdi

    2016-03-01

    As the output power of a microgrid with renewable energy sources should be regulated based on the grid conditions, using robust controllers to share and balance the power in order to regulate the voltage and frequency of microgrid is critical. Therefore a proper control system is necessary for updating the reference signals and determining the proportion of each inverter in the microgrid control. This paper proposes a new adaptive method which is robust while the conditions are changing. This controller is based on a modified sliding mode controller which provides adapting conditions in linear and nonlinear loads. The performance of the proposed method is validated by representing the simulation results and experimental lab results.

  2. Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings

    NASA Astrophysics Data System (ADS)

    Chen, Po-Chang; Huang, An-Chyau

    2005-04-01

    An adaptive sliding controller is proposed in this paper for controlling a non-autonomous quarter-car suspension system with time-varying loadings. The bound of the car-body loading is assumed to be available. Then, the reference coordinate is placed at the static position under the nominal loading so that the system dynamic equation is derived. Due to spring nonlinearities, the system property becomes asymmetric after coordinate transformation. Besides, in practical cases, system parameters are not easy to be obtained precisely for controller design. Therefore, in this paper, system uncertainties are lumped into two unknown time-varying functions. Since the variation bound of one of the unknown functions is not available, conventional adaptive schemes and robust designs are not applicable. To deal with this problem, the function approximation technique is employed to represent the unknown function as a finite combination of basis functions. The Lyapunov direct method can thus be used to find adaptive laws for updating coefficients in the approximating series and to prove stability of the closed-loop system. Since the position and velocity measurements of the unsprung mass are lumped into the unknown function, there is no need to install sensors on the axle and wheel assembly in the actual implementation. Simulation results are presented to show the performance of the proposed strategy.

  3. Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

    NASA Astrophysics Data System (ADS)

    Keum, Jung-Hoon; Ra, Sung-Woong

    2009-12-01

    Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  4. A new fractional-order sliding mode controller via a nonlinear disturbance observer for a class of dynamical systems with mismatched disturbances.

    PubMed

    Pashaei, Shabnam; Badamchizadeh, Mohammadali

    2016-07-01

    This paper investigates the stabilization and disturbance rejection for a class of fractional-order nonlinear dynamical systems with mismatched disturbances. To fulfill this purpose a new fractional-order sliding mode control (FOSMC) based on a nonlinear disturbance observer is proposed. In order to design the suitable fractional-order sliding mode controller, a proper switching surface is introduced. Afterward, by using the sliding mode theory and Lyapunov stability theory, a robust fractional-order control law via a nonlinear disturbance observer is proposed to assure the existence of the sliding motion in finite time. The proposed fractional-order sliding mode controller exposes better control performance, ensures fast and robust stability of the closed-loop system, eliminates the disturbances and diminishes the chattering problem. Finally, the effectiveness of the proposed fractional-order controller is depicted via numerical simulation results of practical example and is compared with some other controllers.

  5. A coordinated MIMO control design for a power plant using improved sliding mode controller.

    PubMed

    Ataei, Mohammad; Hooshmand, Rahmat-Allah; Samani, Siavash Golmohammadi

    2014-03-01

    For the participation of the steam power plants in regulating the network frequency, boilers and turbines should be co-ordinately controlled in addition to the base load productions. Lack of coordinated control over boiler-turbine may lead to instability; oscillation in producing power and boiler parameters; reduction in the reliability of the unit; and inflicting thermodynamic tension on devices. This paper proposes a boiler-turbine coordinated multivariable control system based on improved sliding mode controller (ISMC). The system controls two main boiler-turbine parameters i.e., the turbine revolution and superheated steam pressure of the boiler output. For this purpose, a comprehensive model of the system including complete and exact description of the subsystems is extracted. The parameters of this model are determined according to our case study that is the 320MW unit of Islam-Abad power plant in Isfahan/Iran. The ISMC method is simulated on the power plant and its performance is compared with the related real PI (proportional-integral) controllers which have been used in this unit. The simulation results show the capability of the proposed controller system in controlling local network frequency and superheated steam pressure in the presence of load variations and disturbances of boiler. PMID:24112644

  6. Sliding mode control scheme for a jumping robot with multi-joint based on floating basis

    NASA Astrophysics Data System (ADS)

    Jianjun, Yao; Duotao, Di; Shuang, Gao; Lei, He; Shenghai, Hu

    2012-01-01

    A jumping robot has different jumping characteristics. The emphasis of its motion characteristics is placed on the sagittal plane, and every phase of a whole jumping motion has different constraints, so it is a variable constraint system. Its kinematic and dynamic equations, both of the stance phase and of the flight phase are established. Furthermore, the floating basis method is applied to unify the dynamic equations of the stance phase and the flight phase. The generalised coordinate is found based on the union of the tiptoe translation and the joint variables to obtain dynamic equations with constraints. Since the jumping robot is a strongly coupled system and has great impact when it lands on the ground, a reaching law is applied in the development of sliding mode controller in task space such that the state trajectory starting from anywhere can move towards the switching surface, making the system tracking error converge exponentially to zero. Simulation results demonstrate the efficiency and validity of the proposed control system.

  7. A Double-Wing Chaotic System Based on Ion Migration Memristor and Its Sliding Mode Control

    NASA Astrophysics Data System (ADS)

    Min, Guoqi; Duan, Shukai; Wang, Lidan

    The ion migration memristor is a nonlinear element with memory function and nanoscale size, it is considered as a potential candidate to reduce system power consumption and circuit size. When it works as the nonlinear part of the chaotic system, rich nonlinear curves will be produced, and at the same time, the complexity of chaotic systems and the randomness of signals will be enhanced. So in this paper, by Matlab numerical simulation, a new double-wing chaotic system based on an ion migration memristor is designed. In reality, there are many systems interfered inevitably by random noise, so in this paper the random bounded noises are also considered. The power spectrum, Lyapunov exponent spectrum, Poincaré map and bifurcation diagram are used to investigate its complex dynamic characteristics. Then, a SPICE-based analog circuit is presented to verify the feasibility of the system, for which the simulation results are consistent with the numerical simulation. Finally, the sliding mode variable structure control is applied to overcome the shortcomings of traditional control method, so that the chaotic orbits can be controlled to any fixed points or periodic orbits, and this provides an insight into chaos control in power electronics systems.

  8. Sliding Mode Pulsed Averaging IC Drivers for High Brightness Light Emitting Diodes

    SciTech Connect

    Dr. Anatoly Shteynberg, PhD

    2006-08-17

    This project developed new Light Emitting Diode (LED) driver ICs associated with specific (uniquely operated) switching power supplies that optimize performance for High Brightness LEDs (HB-LEDs). The drivers utilize a digital control core with a newly developed nonlinear, hysteretic/sliding mode controller with mixed-signal processing. The drivers are flexible enough to allow both traditional microprocessor interface as well as other options such as “on the fly” adjustment of color and brightness. Some other unique features of the newly developed drivers include • AC Power Factor Correction; • High power efficiency; • Substantially fewer external components should be required, leading to substantial reduction of Bill of Materials (BOM). Thus, the LED drivers developed in this research : optimize LED performance by increasing power efficiency and power factor. Perhaps more remarkably, the LED drivers provide this improved performance at substantially reduced costs compared to the present LED power electronic driver circuits. Since one of the barriers to market penetration for HB-LEDs (in particular “white” light LEDs) is cost/lumen, this research makes important contributions in helping the advancement of SSL consumer acceptance and usage.

  9. A coordinated MIMO control design for a power plant using improved sliding mode controller.

    PubMed

    Ataei, Mohammad; Hooshmand, Rahmat-Allah; Samani, Siavash Golmohammadi

    2014-03-01

    For the participation of the steam power plants in regulating the network frequency, boilers and turbines should be co-ordinately controlled in addition to the base load productions. Lack of coordinated control over boiler-turbine may lead to instability; oscillation in producing power and boiler parameters; reduction in the reliability of the unit; and inflicting thermodynamic tension on devices. This paper proposes a boiler-turbine coordinated multivariable control system based on improved sliding mode controller (ISMC). The system controls two main boiler-turbine parameters i.e., the turbine revolution and superheated steam pressure of the boiler output. For this purpose, a comprehensive model of the system including complete and exact description of the subsystems is extracted. The parameters of this model are determined according to our case study that is the 320MW unit of Islam-Abad power plant in Isfahan/Iran. The ISMC method is simulated on the power plant and its performance is compared with the related real PI (proportional-integral) controllers which have been used in this unit. The simulation results show the capability of the proposed controller system in controlling local network frequency and superheated steam pressure in the presence of load variations and disturbances of boiler.

  10. State observer-based sliding mode control for semi-active hydro-pneumatic suspension

    NASA Astrophysics Data System (ADS)

    Ren, Hongbin; Chen, Sizhong; Zhao, Yuzhuang; Liu, Gang; Yang, Lin

    2016-02-01

    This paper proposes an improved virtual reference model for semi-active suspension to coordinate the vehicle ride comfort and handling stability. The reference model combines the virtues of sky-hook with ground-hook control logic, and the hybrid coefficient is tuned according to the longitudinal and lateral acceleration so as to improve the vehicle stability especially in high-speed condition. Suspension state observer based on unscented Kalman filter is designed. A sliding mode controller (SMC) is developed to track the states of the reference model. The stability of the SMC strategy is proven by means of Lyapunov function taking into account the nonlinear damper characteristics and sprung mass variation of the vehicle. Finally, the performance of the controller is demonstrated under three typical working conditions: the random road excitation, speed bump road and sharp acceleration and braking. The simulation results indicated that, compared with the traditional passive suspension, the proposed control algorithm can offer a better coordination between vehicle ride comfort and handling stability. This approach provides a viable alternative to costlier active suspension control systems for commercial vehicles.

  11. Development of a sliding mode control model for quiet upright stance.

    PubMed

    Zhang, Hongbo; Nussbaum, Maury A; Agnew, Michael J

    2016-02-01

    Human upright stance appears maintained or controlled intermittently, through some combination of passive and active ankle torques, respectively representing intrinsic and contractile contributions of the ankle musculature. Several intermittent postural control models have been proposed, though it has been challenging to accurately represent actual kinematics and kinetics and to separately estimate passive and active ankle torque components. Here, a simplified single-segment, 2D (sagittal plane) sliding mode control model was developed for application to track kinematics and kinetics during upright stance. The model was implemented and evaluated using previous experimental data consisting of whole body angular kinematics and ankle torques. Tracking errors for the whole-body center-of-mass (COM) angle and angular velocity, as well as ankle torque, were all within ∼10% of experimental values, though tracking performance for COM angular acceleration was substantially poorer. The model also enabled separate estimates of the contributions of passive and active ankle torques, with overall contributions estimated here to be 96% and 4% of the total ankle torque, respectively. Such a model may have future utility in understanding human postural control, though additional work is needed, such as expanding the model to multiple segments and to three dimensions.

  12. A sliding-mode-based observer to identify faults in FBG sensors embedded in composite structures

    NASA Astrophysics Data System (ADS)

    Cazzulani, Gabriele; Cinquemani, Simone; Ronchi, Marco

    2016-04-01

    Optical strain gauges, such as Fiber Bragg Gratings (FBG), have a great potential for smart structures, thanks to their small transversal size and the possibility to make an array of many sensors. They can be embedded in composite structures and their effect on the structure is nearly negligible. These advantages make them very interesting in the field of active vibration suppression. Unfortunately their low reliability is an obstacle to their use in such applications. For this reason, this paper introduces a fault identification algorithm to identify online those sensors which are not working correctly. The algorithm is based on the use of a sliding mode observer to estimate the coherence of measurements, and then to highlight possible faults. Once identified, the corresponding sensors can be excluded from the feedback loop of the control algorithm to avoid unwanted behaviors or instabilities. Numerical and experimental tests have been carried out on a carbon fiber structure considering different fault conditions. Results show it is possible to identify the faulty sensors and thus improve the signals used in the feedback loop.

  13. Adaptation of Vocational Education Programs for Special Needs: A Slide/Tape Presentation. Final Report. Research Series Number 62.

    ERIC Educational Resources Information Center

    North Dakota Univ., Grand Forks. Dept. of Home Economics and Nutrition.

    A slide/tape series entitled "Vocational Education and the Special Needs Student" was developed in North Dakota to illustrate adaptations that vocational education teachers have made for special needs students (mentally handicapped, physically handicapped, and disadvantaged) and to serve as a basis for discussion at inservice and preservice levels…

  14. Chaos suppression of fractional order Willamowski-Rössler chemical system and its synchronization using sliding mode control

    NASA Astrophysics Data System (ADS)

    Rajagopal, Karthikeyan; Karthikeyan, Anitha

    2016-09-01

    Most of the Real systems shows chaotic behavior when they approach complex states. Especially in physical and chemical systems these behaviors define the character of the system. The control of these chaotic behaviors is of very high practical importance and hence mathematical models of these chaotic systems proves vital in deciding the control structures. One such model of chemical reactors is the Willamowski-Rössler system (WR). In this paper we derive a fractional order sliding mode control scheme where the states of the WR system are driven back to the defined equilibrium points. We have also synchronized master and slave fractional order WR system using sliding mode control. As the entire control law is defined in fractional order, we derived a new methodology to prove the stability of the controller. The numerical simulation and analysis are achieved with LabVIEW.

  15. Robust fractional order sliding mode control of doubly-fed induction generator (DFIG)-based wind turbines.

    PubMed

    Ebrahimkhani, Sadegh

    2016-07-01

    Wind power plants have nonlinear dynamics and contain many uncertainties such as unknown nonlinear disturbances and parameter uncertainties. Thus, it is a difficult task to design a robust reliable controller for this system. This paper proposes a novel robust fractional-order sliding mode (FOSM) controller for maximum power point tracking (MPPT) control of doubly fed induction generator (DFIG)-based wind energy conversion system. In order to enhance the robustness of the control system, uncertainties and disturbances are estimated using a fractional order uncertainty estimator. In the proposed method a continuous control strategy is developed to achieve the chattering free fractional order sliding-mode control, and also no knowledge of the uncertainties and disturbances or their bound is assumed. The boundedness and convergence properties of the closed-loop signals are proven using Lyapunov׳s stability theory. Simulation results in the presence of various uncertainties were carried out to evaluate the effectiveness and robustness of the proposed control scheme.

  16. Direct power control of DFIG wind turbine systems based on an intelligent proportional-integral sliding mode control.

    PubMed

    Li, Shanzhi; Wang, Haoping; Tian, Yang; Aitouch, Abdel; Klein, John

    2016-09-01

    This paper presents an intelligent proportional-integral sliding mode control (iPISMC) for direct power control of variable speed-constant frequency wind turbine system. This approach deals with optimal power production (in the maximum power point tracking sense) under several disturbance factors such as turbulent wind. This controller is made of two sub-components: (i) an intelligent proportional-integral module for online disturbance compensation and (ii) a sliding mode module for circumventing disturbance estimation errors. This iPISMC method has been tested on FAST/Simulink platform of a 5MW wind turbine system. The obtained results demonstrate that the proposed iPISMC method outperforms the classical PI and intelligent proportional-integral control (iPI) in terms of both active power and response time.

  17. Direct power control of DFIG wind turbine systems based on an intelligent proportional-integral sliding mode control.

    PubMed

    Li, Shanzhi; Wang, Haoping; Tian, Yang; Aitouch, Abdel; Klein, John

    2016-09-01

    This paper presents an intelligent proportional-integral sliding mode control (iPISMC) for direct power control of variable speed-constant frequency wind turbine system. This approach deals with optimal power production (in the maximum power point tracking sense) under several disturbance factors such as turbulent wind. This controller is made of two sub-components: (i) an intelligent proportional-integral module for online disturbance compensation and (ii) a sliding mode module for circumventing disturbance estimation errors. This iPISMC method has been tested on FAST/Simulink platform of a 5MW wind turbine system. The obtained results demonstrate that the proposed iPISMC method outperforms the classical PI and intelligent proportional-integral control (iPI) in terms of both active power and response time. PMID:27346331

  18. Backstepping sliding mode tracking control of a vane-type air motor X-Y table motion system.

    PubMed

    Lu, Chia-Hua; Hwang, Yean-Ren; Shen, Yu-Ta

    2011-04-01

    Air motors are increasingly being used in pneumatic related industries because of their advantages of low operating cost and low maintenance. The DSP controller and the backstepping sliding mode control method were utilized in this study to control an X-Y pneumatic table for tracking trajectory. Due to the effects of the compressibility of air, friction between the motor and ball screw table and the dead-zone effect caused by the proportional valve, the system will yield different responses even with the same inlet pressure and will chatter at low speed. Hence under certain conditions, this method of backstepping sliding mode control can be applied to achieve better results than with the PID controller, such as for tracking circle error and tracking error of the two axes. According to the results, a steady-state error of 0.5 μm can be achieved. The proposed method of backstepping sliding mode control can accomplish accurate tracking circle trajectory performance, offering an improvement in the tracking error of more than 50% over that of the PID controller.

  19. Sliding mode control for Lorentz-augmented spacecraft hovering around elliptic orbits

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang; Zhang, Hua

    2014-10-01

    A Lorentz spacecraft is an electrostatically charged space vehicle that could actively modulate its surface charge to generate Lorentz force as it moves through the planetary magnetic field. The induced Lorentz force provides propellantless electromagnetic propulsion for orbital maneuvering, such as spacecraft hovering that the chaser thrusts continuously to create an equilibrium state at the desired position relative to the target. Due to the fact that the direction of Lorentz force is determined by the local magnetic field and the velocity of the spacecraft with respect to the local magnetic field, which does not necessarily coincide with that of the required control acceleration for hovering, thus, in most cases, the Lorentz force works as a means of auxiliary propulsion to reduce the expenditure of fuel onboard. And that is why it is called Lorentz-augmented hovering. A dynamical model for Lorentz-augmented hovering around elliptic orbits is developed based upon the assumption that the Earth's magnetic field could be modeled as a tilted dipole that corotates with Earth. Fuel-optimal open-loop control laws are then derived based on the proposed dynamical model, presenting the optimal trajectories of the required specific charge of Lorentz spacecraft and the thruster-generated control acceleration. Considering the external disturbances that may drift the desired hovering position, a closed-loop integral sliding mode controller is also designed to guarantee the tracking of optimal control trajectories, ensuring the robustness of the system against perturbations. Numerical simulations are presented to analyze the characteristics of Lorentz-augmented hovering around eccentric orbits and the results substantiate the validity of the proposed open-loop and closed-loop control methods.

  20. An LMI approach for the Integral Sliding Mode and H∞ State Feedback Control Problem

    NASA Astrophysics Data System (ADS)

    Bezzaoucha, Souad; Henry, David

    2015-11-01

    This paper deals with the state feedback control problem for linear uncertain systems subject to both matched and unmatched perturbations. The proposed control law is based on an the Integral Sliding Mode Control (ISMC) approach to tackle matched perturbations as well as the H∞ paradigm for robustness against unmatched perturbations. The proposed method also parallels the work presented in [1] which addressed the same problem and proposed a solution involving an Algebraic Riccati Equation (ARE)-based formulation. The contribution of this paper is concerned by the establishment of a Linear Matrix Inequality (LMI)-based solution which offers the possibility to consider other types of constraints such as 𝓓-stability constraints (pole assignment-like constraints). The proposed methodology is applied to a pilot three-tank system and experiment results illustrate the feasibility. Note that only a few real experiments have been rarely considered using SMC in the past. This is due to the high energetic behaviour of the control signal. It is important to outline that the paper does not aim at proposing a LMI formulation of an ARE. This is done since 1971 [2] and further discussed in [3] where the link between AREs and ARIs (algebraic Riccati inequality) is established for the H∞ control problem. The main contribution of this paper is to establish the adequate LMI-based methodology (changes of matrix variables) so that the ARE that corresponds to the particular structure of the mixed ISMC/H∞ structure proposed by [1] can be re-formulated within the LMI paradigm.

  1. Feedback attitude sliding mode regulation control of spacecraft using arm motion

    NASA Astrophysics Data System (ADS)

    Shi, Ye; Liang, Bin; Xu, Dong; Wang, Xueqian; Xu, Wenfu

    2013-09-01

    The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields. Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance, so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints. Thus, sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process. Due to the switching effects of the variable structure controller, once the tracking error reaches the designed hyper-plane, it will be restricted to this plane permanently even with the existence of external disturbances. Thus, precise attitude regulation can be achieved. Furthermore, taking the non-zero initial tracking errors and chattering phenomenon into consideration, saturation functions are used to replace sign functions to smooth the control torques. The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller. Mathematical models of free-floating space manipulator are established and simulations are conducted in the end. The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm, the steady state error is 0.000 2 rad. In addition, the joint tracking trajectory is smooth, the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input. The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion, and improves the precision of the spacecraft attitude regulation.

  2. Haptic adaptation to slant: No transfer between exploration modes

    PubMed Central

    van Dam, Loes C. J.; Plaisier, Myrthe A.; Glowania, Catharina; Ernst, Marc O.

    2016-01-01

    Human touch is an inherently active sense: to estimate an object’s shape humans often move their hand across its surface. This way the object is sampled both in a serial (sampling different parts of the object across time) and parallel fashion (sampling using different parts of the hand simultaneously). Both the serial (moving a single finger) and parallel (static contact with the entire hand) exploration modes provide reliable and similar global shape information, suggesting the possibility that this information is shared early in the sensory cortex. In contrast, we here show the opposite. Using an adaptation-and-transfer paradigm, a change in haptic perception was induced by slant-adaptation using either the serial or parallel exploration mode. A unified shape-based coding would predict that this would equally affect perception using other exploration modes. However, we found that adaptation-induced perceptual changes did not transfer between exploration modes. Instead, serial and parallel exploration components adapted simultaneously, but to different kinaesthetic aspects of exploration behaviour rather than object-shape per se. These results indicate that a potential combination of information from different exploration modes can only occur at down-stream cortical processing stages, at which adaptation is no longer effective. PMID:27698392

  3. Robust nonlinear generalised predictive control for a class of uncertain nonlinear systems via an integral sliding mode approach

    NASA Astrophysics Data System (ADS)

    Errouissi, Rachid; Yang, Jun; Chen, Wen-Hua; Al-Durra, Ahmed

    2016-08-01

    In this paper, a robust nonlinear generalised predictive control (GPC) method is proposed by combining an integral sliding mode approach. The composite controller can guarantee zero steady-state error for a class of uncertain nonlinear systems in the presence of both matched and unmatched disturbances. Indeed, it is well known that the traditional GPC based on Taylor series expansion cannot completely reject unknown disturbance and achieve offset-free tracking performance. To deal with this problem, the existing approaches are enhanced by avoiding the use of the disturbance observer and modifying the gain function of the nonlinear integral sliding surface. This modified strategy appears to be more capable of achieving both the disturbance rejection and the nominal prescribed specifications for matched disturbance. Simulation results demonstrate the effectiveness of the proposed approach.

  4. Unwinding forward and sliding back: an intermittent unwinding mode of the BLM helicase.

    PubMed

    Wang, Shuang; Qin, Wei; Li, Jing-Hua; Lu, Ying; Lu, Ke-Yu; Nong, Da-Guan; Dou, Shuo-Xing; Xu, Chun-Hua; Xi, Xu-Guang; Li, Ming

    2015-04-20

    There are lines of evidence that the Bloom syndrome helicase, BLM, catalyzes regression of stalled replication forks and disrupts displacement loops (D-loops) formed during homologous recombination (HR). Here we constructed a forked DNA with a 3' single-stranded gap and a 5' double-stranded handle to partly mimic a stalled DNA fork and used magnetic tweezers to study BLM-catalyzed unwinding of the forked DNA. We have directly observed that the BLM helicase may slide on the opposite strand for some distance after duplex unwinding at different forces. For DNA construct with a long hairpin, progressive unwinding of the hairpin is frequently interrupted by strand switching and backward sliding of the enzyme. Quantitative study of the uninterrupted unwinding length (time) has revealed a two-state-transition mechanism for strand-switching during the unwinding process. Mutational studies revealed that the RQC domain plays an important role in stabilizing the helicase/DNA interaction during both DNA unwinding and backward sliding of BLM. Especially, Lys1125 in the RQC domain, a highly conserved amino acid among RecQ helicases, may be involved in the backward sliding activity. We have also directly observed the in vitro pathway that BLM disrupts the mimic stalled replication fork. These results may shed new light on the mechanisms for BLM in DNA repair and homologous recombination.

  5. Integral sliding mode controller for precise manoeuvring of autonomous underwater vehicle in the presence of unknown environmental disturbances

    NASA Astrophysics Data System (ADS)

    Kim, Minsung; Joe, Hangil; Kim, Jinwhan; Yu, Son-cheol

    2015-10-01

    We propose an integral sliding mode controller (ISMC) to stabilse an autonomous underwater vehicle (AUV) which is subject to modelling errors and often suffers from unknown environmental disturbances. The ISMC is effective in compensating for the uncertainties in the hydrodynamic and hydrostatic parameters of the vehicle and rejecting the unpredictable disturbance effects due to ocean waves, tides and currents. The ISMC is comprised of an equivalent controller and a switching controller to suppress the parameter uncertainties and external disturbances, and its closed-loop system is exponentially stable. Numerical simulations were performed to validate the proposed control approach, and experimental tests using Cyclops AUV were carried out to demonstrate its practical feasibility.

  6. High-order sliding mode control of a DC motor drive via a switched controlled multi-cellular converter

    NASA Astrophysics Data System (ADS)

    Djemaï, M.; Busawon, K.; Benmansour, K.; Marouf, A.

    2011-11-01

    In this article, we present a high-order sliding mode controller of a DC motor drive connected to a multi-cellular converter. More specifically, we design a second-order (super-twisting) control algorithm for the speed regulation of a DC motor. For this, a switching control for the multi-cellular converter is derived in order to supply the correct reference value for the speed regulation. A practical implementation of the controller is realised using a laboratory set-up. The performance and the validity of the controller are shown experimentally.

  7. Implementation of a sliding-mode-based position sensorless drive for high-speed micro permanent-magnet synchronous motors.

    PubMed

    Chi, Wen-Chun; Cheng, Ming-Yang

    2014-03-01

    Due to issues such as limited space, it is difficult if it is not impossible to employ a position sensor in the drive control of high-speed micro PMSMs. In order to alleviate this problem, this paper analyzes and implements a simple and robust position sensorless field-oriented control method of high-speed micro PMSMs based on the sliding-mode observer. In particular, the angular position and velocity of the rotor of the high-speed micro PMSM are estimated using the sliding-mode observer. This observer is able to accurately estimate rotor position in the low speed region and guarantee fast convergence of the observer in the high speed region. The proposed position sensorless control method is suitable for electric dental handpiece motor drives where a wide speed range operation is essential. The proposed sensorless FOC method is implemented using a cost-effective 16-bit microcontroller and tested in a prototype electric dental handpiece motor. Several experiments are performed to verify the effectiveness of the proposed method. PMID:24206776

  8. Nonlinear torque and air-to-fuel ratio control of spark ignition engines using neuro-sliding mode techniques.

    PubMed

    Huang, Ting; Javaherian, Hossein; Liu, Derong

    2011-06-01

    This paper presents a new approach for the calibration and control of spark ignition engines using a combination of neural networks and sliding mode control technique. Two parallel neural networks are utilized to realize a neuro-sliding mode control (NSLMC) for self-learning control of automotive engines. The equivalent control and the corrective control terms are the outputs of the neural networks. Instead of using error backpropagation algorithm, the network weights of equivalent control are updated using the Levenberg-Marquardt algorithm. Moreover, a new approach is utilized to update the gain of corrective control. Both modifications of the NSLMC are aimed at improving the transient performance and speed of convergence. Using the data from a test vehicle with a V8 engine, we built neural network models for the engine torque (TRQ) and the air-to-fuel ratio (AFR) dynamics and developed NSLMC controllers to achieve tracking control. The goal of TRQ control and AFR control is to track the commanded values under various operating conditions. From simulation studies, the feasibility and efficiency of the approach are illustrated. For both control problems, excellent tracking performance has been achieved.

  9. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2009-08-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1\\to 2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements.

  10. Implementation of a sliding-mode-based position sensorless drive for high-speed micro permanent-magnet synchronous motors.

    PubMed

    Chi, Wen-Chun; Cheng, Ming-Yang

    2014-03-01

    Due to issues such as limited space, it is difficult if it is not impossible to employ a position sensor in the drive control of high-speed micro PMSMs. In order to alleviate this problem, this paper analyzes and implements a simple and robust position sensorless field-oriented control method of high-speed micro PMSMs based on the sliding-mode observer. In particular, the angular position and velocity of the rotor of the high-speed micro PMSM are estimated using the sliding-mode observer. This observer is able to accurately estimate rotor position in the low speed region and guarantee fast convergence of the observer in the high speed region. The proposed position sensorless control method is suitable for electric dental handpiece motor drives where a wide speed range operation is essential. The proposed sensorless FOC method is implemented using a cost-effective 16-bit microcontroller and tested in a prototype electric dental handpiece motor. Several experiments are performed to verify the effectiveness of the proposed method.

