Science.gov

Sample records for adaptive smoothed particle

  1. A local adaptive discretization algorithm for Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Spreng, Fabian; Schnabel, Dirk; Mueller, Alexandra; Eberhard, Peter

    2014-06-01

    In this paper, an extension to the Smoothed Particle Hydrodynamics (SPH) method is proposed that allows for an adaptation of the discretization level of a simulated continuum at runtime. By combining a local adaptive refinement technique with a newly developed coarsening algorithm, one is able to improve the accuracy of the simulation results while reducing the required computational cost at the same time. For this purpose, the number of particles is, on the one hand, adaptively increased in critical areas of a simulation model. Typically, these are areas that show a relatively low particle density and high gradients in stress or temperature. On the other hand, the number of SPH particles is decreased for domains with a high particle density and low gradients. Besides a brief introduction to the basic principle of the SPH discretization method, the extensions to the original formulation providing such a local adaptive refinement and coarsening of the modeled structure are presented in this paper. After having introduced its theoretical background, the applicability of the enhanced formulation, as well as the benefit gained from the adaptive model discretization, is demonstrated in the context of four different simulation scenarios focusing on solid continua. While presenting the results found for these examples, several properties of the proposed adaptive technique are discussed, e.g. the conservation of momentum as well as the existing correlation between the chosen refinement and coarsening patterns and the observed quality of the results.

  2. Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Barcarolo, D. A.; Le Touzé, D.; Oger, G.; de Vuyst, F.

    2014-09-01

    SPH simulations are usually performed with a uniform particle distribution. New techniques have been recently proposed to enable the use of spatially varying particle distributions, which encouraged the development of automatic adaptivity and particle refinement/derefinement algorithms. All these efforts resulted in very interesting and promising procedures leading to more efficient and faster SPH simulations. In this article, a family of particle refinement techniques is reviewed and a new derefinement technique is proposed and validated through several test cases involving both free-surface and viscous flows. Besides, this new procedure allows higher resolutions in the regions requiring increased accuracy. Moreover, several levels of refinement can be used with this new technique, as often encountered in adaptive mesh refinement techniques in mesh-based methods.

  3. A DAFT DL_POLY distributed memory adaptation of the Smoothed Particle Mesh Ewald method

    NASA Astrophysics Data System (ADS)

    Bush, I. J.; Todorov, I. T.; Smith, W.

    2006-09-01

    The Smoothed Particle Mesh Ewald method [U. Essmann, L. Perera, M.L. Berkowtz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103 (1995) 8577] for calculating long ranged forces in molecular simulation has been adapted for the parallel molecular dynamics code DL_POLY_3 [I.T. Todorov, W. Smith, Philos. Trans. Roy. Soc. London 362 (2004) 1835], making use of a novel 3D Fast Fourier Transform (DAFT) [I.J. Bush, The Daresbury Advanced Fourier transform, Daresbury Laboratory, 1999] that perfectly matches the Domain Decomposition (DD) parallelisation strategy [W. Smith, Comput. Phys. Comm. 62 (1991) 229; M.R.S. Pinches, D. Tildesley, W. Smith, Mol. Sim. 6 (1991) 51; D. Rapaport, Comput. Phys. Comm. 62 (1991) 217] of the DL_POLY_3 code. In this article we describe software adaptations undertaken to import this functionality and provide a review of its performance.

  4. Equalizing resolution in smoothed-particle hydrodynamics calculations using self-adaptive sinc kernels

    NASA Astrophysics Data System (ADS)

    García-Senz, Domingo; Cabezón, Rubén M.; Escartín, José A.; Ebinger, Kevin

    2014-10-01

    Context. The smoothed-particle hydrodynamics (SPH) technique is a numerical method for solving gas-dynamical problems. It has been applied to simulate the evolution of a wide variety of astrophysical systems. The method has a second-order accuracy, with a resolution that is usually much higher in the compressed regions than in the diluted zones of the fluid. Aims: We propose and check a method to balance and equalize the resolution of SPH between high- and low-density regions. This method relies on the versatility of a family of interpolators called sinc kernels, which allows increasing the interpolation quality by varying only a single parameter (the exponent of the sinc function). Methods: The proposed method was checked and validated through a number of numerical tests, from standard one-dimensional Riemann problems in shock tubes, to multidimensional simulations of explosions, hydrodynamic instabilities, and the collapse of a Sun-like polytrope. Results: The analysis of the hydrodynamical simulations suggests that the scheme devised to equalize the accuracy improves the treatment of the post-shock regions and, in general, of the rarefacted zones of fluids while causing no harm to the growth of hydrodynamic instabilities. The method is robust and easy to implement with a low computational overload. It conserves mass, energy, and momentum and reduces to the standard SPH scheme in regions of the fluid that have smooth density gradients.

  5. The formation of entropy cores in non-radiative galaxy cluster simulations: smoothed particle hydrodynamics versus adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Power, C.; Read, J. I.; Hobbs, A.

    2014-06-01

    We simulate cosmological galaxy cluster formation using three different approaches to solving the equations of non-radiative hydrodynamics - classic smoothed particle hydrodynamics (SPH), novel SPH with a higher order dissipation switch (SPHS), and an adaptive mesh refinement (AMR) method. Comparing spherically averaged entropy profiles, we find that SPHS and AMR approaches result in a well-defined entropy core that converges rapidly with increasing mass and force resolution. In contrast, the central entropy profile in the SPH approach is sensitive to the cluster's assembly history and shows poor numerical convergence. We trace this disagreement to the known artificial surface tension in SPH that appears at phase boundaries. Varying systematically numerical dissipation in SPHS, we study the contributions of numerical and physical dissipation to the entropy core and argue that numerical dissipation is required to ensure single-valued fluid quantities in converging flows. However, provided it occurs only at the resolution limit and does not propagate errors to larger scales, its effect is benign - there is no requirement to build `sub-grid' models of unresolved turbulence for galaxy cluster simulations. We conclude that entropy cores in non-radiative galaxy cluster simulations are physical, resulting from entropy generation in shocked gas during cluster assembly.

  6. Temperature Structure of the Intracluster Medium from Smoothed-particle Hydrodynamics and Adaptive-mesh Refinement Simulations

    NASA Astrophysics Data System (ADS)

    Rasia, Elena; Lau, Erwin T.; Borgani, Stefano; Nagai, Daisuke; Dolag, Klaus; Avestruz, Camille; Granato, Gian Luigi; Mazzotta, Pasquale; Murante, Giuseppe; Nelson, Kaylea; Ragone-Figueroa, Cinthia

    2014-08-01

    Analyses of cosmological hydrodynamic simulations of galaxy clusters suggest that X-ray masses can be underestimated by 10%-30%. The largest bias originates from both violation of hydrostatic equilibrium (HE) and an additional temperature bias caused by inhomogeneities in the X-ray-emitting intracluster medium (ICM). To elucidate this large dispersion among theoretical predictions, we evaluate the degree of temperature structures in cluster sets simulated either with smoothed-particle hydrodynamics (SPH) or adaptive-mesh refinement (AMR) codes. We find that the SPH simulations produce larger temperature variations connected to the persistence of both substructures and their stripped cold gas. This difference is more evident in nonradiative simulations, whereas it is reduced in the presence of radiative cooling. We also find that the temperature variation in radiative cluster simulations is generally in agreement with that observed in the central regions of clusters. Around R 500 the temperature inhomogeneities of the SPH simulations can generate twice the typical HE mass bias of the AMR sample. We emphasize that a detailed understanding of the physical processes responsible for the complex thermal structure in ICM requires improved resolution and high-sensitivity observations in order to extend the analysis to higher temperature systems and larger cluster-centric radii.

  7. Temperature structure of the intracluster medium from smoothed-particle hydrodynamics and adaptive-mesh refinement simulations

    SciTech Connect

    Rasia, Elena; Lau, Erwin T.; Nagai, Daisuke; Avestruz, Camille; Borgani, Stefano; Dolag, Klaus; Granato, Gian Luigi; Murante, Giuseppe; Ragone-Figueroa, Cinthia; Mazzotta, Pasquale; Nelson, Kaylea

    2014-08-20

    Analyses of cosmological hydrodynamic simulations of galaxy clusters suggest that X-ray masses can be underestimated by 10%-30%. The largest bias originates from both violation of hydrostatic equilibrium (HE) and an additional temperature bias caused by inhomogeneities in the X-ray-emitting intracluster medium (ICM). To elucidate this large dispersion among theoretical predictions, we evaluate the degree of temperature structures in cluster sets simulated either with smoothed-particle hydrodynamics (SPH) or adaptive-mesh refinement (AMR) codes. We find that the SPH simulations produce larger temperature variations connected to the persistence of both substructures and their stripped cold gas. This difference is more evident in nonradiative simulations, whereas it is reduced in the presence of radiative cooling. We also find that the temperature variation in radiative cluster simulations is generally in agreement with that observed in the central regions of clusters. Around R {sub 500} the temperature inhomogeneities of the SPH simulations can generate twice the typical HE mass bias of the AMR sample. We emphasize that a detailed understanding of the physical processes responsible for the complex thermal structure in ICM requires improved resolution and high-sensitivity observations in order to extend the analysis to higher temperature systems and larger cluster-centric radii.

  8. Nonequilibrium flows with smooth particle applied mechanics

    SciTech Connect

    Kum, O.

    1995-07-01

    Smooth particle methods are relatively new methods for simulating solid and fluid flows through they have a 20-year history of solving complex hydrodynamic problems in astrophysics, such as colliding planets and stars, for which correct answers are unknown. The results presented in this thesis evaluate the adaptability or fitness of the method for typical hydrocode production problems. For finite hydrodynamic systems, boundary conditions are important. A reflective boundary condition with image particles is a good way to prevent a density anomaly at the boundary and to keep the fluxes continuous there. Boundary values of temperature and velocity can be separately controlled. The gradient algorithm, based on differentiating the smooth particle expression for (u{rho}) and (T{rho}), does not show numerical instabilities for the stress tensor and heat flux vector quantities which require second derivatives in space when Fourier`s heat-flow law and Newton`s viscous force law are used. Smooth particle methods show an interesting parallel linking to them to molecular dynamics. For the inviscid Euler equation, with an isentropic ideal gas equation of state, the smooth particle algorithm generates trajectories isomorphic to those generated by molecular dynamics. The shear moduli were evaluated based on molecular dynamics calculations for the three weighting functions, B spline, Lucy, and Cusp functions. The accuracy and applicability of the methods were estimated by comparing a set of smooth particle Rayleigh-Benard problems, all in the laminar regime, to corresponding highly-accurate grid-based numerical solutions of continuum equations. Both transient and stationary smooth particle solutions reproduce the grid-based data with velocity errors on the order of 5%. The smooth particle method still provides robust solutions at high Rayleigh number where grid-based methods fails.

  9. Some cautionary remarks about smoothed particle hydrodynamics

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars

    1993-01-01

    Potential difficulties with smoothed particle hydrodynamics are discussed. In particular, empirical tests are used to demonstrate that the errors resulting from the use of variable smoothing can be much larger than commonly believed. Fortunately, however, these errors, which are normally small, do not appear to promote instability on small scales, such as fragmentation in self-gravitating fluids. Still, while SPH remains a useful tool for many problems of astrophysical interest, a rigorous formulation of it, which is adaptive but still satisfies conservation properties, is clearly wanting.

  10. Progress in smooth particle hydrodynamics

    SciTech Connect

    Wingate, C.A.; Dilts, G.A.; Mandell, D.A.; Crotzer, L.A.; Knapp, C.E.

    1998-07-01

    Smooth Particle Hydrodynamics (SPH) is a meshless, Lagrangian numerical method for hydrodynamics calculations where calculational elements are fuzzy particles which move according to the hydrodynamic equations of motion. Each particle carries local values of density, temperature, pressure and other hydrodynamic parameters. A major advantage of SPH is that it is meshless, thus large deformation calculations can be easily done with no connectivity complications. Interface positions are known and there are no problems with advecting quantities through a mesh that typical Eulerian codes have. These underlying SPH features make fracture physics easy and natural and in fact, much of the applications work revolves around simulating fracture. Debris particles from impacts can be easily transported across large voids with SPH. While SPH has considerable promise, there are some problems inherent in the technique that have so far limited its usefulness. The most serious problem is the well known instability in tension leading to particle clumping and numerical fracture. Another problem is that the SPH interpolation is only correct when particles are uniformly spaced a half particle apart leading to incorrect strain rates, accelerations and other quantities for general particle distributions. SPH calculations are also sensitive to particle locations. The standard artificial viscosity treatment in SPH leads to spurious viscosity in shear flows. This paper will demonstrate solutions for these problems that they and others have been developing. The most promising is to replace the SPH interpolant with the moving least squares (MLS) interpolant invented by Lancaster and Salkauskas in 1981. SPH and MLS are closely related with MLS being essentially SPH with corrected particle volumes. When formulated correctly, JLS is conservative, stable in both compression and tension, does not have the SPH boundary problems and is not sensitive to particle placement. The other approach to

  11. An adaptive data-smoothing routine

    NASA Technical Reports Server (NTRS)

    Taylor, Clayborne D.; Nicolas, David P.

    1989-01-01

    An adaptive noise reduction algorithm that can be implemented on a microcomputer is developed. Smoothing polynomials are used where the polynomial coefficients are chosen such that the mean-square-error between the noisy and smoothed data is minimized. This approach is equivalent to the implementation of a low-pass finite impulse response filter. The noise reduction depends on the order of the smoothing polynomial. A whiteness test on the error sequence is incorporated to search for the optimal smoothing. Expansion coefficients may be computed via the fast Fourier transform, and the resulting smoothing process is the equivalent of the implementation of an adaptive ideal low-pass filter. Results are obtained for an analytical signal with added white Gaussian noise. The routine may be applied to any smooth signal with additive random noise.

  12. Generating Optimal Initial Conditions for Smoothed Particle Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Diehl, S.; Rockefeller, G.; Fryer, C. L.; Riethmiller, D.; Statler, T. S.

    2015-12-01

    We review existing smoothed particle hydrodynamics setup methods and outline their advantages, limitations, and drawbacks. We present a new method for constructing initial conditions for smoothed particle hydrodynamics simulations, which may also be of interest for N-body simulations, and demonstrate this method on a number of applications. This new method is inspired by adaptive binning techniques using weighted Voronoi tessellations. Particles are placed and iteratively moved based on their proximity to neighbouring particles and the desired spatial resolution. This new method can satisfy arbitrarily complex spatial resolution requirements.

  13. Numerical Convergence In Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Qirong; Hernquist, Lars; Li, Yuexing

    2015-02-01

    We study the convergence properties of smoothed particle hydrodynamics (SPH) using numerical tests and simple analytic considerations. Our analysis shows that formal numerical convergence is possible in SPH only in the joint limit N → ∞, h → 0, and Nnb → ∞, where N is the total number of particles, h is the smoothing length, and Nnb is the number of neighbor particles within the smoothing volume used to compute smoothed estimates. Previous work has generally assumed that the conditions N → ∞ and h → 0 are sufficient to achieve convergence, while holding Nnb fixed. We demonstrate that if Nnb is held fixed as the resolution is increased, there will be a residual source of error that does not vanish as N → ∞ and h → 0. Formal numerical convergence in SPH is possible only if Nnb is increased systematically as the resolution is improved. Using analytic arguments, we derive an optimal compromise scaling for Nnb by requiring that this source of error balance that present in the smoothing procedure. For typical choices of the smoothing kernel, we find Nnb vpropN 0.5. This means that if SPH is to be used as a numerically convergent method, the required computational cost does not scale with particle number as O(N), but rather as O(N 1 + δ), where δ ≈ 0.5, with a weak dependence on the form of the smoothing kernel.

  14. Smoothed particle hydrodynamics with smoothed pseudo-density

    NASA Astrophysics Data System (ADS)

    Yamamoto, Satoko; Saitoh, Takayuki R.; Makino, Junichiro

    2015-06-01

    In this paper, we present a new formulation of smoothed particle hydrodynamics (SPH), which, unlike the standard SPH (SSPH), is well behaved at the contact discontinuity. The SSPH scheme cannot handle discontinuities in density (e.g., the contact discontinuity and the free surface), because it requires that the density of fluid is positive and continuous everywhere. Thus there is inconsistency in the formulation of the SSPH scheme at discontinuities of the fluid density. To solve this problem, we introduce a new quantity associated with particles and the "density" of that quantity. This "density" evolves through the usual continuity equation with an additional artificial diffusion term, in order to guarantee the continuity of the "density." We use this "density," or pseudo-density, instead of the mass density, to formulate our SPH scheme. We call our new method SPH with smoothed pseudo-density, and we show that it is physically consistent and can handle discontinuities quite well.

  15. SPHGR: Smoothed-Particle Hydrodynamics Galaxy Reduction

    NASA Astrophysics Data System (ADS)

    Thompson, Robert

    2015-02-01

    SPHGR (Smoothed-Particle Hydrodynamics Galaxy Reduction) is a python based open-source framework for analyzing smoothed-particle hydrodynamic simulations. Its basic form can run a baryonic group finder to identify galaxies and a halo finder to identify dark matter halos; it can also assign said galaxies to their respective halos, calculate halo & galaxy global properties, and iterate through previous time steps to identify the most-massive progenitors of each halo and galaxy. Data about each individual halo and galaxy is collated and easy to access. SPHGR supports a wide range of simulations types including N-body, full cosmological volumes, and zoom-in runs. Support for multiple SPH code outputs is provided by pyGadgetReader (ascl:1411.001), mainly Gadget (ascl:0003.001) and TIPSY (ascl:1111.015).

  16. Particle splitting in smoothed particle hydrodynamics based on Voronoi diagram

    NASA Astrophysics Data System (ADS)

    Chiaki, Gen; Yoshida, Naoki

    2015-08-01

    We present a novel method for particle splitting in smoothed particle hydrodynamics simulations. Our method utilizes the Voronoi diagram for a given particle set to determine the position of fine daughter particles. We perform several test simulations to compare our method with a conventional splitting method in which the daughter particles are placed isotropically over the local smoothing length. We show that, with our method, the density deviation after splitting is reduced by a factor of about 2 compared with the conventional method. Splitting would smooth out the anisotropic density structure if the daughters are distributed isotropically, but our scheme allows the daughter particles to trace the original density distribution with length-scales of the mean separation of their parent. We apply the particle splitting to simulations of the primordial gas cloud collapse. The thermal evolution is accurately followed to the hydrogen number density of 1012 cm-3. With the effective mass resolution of ˜10-4 M⊙ after the multistep particle splitting, the protostellar disc structure is well resolved. We conclude that the method offers an efficient way to simulate the evolution of an interstellar gas and the formation of stars.

  17. Calibrating an updated smoothed particle hydrodynamics scheme within gcd+

    NASA Astrophysics Data System (ADS)

    Kawata, D.; Okamoto, T.; Gibson, B. K.; Barnes, D. J.; Cen, R.

    2013-01-01

    We adapt a modern scheme of smoothed particle hydrodynamics (SPH) to our tree N-body/SPH galactic chemodynamics code gcd+. The applied scheme includes implementations of the artificial viscosity switch and artificial thermal conductivity proposed by Morris & Monaghan, Rosswog & Price and Price to model discontinuities and Kelvin-Helmholtz instabilities more accurately. We first present hydrodynamics test simulations and contrast the results to runs undertaken without artificial viscosity switch or thermal conduction. In addition, we also explore the different levels of smoothing by adopting larger or smaller smoothing lengths, i.e. a larger or smaller number of neighbour particles, Nnb. We demonstrate that the new version of gcd+ is capable of modelling Kelvin-Helmholtz instabilities to a similar level as the mesh code, athena. From the Gresho vortex, point-like explosion and self-similar collapse tests, we conclude that setting the smoothing length to keep Nnb as high as ˜58 is preferable to adopting smaller smoothing lengths. We present our optimized parameter sets from the hydrodynamics tests.

  18. Smoothed particle hydrodynamics with GRAPE-1A

    NASA Technical Reports Server (NTRS)

    Umemura, Masayuki; Fukushige, Toshiyuki; Makino, Junichiro; Ebisuzaki, Toshikazu; Sugimoto, Daiichiro; Turner, Edwin L.; Loeb, Abraham

    1993-01-01

    We describe the implementation of a smoothed particle hydrodynamics (SPH) scheme using GRAPE-1A, a special-purpose processor used for gravitational N-body simulations. The GRAPE-1A calculates the gravitational force exerted on a particle from all other particles in a system, while simultaneously making a list of the nearest neighbors of the particle. It is found that GRAPE-1A accelerates SPH calculations by direct summation by about two orders of magnitudes for a ten thousand-particle simulation. The effective speed is 80 Mflops, which is about 30 percent of the peak speed of GRAPE-1A. Also, in order to investigate the accuracy of GRAPE-SPH, some test simulations were executed. We found that the force and position errors are smaller than those due to representing a fluid by a finite number of particles. The total energy and momentum were conserved within 0.2-0.4 percent and 2-5 x 10 exp -5, respectively, in simulations with several thousand particles. We conclude that GRAPE-SPH is quite effective and sufficiently accurate for self-gravitating hydrodynamics.

  19. Impact modeling with Smooth Particle Hydrodynamics

    SciTech Connect

    Stellingwerf, R.F.; Wingate, C.A.

    1993-07-01

    Smooth Particle Hydrodynamics (SPH) can be used to model hypervelocity impact phenomena via the addition of a strength of materials treatment. SPH is the only technique that can model such problems efficiently due to the combination of 3-dimensional geometry, large translations of material, large deformations, and large void fractions for most problems of interest. This makes SPH an ideal candidate for modeling of asteroid impact, spacecraft shield modeling, and planetary accretion. In this paper we describe the derivation of the strength equations in SPH, show several basic code tests, and present several impact test cases with experimental comparisons.

  20. Workshop on advances in smooth particle hydrodynamics

    SciTech Connect

    Wingate, C.A.; Miller, W.A.

    1993-12-31

    This proceedings contains viewgraphs presented at the 1993 workshop held at Los Alamos National Laboratory. Discussed topics include: negative stress, reactive flow calculations, interface problems, boundaries and interfaces, energy conservation in viscous flows, linked penetration calculations, stability and consistency of the SPH method, instabilities, wall heating and conservative smoothing, tensors, tidal disruption of stars, breaking the 10,000,000 particle limit, modelling relativistic collapse, SPH without H, relativistic KSPH avoidance of velocity based kernels, tidal compression and disruption of stars near a supermassive rotation black hole, and finally relativistic SPH viscosity and energy.

  1. Conduction Modelling Using Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cleary, Paul W.; Monaghan, Joseph J.

    1999-01-01

    Heat transfer is very important in many industrial and geophysical problems. Because these problems often have complicated fluid dynamics, there are advantages in solving them using Lagrangian methods like smoothed particle hydrodynamics (SPH). Since SPH particles become disordered, the second derivative terms may be estimated poorly, especially when materials with different properties are adjacent. In this paper we show how a simple alteration to the standard SPH formulation ensures continuity of heat flux across discontinuities in material properties. A set of rules is formulated for the construction of isothermal boundaries leading to accurate conduction solutions. A method for accurate prediction of heat fluxes through isothermal boundaries is also given. The accuracy of the SPH conduction solutions is demonstrated through a sequence of test problems of increasing complexity.

  2. A Smoothed Particle Hydrodynamics approach for poroelasticity

    NASA Astrophysics Data System (ADS)

    Osorno, Maria; Steeb, Holger

    2016-04-01

    Within the framework of the SHynergie project we look to investigate hydraulic fracturing and crack evolving in poroelastic media. We model biphasic media assuming incompressible solid grain and incompressible pore liquid. Modeling evolving fractures and fracture networks in elastic and poroelastic media by mesh-based numerical approaches, like X-FEM, is especially in 3-dim a challenging task. Therefore, we propose a meshless particle method for fractured media based on the Smoothed Particle Hydrodynamics (SPH) approach. SPH is a meshless Lagrangian method highly suitable for the simulation of large deformations including free surfaces and/or interfaces. Within the SPH method, the computational domain is discretized with particles, avoiding the computational expenses of meshing. Our SPH solution is implemented in a parallel computational framework, which allows to simulate large domains more representative of the scale of our study cases. Our implementation is carefully validated against classical mesh-based approaches and compared with classical solutions for consolidation problems. Furthermore, we discuss fracture initiation and propagation in poroelastic rocks at the reservoir scale.

  3. An analysis of smoothed particle hydrodynamics

    SciTech Connect

    Swegle, J.W.; Attaway, S.W.; Heinstein, M.W.; Mello, F.J.; Hicks, D.L.

    1994-03-01

    SPH (Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique which is appealing as a possible alternative to numerical techniques currently used to analyze high deformation impulsive loading events. In the present study, the SPH algorithm has been subjected to detailed testing and analysis to determine its applicability in the field of solid dynamics. An important result of the work is a rigorous von Neumann stability analysis which provides a simple criterion for the stability or instability of the method in terms of the stress state and the second derivative of the kernel function. Instability, which typically occurs only for solids in tension, results not from the numerical time integration algorithm, but because the SPH algorithm creates an effective stress with a negative modulus. The analysis provides insight into possible methods for removing the instability. Also, SPH has been coupled into the transient dynamics finite element code PRONTO, and a weighted residual derivation of the SPH equations has been obtained.

  4. Computational brittle fracture using smooth particle hydrodynamics

    SciTech Connect

    Mandell, D.A.; Wingate, C.A.; Schwalbe, L.A.

    1996-10-01

    We are developing statistically based, brittle-fracture models and are implementing them into hydrocodes that can be used for designing systems with components of ceramics, glass, and/or other brittle materials. Because of the advantages it has simulating fracture, we are working primarily with the smooth particle hydrodynamics code SPBM. We describe a new brittle fracture model that we have implemented into SPBM. To illustrate the code`s current capability, we have simulated a number of experiments. We discuss three of these simulations in this paper. The first experiment consists of a brittle steel sphere impacting a plate. The experimental sphere fragment patterns are compared to the calculations. The second experiment is a steel flyer plate in which the recovered steel target crack patterns are compared to the calculated crack patterns. We also briefly describe a simulation of a tungsten rod impacting a heavily confined alumina target, which has been recently reported on in detail.

  5. An implicit Smooth Particle Hydrodynamic code

    SciTech Connect

    Charles E. Knapp

    2000-04-01

    An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX has been written and is working. In conjunction with the SPHINX code the new implicit code models fluids and solids under a wide range of conditions. SPH codes are Lagrangian, meshless and use particles to model the fluids and solids. The implicit code makes use of the Krylov iterative techniques for solving large linear-systems and a Newton-Raphson method for non-linear corrections. It uses numerical derivatives to construct the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce the amount of computation. It is believed that this is the first implicit SPH code to use Newton-Krylov techniques, and is also the first implicit SPH code to model solids. A description of SPH and the techniques used in the implicit code are presented. Then, the results of a number of tests cases are discussed, which include a shock tube problem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. The results are shown to be in very good agreement with analytic solutions, experimental results, and the explicit SPHINX code. In the case of the single jet of gas case it has been demonstrated that the implicit code can do a problem in much shorter time than the explicit code. The problem was, however, very unphysical, but it does demonstrate the potential of the implicit code. It is a first step toward a useful implicit SPH code.

  6. Simulating Ice Particle Melting using Smooth Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Kuo, Kwo-Sen; Pelissier, Craig

    2015-04-01

    To measure precipitation from space requires an accurate estimation of the collective scattering properties of particles suspended in a precipitating column. It is well known that the complicated and typically unknowable shapes of the solid precipitation particles cause much uncertainty in the retrievals involving such particles. This remote-sensing problem becomes even more difficult with the "melting layer" containing partially melted ice particles, where both the geometric shape and liquid-solid fraction of the hydrometeors are variables.. For the scattering properties of these particles depend not only on their shapes, but also their melt-water fraction,and the spatial distribution of liquid and ice within. To obtain an accurate estimation thus requires a set of "realistic" particle geometries and a method to determine the melt-water distribution at various stages in the melting process. Once this is achieved, a suitable method can be used to compute the scattering properties. In previous work, the growth of a set of astoundingly realistic ice particles has been simulated using the "Snowfake" algorithm of Gravner and Griffeath. To simulate the melting process of these particles, the method of Smooth Particle Hydrodynamics (SPH) is used. SPH is a mesh-less particle-based approach where kinematic and thermal dynamics is controlled entirely through two-body interactions between neighboring SPH particles. An important property of SPH is that the interaction at boundaries between air/ice/water is implicitly taken care of. This is crucial for this work since those boundaries are complex and vary throughout the melting process. We present the SPH implementation and a simulation, using highly parallel Graphic Processing Units (GPUs), with ~1 million SPH particles to represent one of the generated ice particle geometries. We plan to use this method, especially its parallelized version, to simulate the melting of all the "Snowfake" particles (~10,000 of them) in our

  7. An investigation of particles suspension using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Pazouki, Arman; Negrut, Dan

    2013-11-01

    This contribution outlines a method for the direct numerical simulation of rigid body suspensions in a Lagrangian-Lagrangian framework using extended Smoothed Particle Hydrodynamics (XSPH) method. The dynamics of the arbitrarily shaped rigid bodies is fully resolved via Boundary Condition Enforcing (BCE) markers and updated according to the general Newton-Euler equations of motion. The simulation tool, refered to herien as Chrono::Fluid, relies on a parallel implementation that runs on Graphics Processing Unit (GPU) cards. The simulation results obtained for transient Poiseuille flow, migration of cylinder and sphere in Poiseuille flow, and distribution of particles at different cross sections of the laminar flow of dilute suspension were respectively within 0.1%, 1%, and 5% confidence interval of analytical and experimental results reported in the literature. It was shown that at low Reynolds number, Re = O(1), the radial migration (a) behaves non-monotonically as the particles relative distance (distance over diameter) increases from zero to two; and (b) decreases as the particle skewness and size increases. The scaling of Chrono::Fluid was demonstrated in conjunction with a suspension dynamics analysis in which the number of ellipsoids went up to 3e4. Financial support was provided in part by National Science Foundation grant NSF CMMI-084044.

  8. Smoothed-particle hydrodynamics and nonequilibrium molecular dynamics

    SciTech Connect

    Hoover, W. G.; Hoover, C. G.

    1993-08-01

    Gingold, Lucy, and Monaghan invented a grid-free version of continuum mechanics ``smoothed-particle hydrodynamics,`` in 1977. It is a likely contributor to ``hybrid`` simulations combining atomistic and continuum simulations. We describe applications of this particle-based continuum technique from the closely-related standpoint of nonequilibrium molecular dynamics. We compare chaotic Lyapunov spectra for atomistic solids and fluids with those which characterize a two-dimensional smoothed-particle fluid system.

  9. Application of smoothed particle hydrodynamics method in aerodynamics

    NASA Astrophysics Data System (ADS)

    Cortina, Miguel

    2014-11-01

    Smoothed Particle Hydrodynamics (SPH) is a meshless Lagrangian method in which the domain is represented by particles. Each particle is assigned properties such as mass, pressure, density, temperature, and velocity. These properties are then evaluated at the particle positions using a smoothing kernel that integrates over the values of the surrounding particles. In the present study the SPH method is first used to obtain numerical solutions for fluid flows over a cylinder and then we are going to apply the same principle over an airfoil obstacle.

  10. Numerical heat conductivity in smooth particle applied mechanics

    SciTech Connect

    Hoover, W.G. |; Posch, H.A.

    1996-11-01

    Smooth particle applied mechanics provides a method for solving the basic equations of continuum mechanics, interpolating these equations onto a grid made up of moving particles. The moving particle grid gives rise to a thoroughly artificial numerical heat conductivity, analogous to the numerical viscosities associated with finite-difference schemes. We exploit an isomorphism linking the smooth-particle method to conventional molecular dynamics, and evaluate this numerical heat conductivity. We find that the corresponding thermal diffusivity is comparable in value to the numerical kinematic viscosity, and that neither is described very well by the Enskog theory. {copyright} {ital 1996 The American Physical Society.}

  11. Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.

    ERIC Educational Resources Information Center

    Butler, Ronald W.

    The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…

  12. Rapid Structured Volume Grid Smoothing and Adaption Technique

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2006-01-01

    A rapid, structured volume grid smoothing and adaption technique, based on signal processing methods, was developed and applied to the Shuttle Orbiter at hypervelocity flight conditions in support of the Columbia Accident Investigation. Because of the fast pace of the investigation, computational aerothermodynamicists, applying hypersonic viscous flow solving computational fluid dynamic (CFD) codes, refined and enhanced a grid for an undamaged baseline vehicle to assess a variety of damage scenarios. Of the many methods available to modify a structured grid, most are time-consuming and require significant user interaction. By casting the grid data into different coordinate systems, specifically two computational coordinates with arclength as the third coordinate, signal processing methods are used for filtering the data [Taubin, CG v/29 1995]. Using a reverse transformation, the processed data are used to smooth the Cartesian coordinates of the structured grids. By coupling the signal processing method with existing grid operations within the Volume Grid Manipulator tool, problems related to grid smoothing are solved efficiently and with minimal user interaction. Examples of these smoothing operations are illustrated for reductions in grid stretching and volume grid adaptation. In each of these examples, other techniques existed at the time of the Columbia accident, but the incorporation of signal processing techniques reduced the time to perform the corrections by nearly 60%. This reduction in time to perform the corrections therefore enabled the assessment of approximately twice the number of damage scenarios than previously possible during the allocated investigation time.

  13. Smoothed Particle Hydrodynamics Model for Reactive Transport and Mineral Precipitation

    SciTech Connect

    Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Redden, George; Meakin, Paul; Fang, Yilin

    2006-06-30

    A new Lagrangian particle model based on smoothed particle hydrodynamics was used to simulate pore scale precipitation reactions. The side-by-side injection of reacting solutions into two halves of a two-dimensional granular porous medium was simulated. Precipitation on grain surfaces occurred along a narrow zone in the middle of the domain, where the reacting solutes mixed to generate a supersaturated reaction product. The numerical simulations qualitatively reproduced the behavior observed in related laboratory experiments.

  14. Water Flow Simulation using Smoothed Particle Hydrodynamics (SPH)

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Berg, Jared; Harris, Michael F.

    2014-01-01

    Simulation of water flow from the rainbird nozzles has been accomplished using the Smoothed Particle Hydrodynamics (SPH). The advantage of using SPH is that no meshing is required, thus the grid quality is no longer an issue and accuracy can be improved.

  15. Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.

    2015-01-01

    This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.

  16. Adaptive response of pulmonary arterial smooth muscle to length change.

    PubMed

    Syyong, Harley; Cheung, Christine; Solomon, Dennis; Seow, Chun Y; Kuo, Kuo H

    2008-04-01

    Hypervasoconstriction is associated with pulmonary hypertension and dysfunction of the pulmonary arterial smooth muscle (PASM) is implicated. However, relatively little is known about the mechanical properties of PASM. Recent advances in our understanding of plastic adaptation in smooth muscle may shed light on the disease mechanism. In this study, we determined whether PASM is capable of adapting to length changes (especially shortening) and regain its contractile force. We examined the time course of length adaptation in PASM in response to step changes in length and to length oscillations mimicking the periodic stretches due to pulsatile arterial pressure. Rings from sheep pulmonary artery were mounted on myograph and stimulated using electrical field stimulation (12-16 s, 20 V, 60 Hz). The length-force relationship was determined at L(ref) to 0.6 L(ref), where L(ref) was a reference length close to the in situ length of PASM. The response to length oscillations was determined at L(ref), after the muscle was subjected to length oscillation of various amplitudes for 200 s at 1.5 Hz. Release (or stretch) of resting PASM from L(ref) to 0.6 (and vice versa) was followed by a significant force recovery (73 and 63%, respectively), characteristic of length adaptation. All recoveries of force followed a monoexponential time course. Length oscillations with amplitudes ranging from 5 to 20% L(ref) caused no significant change in force generation in subsequent contractions. It is concluded that, like many smooth muscles, PASM possesses substantial capability to adapt to changes in length. Under pathological conditions, this could contribute to hypervasoconstriction in pulmonary hypertension. PMID:18218913

  17. A method of smoothed particle hydrodynamics using spheroidal kernels

    NASA Technical Reports Server (NTRS)

    Fulbright, Michael S.; Benz, Willy; Davies, Melvyn B.

    1995-01-01

    We present a new method of three-dimensional smoothed particle hydrodynamics (SPH) designed to model systems dominated by deformation along a preferential axis. These systems cause severe problems for SPH codes using spherical kernels, which are best suited for modeling systems which retain rough spherical symmetry. Our method allows the smoothing length in the direction of the deformation to evolve independently of the smoothing length in the perpendicular plane, resulting in a kernel with a spheroidal shape. As a result the spatial resolution in the direction of deformation is significantly improved. As a test case we present the one-dimensional homologous collapse of a zero-temperature, uniform-density cloud, which serves to demonstrate the advantages of spheroidal kernels. We also present new results on the problem of the tidal disruption of a star by a massive black hole.