  11. Robust fractional order sliding mode control of doubly-fed induction generator (DFIG)-based wind turbines.

    PubMed

    Ebrahimkhani, Sadegh

    2016-07-01

    Wind power plants have nonlinear dynamics and contain many uncertainties such as unknown nonlinear disturbances and parameter uncertainties. Thus, it is a difficult task to design a robust reliable controller for this system. This paper proposes a novel robust fractional-order sliding mode (FOSM) controller for maximum power point tracking (MPPT) control of doubly fed induction generator (DFIG)-based wind energy conversion system. In order to enhance the robustness of the control system, uncertainties and disturbances are estimated using a fractional order uncertainty estimator. In the proposed method a continuous control strategy is developed to achieve the chattering free fractional order sliding-mode control, and also no knowledge of the uncertainties and disturbances or their bound is assumed. The boundedness and convergence properties of the closed-loop signals are proven using Lyapunov׳s stability theory. Simulation results in the presence of various uncertainties were carried out to evaluate the effectiveness and robustness of the proposed control scheme. PMID:27018145

  12. Adaptive mode-dependent scan for H.264/AVC intracoding

    NASA Astrophysics Data System (ADS)

    Wei, Yung-Chiang; Yang, Jar-Ferr

    2010-07-01

    In image/video coding standards, the zigzag scan provides an effective encoding order of the quantized transform coefficients such that the quantized coefficients can be arranged statistically from large to small magnitudes. Generally, the optimal scan should transfer the 2-D transform coefficients into 1-D data in descending order of their average power levels. With the optimal scan order, we can achieve more efficient variable length coding. In H.264 advanced video coding (AVC), the residuals resulting from various intramode predictions have different statistical characteristics. After analyzing the transformed residuals, we propose an adaptive scan order scheme, which optimally matches up with intraprediction mode, to further improve the efficiency of intracoding. Simulation results show that the proposed adaptive scan scheme can improve the context-adaptive variable length coding to achieve better rate-distortion performance for the H.264/AVC video coder without the increase of computation.

  13. Controller-structure interaction compensation using adaptive residual mode filters

    NASA Technical Reports Server (NTRS)

    Davidson, Roger A.; Balas, Mark J.

    1990-01-01

    It is not feasible to construct controllers for large space structures or large scale systems (LSS's) which are of the same order as the structures. The complexity of the dynamics of these systems is such that full knowledge of its behavior cannot by processed by today's controller design methods. The controller for system performance of such a system is therefore based on a much smaller reduced-order model (ROM). Unfortunately, the interaction between the LSS and the ROM-based controller can produce instabilities in the closed-loop system due to the unmodeled dynamics of the LSS. Residual mode filters (RMF's) allow the systematic removal of these instabilities in a matter which does not require a redesign of the controller. In addition RMF's have a strong theoretical basis. As simple first- or second-order filters, the RMF CSI compensation technique is at once modular, simple and highly effective. RMF compensation requires knowledge of the dynamics of the system modes which resulted in the previous closed-loop instabilities (the residual modes), but this information is sometimes known imperfectly. An adaptive, self-tuning RMF design, which compensates for uncertainty in the frequency of the residual mode, has been simulated using continuous-time and discrete-time models of a flexible robot manipulator. Work has also been completed on the discrete-time experimental implementation on the Martin Marietta flexible robot manipulator experiment. This paper will present the results of that work on adaptive, self-tuning RMF's, and will clearly show the advantage of this adaptive compensation technique for controller-structure interaction (CSI) instabilities in actively-controlled LSS's.

  14. Rotor Current Control of DFIG for Improving Fault Ride - Through Using a Novel Sliding Mode Control Approach

    NASA Astrophysics Data System (ADS)

    Cai, Guowei; Liu, Cheng; Yang, Deyou

    2013-11-01

    The doubly fed induction generators (DFIG) have been recognized as the dominant technology used in wind power generation systems with the rapid development of wind power. However, continuous operation of DFIG may cause a serious wind turbine generators tripping accident, due to destructive over-current in the rotor winding which is caused by the power system fault or inefficient fault ride-through (FRT) strategy. A new rotor current control scheme in the rotor-side converter (RSC) ispresented to enhance FRT capacities of grid-connected DFIG. Due to the strongly nonlinear nature of DFIG and insensitive to DFIG parameter's variations, a novel sliding mode controller was designed. The controller combines extended state observer (ESO) with sliding model variable structure control theory. The simulation is carried out to verify the effectiveness of the proposed control approach under various types of grid disturbances. It is shown that the proposed controller provides enhanced transient features than the classic proportional-integral control. The proposed control method can effectively reduce over-current in the RSC, and the transient pulse value of electromagnetic torque is too large under power grid fault.

  15. Reaction rate reconstruction from biomass concentration measurement in bioreactors using modified second-order sliding mode algorithms.

    PubMed

    De Battista, Hernán; Picó, Jesús; Garelli, Fabricio; Navarro, José Luis

    2012-11-01

    This paper deals with the estimation of unknown signals in bioreactors using sliding observers. Particular attention is drawn to estimate the specific growth rate of microorganisms from measurement of biomass concentration. In a recent article, notions of high-order sliding modes have been used to derive a growth rate observer for batch processes. In this paper we generalize and refine these preliminary results. We develop a new observer with a different error structure to cope with other types of processes. Furthermore, we show that these observers are equivalent, under coordinate transformations and time scaling, to the classical super-twisting differentiator algorithm, thus inheriting all its distinctive features. The new observers' family achieves convergence to time-varying unknown signals in finite time, and presents the best attainable estimation error order in the presence of noise. In addition, the observers are robust to modeling and parameter uncertainties since they are based on minimal assumptions on bioprocess dynamics. In addition, they have interesting applications in fault detection and monitoring. The observers performance in batch, fed-batch and continuous bioreactors is assessed by experimental data obtained from the fermentation of Saccharomyces Cerevisiae on glucose.

  16. Discrete-Time Integral Sliding Mode Control with Disturbances Compensation and Reduced Chattering for Pv Grid-Connected Inverter

    NASA Astrophysics Data System (ADS)

    Meo, Santolo; Sorrentino, Vincenzo

    2015-03-01

    In the paper a new discrete-time integral sliding mode control (DISMC) with disturbances compensation and reduced chattering for grid-connected inverter is proposed for active and reactive power regulation. Differently by many SMC proposed in literature that have a time-continuous formulation in spite have been implemented with digital processor, the proposed DISMC is fully formulated in discrete-time, taking into account the effects introduced by a microprocessor-based implementation. As will be demonstrated such approach consents to reduce the chattering about the sliding manifold within a boundary layer of O(T2) thickness instead of O(T) (being T the sampling period of the control algorithm). Moreover it introduces a correction of the control vector which eliminates the influence of modeling error and external disturbances improving stability and robustness of the controlled system. Constant converter switching frequency is achieved by using space vector modulation, which eases the design of the ac harmonic filter. In the paper, after a detailed formalization of the proposed control algorithm, several numerical and experimental results on a three-phase grid-connected inverter prototype are shown, proving the effectiveness of the control strategy.

  17. Online Fault Detection of Permanent Magnet Demagnetization for IPMSMs by Nonsingular Fast Terminal-Sliding-Mode Observer

    PubMed Central

    Zhao, Kai-Hui; Chen, Te-Fang; Zhang, Chang-Fan; He, Jing; Huang, Gang

    2014-01-01

    To prevent irreversible demagnetization of a permanent magnet (PM) for interior permanent magnet synchronous motors (IPMSMs) by flux-weakening control, a robust PM flux-linkage nonsingular fast terminal-sliding-mode observer (NFTSMO) is proposed to detect demagnetization faults. First, the IPMSM mathematical model of demagnetization is presented. Second, the construction of the NFTSMO to estimate PM demagnetization faults in IPMSM is described, and a proof of observer stability is given. The fault decision criteria and fault-processing method are also presented. Finally, the proposed scheme was simulated using MATLAB/Simulink and implemented on the RT-LAB platform. A number of robustness tests have been carried out. The scheme shows good performance in spite of speed fluctuations, torque ripples and the uncertainties of stator resistance. PMID:25490582

  18. Parameter estimation and interval type-2 fuzzy sliding mode control of a z-axis MEMS gyroscope.

    PubMed

    Fazlyab, Mahyar; Pedram, Maysam Zamani; Salarieh, Hassan; Alasty, Aria

    2013-11-01

    This paper reports a hybrid intelligent controller for application in single axis MEMS vibratory gyroscopes. First, unknown parameters of a micro gyroscope including unknown time varying angular velocity are estimated online via normalized continuous time least mean squares algorithm. Then, an additional interval type-2 fuzzy sliding mode control is incorporated in order to match the resonant frequencies and to compensate for undesired mechanical couplings. The main advantage of this control strategy is its robustness to parameters uncertainty, external disturbance and measurement noise. Consistent estimation of parameters is guaranteed and stability of the closed-loop system is proved via the Lyapunov stability theorem. Finally, numerical simulation is done in order to validate the effectiveness of the proposed method, both for a constant and time-varying angular rate.

  19. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control.

    PubMed

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2016-01-01

    Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved. PMID:27571081

  20. Robust Sensor Faults Reconstruction for a Class of Uncertain Linear Systems Using a Sliding Mode Observer: An LMI Approach

    NASA Astrophysics Data System (ADS)

    Iskander, Boulaabi; Anis, Sellami; Fayçal, Ben Hmida; Moncef, Gossa

    2009-03-01

    This paper presents a design method of a Sliding Mode Observer (SMO) for robust sensor faults reconstruction of systems with matched uncertainty. This class of uncertainty requires a known upper bound. The basic idea is to use the H∞ concept to design the observer, which minimizes the effect of the uncertainty on the reconstruction of the sensor faults. Specifically, we applied the equivalent output error injection concept from previous work in Fault Detection and Isolation (FDI) scheme. Then, these two problems of design and reconstruction can be expressed and numerically formulate via Linear Matrix Inequalities (LMIs) optimization. Finally, a numerical example is given to illustrate the validity and the applicability of the proposed approach.

  1. Directed transfer of microwave radiation in sliding-mode plasma waveguides produced by ultraviolet laser in atmospheric air.

    PubMed

    Zvorykin, Vladimir D; Ionin, Andrei A; Levchenko, Alexei O; Seleznev, Leonid V; Sinitsyn, Dmitrii V; Smetanin, Igor' V; Ustinovskii, Nikolai N; Shutov, Alexei V

    2014-11-01

    Experiments have been performed at hybrid Ti:sapphire/KrF laser facility GARPUN-MTW to develop a novel technique to create a hollow-core sliding-mode plasma-filament waveguide for directed transfer of microwave radiation. Efficient multiphoton air ionization was produced by a train of picosecond 1-TW UV pulses at 248 nm wavelength, or by amplitude-modulated 100 ns pulse combining a short-pulse train with a free-running 1-GW pulse, which detached electrons off O2- ions. Multiple filamentation of UV laser radiation in air was observed, and filamentation theory based on resonance-enhanced ionization was developed to explain the experimental results.

  2. Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control.

    PubMed

    Chen, Diyi; Zhang, Runfan; Sprott, J C; Chen, Haitao; Ma, Xiaoyi

    2012-06-01

    In this paper, we focus on the synchronization between integer-order chaotic systems and a class of fractional-order chaotic system using the stability theory of fractional-order systems. A new sliding mode method is proposed to accomplish this end for different initial conditions and number of dimensions. More importantly, the vector controller is one-dimensional less than the system. Furthermore, three examples are presented to illustrate the effectiveness of the proposed scheme, which are the synchronization between a fractional-order Chen chaotic system and an integer-order T chaotic system, the synchronization between a fractional-order hyperchaotic system based on Chen's system and an integer-order hyperchaotic system, and the synchronization between a fractional-order hyperchaotic system based on Chen's system and an integer-order Lorenz chaotic system. Finally, numerical results are presented and are in agreement with theoretical analysis.

  3. Decentralized Sliding Mode Observer Based Dual Closed-Loop Fault Tolerant Control for Reconfigurable Manipulator against Actuator Failure

    PubMed Central

    Zhao, Bo; Li, Yuanchun

    2015-01-01

    This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations. PMID:26181826

  4. Continuous higher-order sliding mode control with time-varying gain for a class of uncertain nonlinear systems.

    PubMed

    Han, Yaozhen; Liu, Xiangjie

    2016-05-01

    This paper presents a continuous higher-order sliding mode (HOSM) control scheme with time-varying gain for a class of uncertain nonlinear systems. The proposed controller is derived from the concept of geometric homogeneity and super-twisting algorithm, and includes two parts, the first part of which achieves smooth finite time stabilization of pure integrator chains. The second part conquers the twice differentiable uncertainty and realizes system robustness by employing super-twisting algorithm. Particularly, time-varying switching control gain is constructed to reduce the switching control action magnitude to the minimum possible value while keeping the property of finite time convergence. Examples concerning the perturbed triple integrator chains and excitation control for single-machine infinite bus power system are simulated respectively to demonstrate the effectiveness and applicability of the proposed approach. PMID:26920085

  5. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control

    PubMed Central

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2016-01-01

    Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved. PMID:27571081

  6. Decentralized Sliding Mode Observer Based Dual Closed-Loop Fault Tolerant Control for Reconfigurable Manipulator against Actuator Failure.

    PubMed

    Zhao, Bo; Li, Chenghao; Liu, Derong; Li, Yuanchun

    2015-01-01

    This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations. PMID:26181826

  7. Real-time networked control of an industrial robot manipulator via discrete-time second-order sliding modes

    NASA Astrophysics Data System (ADS)

    Massimiliano Capisani, Luca; Facchinetti, Tullio; Ferrara, Antonella

    2010-08-01

    This article presents the networked control of a robotic anthropomorphic manipulator based on a second-order sliding mode technique, where the control objective is to track a desired trajectory for the manipulator. The adopted control scheme allows an easy and effective distribution of the control algorithm over two networked machines. While the predictability of real-time tasks execution is achieved by the Soft Hard Real-Time Kernel (S.Ha.R.K.) real-time operating system, the communication is established via a standard Ethernet network. The performances of the control system are evaluated under different experimental system configurations using, to perform the experiments, a COMAU SMART3-S2 industrial robot, and the results are analysed to put into evidence the robustness of the proposed approach against possible network delays, packet losses and unmodelled effects.

  8. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control.

    PubMed

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2016-08-25

    Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved.

  9. Continuous higher-order sliding mode control with time-varying gain for a class of uncertain nonlinear systems.

    PubMed

    Han, Yaozhen; Liu, Xiangjie

    2016-05-01

    This paper presents a continuous higher-order sliding mode (HOSM) control scheme with time-varying gain for a class of uncertain nonlinear systems. The proposed controller is derived from the concept of geometric homogeneity and super-twisting algorithm, and includes two parts, the first part of which achieves smooth finite time stabilization of pure integrator chains. The second part conquers the twice differentiable uncertainty and realizes system robustness by employing super-twisting algorithm. Particularly, time-varying switching control gain is constructed to reduce the switching control action magnitude to the minimum possible value while keeping the property of finite time convergence. Examples concerning the perturbed triple integrator chains and excitation control for single-machine infinite bus power system are simulated respectively to demonstrate the effectiveness and applicability of the proposed approach.

  10. Robust Sensor Faults Reconstruction for a Class of Uncertain Linear Systems Using a Sliding Mode Observer: An LMI Approach

    SciTech Connect

    Iskander, Boulaabi; Faycal, Ben Hmida; Moncef, Gossa; Anis, Sellami

    2009-03-05

    This paper presents a design method of a Sliding Mode Observer (SMO) for robust sensor faults reconstruction of systems with matched uncertainty. This class of uncertainty requires a known upper bound. The basic idea is to use the H{sub {infinity}} concept to design the observer, which minimizes the effect of the uncertainty on the reconstruction of the sensor faults. Specifically, we applied the equivalent output error injection concept from previous work in Fault Detection and Isolation (FDI) scheme. Then, these two problems of design and reconstruction can be expressed and numerically formulate via Linear Matrix Inequalities (LMIs) optimization. Finally, a numerical example is given to illustrate the validity and the applicability of the proposed approach.

  11. Online fault detection of permanent magnet demagnetization for IPMSMs by nonsingular fast terminal-sliding-mode observer.

    PubMed

    Zhao, Kai-Hui; Chen, Te-Fang; Zhang, Chang-Fan; He, Jing; Huang, Gang

    2014-12-05

    To prevent irreversible demagnetization of a permanent magnet (PM) for interior permanent magnet synchronous motors (IPMSMs) by flux-weakening control, a robust PM flux-linkage nonsingular fast terminal-sliding-mode observer (NFTSMO) is proposed to detect demagnetization faults. First, the IPMSM mathematical model of demagnetization is presented. Second, the construction of the NFTSMO to estimate PM demagnetization faults in IPMSM is described, and a proof of observer stability is given. The fault decision criteria and fault-processing method are also presented. Finally, the proposed scheme was simulated using MATLAB/Simulink and implemented on the RT-LAB platform. A number of robustness tests have been carried out. The scheme shows good performance in spite of speed fluctuations, torque ripples and the uncertainties of stator resistance.

  12. Decentralized Sliding Mode Observer Based Dual Closed-Loop Fault Tolerant Control for Reconfigurable Manipulator against Actuator Failure.

    PubMed

    Zhao, Bo; Li, Chenghao; Liu, Derong; Li, Yuanchun

    2015-01-01

    This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations.

  13. Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.

    PubMed

    Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  14. Nonlinear mode decomposition: A noise-robust, adaptive decomposition method

    NASA Astrophysics Data System (ADS)

    Iatsenko, Dmytro; McClintock, Peter V. E.; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool—nonlinear mode decomposition (NMD)—which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques—which, together with the adaptive choice of their parameters, make it extremely noise robust—and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  15. Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.

    PubMed

    Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download. PMID:26465549

  16. High-speed atomic force microscope imaging: Adaptive multiloop mode

    NASA Astrophysics Data System (ADS)

    Ren, Juan; Zou, Qingze; Li, Bo; Lin, Zhiqun

    2014-07-01

    In this paper, an imaging mode (called the adaptive multiloop mode) of atomic force microscope (AFM) is proposed to substantially increase the speed of tapping mode (TM) imaging while preserving the advantages of TM imaging over contact mode (CM) imaging. Due to its superior image quality and less sample disturbances over CM imaging, particularly for soft materials such as polymers, TM imaging is currently the most widely used imaging technique. The speed of TM imaging, however, is substantially (over an order of magnitude) lower than that of CM imaging, becoming the major bottleneck of this technique. Increasing the speed of TM imaging is challenging as a stable probe tapping on the sample surface must be maintained to preserve the image quality, whereas the probe tapping is rather sensitive to the sample topography variation. As a result, the increase of imaging speed can quickly lead to loss of the probe-sample contact and/or annihilation of the probe tapping, resulting in image distortion and/or sample deformation. The proposed adaptive multiloop mode (AMLM) imaging overcomes these limitations of TM imaging through the following three efforts integrated together: First, it is proposed to account for the variation of the TM deflection when quantifying the sample topography; second, an inner-outer feedback control loop to regulate the TM deflection is added on top of the tapping-feedback control loop to improve the sample topography tracking; and, third, an online iterative feedforward controller is augmented to the whole control system to further enhance the topography tracking, where the next-line sample topography is predicted and utilized to reduce the tracking error. The added feedback regulation of the TM deflection ensures the probe-sample interaction force remains near the minimum for maintaining a stable probe-sample interaction. The proposed AMLM imaging is tested and demonstrated by imaging a poly(tert-butyl acrylate) sample in experiments. The

  17. Design of Linear DC Motor Two-degree-of-freedom Positioning System using Model Reference type Sliding Mode Controller

    NASA Astrophysics Data System (ADS)

    Urushihara, Shiro; Kamano, Takuya; Yura, Satoshi; Yasuno, Takashi; Suzuki, Takayuki

    One of fundamental problems in the factory automation is how to obtain linear motion. Linear motors produce directly the linear motion force without a motion-transform mechanism. Linear d.c. motors (LDMs) have excellent performance and controllability. However, the dynamics of small-sized LDMs is adversely affected by the dead-band due to the friction between brushes and commutators. In this paper, it is described that the design of the two-degree-of-freedom positioning system with a LDM using model reference type sliding mode controller (SMC). The proposed positioning system consists of a fixed gain feedforward controller and a SMC used as a feedback controller. The objective of the SMC is to repress the influence of nonlinear characteristics (the dead-band and parameter variations etc.). The tracking performance can be improved as the fixed gain feedforward controller makes a dynamic inverse system in the feedforward path. The effectiveness of the proposed system for improvement of the tracking performance is demonstrated by experimental results.

  18. Symmetric caging formation for convex polygonal object transportation by multiple mobile robots based on fuzzy sliding mode control.

    PubMed

    Dai, Yanyan; Kim, YoonGu; Wee, SungGil; Lee, DongHa; Lee, SukGyu

    2016-01-01

    In this paper, the problem of object caging and transporting is considered for multiple mobile robots. With the consideration of minimizing the number of robots and decreasing the rotation of the object, the proper points are calculated and assigned to the multiple mobile robots to allow them to form a symmetric caging formation. The caging formation guarantees that all of the Euclidean distances between any two adjacent robots are smaller than the minimal width of the polygonal object so that the object cannot escape. In order to avoid collision among robots, the parameter of the robots radius is utilized to design the caging formation, and the A⁎ algorithm is used so that mobile robots can move to the proper points. In order to avoid obstacles, the robots and the object are regarded as a rigid body to apply artificial potential field method. The fuzzy sliding mode control method is applied for tracking control of the nonholonomic mobile robots. Finally, the simulation and experimental results show that multiple mobile robots are able to cage and transport the polygonal object to the goal position, avoiding obstacles.

  19. Fault-tolerant control of electric vehicles with in-wheel motors using actuator-grouping sliding mode controllers

    NASA Astrophysics Data System (ADS)

    Li, Boyuan; Du, Haiping; Li, Weihua

    2016-05-01

    Although electric vehicles with in-wheel motors have been regarded as one of the promising vehicle architectures in recent years, the probability of in-wheel motor fault is still a crucial issue due to the system complexity and large number of control actuators. In this study, a modified sliding mode control (SMC) is applied to achieve fault-tolerant control of electric vehicles with four-wheel-independent-steering (4WIS) and four-wheel-independent-driving (4WID). Unlike in traditional SMC, in this approach the steering geometry is re-arranged according to the location of faulty wheels in the modified SMC. Three SMC control laws for longitudinal velocity control, lateral velocity control and yaw rate control are designed based on specific vehicle motion scenarios. In addition the actuator-grouping SMC method is proposed so that driving actuators are grouped and each group of actuators can be used to achieve the specific control target, which avoids the strong coupling effect between each control target. Simulation results prove that the proposed modified SMC can achieve good vehicle dynamics control performance in normal driving and large steering angle turning scenarios. In addition, the proposed actuator-grouping SMC can solve the coupling effect of different control targets and the control performance is improved.

  20. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Liu, Jianxing; Laghrouche, Salah; Wack, Maxime

    2014-06-01

    In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.

  1. Fully automatic control of paraplegic FES pedaling using higher-order sliding mode and fuzzy logic control.

    PubMed

    Farhoud, Aidin; Erfanian, Abbas

    2014-05-01

    In this paper, a fully automatic robust control strategy is proposed for control of paraplegic pedaling using functional electrical stimulation (FES). The method is based on higher-order sliding mode (HOSM) control and fuzzy logic control. In FES, the strength of muscle contraction can be altered either by varying the pulse width (PW) or by the pulse amplitude (PA) of the stimulation signal. The proposed control strategy regulates simultaneously both PA and PW (i.e., PA/PW modulation). A HOSM controller is designed for regulating the PW and a fuzzy logic controller for the PA. The proposed control scheme is free-model and does not require any offline training phase and subject-specific information. Simulation studies on a virtual patient and experiments on three paraplegic subjects demonstrate good tracking performance and robustness of the proposed control strategy against muscle fatigue and external disturbances during FES-induced pedaling. The results of simulation studies show that the power and cadence tracking errors are 5.4% and 4.8%, respectively. The experimental results indicate that the proposed controller can improve pedaling system efficacy and increase the endurance of FES pedaling. The average of power tracking error over three paraplegic subjects is 7.4±1.4% using PA/PW modulation, while the tracking error is 10.2±1.2% when PW modulation is used. The subjects could pedal for 15 min with about 4.1% power loss at the end of experiment using proposed control strategy, while the power loss is 14.3% using PW modulation. The controller could adjust the stimulation intensity to compensate the muscle fatigue during long period of FES pedaling. PMID:24760923

  2. Fully automatic control of paraplegic FES pedaling using higher-order sliding mode and fuzzy logic control.

    PubMed

    Farhoud, Aidin; Erfanian, Abbas

    2014-05-01

    In this paper, a fully automatic robust control strategy is proposed for control of paraplegic pedaling using functional electrical stimulation (FES). The method is based on higher-order sliding mode (HOSM) control and fuzzy logic control. In FES, the strength of muscle contraction can be altered either by varying the pulse width (PW) or by the pulse amplitude (PA) of the stimulation signal. The proposed control strategy regulates simultaneously both PA and PW (i.e., PA/PW modulation). A HOSM controller is designed for regulating the PW and a fuzzy logic controller for the PA. The proposed control scheme is free-model and does not require any offline training phase and subject-specific information. Simulation studies on a virtual patient and experiments on three paraplegic subjects demonstrate good tracking performance and robustness of the proposed control strategy against muscle fatigue and external disturbances during FES-induced pedaling. The results of simulation studies show that the power and cadence tracking errors are 5.4% and 4.8%, respectively. The experimental results indicate that the proposed controller can improve pedaling system efficacy and increase the endurance of FES pedaling. The average of power tracking error over three paraplegic subjects is 7.4±1.4% using PA/PW modulation, while the tracking error is 10.2±1.2% when PW modulation is used. The subjects could pedal for 15 min with about 4.1% power loss at the end of experiment using proposed control strategy, while the power loss is 14.3% using PW modulation. The controller could adjust the stimulation intensity to compensate the muscle fatigue during long period of FES pedaling.

  3. Testing and analysis of dual-mode adaptive landing gear, taxi mode test system for YF-12A

    NASA Technical Reports Server (NTRS)

    Gamon, M. A.

    1979-01-01

    The effectiveness of a dual mode adaptive landing gear system in reducing the dynamic response of an airplane during ground taxiing was studied. The dynamic taxi tests of the YF-12A research airplane are presented. A digital computer program which simulated the test conditions is discussed. The dual mode system as tested provides dynamic taxi response reductions of 25 percent at the cg and 30 to 45 percent at the cockpit.

  4. Vibration control of a ship engine system using high-load magnetorheological mounts associated with a new indirect fuzzy sliding mode controller

    NASA Astrophysics Data System (ADS)

    Phu, Do Xuan; Choi, Seung-Bok

    2015-02-01

    In this work, a new high-load magnetorheological (MR) fluid mount system is devised and applied to control vibration in a ship engine. In the investigation of vibration-control performance, a new modified indirect fuzzy sliding mode controller is formulated and realized. The design of the proposed MR mount is based on the flow mode of MR fluid, and it includes two separated coils for generating a magnetic field. An optimization process is carried out to achieve maximal damping force under certain design constraints, such as the allowable height of the mount. As an actuating smart fluid, a new plate-like iron-particle-based MR fluid is used, instead of the conventional spherical iron-particle-based MR fluid. After evaluating the field-dependent yield stress of the MR fluid, the field-dependent damping force required to control unwanted vibration in the ship engine is determined. Subsequently, an appropriate-sized MR mount is manufactured and its damping characteristics are evaluated. After confirming the sufficient damping force level of the manufactured MR mount, a medium-sized ship engine mount system consisting of eight MR mounts is established, and its dynamic governing equations are derived. A new modified indirect fuzzy sliding mode controller is then formulated and applied to the engine mount system. The displacement and velocity responses show that the unwanted vibrations of the ship engine system can be effectively controlled in both the axial and radial directions by applying the proposed control methodology.

  5. Adaptive Control of Linear Modal Systems Using Residual Mode Filters and a Simple Disturbance Estimator

    NASA Technical Reports Server (NTRS)

    Balas, Mark; Frost, Susan

    2012-01-01

    Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter.

  6. Improved Re-Configurable Sliding Mode Controller for Reusable Launch Vehicle of Second Generation Addressing Aerodynamic Surface Failures and Thrust Deficiencies

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri B.

    2002-01-01

    In this report we present a time-varying sliding mode control (TV-SMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC is developed and tuned up for the X-33 sub-orbital technology demonstration vehicle in launch and re-entry modes. A variety of nominal, dispersion and failure scenarios have tested via high fidelity 6DOF simulations using MAVERIC/SLIM simulation software.

  7. Full-order sliding mode control of uncertain chaos in a permanent magnet synchronous motor based on a fuzzy extended state observer

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Nan, Yu-Rong; Zheng, Heng-Huo; Ren, Xue-Mei

    2015-11-01

    A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method. Project supported by the National Natural Science Foundation of China (Grant Nos. 61403343 and 61433003), the Scientific Research Foundation of Education Department of Zhejiang Province, China (Grant No. Y201329260), and the Natural Science Foundation of Zhejiang University of Technology, China (Grant No. 1301103053408).

  8. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification.

    PubMed

    Zhu, Guang; Zhou, Yu Sheng; Bai, Peng; Meng, Xian Song; Jing, Qingshen; Chen, Jun; Wang, Zhong Lin

    2014-06-18

    Effectively harvesting ambient mechanical energy is the key for realizing self-powered and autonomous electronics, which addresses limitations of batteries and thus has tremendous applications in sensor networks, wireless devices, and wearable/implantable electronics, etc. Here, a thin-film-based micro-grating triboelectric nanogenerator (MG-TENG) is developed for high-efficiency power generation through conversion of mechanical energy. The shape-adaptive MG-TENG relies on sliding electrification between complementary micro-sized arrays of linear grating, which offers a unique and straightforward solution in harnessing energy from relative sliding motion between surfaces. Operating at a sliding velocity of 10 m/s, a MG-TENG of 60 cm(2) in overall area, 0.2 cm(3) in volume and 0.6 g in weight can deliver an average output power of 3 W (power density of 50 mW cm(-2) and 15 W cm(-3)) at an overall conversion efficiency of ∼ 50%, making it a sufficient power supply to regular electronics, such as light bulbs. The scalable and cost-effective MG-TENG is practically applicable in not only harvesting various mechanical motions but also possibly power generation at a large scale. PMID:24692147

  9. Augmented Adaptive Control of a Wind Turbine in the Presence of Structural Modes

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.; Wright, Alan D.

    2010-01-01

    Wind turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, potentially causing component fatigue and failure. Two key technology drivers for turbine manufacturers are increasing turbine up time and reducing maintenance costs. Since the trend in wind turbine design is towards larger, more flexible turbines with lower frequency structural modes, manufacturers will want to develop methods to operate in the presence of these modes. Accurate models of the dynamic characteristics of new wind turbines are often not available due to the complexity and expense of the modeling task, making wind turbines ideally suited to adaptive control. In this paper, we develop theory for adaptive control with rejection of disturbances in the presence of modes that inhibit the controller. We use this method to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the interference of certain structural modes in feedback. The control objective is accomplished by collectively pitching the turbine blades. The adaptive pitch controller for Region 3 is compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller.

  10. Mode-field adapter for tapered-fiber-bundle signal and pump combiners.

    PubMed

    Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Bohata, Jan; Písařík, Michael

    2015-02-01

    We report on a novel mode-field adapter that is proposed to be incorporated inside tapered fused-fiber-bundle pump and signal combiners for high-power double-clad fiber lasers. Such an adapter allows optimization of signal-mode-field matching on the input and output fibers. Correspondingly, losses of the combiner signal branch are significantly reduced. The mode-field adapter optimization procedure is demonstrated on a combiner based on commercially available fibers. Signal wavelengths of 1.55 and 2 μm are considered. The losses can be further improved by using specially designed intermediate fiber and by dopant diffusion during splicing as confirmed by preliminary experimental results. PMID:25967784

  11. Output-feedback sliding-mode control via cascade observers for global stabilisation of a class of nonlinear systems with output time delay

    NASA Astrophysics Data System (ADS)

    Lobo Coutinho, Camila; Roux Oliveira, Tiago; Cunha, José Paulo V. S.

    2014-11-01

    This article proposes a sliding-mode control scheme for a class of triangular nonlinear systems with arbitrarily long and known time delay in the output signal. The proposed control strategy guarantees global asymptotic stability of the closed-loop system using only output feedback, without using any kind of approximations. The state of the system is estimated by asymptotic observers connected in cascade. The analysis of such observers in closed-loop feedback is also a contribution of the present manuscript as well as the theoretical demonstration of the chattering elimination even in the presence of delays. Simulation results and a physically motivated example with a full-bridge power converter illustrate the effectiveness of the proposed approach.

  12. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    NASA Astrophysics Data System (ADS)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-08-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.

  13. Mode estimation and adaptive feedforward control for stabilization of a flexible gun tube

    NASA Astrophysics Data System (ADS)

    Vandegrift, Mark W.; DiRenzo, Michael T.

    1998-07-01

    In this paper we describe an approach for designing a pointing and stabilization system for an unbalanced, flexible gun. Our approach is based upon classical control techniques as well as system identification and adaptive feedforward techniques. Adaptive algorithms identify the flexible modes of the system and estimate the dynamics unbalance. This information is used to update the control law in order to improve the stabilization accuracy of the system.

  14. How to adapt broad-band gravitational-wave searches for r-modes

    SciTech Connect

    Owen, Benjamin J.

    2010-11-15

    Up to now there has been no search for gravitational waves from the r-modes of neutron stars in spite of the theoretical interest in the subject. Several oddities of r-modes must be addressed to obtain an observational result: The gravitational radiation field is dominated by the mass current (gravitomagnetic) quadrupole rather than the usual mass quadrupole, and the consequent difference in polarization affects detection statistics and parameter estimation. To astrophysically interpret a detection or upper limit it is necessary to convert the gravitational-wave amplitude to an r-mode amplitude. Also, it is helpful to know indirect limits on gravitational-wave emission to gauge the interest of various searches. Here I address these issues, thereby providing the ingredients to adapt broad-band searches for continuous gravitational waves to obtain r-mode results. I also show that searches of existing data can already have interesting sensitivities to r-modes.

  15. Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition

    PubMed Central

    Lei, Yaguo; Li, Naipeng; Lin, Jing; Wang, Sizhe

    2013-01-01

    The vibration based signal processing technique is one of the principal tools for diagnosing faults of rotating machinery. Empirical mode decomposition (EMD), as a time-frequency analysis technique, has been widely used to process vibration signals of rotating machinery. But it has the shortcoming of mode mixing in decomposing signals. To overcome this shortcoming, ensemble empirical mode decomposition (EEMD) was proposed accordingly. EEMD is able to reduce the mode mixing to some extent. The performance of EEMD, however, depends on the parameters adopted in the EEMD algorithms. In most of the studies on EEMD, the parameters were selected artificially and subjectively. To solve the problem, a new adaptive ensemble empirical mode decomposition method is proposed in this paper. In the method, the sifting number is adaptively selected, and the amplitude of the added noise changes with the signal frequency components during the decomposition process. The simulation, the experimental and the application results demonstrate that the adaptive EEMD provides the improved results compared with the original EEMD in diagnosing rotating machinery. PMID:24351666

  16. Modified Adaptive Control for Region 3 Operation in the Presence of Wind Turbine Structural Modes

    NASA Technical Reports Server (NTRS)

    Frost, Susan Alane; Balas, Mark J.; Wright, Alan D.

    2010-01-01

    Many challenges exist for the operation of wind turbines in an efficient manner that is reliable and avoids component fatigue and failure. Turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, possibly causing component fatigue and failure. Wind turbine manufacturers are highly motivated to reduce component fatigue and failure that can lead to loss of revenue due to turbine down time and maintenance costs. The trend in wind turbine design is toward larger, more flexible turbines that are ideally suited to adaptive control methods due to the complexity and expense required to create accurate models of their dynamic characteristics. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed horizontal axis wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the excitation of structural modes in the wind turbine. The control objective is accomplished by collectively pitching the turbine blades. The adaptive collective pitch controller for Region 3 was compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller. The adaptive controller will demonstrate the ability to regulate generator speed in Region 3, while accommodating gusts, and reducing the excitation of certain structural modes in the wind turbine.

  17. An analysis toolbox to explore mesenchymal migration heterogeneity reveals adaptive switching between distinct modes

    PubMed Central

    Shafqat-Abbasi, Hamdah; Kowalewski, Jacob M; Kiss, Alexa; Gong, Xiaowei; Hernandez-Varas, Pablo; Berge, Ulrich; Jafari-Mamaghani, Mehrdad; Lock, John G; Strömblad, Staffan

    2016-01-01

    Mesenchymal (lamellipodial) migration is heterogeneous, although whether this reflects progressive variability or discrete, 'switchable' migration modalities, remains unclear. We present an analytical toolbox, based on quantitative single-cell imaging data, to interrogate this heterogeneity. Integrating supervised behavioral classification with multivariate analyses of cell motion, membrane dynamics, cell-matrix adhesion status and F-actin organization, this toolbox here enables the detection and characterization of two quantitatively distinct mesenchymal migration modes, termed 'Continuous' and 'Discontinuous'. Quantitative mode comparisons reveal differences in cell motion, spatiotemporal coordination of membrane protrusion/retraction, and how cells within each mode reorganize with changed cell speed. These modes thus represent distinctive migratory strategies. Additional analyses illuminate the macromolecular- and cellular-scale effects of molecular targeting (fibronectin, talin, ROCK), including 'adaptive switching' between Continuous (favored at high adhesion/full contraction) and Discontinuous (low adhesion/inhibited contraction) modes. Overall, this analytical toolbox now facilitates the exploration of both spontaneous and adaptive heterogeneity in mesenchymal migration. DOI: http://dx.doi.org/10.7554/eLife.11384.001 PMID:26821527

  18. Adaptive Q control for tapping-mode nanoscanning using a piezoactuated bimorph probe.

    PubMed

    Gunev, Ihsan; Varol, Aydin; Karaman, Sertac; Basdogan, Cagatay

    2007-04-01

    A new approach, called adaptive Q control, for tapping-mode atomic force microscopy (AFM) is introduced and implemented on a homemade AFM setup utilizing a laser Doppler vibrometer and a piezoactuated bimorph probe. In standard Q control, the effective Q factor of the scanning probe is adjusted prior to the scanning depending on the application. However, there is a trade-off in setting the effective Q factor of an AFM probe. The Q factor is either increased to reduce the tapping forces or decreased to increase the maximum achievable scan speed. Realizing these two benefits simultaneously using standard Q control is not possible. In adaptive Q control, the Q factor of the probe is set to an initial value as in standard Q control, but then modified on the fly during scanning when necessary to achieve this goal. In this article, we present the basic theory behind adaptive Q control, the electronics enabling the online modification of the probe's effective Q factor, and the results of the experiments comparing three different methods: scanning (a) without Q control, (b) with standard Q control, and (c) with adaptive Q control. The results show that the performance of adaptive Q control is superior to the other two methods.

  19. Model-based Adaptive Control of Resistive Wall Modes in DIII-D

    NASA Astrophysics Data System (ADS)

    Xie, F.; Schuster, E.; Humphreys, D. A.; Walker, M. L.

    2009-11-01

    One of the major non-axisymmetric instabilities under study in the DIII-D tokamak is the resistive wall mode (RWM), a form of plasma kink instability whose growth rate is moderated by the influence of a resistive wall. The General Atomics/FARTECH DIII-D/RWM dynamic model represents the plasma surface as a toroidal current sheet and the wall using an eigenmode approach. We report first on the experimental validation and reconciliation of the proposed dynamic model, which is a required step previous to the potential implementation in the Plasma Control System (PCS) of any model-based controller. The dynamic model is then used to synthesize an adaptive control law for the stabilization of the RWM under time-varying β conditions. Simulation results are presented comparing the performance of the model-based adaptive controller and present non-model-based PD controllers.

  20. Femtosecond infrared intrastromal ablation and backscattering-mode adaptive-optics multiphoton microscopy in chicken corneas

    PubMed Central

    Gualda, Emilio J.; Vázquez de Aldana, Javier R.; Martínez-García, M. Carmen; Moreno, Pablo; Hernández-Toro, Juan; Roso, Luis; Artal, Pablo; Bueno, Juan M.

    2011-01-01

    The performance of femtosecond (fs) laser intrastromal ablation was evaluated with backscattering-mode adaptive-optics multiphoton microscopy in ex vivo chicken corneas. The pulse energy of the fs source used for ablation was set to generate two different ablation patterns within the corneal stroma at a certain depth. Intrastromal patterns were imaged with a custom adaptive-optics multiphoton microscope to determine the accuracy of the procedure and verify the outcomes. This study demonstrates the potential of using fs pulses as surgical and monitoring techniques to systematically investigate intratissue ablation. Further refinement of the experimental system by combining both functions into a single fs laser system would be the basis to establish new techniques capable of monitoring corneal surgery without labeling in real-time. Since the backscattering configuration has also been optimized, future in vivo implementations would also be of interest in clinical environments involving corneal ablation procedures. PMID:22076258

  1. Adaptive optimal stochastic state feedback control of resistive wall modes in tokamaks

    SciTech Connect

    Sun, Z.; Sen, A.K.; Longman, R.W.

    2006-01-15

    An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least-square method with exponential forgetting factor and covariance resetting is used to identify (experimentally determine) the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time-dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used.

  2. Toward Design of an Environment-Aware Adaptive Locomotion-Mode-Recognition System

    PubMed Central

    Du, Lin; Zhang, Fan; Liu, Ming

    2013-01-01

    In this study, we aimed to improve the performance of a locomotion-mode-recognition system based on neuromuscular-mechanical fusion by introducing additional information about the walking environment. Linear-discriminant-analysis-based classifiers were first designed to identify a lower limb prosthesis user’s locomotion mode based on electromyographic signals recorded from residual leg muscles and ground reaction forces measured from the prosthetic pylon. Nine transfemoral amputees who wore a passive hydraulic knee or powered prosthetic knee participated in this study. Information about the walking terrain was simulated and modeled as prior probability based on the principle of maximum entropy and integrated into the discriminant functions of the classifier. When the correct prior knowledge of walking terrain was simulated, the classification accuracy for each locomotion mode significantly increased and no task transitions were missed. In addition, simulated incorrect prior knowledge did not significantly reduce system performance, indicating that our design is robust against noisy and imperfect prior information. Furthermore, these observations were independent of the type of prosthesis applied. The promising results in this study may assist the further development of an environment-aware adaptive system for locomotion-mode recognition for powered lower limb prostheses or orthoses. PMID:22996721

  3. Adaptable Poly(ethylene glycol) Microspheres Capable of Mixed-mode Degradation

    PubMed Central

    Parlato, Matthew; Johnson, Alexander; Hudalla, Gregory A.; Murphy, William L.

    2013-01-01

    Here we present a simple, degradable PEG microsphere system formed from a water-in-water emulsion process. Microsphere network degradation and erosion were controlled by adjusting the number of hydrolytically labile sites, by varying the PEG molecular weight, and by adjusting the emulsion conditions. Microsphere size was also controllable by adjusting the polymer formulation. Furthermore, we demonstrate that alternative degradation and erosion mechanisms, such as proteolytic degradation, can be incorporated into PEG microspheres, resulting in mixed-mode degradation. Due to the adaptability of this approach, it may serve as an attractive option for emerging tissue engineering, drug delivery, and gene delivery applications. PMID:23958780

  4. Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang

    2016-07-01

    The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only needs to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.

  5. Contrasted modes of evolution in the same genome: allozymes and adaptive change in Heliconius.

    PubMed

    Turner, J R; Johnson, M S; Eanes, W F

    1979-04-01

    Butterflies in the South American genus Heliconius have undergone a spectacular adaptive radiation (with convergent evolution between some lines) in their color patterns; this has been produced by natural selection for muellerian mimicry. The genetic basis of this radiation, shown by crossing highly differentiated races within two of the species, is homozygosity for alternative alleles at some half dozen loci. In complete contrast, allozyme loci in these butterflies are strongly heterozygous and show only frequency differences (never amounting to homozygosity of alternative alleles) between races; the amount of allozyme divergence is the same between races of H. erato and H. sara, although in color pattern the first forms marked races and the other does not. For the allozymes, there is a strong correlation over loci for rate of divergence between species and average heterozygosity. This is not true of the genes controlling color pattern. Heterozygosity of the enzymes is correlated with subunit molecular weight. Thus, different parts of the genome can evolve in different ways simultaneously; genes controlling color pattern in the "classical" mode, and allozymes in a different mode in which the rate of evolution is related to their heterozygosity (a "balance" or "neutral" mode).

  6. Adaptive Control of Non-Minimum Phase Modal Systems Using Residual Mode Filters2. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Frost, Susan

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. This paper will be divided into two parts. Here in Part I we will review the basic adaptive control approach and introduce the primary ideas. In Part II, we will present the RMF methodology and complete the proofs of all our results. Also, we will apply the above theoretical results to a simple flexible structure example to illustrate the behavior with and without the residual mode filter.

  7. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force

    SciTech Connect

    Ren, Juan; Zou, Qingze

    2014-07-15

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.

  8. Adaptive-projection intrinsically transformed multivariate empirical mode decomposition in cooperative brain-computer interface applications.

    PubMed

    Hemakom, Apit; Goverdovsky, Valentin; Looney, David; Mandic, Danilo P

    2016-04-13

    An extension to multivariate empirical mode decomposition (MEMD), termed adaptive-projection intrinsically transformed MEMD (APIT-MEMD), is proposed to cater for power imbalances and inter-channel correlations in real-world multichannel data. It is shown that the APIT-MEMD exhibits similar or better performance than MEMD for a large number of projection vectors, whereas it outperforms MEMD for the critical case of a small number of projection vectors within the sifting algorithm. We also employ the noise-assisted APIT-MEMD within our proposed intrinsic multiscale analysis framework and illustrate the advantages of such an approach in notoriously noise-dominated cooperative brain-computer interface (BCI) based on the steady-state visual evoked potentials and the P300 responses. Finally, we show that for a joint cognitive BCI task, the proposed intrinsic multiscale analysis framework improves system performance in terms of the information transfer rate. PMID:26953174

  9. Adapting 3D Equilibrium Reconstruction to Reconstruct Weakly 3D H-mode Tokamaks

    NASA Astrophysics Data System (ADS)

    Cianciosa, M. R.; Hirshman, S. P.; Seal, S. K.; Unterberg, E. A.; Wilcox, R. S.; Wingen, A.; Hanson, J. D.

    2015-11-01

    The application of resonant magnetic perturbations for edge localized mode (ELM) mitigation breaks the toroidal symmetry of tokamaks. In these scenarios, the axisymmetric assumptions of the Grad-Shafranov equation no longer apply. By extension, equilibrium reconstruction tools, built around these axisymmetric assumptions, are insufficient to fully reconstruct a 3D perturbed equilibrium. 3D reconstruction tools typically work on systems where the 3D components of signals are a significant component of the input signals. In nominally axisymmetric systems, applied field perturbations can be on the order of 1% of the main field or less. To reconstruct these equilibria, the 3D component of signals must be isolated from the axisymmetric portions to provide the necessary information for reconstruction. This presentation will report on the adaptation to V3FIT for application on DIII-D H-mode discharges with applied resonant magnetic perturbations (RMPs). Newly implemented motional stark effect signals and modeling of electric field effects will also be discussed. Work supported under U.S. DOE Cooperative Agreement DE-AC05-00OR22725.

  10. Analysis of modes and behavior of a multiconjugate adaptive optics system.

    PubMed

    Le Louarn, Miska; Tallon, Michel

    2002-05-01

    We study the so-called three-dimensional mapping of turbulence, a method solving the cone effect (or focus anisoplanatism) by using multiple laser guide stars (LGSs). This method also permits a widening of the corrected field of view much beyond the isoplanatic field. Multiple deformable mirrors, conjugated to planes at chosen altitudes among the turbulent layers, are used to correct in real time the wave fronts measured from the LGSs. We construct an interaction matrix describing the multiconjugate adaptive optics system and analyze the eigenmodes of the system. We show that the global tilt mode is singular because it cannot be localized in altitude, so that it must be corrected only once at any altitude. Furthermore, when the tilt from the LGS cannot be measured, the singularity of the global tilt yields the delocalization of particular forms of defocus and astigmatism. This imposes the use of a single natural guide star located anywhere in the corrected field to measure these modes. We show as an example that the cone effect can be corrected with a Strehl of 0.8 with four LGSs (tilt ignored) on an 8-m telescope in the visible when a single laser star provides a Strehl of 0.1. The maximum field of view of 100 arc sec in diameter can be reconstructed with an on-axis Strehl ratio of 30%. We also show that the measurement of the height of the layers can be done with current techniques and that additional layers, not accounted for, do not significantly degrade the performance in the configuration that we model. PMID:11999967

  11. Real-sky adaptive optics experiments on optimal control of tip-tilt modes

    NASA Astrophysics Data System (ADS)

    Doelman, Niek; Fraanje, Rufus; den Breeje, Remco

    2011-09-01

    In recent years various researchers have concentrated on control performance improvement for adaptive optics systems by using more sophisticated design methods. These approaches account for the inherent spatial and temporal correlations in the wavefront sensor data. Several control schemes have been proposed, of which the common essence is the minimization of a criterion function, yielding so-called 'optimal' or LQG control solutions. These are in some cases also referred to as 'predictive control'. Following the H2-optimal control design approach proposed by Hinnen [JOSA A Vol. 24, 2007], a real-sky experiment has been carried out on the McMath-Pierce solar telescope on Kitt Peak, Arizona. The purpose of the experiment was to validate the favourable results of optimal control, as obtained in simulations and laboratory experiments, on a real-time AO system on a telescope with real-sky turbulence. During the experimental week, it appeared that the deformable mirror did not have sufficient stroke to cope with the strong wavefront aberrations as measured by the AO wavefront sensor. Therefore, it was decided to focus on optimal control of the lower aberration modes tip and tilt only (using the separate TT-mirror). The control experiments demonstrate that for the particular AO system and seeing conditions (Nov 14, 2010) real-time optimal control can reduce the tip and tilt amplitudes by an additional factor of about 2 (RMS), compared to the common integrator control of the tip and tilt modes. For the low frequency band the improvement ranges from 10 to 20 dB. This performance agrees reasonably well with the predicted performance which is based on off-line analysis of the WFS data. The paper will discuss the experimental results in detail and also address important aspects like the non-stationarity of the wavefront aberrations, coupled versus decoupled tip-tilt control and measures to increase the robustness of the controller.

  12. Analysis of modes and behavior of a multiconjugate adaptive optics system.

    PubMed

    Le Louarn, Miska; Tallon, Michel

    2002-05-01

    We study the so-called three-dimensional mapping of turbulence, a method solving the cone effect (or focus anisoplanatism) by using multiple laser guide stars (LGSs). This method also permits a widening of the corrected field of view much beyond the isoplanatic field. Multiple deformable mirrors, conjugated to planes at chosen altitudes among the turbulent layers, are used to correct in real time the wave fronts measured from the LGSs. We construct an interaction matrix describing the multiconjugate adaptive optics system and analyze the eigenmodes of the system. We show that the global tilt mode is singular because it cannot be localized in altitude, so that it must be corrected only once at any altitude. Furthermore, when the tilt from the LGS cannot be measured, the singularity of the global tilt yields the delocalization of particular forms of defocus and astigmatism. This imposes the use of a single natural guide star located anywhere in the corrected field to measure these modes. We show as an example that the cone effect can be corrected with a Strehl of 0.8 with four LGSs (tilt ignored) on an 8-m telescope in the visible when a single laser star provides a Strehl of 0.1. The maximum field of view of 100 arc sec in diameter can be reconstructed with an on-axis Strehl ratio of 30%. We also show that the measurement of the height of the layers can be done with current techniques and that additional layers, not accounted for, do not significantly degrade the performance in the configuration that we model.

  13. Neuromuscular adaptations to different modes of combined strength and endurance training.

    PubMed

    Eklund, D; Pulverenti, T; Bankers, S; Avela, J; Newton, R; Schumann, M; Häkkinen, K

    2015-02-01

    The present study investigated neuromuscular adaptations between same-session combined strength and endurance training with 2 loading orders and different day combined training over 24 weeks. 56 subjects were divided into different day (DD) combined strength and endurance training (4-6 d·wk(-1)) and same-session combined training: endurance preceding strength (E+S) or vice versa (S+E) (2-3 d·wk(-1)). Dynamic and isometric strength, EMG, voluntary activation, muscle cross-sectional area and endurance performance were measured. All groups increased dynamic one-repetition maximum (p<0.001; DD 13±7%, E+S 12±9% and S+E 17±12%) and isometric force (p<0.05-0.01), muscle cross-sectional area (p<0.001) and maximal power output during cycling (p<0.001). DD and S+E increased voluntary activation during training (p<0.05-0.01). In E+S no increase in voluntary activation was detected after 12 or 24 weeks. E+S also showed unchanged and S+E increased maximum EMG after 24 weeks during maximal isometric muscle actions. A high correlation (p<0.001, r=0.83) between the individual changes in voluntary activation and maximal knee extension force was found for E+S during weeks 13-24. Neural adaptations showed indications of being compromised and highly individual relating to changes in isometric strength when E+S-training was performed, while gains in one-repetition maximum, endurance performance and hypertrophy did not differ between the training modes.

  14. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics.

    PubMed

    Chen, Mo; Liu, Chao; Xian, Hao

    2015-10-10

    High-speed free-space optical communication systems using fiber-optic components can greatly improve the stability of the system and simplify the structure. However, propagation through atmospheric turbulence degrades the spatial coherence of the signal beam and limits the single-mode fiber (SMF) coupling efficiency. In this paper, we analyze the influence of the atmospheric turbulence on the SMF coupling efficiency over various turbulences. The results show that the SMF coupling efficiency drops from 81% without phase distortion to 10% when phase root mean square value equals 0.3λ. The simulations of SMF coupling with adaptive optics (AO) indicate that it is inevitable to compensate the high-order aberrations for SMF coupling over relatively strong turbulence. The SMF coupling efficiency experiments, using an AO system with a 137-element deformable mirror and a Hartmann-Shack wavefront sensor, obtain average coupling efficiency increasing from 1.3% in open loop to 46.1% in closed loop under a relatively strong turbulence, D/r0=15.1.

  15. Dust Slides

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03677 Linear Clouds

    Dust slides are common in the dust covered region called Lycus Sulci. A large fracture is also visible in this image.

    Image information: VIS instrument. Latitude 28.1N, Longitude 226.3E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes.

    PubMed

    Randall, D J; Rummer, J L; Wilson, J M; Wang, S; Brauner, C J

    2014-04-15

    for CO2 hydration/dehydration. Finally, RBC organophosphates (e.g. NTP) could be reduced during hypoxia to further increase Hb-O2 affinity without compromising tissue O2 delivery because high-affinity Hbs could still adequately deliver O2 to the tissues via Bohr/Root shifts. We suggest that the evolution of this unique mode of tissue O2 transfer evolved in the Triassic/Jurassic Period, when O2 levels were low, ultimately giving rise to the most extensive adaptive radiation of extant vertebrates, the teleost fishes. PMID:24744420

  17. A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes.

    PubMed

    Randall, D J; Rummer, J L; Wilson, J M; Wang, S; Brauner, C J

    2014-04-15

    for CO2 hydration/dehydration. Finally, RBC organophosphates (e.g. NTP) could be reduced during hypoxia to further increase Hb-O2 affinity without compromising tissue O2 delivery because high-affinity Hbs could still adequately deliver O2 to the tissues via Bohr/Root shifts. We suggest that the evolution of this unique mode of tissue O2 transfer evolved in the Triassic/Jurassic Period, when O2 levels were low, ultimately giving rise to the most extensive adaptive radiation of extant vertebrates, the teleost fishes.

  18. Performance analysis of low-complexity adaptive frequency-domain equalization and MIMO signal processing for compensation of differential mode group delay in mode-division multiplexing communication systems using few-mode fibers

    NASA Astrophysics Data System (ADS)

    Weng, Yi; He, Xuan; Pan, Zhongqi

    2016-02-01

    Mode-division multiplexing (MDM) transmission systems utilizing few-mode fibers (FMF) have been intensively explored to sustain continuous traffic growth. The key challenges of MDM systems are inter-modal crosstalk due to random mode coupling (RMC), and largely-accumulated differential mode group delay (DMGD), whilst hinders mode-demultiplexer implementation. The adaptive multi-input multi-output (MIMO) frequency-domain equalization (FDE) can dynamically compensate DMGD using digital signal processing (DSP) algorithms. The frequency-domain least-mean squares (FD-LMS) algorithm has been universally adopted for high-speed MDM communications, mainly for its relatively low computational complexity. However, longer training sequence is appended for FD-LMS to achieve faster convergence, which incurs prohibitively higher system overhead and reduces overall throughput. In this paper, we propose a fast-convergent single-stage adaptive frequency-domain recursive least-squares (FD-RLS) algorithm with reduced complexity for DMGD compensation at MDM coherent receivers. The performance and complexity comparison of FD-RLS, with signal-PSD-dependent FD-LMS method and conventional FD-LMS approach, are performed in a 3000 km six-mode transmission system with 65 ps/km DMGD. We explore the convergence speed of three adaptive algorithms, including the normalized mean-square-error (NMSE) per fast Fourier transform (FFT) block at 14-30 dB OSNR. The fast convergence of FD-RLS is exploited at the expense of slightly-increased necessary tap numbers for MIMO equalizers, and it can partially save the overhead of training sequence. Furthermore, we demonstrate adaptive FD-RLS can also be used for chromatic dispersion (CD) compensation without increasing the filter tap length, thus prominently reducing the DSP implementation complexity for MDM systems.

  19. A wide load range, multi-mode synchronous buck DC—DC converter with a dynamic mode controller and adaptive slope compensation

    NASA Astrophysics Data System (ADS)

    Chunhong, Zhang; Haigang, Yang; Shi, Richard

    2013-06-01

    A synchronous buck DC—DC converter with an adaptive multi-mode controller is proposed. In order to achieve high efficiency over its entire load range, pulse-width modulation (PWM), pulse-skip modulation (PSM) and pulse-frequency modulation (PFM) modes were integrated in the proposed DC—DC converter. With a highly accurate current sensor and a dynamic mode controller on chip, the converter can dynamically change among PWM, PSM and PFM control according to the load requirements. In addition, to avoid power device damage caused by inrush current at the start up state, a soft-start circuit is presented to suppress the inrush current. Furthermore, an adaptive slope compensation (SC) technique is proposed to stabilize the current programmed PWM controller for duty cycle passes over 50%, and improve the degraded load capability due to traditional slope compensation. The buck converter chip was simulated and manufactured under a 0.35 μm standard CMOS process. Experimental results show that the chip can achieve 79% to 91% efficiency over the load range of 0.1 to 1000 mA

  20. Optical spectroscopy with a near-single-mode fiber-feed and adaptive optics

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Angel, J. Roger P.; Shelton, J. Christopher

    1998-07-01

    We report on first astronomical results with a cross-dispersed optical echelle spectrograph fed by a near single-mode fiber. We also present on a novel design of a new adaptive optics (AO) optimized fiber-fed cross-dispersed echelle spectrograph. The spectrograph is designed to match with AO corrected images in the optical bands provided by such as the Mt. Wilson 100 inch, Starfire Optical Range 3.5 m AO telescopes. Ultimately, it will be installed at the 6.5 m MMT, when this has high resolution AO correcting the optical spectrum. The spectrograph, fed by a 10 micron fused silica fiber, is unique in that the entire spectrum from 0.4 micron to 1.0 micron will be almost completely covered at resolution 200,000 in one exposure. The detector is a 2k X 4k AR coated back illuminated CCD with 15 micron pixel size. The close order spacing allowed by the sharp AO image makes the full cover possible. A 250 X 125 mm(superscript 2) Milton Roy R2 echelle grating with 23.2 grooves mm(superscript -1) and a blaze angle of 63.5 deg provides main dispersion. A double pass BK7 prism with 21 deg wedge angle provides cross dispersion, covering the spectrum from order 193 to 77. The spectrograph is used in the quasi- Littrow configuration with an off-axis Maksutov collimator/camera. The fiber feeds the AO corrected beams from the telescope Cassegrain focus to the spectrograph, which is set up on an optical bench. The spectrograph will be used mainly to study line profiles of solar type stars, to explore problems of indirect detection of planets and also study interstellar medium, circumstellar medium and metal abundance and isotopic ratios of extremely metal-poor stars.