  18. Improving convergence in smoothed particle hydrodynamics simulations without pairing instability

    NASA Astrophysics Data System (ADS)

    Dehnen, Walter; Aly, Hossam

    2012-09-01

    The numerical convergence of smoothed particle hydrodynamics (SPH) can be severely restricted by random force errors induced by particle disorder, especially in shear flows, which are ubiquitous in astrophysics. The increase in the number NH of neighbours when switching to more extended smoothing kernels at fixed resolution (using an appropriate definition for the SPH resolution scale) is insufficient to combat these errors. Consequently, trading resolution for better convergence is necessary, but for traditional smoothing kernels this option is limited by the pairing (or clumping) instability. Therefore, we investigate the suitability of the Wendland functions as smoothing kernels and compare them with the traditional B-splines. Linear stability analysis in three dimensions and test simulations demonstrate that the Wendland kernels avoid the pairing instability for all NH, despite having vanishing derivative at the origin (disproving traditional ideas about the origin of this instability; instead, we uncover a relation with the kernel Fourier transform and give an explanation in terms of the SPH density estimator). The Wendland kernels are computationally more convenient than the higher order B-splines, allowing large NH and hence better numerical convergence (note that computational costs rise sublinear with NH). Our analysis also shows that at low NH the quartic spline kernel with NH ≈ 60 obtains much better convergence than the standard cubic spline.

  19. Visual enhancement of unmixed multispectral imagery using adaptive smoothing

    USGS Publications Warehouse

    Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.

    2004-01-01

    Adaptive smoothing (AS) has been previously proposed as a method to smooth uniform regions of an image, retain contrast edges, and enhance edge boundaries. The method is an implementation of the anisotropic diffusion process which results in a gray scale image. This paper discusses modifications to the AS method for application to multi-band data which results in a color segmented image. The process was used to visually enhance the three most distinct abundance fraction images produced by the Lagrange constraint neural network learning-based unmixing of Landsat 7 Enhanced Thematic Mapper Plus multispectral sensor data. A mutual information-based method was applied to select the three most distinct fraction images for subsequent visualization as a red, green, and blue composite. A reported image restoration technique (partial restoration) was applied to the multispectral data to reduce unmixing error, although evaluation of the performance of this technique was beyond the scope of this paper. The modified smoothing process resulted in a color segmented image with homogeneous regions separated by sharpened, coregistered multiband edges. There was improved class separation with the segmented image, which has importance to subsequent operations involving data classification.

  20. Numerical simulations of glass impacts using smooth particle hydrodynamics

    SciTech Connect

    Mandell, D.A.; Wingate, C.A.

    1996-05-01

    As part of a program to develop advanced hydrocode design tools, we have implemented a brittle fracture model for glass into the SPHINX smooth particle hydrodynamics code. We have evaluated this model and the code by predicting data from one-dimensional flyer plate impacts into glass. Since fractured glass properties, which are needed in the model, are not available, we did sensitivity studies of these properties, as well as sensitivity studies to determine the number of particles needed in the calculations. The numerical results are in good agreement with the data. {copyright} {ital 1996 American Institute of Physics.}

  1. Numerical simulations of glass impacts using smooth particle hydrodynamics

    SciTech Connect

    Mandell, D.A.; Wingate, C.A.

    1995-07-01

    As part of a program to develop advanced hydrocode design tools, we have implemented a brittle fracture model for glass into the SPHINX smooth particle hydrodynamics code. We have evaluated this model and the code by predicting data from one-dimensional flyer plate impacts into glass. Since fractured glass properties, which are needed in the model, are not available, we did sensitivity studies of these properties, as well as sensitivity studies to determine the number of particles needed in the calculations. The numerical results are in good agreement with the data.

  2. Rotational statistics in dense granular flows of smooth cylindrical particles

    NASA Astrophysics Data System (ADS)

    Olafsen, Jeffrey; Jantzi, Jacob

    2011-03-01

    We report the results of an experiment to investigate the dissipation in the rotational degree of freedom for smooth cylindrical particles in a dense, driven granular flow. The flow is studied in a rotating drum of radius R = 30 cm for particles of radius r = 0.635 cm while the cell is rotated at speeds between 0.25 and 0.75 Hz. The 2D geometry of the experimental design allows for the measurement of two translational degrees of freedom as well as the rotation of the disks within the driven flow. The rotational velocity statistics demonstrate non-Gaussian behavior as well as a significant amount of energy being dissipated within the flow via the tangential friction between the particles. The results of this experiment are significant in that many driven granular experiments use smooth cylindrical or spherical particles to investigate granular dynamics, but the contribution from the rotational degrees of freedom are often unmeasured. A novel imaging technique is used to extract both the translational and rotational velocity statistics to a high degree of precision in the entire cell during the experiment.

  3. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos K.

    2015-05-01

    Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we use a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture the void probability and solvation free energy of nonpolar hard particles of different sizes. The present fluid model is well suited for an understanding of emergent phenomena in nano-scale fluid systems.

  4. Multiscale simulation of ideal mixtures using smoothed dissipative particle dynamics.

    PubMed

    Petsev, Nikolai D; Leal, L Gary; Shell, M Scott

    2016-02-28

    Smoothed dissipative particle dynamics (SDPD) [P. Español and M. Revenga, Phys. Rev. E 67, 026705 (2003)] is a thermodynamically consistent particle-based continuum hydrodynamics solver that features scale-dependent thermal fluctuations. We obtain a new formulation of this stochastic method for ideal two-component mixtures through a discretization of the advection-diffusion equation with thermal noise in the concentration field. The resulting multicomponent approach is consistent with the interpretation of the SDPD particles as moving volumes of fluid and reproduces the correct fluctuations and diffusion dynamics. Subsequently, we provide a general multiscale multicomponent SDPD framework for simulations of molecularly miscible systems spanning length scales from nanometers to the non-fluctuating continuum limit. This approach reproduces appropriate equilibrium properties and is validated with simulation of simple one-dimensional diffusion across multiple length scales. PMID:26931689

  5. Multiscale simulation of ideal mixtures using smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott

    2016-02-01

    Smoothed dissipative particle dynamics (SDPD) [P. Español and M. Revenga, Phys. Rev. E 67, 026705 (2003)] is a thermodynamically consistent particle-based continuum hydrodynamics solver that features scale-dependent thermal fluctuations. We obtain a new formulation of this stochastic method for ideal two-component mixtures through a discretization of the advection-diffusion equation with thermal noise in the concentration field. The resulting multicomponent approach is consistent with the interpretation of the SDPD particles as moving volumes of fluid and reproduces the correct fluctuations and diffusion dynamics. Subsequently, we provide a general multiscale multicomponent SDPD framework for simulations of molecularly miscible systems spanning length scales from nanometers to the non-fluctuating continuum limit. This approach reproduces appropriate equilibrium properties and is validated with simulation of simple one-dimensional diffusion across multiple length scales.

  6. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics

    SciTech Connect

    Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos

    2015-05-21

    Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.

  7. Numerical solution of the nonlinear Schrödinger equation using smoothed-particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Mocz, Philip; Succi, Sauro

    2015-05-01

    We formulate a smoothed-particle hydrodynamics numerical method, traditionally used for the Euler equations for fluid dynamics in the context of astrophysical simulations, to solve the nonlinear Schrödinger equation in the Madelung formulation. The probability density of the wave function is discretized into moving particles, whose properties are smoothed by a kernel function. The traditional fluid pressure is replaced by a quantum pressure tensor, for which a robust discretization is found. We demonstrate our numerical method on a variety of numerical test problems involving the simple harmonic oscillator, soliton-soliton collision, Bose-Einstein condensates, collapsing singularities, and dark matter halos governed by the Gross-Pitaevskii-Poisson equation. Our method is conservative, applicable to unbounded domains, and is automatically adaptive in its resolution, making it well suited to study problems with collapsing solutions.

  8. Generating optimal initial conditions for smooth particle hydrodynamics (SPH) simulations

    SciTech Connect

    Diehl, Steven; Rockefeller, Gabriel M; Fryer, Christopher L

    2008-01-01

    We present a new optimal method to set up initial conditions for Smooth Particle Hydrodynamics Simulations, which may also be of interest for N-body simulations. This new method is based on weighted Voronoi tesselations (WVTs) and can meet arbitrarily complex spatial resolution requirements. We conduct a comprehensive review of existing SPH setup methods, and outline their advantages, limitations and drawbacks. A serial version of our WVT setup method is publicly available and we give detailed instruction on how to easily implement the new method on top of an existing parallel SPH code.

  9. Smoothed dissipative particle dynamics with angular momentum conservation

    SciTech Connect

    Müller, Kathrin Fedosov, Dmitry A. Gompper, Gerhard

    2015-01-15

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  10. Tensor classification of structure in smoothed particle hydrodynamics density fields

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan; Bonnell, Ian; Lucas, William; Rice, Ken

    2016-04-01

    As hydrodynamic simulations increase in scale and resolution, identifying structures with non-trivial geometries or regions of general interest becomes increasingly challenging. There is a growing need for algorithms that identify a variety of different features in a simulation without requiring a `by eye' search. We present tensor classification as such a technique for smoothed particle hydrodynamics (SPH). These methods have already been used to great effect in N-Body cosmological simulations, which require smoothing defined as an input free parameter. We show that tensor classification successfully identifies a wide range of structures in SPH density fields using its native smoothing, removing a free parameter from the analysis and preventing the need for tessellation of the density field, as required by some classification algorithms. As examples, we show that tensor classification using the tidal tensor and the velocity shear tensor successfully identifies filaments, shells and sheet structures in giant molecular cloud simulations, as well as spiral arms in discs. The relationship between structures identified using different tensors illustrates how different forces compete and co-operate to produce the observed density field. We therefore advocate the use of multiple tensors to classify structure in SPH simulations, to shed light on the interplay of multiple physical processes.

  11. rpSPH: a novel smoothed particle hydrodynamics algorithm

    NASA Astrophysics Data System (ADS)

    Abel, Tom

    2011-05-01

    We suggest a novel discretization of the momentum equation for smoothed particle hydrodynamics (SPH) and show that it significantly improves the accuracy of the obtained solutions. Our new formulation which we refer to as relative pressure SPH, rpSPH, evaluates the pressure force with respect to the local pressure. It respects Newton's first law of motion and applies forces to particles only when there is a net force acting upon them. This is in contrast to standard SPH which explicitly uses Newton's third law of motion continuously applying equal but opposite forces between particles. rpSPH does not show the unphysical particle noise, the clumping or banding instability, unphysical surface tension and unphysical scattering of different mass particles found for standard SPH. At the same time, it uses fewer computational operations and only changes a single line in existing SPH codes. We demonstrate its performance on isobaric uniform density distributions, uniform density shearing flows, the Kelvin-Helmholtz and Rayleigh-Taylor instabilities, the Sod shock tube, the Sedov-Taylor blast wave and a cosmological integration of the Santa Barbara galaxy cluster formation test. rpSPH is an improvement in these cases. The improvements come at the cost of giving up exact momentum conservation of the scheme. Consequently, one can also obtain unphysical solutions particularly at low resolutions.

  12. Simulating Brittle Fracture of Rocks using Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Das, Rajarshi; Cleary, Paul W.

    2009-05-01

    Numerical modelling can assist in understanding and predicting complex fracture processes. Smoothed Particle Hydrodynamics (SPH) is a particle-based Lagrangian method that is particularly suited to the analysis of fracture due to its capacity to model large deformation and to track free surfaces generated. A damage model is used to predict the fracture of elastic solids. The damage parameter represents the volume-averaged micro-fracture of the volume of material represented by an SPH particle. Evolution of damage is predicted using the strain history of each particle. Damage inhibits the transmission of tensile stress between particles, and once it reaches unity, the interface becomes unable to transmit tensile stress, resulting in a macro-crack. Connected macro-cracks lead to complete fragmentation. In this paper, we explore the ability of an SPH-based damage model to predict brittle fracture of rocks during impact. Rock shape is found to have considerable influence on the fracture process, the fragment sizes, the energy dissipation during impact, and the post-fracture motion of the fragments.

  13. SPAMCART: a code for smoothed particle Monte Carlo radiative transfer

    NASA Astrophysics Data System (ADS)

    Lomax, O.; Whitworth, A. P.

    2016-10-01

    We present a code for generating synthetic spectral energy distributions and intensity maps from smoothed particle hydrodynamics simulation snapshots. The code is based on the Lucy Monte Carlo radiative transfer method, i.e. it follows discrete luminosity packets as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The sources can be extended and/or embedded, and discrete and/or diffuse. The density is not mapped on to a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Secondly, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.

  14. Water pipe flow simulation using improved virtual particles on smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ting, E. S.; Yeak, S. H.

    2014-12-01

    Smoothed Particle Hydrodynamics (SPH) is a meshless method used widely to solve problems such as fluid flows. Due to its meshless property, it is ideal to solve problems on complex geometry. In this paper, boundary treatment were implied for the rectangular pipe flow simulations using SPH. The repulsive force is applied to the boundary particles along with the improved virtual particles on different geometry alignment. The water flow is solved using incompressible SPH and will be examined throughout the simulation. Results from this simulation will be compared with single layered virtual particles. Based on the result of the study, it is found that the improved virtual particles is more accurate and stable.

  15. Smoothed particle hydrodynamics simulations of gas and dust mixtures

    NASA Astrophysics Data System (ADS)

    Booth, R. A.; Sijacki, D.; Clarke, C. J.

    2015-10-01

    We present a `two-fluid' implementation of dust in smoothed particle hydrodynamics (SPH) in the test particle limit. The scheme is able to handle both short and long stopping times and reproduces the short friction time limit, which is not properly handled in other implementations. We apply novel tests to verify its accuracy and limitations, including multidimensional tests that have not been previously applied to the drag-coupled dust problem and which are particularly relevant to self-gravitating protoplanetary discs. Our tests demonstrate several key requirements for accurate simulations of gas-dust mixtures. First, in standard SPH particle jitter can degrade the dust solution, even when the gas density is well reproduced. The use of integral gradients, a Wendland kernel and a large number of neighbours can control this, albeit at a greater computational cost. Secondly, when it is necessary to limit the artificial viscosity we recommend using the Cullen & Dehnen switch, since the alternative, using α ˜ 0.1, can generate a large velocity noise up to σv ≲ 0.3cs in the dust particles. Thirdly, we find that an accurate dust density estimate requires >400 neighbours, since, unlike the gas, the dust particles do not feel regularization forces. This density noise applies to all particle-based two-fluid implementations of dust, irrespective of the hydro solver and could lead to numerically induced fragmentation. Although our tests show accurate dusty gas simulations are possible, care must be taken to minimize the contribution from numerical noise.

  16. A DENSITY-INDEPENDENT FORMULATION OF SMOOTHED PARTICLE HYDRODYNAMICS

    SciTech Connect

    Saitoh, Takayuki R.; Makino, Junichiro

    2013-05-01

    The standard formulation of the smoothed particle hydrodynamics (SPH) assumes that the local density distribution is differentiable. This assumption is used to derive the spatial derivatives of other quantities. However, this assumption breaks down at the contact discontinuity. At the contact discontinuity, the density of the low-density side is overestimated while that of the high-density side is underestimated. As a result, the pressure of the low-density (high-density) side is overestimated (underestimated). Thus, unphysical repulsive force appears at the contact discontinuity, resulting in the effective surface tension. This tension suppresses fluid instabilities. In this paper, we present a new formulation of SPH, which does not require the differentiability of density. Instead of the mass density, we adopt the internal energy density (pressure) and its arbitrary function, which are smoothed quantities at the contact discontinuity, as the volume element used for the kernel integration. We call this new formulation density-independent SPH (DISPH). It handles the contact discontinuity without numerical problems. The results of standard tests such as the shock tube, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, point-like explosion, and blob tests are all very favorable to DISPH. We conclude that DISPH solved most of the known difficulties of the standard SPH, without introducing additional numerical diffusion or breaking the exact force symmetry or energy conservation. Our new SPH includes the formulation proposed by Ritchie and Thomas as a special case. Our formulation can be extended to handle a non-ideal gas easily.

  17. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    SciTech Connect

    Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.

    2014-12-31

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary. The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.

  18. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    DOE PAGES

    Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.

    2014-12-31

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less

  19. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    SciTech Connect

    Du, Q.; Lehoucq, Richard B.; Tartakovsky, Alexandre M.

    2015-04-01

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary. The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. An immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.

  20. Protostellar jets and magnetised turbulence with smoothed particle magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Tricco, Terrence

    2016-01-01

    Magnetic fields are an integral component of the formation of stars. During my thesis work, I built new methods to model magnetic fields in smoothed particle magnetohydrodynamics which enforce the divergence-free constraint on the magnetic field and reduce numerical dissipation of the magnetic field. Using these methods, we have performed simulations of isolated protostar formation, studying the production of jets and outflows of material and their effect on transporting angular momentum away from the protostar and reducing the efficiency of star formation. A major code comparison project on the small-scale turbulent dynamo amplification of magnetic fields was performed, using conditions representative of molecular clouds, the formation site of stars. The results were compared against results from grid-based methods, finding excellent agreement on their statistics and qualitative behaviour. I will outline the numerical methods developed, and present the results from our protostar and molecular cloud simulations.

  1. An hourglass control algorithm for Lagrangian Smooth Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ganzenmüller, Georg C.

    2015-04-01

    This paper presents a stabilization scheme which addresses the rank-deficiency problem in meshless collocation methods for solid mechanics. Specifically, Smooth-Particle Hydrodynamics (SPH) in the Total Lagrangian formalism is considered. This method is rank-deficient in the sense that the SPH approximation of the deformation gradient is not unique with respect to the positions of the integration points. The non-uniqueness can result in the formation of zero-energy modes. If undetected, these modes can grow and completely dominate the solution. Here, an algorithm is introduced, which effectively suppresses these modes in a fashion similar to hour-glass control mechanisms in Finite-Element methods. Simulations utilizing this control algorithm result exhibit much improved stability, accuracy, and error convergence properties. In contrast to an alternative method which eliminates zero-energy modes, namely the use of additional integration points, the here presented algorithm is easy to implement and computationally very efficient.