  1. Apparatus Would Stain Microscope Slides

    NASA Technical Reports Server (NTRS)

    Breeding, James D.

    1993-01-01

    Proposed apparatus meters specific amounts of fluid out of containers at specific times to stain microscope slides. Intended specifically for semiautomated staining of microbiological and hematological samples in microgravity, leakproof apparatus used in other environments in which technicians have little time to allocate to staining procedures and/or exposure to toxic staining agents or to micro-organisms to be stained hazardous. Apparatus adapted to perform almost any staining procedure and accommodates multiple staining reagents, useful for small or remote clinical laboratories.

  2. Multi-dimensional complete ensemble empirical mode decomposition with adaptive noise applied to laser speckle contrast images.

    PubMed

    Humeau-Heurtier, Anne; Mahé, Guillaume; Abraham, Pierre

    2015-10-01

    Laser speckle contrast imaging (LSCI) is a noninvasive full-field optical technique which allows analyzing the dynamics of microvascular blood flow. LSCI has attracted attention because it is able to image blood flow in different kinds of tissue with high spatial and temporal resolutions. Additionally, it is simple and necessitates low-cost devices. However, the physiological information that can be extracted directly from the images is not completely determined yet. In this work, a novel multi-dimensional complete ensemble empirical mode decomposition with adaptive noise (MCEEMDAN) is introduced and applied in LSCI data recorded in three physiological conditions (rest, vascular occlusion and post-occlusive reactive hyperaemia). MCEEMDAN relies on the improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and our algorithm is specifically designed to analyze multi-dimensional data (such as images). Over the recent multi-dimensional ensemble empirical mode decomposition (MEEMD), MCEEMDAN has the advantage of leading to an exact reconstruction of the original data. The results show that MCEEMDAN leads to intrinsic mode functions and residue that reveal hidden patterns in LSCI data. Moreover, these patterns differ with physiological states. MCEEMDAN appears as a promising way to extract features in LSCI data for an improvement of the image understanding.

  3. Mycobacterium tuberculosis class II apurinic/apyrimidinic-endonuclease/3'-5' exonuclease III exhibits DNA regulated modes of interaction with the sliding DNA β-clamp.

    PubMed

    Khanam, Taran; Rai, Niyati; Ramachandran, Ravishankar

    2015-10-01

    The class-II AP-endonuclease (XthA) acts on abasic sites of damaged DNA in bacterial base excision repair. We identified that the sliding DNA β-clamp forms in vivo and in vitro complexes with XthA in Mycobacterium tuberculosis. A novel 239 QLRFPKK245 motif in the DNA-binding domain of XthA was found to be important for the interactions. Likewise, the peptide binding-groove (PBG) and the C-terminal of β-clamp located on different domains interact with XthA. The β-clamp-XthA complex can be disrupted by clamp binding peptides and also by a specific bacterial clamp inhibitor that binds at the PBG. We also identified that β-clamp stimulates the activities of XthA primarily by increasing its affinity for the substrate and its processivity. Additionally, loading of the β-clamp onto DNA is required for activity stimulation. A reduction in XthA activity stimulation was observed in the presence of β-clamp binding peptides supporting that direct interactions between the proteins are necessary to cause stimulation. Finally, we found that in the absence of DNA, the PBG located on the second domain of the β-clamp is important for interactions with XthA, while the C-terminal domain predominantly mediates functional interactions in the substrate's presence.

  4. Sliding vane geometry turbines

    DOEpatents

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  5. Teach Classification with Slides.

    ERIC Educational Resources Information Center

    Franks, Deborah

    1980-01-01

    Described is a creative approach to the use of contact slides as a means of student participation in a learning unit on animal classification. The finished product is a slide presentation in which students themselves have made the slides and taped the narration. (CS)

  6. An adaptive two-stage energy-efficiency mechanism for the doze mode in EPON

    NASA Astrophysics Data System (ADS)

    Nikoukar, AliAkbar; Hwang, I.-Shyan; Su, Yu-Min; Liem, Andrew Tanny

    2016-07-01

    Sleep and doze power-saving modes are the common ways to reduce power consumption of optical network units (ONUs) in Ethernet passive optical network (EPON). The doze mode turns off the ONU transmitter when there is no traffic in the upstream direction while the sleep mode turns off the ONU transmitter and receiver. As the result, the sleep mode is more efficient compared to the doze mode, but it introduces additional complexity of scheduling and signaling, losses the clock synchronization and requires long clock recovery time; furthermore, it requires the cooperation of the optical line terminal (OLT) in the downstream direction to queue frames. To improve the energy-saving in the doze mode, a new two-stage mechanism is introduced that the doze sleep duration is extended for longer time with acceptable quality-of-services (QoS) metrics when ONU is idle in the current cycle. By this way the ONU enters the doze mode even in the high load traffic; moreover, the green dynamic bandwidth allocation (GBA) is proposed to calculate the doze sleep duration based on the ONU queue state and incoming traffic ratio. Simulation results show that the proposed mechanism significantly improves the energy-saving 74% and 54% when traffic load is from the light load to the high load in different traffic situations, and also promises the QoS performance.

  7. Adaptive SLM-based compensation of intermodal interference in few-mode optical fibers

    NASA Astrophysics Data System (ADS)

    Lyubopytov, Vladimir S.; Bagmanov, Valeriy K.; Sultanov, Albert K.

    2014-09-01

    Transmission of optical beams with phase front vorticity through relevant distances in optical fibers poses a problem of time-dependent intermodal interference with random complex coefficients. In this paper we propose a method for compensation of interference between LP-modes, propagating through the optical fiber. To implement optical-domain modal filtering, reconfigurable diffractive optical element matched with particular modes is considered. Such an element may be encoded as phase-only hologram by means of SLM. With this approach modes can be separated spatially in the compensating diffractive element far field and handled independently with corresponding complex coefficients. Efficiency of the proposed method is confirmed by computer simulation results.

  8. Integrated optical mode field adapters for multimode 40-Gbit/s optical ethernet systems

    NASA Astrophysics Data System (ADS)

    Fischer, U. H. P.; Windel, Th.; Hemrungrote, S.

    2006-04-01

    In this paper we present the fabrication of optical mode field adaptors at the end of single mode and multimode optical fibers, which act as a micro lens, for fiber optical communications devices, capable up to 40Gbit/s data. The mode field adaptors were used to focus the optical output field (1550nm wavelength) of the fiber to receiver and transmitter OEICs. Based on the measurement of a singlemode fiber in accordance with ITU Recommendation G.652 the optical mode fields are measured in a new set-up, which is demonstrated and discussed in comparison to conventional methods. The work was performed in cooperation with the Heinrich-Hertz-Institute in Berlin.

  9. Multimode fibers with integrated optical mode field adapters for 40Gbit/s optical ethernet systems

    NASA Astrophysics Data System (ADS)

    Fischer, U. H. P.; Windel, Th.

    2006-02-01

    In this paper we present the fabrication of optical mode field adaptors at the end of single mode and multimode optical fibers, which act as a micro lens, for fiber optical communications devices, capable up to 40Gbit/s data. The mode field adaptors were used to focus the optical output field (1550nm wavelength) of the fiber to receiver and transmitter OEICs. Based on the measurement of a singlemode fiber in accordance with ITU Recommendation G.652 the optical mode fields are measured in a new set-up, which is demonstrated and discussed in comparison to conventional methods. The work was performed in cooperation with the Heinrich-Hertz-Institute in Berlin.

  10. Complexity reduction in the H.264/AVC using highly adaptive fast mode decision based on macroblock motion activity

    NASA Astrophysics Data System (ADS)

    Abdellah, Skoudarli; Mokhtar, Nibouche; Amina, Serir

    2015-11-01

    The H.264/AVC video coding standard is used in a wide range of applications from video conferencing to high-definition television according to its high compression efficiency. This efficiency is mainly acquired from the newly allowed prediction schemes including variable block modes. However, these schemes require a high complexity to select the optimal mode. Consequently, complexity reduction in the H.264/AVC encoder has recently become a very challenging task in the video compression domain, especially when implementing the encoder in real-time applications. Fast mode decision algorithms play an important role in reducing the overall complexity of the encoder. In this paper, we propose an adaptive fast intermode algorithm based on motion activity, temporal stationarity, and spatial homogeneity. This algorithm predicts the motion activity of the current macroblock from its neighboring blocks and identifies temporal stationary regions and spatially homogeneous regions using adaptive threshold values based on content video features. Extensive experimental work has been done in high profile, and results show that the proposed source-coding algorithm effectively reduces the computational complexity by 53.18% on average compared with the reference software encoder, while maintaining the high-coding efficiency of H.264/AVC by incurring only 0.097 dB in total peak signal-to-noise ratio and 0.228% increment on the total bit rate.

  11. An adaptively fast ensemble empirical mode decomposition method and its applications to rolling element bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Xue, Xiaoming; Zhou, Jianzhong; Xu, Yanhe; Zhu, Wenlong; Li, Chaoshun

    2015-10-01

    Ensemble empirical mode decomposition (EEMD) represents a significant improvement over the original empirical mode decomposition (EMD) method for eliminating the mode mixing problem. However, the added white noises generate some tough problems including the high computational cost, the determination of the two critical parameters (the amplitude of the added white noise and the number of ensemble trials), and the contamination of the residue noise in the signal reconstruction. To solve these problems, an adaptively fast EEMD (AFEEMD) method combined with complementary EEMD (CEEMD) is proposed in this paper. In the proposed method, the two critical parameters are respectively fixed as 0.01 times standard deviation of the original signal and two ensemble trials. Instead, the upper frequency limit of the added white noise is the key parameter which needs to be prescribed beforehand. Unlike the original EEMD method, only two high-frequency white noises are added to the signal to be investigated with anti-phase in AFEEMD. Furthermore, an index termed relative root-mean-square error is employed for the adaptive selection of the proper upper frequency limit of the added white noises. Simulation test and vibration signals based fault diagnosis of rolling element bearing under different fault types are utilized to demonstrate the feasibility and effectiveness of the proposed method. The analysis results indicate that the AFEEMD method represents a sound improvement over the original EEMD method, and has strong practicability.

  12. Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations.

    PubMed

    Trotter, Meredith V; Weissman, Daniel B; Peterson, Grant I; Peck, Kayla M; Masel, Joanna

    2014-12-01

    The existence of complex (multiple-step) genetic adaptations that are "irreducible" (i.e., all partial combinations are less fit than the original genotype) is one of the longest standing problems in evolutionary biology. In standard genetics parlance, these adaptations require the crossing of a wide adaptive valley of deleterious intermediate stages. Here, we demonstrate, using a simple model, that evolution can cross wide valleys to produce "irreducibly complex" adaptations by making use of previously cryptic mutations. When revealed by an evolutionary capacitor, previously cryptic mutants have higher initial frequencies than do new mutations, bringing them closer to a valley-crossing saddle in allele frequency space. Moreover, simple combinatorics implies an enormous number of candidate combinations exist within available cryptic genetic variation. We model the dynamics of crossing of a wide adaptive valley after a capacitance event using both numerical simulations and analytical approximations. Although individual valley crossing events become less likely as valleys widen, by taking the combinatorics of genotype space into account, we see that revealing cryptic variation can cause the frequent evolution of complex adaptations.

  13. Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations.

    PubMed

    Trotter, Meredith V; Weissman, Daniel B; Peterson, Grant I; Peck, Kayla M; Masel, Joanna

    2014-12-01

    The existence of complex (multiple-step) genetic adaptations that are "irreducible" (i.e., all partial combinations are less fit than the original genotype) is one of the longest standing problems in evolutionary biology. In standard genetics parlance, these adaptations require the crossing of a wide adaptive valley of deleterious intermediate stages. Here, we demonstrate, using a simple model, that evolution can cross wide valleys to produce "irreducibly complex" adaptations by making use of previously cryptic mutations. When revealed by an evolutionary capacitor, previously cryptic mutants have higher initial frequencies than do new mutations, bringing them closer to a valley-crossing saddle in allele frequency space. Moreover, simple combinatorics implies an enormous number of candidate combinations exist within available cryptic genetic variation. We model the dynamics of crossing of a wide adaptive valley after a capacitance event using both numerical simulations and analytical approximations. Although individual valley crossing events become less likely as valleys widen, by taking the combinatorics of genotype space into account, we see that revealing cryptic variation can cause the frequent evolution of complex adaptations. PMID:25178652

  14. Role tuning between caregiver and care receiver during discharge transition: an illustration of role function mode in Roy's adaptation theory.

    PubMed

    Shyu, Y I

    2000-10-01

    The purpose of this study was to develop a conceptual framework to explain the interaction between the caregiver and the care receiver during the discharge transition. Data from face-to-face interviews with 12 care receivers and 16 caregivers were subjected to constant comparative analysis. Findings revealed that role tuning was the process used by caregivers and care receivers to achieve a harmonious pattern of caregiving and care receiving during the transition from hospital to home. This empirical finding can illustrate the concept of role function mode in the Roy adaptation theory and sensitize healthcare providers to the needs of the families during the discharge transition.

  15. Integrated Flight/Structural Mode Control for Very Flexible Aircraft Using L1 Adaptive Output Feedback Controller

    NASA Technical Reports Server (NTRS)

    Che, Jiaxing; Cao, Chengyu; Gregory, Irene M.

    2012-01-01

    This paper explores application of adaptive control architecture to a light, high-aspect ratio, flexible aircraft configuration that exhibits strong rigid body/flexible mode coupling. Specifically, an L(sub 1) adaptive output feedback controller is developed for a semi-span wind tunnel model capable of motion. The wind tunnel mount allows the semi-span model to translate vertically and pitch at the wing root, resulting in better simulation of an aircraft s rigid body motion. The control objective is to design a pitch control with altitude hold while suppressing body freedom flutter. The controller is an output feedback nominal controller (LQG) augmented by an L(sub 1) adaptive loop. A modification to the L(sub 1) output feedback is proposed to make it more suitable for flexible structures. The new control law relaxes the required bounds on the unmatched uncertainty and allows dependence on the state as well as time, i.e. a more general unmatched nonlinearity. The paper presents controller development and simulated performance responses. Simulation is conducted by using full state flexible wing models derived from test data at 10 different dynamic pressure conditions. An L(sub 1) adaptive output feedback controller is designed for a single test point and is then applied to all the test cases. The simulation results show that the L(sub 1) augmented controller can stabilize and meet the performance requirements for all 10 test conditions ranging from 30 psf to 130 psf dynamic pressure.

  16. Adaptive Zero-Coefficient Distribution Scan for Inter Block Mode Coding of H.264/AVC

    NASA Astrophysics Data System (ADS)

    Wang, Jing-Xin; Su, Alvin W. Y.

    Scanning quantized transform coefficients is an important tool for video coding. For example, the MPEG-4 video coder adopts three different scans to get better coding efficiency. This paper proposes an adaptive zero-coefficient distribution scan in inter block coding. The proposed method attempts to improve H.264/AVC zero coefficient coding by modifying the scan operation. Since the zero-coefficient distribution is changed by the proposed scan method, new VLC tables for syntax elements used in context-adaptive variable length coding (CAVLC) are also provided. The savings in bit-rate range from 2.2% to 5.1% in the high bit-rate cases, depending on different test sequences.

  17. An Adaptive Particle Filtering Approach to Tracking Modes in a Varying Shallow Ocean Environment

    SciTech Connect

    Candy, J V

    2011-03-22

    The shallow ocean environment is ever changing mostly due to temperature variations in its upper layers (< 100m) directly affecting sound propagation throughout. The need to develop processors that are capable of tracking these changes implies a stochastic as well as an 'adaptive' design. The stochastic requirement follows directly from the multitude of variations created by uncertain parameters and noise. Some work has been accomplished in this area, but the stochastic nature was constrained to Gaussian uncertainties. It has been clear for a long time that this constraint was not particularly realistic leading a Bayesian approach that enables the representation of any uncertainty distribution. Sequential Bayesian techniques enable a class of processors capable of performing in an uncertain, nonstationary (varying statistics), non-Gaussian, variable shallow ocean. In this paper adaptive processors providing enhanced signals for acoustic hydrophonemeasurements on a vertical array as well as enhanced modal function estimates are developed. Synthetic data is provided to demonstrate that this approach is viable.

  18. Physics in water slides

    NASA Astrophysics Data System (ADS)

    Thomazo, Jean-Baptiste; Reyssat, Etienne; Fermigier, Marc

    2015-11-01

    Water slides are body-size inclined pipes fed with water to improve sliding. Water is allowed to freely flow down the slide. It forms a lubrication film that reduces friction between the slide and the body, allowing sliders to travel down at high speeds. We present the results of an experimental study on a model water slide at the scale of the laboratory. We analyze the sliding velocities of cylindrical objects of various masses and sizes sliding down an inclined gutter fed with a controlled flux of water. In the range of parameters that we have studied, we show that the speed of the model sliders is faster than the flow of the environing water. We propose a minimal model to account for the observed sliding velocities measured in our experiments. The sliding velocity is set by a balance of the apparent weight with inertial drag or viscous friction in the lubrication film under the slider. Other resisting mechanisms will also be discussed.

  19. Mailing microscope slides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many insects feed agriculturally important crops, trees, and ornamental plants and cause millions of dollars of damage annually. Identification for some of these require the preparation of a microscope slide for examination. There are times when a microscope slide may need to be sent away to a speci...

  20. Switching among pulse-generation regimes in passively mode-locked fibre laser by adaptive filtering

    NASA Astrophysics Data System (ADS)

    Peng, Junsong; Boscolo, Sonia

    2016-04-01

    We show both numerically and experimentally that dispersion management can be realized by manipulating the dispersion of a filter in a passively mode-locked fibre laser. A programmable filter the dispersion of which can be software configured is employed in the laser. Solitons, stretched-pulses, and dissipative solitons can be targeted reliably by controlling the filter transmission function only, while the length of fibres is fixed in the laser. This technique shows remarkable advantages in controlling operation regimes in ultrafast fibre lasers, in contrast to the traditional technique in which dispersion management is achieved by optimizing the relative length of fibres with opposite-sign dispersion. Our versatile ultrafast fibre laser will be attractive for applications requiring different pulse profiles such as in optical signal processing and optical communications.

  1. Adaptive dual-layer super-twisting control and observation

    NASA Astrophysics Data System (ADS)

    Edwards, Christopher; Shtessel, Yuri

    2016-09-01

    In this paper, a super-twisting-like structure with adaptive gains is proposed. The structure is parameterised by two scalar gains, both of which adapt, and by an additional time-varying term. The magnitudes of the adaptive terms are allowed to both increase and decrease as appropriate so that they are as small as possible, in the sense that they do not unnecessarily over-bound the uncertainty, and yet are large enough to sustain a sliding motion. In the paper, a new time varying gain is incorporated into the traditional super-twisting architecture. The proposed adaption law has a dual-layer structure which is formally analyzed using Lyapunov techniques. The additional term has the effect of simplifying the stability analysis whilst guaranteeing the second-order sliding mode properties of the traditional super-twisting scheme.

  2. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  3. Adaptive neuro-fuzzy inference system for acoustic analysis of 4-channel phonocardiograms using empirical mode decomposition.

    PubMed

    Becerra, Miguel A; Orrego, Diana A; Delgado-Trejos, Edilson

    2013-01-01

    The heart's mechanical activity can be appraised by auscultation recordings, taken from the 4-Standard Auscultation Areas (4-SAA), one for each cardiac valve, as there are invisible murmurs when a single area is examined. This paper presents an effective approach for cardiac murmur detection based on adaptive neuro-fuzzy inference systems (ANFIS) over acoustic representations derived from Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) of 4-channel phonocardiograms (4-PCG). The 4-PCG database belongs to the National University of Colombia. Mel-Frequency Cepstral Coefficients (MFCC) and statistical moments of HHT were estimated on the combination of different intrinsic mode functions (IMFs). A fuzzy-rough feature selection (FRFS) was applied in order to reduce complexity. An ANFIS network was implemented on the feature space, randomly initialized, adjusted using heuristic rules and trained using a hybrid learning algorithm made up by least squares and gradient descent. Global classification for 4-SAA was around 98.9% with satisfactory sensitivity and specificity, using a 50-fold cross-validation procedure (70/30 split). The representation capability of the EMD technique applied to 4-PCG and the neuro-fuzzy inference of acoustic features offered a high performance to detect cardiac murmurs. PMID:24109851

  4. Adaptive neuro-fuzzy inference system for acoustic analysis of 4-channel phonocardiograms using empirical mode decomposition.

    PubMed

    Becerra, Miguel A; Orrego, Diana A; Delgado-Trejos, Edilson

    2013-01-01

    The heart's mechanical activity can be appraised by auscultation recordings, taken from the 4-Standard Auscultation Areas (4-SAA), one for each cardiac valve, as there are invisible murmurs when a single area is examined. This paper presents an effective approach for cardiac murmur detection based on adaptive neuro-fuzzy inference systems (ANFIS) over acoustic representations derived from Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) of 4-channel phonocardiograms (4-PCG). The 4-PCG database belongs to the National University of Colombia. Mel-Frequency Cepstral Coefficients (MFCC) and statistical moments of HHT were estimated on the combination of different intrinsic mode functions (IMFs). A fuzzy-rough feature selection (FRFS) was applied in order to reduce complexity. An ANFIS network was implemented on the feature space, randomly initialized, adjusted using heuristic rules and trained using a hybrid learning algorithm made up by least squares and gradient descent. Global classification for 4-SAA was around 98.9% with satisfactory sensitivity and specificity, using a 50-fold cross-validation procedure (70/30 split). The representation capability of the EMD technique applied to 4-PCG and the neuro-fuzzy inference of acoustic features offered a high performance to detect cardiac murmurs.

  5. Behavioural variation in 172 small-scale societies indicates that social learning is the main mode of human adaptation

    PubMed Central

    Mathew, Sarah; Perreault, Charles

    2015-01-01

    The behavioural variation among human societies is vast and unmatched in the animal world. It is unclear whether this variation is due to variation in the ecological environment or to differences in cultural traditions. Underlying this debate is a more fundamental question: is the richness of humans’ behavioural repertoire due to non-cultural mechanisms, such as causal reasoning, inventiveness, reaction norms, trial-and-error learning and evoked culture, or is it due to the population-level dynamics of cultural transmission? Here, we measure the relative contribution of environment and cultural history in explaining the behavioural variation of 172 Native American tribes at the time of European contact. We find that the effect of cultural history is typically larger than that of environment. Behaviours also persist over millennia within cultural lineages. This indicates that human behaviour is not predominantly determined by single-generation adaptive responses, contra theories that emphasize non-cultural mechanisms as determinants of human behaviour. Rather, the main mode of human adaptation is social learning mechanisms that operate over multiple generations. PMID:26085589

  6. Transmission mode adaptive beamforming for planar phased arrays and its application to 3D ultrasonic transcranial imaging

    NASA Astrophysics Data System (ADS)

    Shapoori, Kiyanoosh; Sadler, Jeffrey; Wydra, Adrian; Malyarenko, Eugene; Sinclair, Anthony; Maev, Roman G.

    2013-03-01

    A new adaptive beamforming method for accurately focusing ultrasound behind highly scattering layers of human skull and its application to 3D transcranial imaging via small-aperture planar phased arrays are reported. Due to its undulating, inhomogeneous, porous, and highly attenuative structure, human skull bone severely distorts ultrasonic beams produced by conventional focusing methods in both imaging and therapeutic applications. Strong acoustical mismatch between the skull and brain tissues, in addition to the skull's undulating topology across the active area of a planar ultrasonic probe, could cause multiple reflections and unpredictable refraction during beamforming and imaging processes. Such effects could significantly deflect the probe's beam from the intended focal point. Presented here is a theoretical basis and simulation results of an adaptive beamforming method that compensates for the latter effects in transmission mode, accompanied by experimental verification. The probe is a custom-designed 2 MHz, 256-element matrix array with 0.45 mm element size and 0.1mm kerf. Through its small footprint, it is possible to accurately measure the profile of the skull segment in contact with the probe and feed the results into our ray tracing program. The latter calculates the new time delay patterns adapted to the geometrical and acoustical properties of the skull phantom segment in contact with the probe. The time delay patterns correct for the refraction at the skull-brain boundary and bring the distorted beam back to its intended focus. The algorithms were implemented on the ultrasound open-platform ULA-OP (developed at the University of Florence).

  7. Slides, Swings and Science.

    ERIC Educational Resources Information Center

    Dreyer, Kay Jardon; Bryte, Janelle

    1990-01-01

    Described are eight science activities that may take place on a school playground using a parachute, balls, swings, slides, and a balance beam. Procedures and questions for each activity are included. (CW)

  8. Water-slide alopecia.

    PubMed

    Adams, B B

    2001-05-01

    A 29-year-old male presented with large, symmetric, alopecic patches on the posterolateral aspects of both calves. A detailed history revealed that the individual had recently attended a water-slide amusement park. Repeated frictional trauma between the legs and the slide resulted in these alopecic patches. Friction, especially when encountered during sports-related and recreational activities, should be included in the differential diagnosis of well-defined alopecic patches.

  9. Prototype Slide Stainer

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The prototype slide staining system capable of performing both one-component Wright's staining of blood smears and eight-step Gram staining of heat fixed slides of microorganisms is described. Attention was given to liquid containment, waste handling, absence of contamination from previous staining, and stability of the staining reagents. The unit is self-contained, capable of independent operation under one- or zero-g conditions, and compatible with Skylab A.

  10. Fundamentals of the Slide Library.

    ERIC Educational Resources Information Center

    Boerner, Susan Zee

    This paper is an introduction to the fundamentals of the art (including architecture) slide library, with some emphasis on basic procedures of the science slide library. Information in this paper is particularly relevant to the college, university, and museum slide library. Topics addressed include: (1) history of the slide library; (2) duties of…

  11. Selected Landscape Plants. Slide Script.

    ERIC Educational Resources Information Center

    McCann, Kevin

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with commercially important woody ornamental landscape plants. Included in the script are narrations for use with a total of 253 slides illustrating 92 different plants. Several slides are used to illustrate each plant: besides a view of…

  12. Ornamental Landscape Grasses. Slide Script.

    ERIC Educational Resources Information Center

    Still, Steven M.; Adams, Denise W.

    This slide script to accompany the slide series, Ornamental Landscape Grasses, contains photographs of the 167 slides and accompanying narrative text intended for use in the study and identification of commercially important ornamental grasses and grasslike plants. Narrative text is provided for slides of 62 different perennial and annual species…

  13. Numerical Modelling of Tsunami Generated by Deformable Submarine Slides: Parameterisation of Slide Dynamics for Coupling to Tsunami Propagation Model

    NASA Astrophysics Data System (ADS)

    Smith, R. C.; Collins, G. S.; Hill, J.; Piggott, M. D.; Mouradian, S. L.

    2015-12-01

    Numerical modelling informs risk assessment of tsunami generated by submarine slides; however, for large-scale slides modelling can be complex and computationally challenging. Many previous numerical studies have approximated slides as rigid blocks that moved according to prescribed motion. However, wave characteristics are strongly dependent on the motion of the slide and previous work has recommended that more accurate representation of slide dynamics is needed. We have used the finite-element, adaptive-mesh CFD model Fluidity, to perform multi-material simulations of deformable submarine slide-generated waves at real world scales for a 2D scenario in the Gulf of Mexico. Our high-resolution approach represents slide dynamics with good accuracy, compared to other numerical simulations of this scenario, but precludes tracking of wave propagation over large distances. To enable efficient modelling of further propagation of the waves, we investigate an approach to extract information about the slide evolution from our multi-material simulations in order to drive a single-layer wave propagation model, also using Fluidity, which is much less computationally expensive. The extracted submarine slide geometry and position as a function of time are parameterised using simple polynomial functions. The polynomial functions are used to inform a prescribed velocity boundary condition in a single-layer simulation, mimicking the effect the submarine slide motion has on the water column. The approach is verified by successful comparison of wave generation in the single-layer model with that recorded in the multi-material, multi-layer simulations. We then extend this approach to 3D for further validation of this methodology (using the Gulf of Mexico scenario proposed by Horrillo et al., 2013) and to consider the effect of lateral spreading. This methodology is then used to simulate a series of hypothetical submarine slide events in the Arctic Ocean (based on evidence of historic

  14. Influence of fluid pore pressure on chaotic sliding of tectonic faults

    NASA Astrophysics Data System (ADS)

    Turuntaev, Sergey; Riga, Vasily

    2016-04-01

    The problem of permeable rock pore pressure variation influence on tectonic fault sliding and generation of seismic events was studied in the scope of rate-and-state friction model with two-parametric friction law. The coupled problem of pore-elasticity and fault sliding governed by two-parametric rate-and-state equation was studied numerically. The main modes of the fault sliding were found, and transitions from one mode to another due to the fluid pore pressure change were observed. The conditions for transition from stable to chaotic sliding (considered as an analog of seismic event generations) were found. It was shown, that chaotic sliding has features of Poincare stability and can be characterized by finite values of correlation integral and embedding dimension, which depend on critical shear stresses. Change of the effective critical stresses by the pore pressure variation will result in change of the tectonic fault sliding mode and consequently change of the seismic regime.

  15. In-Flight Suppression of a De-Stabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    NASA Technical Reports Server (NTRS)

    Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb

    2015-01-01

    Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.

  16. Slowing the Summer Slide

    ERIC Educational Resources Information Center

    Smith, Lorna

    2012-01-01

    Research shows that summer slide--the loss of learning over the summer break--is a huge contributor to the achievement gap between low-income students and their higher-income peers. In fact, some researchers have concluded that two-thirds of the 9th-grade reading achievement gap can be explained by unequal access to summer learning opportunities…

  17. Reversing the Slide

    ERIC Educational Resources Information Center

    Gallagher, Michael

    2005-01-01

    The Government is embarking on a grand market-based vision for the sector just at the moment when university enrolments will begin a long and perhaps inexorable slide. And according to Michael Gallagher, higher education is becoming a less attractive investment for the private sector even as the Government is pushing the sector towards ever higher…

  18. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    PubMed

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network. PMID:26832033

  19. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    PubMed

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.

  20. Slide system for machine tools

    DOEpatents

    Douglass, Spivey S.; Green, Walter L.

    1982-01-01

    The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.

  1. Slide system for machine tools

    DOEpatents

    Douglass, S.S.; Green, W.L.

    1980-06-12

    The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.

  2. Reconstitution of flagellar sliding.

    PubMed

    Alper, Joshua; Geyer, Veikko; Mukundan, Vikram; Howard, Jonathon

    2013-01-01

    The motile structure within eukaryotic cilia and flagella is the axoneme. This structure typically consists of nine doublet microtubules arranged around a pair of singlet microtubules. The axoneme contains more than 650 different proteins that have structural, force-generating, and regulatory functions. Early studies on sea urchin sperm identified the force-generating components, the dynein motors. It was shown that dynein can slide adjacent doublet microtubules in the presence of ATP. How this sliding gives rise to the beating of the axoneme is still unknown. Reconstitution assays provide a clean system, free from cellular effects, to elucidate the underlying beating mechanisms. These assays can be used to identify the components that are both necessary and sufficient for the generation of flagellar beating. PMID:23498749

  3. Reconstitution of flagellar sliding.

    PubMed

    Alper, Joshua; Geyer, Veikko; Mukundan, Vikram; Howard, Jonathon

    2013-01-01

    The motile structure within eukaryotic cilia and flagella is the axoneme. This structure typically consists of nine doublet microtubules arranged around a pair of singlet microtubules. The axoneme contains more than 650 different proteins that have structural, force-generating, and regulatory functions. Early studies on sea urchin sperm identified the force-generating components, the dynein motors. It was shown that dynein can slide adjacent doublet microtubules in the presence of ATP. How this sliding gives rise to the beating of the axoneme is still unknown. Reconstitution assays provide a clean system, free from cellular effects, to elucidate the underlying beating mechanisms. These assays can be used to identify the components that are both necessary and sufficient for the generation of flagellar beating.

  4. Microtubule sliding in reactivated flagella.

    PubMed

    Takahashi, K; Shingyoji, C; Kamimura, S

    1982-01-01

    Recent experimental studies of microtubule sliding in demembranated sea urchin sperm flagella are described. A local iontophoretic application of ATP to a Triton-extracted flagellum elicits a local bending response whose form is in exact conformity with the predictions of the sliding microtubule model. Cinematographic analysis of the microtubule sliding initiated by treating fragments of demembranated flagella with trypsin in the presence of ATP reveals that the speed of sliding is almost constant. This implies that the speed does not depend on the number of dynein arms participating in the generation of sliding force. The distribution of apparent sliding velocities indicates that there is no difference in sliding velocity among the doublets. The sliding velocity depends on MgATP concentration in a manner consistent with Michaelis-Menten kinetics. The sliding velocity of doublets in trypsin-treated axonemes is close to the maximum velocity of relative sliding taking place between adjacent doublets in beating flagella reactivated at the same MgATP concentration.

  5. Comparing approaches for numerical modelling of tsunami generation by deformable submarine slides

    NASA Astrophysics Data System (ADS)

    Smith, Rebecca C.; Hill, Jon; Collins, Gareth S.; Piggott, Matthew D.; Kramer, Stephan C.; Parkinson, Samuel D.; Wilson, Cian

    2016-04-01

    Tsunami generated by submarine slides are arguably an under-considered risk in comparison to earthquake-generated tsunami. Numerical simulations of submarine slide-generated waves can be used to identify the important factors in determining wave characteristics. Here we use Fluidity, an open source finite element code, to simulate waves generated by deformable submarine slides. Fluidity uses flexible unstructured meshes combined with adaptivity which alters the mesh topology and resolution based on the simulation state, focussing or reducing resolution, when and where it is required. Fluidity also allows a number of different numerical approaches to be taken to simulate submarine slide deformation, free-surface representation, and wave generation within the same numerical framework. In this work we use a multi-material approach, considering either two materials (slide and water with a free surface) or three materials (slide, water and air), as well as a sediment model (sediment, water and free surface) approach. In all cases the slide is treated as a viscous fluid. Our results are shown to be consistent with laboratory experiments using a deformable submarine slide, and demonstrate good agreement when compared with other numerical models. The three different approaches for simulating submarine slide dynamics and tsunami wave generation produce similar waveforms and slide deformation geometries. However, each has its own merits depending on the application. Mesh adaptivity is shown to be able to reduce the computational cost without compromising the accuracy of results.

  6. Appearance Normalization of Histology Slides

    NASA Astrophysics Data System (ADS)

    Niethammer, Marc; Borland, David; Marron, J. S.; Woosley, John; Thomas, Nancy E.

    This paper presents a method for automatic color and intensity normalization of digitized histology slides stained with two different agents. In comparison to previous approaches, prior information on the stain vectors is used in the estimation process, resulting in improved stability of the estimates. Due to the prevalence of hematoxylin and eosin staining for histology slides, the proposed method has significant practical utility. In particular, it can be used as a first step to standardize appearances across slides, that is very effective at countering effects due to differing stain amounts and protocols, and to slide fading. The approach is validated using synthetic experiments and 13 real datasets.

  7. Energy-efficient orthogonal frequency division multiplexing-based passive optical network based on adaptive sleep-mode control and dynamic bandwidth allocation

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun

    2016-02-01

    We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.

  8. In-Flight Suppression of an Unstable F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  9. In-Flight Suppression of a Destabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    NASA Technical Reports Server (NTRS)

    Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  10. Bulk filling of Class II cavities with a dual-cure composite: Effect of curing mode and enamel etching on marginal adaptation

    PubMed Central

    Bortolotto, Tissiana; Roig, Miguel; Krejci, Ivo

    2014-01-01

    Objectives: This study attempted to find a simple adhesive restorative technique for class I and II cavities on posterior teeth. Study Design: The tested materials were a self-etching adhesive (Parabond, Coltène/Whaledent) and a dual-cure composite (Paracore, Coltène/Whaledent) used in bulk to restore the cavities. Class II MO cavities were performed and assigned to 4 groups depending on the orthophosphoric acid (H3PO4) conditioning of enamel and polymerization method used (chemical or dual). Specimens were subjected to quantitative marginal analysis before and after thermo-mechanical loading. Results: Higher percentages of marginal adaptation at the total margin length, both before and after thermo-mechanical loading, were found in groups in which enamel was etched with phosphoric acid, without significant differences between the chemically and dual-cured modes. The restorations performance was similar on enamel and dentin, obtaining low results of adaptation on occlusal enamel in the groups without enamel etching, the lowest scores were on cervical dentin in the group with no ortophosphoric acid and self-cured. Conclusions: A dual-cure composite applied in bulk on acid etched enamel obtained acceptable marginal adaptation results, and may be an alternative technique for the restoration of class II cavities. Key words:Dual-cure composite, bulk technique, class II restoration, selective enamel etching, marginal adaptation. PMID:25674316

  11. Learner Characteristic Based Learning Effort Curve Mode: The Core Mechanism on Developing Personalized Adaptive E-Learning Platform

    ERIC Educational Resources Information Center

    Hsu, Pi-Shan

    2012-01-01

    This study aims to develop the core mechanism for realizing the development of personalized adaptive e-learning platform, which is based on the previous learning effort curve research and takes into account the learner characteristics of learning style and self-efficacy. 125 university students from Taiwan are classified into 16 groups according…

  12. Programmed Instruction with Microfiche: Intoduction to the Slide Rule.

    ERIC Educational Resources Information Center

    Wachtel, L. W.

    The use of microfiche as a means of programed self-instruction was examined in this study. Lessons adapted from a one-hour lecture on the slide rule were typed in large print in order to allow easy reading at distances normally used with microfiche readers. The 58 pages of the course were reproduced on microfilm, strips of which were then inserted…

  13. Using Scrap Slides for Art.

    ERIC Educational Resources Information Center

    Hanlon, Heather

    1979-01-01

    Using scrap slides for an art lesson can be an exciting, creative experience for people of all ages, and many techniques are applicable in both primary and secondary grades. Scrap slides are an inexpensive means to unique, original, and stimulating discoveries about film as an art form. (Author)

  14. Appearance normalization of histology slides.

    PubMed

    Vicory, Jared; Couture, Heather D; Thomas, Nancy E; Borland, David; Marron, J S; Woosley, John; Niethammer, Marc

    2015-07-01

    This paper presents a method for automatic color and intensity normalization of digitized histology slides stained with two different agents. In comparison to previous approaches, prior information on the stain vectors is used in the plane estimation process, resulting in improved stability of the estimates. Due to the prevalence of hematoxylin and eosin staining for histology slides, the proposed method has significant practical utility. In particular, it can be used as a first step to standardize appearance across slides and is effective at countering effects due to differing stain amounts and protocols and counteracting slide fading. The approach is validated against non-prior plane-fitting using synthetic experiments and 13 real datasets. Results of application of the method to adjustment of faded slides are given, and the effectiveness of the method in aiding statistical classification is shown.

  15. Sliding-Ring Catenanes.

    PubMed

    Fernando, Isurika R; Frasconi, Marco; Wu, Yilei; Liu, Wei-Guang; Wasielewski, Michael R; Goddard, William A; Stoddart, J Fraser

    2016-08-17

    Template-directed protocols provide a routine approach to the synthesis of mechanically interlocked molecules (MIMs), in which the mechanical bonds are stabilized by a wide variety of weak interactions. In this Article, we describe a strategy for the preparation of neutral [2]catenanes with sliding interlocked electron-rich rings, starting from two degenerate donor-acceptor [2]catenanes, consisting of a tetracationic cyclobis(paraquat-p-phenylene) cyclophane (CBPQT(4+)) and crown ethers containing either (i) hydroquinone (HQ) or (ii) 1,5-dioxynaphthalene (DNP) recognition units and carrying out four-electron reductions of the cyclophane components to their neutral forms. The donor-acceptor interactions between the CBPQT(4+) ring and both HQ and DNP units present in the crown ethers that stabilize the [2]catenanes are weakened upon reduction of the cyclophane components to their radical cationic states and are all but absent in their fully reduced states. Characterization in solution performed by UV-vis, EPR, and NMR spectroscopic probes reveals that changes in the redox properties of the [2]catenanes result in a substantial decrease of the energy barriers for the circumrotation and pirouetting motions of the interlocked rings, which glide freely through one another in the neutral states. The solid-state structures of the fully reduced catenanes reveal profound changes in the relative dispositions of the interlocked rings, with the glycol chains of the crown ethers residing in the cavities of the neutral CBPQT(0) rings. Quantum mechanical investigations of the energy levels associated with the four different oxidation states of the catenanes support this interpretation. Catenanes and rotaxanes with sliding rings are expected to display unique properties. PMID:27398609

  16. Optimal sliding guidance algorithm for Mars powered descent phase

    NASA Astrophysics Data System (ADS)

    Wibben, Daniel R.; Furfaro, Roberto

    2016-02-01

    Landing on large planetary bodies (e.g. Mars) with pinpoint accuracy presents a set of new challenges that must be addressed. One such challenge is the development of new guidance algorithms that exhibit a higher degree of robustness and flexibility. In this paper, the Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) optimal sliding guidance (OSG) scheme is applied to the Mars powered descent phase. This guidance algorithm has been specifically designed to combine techniques from both optimal and sliding control theories to generate an acceleration command based purely on the current estimated spacecraft state and desired final target state. Consequently, OSG yields closed-loop trajectories that do not need a reference trajectory. The guidance algorithm has its roots in the generalized ZEM/ZEV feedback guidance and its mathematical equations are naturally derived by defining a non-linear sliding surface as a function of the terms Zero-Effort-Miss and Zero-Effort-Velocity. With the addition of the sliding mode and using Lyapunov theory for non-autonomous systems, one can formally prove that the developed OSG law is globally finite-time stable to unknown but bounded perturbations. Here, the focus is on comparing the generalized ZEM/ZEV feedback guidance with the OSG law to explicitly demonstrate the benefits of the sliding mode augmentation. Results show that the sliding guidance provides a more robust solution in off-nominal scenarios while providing similar fuel consumption when compared to the non-sliding guidance command. Further, a Monte Carlo analysis is performed to examine the performance of the OSG law under perturbed conditions.

  17. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off

  18. Using the Chombo Adaptive Mesh Refinement Model in Shallow Water Mode to Simulate Interactions of Tropical Cyclone-like Vortices

    NASA Astrophysics Data System (ADS)

    Ferguson, J. O.; Jablonowski, C.; Johansen, H.; McCorquodale, P.; Ullrich, P. A.

    2015-12-01

    Complex multi-scale atmospheric phenomena such as tropical cyclones challenge the coarse uniform grids of convectional climate models. Adaptive mesh refinement (AMR) techniques seek to mitigate these problems by providing sufficiently high-resolution grid patches only over features of interests while limiting the computational burden of requiring such resolutions globally. One such model is the non-hydrostatic, finite-volume Chombo-AMR general circulation model (GCM), which implements refinement in both space and time on a cubed-sphere grid. The 2D shallow-water equations exhibit many of the complexities of 3D GCM dynamical cores and serve as an effective method for testing the dynamical core and the refinement strategies of adaptive atmospheric models. We implement a shallow-water test case consisting of a pair of interacting tropical cyclone-like vortices. Small changes in the initial conditions can lead to a variety of interactions that develop fine-scale spiral band structures and large-scale wave trains. We investigate the accuracy and efficiency of AMR's ability to capture and effectively follow the evolution of the vortices in time. These simulations serve to test the effectiveness of refinement for both static and dynamic grid configurations as well as the sensitivity of the model results to the refinement criteria.

  19. Sliding Motility in Mycobacteria

    PubMed Central

    Martínez, Asunción; Torello, Sandra; Kolter, Roberto

    1999-01-01

    Mycobacteria are nonflagellated gram-positive microorganisms. Previously thought to be nonmotile, we show here that Mycobacterium smegmatis can spread on the surface of growth medium by a sliding mechanism. M. smegmatis spreads as a monolayer of cells which are arranged in pseudofilaments by close cell-to-cell contacts, predominantly along their longitudinal axis. The monolayer moves away from the inoculation point as a unit with only minor rearrangements. No extracellular structures such as pili or fimbriae appear to be involved in this process. The ability to translocate over the surface correlates with the presence of glycopeptidolipids, a mycobacterium-specific class of amphiphilic molecules located in the outermost layer of the cell envelope. We present evidence that surface motility is not restricted to M. smegmatis but is also a property of the slow-growing opportunistic pathogen M. avium. This form of motility could play an important role in surface colonization by mycobacteria in the environment as well as in the host. PMID:10572138

  20. An Airship Slide Rule

    NASA Technical Reports Server (NTRS)

    Weaver, E R; Pickering, S F

    1924-01-01

    This report prepared for the National Advisory Committee for Aeronautics, describes an airship slide rule developed by the Gas-Chemistry Section of the Bureau of Standards, at the request of the Bureau of Engineering of the Navy Department. It is intended primarily to give rapid solutions of a few problems of frequent occurrence in airship navigation, but it can be used to advantage in solving a great variety of problems, involving volumes, lifting powers, temperatures, pressures, altitudes and the purity of the balloon gas. The rule is graduated to read directly in the units actually used in making observations, constants and conversion factors being taken care of by the length and location of the scales. It is thought that with this rule practically any problem likely to arise in this class of work can be readily solved after the user has become familiar with the operation of the rule; and that the solution will, in most cases, be as accurate as the data warrant.

  1. Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides.

    PubMed

    Handwerger, Alexander L; Rempel, Alan W; Skarbek, Rob M; Roering, Joshua J; Hilley, George E

    2016-09-13

    Catastrophic landslides cause billions of dollars in damages and claim thousands of lives annually, whereas slow-moving landslides with negligible inertia dominate sediment transport on many weathered hillslopes. Surprisingly, both failure modes are displayed by nearby landslides (and individual landslides in different years) subjected to almost identical environmental conditions. Such observations have motivated the search for mechanisms that can cause slow-moving landslides to transition via runaway acceleration to catastrophic failure. A similarly diverse range of sliding behavior, including earthquakes and slow-slip events, occurs along tectonic faults. Our understanding of these phenomena has benefitted from mechanical treatments that rely upon key ingredients that are notably absent from previous landslide descriptions. Here, we describe landslide motion using a rate- and state-dependent frictional model that incorporates a nonlocal stress balance to account for the elastic response to gradients in slip. Our idealized, one-dimensional model reproduces both the displacement patterns observed in slow-moving landslides and the acceleration toward failure exhibited by catastrophic events. Catastrophic failure occurs only when the slip surface is characterized by rate-weakening friction and its lateral dimensions exceed a critical nucleation length [Formula: see text] that is shorter for higher effective stresses. However, landslides that are extensive enough to fall within this regime can nevertheless slide slowly for months or years before catastrophic failure. Our results suggest that the diversity of slip behavior observed during landslides can be described with a single model adapted from standard fault mechanics treatments.

  2. Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides.

    PubMed

    Handwerger, Alexander L; Rempel, Alan W; Skarbek, Rob M; Roering, Joshua J; Hilley, George E

    2016-09-13

    Catastrophic landslides cause billions of dollars in damages and claim thousands of lives annually, whereas slow-moving landslides with negligible inertia dominate sediment transport on many weathered hillslopes. Surprisingly, both failure modes are displayed by nearby landslides (and individual landslides in different years) subjected to almost identical environmental conditions. Such observations have motivated the search for mechanisms that can cause slow-moving landslides to transition via runaway acceleration to catastrophic failure. A similarly diverse range of sliding behavior, including earthquakes and slow-slip events, occurs along tectonic faults. Our understanding of these phenomena has benefitted from mechanical treatments that rely upon key ingredients that are notably absent from previous landslide descriptions. Here, we describe landslide motion using a rate- and state-dependent frictional model that incorporates a nonlocal stress balance to account for the elastic response to gradients in slip. Our idealized, one-dimensional model reproduces both the displacement patterns observed in slow-moving landslides and the acceleration toward failure exhibited by catastrophic events. Catastrophic failure occurs only when the slip surface is characterized by rate-weakening friction and its lateral dimensions exceed a critical nucleation length [Formula: see text] that is shorter for higher effective stresses. However, landslides that are extensive enough to fall within this regime can nevertheless slide slowly for months or years before catastrophic failure. Our results suggest that the diversity of slip behavior observed during landslides can be described with a single model adapted from standard fault mechanics treatments. PMID:27573836

  3. Hand ultrasound: a high-fidelity simulation of lung sliding.

    PubMed

    Shokoohi, Hamid; Boniface, Keith

    2012-09-01

    Simulation training has been effectively used to integrate didactic knowledge and technical skills in emergency and critical care medicine. In this article, we introduce a novel model of simulating lung ultrasound and the features of lung sliding and pneumothorax by performing a hand ultrasound. The simulation model involves scanning the palmar aspect of the hand to create normal lung sliding in varying modes of scanning and to mimic ultrasound features of pneumothorax, including "stratosphere/barcode sign" and "lung point." The simple, reproducible, and readily available simulation model we describe demonstrates a high-fidelity simulation surrogate that can be used to rapidly illustrate the signs of normal and abnormal lung sliding at the bedside.

  4. Three dimensional hydrodynamic calculations with adaptive mesh refinement of the evolution of Rayleigh Taylor and Richtmyer Meshkov instabilities in converging geometry: Multi-mode perturbations

    SciTech Connect

    Klein, R.I. |; Bell, J.; Pember, R.; Kelleher, T.

    1993-04-01

    The authors present results for high resolution hydrodynamic calculations of the growth and development of instabilities in shock driven imploding spherical geometries in both 2D and 3D. They solve the Eulerian equations of hydrodynamics with a high order Godunov approach using local adaptive mesh refinement to study the temporal and spatial development of the turbulent mixing layer resulting from both Richtmyer Meshkov and Rayleigh Taylor instabilities. The use of a high resolution Eulerian discretization with adaptive mesh refinement permits them to study the detailed three-dimensional growth of multi-mode perturbations far into the non-linear regime for converging geometries. They discuss convergence properties of the simulations by calculating global properties of the flow. They discuss the time evolution of the turbulent mixing layer and compare its development to a simple theory for a turbulent mix model in spherical geometry based on Plesset`s equation. Their 3D calculations show that the constant found in the planar incompressible experiments of Read and Young`s may not be universal for converging compressible flow. They show the 3D time trace of transitional onset to a mixing state using the temporal evolution of volume rendered imaging. Their preliminary results suggest that the turbulent mixing layer loses memory of its initial perturbations for classical Richtmyer Meshkov and Rayleigh Taylor instabilities in spherically imploding shells. They discuss the time evolution of mixed volume fraction and the role of vorticity in converging 3D flows in enhancing the growth of a turbulent mixing layer.

  5. Stability of sliding Couette-Poiseuille flow in an annulus subject to axisymmetric and asymmetric disturbances

    NASA Astrophysics Data System (ADS)

    Sadeghi, Venus M.; Higgins, Brian G.

    1991-09-01

    The linear stability of pressure-driven flow between a sliding inner cylinder and a stationary outer cylinder is studied numerically. Attention is restricted to axisymmetric disturbances (n=0), and asymmetric disturbances with azimuthal wave numbers n=1, 2, and 3. Neutral stability curves in the Reynolds number versus the wave-number plane are presented as a function of the sliding velocity of the inner cylinder for select values of the radius ratio κ. Overall, the sliding velocity of the inner cylinder has a net stabilizing effect on all modes studied. Results presented for κ=2 show that individual disturbance modes can be completely stabilized by increasing the sliding velocity. In particular, when the sliding velocity is approximately 25% of the maximum Poiseuille velocity, the neutral curve for the n=2 mode vanishes; at 36% of the maximum Poiseuille velocity, the neutral curve for the n=0 mode vanishes, and at 65%, the neutral curve for the n=1 mode vanishes. For a stationary inner cylinder the asymmetric modes are generally the least stable, though this conclusion does depend on the magnitude of κ. As κ→1 the axisymmetric mode is found to be the most dangerous.

  6. A novel adaptive controller for two-degree of freedom polar robot with unknown perturbations

    NASA Astrophysics Data System (ADS)

    Faieghi, Mohammad Reza; Delavari, Hadi; Baleanu, Dumitru

    2012-02-01

    In industrial applications, the performance of robot manipulators is always affected due to the presence of uncertainties and disturbances. This paper proposes a novel adaptive control scheme for robust control of robotic manipulators perturbed by unknown uncertainties and disturbances. First, an active sliding mode controller is designed and a sufficient condition is obtained guarantying reachability of the states to hit the sliding surface in finite time. Then, based on a Lyapunov function candidate an adaptive switching gain is derived which make the controller capable to bring the tracking error to zero without any disturbance exerted upon the stability. By virtue of this controller it can be shown that the controller can track the desired trajectories even in the presence of unknown perturbations. For the problem of determining the control parameters Particle Swarm Optimization (PSO) algorithm has been employed. Our theoretic achievements are verified by numerical simulations.

  7. Prediction of a landslide and analysis of slide motion with reference to the 2004 Ohto slide in Nara, Japan

    NASA Astrophysics Data System (ADS)

    Suwa, Hiroshi; Mizuno, Takashi; Ishii, Takayuki

    2010-12-01

    A slope 120 m wide and 100 m high collapsed including the roadbed of a national highway of Route 168 at Ohto, Nara, Japan on August 10, 2004. The precursory phenomena of abnormal features were found as cracks growing on the road-side slope 7 months before the catastrophe. The movements of the slope were monitored by extensometers. The data of the extensometers showed that creep mode turned from the secondary into the tertiary due to the heavy rainstorm of Typhoon Namtheun. The slide claimed no victims because the highway was closed 43 h before the catastrophe, anticipating a possible hazard when the creep velocity reached 4 mm/2 h. Comparison of rupture time predictions suggested that precision of the prediction using the reciprocal of creep velocity is higher than that by tertiary creep analysis, although leaving a problem that the prediction of the time zone of failure erred on the dangerous side. The slide generated ground vibration which was observed by seismometers deployed around the slide. Duration of the seismic signals corresponded well with the slide motion deciphered from video records. We found the fact that the seismic energy radiation from a landslide consisted of four stages. This had not been reported in any previous study, and may be important in understanding the dynamics of a rock-slide avalanche.

  8. A novel glass slide filing system for pathology slides.

    PubMed

    Tsai, Steve; Kartono, Francisca; Shitabata, Paul K

    2007-07-01

    The availability of a collection of microscope glass slides for review is essential in the study and practice of pathology. A common problem facing many pathologists is the lack of a well-organized filing system. We present a novel system that would be easily accessible, informative, protective, and portable.

  9. Increased sky coverage with optimal correction of tilt and tilt-anisoplanatism modes in laser-guide-star multiconjugate adaptive optics.

    PubMed

    Correia, Carlos; Véran, Jean-Pierre; Herriot, Glen; Ellerbroek, Brent; Wang, Lianqi; Gilles, Luc

    2013-04-01

    Laser-guide-star multiconjugate adaptive optics (MCAO) systems require natural guide stars (NGS) to measure tilt and tilt-anisoplanatism modes. Making optimal use of the limited number of photons coming from such, generally dim, sources is mandatory to obtain reasonable sky coverage, i.e., the probability of finding asterisms amenable to NGS wavefront (WF) sensing for a predefined WF error budget. This paper presents a Strehl-optimal (minimum residual variance) spatiotemporal reconstructor merging principles of modal atmospheric tomography and optimal stochastic control theory. Simulations of NFIRAOS, the first light MCAO system for the thirty-meter telescope, using ~500 typical NGS asterisms, show that the minimum-variance (MV) controller delivers outstanding results, in particular for cases with relatively dim stars (down to magnitude 22 in the H-band), for which low-temporal frame rates (as low as 16 Hz) are required to integrate enough flux. Over all the cases tested ~21 nm rms median improvement in WF error can be achieved with the MV compared to the current baseline, a type-II controller based on a double integrator. This means that for a given level of tolerable residual WF error, the sky coverage is increased by roughly 10%, a quite significant figure. The improvement goes up to more than 20% when compared with a traditional single-integrator controller.

  10. Increased sky coverage with optimal correction of tilt and tilt-anisoplanatism modes in laser-guide-star multiconjugate adaptive optics.

    PubMed

    Correia, Carlos; Véran, Jean-Pierre; Herriot, Glen; Ellerbroek, Brent; Wang, Lianqi; Gilles, Luc

    2013-04-01

    Laser-guide-star multiconjugate adaptive optics (MCAO) systems require natural guide stars (NGS) to measure tilt and tilt-anisoplanatism modes. Making optimal use of the limited number of photons coming from such, generally dim, sources is mandatory to obtain reasonable sky coverage, i.e., the probability of finding asterisms amenable to NGS wavefront (WF) sensing for a predefined WF error budget. This paper presents a Strehl-optimal (minimum residual variance) spatiotemporal reconstructor merging principles of modal atmospheric tomography and optimal stochastic control theory. Simulations of NFIRAOS, the first light MCAO system for the thirty-meter telescope, using ~500 typical NGS asterisms, show that the minimum-variance (MV) controller delivers outstanding results, in particular for cases with relatively dim stars (down to magnitude 22 in the H-band), for which low-temporal frame rates (as low as 16 Hz) are required to integrate enough flux. Over all the cases tested ~21 nm rms median improvement in WF error can be achieved with the MV compared to the current baseline, a type-II controller based on a double integrator. This means that for a given level of tolerable residual WF error, the sky coverage is increased by roughly 10%, a quite significant figure. The improvement goes up to more than 20% when compared with a traditional single-integrator controller. PMID:23595319

  11. Comparative Characterization of Two Marine Alginate Lyases from Zobellia galactanivorans Reveals Distinct Modes of Action and Exquisite Adaptation to Their Natural Substrate*

    PubMed Central

    Thomas, François; Lundqvist, Lena C. E.; Jam, Murielle; Jeudy, Alexandra; Barbeyron, Tristan; Sandström, Corine; Michel, Gurvan; Czjzek, Mirjam

    2013-01-01

    Cell walls of brown algae are complex supramolecular assemblies containing various original, sulfated, and carboxylated polysaccharides. Among these, the major marine polysaccharide component, alginate, represents an important biomass that is successfully turned over by the heterotrophic marine bacteria. In the marine flavobacterium Zobellia galactanivorans, the catabolism and uptake of alginate are encoded by operon structures that resemble the typical Bacteroidetes polysaccharide utilization locus. The genome of Z. galactanivorans contains seven putative alginate lyase genes, five of which are localized within two clusters comprising additional carbohydrate-related genes. This study reports on the detailed biochemical and structural characterization of two of these. We demonstrate here that AlyA1PL7 is an endolytic guluronate lyase, and AlyA5 cleaves unsaturated units, α-l-guluronate or β-d-manuronate residues, at the nonreducing end of oligo-alginates in an exolytic fashion. Despite a common jelly roll-fold, these striking differences of the mode of action are explained by a distinct active site topology, an open cleft in AlyA1PL7, whereas AlyA5 displays a pocket topology due to the presence of additional loops partially obstructing the catalytic groove. Finally, in contrast to PL7 alginate lyases from terrestrial bacteria, both enzymes proceed according to a calcium-dependent mechanism suggesting an exquisite adaptation to their natural substrate in the context of brown algal cell walls. PMID:23782694

  12. Herbaceous Ornamental Plants. Slide Script.

    ERIC Educational Resources Information Center

    Still, Steven

    This document, which is one in a series of curriculum materials that has been developed for use in Ohio agricultural education programs, contains 338 black-and-white photographs of a set of color slides and an accompanying script that, together, are intended as an aid in the study and identification of 150 different commercially important…

  13. Automatic 35 mm slide duplicator

    NASA Technical Reports Server (NTRS)

    Seidel, H. F.; Texler, R. E.