  2. Simulations of dolphin kick swimming using smoothed particle hydrodynamics.

    PubMed

    Cohen, Raymond C Z; Cleary, Paul W; Mason, Bruce R

    2012-06-01

    In competitive human swimming the submerged dolphin kick stroke (underwater undulatory swimming) is utilized after dives and turns. The optimal dolphin kick has a balance between minimizing drag and maximizing thrust while also minimizing the physical exertion required of the swimmer. In this study laser scans of athletes are used to provide realistic swimmer geometries in a single anatomical pose. These are rigged and animated to closely match side-on video footage. Smoothed Particle Hydrodynamics (SPH) fluid simulations are performed to evaluate variants of this swimming stroke technique. This computational approach provides full temporal and spatial information about the flow moving around the deforming swimmer model. The effects of changes in ankle flexibility and stroke frequency are investigated through a parametric study. The results suggest that the net streamwise force on the swimmer is relatively insensitive to ankle flexibility but is strongly dependent on kick frequency. PMID:21840077

  3. Simulations of dolphin kick swimming using smoothed particle hydrodynamics.

    PubMed

    Cohen, Raymond C Z; Cleary, Paul W; Mason, Bruce R

    2012-06-01

    In competitive human swimming the submerged dolphin kick stroke (underwater undulatory swimming) is utilized after dives and turns. The optimal dolphin kick has a balance between minimizing drag and maximizing thrust while also minimizing the physical exertion required of the swimmer. In this study laser scans of athletes are used to provide realistic swimmer geometries in a single anatomical pose. These are rigged and animated to closely match side-on video footage. Smoothed Particle Hydrodynamics (SPH) fluid simulations are performed to evaluate variants of this swimming stroke technique. This computational approach provides full temporal and spatial information about the flow moving around the deforming swimmer model. The effects of changes in ankle flexibility and stroke frequency are investigated through a parametric study. The results suggest that the net streamwise force on the swimmer is relatively insensitive to ankle flexibility but is strongly dependent on kick frequency.

  4. Modeling of cast systems using smoothed-particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cleary, Paul; Prakash, Mahesh; Ha, Joseph; Sinnott, Matthew; Nguyen, Thang; Grandfield, John

    2004-03-01

    To understand and control the filling process for metals in high-pressure die casting and ingot casting, researchers have used new flow-simulation software for the modeling of mold filling. Smoothed-particle hydrodynamics (SPH) is a non-conventional computational fluid dynamics method that has been successfully applied to these problems. Due to its mesh-free nature, it can handle complex splashing free surface flows and the differential motion of multiple solid-casting equipment components relatively easily. The ability of SPH to predict the detailed filling patterns of real large-scale automotive die castings is demonstrated in this study, and the use of SPH simulation for wheel shape optimization in ingot casting based on minimizing oxide generation while increasing the throughput is also presented.

  5. Smoothed particle hydrodynamics modelling for failure in metals

    NASA Astrophysics Data System (ADS)

    Strand, Russell K.

    It is generally regarded to be a difficult task to model multiple fractures leading to fragmentation in metals subjected to high strain rates using numerical methods. Meshless methods such as Smoothed Particle Hydrodynamics (SPH) are well suited to the application of fracture mechanics, since they are not prone to the problems associated with mesh tangling. This research demonstrates and validates a numerical inter-particle fracture model for the initiation, growth and subsequent failure in metals at high strain rate, applicable within a Total Lagrangian SPH scheme. Total Lagrangian SPH performs calculations in the reference state of a material and therefore the neighbourhoods remain fixed throughout the computation; this allows the inter-particle bonds to be stored and tracked as material history parameters. Swegle (2000) showed that the SPH momentum equation can be rearranged in terms of a particle-particle interaction area. By reducing this area to zero via an inter-particle damage parameter, the principles of continuum damage mechanics can be observed without the need for an effective stress term, held at the individual particles.. This research makes use of the Cochran-Banner damage growth model which has been updated for 3D damage and makes the appropriate modifications for inter-particle damage growth. The fracture model was tested on simulations of a 1D flyer plate impact test and the results were compared to experimental data. Some limited modelling was also conducted in 2 and 3 dimensions and promising results were observed. Research was also performed into the mesh sensitivity of the explosively driven Mock- Holt experiment. 3D simulations using the Eulerian SPH formulation were conducted and the best results were observed with a radial packing arrangement. An in-depth assessment of the Monaghan repulsive force correction was also conducted in attempt to eliminate the presence of the SPH tensile instability and stabilise the available Eulerian SPH code

  6. Hydrodynamic simulations with the Godunov smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Murante, G.; Borgani, S.; Brunino, R.; Cha, S.-H.

    2011-10-01

    We present results based on an implementation of the Godunov smoothed particle hydrodynamics (GSPH), originally developed by Inutsuka, in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equations of moment and energy conservation, starting from the convolution of these equations with the interpolating kernel. The two most important aspects of the numerical implementation of these equations are (a) the appearance of fluid velocity and pressure obtained from the solution of the Riemann problem between each pair of particles, and (b) the absence of an artificial viscosity term. We carry out three different controlled hydrodynamical three-dimensional tests, namely the Sod shock tube, the development of Kelvin-Helmholtz instabilities in a shear-flow test and the 'blob' test describing the evolution of a cold cloud moving against a hot wind. The results of our tests confirm and extend in a number of aspects those recently obtained by Cha, Inutsuka & Nayakshin: (i) GSPH provides a much improved description of contact discontinuities, with respect to smoothed particle hydrodynamics (SPH), thus avoiding the appearance of spurious pressure forces; (ii) GSPH is able to follow the development of gas-dynamical instabilities, such as the Kevin-Helmholtz and the Rayleigh-Taylor ones; (iii) as a result, GSPH describes the development of curl structures in the shear-flow test and the dissolution of the cold cloud in the 'blob' test. Besides comparing the results of GSPH with those from standard SPH implementations, we also discuss in detail the effect on the performances of GSPH of changing different aspects of its implementation: choice of the number of neighbours, accuracy of the interpolation procedure to locate the interface between two fluid elements (particles) for the solution of the Riemann problem, order of the reconstruction for the assignment of variables at the interface, choice of the limiter to prevent oscillations of

  7. Flow and Transport in Smooth and Rough Unsaturated Wide Aperture Fractures with Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Tartakovsky, A. M.; Geyer, T.

    2014-12-01

    Unsaturated flow in fractured porous media exhibits highly complex flow dynamics and a wide range of intermittent flow processes. Especially in wide aperture fractures, flow processes may be dominated by gravitational instead of capillary forces leading to a deviation from the classical volume effective approaches (Richard's equation, Van Genuchten type relationships). The existence of various flow modes such as droplets, rivulets, turbulent and adsorbed films is well known, however, their spatial and temporal distribution within fracture networks is still an open question partially due to the lack of appropriate modeling tools. With our work we want to gain a deeper understanding of the underlying flow and transport dynamics in unsaturated fractured media in order to support the development of more refined upscaled methods, applicable on catchment scales. We present pore- and fracture-scale flow simulations obtained with a Smoothed Particle Hydrodynamics (SPH) model. The model allows to simulate free-surface flow dynamics including the effect of surface tension for a wide range of wetting conditions. Several empirical and semi-analytical solutions are used to verify the model. We show that our results satisfy the empirical scaling laws for droplet velocity and critical contact angle. Due to the efficient generation of surface tension via particle-particle interaction forces the dynamic wetting of surfaces as well as the velocity enhancement of droplets on saturated surfaces can readily be obtained. Furthermore, we study the effect of surface roughness on droplet velocities. Lastly, we present flow and transport simulations in the presence of an adjacent porous matrix in order to investigate its influence on the fracture surface flow dynamics and transport across the matrix-fracture interface.

  8. Multi-phase shock simulations with smoothed particle hydrodynamics (SPH)

    NASA Astrophysics Data System (ADS)

    Omang, M. G.; Trulsen, J. K.

    2014-09-01

    In this paper we present an approach to the implementation of a multi-phase description in the numerical Smoothed Particle Hydrodynamics method. The work is based on previous work, but has been modified to suit the applications of interest, in this case shock propagation through dusty gases. Theoretical models for multi-phase systems rely on the introduction of a number of terms describing the interaction between the different phases; drag and heat exchange are two examples. These terms contain parameters, the value of many of which must be determined empirically. We present results on the effect of changing values of some of the important parameters and compare our results to experimental and numerical results published in the literature. Our numerical results generally agree well with published results, taking uncertainties concerning accuracy in existing experimental data and details in the choice of parameters for numerical results into consideration. In particular, we find that a reduction in dust particle size is an efficient way of increasing shock retardation for a given dust loading.

  9. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.

    2007-03-01

    A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.

  10. Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott

    2015-01-01

    We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling.

  11. Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics

    SciTech Connect

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott

    2015-01-28

    We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling.

  12. Adaptively smoothed background seismicity rates in the Intermountain West, United States

    NASA Astrophysics Data System (ADS)

    Moschetti, M. P.

    2013-05-01

    Spatially smoothed seismicity rates are an important seismic source for seismic hazard calculations across much of the Intermountain West (IMW). The U.S. national seismic hazard maps have historically used smoothed seismicity rate models generated with fixed-bandwidth smoothing methods (Frankel, 1996; Petersen et al., 2008); however, recent tests using the California earthquake catalog indicate that adapting the smoothing bandwidth to the local seismicity density (e.g., Helmstetter et al., 2007; Werner et al., 2011) produces improved seismic source models relative to models with fixed smoothing bandwidths (Schorlemmer et al., 2010). To test the ability of adaptively smoothed seismicity models to match epicenter locations from later parts of the IMW earthquake catalog, I generate time-independent maps of smoothed seismicity rates by spatially smoothing the seismicity rates of M4+ earthquake epicenters using fixed-radius and adaptive smoothing methods. I evaluate the 'forecast' smoothed seismicity models generated from the early part of the earthquake catalog by comparing the locations of earthquakes that occur in the later times of the catalog with the forecast seismicity rates. Forecasts are generated from a de-clustered catalog (Gardner and Knopoff, 1974) with completeness levels ranging from M4-6. The forecasts assume that the Gutenberg-Richter relation describes the magnitude-frequency distribution and that the locations of smaller earthquakes (M4+) can identify the locations of future large, and damaging, earthquakes. Spatially smoothed seismicity rate models are generated with isotropic Gaussian and power-law smoothing kernels using fixed and adaptive bandwidths; the adaptive smoothing bandwidths are calculated with the method of Helmstetter et al. (2007). To identify optimal smoothing methods for long-term earthquake rates, I calculate likelihood values for all smoothed seismicity models by using a Poisson distribution for earthquake occurrence and select the

  13. A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces

    SciTech Connect

    Kordilla, Jannes; Tartakovsky, Alexandre M.; Geyer, Tobias

    2013-09-01

    Flow on fracture surfaces has been identified by many authors as an important flow process in unsaturated fractured rock formations. Given the complexity of flow dynamics on such small scales, robust numerical methods have to be employed in order to capture the highly dynamic interfaces and flow intermittency. In this work we present microscale free-surface flow simulations using a three-dimensional multiphase Smoothed Particle Hydrodynamics (SPH) code. Pairwise solid-fluid and fluid-fluid interaction forces are used to control the wetting behavior and cover a wide range of static and transient contact angles as well as Reynolds numbers encountered in droplet flow on rock surfaces. We validate our model via comparison with existing empirical and semi-analyical solutions for droplet flow. We use the model to investigate the occurence of adsorbed trailing films of droplets under various flow conditions and its importance for the flow dynamics when films and droplets coexist. We show that flow velocities are higher on prewetted surfaces covered by a thin film which is qualitatively attributed to the enhanced dynamic wetting and dewetting at the trailing and advancing contact line.

  14. Length adaptation of smooth muscle contractile filaments in response to sustained activation.

    PubMed

    Stålhand, Jonas; Holzapfel, Gerhard A

    2016-05-21

    Airway and bladder smooth muscles are known to undergo length adaptation under sustained contraction. This adaptation process entails a remodelling of the intracellular actin and myosin filaments which shifts the peak of the active force-length curve towards the current length. Smooth muscles are therefore able to generate the maximum force over a wide range of lengths. In contrast, length adaptation of vascular smooth muscle has attracted very little attention and only a handful of studies have been reported. Although their results are conflicting on the existence of a length adaptation process in vascular smooth muscle, it seems that, at least, peripheral arteries and arterioles undergo such adaptation. This is of interest since peripheral vessels are responsible for pressure regulation, and a length adaptation will affect the function of the cardiovascular system. It has, e.g., been suggested that the inward remodelling of resistance vessels associated with hypertension disorders may be related to smooth muscle adaptation. In this study we develop a continuum mechanical model for vascular smooth muscle length adaptation by assuming that the muscle cells remodel the actomyosin network such that the peak of the active stress-stretch curve is shifted towards the operating point. The model is specialised to hamster cheek pouch arterioles and the simulated response to stepwise length changes under contraction. The results show that the model is able to recover the salient features of length adaptation reported in the literature.

  15. Dusty gas with one fluid in smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Laibe, Guillaume; Price, Daniel J.

    2014-05-01

    In a companion paper we have shown how the equations describing gas and dust as two fluids coupled by a drag term can be re-formulated to describe the system as a single-fluid mixture. Here, we present a numerical implementation of the one-fluid dusty gas algorithm using smoothed particle hydrodynamics (SPH). The algorithm preserves the conservation properties of the SPH formalism. In particular, the total gas and dust mass, momentum, angular momentum and energy are all exactly conserved. Shock viscosity and conductivity terms are generalized to handle the two-phase mixture accordingly. The algorithm is benchmarked against a comprehensive suit of problems: DUSTYBOX, DUSTYWAVE, DUSTYSHOCK and DUSTYOSCILL, each of them addressing different properties of the method. We compare the performance of the one-fluid algorithm to the standard two-fluid approach. The one-fluid algorithm is found to solve both of the fundamental limitations of the two-fluid algorithm: it is no longer possible to concentrate dust below the resolution of the gas (they have the same resolution by definition), and the spatial resolution criterion h < csts, required in two-fluid codes to avoid over-damping of kinetic energy, is unnecessary. Implicit time-stepping is straightforward. As a result, the algorithm is up to ten billion times more efficient for 3D simulations of small grains. Additional benefits include the use of half as many particles, a single kernel and fewer SPH interpolations. The only limitation is that it does not capture multi-streaming of dust in the limit of zero coupling, suggesting that in this case a hybrid approach may be required.

  16. Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics

    SciTech Connect

    Johnson, Jeffrey N.

    2009-01-01

    The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.

  17. Smoothed Particle Hydrodynamics for water wave propagation in a channel

    NASA Astrophysics Data System (ADS)

    Omidvar, Pourya; Norouzi, Hossein; Zarghami, Ahad

    2015-01-01

    In this paper, Smoothed Particle Hydrodynamics (SPH) is used to simulate the propagation of waves in an intermediate depth water channel. The major advantage of using SPH is that no special treatment of the free surface is required, which is advantageous for simulating highly nonlinear flows with possible wave breaking. The SPH method has an option of different formulations with their own advantages and drawbacks to be implemented. Here, we apply the classical and Arbitrary Lagrange-Euler (ALE) formulation for wave propagation in a water channel. The classical SPH should come with an artificial viscosity which stabilizes the numerical algorithm and increases the accuracy. Here, we will show that the use of classical SPH with an artificial viscosity may cause the waves in the channel to decay. On the other hand, we will show that using the ALE-SPH algorithm with a Riemann solver is more stable, and in addition to producing the pressure fields with much less numerical noise, the waves propagate in the channel without dissipation.

  18. Metal Diffusion in Smoothed Particle Hydrodynamics Simulations of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Williamson, David; Martel, Hugo; Kawata, Daisuke

    2016-05-01

    We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]-[Fe/H] distribution in the gas and cuts off the gas metallicity distribution function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between “metal mass-loading” (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even when the diffusion coefficient is calculated in different ways. The effectiveness of outflows at removing metals from dwarf galaxies and the metal distribution of the gas is thus dependent on the strength of diffusion. By contrast, we show that the metallicities of stars are not strongly dependent on the strength of diffusion, provided that some diffusion is present.

  19. SPHGal: smoothed particle hydrodynamics with improved accuracy for galaxy simulations

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Yu; Naab, Thorsten; Walch, Stefanie; Moster, Benjamin P.; Oser, Ludwig

    2014-09-01

    We present the smoothed particle hydrodynamics (SPH) implementation SPHGal, which combines some recently proposed improvements in GADGET. This includes a pressure-entropy formulation with a Wendland kernel, a higher order estimate of velocity gradients, a modified artificial viscosity switch with a modified strong limiter, and artificial conduction of thermal energy. With a series of idealized hydrodynamic tests, we show that the pressure-entropy formulation is ideal for resolving fluid mixing at contact discontinuities but performs conspicuously worse at strong shocks due to the large entropy discontinuities. Including artificial conduction at shocks greatly improves the results. In simulations of Milky Way like disc galaxies a feedback-induced instability develops if too much artificial viscosity is introduced. Our modified artificial viscosity scheme prevents this instability and shows efficient shock capturing capability. We also investigate the star formation rate and the galactic outflow. The star formation rates vary slightly for different SPH schemes while the mass loading is sensitive to the SPH scheme and significantly reduced in our favoured implementation. We compare the accretion behaviour of the hot halo gas. The formation of cold blobs, an artefact of simple SPH implementations, can be eliminated efficiently with proper fluid mixing, either by conduction and/or by using a pressure-entropy formulation.

  20. The small-scale turbulent dynamo in smoothed particle magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Tricco, T. S.; Price, D. J.; Federrath, C.

    2016-05-01

    Supersonic turbulence is believed to be at the heart of star formation. We have performed smoothed particle magnetohydrodynamics (SPMHD) simulations of the small- scale dynamo amplification of magnetic fields in supersonic turbulence. The calculations use isothermal gas driven at rms velocity of Mach 10 so that conditions are representative of starforming molecular clouds in the Milky Way. The growth of magnetic energy is followed for 10 orders in magnitude until it reaches saturation, a few percent of the kinetic energy. The results of our dynamo calculations are compared with results from grid-based methods, finding excellent agreement on their statistics and their qualitative behaviour. The simulations utilise the latest algorithmic developments we have developed, in particular, a new divergence cleaning approach to maintain the solenoidal constraint on the magnetic field and a method to reduce the numerical dissipation of the magnetic shock capturing scheme. We demonstrate that our divergence cleaning method may be used to achieve ∇ • B = 0 to machine precision, albeit at significant computational expense.

  1. Metal Diffusion in Smoothed Particle Hydrodynamics Simulations of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Williamson, David; Martel, Hugo; Kawata, Daisuke

    2016-05-01

    We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]–[Fe/H] distribution in the gas and cuts off the gas metallicity distribution function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between “metal mass-loading” (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even when the diffusion coefficient is calculated in different ways. The effectiveness of outflows at removing metals from dwarf galaxies and the metal distribution of the gas is thus dependent on the strength of diffusion. By contrast, we show that the metallicities of stars are not strongly dependent on the strength of diffusion, provided that some diffusion is present.

  2. Smoothed Particle Inference: A Kilo-Parametric Method for X-ray Galaxy Cluster Modeling

    SciTech Connect

    Peterson, John R.; Marshall, P.J.; Andersson, K.; /Stockholm U. /SLAC

    2005-08-05

    We propose an ambitious new method that models the intracluster medium in clusters of galaxies as a set of X-ray emitting smoothed particles of plasma. Each smoothed particle is described by a handful of parameters including temperature, location, size, and elemental abundances. Hundreds to thousands of these particles are used to construct a model cluster of galaxies, with the appropriate complexity estimated from the data quality. This model is then compared iteratively with X-ray data in the form of adaptively binned photon lists via a two-sample likelihood statistic and iterated via Markov Chain Monte Carlo. The complex cluster model is propagated through the X-ray instrument response using direct sampling Monte Carlo methods. Using this approach the method can reproduce many of the features observed in the X-ray emission in a less assumption-dependent way that traditional analyses, and it allows for a more detailed characterization of the density, temperature, and metal abundance structure of clusters. Multi-instrument X-ray analyses and simultaneous X-ray, Sunyaev-Zeldovich (SZ), and lensing analyses are a straight-forward extension of this methodology. Significant challenges still exist in understanding the degeneracy in these models and the statistical noise induced by the complexity of the models.

  3. The giant impact simulations with density independent smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Hosono, Natsuki; Saitoh, Takayuki R.; Makino, Junichiro; Genda, Hidenori; Ida, Shigeru

    2016-06-01

    At present, the giant impact (GI) is the most widely accepted model for the origin of the Moon. Most of the numerical simulations of GI have been carried out with the smoothed particle hydrodynamics (SPH) method. Recently, however, it has been pointed out that standard formulation of SPH (SSPH) has difficulties in the treatment of a contact discontinuity such as a core-mantle boundary and a free surface such as a planetary surface. This difficulty comes from the assumption of differentiability of density in SSPH. We have developed an alternative formulation of SPH, density independent SPH (DISPH), which is based on differentiability of pressure instead of density to solve the problem of a contact discontinuity. In this paper, we report the results of the GI simulations with DISPH and compare them with those obtained with SSPH. We found that the disk properties, such as mass and angular momentum produced by DISPH is different from that of SSPH. In general, the disks formed by DISPH are more compact: while formation of a smaller mass moon for low-oblique impacts is expected with DISPH, inhibition of ejection would promote formation of a larger mass moon for high-oblique impacts. Since only the improvement of core-mantle boundary significantly affects the properties of circumplanetary disks generated by GI and DISPH has not been significantly improved from SSPH for a free surface, we should be very careful when some conclusions are drawn from the numerical simulations for GI. And it is necessary to develop the numerical hydrodynamical scheme for GI that can properly treat the free surface as well as the contact discontinuity.

  4. GPU-accelerated adaptive particle splitting and merging in SPH

    NASA Astrophysics Data System (ADS)

    Xiong, Qingang; Li, Bo; Xu, Ji

    2013-07-01

    Graphical processing unit (GPU) implementation of adaptive particle splitting and merging (APS) in the framework of smoothed particle hydrodynamics (SPH) is presented. Particle splitting and merging process are carried out based on a prescribed criterion. Multiple time stepping technology is used to reduce computational cost further. Detailed implementations on both single- and multi-GPU are discussed. A benchmark test that is a flow past fixed periodic circles is simulated to investigate the accuracy and speed of the algorithm. Comparable precision with uniformly fine simulation is achieved by APS, whereas computational demand is reduced considerably. Satisfactory speedup and acceptable scalability are obtained, demonstrating that GPU-accelerated APS is a promising tool to speed up large-scale particle-based simulations.

  5. Steady flow of smooth, inelastic particles on a bumpy inclined plane: hard and soft particle simulations.

    PubMed

    Tripathi, Anurag; Khakhar, D V

    2010-04-01

    We study smooth, slightly inelastic particles flowing under gravity on a bumpy inclined plane using event-driven and discrete-element simulations. Shallow layers (ten particle diameters) are used to enable simulation using the event-driven method within reasonable computational times. Steady flows are obtained in a narrow range of angles (13 degrees-14.5 degrees); lower angles result in stopping of the flow and higher angles in continuous acceleration. The flow is relatively dense with the solid volume fraction, nu approximately 0.5 , and significant layering of particles is observed. We derive expressions for the stress, heat flux, and dissipation for the hard and soft particle models from first principles. The computed mean velocity, temperature, stress, dissipation, and heat flux profiles of hard particles are compared to soft particle results for different values of stiffness constant (k). The value of stiffness constant for which results for hard and soft particles are identical is found to be k>or=2x10(6) mg/d, where m is the mass of a particle, g is the acceleration due to gravity, and d is the particle diameter. We compare the simulation results to constitutive relations obtained from the kinetic theory of Jenkins and Richman [J. T. Jenkins and M. W. Richman, Arch. Ration. Mech. Anal. 87, 355 (1985)] for pressure, dissipation, viscosity, and thermal conductivity. We find that all the quantities are very well predicted by kinetic theory for volume fractions nu<0.5. At higher densities, obtained for thicker layers (H=15d and H=20d), the kinetic theory does not give accurate prediction. Deviations of the kinetic theory predictions from simulation results are relatively small for dissipation and heat flux and most significant deviations are observed for shear viscosity and pressure. The results indicate the range of applicability of soft particle simulations and kinetic theory for dense flows.

  6. AN ADAPTIVE PARTICLE-MESH GRAVITY SOLVER FOR ENZO

    SciTech Connect

    Passy, Jean-Claude; Bryan, Greg L.

    2014-11-01

    We describe and implement an adaptive particle-mesh algorithm to solve the Poisson equation for grid-based hydrodynamics codes with nested grids. The algorithm is implemented and extensively tested within the astrophysical code Enzo against the multigrid solver available by default. We find that while both algorithms show similar accuracy for smooth mass distributions, the adaptive particle-mesh algorithm is more accurate for the case of point masses, and is generally less noisy. We also demonstrate that the two-body problem can be solved accurately in a configuration with nested grids. In addition, we discuss the effect of subcycling, and demonstrate that evolving all the levels with the same timestep yields even greater precision.

  7. Physical viscosity in smoothed particle hydrodynamics simulations of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Sijacki, Debora; Springel, Volker

    2006-09-01

    Most hydrodynamical simulations of galaxy cluster formation carried out to date have tried to model the cosmic gas as an ideal, inviscid fluid, where only a small amount of (unwanted) numerical viscosity is present, arising from practical limitations of the numerical method employed, and with a strength that depends on numerical resolution. However, the physical viscosity of the gas in hot galaxy clusters may in fact not be negligible, suggesting that a self-consistent treatment that accounts for the internal gas friction would be more appropriate. To allow such simulations using the smoothed particle hydrodynamics (SPH) method, we derive a novel SPH formulation of the Navier-Stokes and general heat transfer equations and implement them in the GADGET-2 code. We include both shear and bulk viscosity stress tensors, as well as saturation criteria that limit viscous stress transport where appropriate. Our scheme integrates consistently into the entropy and energy conserving formulation of SPH employed by the code. Using a number of simple hydrodynamical test problems, e.g. the flow of a viscous fluid through a pipe, we demonstrate the validity of our implementation. Adopting Braginskii parametrization for the shear viscosity of hot gaseous plasmas, we then study the influence of viscosity on the interplay between AGN-inflated bubbles and the surrounding intracluster medium (ICM). We find that certain bubble properties like morphology, maximum clustercentric radius reached or survival time depend quite sensitively on the assumed level of viscosity. Interestingly, the sound waves launched into the ICM by the bubble injection are damped by physical viscosity, establishing a non-local heating process. However, we find that the associated heating is rather weak due to the overall small energy content of the sound waves. Finally, we carry out cosmological simulations of galaxy cluster formation with a viscous ICM. We find that the presence of physical viscosity induces new

  8. Investigating the global collapse of filaments using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Clarke, S. D.; Whitworth, A. P.

    2015-05-01

    We use smoothed particle hydrodynamic simulations of cold, uniform density, self-gravitating filaments, to investigate their longitudinal collapse time-scales; these time-scales are important because they determine the time available for a filament to fragment into cores. A filament is initially characterized by its line-mass, μO, its radius, RO (or equivalently its density ρ O= μ O/π RO^2), and its aspect ratio, AO (≡ZO/RO, where ZO is its half-length). The gas is only allowed to contract longitudinally, i.e. parallel to the symmetry axis of the filament (the z-axis). Pon et al. (2012) have considered the global dynamics of such filaments analytically. They conclude that short filaments (AO ≲ 5) collapse along the z-axis more-or-less homologously, on a time-scale tHOM ˜ 0.44 AO (GρO)-1/2; in contrast, longer filaments (AO ≳ 5) undergo end-dominated collapse, i.e. two dense clumps form at the ends of the filament and converge on the centre sweeping up mass as they go, on a time-scale t_{END} ˜ 0.98 AO^{1/2} (Gρ O)^{-1/2}. Our simulations do not corroborate these predictions. First, for all AO ≳ 2, the collapse time satisfies a single equation t_{COL}˜ (0.49+0.26AO)(Gρ O)^{-1/2}, which for large AO is much longer than the Pon et al. prediction. Secondly, for all AO ≳ 2, the collapse is end-dominated. Thirdly, before being swept up, the gas immediately ahead of an end-clump is actually accelerated outwards by the gravitational attraction of the approaching clump, resulting in a significant ram pressure. For high aspect ratio filaments, the end-clumps approach an asymptotic inward speed, due to the fact that they are doing work both accelerating and compressing the gas they sweep up. Pon et al. appear to have neglected the outward acceleration and its consequences.

  9. Smoothed aggregation adaptive spectral element-based algebraic multigrid

    SciTech Connect

    2015-01-20

    SAAMGE provides parallel methods for building multilevel hierarchies and solvers that can be used for elliptic equations with highly heterogeneous coefficients. Additionally, hierarchy adaptation is implemented allowing solving multiple problems with close coefficients without rebuilding the hierarchy.

  10. An adaptive segment method for smoothing lidar signal based on noise estimation

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhao; Luo, Pingping

    2014-10-01

    An adaptive segmentation smoothing method (ASSM) is introduced in the paper to smooth the signal and suppress the noise. In the ASSM, the noise is defined as the 3σ of the background signal. An integer number N is defined for finding the changing positions in the signal curve. If the difference of adjacent two points is greater than 3Nσ, the position is recorded as an end point of the smoothing segment. All the end points detected as above are recorded and the curves between them will be smoothed separately. In the traditional method, the end points of the smoothing windows in the signals are fixed. The ASSM creates changing end points in different signals and the smoothing windows could be set adaptively. The windows are always set as the half of the segmentations and then the average smoothing method will be applied in the segmentations. The Iterative process is required for reducing the end-point aberration effect in the average smoothing method and two or three times are enough. In ASSM, the signals are smoothed in the spacial area nor frequent area, that means the frequent disturbance will be avoided. A lidar echo was simulated in the experimental work. The echo was supposed to be created by a space-born lidar (e.g. CALIOP). And white Gaussian noise was added to the echo to act as the random noise resulted from environment and the detector. The novel method, ASSM, was applied to the noisy echo to filter the noise. In the test, N was set to 3 and the Iteration time is two. The results show that, the signal could be smoothed adaptively by the ASSM, but the N and the Iteration time might be optimized when the ASSM is applied in a different lidar.

  11. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Sigalotti, Leonardo Di G.; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2014-07-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid.

  12. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2014-07-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid. PMID:25122383

  13. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Klapp, Jaime; di G Sigalotti, Leonardo; Troconis, Jorge; Sira, Eloy; Pena, Franklin; ININ-IVIC Team; Cinvestav-UAM-A Team

    2014-11-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of Smoothed Particle Hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid. Cinvestav-Abacus.

  14. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2014-07-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid.

  15. Smooth muscle overexpression of IGF-I induces a novel adaptive response to small bowel resection.

    PubMed

    Knott, Andrew W; Juno, Russell J; Jarboe, Marcus D; Profitt, Sherri A; Erwin, Christopher R; Smith, Eric P; Fagin, James A; Warner, Brad W

    2004-09-01

    Prior studies of intestinal adaptation after massive small bowel resection (SBR) have focused on growth factors and their effects on amplification of the gut mucosa. Because adaptive changes have also been described in intestinal smooth muscle, we sought to determine the effect of targeted smooth muscle growth factor overexpression on resection-induced intestinal adaptation. Male transgenic mice with smooth muscle cell overexpression of insulin-like growth factor I (IGF-I) by virtue of an alpha-smooth muscle actin promoter were obtained. SMP8 IGF-I transgenic (IGF-I TG) and nontransgenic (NT) littermates underwent 50% proximal SBR or sham operation and were then killed after 3 or 28 days. NT mice showed the expected alterations in mucosal adaptive parameters after SBR, such as increased wet weight and villus height. The IGF-I TG mice had inherently taller villi, which did not increase significantly after SBR. In addition, IGF-I TG mice had a 50% postresection persistent increase in remnant intestinal length, which was associated with an early decline and later increase in relative mucosal surface area. These results indicate that growth factor overexpression within the muscularis layer of the bowel wall induces significant postresection adaptive intestinal lengthening and a unique mucosal response. IGF-I signaling within the muscle wall may play an important role in the pathogenesis of resection-induced adaptation.

  16. High energy scattering of Dirac particles on smooth potentials

    NASA Astrophysics Data System (ADS)

    Han, Nguyen Suan; Dung, Le Anh; Xuan, Nguyen Nhu; Thang, Vu Toan

    2016-08-01

    The derivation of the Glauber type representation for the high energy scattering amplitude of particles of spin 1/2 is given within the framework of the Dirac equation in the Foldy-Wouthuysen (FW) representation and two-component formalism. The differential cross-sections on the Yukawa and Gaussian potentials are also considered and discussed.

  17. ADVANCING THE ION BEAM THIN FILM PLANARIZATION PROCESS FOR THE SMOOTHING OF SUBSTRATE PARTICLES

    SciTech Connect

    Mirkarimi, P B; Spiller, E; Baker, S L; Robinson, J C; Stearns, D G; Liddle, J A; Salmassi, F; Liang, T; Stivers, A R

    2004-10-19

    For a number of technologies small substrate contaminants are undesirable, and for one technology in particular, extreme ultraviolet lithography (EUVL), they can be a very serious issue. We have demonstrated that the Ion Beam Thin Film Planarization Process, a coating process designed to planarize substrate asperities, can be extended to smooth {approx}70 nm and {approx}80 nm diameter particles on EUVL reticle substrates to a height of {approx}0.5 nm, which will render them noncritical in an EUVL printing process. We demonstrate this smoothing process using controlled nanoscale substrate particles and lines fabricated with an e-beam lithography process. The above smoothing process was also modified to yield an excellent reflectance/wavelength uniformity and a good EUV reflectivity for the multilayer, which is required for EUVL reticles. Cross-sectional TEM on a smoothed substrate line defect shows excellent agreement with results obtained from our multilayer growth model.

  18. Volume conservation issues in incompressible smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Nair, Prapanch; Tomar, Gaurav

    2015-09-01

    A divergence-free velocity field is usually sought in numerical simulations of incompressible fluids. We show that the particle methods that compute a divergence-free velocity field to achieve incompressibility suffer from a volume conservation issue when a finite time-step position update scheme is used. Further, we propose a deformation gradient based approach to arrive at a velocity field that reduces the volume conservation issues in free surface flows and maintains density uniformity in internal flows while retaining the simplicity of first order time updates.

  19. Neumann and Robin boundary conditions for heat conduction modeling using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Esmaili Sikarudi, M. A.; Nikseresht, A. H.

    2016-01-01

    Smoothed particle hydrodynamics is a robust Lagrangian particle method which is widely used in various applications, from astrophysics to hydrodynamics and heat conduction. It has intrinsic capabilities for simulating large deformation, composites, multiphysics events, and multiphase fluid flows. It is vital to use reliable boundary conditions when boundary value problems like heat conduction or Poisson equation for incompressible flows are solved. Since smoothed particle hydrodynamics is not a boundary fitted grids method, implementation of boundary conditions can be problematic. Many methods have been proposed for enhancing the accuracy of implementation of boundary conditions. In the present study a new approach for facilitating the implementation of Robin and Neumann boundary conditions is proposed and proven to give accurate results. Also there is no need to use complicated preprocessing as in virtual particle method. The new method is compared to an equivalent one dimensional moving least square scheme and it is shown that the present method is less sensitive to particle disorder.

  20. Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics

    PubMed Central

    Liu, Xuemei; Wang, Ruiyi; Li, Yunhua; Song, Dongdong

    2015-01-01

    We study the deformation and haptic feedback of soft tissue in virtual surgery based on a liver model by using a force feedback device named PHANTOM OMNI developed by SensAble Company in USA. Although a significant amount of research efforts have been dedicated to simulating the behaviors of soft tissue and implementing force feedback, it is still a challenging problem. This paper introduces a kind of meshfree method for deformation simulation of soft tissue and force computation based on viscoelastic mechanical model and smoothed particle hydrodynamics (SPH). Firstly, viscoelastic model can present the mechanical characteristics of soft tissue which greatly promotes the realism. Secondly, SPH has features of meshless technique and self-adaption, which supply higher precision than methods based on meshes for force feedback computation. Finally, a SPH method based on dynamic interaction area is proposed to improve the real time performance of simulation. The results reveal that SPH methodology is suitable for simulating soft tissue deformation and force feedback calculation, and SPH based on dynamic local interaction area has a higher computational efficiency significantly compared with usual SPH. Our algorithm has a bright prospect in the area of virtual surgery. PMID:26417380

  1. Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics.

    PubMed

    Liu, Xuemei; Wang, Ruiyi; Li, Yunhua; Song, Dongdong

    2015-01-01

    We study the deformation and haptic feedback of soft tissue in virtual surgery based on a liver model by using a force feedback device named PHANTOM OMNI developed by SensAble Company in USA. Although a significant amount of research efforts have been dedicated to simulating the behaviors of soft tissue and implementing force feedback, it is still a challenging problem. This paper introduces a kind of meshfree method for deformation simulation of soft tissue and force computation based on viscoelastic mechanical model and smoothed particle hydrodynamics (SPH). Firstly, viscoelastic model can present the mechanical characteristics of soft tissue which greatly promotes the realism. Secondly, SPH has features of meshless technique and self-adaption, which supply higher precision than methods based on meshes for force feedback computation. Finally, a SPH method based on dynamic interaction area is proposed to improve the real time performance of simulation. The results reveal that SPH methodology is suitable for simulating soft tissue deformation and force feedback calculation, and SPH based on dynamic local interaction area has a higher computational efficiency significantly compared with usual SPH. Our algorithm has a bright prospect in the area of virtual surgery.