    1980-01-01

    Automatic duplicator is readily assembled from conventional, inexpensive equipment and parts. Series of slides can be exposed without operator attention, eliminating considerable manual handling and processing ordinarily required. At end of programmed exposure sequence, unit shuts off and audible alarm signals completion of process.

  14. Diseases of Landscape Ornamentals. Slide Script.

    ERIC Educational Resources Information Center

    Powell, Charles C.; Sydnor, T. Davis

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with recognizing and controlling diseases found on ornamental landscape plants. Included in the script are narrations for use with a total of 80 slides illustrating various foliar diseases (anthracnose, black spot, hawthorn leaf blight,…

  15. Linear Classification of Dairy Cattle. Slide Script.

    ERIC Educational Resources Information Center

    Sipiorski, James; Spike, Peter

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with principles of the linear classification of dairy cattle. Included in the guide are narrations for use with 63 slides, which illustrate the following areas that are considered in the linear classification system: stature, strength,…

  16. Approved Practices in Dairy Reproduction. Slide Script.

    ERIC Educational Resources Information Center

    Roediger, Roger D.; Barr, Harry L.

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with approved practices in dairy reproduction. Included in the guide are narrations for use with 200 slides dealing with the following topics: the importance of good reproduction, the male and female roles in reproduction, selection of…

  17. Slide crown lengthening procedure using wide surface incisions and cyanoacrylate.

    PubMed

    Szymaitis, Dennis W

    2011-01-01

    This article introduces the slide crown lengthening procedure (SCLP), which incorporates surgical design features to overcome present crown lengthening procedure (CLP) shortcomings. The result is a 75% decrease in required surgery on adjacent teeth and a corresponding 75% reduction in surgical time. Other advantages include a reduction in surgical morbidity, improvement in terminal esthetics, and fewer teeth subject to papillae removal and apically repositioned gingiva. The 20 to 30 degree incision forming the slide is the pivotal feature; it allows effortless flap positioning. This incision angle enables wide surface incisions to adhere flaps together by producing stronger fibrin clots, decreasing tissue retraction angles, and reforming disrupted fibrin clots as incision sides slide while maintaining contact. This enhanced fibrin clot eliminates the need for sutures. The slide produced by the 20 to 30 degree incision functions for crown lengthening on all sites (facial, lingual, or palatal). This versatile surgical design introduces a new healing dimension that adapts to and provides benefits for other dental surgeries, such as gingival grafts, endodontic surgery, implants, and extractions.

  18. Dynamic instabilities of frictional sliding at a bimaterial interface

    NASA Astrophysics Data System (ADS)

    Brener, Efim A.; Weikamp, Marc; Spatschek, Robert; Bar-Sinai, Yohai; Bouchbinder, Eran

    2016-04-01

    Understanding the dynamic stability of bodies in frictional contact steadily sliding one over the other is of basic interest in various disciplines such as physics, solid mechanics, materials science and geophysics. Here we report on a two-dimensional linear stability analysis of a deformable solid of a finite height H, steadily sliding on top of a rigid solid within a generic rate-and-state friction type constitutive framework, fully accounting for elastodynamic effects. We derive the linear stability spectrum, quantifying the interplay between stabilization related to the frictional constitutive law and destabilization related both to the elastodynamic bi-material coupling between normal stress variations and interfacial slip, and to finite size effects. The stabilizing effects related to the frictional constitutive law include velocity-strengthening friction (i.e. an increase in frictional resistance with increasing slip velocity, both instantaneous and under steady-state conditions) and a regularized response to normal stress variations. We first consider the small wave-number k limit and demonstrate that homogeneous sliding in this case is universally unstable, independent of the details of the friction law. This universal instability is mediated by propagating waveguide-like modes, whose fastest growing mode is characterized by a wave-number satisfying kH ∼ O(1) and by a growth rate that scales with H-1. We then consider the limit kH → ∞ and derive the stability phase diagram in this case. We show that the dominant instability mode travels at nearly the dilatational wave-speed in the opposite direction to the sliding direction. In a certain parameter range this instability is manifested through unstable modes at all wave-numbers, yet the frictional response is shown to be mathematically well-posed. Instability modes which travel at nearly the shear wave-speed in the sliding direction also exist in some range of physical parameters. Previous results

  19. Pressure vessel sliding support unit and system using the sliding support unit

    DOEpatents

    Breach, Michael R.; Keck, David J.; Deaver, Gerald A.

    2013-01-15

    Provided is a sliding support and a system using the sliding support unit. The sliding support unit may include a fulcrum capture configured to attach to a support flange, a fulcrum support configured to attach to the fulcrum capture, and a baseplate block configured to support the fulcrum support. The system using the sliding support unit may include a pressure vessel, a pedestal bracket, and a plurality of sliding support units.

  20. Automated single-slide staining device

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Mills, S. M. (Inventor)

    1977-01-01

    A simple apparatus and method is disclosed for making individual single Gram stains on bacteria inoculated slides to assist in classifying bacteria in the laboratory as Gram-positive or Gram-negative. The apparatus involves positioning a single inoculated slide in a stationary position and thereafter automatically and sequentially flooding the slide with increments of a primary stain, a mordant, a decolorizer, a counterstain and a wash solution in a sequential manner without the individual lab technician touching the slide and with minimum danger of contamination thereof from other slides.

  1. Multistage Adaptive Testing for a Large-Scale Classification Test: Design, Heuristic Assembly, and Comparison with Other Testing Modes. ACT Research Report Series, 2012 (6)

    ERIC Educational Resources Information Center

    Zheng, Yi; Nozawa, Yuki; Gao, Xiaohong; Chang, Hua-Hua

    2012-01-01

    Multistage adaptive tests (MSTs) have gained increasing popularity in recent years. MST is a balanced compromise between linear test forms (i.e., paper-and-pencil testing and computer-based testing) and traditional item-level computer-adaptive testing (CAT). It combines the advantages of both. On one hand, MST is adaptive (and therefore more…

  2. Using a modified standard microscope to generate virtual slides.

    PubMed

    Romer, David J; Yearsley, Kurtis H; Ayers, Leona W

    2003-05-01

    A standard microscope was reconfigured as a virtual slide generator by adding a Prior Scientific H101 robotic stage with H29 controller and 0.1 microm linear scales and a Hitachi HV-C20 3CCD camera. Media Cybernetics Image Pro Plus version 4 (IP4) software controlled stage movement in the X-, Y-, and Z-axis, whereas a Media Cybernetics Pro-Series Capture Kit captured images at 640 x 480 pixels. Stage calibration, scanning algorithms, storage requirements, and viewing modes were standardized. IP4 was used to montage the captured images into a large virtual slide image that was subsequently saved in TIF or JPEG format. Virtual slides were viewed at the workstation using the IP4 viewer as well as Adobe Photoshop and Kodak Imaging. MGI Zoom Server delivered the virtual slides to the Internet, and MicroBrightField's Neuroinformatica viewing software provided a browser-based virtual microscope interface together with labeling tools for annotating virtual slides. The images were served from a Windows 2000 platform with 2 GB RAM, 500 GB of disk storage, and a 1.0 GHz P4 processor. To conserve disk space on the image server, TIF files were converted to the FlashPix (FPX) file format using a compression ratio of 10:1. By using 4x, 10x, 20x, and 40x objectives, very large gigapixel images of tissue whole-mounts and tissue arrays with high quality and morphologic detail are now being generated for teaching, publication, research, and morphometric analysis. Technical details and a demonstration of our system can be found on the Web at http://virtualmicroscope.osu.edu.

  3. Sliding behavior and deformation textures of heated illite gouge

    USGS Publications Warehouse

    Moore, Diane E.; Summers, R.; Byerlee, J.D.

    1989-01-01

    The run products of a series of triaxial friction experiments on an illite-rich gouge have been examined petrographically to study the relationship between textural development and sliding mode. The samples show a complete range of textures, from ones in which the entire gouge layer is deformed to ones in which the deformation is concentrated along narrow subsidiary shears and the rest of the gouge layer is massive. The samples with a pervasively developed deformation fabric slide stably, whereas the samples containing shear bands show stick-slip motion if the intersection angles between boundary-parallel and cross-cutting (Riedel) shears are also relatively high. These textural differences suggest that localization of shear combined with higher-angle Riedel shears are somehow involved in stick-slip motion. The orientation of Riedel-type shears in natural fault zones may also have potential as a paleoseismological tool. ?? 1989.

  4. Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides

    NASA Astrophysics Data System (ADS)

    Handwerger, Alexander L.; Rempel, Alan W.; Skarbek, Rob M.; Roering, Joshua J.; Hilley, George E.

    2016-09-01

    Catastrophic landslides cause billions of dollars in damages and claim thousands of lives annually, whereas slow-moving landslides with negligible inertia dominate sediment transport on many weathered hillslopes. Surprisingly, both failure modes are displayed by nearby landslides (and individual landslides in different years) subjected to almost identical environmental conditions. Such observations have motivated the search for mechanisms that can cause slow-moving landslides to transition via runaway acceleration to catastrophic failure. A similarly diverse range of sliding behavior, including earthquakes and slow-slip events, occurs along tectonic faults. Our understanding of these phenomena has benefitted from mechanical treatments that rely upon key ingredients that are notably absent from previous landslide descriptions. Here, we describe landslide motion using a rate- and state-dependent frictional model that incorporates a nonlocal stress balance to account for the elastic response to gradients in slip. Our idealized, one-dimensional model reproduces both the displacement patterns observed in slow-moving landslides and the acceleration toward failure exhibited by catastrophic events. Catastrophic failure occurs only when the slip surface is characterized by rate-weakening friction and its lateral dimensions exceed a critical nucleation length h*h* that is shorter for higher effective stresses. However, landslides that are extensive enough to fall within this regime can nevertheless slide slowly for months or years before catastrophic failure. Our results suggest that the diversity of slip behavior observed during landslides can be described with a single model adapted from standard fault mechanics treatments.

  5. Dynamical chiral symmetry breaking in sliding nanotubes.

    PubMed

    Zhang, X H; Santoro, G E; Tartaglino, U; Tosatti, E

    2009-03-27

    We discover in simulations of sliding coaxial nanotubes an unanticipated example of dynamical symmetry breaking taking place at the nanoscale. While both nanotubes are perfectly left-right symmetric and nonchiral, a nonzero angular momentum of phonon origin appears spontaneously at a series of critical sliding velocities, in correspondence with large peaks of the sliding friction. The nonlinear equations governing this phenomenon resemble the rotational instability of a forced string. However, several new elements, exquisitely "nano" appear here, with the crucial involvement of umklapp and of sliding nanofriction.

  6. Tape-recorded Lectures With Slide Synchronization

    ERIC Educational Resources Information Center

    Goodhue, D.

    1969-01-01

    Describes "Taped Explanation Slide Synchronization" programs used for individual study or group showing in college zoology. Discusses preparation of programs, class organization, equipment, and costs. (EB)

  7. Instant slides of radiographs for lectures.

    PubMed

    Rothstein, S G; Stewart, P L

    1989-10-01

    High quality slides of radiographs may be made with a simple, fast, and inexpensive technique using Kodak Rapid Process Copy film. Lecture presentations may include a slide of a pertinent plain radiograph, computed tomography (CT) scan, or magnetic resonance imaging (MRI). Although these slides may be made with a 35 mm SLR camera and flash or with a 35 mm SLR camera and a lighted viewbox, an alternative method is available that is easy to perform, inexpensive, and can produce quality slides in as little as 30 minutes. PMID:2477785

  8. "Slide less pathology": Fairy tale or reality?

    PubMed

    Indu, M; Rathy, R; Binu, M P

    2016-01-01

    Pathology practice is significantly advanced in various frontiers. Therefore, "slide less digital" pathology will not be a mere imagination in near future. Digitalization of histopathological slides (whole slide imaging [WSI]) is possible with the help of whole slide scanner. The WSI has a positive impact not only in routine practice but also in research field, medical education and bioindustry. Even if digital pathology has definitive advantages, its widespread use is not yet possible. As it is an upcoming technology in our field, this article is aimed to discussessential aspects of WSI. PMID:27601824

  9. Depth Estimation Using a Sliding Camera.

    PubMed

    Ge, Kailin; Hu, Han; Feng, Jianjiang; Zhou, Jie

    2016-02-01

    Image-based 3D reconstruction technology is widely used in different fields. The conventional algorithms are mainly based on stereo matching between two or more fixed cameras, and high accuracy can only be achieved using a large camera array, which is very expensive and inconvenient in many applications. Another popular choice is utilizing structure-from-motion methods for arbitrarily placed camera(s). However, due to too many degrees of freedom, its computational cost is heavy and its accuracy is rather limited. In this paper, we propose a novel depth estimation algorithm using a sliding camera system. By analyzing the geometric properties of the camera system, we design a camera pose initialization algorithm that can work satisfyingly with only a small number of feature points and is robust to noise. For pixels corresponding to different depths, an adaptive iterative algorithm is proposed to choose optimal frames for stereo matching, which can take advantage of continuously pose-changing imaging and save the time consumption amazingly too. The proposed algorithm can also be easily extended to handle less constrained situations (such as using a camera mounted on a moving robot or vehicle). Experimental results on both synthetic and real-world data have illustrated the effectiveness of the proposed algorithm. PMID:26685238

  10. Depth Estimation Using a Sliding Camera.

    PubMed

    Ge, Kailin; Hu, Han; Feng, Jianjiang; Zhou, Jie

    2016-02-01

    Image-based 3D reconstruction technology is widely used in different fields. The conventional algorithms are mainly based on stereo matching between two or more fixed cameras, and high accuracy can only be achieved using a large camera array, which is very expensive and inconvenient in many applications. Another popular choice is utilizing structure-from-motion methods for arbitrarily placed camera(s). However, due to too many degrees of freedom, its computational cost is heavy and its accuracy is rather limited. In this paper, we propose a novel depth estimation algorithm using a sliding camera system. By analyzing the geometric properties of the camera system, we design a camera pose initialization algorithm that can work satisfyingly with only a small number of feature points and is robust to noise. For pixels corresponding to different depths, an adaptive iterative algorithm is proposed to choose optimal frames for stereo matching, which can take advantage of continuously pose-changing imaging and save the time consumption amazingly too. The proposed algorithm can also be easily extended to handle less constrained situations (such as using a camera mounted on a moving robot or vehicle). Experimental results on both synthetic and real-world data have illustrated the effectiveness of the proposed algorithm.

  11. Slide Tape. A Guide to the Production of Slide-Tape Programmes.

    ERIC Educational Resources Information Center

    Rowatt, Robert W.

    Step by step instructions are provided for planning and executing a slide tape program, as well as diagrams of equipment for presenting such programs. Guidelines are given for ways to: (1) define a program's purpose and objectives, (2) complete a storyboard, (3) produce slides from transparencies and photographed artwork, (4) write on slides, (5)…

  12. Percolation, sliding, localization and relaxation in topologically closed circuits

    PubMed Central

    Hurowitz, Daniel; Cohen, Doron

    2016-01-01

    Considering a random walk in a random environment in a topologically closed circuit, we explore the implications of the percolation and sliding transitions for its relaxation modes. A complementary question regarding the “delocalization” of eigenstates of non-hermitian Hamiltonians has been addressed by Hatano, Nelson, and followers. But we show that for a conservative stochastic process the implied spectral properties are dramatically different. In particular we determine the threshold for under-damped relaxation, and observe “complexity saturation” as the bias is increased. PMID:26961586

  13. Plastic strain arrangement in copper single crystals in sliding

    SciTech Connect

    Chumaevskii, Andrey V. Lychagin, Dmitry V.; Tarasov, Sergei Yu.

    2014-11-14

    Deformation of tribologically loaded contact zone is one of the wear mechanisms in spite of the fact that no mass loss may occur during this process. Generation of optimal crystallographic orientations of the grains in a polycrystalline materials (texturing) may cause hardening and reducing the deformation wear. To reveal the orientation dependence of an individual gain and simplify the task we use copper single crystals with the orientations of the compression axis along [111] and [110]. The plastic deformation was investigated by means of optical, scanning electron microscopy and EBSD techniques. It was established that at least four different zones were generated in the course of sliding test, such as non-deformed base metal, plastic deformation layer sliding, crystalline lattice reorientation layer and subsurface grain structure layer. The maximum plastic strain penetration depth was observed on [110]-single crystals. The minimum stability of [111]-crystals with respect to rotation deformation mode as well as activation of shear in the sliding contact plane provide for rotation deformation localization below the worn surface. The high-rate accumulation of misorientations and less strain penetration depth was observed on [111]-crystals as compared to those of [110]-oriented ones.

  14. [Heritage Education Lesson Plans and Slide Presentations].

    ERIC Educational Resources Information Center

    Van Buren, Maurie

    Field tested in 27 schools and in grades four through twelve, this teaching unit stresses heritage education through the study of southern U.S. architectural styles for homes from the pioneer log structures to the 1950s ranch home. Each of the four lessons in this unit focuses around a slide presentation of 20 slides designed to fit into one…

  15. Getting Clever with the Sliding Ladder

    ERIC Educational Resources Information Center

    De, Subhranil

    2014-01-01

    The familiar system involving a uniform ladder sliding against a vertical wall and a horizontal floor is considered again. The floor is taken to be smooth and the wall to be possibly rough--a situation where no matter how large the static friction coefficient between the ladder and the wall, the ladder cannot lean at rest and must slide down.…

  16. The Cancer Digital Slide Archive - TCGA

    Cancer.gov

    Dr. David Gutman and Dr. Lee Cooper developed The Cancer Digital Slide Archive (CDSA), a web platform for accessing pathology slide images of TCGA samples. Find out how they did it and how to use the CDSA website in this Case Study.

  17. Thermal and thermomechanical effects in dry sliding

    NASA Technical Reports Server (NTRS)

    Kennedy, F. E., Jr.

    1984-01-01

    Developments in the study of interrelated thermal and mechanical phenomena in sliding systems are reviewed. The topics reviewed include mechanisms of frictional heating and the distribution of heat during sliding friction, the experimental measurement and analysis of surface and near-surface temperatures resulting from frictional heating, thermal deformation around sliding contacts and the changes in contact geometry caused by thermal deformation and thermoelastic instability, and the thermomechanical stress distribution around the frictionally heated and thermally deformed contact spots. The influence of the thermal and thermomechanical contact phenomena on friction and wear, surface melting, softening, chemical deterioration, and thermocracking are discussed. The phenomena have important implications in the design and application of sliding or sliding-rolling mechanical components such as dynamic seals, brakes, clutches, plastic bearings, solid or boundary-lubricated bearings, and gears.

  18. Sliding Over a Phase Transition

    NASA Astrophysics Data System (ADS)

    Tosatti, Erio; Benassi, Andrea; Vanossi, Andrea; Santoro, Giuseppe E.

    2011-03-01

    The frictional response experienced by a stick-slip slider when a phase transition occurs in the underlying solid substrate is a potentially exciting, poorly explored problem. We show, based on 2-dimensional simulations modeling the sliding of a nanotip, that indeed friction may be heavily affected by a continuous structural transition. First, friction turns nonmonotonic as temperature crosses the transition, peaking at the critical temperature Tc where fluctuations are strongest. Second, below Tc friction depends upon order parameter directions, and is much larger for those where the frictional slip can cause a local flip. This may open a route towards control of atomic scale friction by switching the order parameter direction by an external field or strain, with possible application to e.g., displacive ferroelectrics such as BaTi O3 , as well as ferro- and antiferro-distortive materials. Supported by project ESF FANAS/AFRI sponsored by the Italian Research Council (CNR).

  19. Exit from sliding in piecewise-smooth flows: Deterministic vs. determinacy-breaking.

    PubMed

    Jeffrey, Mike R

    2016-03-01

    The collapse of flows onto hypersurfaces where their vector fields are discontinuous creates highly robust states called sliding modes. The way flows exit from such sliding modes can lead to complex and interesting behaviour about which little is currently known. Here, we examine the basic mechanisms by which a flow exits from sliding, either along a switching surface or along the intersection of two switching surfaces, with a view to understanding sliding and exit when many switches are involved. On a single switching surface, exit occurs via tangency of the flow to the switching surface. Along an intersection of switches, exit can occur at a tangency with a lower codimension sliding flow, or by a spiralling of the flow that exhibits geometric divergence (infinite steps in finite time). Determinacy-breaking can occur where a singularity creates a set-valued flow in an otherwise deterministic system, and we resolve such dynamics as far as possible by blowing up the switching surface into a switching layer. We show preliminary simulations exploring the role of determinacy-breaking events as organizing centres of local and global dynamics. PMID:27036186

  20. Whole slide imaging for educational purposes

    PubMed Central

    Pantanowitz, Liron; Szymas, Janusz; Yagi, Yukako; Wilbur, David

    2012-01-01

    Digitized slides produced by whole slide image scanners can be easily shared over a network or by transferring image files to optical or other data storage devices. Navigation of digitized slides is interactive and intended to simulate viewing glass slides with a microscope (virtual microscopy). Image viewing software permits users to edit, annotate, analyze, and easily share whole slide images (WSI). As a result, WSI have begun to replace the traditional light microscope, offering a myriad of opportunities for education. This article focuses on current applications of WSI in education and proficiency testing. WSI has been successfully explored for graduate education (medical, dental, and veterinary schools), training of pathology residents, as an educational tool in allied pathology schools (e.g., cytotechnology), for virtual tracking and tutoring, tele-education (tele-conferencing), e-learning, virtual workshops, at tumor boards, with interactive publications, and on examinations. WSI supports flexible and cost-effective distant learning and augments problem-oriented teaching, competency evaluation, and proficiency testing. WSI viewed on touchscreen displays and with tablet technology are especially beneficial for education. Further investigation is necessary to develop superior WSI applications that better support education and to design viewing stations with ergonomic tools that improve the WSI-human interface and navigation of virtual slides. Studies to determine the impact of training pathologists without exposure to actual glass slides are also needed. PMID:23372987

  1. SSP: Sketching Slide Presentations, a Syntactic Approach

    NASA Astrophysics Data System (ADS)

    Mas, Joan; Sanchez, Gemma; Lladós, Josep

    The design of a slide presentation is a creative process. In this process first, humans visualize in their minds what they want to explain. Then, they have to be able to represent this knowledge in an understandable way. There exists a lot of commercial software that allows to create our own slide presentations but the creativity of the user is rather limited. In this article we present an application that allows the user to create and visualize a slide presentation from a sketch. A slide may be seen as a graphical document or a diagram where its elements are placed in a particular spatial arrangement. To describe and recognize slides a syntactic approach is proposed. This approach is based on an Adjacency Grammar and a parsing methodology to cope with this kind of grammars. The experimental evaluation shows the performance of our methodology from a qualitative and a quantitative point of view. Six different slides containing different number of symbols, from 4 to 7, have been given to the users and they have drawn them without restrictions in the order of the elements. The quantitative results give an idea on how suitable is our methodology to describe and recognize the different elements in a slide.

  2. Buckling of a Flexible Strip Sliding on a Frictional Base

    NASA Astrophysics Data System (ADS)

    Huynen, Alexandre; Marck, Julien; Denoel, Vincent; Detournay, Emmanuel

    2013-03-01

    The main motivation for this contribution is the buckling of a drillstring sliding on the bottom of the horizontal section of borehole. The open questions that remain today are related to the determination of the onset of instability, and to the conditions under which different modes of constrained buckling occur. In this presentation, we are concerned by a two-dimensional version of this problem; namely, the sliding of a flexible strip being fed inside a conduit. The ribbon, which has a flexural rigidity EI and a weight per unit length w, is treated as an inextensible elastica of negligible thickness. The contact between the ribbon and the wall of the conduit is characterized by a friction coefficient μ. First, we report the result of a stability analysis that aims at determining the critical inserted length of the ribbon l* (μ) (scaled by the characteristic length λ =(EI / w) 1 / 3) at which there is separation between the strip and the conduit bottom, as well as the buckling mode. Next, the relationship between the feeding force F and the inserted length l after bifurcation is computed. Finally, the results of a ``kitchen table'' experiment involving a strip of silicon rubber being pushed on a plank are reported and compared with predictions.

  3. The Earth surface slide movement at Soledad

    NASA Astrophysics Data System (ADS)

    Moreno, A.

    1986-11-01

    The Earth surface slide movement at Soledad is a mountain-slide type of movement. Estimations of the thickness of the layer which is moving range between 10 and 100 m. There is no proof that the movement is water induced, but it could be influenced by the water household. The slope of the slide area is H: D = 1: 2. The height difference in the moving area studied, according to this paper, is 1 km. The actual rate of movement is about 12 cm/yr.

  4. Rheological behavior of Slide Ring Gels.

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Park, Jong Seung; Park, Jung O.; Srinivasarao, Mohan

    2006-03-01

    Slide ring gels were synthesized by chemically crosslinking, sparsely populated α-cyclodextrin (α-CD) present on the polyrotaxanes consisting of α-CD and polyethylene glycol (PEG). [1] Unlike physically or chemically crosslinked gels, slide ring gels are topological gels where crosslinks can slide along the chain. [2] We investigate the rheological behavior of these gels swollen in water and compare their viscoelastic properties to those of physical and chemical gels. We also study the equilibrium swelling behavior of these gels. [1] Okumura and Ito, Adv. Mater. 2001, 13, 485 [2] C. Zhao et al, J. Phys. Cond. Mat. 2005, 17, S2841

  5. Increase in friction force with sliding speed

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2005-09-01

    A block sliding down an inclined plane normally accelerates. However, if the friction force increases with speed, then the block can slide at a constant terminal speed in a manner similar to the fall of an object through a fluid. Measurements of the increase in the coefficient of friction for tennis ball cloth sliding on a smooth surface are described over speeds varying by a factor of 9000. For the low speed measurements, the ball cloth was attached to the bottom of a weighted box and pulled along a horizontal surface by a constant horizontal force. Results at higher speeds were obtained by bouncing a tennis ball off the surface.

  6. Standardization of Keyword Search Mode

    ERIC Educational Resources Information Center

    Su, Di

    2010-01-01

    In spite of its popularity, keyword search mode has not been standardized. Though information professionals are quick to adapt to various presentations of keyword search mode, novice end-users may find keyword search confusing. This article compares keyword search mode in some major reference databases and calls for standardization. (Contains 3…

  7. Foam-filled cushions for sliding trays

    NASA Technical Reports Server (NTRS)

    Nahin, S. B.; Robb, P. H.

    1980-01-01

    Polytetrafluoroethylene tube filled with polyurethane foam forms low friction sliding surface that cushions vibrations and absorbs manufacturing tolerances and misalignment. Possible uses include packaging of components for shipping and seals for doors in lockers, cars, and refrigerators.

  8. Sliding scale insulin use: myth or insanity?

    PubMed

    Umpierrez, Guillermo E; Palacio, Andres; Smiley, Dawn

    2007-07-01

    Inpatient hyperglycemia in people with or without diabetes is associated with an increased risk of complications and mortality, a longer hospital stay, a higher admission rate to the intensive care unit, and higher hospitalization costs. Despite increasing evidence that supports intensive glycemic control in hospitalized patients, blood glucose control continues to be challenging, and sliding scale insulin coverage, a practice associated with limited therapeutic success, continues to be the most frequent insulin regimen in hospitalized patients. Sliding scale insulin has been in use for more than 80 years without much evidence to support its use as the standard of care. Several studies have revealed evidence of poor glycemic control and deleterious effects in sliding scale insulin use. To understand its wide use and acceptance, we reviewed the origin, advantages, and disadvantages of sliding scale insulin in the inpatient setting.

  9. Automated single-slide staining system

    NASA Technical Reports Server (NTRS)

    Mills, S. M.; Wilkins, J. R.

    1974-01-01

    Apparatus developed to Gram-stain single slides automatically is flexible enough to accommodate other types of staining procedures. Method frees operator and eliminates necessity for subjective evaluations as to length of staining or decolorizing time.

  10. Variations of the Sliding Ladder Problem

    ERIC Educational Resources Information Center

    Kapranidis, Stelios; Koo, Reginald

    2008-01-01

    This article takes another look at the sliding ladder problem that students meet in the study of related rates in calculus. Physically realistic situations with both constrained and understrained ladders are explored.

  11. The Foley Acoustic Wave Front Slides

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2004-04-01

    In 1912 Arthur L. Foley of Indiana University published an article in Physical Review about his technique for photographing acoustic wave fronts. Subsequently, the Central Scientific Company published a series of glass lantern slides of his illustrations. These have been unavailable for about 60 years. Here I discuss how Foley made his slides and give examples of use to the present-day physics teacher.

  12. WTP Pretreatment Facility Potential Design Deficiencies--Sliding Bed and Sliding Bed Erosion Assessment

    SciTech Connect

    Hansen, E. K.

    2015-05-06

    This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.

  13. The Louisiana Slide Library; A Humanities Program. Bulletin 1755.

    ERIC Educational Resources Information Center

    Louisiana Council for Music and Performing Arts, New Orleans.