  2. Development of a coupled discrete element (DEM)-smoothed particle hydrodynamics (SPH) simulation method for polyhedral particles

    NASA Astrophysics Data System (ADS)

    Nassauer, Benjamin; Liedke, Thomas; Kuna, Meinhard

    2016-03-01

    In the present paper, the direct coupling of a discrete element method (DEM) with polyhedral particles and smoothed particle hydrodynamics (SPH) is presented. The two simulation techniques are fully coupled in both ways through interaction forces between the solid DEM particles and the fluid SPH particles. Thus this simulation method provides the possibility to simulate the individual movement of polyhedral, sharp-edged particles as well as the flow field around these particles in fluid-saturated granular matter which occurs in many technical processes e.g. wire sawing, grinding or lapping. The coupled method is exemplified and validated by the simulation of a particle in a shear flow, which shows good agreement with analytical solutions.

  3. Reconstruction for distributed video coding: a Markov random field approach with context-adaptive smoothness prior

    NASA Astrophysics Data System (ADS)

    Zhang, Yongsheng; Xiong, Hongkai; He, Zhihai; Yu, Songyu

    2010-07-01

    An important issue in Wyner-Ziv video coding is the reconstruction of Wyner-Ziv frames with decoded bit-planes. So far, there are two major approaches: the Maximum a Posteriori (MAP) reconstruction and the Minimum Mean Square Error (MMSE) reconstruction algorithms. However, these approaches do not exploit smoothness constraints in natural images. In this paper, we model a Wyner-Ziv frame by Markov random fields (MRFs), and produce reconstruction results by finding an MAP estimation of the MRF model. In the MRF model, the energy function consists of two terms: a data term, MSE distortion metric in this paper, measuring the statistical correlation between side-information and the source, and a smoothness term enforcing spatial coherence. In order to better describe the spatial constraints of images, we propose a context-adaptive smoothness term by analyzing the correspondence between the output of Slepian-Wolf decoding and successive frames available at decoders. The significance of the smoothness term varies in accordance with the spatial variation within different regions. To some extent, the proposed approach is an extension to the MAP and MMSE approaches by exploiting the intrinsic smoothness characteristic of natural images. Experimental results demonstrate a considerable performance gain compared with the MAP and MMSE approaches.

  4. Modeling of liquid-vapor phase change using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Das, P. K.

    2015-12-01

    A model has been proposed based on smoothed particle hydrodynamics to describe gas liquid phase change. Pseudo particles of zero mass are initially placed to locate the interface. Mass generated due to phase change is assigned to the pseudo particles and their positions are updated at intervals to track the mobility of the interface. The developed algorithm has been used to simulate vapor formation around solid spheres both in the absence of gravity and in the normal gravitational field. Finally, bubble growth over a hot horizontal surface due to boiling has been simulated. Simulated results showed good matching with the reported literature.

  5. Stability of bumps in piecewise smooth neural fields with nonlinear adaptation

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Zachary P.; Bressloff, Paul C.

    2010-06-01

    We study the linear stability of stationary bumps in piecewise smooth neural fields with local negative feedback in the form of synaptic depression or spike frequency adaptation. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Discontinuities in the adaptation variable associated with a bump solution means that bump stability cannot be analyzed by constructing the Evans function for a network with a sigmoidal gain function and then taking the high-gain limit. In the case of synaptic depression, we show that linear stability can be formulated in terms of solutions to a system of pseudo-linear equations. We thus establish that sufficiently strong synaptic depression can destabilize a bump that is stable in the absence of depression. These instabilities are dominated by shift perturbations that evolve into traveling pulses. In the case of spike frequency adaptation, we show that for a wide class of perturbations the activity and adaptation variables decouple in the linear regime, thus allowing us to explicitly determine stability in terms of the spectrum of a smooth linear operator. We find that bumps are always unstable with respect to this class of perturbations, and destabilization of a bump can result in either a traveling pulse or a spatially localized breather.

  6. Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity

    NASA Astrophysics Data System (ADS)

    Dolag, K.; Vazza, F.; Brunetti, G.; Tormen, G.

    2005-12-01

    Smoothed particle hydrodynamics (SPH) employs an artificial viscosity to properly capture hydrodynamic shock waves. In its original formulation, the resulting numerical viscosity is large enough to suppress structure in the velocity field on scales well above the nominal resolution limit, and to damp the generation of turbulence by fluid instabilities. This could artificially suppress random gas motions in the intracluster medium (ICM), which are driven by infalling structures during the hierarchical structure formation process. We show that this is indeed the case by analysing results obtained with an SPH formulation where an individual, time-variable viscosity is used for each particle, following a suggestion by Morris & Monaghan. Using test calculations involving strong shocks, we demonstrate that this scheme captures shocks as well as the original formulation of SPH, but, in regions away from shocks, the numerical viscosity is much smaller. In a set of nine high-resolution simulations of cosmological galaxy cluster formation, we find that this low-viscosity formulation of SPH produces substantially higher levels of turbulent gas motions in the ICM, reaching a kinetic energy content in random gas motions (measured within a 1-Mpc cube) of up to 5-30 per cent of the thermal energy content, depending on cluster mass. This also has significant effects on radial gas profiles and bulk cluster properties. We find a central flattening of the entropy profile and a reduction of the central gas density in the low-viscosity scheme. As a consequence, the bolometric X-ray luminosity is decreased by about a factor of 2. However, the cluster temperature profile remains essentially unchanged. Interestingly, this tends to reduce the differences seen in SPH and adaptive mesh refinement simulations of cluster formation. Finally, invoking a model for particle acceleration by magnetohydrodynamics waves driven by turbulence, we find that efficient electron acceleration and thus

  7. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid.

  8. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity

    NASA Astrophysics Data System (ADS)

    Sigalotti, Leonardo Di G.; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (Ts≈0.96 ) is close to the theoretically derived value of Ts=1 at zero ambient pressure for this vdW fluid.

  9. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid. PMID:26274283

  10. Smoothed particle hydrodynamics simulation of shear-induced powder migration in injection moulding.

    PubMed

    Kauzlarić, David; Pastewka, Lars; Meyer, Hagen; Heldele, Richard; Schulz, Michael; Weber, Oxana; Piotter, Volker; Hausselt, Jürgen; Greiner, Andreas; Korvink, Jan G

    2011-06-13

    We present the application of the smoothed particle hydrodynamics (SPH) discretization scheme to Phillips' model for shear-induced particle migration in concentrated suspensions. This model provides an evolution equation for the scalar mean volume fraction of idealized spherical solid particles of equal diameter which is discretized by the SPH formalism. In order to obtain a discrete evolution equation with exact conservation properties we treat in fact the occupied volume of the solid particles as the degree of freedom for the fluid particles. We present simulation results in two- and three-dimensional channel flow. The two-dimensional results serve as a verification by a comparison to analytic solutions. The three-dimensional results are used for a comparison with experimental measurements obtained from computer tomography of injection moulded ceramic microparts. We observe the best agreement of measurements with snapshots of the transient simulation for a ratio D(c)/D(η)=0.1 of the two model parameters. PMID:21536579

  11. Parallel algorithm for transient solid dynamics simulations using finite elements and smoothed particle hydrodynamics

    SciTech Connect

    Attaway, S.W.; Hendrickson, B.A.; Plimpton, S.J.; Swegle, J.W.; Gardner, D.R.; Vaughan, C.T.

    1997-05-01

    An efficient, scalable, parallel algorithm for treating contacts in solid mechanics has been applied to interactions between particles in smooth particle hydrodynamics (SPH). The algorithm uses three different decompositions within a single timestep: (1) a static FE-decomposition of mesh elements; (2) a dynamic SPH-decomposition of SPH particles; (3) and a dynamic contact-decomposition of contact nodes and SPH particles. The overhead cost of such a scheme is the cost of moving mesh and particle data between the decompositions. This cost turns out to be small in practice, leading to a highly load-balanced decomposition in which to perform each of the three major computational states within a timestep.

  12. On the dynamics of nonlinear, unsteady landslide flow within the smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Khvostova, O.; Averbukh, E.

    2012-04-01

    In the present study the idea of landslide modeling by particle method is described. Smoothed particle hydrodynamics was invented in 1977 by Leon Lucy and independently by Bob Gingold and Joe Monaghan [1]. It was used for astrophysics phenomena's simulation. Later it was adapted for hydrodynamics, gas dynamics and solid body problems. Landslides can be caused by the influence of different factors. Landslides occur when the angle of inclination of the slope of the slope or if the slope is burdened with loose material. A landslide flow is a thin homogeneous layer of nearly incompressible fluid. It is considered that at the initial moment shifted part of a ground mass is splitting and turning into liquid of several layers which then is streaming down along the slope. The landslide flow motion is described with the Navie-Stocks set of equations: D→u-= - 1\\upsidedownBigTriangle P + μ \\upsidedownBigTriangle →u + g Dt ρ (1) D-ρ = 0, Dt (2) where u is velocity vector, t is time, ρ is a flow density, P is a pressure, μ is a viscosity coefficient, g is gravity. Continuum discretization by finite number of lagrangian particles is the main idea of SPH [2,3]. Particles moves with the flow and arbitrary connectivity is allowed. Therefore, SPH does not need a grid to calculate spatial derivatives. For any field A(r), involved in equation (1), e.g. pressure, density, viscosity etc., we consider an approximation with a finite function: A(r) = ∫ω A (r')W (r- r',h)dr' (3) where A is a desired field, r is a radius-vector, W is an interpolating kernel. The free boundary condition problem is discussed. Finding the particles on a free surface is described. Also the surface tension force defining is shown. Described method is implemented and mathematical modeling of landslide flows motion along slope is simulated. Different types of slopes are considered: with constant and variable steepness, long and wide. Wave-breaking effects near the wall are shown. Findings are analyzed

  13. Different time scales of motion integration for anticipatory smooth pursuit and perceptual adaptation

    PubMed Central

    Maus, Gerrit W.; Potapchuk, Elena; Watamaniuk, Scott N. J.; Heinen, Stephen J.

    2015-01-01

    When repeatedly exposed to moving stimuli, the oculomotor system elicits anticipatory smooth pursuit (ASP) eye movements, even before the stimulus moves. ASP is affected oppositely to perceptual speed judgments of repetitive moving stimuli: After a sequence of fast stimuli, ASP velocity increases, whereas perceived speed decreases. These two effects—perceptual adaptation and oculomotor priming—could result from adapting a single common internal speed representation that is used for perceptual comparisons and for generating ASP. Here we test this hypothesis by assessing the temporal dependence of both effects on stimulus history. Observers performed speed discriminations on moving random dot stimuli, either while pursuing the movement or maintaining steady fixation. In both cases, responses showed perceptual adaptation: Stimuli preceded by fast speeds were perceived as slower, and vice versa. To evaluate oculomotor priming, we analyzed ASP velocity as a function of average stimulus speed in preceding trials and found strong positive dependencies. Interestingly, maximal priming occurred over short stimulus histories (∼two trials), whereas adaptation was maximal over longer histories (∼15 trials). The temporal dissociation of adaptation and priming suggests different underlying mechanisms. It may be that perceptual adaptation integrates over a relatively long period to robustly calibrate the operating range of the motion system, thereby avoiding interference from transient changes in stimulus speed. On the other hand, the oculomotor system may rapidly prime anticipatory velocity to efficiently match it to that of the pursuit target. PMID:25761334

  14. Numerical Simulation of Crater Creating Process in Dynamic Replacement Method by Smooth Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Danilewicz, Andrzej; Sikora, Zbigniew

    2015-02-01

    A theoretical base of SPH method, including the governing equations, discussion of importance of the smoothing function length, contact formulation, boundary treatment and finally utilization in hydrocode simulations are presented. An application of SPH to a real case of large penetrations (crater creating) into the soil caused by falling mass in Dynamic Replacement Method is discussed. An influence of particles spacing on method accuracy is presented. An example calculated by LS-DYNA software is discussed. Chronological development of Smooth Particle Hydrodynamics is presented. Theoretical basics of SPH method stability and consistency in SPH formulation, artificial viscosity and boundary treatment are discussed. Time integration techniques with stability conditions, SPH+FEM coupling, constitutive equation and equation of state (EOS) are presented as well.

  15. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Alexandre M.; Panchenko, Alexander

    2016-01-01

    We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.

  16. Neptune: An astrophysical smooth particle hydrodynamics code for massively parallel computer architectures

    NASA Astrophysics Data System (ADS)

    Sandalski, Stou

    Smooth particle hydrodynamics is an efficient method for modeling the dynamics of fluids. It is commonly used to simulate astrophysical processes such as binary mergers. We present a newly developed GPU accelerated smooth particle hydrodynamics code for astrophysical simulations. The code is named neptune after the Roman god of water. It is written in OpenMP parallelized C++ and OpenCL and includes octree based hydrodynamic and gravitational acceleration. The design relies on object-oriented methodologies in order to provide a flexible and modular framework that can be easily extended and modified by the user. Several pre-built scenarios for simulating collisions of polytropes and black-hole accretion are provided. The code is released under the MIT Open Source license and publicly available at http://code.google.com/p/neptune-sph/.

  17. Adaptive smoothing of multi-shell diffusion weighted magnetic resonance data by msPOAS

    PubMed Central

    Becker, S.M.A.; Tabelow, K.; Mohammadi, S.; Weiskopf, N.; Polzehl, J.

    2014-01-01

    We present a novel multi-shell position-orientation adaptive smoothing (msPOAS) method for diffusion weighted magnetic resonance data. Smoothing in voxel and diffusion gradient space is embedded in an iterative adaptive multiscale approach. The adaptive character avoids blurring of the inherent structures and preserves discontinuities. The simultaneous treatment of all q-shells improves the stability compared to single-shell approaches such as the original POAS method. The msPOAS implementation simplifies and speeds up calculations, compared to POAS, facilitating its practical application. Simulations and heuristics support the face validity of the technique and its rigorousness. The characteristics of msPOAS were evaluated on single and multi-shell diffusion data of the human brain. Significant reduction in noise while preserving the fine structure was demonstrated for diffusion weighted images, standard DTI analysis and advanced diffusion models such as NODDI. MsPOAS effectively improves the poor signal-to-noise ratio in highly diffusion weighted multi-shell diffusion data, which is required by recent advanced diffusion micro-structure models. We demonstrate the superiority of the new method compared to other advanced denoising methods. PMID:24680711

  18. Crack Propagation in Bi-Material System via Pseudo-Spring Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sukanta; Shaw, Amit

    2014-05-01

    A Smoothed Particles Hydrodynamics (SPH) based framework with material constitutive model is developed to simulate crack initiation and propagation in a bi-material system. An efficient immediate neighbor interaction is formulated by connecting neighbors through pseudo-springs. A damage evolution law defines degradation of the inter-neighbor spring forces and corresponding reduced interaction is introduced in mass, momentum, and energy-conserving particle collocation. The proposed technique is validated through a simple test on a pre-notched bi-material system producing a conformal crack path.

  19. Discrete-element modelling and smoothed particle hydrodynamics: potential in the environmental sciences.

    PubMed

    Cleary, Paul W; Prakash, Mahesh

    2004-09-15

    Particle-based simulation methods, such as the discrete-element method and smoothed particle hydrodynamics, have specific advantages in modelling complex three-dimensional (3D) environmental fluid and particulate flows. The theory of both these methods and their relative advantages compared with traditional methods will be discussed. Examples of 3D flows on realistic topography illustrate the environmental application of these methods. These include the flooding of a river valley as a result of a dam collapse, coastal inundation by a tsunami, volcanic lava flow and landslides. Issues related to validation and quality data availability are also discussed. PMID:15306427

  20. Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition

    NASA Astrophysics Data System (ADS)

    Bian, Xin; Li, Zhen; Tang, Yu-Hang; Karniadakis, George

    2015-11-01

    We present a methodology to concurrently couple particle-based methods via a domain decomposition (DD) technique for simulating viscous flows. In particular, we select two resolutions of the smoothed particle hydrodynamics (SPH) method as demonstration. Within the DD framework, a simulation domain is decomposed into two (or more) overlapping sub-domains, each of which has an individual particle scale determined by the local flow physics. Consistency of the two sub-domains is achieved in the overlap region by matching the two independent simulations based on Lagrangian interpolation of state variables and fluxes. The domain decomposition based SPH method (DD-SPH) employs different spatial and temporal resolutions, and hence, each sub-domain has its own smoothing length and time step. As a consequence, particle refinement and de-refinement are performed asynchronously according to individual time advancement of each sub-domain. The proposed strategy avoids SPH force interactions between different resolutions on purpose, so that coupling, in principle, can go beyond SPH - SPH, and may allow SPH to be coupled with other mesoscopic or microscopic particle methods. The DD-SPH method is validated first for a transient Couette flow, where simulation results base. US DOE Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4).

  1. Transient dynamics simulations: Parallel algorithms for contact detection and smoothed particle hydrodynamics

    SciTech Connect

    Hendrickson, B.; Plimpton, S.; Attaway, S.; Swegle, J.

    1996-09-01

    Transient dynamics simulations are commonly used to model phenomena such as car crashes, underwater explosions, and the response of shipping containers to high-speed impacts. Physical objects in such a simulation are typically represented by Lagrangian meshes because the meshes can move and deform with the objects as they undergo stress. Fluids (gasoline, water) or fluid-like materials (earth) in the simulation can be modeled using the techniques of smoothed particle hydrodynamics. Implementing a hybrid mesh/particle model on a massively parallel computer poses several difficult challenges. One challenge is to simultaneously parallelize and load-balance both the mesh and particle portions of the computation. A second challenge is to efficiently detect the contacts that occur within the deforming mesh and between mesh elements and particles as the simulation proceeds. These contacts impart forces to the mesh elements and particles which must be computed at each timestep to accurately capture the physics of interest. In this paper we describe new parallel algorithms for smoothed particle hydrodynamics and contact detection which turn out to have several key features in common. Additionally, we describe how to join the new algorithms with traditional parallel finite element techniques to create an integrated particle/mesh transient dynamics simulation. Our approach to this problem differs from previous work in that we use three different parallel decompositions, a static one for the finite element analysis and dynamic ones for particles and for contact detection. We have implemented our ideas in a parallel version of the transient dynamics code PRONTO-3D and present results for the code running on a large Intel Paragon.