    The Louisiana Slide Library is an extensive collection of slides, lectures, and tapes designed for use in the arts, the humanities, social and ethnic studies, languages, home economics, careers, crafts, and special education. This bibliography lists these slide sets and indicates the grade level intended for each set and the number of slides in…

  14. Ornamental Annual Plants and Their Uses. Slide Script.

    ERIC Educational Resources Information Center

    Still, Steven

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with ornamental annual plants and their uses. Included in the script are narrations for use with a total of 254 slides illustrating 97 different plants. At least two slides are provided for each plant: one shows the growth habits of the…

  15. Compact, Automated Centrifugal Slide-Staining System

    NASA Technical Reports Server (NTRS)

    Feeback, Daniel L.; Clarke, Mark S. F.

    2004-01-01

    The Directional Acceleration Vector-Driven Displacement of Fluids (DAVD-DOF) system, under development at the time of reporting the information for this article, would be a relatively compact, automated, centrifugally actuated system for staining blood smears and other microbiological samples on glass microscope slides in either a microgravitational or a normal Earth gravitational environment. The DAVD-DOF concept is a successor to the centrifuge-operated slide stainer (COSS) concept, which was reported in Slide-Staining System for Microgravity or Gravity (MSC-22949), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 64. The COSS includes reservoirs and a staining chamber that contains a microscope slide to which a biological sample is affixed. The staining chamber is sequentially filled with and drained of staining and related liquids from the reservoirs by use of a weighted plunger to force liquid from one reservoir to another at a constant level of hypergravity maintained in a standard swing-bucket centrifuge. In the DAVD-DOF system, a staining chamber containing a sample would also be sequentially filled and emptied, but with important differences. Instead of a simple microscope slide, one would use a special microscope slide on which would be fabricated a network of very small reservoirs and narrow channels connected to a staining chamber (see figure). Unlike in the COSS, displacement of liquid would be effected by use of the weight of the liquid itself, rather than the weight of a plunger.

  16. Dynamic Sliding Analysis of a Gravity Dam with Fluid-Structure-Foundation Interaction Using Finite Elements and Newmark's Sliding Block Analysis

    NASA Astrophysics Data System (ADS)

    Goldgruber, Markus; Shahriari, Shervin; Zenz, Gerald

    2015-11-01

    To reduce the natural hazard risks—due to, e.g., earthquake excitation—seismic safety assessments are carried out. Especially under severe loading, due to maximum credible or the so-called safety evaluation earthquake, critical infrastructure, as these are high dams, must not fail. However, under high loading local failure might be allowed as long as the entire structure does not collapse. Hence, for a dam, the loss of sliding stability during a short time period might be acceptable if the cumulative displacements after an event are below an acceptable value. This performance is not only valid for gravity dams but also for rock blocks as sliding is even more imminent in zones with higher seismic activity. Sliding modes cannot only occur in the dam-foundation contact, but also in sliding planes formed due to geological conditions. This work compares the qualitative possible and critical displacements for two methods, the well-known Newmark's sliding block analysis and a Fluid-Foundation-Structure Interaction simulation with the finite elements method. The results comparison of the maximum displacements at the end of the seismic event of the two methods depicts that for high friction angles, they are fairly close. For low friction angles, the results are differing more. The conclusion is that the commonly used Newmark's sliding block analysis and the finite elements simulation are only comparable for high friction angles, where this factor dominates the behaviour of the structure. Worth to mention is that the proposed simulation methods are also applicable to dynamic rock wedge problems and not only to dams.

  17. Fluid pressure responses for a Devil's Slide-like system: problem formulation and simulation

    USGS Publications Warehouse

    Thomas, Matthew A.; Loague, Keith; Voss, Clifford I.

    2015-01-01

    This study employs a hydrogeologic simulation approach to investigate subsurface fluid pressures for a landslide-prone section of the central California, USA, coast known as Devil's Slide. Understanding the relative changes in subsurface fluid pressures is important for systems, such as Devil's Slide, where slope creep can be interrupted by episodic slip events. Surface mapping, exploratory core, tunnel excavation records, and dip meter data were leveraged to conceptualize the parameter space for three-dimensional (3D) Devil's Slide-like simulations. Field observations (i.e. seepage meter, water retention, and infiltration experiments; well records; and piezometric data) and groundwater flow simulation (i.e. one-dimensional vertical, transient, and variably saturated) were used to design the boundary conditions for 3D Devil's Slide-like problems. Twenty-four simulations of steady-state saturated subsurface flow were conducted in a concept-development mode. Recharge, heterogeneity, and anisotropy are shown to increase fluid pressures for failure-prone locations by up to 18.1, 4.5, and 1.8% respectively. Previous estimates of slope stability, driven by simple water balances, are significantly improved upon with the fluid pressures reported here. The results, for a Devil's Slide-like system, provide a foundation for future investigations

  18. An Ultrasonic-Adaptive Beamforming Method and Its Application for Trans-skull Imaging of Certain Types of Head Injuries; Part I: Transmission Mode.

    PubMed

    Shapoori, Kiyanoosh; Sadler, Jeff; Wydra, Adrian; Malyarenko, Eugene V; Sinclair, Anthony N; Maev, Roman Gr

    2015-05-01

    A new adaptive beamforming algorithm for imaging via small-aperture 1-D ultrasonic-phased arrays through composite layered structures is reported. Such structures cause acoustic phase aberration and wave refraction at undulating interfaces and can lead to significant distortion of an ultrasonic field pattern produced by conventional beamforming techniques. This distortion takes the form of defocusing the ultrasonic field transmitted through the barrier and causes loss of resolution and overall degradation of image quality. To compensate for the phase aberration and the refractional effects, we developed and examined an adaptive beamforming algorithm for small-aperture linear-phased arrays. After accurately assessing the barrier's local geometry and sound speed, the method calculates a new timing scheme to refocus the distorted beam at its original location. As a tentative application, implementation of this method for trans-skull imaging of certain types of head injuries through human skull is discussed. Simulation and laboratory results of applying the method on skull-mimicking phantoms are presented. Correction of up to 2.5 cm focal point displacement at up to 10 cm depth under our skull phantom is demonstrated. Quantitative assessment of the method in a variety of temporal focusing scenarios is also reported. Overall temporal deviation on the order of a few nanoseconds was observed between the simulated and experimental results. The single-point adaptive focusing results demonstrate strong potential of our approach for diagnostic imaging through intact human skull. The algorithms were implemented on an ultrasound advanced open-platform controlling 64 active elements on a 128-element phased array. PMID:25423646

  19. An Ultrasonic-Adaptive Beamforming Method and Its Application for Trans-skull Imaging of Certain Types of Head Injuries; Part I: Transmission Mode.

    PubMed

    Shapoori, Kiyanoosh; Sadler, Jeff; Wydra, Adrian; Malyarenko, Eugene V; Sinclair, Anthony N; Maev, Roman Gr

    2015-05-01

    A new adaptive beamforming algorithm for imaging via small-aperture 1-D ultrasonic-phased arrays through composite layered structures is reported. Such structures cause acoustic phase aberration and wave refraction at undulating interfaces and can lead to significant distortion of an ultrasonic field pattern produced by conventional beamforming techniques. This distortion takes the form of defocusing the ultrasonic field transmitted through the barrier and causes loss of resolution and overall degradation of image quality. To compensate for the phase aberration and the refractional effects, we developed and examined an adaptive beamforming algorithm for small-aperture linear-phased arrays. After accurately assessing the barrier's local geometry and sound speed, the method calculates a new timing scheme to refocus the distorted beam at its original location. As a tentative application, implementation of this method for trans-skull imaging of certain types of head injuries through human skull is discussed. Simulation and laboratory results of applying the method on skull-mimicking phantoms are presented. Correction of up to 2.5 cm focal point displacement at up to 10 cm depth under our skull phantom is demonstrated. Quantitative assessment of the method in a variety of temporal focusing scenarios is also reported. Overall temporal deviation on the order of a few nanoseconds was observed between the simulated and experimental results. The single-point adaptive focusing results demonstrate strong potential of our approach for diagnostic imaging through intact human skull. The algorithms were implemented on an ultrasound advanced open-platform controlling 64 active elements on a 128-element phased array.

  20. A reinforcement discrete neuro-adaptive control for unknown piezoelectric actuator systems with dominant hysteresis.

    PubMed

    Hwang, Chih-Lyang; Jan, Chau

    2003-01-01

    The theoretical and experimental studies of a reinforcement discrete neuro-adaptive control for unknown piezoelectric actuator systems with dominant hysteresis are presented. Two separate nonlinear gains, together with an unknown linear dynamical system, construct the nonlinear model (NM) of the piezoelectric actuator systems. A nonlinear inverse control (NIC) according to the learned NM is then designed to compensate the hysteretic phenomenon and to track the reference input without the risk of discontinuous response. Because the uncertainties are dynamic, a recurrent neural network (RNN) with residue compensation is employed to model them in a compact subset. Then, a discrete neuro-adaptive sliding-mode control (DNASMC) is designed to enhance the system performance. The stability of the overall system is verified by Lyapunov stability theory. Comparative experiments for various control schemes are also given to confirm the validity of the proposed control.

  1. Adaptive robust maximum power point tracking control for perturbed photovoltaic systems with output voltage estimation.

    PubMed

    Koofigar, Hamid Reza

    2016-01-01

    The problem of maximum power point tracking (MPPT) in photovoltaic (PV) systems, despite the model uncertainties and the variations in environmental circumstances, is addressed. Introducing a mathematical description, an adaptive sliding mode control (ASMC) algorithm is first developed. Unlike many previous investigations, the output voltage is not required to be sensed and the upper bound of system uncertainties and the variations of irradiance and temperature are not required to be known. Estimating the output voltage by an update law, an adaptive-based H∞ tracking algorithm is then developed for the case the perturbations are energy-bounded. The stability analysis is presented for the proposed tracking control schemes, based on the Lyapunov stability theorem. From a comparison viewpoint, some numerical and experimental studies are also presented and discussed. PMID:26606851

  2. Adaptive robust maximum power point tracking control for perturbed photovoltaic systems with output voltage estimation.

    PubMed

    Koofigar, Hamid Reza

    2016-01-01

    The problem of maximum power point tracking (MPPT) in photovoltaic (PV) systems, despite the model uncertainties and the variations in environmental circumstances, is addressed. Introducing a mathematical description, an adaptive sliding mode control (ASMC) algorithm is first developed. Unlike many previous investigations, the output voltage is not required to be sensed and the upper bound of system uncertainties and the variations of irradiance and temperature are not required to be known. Estimating the output voltage by an update law, an adaptive-based H∞ tracking algorithm is then developed for the case the perturbations are energy-bounded. The stability analysis is presented for the proposed tracking control schemes, based on the Lyapunov stability theorem. From a comparison viewpoint, some numerical and experimental studies are also presented and discussed.

  3. Analysis of slide exploration strategy of cytologists when reading digital slides

    NASA Astrophysics Data System (ADS)

    Pantanowitz, Liron; Parwani, Anil; Tseytlin, Eugene; Mello-Thoms, Claudia

    2012-02-01

    Cytology is the sub-domain of Pathology that deals mainly with the diagnosis of cellular changes caused by disease. Current clinical practice involves a cytotechnologist that manually screens glass slides containing fixed cytology material using a light microscope. Screened slides are then forwarded to a specialized pathologist, a cytopathologist, for microscopic review and final diagnostic interpretation. If no abnormalities are detected, the specimen is interpreted as "normal", otherwise the abnormalities are marked with a pen on the glass slide by the cytotechnologist and then are used to render a diagnosis. As Pathology is migrating towards a digital environment it is important to determine whether these crucial screening and diagnostic tasks can be performed as well using digital slides as the current practice with glass slides. The purpose of this work is to make this assessment, by using a set of digital slides depicting cytological materials of different disease processes in several organs, and then to analyze how different cytologists including cytotechnologists, cytopathologists and cytotechnology-trainees explored the digital slides. We will (1) collect visual search data from the cytologists as they navigate the digital slides, as well as record any electronic marks (annotations) made by the cytologists; (2) convert the dynamic visual search data into a static representation of the observers' exploration strategy using 'search maps'; and (3) determine slide coverage, per viewing magnification range, for each group. We have developed a virtual microscope to collect this data, and this interface allows for interactive navigation of the virtual slide (including panning and zooming), as well as annotation of reportable findings. Furthermore, all interactions with the interface are time stamped, which allows us to recreate the cytologists' search strategy.

  4. On a model of frictional sliding

    NASA Astrophysics Data System (ADS)

    Estrin, Y.; Bréchet, Y.

    1996-10-01

    A model of frictional sliding with an N-shaped curve for the sliding velocity dependence of the coefficient of friction is considered. This type of friction law is shown to be related to dynamic i.e., velocity dependent ‘ageing’ of asperity junctions. Mechanisms of ‘ageing’ for ductile (Bowden-Tabor) and brittle (Byerlee) materials, though different in nature, lead to qualitatively similar N-shaped velocity dependencies of the coefficient of friction. Estimates for the velocities limiting the range of negative velocity sensitivity of the coefficient of friction are obtained for the ductile case and—albeit with a lesser degree of reliability—for the brittle one. It is shown by linear stability analysis that discontinuous sliding (stick-slip) is associated with the descending portion of the N-shaped curve. An instability criterion is obtained. An expression for the period of the attendant relaxation oscillations of the sliding velocity is given in terms of the calculated velocity dependence of the coefficient of friction. It is suggested that the micromechanically motivated friction law proposed should be used in models of earthquakes due to discontinuous frictional sliding on a crustal fault.

  5. Resistance to Sliding on Atomic Scales

    NASA Technical Reports Server (NTRS)

    Dominik, C.; Tielens, A.; Cuzzi, Jeffrey (Technical Monitor)

    1995-01-01

    The structure and stability of agglomerates of micron-sized particles is determined by the mechanical properties of the individual contacts between the constituent particles. In this paper we study the possibility of aggregate rearrangements by sliding. Since the contacts between (sub)micron particles are only a few hundred atoms in diameter, processes on atomic levels will play the dominating roll. We study a theoretical model of sliding friction for surfaces that are either flat or contain steps in their grids. The results show that sliding over flat surfaces may produce a large range of friction coefficients, including zero if the adhesive forces are small compared to the binding forces inside a body. However, both grid alignment and steps in the surface will lead to high values for friction. These processes combined virtually eliminate the possibility of sliding in a collision of two (sub)micron sized particles at velocities low enough for sticking to occur. On the other hand we show that in collisions between aggregates sliding may be an important factor for energy dissipation and compaction.

  6. Secondary osteon size and collagen/lamellar organization ("osteon morphotypes") are not coupled, but potentially adapt independently for local strain mode or magnitude.

    PubMed

    Skedros, John G; Keenan, Kendra E; Williams, Tyler J; Kiser, Casey J

    2013-02-01

    In bone, matrix slippage that occurs at cement lines of secondary osteons during loading is an important toughening mechanism. Toughness can also be enhanced by modifications in osteon cross-sectional size (diameter) for specific load environments; for example, smaller osteons in more highly strained "compression" regions vs. larger osteons in less strained "tension" regions. Additional osteon characteristics that enhance toughness are distinctive variations in collagen/lamellar organization (i.e., "osteon morphotypes"). Interactions might exist between osteon diameter and morphotype that represent adaptations for resisting deleterious shear stresses that occur at the cement line. This may be why osteons often have a peripheral ring (or "hoop") of highly oblique/transverse collagen. We hypothesized that well developed/distinct "hoops" are compensatory adaptations in cases where increased osteon diameter is mechanically advantageous (e.g., larger osteons in "tension" regions would have well developed/distinct "hoops" in order to resist deleterious consequences of co-existing localized shear stresses). We tested this hypothesis by determining if there are correlations between osteon diameters and strongly hooped morphotypes in "tension", "compression", and "neutral axis" regions of femora (chimpanzees, humans), radii (horse, sheep) and calcanei (horse, deer). The results reject the hypothesis-larger osteons are not associated with well developed/distinct "hoops", even in "tension regions" where the effect was expected to be obvious. Although osteon diameter and morphotype are not coupled, osteon diameters seem to be associated with increased strain magnitudes in some cases, but this is inconsistent. By contrast, osteon morphotypes are more strongly correlated with the distribution of tension and compression. PMID:23123271

  7. Better slides needed at AGU Meetings

    NASA Astrophysics Data System (ADS)

    Jacobson, Randall S.

    Recent AGU meetings show a dangerous trend in the quality of presentations. A fair percentage of slides used during oral presentations consisted of a black background and colored lines and/or words for data. Such slides are illegible and serve to undercut the speaker's points by not demonstrating the data clearly.A typical example consisted of dark red, dark blue, and green data on a black background. Even the author had difficulty in pointing out the data using his light arrow. Line drawings, in particular, should not use colors, but instead use high-contrast white-on-black for the following reasons: dark colors on black backgrounds provide little contrast, making it difficult to discern patterns; people who are colorblind are at a disadvantage; and the same information can be obtained using a variety of line weights (dotdash, solid, dotted, etc.) with single color slides.

  8. NEMD simulations for ductile metal sliding

    SciTech Connect

    Hammerberg, James E; Germann, Timothy C; Ravelo, Ramon J; Holian, Brad L

    2011-01-31

    We have studied the sliding behavior for a 19 M Al(110)/Al(110) defective crystal at 15 GPa as a function of relative sliding velocity. The general features are qualitatively similar to smaller scale (1.4 M) atom simulations for Al(111)/Al(110) nondefective single crystal sliding. The critical velocity, v{sub c}, is approximately the same for the defective crystal as the size scaled v{sub c}. The lower velocity tangential force is depressed relative to the perfect crystal. The critical temperature, T*, is depressed relative to the perfect crystal. These conclusions are consistent with a lower value for f{sub c} for the defective crystal. The detailed features of structural transformation and the high velocity regime remain to be mapped.

  9. Sliding Contact Bearings for Service to 700 C

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1996-01-01

    Cylindrical, sliding contact bearings made entirely of a self-lubricating powder metallurgy composite (PM212) or of super alloy shells lined with clad PM212 were tested in an oscillating mode at temperatures from 25 to 700 C. Tests of 100 hr duration or longer were conducted at a bearing unit load of 3.45 Mpa (500 psi). Shorter duration tests at various unit loads up to 24.1 Mpa (3500 psi) were also conducted. In comparison tests, bearings lubricated with PM212 had superior anti-wear characteristics compared to the baseline, unlubricated, super alloy bearings: no galling of PM212-lubricated bearings occurred, while severe surface damage including galling occurred, especially at high loads, during the baseline tests. A heat treatment procedure, which dimensionally stabilizes PM212 and thereby minimizes clearance changes during high temperature bearing operation, is described.

  10. Newly recognized submarine slide complexes in the southern California Bight

    NASA Astrophysics Data System (ADS)

    Conrad, J. E.; Lee, H. J.; Edwards, B. D.; McGann, M.; Sliter, R. W.

    2012-12-01

    New high-resolution bathymetric and seismic-reflection surveys have imaged large (<0.5 km3) submarine landslides offshore southern California that have not been previously recognized in the Borderland. The new data show several large slides or slide complexes that include: 1) a slide complex consisting of numerous (>7) individual overlapping slides along the western margin of Santa Cruz Basin (SCB slide); 2) a series of slumps and slide scars on the slope south of San Pedro shelf (SPS slide); and 3) a slope failure along the shelf edge in northern San Diego County, termed the Del Mar slide. The SCB slide complex extends for 30 km along the western slope of Santa Cruz Basin, with debris lobes extending 5-8 km into the basin. Head scarps of some of these slides are 50-75 m high. The SPS slide complex also appears to consist of multiple slides, which roughly parallel the Palos Verdes Fault and the San Gabriel Canyon submarine channel on the shelf edge and slope south of San Pedro shelf. Slide deposits associated with this complex are only partially mapped due to limited high-resolution bathymetric coverage, but extend to the south in the area SW of Lasuen Knoll. Seismic-reflection profiles show that some of these deposits are up to 20 m thick. The Del Mar slide is located about 10 km north of La Jolla Canyon and extends about 6 km along the shelf edge. The head scarp lies along the trend of a branch of the Rose Canyon Fault Zone. Radiocarbon ages of sediment overlying this slide indicate the Del Mar slide is approximately 12-16 ka. These large slide complexes have several characteristics in common. Nearly all occur in areas of tectonic uplift. All of the complexes show evidence of recurrent slide activity, exhibiting multiple headwall scarps and debris lobes, and where available, high-resolution seismic-reflection profiles of these slide areas provide evidence of older, buried mass transport deposits. Assuming typical sedimentation rates, the recurrence interval of

  11. Develop and Manufacture an airlock sliding tray

    SciTech Connect

    Lawton, Cindy M.

    2014-02-26

    Objective: The goal of this project is to continue to develop an airlock sliding tray and then partner with an industrial manufacturing company for production. The sliding tray will be easily installed into and removed from most glovebox airlocks in a few minutes. Technical Approach: A prototype of a sliding tray has been developed and tested in the LANL cold lab and 35 trays are presently being built for the plutonium facility (PF-4). The current, recently approved design works for a 14-inch diameter round airlock and has a tray length of approximately 20 inches. The grant will take the already tested and approved round technology and design for the square airlock. These two designs will be suitable for the majority of the existing airlocks in the multitude of DOE facilities. Partnering with an external manufacturer will allow for production of the airlock trays at a much lower cost and increase the availability of the product for all DOE sites. Project duration is estimated to be 12-13 months. Benefits: The purpose of the airlock sliding trays is fourfold: 1) Mitigate risk of rotator cuff injuries, 2) Improve ALARA, 3) Reduce risk of glovebox glove breaches and glove punctures, and 4) Improve worker comfort. I have had the opportunity to visit many other DOE facilities including Savannah, Y-12, ORNL, Sandia, and Livermore for assistance with ergonomic problems and/or injuries. All of these sites would benefit from the airlock sliding tray and I can assume all other DOE facilities with gloveboxes built prior to 1985 could also use the sliding trays.

  12. Railgun rail gouging by hypervelocity sliding contact

    SciTech Connect

    Barker, L.M.; Trucano, T.G. ); Susoeff, A.R. )

    1989-01-01

    A description is given of a recently resolved mechanisms of gouging which occurs during hypervelocity sliding contact between two materials. A parameter study based on computer modeling of the gouging mechanism is presented in which gouging velocity thresholds are determined for several combinations of sliding materials. Materials which can gouge each other are found to do so only within a certain range of velocities. Related calculations of gaseous material ahead of railgun projectiles are also presented. Gun bore gouging experience with the Lawrence Livermore National Laboratory railgun project is reviewed.

  13. Railgun rail gouging by hypervelocity sliding contact

    SciTech Connect

    Barker, L.M.; Trucano, T.G.; Susoeff, A.R.

    1988-01-01

    A description is given of a recently resolved mechanism of gouging which occurs during hypervelocity sliding contact between two materials. A parameter study based on computer modelling of the gouging mechanism is presented in which gouging velocity thresholds are determined for several combinations of sliding materials. Materials which can gouge each other are found to do so only within a certain range of velocities. Related calculations of gaseous material ahead of railgun projectiles are also presented. Gun bore gouging experience with the Lawrence Livermore National Laboratory railgun project is reviewed.

  14. Sliding Window Generalized Kernel Affine Projection Algorithm Using Projection Mappings

    NASA Astrophysics Data System (ADS)

    Slavakis, Konstantinos; Theodoridis, Sergios

    2008-12-01

    Very recently, a solution to the kernel-based online classification problem has been given by the adaptive projected subgradient method (APSM). The developed algorithm can be considered as a generalization of a kernel affine projection algorithm (APA) and the kernel normalized least mean squares (NLMS). Furthermore, sparsification of the resulting kernel series expansion was achieved by imposing a closed ball (convex set) constraint on the norm of the classifiers. This paper presents another sparsification method for the APSM approach to the online classification task by generating a sequence of linear subspaces in a reproducing kernel Hilbert space (RKHS). To cope with the inherent memory limitations of online systems and to embed tracking capabilities to the design, an upper bound on the dimension of the linear subspaces is imposed. The underlying principle of the design is the notion of projection mappings. Classification is performed by metric projection mappings, sparsification is achieved by orthogonal projections, while the online system's memory requirements and tracking are attained by oblique projections. The resulting sparsification scheme shows strong similarities with the classical sliding window adaptive schemes. The proposed design is validated by the adaptive equalization problem of a nonlinear communication channel, and is compared with classical and recent stochastic gradient descent techniques, as well as with the APSM's solution where sparsification is performed by a closed ball constraint on the norm of the classifiers.

  15. Sliding GAIT Algorithm for the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE)

    NASA Technical Reports Server (NTRS)

    Townsend, Julie; Biesiadecki, Jeffrey

    2012-01-01

    The design of a surface robotic system typically involves a trade between the traverse speed of a wheeled rover and the terrain-negotiating capabilities of a multi-legged walker. The ATHLETE mobility system, with both articulated limbs and wheels, is uniquely capable of both driving and walking, and has the flexibility to employ additional hybrid mobility modes. This paper introduces the Sliding Gait, an intermediate mobility algorithm faster than walking with better terrain-handling capabilities than wheeled mobility.

  16. Carotid artery wall motion analysis from B-mode ultrasound using adaptive block matching: in silico evaluation and in vivo application

    NASA Astrophysics Data System (ADS)

    Gastounioti, A.; Golemati, S.; Stoitsis, J. S.; Nikita, K. S.

    2013-12-01

    Valid risk stratification for carotid atherosclerotic plaques represents a crucial public health issue toward preventing fatal cerebrovascular events. Although motion analysis (MA) provides useful information about arterial wall dynamics, the identification of motion-based risk markers remains a significant challenge. Considering that the ability of a motion estimator (ME) to handle changes in the appearance of motion targets has a major effect on accuracy in MA, we investigated the potential of adaptive block matching (ABM) MEs, which consider changes in image intensities over time. To assure the validity in MA, we optimized and evaluated the ABM MEs in the context of a specially designed in silico framework. ABMFIRF2, which takes advantage of the periodicity characterizing the arterial wall motion, was the most effective ABM algorithm, yielding a 47% accuracy increase with respect to the conventional block matching. The in vivo application of ABMFIRF2 revealed five potential risk markers: low movement amplitude of the normal part of the wall adjacent to the plaques in the radial (RMAPWL) and longitudinal (LMAPWL) directions, high radial motion amplitude of the plaque top surface (RMAPTS), and high relative movement, expressed in terms of radial strain (RSIPL) and longitudinal shear strain (LSSIPL), between plaque top and bottom surfaces. The in vivo results were reproduced by OFLK(WLS) and ABMKF-K2, MEs previously proposed by the authors and with remarkable in silico performances, thereby reinforcing the clinical values of the markers and the potential of those MEs. Future in vivo studies will elucidate with confidence the full potential of the markers.

  17. How to Prepare Clay-Lift and Sandwich Slides.

    ERIC Educational Resources Information Center

    Barman, Charles R.

    1984-01-01

    Describes two techniques for making 35 millimeter slides without using photographic film. One method uses clear adhesive contact paper and the other uses transparency film. Both techniques are inexpensive and require only a few minutes of preparation per slide. (JM)

  18. 45. March 26, 1935 View of the big slide of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. March 26, 1935 View of the big slide of several hundred cubic yards of rock, spring of 1934. Another slide occurred at this same location on May 26, 1935. - Scotts Bluff Summit Road, Gering, Scotts Bluff County, NE

  19. Ceramic wear in indentation and sliding

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The various wear mechanisms involved with single-crystal ceramic materials in indentation and in sliding contacts. Experiments simulating interfacial events have been conducted with hemispherical, conical and pyramidal indenters (riders). With spherical riders, under either abrasive or adhesive conditions, two types of fracture pits have been observed. First, spherical-shaped fracture pits and wear particles are found as a result of either indenting or sliding. These are shown to be due to a spherical-shaped fracture along the circular or spherical stress trajectories. Second, polyhedral fracture pits and debris, produced by anisotropic fracture, and also found both during indenting and sliding. These are primarily controlled by surface and subsurface cracking along cleavage planes. Several quantitative results have also been obtained from this work. For example, using a pyramidal diamond, crack length of Mn-Zn ferrite in the indentation process grows linearly with increasing normal load. Moreover, the critical load to fracture both in indentation and sliding is essentially isotropic and is found to be directly proportional to the indenter radius.

  20. Enhancing Creative Thinking through Designing Electronic Slides

    ERIC Educational Resources Information Center

    Mokaram, Al-Ali Khaled; Al-Shabatat, Ahmad Mohammad; Fong, Fook Soon; Abdallah, Andaleeb Ahmad

    2011-01-01

    During the shifting of teaching and learning methods using computer technologies, much emphasis was paid on the knowledge content more than the thinking skills. Thus, this study investigated the effects of a computer application, namely, designing electronic slides on the development of creative thinking skills of a sample of undergraduate…

  1. Metatarsal-slide lengthening without bone grafting.

    PubMed

    Tabak, B; Lefkowitz, H; Steiner, I

    1986-01-01

    Brachymetatarsia is a condition of premature closure of the epiphyseal plate of a metatarsal. The authors present a case of brachymetatarsia of the second metatarsal. Utilizing a review of the literature, various surgical procedures are discussed. Treatment in this case consisted of a metatarsal-slide lengthening osteotomy, a modification of the Giannestras step-down procedure. PMID:3950333

  2. Simulation of sliding of liquid droplets

    NASA Astrophysics Data System (ADS)

    Alen, Saif Khan; Farhat, Nazia; Rahman, Md. Ashiqur

    2016-07-01

    Numerical simulations of sliding behavior of liquid droplets on flat and periodic microgrooved surfaces with a range of groove geometry are conducted. A numerical model is developed which is capable of predicting the critical sliding angle of the drop by comparing the advancing and the receding angles obtained from numerical and experimental findings. The effect of microgroove topography, droplet size and inclination angle on the droplet sliding characteristics is analysed. Using an open-source platform (Surface Evolver), a 3D drop-shape model is developed to numerically determine the drop stability and contact angle hysteresis on tilted surfaces. In this numerical model, the three phase contact line of the drop is obtained by numerically calculating the vertex force and local contact angle at each vertex of the base contour. Several numerical models are developed based on various assumptions of base contour shape (circular or elliptical) and implementation of gravitational force to the droplet. Droplet shapes and critical sliding angles, obtained from these numerical models, are compared with those of experimental results and are found to be in very good agreement.