  2. Predictor-corrector schemes for visualization of smoothed particle hydrodynamics data.

    PubMed

    Schindler, Benjamin; Fuchs, Raphael; Biddiscombe, John; Peikert, Ronald

    2009-01-01

    In this paper we present a method for vortex core line extraction which operates directly on the smoothed particle hydrodynamics (SPH) representation and, by this, generates smoother and more (spatially and temporally) coherent results in an efficient way. The underlying predictor-corrector scheme is general enough to be applied to other line-type features and it is extendable to the extraction of surfaces such as isosurfaces or Lagrangian coherent structures. The proposed method exploits temporal coherence to speed up computation for subsequent time steps. We show how the predictor-corrector formulation can be specialized for several variants of vortex core line definitions including two recent unsteady extensions, and we contribute a theoretical and practical comparison of these. In particular, we reveal a close relation between unsteady extensions of Fuchs et al. and Weinkauf et al. and we give a proof of the Galilean invariance of the latter. When visualizing SPH data, there is the possibility to use the same interpolation method for visualization as has been used for the simulation. This is different from the case of finite volume simulation results, where it is not possible to recover from the results the spatial interpolation that was used during the simulation. Such data are typically interpolated using the basic trilinear interpolant, and if smoothness is required, some artificial processing is added. In SPH data, however, the smoothing kernels are specified from the simulation, and they provide an exact and smooth interpolation of data or gradients at arbitrary points in the domain.

  3. An adaptive kernel smoothing method for classifying Austrosimulium tillyardianum (Diptera: Simuliidae) larval instars.

    PubMed

    Cen, Guanjun; Yu, Yonghao; Zeng, Xianru; Long, Xiuzhen; Wei, Dewei; Gao, Xuyuan; Zeng, Tao

    2015-01-01

    In insects, the frequency distribution of the measurements of sclerotized body parts is generally used to classify larval instars and is characterized by a multimodal overlap between instar stages. Nonparametric methods with fixed bandwidths, such as histograms, have significant limitations when used to fit this type of distribution, making it difficult to identify divisions between instars. Fixed bandwidths have also been chosen somewhat subjectively in the past, which is another problem. In this study, we describe an adaptive kernel smoothing method to differentiate instars based on discontinuities in the growth rates of sclerotized insect body parts. From Brooks' rule, we derived a new standard for assessing the quality of instar classification and a bandwidth selector that more accurately reflects the distributed character of specific variables. We used this method to classify the larvae of Austrosimulium tillyardianum (Diptera: Simuliidae) based on five different measurements. Based on head capsule width and head capsule length, the larvae were separated into nine instars. Based on head capsule postoccipital width and mandible length, the larvae were separated into 8 instars and 10 instars, respectively. No reasonable solution was found for antennal segment 3 length. Separation of the larvae into nine instars using head capsule width or head capsule length was most robust and agreed with Crosby's growth rule. By strengthening the distributed character of the separation variable through the use of variable bandwidths, the adaptive kernel smoothing method could identify divisions between instars more effectively and accurately than previous methods.

  4. An Adaptive Kernel Smoothing Method for Classifying Austrosimulium tillyardianum (Diptera: Simuliidae) Larval Instars

    PubMed Central

    Cen, Guanjun; Zeng, Xianru; Long, Xiuzhen; Wei, Dewei; Gao, Xuyuan; Zeng, Tao

    2015-01-01

    In insects, the frequency distribution of the measurements of sclerotized body parts is generally used to classify larval instars and is characterized by a multimodal overlap between instar stages. Nonparametric methods with fixed bandwidths, such as histograms, have significant limitations when used to fit this type of distribution, making it difficult to identify divisions between instars. Fixed bandwidths have also been chosen somewhat subjectively in the past, which is another problem. In this study, we describe an adaptive kernel smoothing method to differentiate instars based on discontinuities in the growth rates of sclerotized insect body parts. From Brooks’ rule, we derived a new standard for assessing the quality of instar classification and a bandwidth selector that more accurately reflects the distributed character of specific variables. We used this method to classify the larvae of Austrosimulium tillyardianum (Diptera: Simuliidae) based on five different measurements. Based on head capsule width and head capsule length, the larvae were separated into nine instars. Based on head capsule postoccipital width and mandible length, the larvae were separated into 8 instars and 10 instars, respectively. No reasonable solution was found for antennal segment 3 length. Separation of the larvae into nine instars using head capsule width or head capsule length was most robust and agreed with Crosby’s growth rule. By strengthening the distributed character of the separation variable through the use of variable bandwidths, the adaptive kernel smoothing method could identify divisions between instars more effectively and accurately than previous methods. PMID:26546689

  5. The surface roughness of lactose particles can be modulated by wet-smoothing using a high-shear mixer.

    PubMed

    Ferrari, Franca; Cocconi, Daniela; Bettini, Ruggero; Giordano, Ferdinando; Santi, Patrizia; Tobyn, Michael; Price, Robert; Young, Paul; Caramella, Carla; Colombo, Paolo

    2004-01-01

    The surface morphology of a-lactose monohydrate particles was modified by a new wet-smoothing process performed in a high-shear mixer using solvents. Successive steps of wetting and drying of lactose powders during rolling in the mixer's cylindrical bowl were performed. Smoothed particles were tested for size distribution, flow, and packing. The wet-smoothing process flattened the surface and rounded the edges of lactose particles. In comparison with original lactose, an improvement of powder packing and flow properties was evidenced. When the process was performed in the presence of a ternary agent such as magnesium stearate, the smoothing was improved. The evolution of rugosity during the smoothing process was assessed through a fractal descriptor of SEM picture. Atomic force microscopy and surface area measurements quantified the surface rugosity. A very significant reduction of the rugosity, more remarkable in the presence of magnesium stearate, was measured. This new process of powder wet-smoothing allows the preparation of lactose particles with different degrees of smoothed surface for the control of flow and packing properties and particle-particle interactions. PMID:15760057

  6. A Nonlinear Framework of Delayed Particle Smoothing Method for Vehicle Localization under Non-Gaussian Environment.

    PubMed

    Xiao, Zhu; Havyarimana, Vincent; Li, Tong; Wang, Dong

    2016-01-01

    In this paper, a novel nonlinear framework of smoothing method, non-Gaussian delayed particle smoother (nGDPS), is proposed, which enables vehicle state estimation (VSE) with high accuracy taking into account the non-Gaussianity of the measurement and process noises. Within the proposed method, the multivariate Student's t-distribution is adopted in order to compute the probability distribution function (PDF) related to the process and measurement noises, which are assumed to be non-Gaussian distributed. A computation approach based on Ensemble Kalman Filter (EnKF) is designed to cope with the mean and the covariance matrix of the proposal non-Gaussian distribution. A delayed Gibbs sampling algorithm, which incorporates smoothing of the sampled trajectories over a fixed-delay, is proposed to deal with the sample degeneracy of particles. The performance is investigated based on the real-world data, which is collected by low-cost on-board vehicle sensors. The comparison study based on the real-world experiments and the statistical analysis demonstrates that the proposed nGDPS has significant improvement on the vehicle state accuracy and outperforms the existing filtering and smoothing methods. PMID:27187405

  7. A Nonlinear Framework of Delayed Particle Smoothing Method for Vehicle Localization under Non-Gaussian Environment

    PubMed Central

    Xiao, Zhu; Havyarimana, Vincent; Li, Tong; Wang, Dong

    2016-01-01

    In this paper, a novel nonlinear framework of smoothing method, non-Gaussian delayed particle smoother (nGDPS), is proposed, which enables vehicle state estimation (VSE) with high accuracy taking into account the non-Gaussianity of the measurement and process noises. Within the proposed method, the multivariate Student’s t-distribution is adopted in order to compute the probability distribution function (PDF) related to the process and measurement noises, which are assumed to be non-Gaussian distributed. A computation approach based on Ensemble Kalman Filter (EnKF) is designed to cope with the mean and the covariance matrix of the proposal non-Gaussian distribution. A delayed Gibbs sampling algorithm, which incorporates smoothing of the sampled trajectories over a fixed-delay, is proposed to deal with the sample degeneracy of particles. The performance is investigated based on the real-world data, which is collected by low-cost on-board vehicle sensors. The comparison study based on the real-world experiments and the statistical analysis demonstrates that the proposed nGDPS has significant improvement on the vehicle state accuracy and outperforms the existing filtering and smoothing methods. PMID:27187405

  8. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells

    PubMed Central

    Berntsen, P.; Park, C. Y.; Rothen-Rutishauser, B.; Tsuda, A.; Sager, T. M.; Molina, R. M.; Donaghey, T. C.; Alencar, A. M.; Kasahara, D. I.; Ericsson, T.; Millet, E. J.; Swenson, J.; Tschumperlin, D. J.; Butler, J. P.; Brain, J. D.; Fredberg, J. J.; Gehr, P.; Zhou, E. H.

    2010-01-01

    The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40–100 nm and less than 44 μm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 μm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 μM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases. PMID:20356875

  9. Improved kernel gradient free-smoothed particle hydrodynamics and its applications to heat transfer problems

    NASA Astrophysics Data System (ADS)

    Juan-Mian, Lei; Xue-Ying, Peng

    2016-02-01

    Kernel gradient free-smoothed particle hydrodynamics (KGF-SPH) is a modified smoothed particle hydrodynamics (SPH) method which has higher precision than the conventional SPH. However, the Laplacian in KGF-SPH is approximated by the two-pass model which increases computational cost. A new kind of discretization scheme for the Laplacian is proposed in this paper, then a method with higher precision and better stability, called Improved KGF-SPH, is developed by modifying KGF-SPH with this new Laplacian model. One-dimensional (1D) and two-dimensional (2D) heat conduction problems are used to test the precision and stability of the Improved KGF-SPH. The numerical results demonstrate that the Improved KGF-SPH is more accurate than SPH, and stabler than KGF-SPH. Natural convection in a closed square cavity at different Rayleigh numbers are modeled by the Improved KGF-SPH with shifting particle position, and the Improved KGF-SPH results are presented in comparison with those of SPH and finite volume method (FVM). The numerical results demonstrate that the Improved KGF-SPH is a more accurate method to study and model the heat transfer problems.

  10. Smoothed Particle Hydrodynamics simulation and laboratory-scale experiments of complex flow dynamics in unsaturated fractures

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Tartakovsky, A. M.; Pan, W.; Shigorina, E.; Noffz, T.; Geyer, T.

    2015-12-01

    Unsaturated flow in fractured porous media exhibits highly complex flow dynamics and a wide range of intermittent flow processes. Especially in wide aperture fractures, flow processes may be dominated by gravitational instead of capillary forces leading to a deviation from the classical volume effective approaches (Richard's equation, Van Genuchten type relationships). The existence of various flow modes such as droplets, rivulets, turbulent and adsorbed films is well known, however, their spatial and temporal distribution within fracture networks is still an open question partially due to the lack of appropriate modeling tools. With our work we want to gain a deeper understanding of the underlying flow and transport dynamics in unsaturated fractured media in order to support the development of more refined upscaled methods, applicable on catchment scales. We present fracture-scale flow simulations obtained with a parallelized Smoothed Particle Hydrodynamics (SPH) model. The model allows us to simulate free-surface flow dynamics including the effect of surface tension for a wide range of wetting conditions in smooth and rough fractures. Due to the highly efficient generation of surface tension via particle-particle interaction forces the dynamic wetting of surfaces can readily be obtained. We validated the model via empirical and semi-analytical solutions and conducted laboratory-scale percolation experiments of unsaturated flow through synthetic fracture systems. The setup allows us to obtain travel time distributions and identify characteristic flow mode distributions on wide aperture fractures intercepted by horizontal fracture elements.

  11. DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH)

    NASA Astrophysics Data System (ADS)

    Crespo, A. J. C.; Domínguez, J. M.; Rogers, B. D.; Gómez-Gesteira, M.; Longshaw, S.; Canelas, R.; Vacondio, R.; Barreiro, A.; García-Feal, O.

    2015-02-01

    DualSPHysics is a hardware accelerated Smoothed Particle Hydrodynamics code developed to solve free-surface flow problems. DualSPHysics is an open-source code developed and released under the terms of GNU General Public License (GPLv3). Along with the source code, a complete documentation that makes easy the compilation and execution of the source files is also distributed. The code has been shown to be efficient and reliable. The parallel power computing of Graphics Computing Units (GPUs) is used to accelerate DualSPHysics by up to two orders of magnitude compared to the performance of the serial version.

  12. The Ultraviolet View of Multi-Spin Galaxies: Insight from Smooth Particle Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Mazzei, P.; Marino, A.; Rampazzo, R.; Galletta, G.; Buson, L. M.

    2014-05-01

    The UV images of the Galaxy Evolution Explorer satellite revealed that about (30±3)% of early-type galaxies show UV emission indicating a rejuvenation episode. In early-type galaxies with multi-spin components this percentage increases at 50%. We present here the characteristics of this sample and our smooth particle hydrodynamic simulations with chemo-photometric implementation that provide dynamical and morphological information together with the spectral energy distribution at each evolutionary stage. We show our match of the global properties of two early-type galaxies, NGC 3626 and NGC 5173. For these galaxies we can trace their evolutionary path.

  13. Coupled discrete element and smoothed particle hydrodynamics simulations of the die filling process

    NASA Astrophysics Data System (ADS)

    Breinlinger, Thomas; Kraft, Torsten

    2015-08-01

    Die filling is an important part of the powder compaction process chain, where defects in the final part can be introduced—or prevented. Simulation of this process is therefore a goal for many part producers and has been studied by some researchers already. In this work, we focus on the influence of the surrounding air on the powder flow. We demonstrate the implementing and coupling of the discrete element method for the granular powder and the smoothed particle hydrodynamics method for the gas flow. Application of the method to the die filling process is demonstrated.

  14. Simulation of wave mitigation by coastal vegetation using smoothed particle hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Iryanto; Gunawan, P. H.

    2016-02-01

    Vegetation in coastal area lead to wave mitigation has been studied by some researchers recently. The effect of vegetation forest in coastal area is minimizing the negative impact of wave propagation. In order to describe the effect of vegetation resistance into the water flow, the modified model of framework smoothed hydrodynamics particle has been constructed. In the Lagrangian framework, the Darcy, Manning, and laminar viscosity resistances are added. The effect of each resistances is given in some results of numerical simulations. Simulation of wave mitigation on sloping beach is also given.

  15. Mesh-free modeling of liquid crystals using modified smoothed particle hydrodynamics.

    PubMed

    Yakutovich, M V; Care, C M; Newton, C J P; Cleaver, D J

    2010-10-01

    We present a generalization of the modified smooth particle hydrodynamics simulation technique capable of simulating static and dynamic liquid crystalline behavior. This generalization is then implemented in the context of the Qian-Sheng description of nematodynamics. To test the method, we first use it to simulate switching in both a Fréedericksz setup and a chiral hybrid aligned nematic cell. In both cases, the results obtained give excellent agreement with previously published results. We then apply the technique in a three-dimensional simulation of the switching dynamics of the post aligned bistable nematic device.

  16. Coupled discrete element and smoothed particle hydrodynamics simulations of the die filling process

    NASA Astrophysics Data System (ADS)

    Breinlinger, Thomas; Kraft, Torsten

    2016-11-01

    Die filling is an important part of the powder compaction process chain, where defects in the final part can be introduced—or prevented. Simulation of this process is therefore a goal for many part producers and has been studied by some researchers already. In this work, we focus on the influence of the surrounding air on the powder flow. We demonstrate the implementing and coupling of the discrete element method for the granular powder and the smoothed particle hydrodynamics method for the gas flow. Application of the method to the die filling process is demonstrated.

  17. Variables Affecting Smooth Particle Hydrodynamics Simulation of High-Velocity Flyer Plate Impact Experiments

    SciTech Connect

    Somasundaram, Deepak S; Trabia, Mohamed; O'Toole, Brendan; Hixson, Robert S

    2014-01-23

    This paper describes our work to characterize the variables affecting the smoothed particle hydrodynamics (SPH) method in the LS-DYNA package for simulating high-velocity flyer plate impact experiments. LS-DYNA simulations are compared with one-dimensional experimental data of an oxygen-free high-conductivity (OFHC) copper flyer plate impacting another plate of the same material. The comparison is made by measuring the velocity of a point on the back surface of the impact plate using the velocity interferometer system for any reflector (VISAR) technique.

  18. An automatic locally-adaptive method to estimate heavily-tailed breakthrough curves from particle distributions

    NASA Astrophysics Data System (ADS)

    Pedretti, Daniele; Fernàndez-Garcia, Daniel

    2013-09-01

    Particle tracking methods to simulate solute transport deal with the issue of having to reconstruct smooth concentrations from a limited number of particles. This is an error-prone process that typically leads to large fluctuations in the determined late-time behavior of breakthrough curves (BTCs). Kernel density estimators (KDE) can be used to automatically reconstruct smooth BTCs from a small number of particles. The kernel approach incorporates the uncertainty associated with subsampling a large population by equipping each particle with a probability density function. Two broad classes of KDE methods can be distinguished depending on the parametrization of this function: global and adaptive methods. This paper shows that each method is likely to estimate a specific portion of the BTCs. Although global methods offer a valid approach to estimate early-time behavior and peak of BTCs, they exhibit important fluctuations at the tails where fewer particles exist. In contrast, locally adaptive methods improve tail estimation while oversmoothing both early-time and peak concentrations. Therefore a new method is proposed combining the strength of both KDE approaches. The proposed approach is universal and only needs one parameter (α) which slightly depends on the shape of the BTCs. Results show that, for the tested cases, heavily-tailed BTCs are properly reconstructed with α ≈ 0.5 .

  19. Smoothed particle hydrodynamics and element bending group modeling of flexible fibers interacting with viscous fluids

    NASA Astrophysics Data System (ADS)

    Yang, Xiufeng; Liu, Moubin; Peng, Shiliu

    2014-12-01

    This paper presents a smoothed particle hydrodynamics (SPH) and element bending group (EBG) coupling method for modeling the interaction of flexible fibers with moving viscous fluids. SPH is a well-developed mesh-free particle method for simulating viscous fluid flows. EBG is also a particle method for modeling flexible bodies. The interaction of flexible fibers with moving viscous fluids is rendered through the interaction of EBG particles for flexible fiber and SPH particles for fluid. In numerical simulation, flexible fibers of different lengths are immersed in a moving viscous fluid driven by a body force. The drag force on the fiber obtained from SPH-EBG simulation agrees well with experimental observations. It is shown that the flexible fiber demonstrates three typical bending modes, including the U-shaped mode, the flapping mode, and the closed mode, and that the flexible fiber experiences a drag reduction due to its reconfiguration by bending. It is also found that the U 4/3 drag scaling law for a flexible fiber is only valid for the U-shaped mode, but not valid for the flapping and closed modes. The results indicate that the reconfiguration of a flexible fiber is caused by the fluid force acting on it, while vortex shedding is of importance in the translations of bending modes.