  3. Particle Sliding on a Rough Incline

    ERIC Educational Resources Information Center

    Zurcher, Ulrich

    2007-01-01

    We study a particle sliding on a rough inclined plane as an example of a mechanical problem with nonholonomic constraint. The particle is launched in an arbitrary direction so that its motion has both a horizontal and a "vertical" (i.e., up- and downhill) direction. The friction force acts along the instantaneous velocity, so that the horizontal…

  4. Color Microfiche as a Replacement for Slides.

    ERIC Educational Resources Information Center

    Schwarz, Philip

    This is the summary of a larger paper describing the evolution of a mediated elementary accounting course at the University of Wisconsin-Stout. The course was initially developed as a 25 slide-tape lesson course which included 950 visuals and approximately 25 hours of instruction. One hundred students per semester took the course in the following…

  5. Texturing in metals as a result of sliding

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Buckley, D. H.

    1973-01-01

    Sliding friction experiments were conducted with copper, nickel, iron, and cobalt sliding on themselves in air and argon. The resulting wear surfaces were examined with X-ray analysis to determine if surface texturing had occurred as a result of sliding. Results of the investigation indicate that, for the face-centered-cubic metals copper and nickel, a (111) texture develops with the (111) planes tilted 10 deg in the direction of sliding. The body-centered-cubic metal iron exhibited a (110) texture with the (100) direction oriented in the direction of sliding. It also exhibited a 10 deg tilt in the direction of sliding. The environment influenced the results in that the degree of texture observed in argon was less than that seen in air for iron. No texturing was observed for the close-packed-hexagonal metal cobalt. Recrystallization was observed with copper as a result of sliding.

  6. Sliding friction on wet and dry sand.

    PubMed

    Fall, A; Weber, B; Pakpour, M; Lenoir, N; Shahidzadeh, N; Fiscina, J; Wagner, C; Bonn, D

    2014-05-01

    We show experimentally that the sliding friction on sand is greatly reduced by the addition of some-but not too much-water. The formation of capillary water bridges increases the shear modulus of the sand, which facilitates the sliding. Too much water, on the other hand, makes the capillary bridges coalesce, resulting in a decrease of the modulus; in this case, we observe that the friction coefficient increases again. Our results, therefore, show that the friction coefficient is directly related to the shear modulus; this has important repercussions for the transport of granular materials. In addition, the polydispersity of the sand is shown to also have a large effect on the friction coefficient. PMID:24836256

  7. Plastic deformation at surface during unlubricated sliding

    NASA Technical Reports Server (NTRS)

    Yamamoto, T.; Buckley, D. H.

    1982-01-01

    The plastic deformation and wear of 304 stainless-steel surface slid against an aluminum oxide rider were observed by using a scanning electron microscope and an optical microscope. Experiments were conducted in a vacuum of 0.000001 Pa and in an environment of 0.0005 Pa chlorine gas at 25 C. The load was 500 grams and the sliding velocity was 0.5 centimeter per second. The deformed surface layer which accumulates and develops successively is left behind the rider, and step-shaped protuberances are developed even after single pass sliding under both environmental conditions. A fully developed surface layer is gradually torn off leaving a characteristic pattern. These observations result from both adhesion and an adhesive wear mechanism.

  8. Operational seismic network estimates rock slide properties

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-02-01

    During the spring of 1991, two subsequent landslides near Randa, Switzerland, dropped 30,000,000 cubic meters of debris on the town below. The rocks dammed the Vispa River, a temporary reservoir that would have failed catastrophically had the army not carved a channel through it. Many rock slides occur in remote alpine locations, so it can sometimes take days or weeks before they are detected, a delay that could have cost the town of Randa. Rock slides can range from deadly, to disruptive, to simple scientific curiosities.Dammeier et al. have developed a method to remotely estimate their volume, location, and runout distances that could potentially be used in real time.

  9. Vesicocutaneous fistula after sliding hernia repair

    PubMed Central

    Mittal, Varun; Kapoor, Rakesh; Sureka, Sanjoy

    2016-01-01

    Sliding inguinal hernias are usually direct inguinal hernias containing various abdominal viscera. The incidence of bladder forming a part of an inguinal hernia, called as “scrotal cystocele,” is 1–4%. The risk of bladder injury is as high as 12% when repairing this type of hernia. This case report emphasizes this aspect in a 65-year-old man who presented with urinary leak through the scrotal wound following right inguinal hernia repair. PMID:26941501

  10. Fast Convolution Using Generalized Sliding Fermat Number Transform with Application to Digital Filtering

    NASA Astrophysics Data System (ADS)

    Alaeddine, Hamzé Haidar; Bazzi, Oussama; Alaeddine, Ali Haidar; Mohanna, Yasser; Burel, Gilles

    This paper is about a new efficient method for the implementation of a Block Proportionate Normalized Least Mean Square (BPNLMS++) adaptive filter using the Fermat Number Transform (FNT) and its inverse (IFNT). These transforms present advantages compared to Fast Fourier Transform (FFT) and the inverse (IFFT). An efficient state space method for implementing the FNT over rectangular windows is used in the cases where there is a large overlap between the consecutive input signals. This is called Generalized Sliding Fermat Number Transform (GSFNT) and is useful for reducing the computational complexity of finite ring convolvers and correlators. In this contribution, we propose, as a first objective, an efficient state algorithm with the purpose of reducing the complexity of IFNT. This algorithm, called Inverse Generalized Sliding Fermat Number Transform (IGSFNT), uses the technique of Generalized Sliding associated to matricial calculation in the Galois Field. The second objective is to realize an implementation of the BPNLMS++ adaptive filter using GSFNT and IGSFNT, which can significantly reduce the computation complexity of the filter implantation on digital signal processors.

  11. Slide-specific models for segmentation of differently stained digital histopathology whole slide images

    NASA Astrophysics Data System (ADS)

    Brieu, Nicolas; Pauly, Olivier; Zimmermann, Johannes; Binnig, Gerd; Schmidt, Günter

    2016-03-01

    The automatic analysis of whole slide images (WSIs) of stained histopathology tissue sections plays a crucial role in the discovery of predictive biomarkers in the field on immuno-oncology by enabling the quantification of the phenotypic information contained in the tissue sections. The automatic detection of cells and nuclei, while being one of the major steps of such analysis, remains a difficult problem because of the low visual differentiation of high pleomorphic and densely cluttered objects and of the diversity of tissue appearance between slides. The key idea of this work is to take advantage of well-differentiated objects in each slide to learn about the appearance of the tissue and in particular about the appearance of low-differentiated objects. We detect well-differentiated objects on a automatically selected set of representative regions, learn slide-specific visual context models, and finally use the resulting posterior maps to perform the final detection steps on the whole slide. The accuracy of the method is demonstrated against manual annotations on a set of differently stained images.

  12. Design of a new adaptive fuzzy controller and its application to vibration control of a vehicle seat installed with an MR damper

    NASA Astrophysics Data System (ADS)

    Phu, Do Xuan; Shin, Do Kyun; Choi, Seung-Bok

    2015-08-01

    This paper presents a new adaptive fuzzy controller featuring a combination of two different control methodologies: H infinity control technique and sliding mode control. It is known that both controllers are powerful in terms of high performance and robust stability. However, both control methods require an accurate dynamic model to design a state variable based controller in order to maintain their advantages. Thus, in this work a fuzzy control method which does not require an accurate dynamic model is adopted and two control methodologies are integrated to maintain the advantages even in an uncertain environment of the dynamic system. After a brief explanation of the interval type 2 fuzzy logic, a new adaptive fuzzy controller associated with the H infinity control and sliding mode control is formulated on the basis of Lyapunov stability theory. Subsequently, the formulated controller is applied to vibration control of a vehicle seat equipped with magnetorheological fluid damper (MR damper in short). An experimental setup for realization of the proposed controller is established and vibration control performances such as acceleration at the driver’s seat are evaluated. In addition, in order to demonstrate the effectiveness of the proposed controller, a comparative work with two existing controllers is undertaken. It is shown through simulation and experiment that the proposed controller can provide much better vibration control performance than the two existing controllers.

  13. Slide Conveying of Granular Materials-Thinking Out of the Glovebox

    NASA Technical Reports Server (NTRS)

    Goddard, J. D.; Didwania, A. K.; Nott, P. R.

    2000-01-01

    The vibratory conveyor, routinely employed for normal-gravity transport of granular materials, usually consists of a continuous open trough vibrated sinusoidally to induce axial movement of a granular material. Motivated in part by a hypothetical application in zero gravity, we propose a novel modification of the vibratory conveyor based on a closed 2d trough operating in a "slide-conveying" mode, with the granular mass remaining permanently in contact with the trough walls. We present a detailed analysis of the mechanics of transport, based on a rigid-slab model for the granular mass with frictional (Coulomb) slip at the upper and lower walls. The form of the vibration cycle plays a crucial role, and the optimal conveying cycle is not the commonly assumed rectilinear sinusoidal motion. The conveying efficiency for the novel slide conveyor will be presented for several simple vibration cycles, including one believed to represent the theoretical optimum.

  14. "The living picture": on the circulation of microscope-slide knowledge in 1903.

    PubMed

    Gaycken, Oliver

    2013-01-01

    Microscope slides allowed preparations to circulate among scientific and educational contexts. An extension of the circulation of microscope slides was how they became part of lantern exhibition culture. This article considers an early example of the adoption of microscope lantern show conventions by another medium, the cinema. E Martin Duncan, who was employed by Charles Urban to produce a series of popular-science films beginning in 1903, brought his experience with microphotography to bear on the challenge of adapting cinema to the purpose of public instruction. Duncan's first series of films, entitled "The Unseen World," demonstrated both profound links to the display tradition of the lantern lecture as well as the transformation of that tradition by the cinema's representational possibilities. PMID:24779105

  15. Two dimensional nanoscale reciprocating sliding contacts of textured surfaces

    NASA Astrophysics Data System (ADS)

    Tong, Ruiting; Liu, Geng; Liu, Tianxiang

    2016-05-01

    Detailed behaviors of nanoscale textured surfaces during the reciprocating sliding contacts are still unknown although they are widely used in mechanical components to improve tribological characteristics. The current research of sliding contacts of textured surfaces mainly focuses on the experimental studies, while the cost is too high. Molecular dynamics(MD) simulation is widely used in the studies of nanoscale single-pass sliding contacts, but the CPU cost of MD simulation is also too high to simulate the reciprocating sliding contacts. In this paper, employing multiscale method which couples molecular dynamics simulation and finite element method, two dimensional nanoscale reciprocating sliding contacts of textured surfaces are investigated. Four textured surfaces with different texture shapes are designed, and a rigid cylindrical tip is used to slide on these textured surfaces. For different textured surfaces, average potential energies and average friction forces of the corresponding sliding processes are analyzed. The analyzing results show that "running-in" stages are different for each texture, and steady friction processes are discovered for textured surfaces II, III and IV. Texture shape and sliding direction play important roles in reciprocating sliding contacts, which influence average friction forces greatly. This research can help to design textured surfaces to improve tribological behaviors in nanoscale reciprocating sliding contacts.

  16. Observation and output adaptive tracking for a class of nonlinear non-minimum phase systems

    NASA Astrophysics Data System (ADS)

    Bartolini, G.; Estrada, A.; Punta, E.

    2016-09-01

    In this paper, the output tracking problem for a class of systems with unstable zero dynamics is addressed. The state is assumed not measurable. The output of the dynamical system to be controlled has to track a signal, which is the sum of a known number of sinusoids with unknown frequencies, amplitudes and phases. The non-minimum phase nature of the considered systems prevents the direct tracking by standard sliding mode methods, which are known to generate unstable behaviours of the internal dynamics. The proposed method relies on the availability of a flat output and its time derivatives which are functions of the unavailable state; therefore, a nonlinear observer is needed. Due to the uncertainty in the frequencies and in the parameters defining the relationship between the output of the system and the flat states, adaptive indirect methods are applied.

  17. Adaptive Computerized Instruction.

    ERIC Educational Resources Information Center

    Ray, Roger D.; And Others

    1995-01-01

    Describes an artificially intelligent multimedia computerized instruction system capable of developing a conceptual image of what a student is learning while the student is learning it. It focuses on principles of learning and adaptive behavioral control systems theory upon which the system is designed and demonstrates multiple user modes.…

  18. Sliding wear and friction behaviour of zircaloy-4 in water

    NASA Astrophysics Data System (ADS)

    Sharma, Garima; Limaye, P. K.; Jadhav, D. T.

    2009-11-01

    In water cooled nuclear reactors, the sliding of fuel bundles in fuel channel handling system can lead to severe wear and it is an important topic to study. In the present study, sliding wear behaviour of zircaloy-4 was investigated in water (pH ˜ 10.5) using ball-on-plate sliding wear tester. Sliding wear resistance zircaloy-4 against SS 316 was examined at room temperature. Sliding wear tests were carried out at different load and sliding frequencies. The coefficient of friction of zircaloy-4 was also measured during each tests and it was found to decrease slightly with the increase in applied load. The micro-mechanisms responsible for wear in zircaloy-4 were identified to be microcutting, micropitting and microcracking of deformed subsurface zones in water.

  19. Planning Robotic Manipulation Strategies for Sliding Objects

    NASA Astrophysics Data System (ADS)

    Peshkin, Michael A.

    Automated planning of grasping or manipulation requires an understanding of both the physics and the geometry of manipulation, and a representation of that knowledge which facilitates the search for successful strategies. We consider manipulation on a level conveyor belt or tabletop, on which a part may slide when touched by a robot. Manipulation plans for a given part must succeed in the face of two types of uncertainty: that of the details of surfaces in contact, and that of the initial configuration of the part. In general the points of contact between the part and the surface it slides on will be unknown, so the motion of the part in response to a push cannot be predicted exactly. Using a simple variational principle (which is derived), we find the set of possible motions of a part for a given push, for all collections of points of contact. The answer emerges as a locus of centers of rotation (CORs). Manipulation plans made using this locus will succeed despite unknown details of contact. Results of experimental tests of the COR loci are presented. Uncertainty in the initial configuration of a part is usually also present. To plan in the presence of uncertainty, configuration maps are defined, which map all configurations of a part before an elementary operation to all possible outcomes, thus encapsulating the physics and geometry of the operation. The configuration map for an operation sequence is a product of configuration maps of elementary operations. Using COR loci we compute configuration maps for elementary sliding operations. Appropriate search techniques are applied to find operation sequences which succeed in the presence of uncertainty in the initial configuration and unknown details of contact. Such operation sequences may be used as parts feeder designs or as manipulation or grasping strategies for robots. As an example we demonstrate the automated design of a class of passive parts feeders consisting of multiple sequential fences across a conveyor

  20. Detachment of compliant films adhered to stiff substrates via van der Waals interactions: role of frictional sliding during peeling

    PubMed Central

    Collino, Rachel R.; Philips, Noah R.; Rossol, Michael N.; McMeeking, Robert M.; Begley, Matthew R.

    2014-01-01

    The remarkable ability of some plants and animals to cling strongly to substrates despite relatively weak interfacial bonds has important implications for the development of synthetic adhesives. Here, we examine the origins of large detachment forces using a thin elastomer tape adhered to a glass slide via van der Waals interactions, which serves as a model system for geckos, mussels and ivy. The forces required for peeling of the tape are shown to be a strong function of the angle of peeling, which is a consequence of frictional sliding at the edge of attachment that serves to dissipate energy that would otherwise drive detachment. Experiments and theory demonstrate that proper accounting for frictional sliding leads to an inferred work of adhesion of only approximately 0.5 J m−2 (defined for purely normal separations) for all load orientations. This starkly contrasts with the interface energies inferred using conventional interface fracture models that assume pure sticking behaviour, which are considerably larger and shown to depend not only on the mode-mixity, but also on the magnitude of the mode-I stress intensity factor. The implications for developing frameworks to predict detachment forces in the presence of interface sliding are briefly discussed. PMID:24920120

  1. Bi-directional planar slide mechanism

    SciTech Connect

    Bieg, Lothar F.

    2003-11-04

    A bi-directional slide mechanism. A pair of master and slave disks engages opposite sides of the platform. Rotational drivers are connected to master disks so the disks rotate eccentrically about their respective axes of rotation. Opposing slave disks are connected to master disks on opposite sides of the platform by a circuitous mechanical linkage, or are electronically synchronized together using stepper motors, to effect coordinated motion. The synchronized eccentric motion of the pairs of master/slave disks compels smooth linear motion of the platform forwards and backwards without backlash. The apparatus can be incorporated in a MEMS device.

  2. Adaptive robust motion trajectory tracking control of pneumatic cylinders with LuGre model-based friction compensation

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong

    2014-07-01

    Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This

  3. 21 CFR 864.3800 - Automated slide stainer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3800..., cytology, and hematology slides for diagnosis. (b) Classification. Class I (general controls). This...

  4. 21 CFR 864.3800 - Automated slide stainer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3800..., cytology, and hematology slides for diagnosis. (b) Classification. Class I (general controls). This...

  5. 21 CFR 864.3800 - Automated slide stainer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3800..., cytology, and hematology slides for diagnosis. (b) Classification. Class I (general controls). This...

  6. 21 CFR 864.3800 - Automated slide stainer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3800..., cytology, and hematology slides for diagnosis. (b) Classification. Class I (general controls). This...

  7. 21 CFR 864.3800 - Automated slide stainer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3800..., cytology, and hematology slides for diagnosis. (b) Classification. Class I (general controls). This...

  8. Underwater Sliding Properties: Effect of Slider Shape and Surface Wettability

    NASA Astrophysics Data System (ADS)

    Kirveslahti, A.; Mielonen, K.; Ikonen, K.; Cui, W.; Suvanto, M.; Pakkanen, T. A.

    2016-04-01

    A dynamic test method for the measurement of the underwater sliding properties of model boats has been developed. Surface-modified model boats were examined to assess how the surface wettability properties affect sliding. Along with the surface properties, the influence of the boat shape was considered. We studied various coatings in the contact angle range of 3-162∘ with two model boat shapes. The hydrophobicity of the surfaces influenced the sliding speed of the model boat depending on the boat shape. The method is applicable to study sliding properties of model boats with different surfaces in variable flow conditions.

  9. Slide less pathology”: Fairy tale or reality?

    PubMed Central

    Indu, M; Rathy, R; Binu, MP

    2016-01-01

    Pathology practice is significantly advanced in various frontiers. Therefore, “slide less digital” pathology will not be a mere imagination in near future. Digitalization of histopathological slides (whole slide imaging [WSI]) is possible with the help of whole slide scanner. The WSI has a positive impact not only in routine practice but also in research field, medical education and bioindustry. Even if digital pathology has definitive advantages, its widespread use is not yet possible. As it is an upcoming technology in our field, this article is aimed to discussessential aspects of WSI.

  10. Slide less pathology”: Fairy tale or reality?

    PubMed Central

    Indu, M; Rathy, R; Binu, MP

    2016-01-01

    Pathology practice is significantly advanced in various frontiers. Therefore, “slide less digital” pathology will not be a mere imagination in near future. Digitalization of histopathological slides (whole slide imaging [WSI]) is possible with the help of whole slide scanner. The WSI has a positive impact not only in routine practice but also in research field, medical education and bioindustry. Even if digital pathology has definitive advantages, its widespread use is not yet possible. As it is an upcoming technology in our field, this article is aimed to discussessential aspects of WSI. PMID:27601824

  11. Mode-II-Fracture Specimen And Holder

    NASA Technical Reports Server (NTRS)

    Buzzard, Robert J.; Ghosn, Louis; Succop, George

    1991-01-01

    Test specimen and loading frame developed for fatigue and fracture testing of materials under mode-II (sliding-mode) loading. Assembly placed in compression-testing machine. Loads directed oppositely along centerline cause self-similar crack to propagate. Enables consistently accurate alignment of specimens before insertion of specimen/frame assemblies into compression-testing machine. Makes design attractive for testing in hostile environments in which access to machine or furnace limited. Additional feature, with little or no modification, placed horizontally into impact testing machine and subjected to loading at high speeds.

  12. Monitoring studies of slide system under the action of seismic impacts

    NASA Astrophysics Data System (ADS)

    Frolov, Anton

    2013-04-01

    The immediate detection of landslide activity that is provided by real-time systems can be crucial in saving human lives and protecting property. Traditional field observations, even if taken regularly, cannot detect changes at the moment they occur. Moreover, active landslides can be hazardous to work on, and large movements often occur during storms when visibility is poor. The continuous data provided by remote real-time monitoring permits a better understanding of dynamic landslide behavior that, in turn, enables engineers to create more effective designs to prevent or halt landslides. Monitoring of the coastal zone involves the following block diagram: input - processing -output - feed-back. We feed the input with data on a studied technogenous loading on the coastal zone, and the input presents the analysis of motion of a geological medium and the subsequent forecast of evolution of its lithodynamic characteristics. The submitted report describes a practical system of monitoring for the Central Livadiya Slide System (CLSSC) of the Crimea, which is intended for the diagnostics of a lithodynamic situation in the real-time mode, conducting the data base on heliogenous and lithogenous parameters, and predicting a future state of the slide-containing system. In the system of monitoring of a state of CLSSC, which is realized on a computer, the registered heliogenous parameters include the level of solar activity, changes in temperature and moisture regimes, changes in the character and intensity of precipitations, the wind velocity, etc. In this case, data are introduced into the computer in the manual mode. Lithogenous parameters are presented by a collection of conditions and factors characterizing the mechanism and dynamics of changes in the equilibrium state of slopes of CLSSC. The control over the evolution of lithogenous parameters is realized in the following way: 1. The control over movement of the control points on the surface of active slides is carried

  13. Exhumation by gravitational sliding up an inclined plane

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yury; Schmalholz, Stefan; Burg, Jean-Pierre

    2015-04-01

    Gravity causes sliding down an inclined plane if pressure is near lithostatic. If metamorphic pressures are lithostatic pressures, the approximation is inconsistent with pressure-temperature exhumation histories of thrust nappes stacked during compression to form the thickened crust of mountain belts. Overthickened mountain roots and foreland basin-type sedimentation accompanying the downward movement component of the Moho require significant non-lithostatic pressure perturbations within the mountain belts. Relaxation of the subsequent pressure gradients can be achieved by nappe-like thrusting up an inclined plane recording near isothermal decompression and carrying young sediments to high altitudes. We present results of fully dynamic numerical modelling documenting feasibility of this process. Neither thrusting, nor large weakness zones nor S-point-type boundary conditions are kinematically prescribed in our models. Thrusting emerges spontaneously as an instability, strain localization process that may follow preexisting lithological layering or thermal gradients and able to form new zones of weakness by shear heating mechanism. The non-prescribed nature of our modeled deformation modes makes them feasible, even probable as a leading response to continental shortening. In that case, non lithostatic pressure 'cycle' is an alternative or a complement to the classical Wilson cycle invoked alone to explain elevated occurrences of deep-water sediments.

  14. A frictional sliding algorithm for liquid droplets

    NASA Astrophysics Data System (ADS)

    Sauer, Roger A.

    2016-08-01

    This work presents a new frictional sliding algorithm for liquid menisci in contact with solid substrates. In contrast to solid-solid contact, the liquid-solid contact behavior is governed by the contact line, where a contact angle forms and undergoes hysteresis. The new algorithm admits arbitrary meniscus shapes and arbitrary substrate roughness, heterogeneity and compliance. It is discussed and analyzed in the context of droplet contact, but it also applies to liquid films and solids with surface tension. The droplet is modeled as a stabilized membrane enclosing an incompressible medium. The contact formulation is considered rate-independent such that hydrostatic conditions apply. Three distinct contact algorithms are needed to describe the cases of frictionless surface contact, frictionless line contact and frictional line contact. For the latter, a predictor-corrector algorithm is proposed in order to enforce the contact conditions at the contact line and thus distinguish between the cases of advancing, pinning and receding. The algorithms are discretized within a monolithic finite element formulation. Several numerical examples are presented to illustrate the numerical and physical behavior of sliding droplets.

  15. Sliding viscoelastic drops on slippery surfaces

    NASA Astrophysics Data System (ADS)

    Xu, H.; Clarke, A.; Rothstein, J. P.; Poole, R. J.

    2016-06-01

    We study the sliding of drops of constant-viscosity dilute elastic liquids (Boger fluids) on various surfaces caused by sudden surface inclination. For smooth or roughened hydrophilic surfaces, such as glass or acrylic, there is essentially no difference between these elastic liquids and a Newtonian comparator fluid (with identical shear viscosity, surface tension, and static contact angle). In contrast for embossed polytetrafluoroethylene superhydrophobic surfaces, profound differences are observed: the elastic drops slide at a significantly reduced rate and complex branch-like patterns are left on the surface by the drop's wake including, on various scales, beads-on-a-string like phenomena. Microscopy images indicate that the strong viscoelastic effect is caused by stretching filaments of fluid from isolated islands, residing at pinning sites on the surface pillars, of the order ˜30 μm in size. On this scale, the local strain rates are sufficient to extend the polymer chains, locally increasing the extensional viscosity of the solution, retarding the drop and leaving behind striking branch-like structures on much larger scales.

  16. Adaptive Instability Suppression Controls in a Liquid-fueled Combustor

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.

    2002-01-01

    An adaptive control algorithm has been developed for the suppression of combustion thermo-acoustic instabilities. This technique involves modulating the fuel flow in the combustor with a control phase that continuously slides within the stable phase region, in a back and forth motion. The control method is referred to as Adaptive Sliding Phasor Averaged Control (ASPAC). The control method is evaluated against a simplified simulation of the combustion instability. Plans are to validate the control approach against a more physics-based model and an actual experimental combustor rig.

  17. Influence of normal loads and sliding velocities on friction properties of engineering plastics sliding against rough counterfaces

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, D. M.; Chowdhury, M. A.; Rahaman, M. L.; Oumer, A. N.

    2016-02-01

    Friction properties of plastic materials are very important under dry sliding contact conditions for bearing applications. In the present research, friction properties of engineering plastics such as polytetrafluoroethylene (PTFE) and nylon are investigated under dry sliding contact conditions. In the experiments, PTFE and nylon slide against different rough counterfaces such as mild steel and stainless steel 316 (SS 316). Frictional tests are carried out at low loads 5, 7.5 and 10 N, low sliding velocities 0.5, 0.75 and 1 m/s and relative humidity 70%. The obtained results reveal that friction coefficient of PTFE increases with the increase in normal loads and sliding velocities within the observed range. On the other hand, frictional values of nylon decrease with the increase in normal loads and sliding velocities. It is observed that in general, these polymers show higher frictional values when sliding against SS 316 rather than mild steel. During running-in process, friction coefficient of PTFE and nylon steadily increases with the increase in rubbing time and after certain duration of rubbing, it remains at steady level. At identical operating conditions, the frictional values are significantly different depending on normal load, sliding velocity and material pair. It is also observed that in general, the influence of normal load on the friction properties of PTFE and nylon is greater than that of sliding velocity.

  18. Plasma Modes

    NASA Astrophysics Data System (ADS)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  19. An industry perspective: An update on the adoption of whole slide imaging

    PubMed Central

    Montalto, Michael C.

    2016-01-01

    This manuscript is an adaptation of the closing keynote presentation of the Digital Pathology Association Pathology Visions Conference 2015 in Boston, MA, USA. In this presentation, analogies are drawn between the adoption of whole slide imaging (WSI) and other mainstream digital technologies, including digital music and books. In doing so, it is revealed that the adoption of seemingly similar digital technologies does not follow the same adoption profiles and that understanding the unique aspects of value for each customer segment is critical. Finally, a call to action is given to academia and industry to study the value that WSI brings to the global healthcare community. PMID:27141323

  20. One-Dimensional Sliding of p53 Along DNA Is Accelerated in the Presence of Ca(2+) or Mg(2+) at Millimolar Concentrations.

    PubMed

    Murata, Agato; Ito, Yuji; Kashima, Risa; Kanbayashi, Saori; Nanatani, Kei; Igarashi, Chihiro; Okumura, Masaki; Inaba, Kenji; Tokino, Takashi; Takahashi, Satoshi; Kamagata, Kiyoto

    2015-08-14

    One-dimensional (1D) sliding of the tumor suppressor p53 along DNA is an essential dynamics required for its efficient search for the binding sites in the genome. To address how the search process of p53 is affected by the changes in the concentration of Mg(2+) and Ca(2+) after the cell damages, we investigated its sliding dynamics at different concentrations of the divalent cations. The 1D sliding trajectories of p53 along the stretched DNA were measured by using single-molecule fluorescence microscopy. The averaged diffusion coefficient calculated from the mean square displacement of p53 on DNA increased significantly at the higher concentration of Mg(2+) or Ca(2+), indicating that the divalent cations accelerate the sliding likely by weakening the DNA-p53 interaction. In addition, two distributions were identified in the displacement of the observed trajectories of p53, demonstrating the presence of the fast and slow sliding modes having large and small diffusion coefficients, respectively. A coreless mutant of p53, in which the core domain was deleted, showed only a single mode whose diffusion coefficient is about twice that of the fast mode for the full-length p53. Thus, the two modes are likely the result of the tight and loose interactions between the core domain of p53 and DNA. These results demonstrated clearly that the 1D sliding dynamics of p53 is strongly dependent on the concentration of Mg(2+) and Ca(2+), which maintains the search distance of p53 along DNA in cells that lost homeostatic control of the divalent cations.