  20. Three-dimensional simulations of dilute and concentrated suspensions using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Vázquez-Quesada, Adolfo; Bian, Xin; Ellero, Marco

    2016-04-01

    A three-dimensional model for a suspension of rigid spherical particles in a Newtonian fluid is presented. The solvent is modeled with smoothed particle hydrodynamics method, which takes into account exactly the long-range multi-body hydrodynamic interactions between suspended spheres. Short-range lubrication forces which are necessary to simulate concentrated suspensions, are introduced pair-wisely based on the analytical solution of Stokes equations for approaching/departing objects. Given that lubrication is singular at vanishing solid particle separations, an implicit splitting integration scheme is used to obtain accurate results and at the same time to avoid prohibitively small simulation time steps. Hydrodynamic interactions between solid particles, at both long-range and short-range limits, are verified against theory in the case of two approaching spheres in a quiescent medium and under bulk shear flow, where good agreements are obtained. Finally, numerical results for the suspension viscosity of a many-particle system are shown and compared with analytical solutions available in the dilute and semi-dilute case as well as with previous numerical results obtained in the concentrated limit.

  1. Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Squire, D. T.; Morrill-Winter, C.; Hutchins, N.; Marusic, I.; Schultz, M. P.; Klewicki, J. C.

    2016-10-01

    Two particle image velocimetry arrangements are used to make true spatial comparisons between smooth- and rough-wall boundary layers at high Reynolds numbers across a very wide range of streamwise scales. Together, the arrangements resolve scales ranging from motions on the order of the Kolmogorov microscale to those longer than twice the boundary layer thickness. The rough-wall experiments were obtained above a continuous sandpaper sheet, identical to that used by Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196], and cover a range of friction and equivalent sand-grain roughness Reynolds numbers (12 000 ≲δ+≲ 18000, 62 ≲ks+≲104 ). The smooth-wall experiments comprise new and previously published data spanning 6500 ≲δ+≲17 000 . Flow statistics from all experiments show similar Reynolds number trends and behaviors to recent, well-resolved hot-wire anemometry measurements above the same rough surface. Comparisons, at matched δ+, between smooth- and rough-wall two-point correlation maps and two-point magnitude-squared coherence maps demonstrate that spatially the outer region of the boundary layer is the same between the two flows. This is apparently true even at wall-normal locations where the total (inner-normalized) energy differs between the smooth and rough wall. Generally, the present results provide strong support for Townsend's [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956), Vol. 1] wall-similarity hypothesis in high Reynolds number fully rough boundary layer flows.

  2. Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves.

    PubMed

    Colagrossi, Andrea; Souto-Iglesias, Antonio; Antuono, Matteo; Marrone, Salvatore

    2013-02-01

    The smoothed-particle-hydrodynamics (SPH) method has been used to study the evolution of free-surface Newtonian viscous flows specifically focusing on dissipation mechanisms in gravity waves. The numerical results have been compared with an analytical solution of the linearized Navier-Stokes equations for Reynolds numbers in the range 50-5000. We found that a correct choice of the number of neighboring particles is of fundamental importance in order to obtain convergence towards the analytical solution. This number has to increase with higher Reynolds numbers in order to prevent the onset of spurious vorticity inside the bulk of the fluid, leading to an unphysical overdamping of the wave amplitude. This generation of spurious vorticity strongly depends on the specific kernel function used in the SPH model.

  3. Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Baker, Nathan A.; Wu, Lei; Schenter, Gregory K.; Mundy, Christopher J.; Tartakovsky, Alexandre M.

    2016-08-01

    Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a multiphase smoothed dissipative particle dynamics (SDPD) model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semianalytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models dynamic processes, such as bubble coalescence and capillary spectra across the interface.

  4. Constrained hyperbolic divergence cleaning in smoothed particle magnetohydrodynamics with variable cleaning speeds

    NASA Astrophysics Data System (ADS)

    Tricco, Terrence S.; Price, Daniel J.; Bate, Matthew R.

    2016-10-01

    We present an updated constrained hyperbolic/parabolic divergence cleaning algorithm for smoothed particle magnetohydrodynamics (SPMHD) that remains conservative with wave cleaning speeds which vary in space and time. This is accomplished by evolving the quantity ψ /ch instead of ψ. Doing so allows each particle to carry an individual wave cleaning speed, ch, that can evolve in time without needing an explicit prescription for how it should evolve, preventing circumstances which we demonstrate could lead to runaway energy growth related to variable wave cleaning speeds. This modification requires only a minor adjustment to the cleaning equations and is trivial to adopt in existing codes. Finally, we demonstrate that our constrained hyperbolic/parabolic divergence cleaning algorithm, run for a large number of iterations, can reduce the divergence of the magnetic field to an arbitrarily small value, achieving ∇ ṡ B = 0 to machine precision.

  5. Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations.

    PubMed

    Lei, Huan; Baker, Nathan A; Wu, Lei; Schenter, Gregory K; Mundy, Christopher J; Tartakovsky, Alexandre M

    2016-08-01

    Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a multiphase smoothed dissipative particle dynamics (SDPD) model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semianalytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models dynamic processes, such as bubble coalescence and capillary spectra across the interface. PMID:27627409

  6. Simulation of drop movement over an inclined surface using smoothed particle hydrodynamics.

    PubMed

    Das, Arup K; Das, Prasanta K

    2009-10-01

    Smoothed particle hydrodynamics (SPH) is used to numerically simulate the movement of drops down an inclined plane. Diffuse interfaces have been assumed for tracking the motion of the contact line. The asymmetric shape of the three-dimensional drop and the variation of contact angle along its periphery can be calculated using the simulation. During the motion of a liquid drop down an inclined plane, an internal circulation of liquid particles is observed due to gravitational pull which causes periodic change in the drop shape. The critical angle of inclination required for the inception of drop motion is also evaluated for different fluids as a function of drop volume. The numerical predictions exhibit a good agreement with the published experimental results.

  7. Prediction of material strength and fracture of glass using the SPHINX smooth particle hydrodynamics code

    SciTech Connect

    Mandell, D.A.; Wingate, C.A.

    1994-08-01

    The design of many military devices involves numerical predictions of the material strength and fracture of brittle materials. The materials of interest include ceramics, that are used in armor packages; glass that is used in truck and jeep windshields and in helicopters; and rock and concrete that are used in underground bunkers. As part of a program to develop advanced hydrocode design tools, the authors have implemented a brittle fracture model for glass into the SPHINX smooth particle hydrodynamics code. The authors have evaluated this model and the code by predicting data from one-dimensional flyer plate impacts into glass, and data from tungsten rods impacting glass. Since fractured glass properties, which are needed in the model, are not available, the authors did sensitivity studies of these properties, as well as sensitivity studies to determine the number of particles needed in the calculations. The numerical results are in good agreement with the data.

  8. Prediction of material strength and fracture of brittle materials using the SPHINX smooth particle hydrodynamics code

    SciTech Connect

    Mandell, D.A.; Wingate, C.A.; Stellingwwerf, R.F.

    1995-12-31

    The design of many devices involves numerical predictions of the material strength and fracture of brittle materials. The materials of interest include ceramics that are used in armor packages; glass that is used in windshields; and rock and concrete that are used in oil wells. As part of a program to develop advanced hydrocode design tools, the authors have implemented a brittle fracture model for glass into the SPHINX smooth particle hydrodynamics code. The authors have evaluated this model and the code by predicting data from tungsten rods impacting glass. Since fractured glass properties, which are needed in the model, are not available, they did sensitivity studies of these properties, as well as sensitivity studies to determine the number of particles needed in the calculations. The numerical results are in good agreement with the data.

  9. Development of stress boundary conditions in smoothed particle hydrodynamics (SPH) for the modeling of solids deformation

    NASA Astrophysics Data System (ADS)

    Douillet-Grellier, Thomas; Pramanik, Ranjan; Pan, Kai; Albaiz, Abdulaziz; Jones, Bruce D.; Williams, John R.

    2016-10-01

    This paper develops a method for imposing stress boundary conditions in smoothed particle hydrodynamics (SPH) with and without the need for dummy particles. SPH has been used for simulating phenomena in a number of fields, such as astrophysics and fluid mechanics. More recently, the method has gained traction as a technique for simulation of deformation and fracture in solids, where the meshless property of SPH can be leveraged to represent arbitrary crack paths. Despite this interest, application of boundary conditions within the SPH framework is typically limited to imposed velocity or displacement using fictitious dummy particles to compensate for the lack of particles beyond the boundary interface. While this is enough for a large variety of problems, especially in the case of fluid flow, for problems in solid mechanics there is a clear need to impose stresses upon boundaries. In addition to this, the use of dummy particles to impose a boundary condition is not always suitable or even feasibly, especially for those problems which include internal boundaries. In order to overcome these difficulties, this paper first presents an improved method for applying stress boundary conditions in SPH with dummy particles. This is then followed by a proposal of a formulation which does not require dummy particles. These techniques are then validated against analytical solutions to two common problems in rock mechanics, the Brazilian test and the penny-shaped crack problem both in 2D and 3D. This study highlights the fact that SPH offers a good level of accuracy to solve these problems and that results are reliable. This validation work serves as a foundation for addressing more complex problems involving plasticity and fracture propagation.

  10. Modeling the propagation of volcanic debris avalanches by a Smoothed Particle Hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Sosio, Rosanna; Battista Crosta, Giovanni

    2010-05-01

    Hazard from collapses of volcanic edifices threatens million of people which currently live on top of volcanic deposits or around volcanoes prone to fail. Nevertheless, no much effort has been dedicated for the evaluation of the hazard posed by volcanic debris avalanches (e.g. emergency plans, hazard zoning maps). This work focuses at evaluating the exceptional mobility of volcanic debris avalanches for hazard analyses purposes by providing a set of calibrated cases. We model the propagation of eight debris avalanche selected among the best known historical events originated from sector collapses of volcanic edifices. The events have large volumes (ranging from 0.01-0.02 km3 to 25 km3) and are well preserved so that their main features are recognizable from satellite images. The events developed in a variety of settings and condition and they vary with respect to their morphological constrains, materials, styles of failure. The modeling has been performed using a Lagragian numerical method adapted from Smoothed Particle Hydrodynamics to solve the depth averaged quasi-3D equation for motion (McDougall and Hungr 2004). This code has been designed and satisfactorily used to simulate rock and debris avalanches in non-volcanic settings (McDougall and Hungr, 2004). Its use is here extended to model volcanic debris avalanches which may differ from non-volcanic ones by dimensions, water content and by possible thermodynamic effects or degassing caused by active volcanic processes. The resolution of the topographic data is generally low for remote areas like the ones considered in this study, while the pre event topographies are more often not available. The effect of the poor topographic resolution on the final results has been evaluated by replicating the modeling on satellite-derived topographical grids with varying cell size (from 22 m to 90 m). The event reconstructions and the back analyses are based on the observations available from the literature. We test the

  11. Adaptive fuzzy control with smooth inverse for nonlinear systems preceded by non-symmetric dead-zone

    NASA Astrophysics Data System (ADS)

    Wang, Xingjian; Wang, Shaoping

    2016-07-01

    In this study, the adaptive output feedback control problem of a class of nonlinear systems preceded by non-symmetric dead-zone is considered. To cope with the possible control signal chattering phenomenon which is caused by non-smooth dead-zone inverse, a new smooth inverse is proposed for non-symmetric dead-zone compensation. For the systematic design procedure of the adaptive fuzzy control algorithm, we combine the backstepping technique and small-gain approach. The Takagi-Sugeno fuzzy logic systems are used to approximate unknown system nonlinearities. The closed-loop stability is studied by using small gain theorem and the closed-loop system is proved to be semi-globally uniformly ultimately bounded. Simulation results indicate that, compared to the algorithm with the non-smooth inverse, the proposed control strategy can achieve better tracking performance and the chattering phenomenon can be avoided effectively.

  12. A variational multi-symplectic particle-in-cell algorithm with smoothing functions for the Vlasov-Maxwell system

    SciTech Connect

    Xiao, Jianyuan; Liu, Jian; Qin, Hong; Yu, Zhi

    2013-10-15

    Smoothing functions are commonly used to reduce numerical noise arising from coarse sampling of particles in particle-in-cell (PIC) plasma simulations. When applying smoothing functions to symplectic algorithms, the conservation of symplectic structure should be guaranteed to preserve good conservation properties. In this paper, we show how to construct a variational multi-symplectic PIC algorithm with smoothing functions for the Vlasov-Maxwell system. The conservation of the multi-symplectic structure and the reduction of numerical noise make this algorithm specifically suitable for simulating long-term dynamics of plasmas, such as those in the steady-state operation or long-pulse discharge of a super-conducting tokamak. The algorithm has been implemented in a 6D large scale PIC code. Numerical examples are given to demonstrate the good conservation properties of the multi-symplectic algorithm and the reduction of the noise due to the application of smoothing function.

  13. Observation-driven adaptive differential evolution and its application to accurate and smooth bronchoscope three-dimensional motion tracking.

    PubMed

    Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku

    2015-08-01

    This paper proposes an observation-driven adaptive differential evolution algorithm that fuses bronchoscopic video sequences, electromagnetic sensor measurements, and computed tomography images for accurate and smooth bronchoscope three-dimensional motion tracking. Currently an electromagnetic tracker with a position sensor fixed at the bronchoscope tip is commonly used to estimate bronchoscope movements. The large tracking error from directly using sensor measurements, which may be deteriorated heavily by patient respiratory motion and the magnetic field distortion of the tracker, limits clinical applications. How to effectively use sensor measurements for precise and stable bronchoscope electromagnetic tracking remains challenging. We here exploit an observation-driven adaptive differential evolution framework to address such a challenge and boost the tracking accuracy and smoothness. In our framework, two advantageous points are distinguished from other adaptive differential evolution methods: (1) the current observation including sensor measurements and bronchoscopic video images is used in the mutation equation and the fitness computation, respectively and (2) the mutation factor and the crossover rate are determined adaptively on the basis of the current image observation. The experimental results demonstrate that our framework provides much more accurate and smooth bronchoscope tracking than the state-of-the-art methods. Our approach reduces the tracking error from 3.96 to 2.89 mm, improves the tracking smoothness from 4.08 to 1.62 mm, and increases the visual quality from 0.707 to 0.741. PMID:25660001

  14. Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition

    NASA Astrophysics Data System (ADS)

    Bian, Xin; Li, Zhen; Karniadakis, George Em

    2015-09-01

    We present a methodology to concurrently couple particle-based methods via a domain decomposition (DD) technique for simulating viscous flows. In particular, we select two resolutions of the smoothed particle hydrodynamics (SPH) method as demonstration. Within the DD framework, a simulation domain is decomposed into two (or more) overlapping sub-domains, each of which has an individual particle scale determined by the local flow physics. Consistency of the two sub-domains is achieved in the overlap region by matching the two independent simulations based on Lagrangian interpolation of state variables and fluxes. The domain decomposition based SPH method (DD-SPH) employs different spatial and temporal resolutions, and hence, each sub-domain has its own smoothing length and time step. As a consequence, particle refinement and de-refinement are performed asynchronously according to individual time advancement of each sub-domain. The proposed strategy avoids SPH force interactions between different resolutions on purpose, so that coupling, in principle, can go beyond SPH-SPH, and may allow SPH to be coupled with other mesoscopic or microscopic particle methods. The DD-SPH method is validated first for a transient Couette flow, where simulation results based on proper coupling of spatial-temporal scales agree well with analytical solutions. In particular, we find that the size of the overlap region should be at least rc,1 + 2rc,2, where rc,1 and rc,2 are cut off radii in the two sub-domains with rc,1 ≤rc,2. Subsequently, a perturbation wave is considered traveling either parallel or perpendicular to the hybrid interface. Compressibility is significant if transient behavior at short sonic-time-scale is relevant, while the fluid can be treated as quasi-incompressible at sufficiently long time scale. To this end, we propose a coupling of density fields from the two sub-domains. Finally, a steady Wannier flow is simulated, where a rotating cylinder is placed next to a

  15. GPUs, a New Tool of Acceleration in CFD: Efficiency and Reliability on Smoothed Particle Hydrodynamics Methods

    PubMed Central

    Crespo, Alejandro C.; Dominguez, Jose M.; Barreiro, Anxo; Gómez-Gesteira, Moncho; Rogers, Benedict D.

    2011-01-01

    Smoothed Particle Hydrodynamics (SPH) is a numerical method commonly used in Computational Fluid Dynamics (CFD) to simulate complex free-surface flows. Simulations with this mesh-free particle method far exceed the capacity of a single processor. In this paper, as part of a dual-functioning code for either central processing units (CPUs) or Graphics Processor Units (GPUs), a parallelisation using GPUs is presented. The GPU parallelisation technique uses the Compute Unified Device Architecture (CUDA) of nVidia devices. Simulations with more than one million particles on a single GPU card exhibit speedups of up to two orders of magnitude over using a single-core CPU. It is demonstrated that the code achieves different speedups with different CUDA-enabled GPUs. The numerical behaviour of the SPH code is validated with a standard benchmark test case of dam break flow impacting on an obstacle where good agreement with the experimental results is observed. Both the achieved speed-ups and the quantitative agreement with experiments suggest that CUDA-based GPU programming can be used in SPH methods with efficiency and reliability. PMID:21695185

  16. Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH)

    NASA Astrophysics Data System (ADS)

    Lind, S. J.; Stansby, P. K.; Rogers, B. D.

    2016-03-01

    A new two-phase incompressible-compressible Smoothed Particle Hydrodynamics (SPH) method has been developed where the interface is discontinuous in density. This is applied to water-air problems with a large density difference. The incompressible phase requires surface pressure from the compressible phase and the compressible phase requires surface velocity from the incompressible phase. Compressible SPH is used for the air phase (with the isothermal stiffened ideal gas equation of state for low Mach numbers) and divergence-free (projection based) incompressible SPH is used for the water phase, with the addition of Fickian shifting to produce sufficiently homogeneous particle distributions to enable stable, accurate, converged solutions without noise in the pressure field. Shifting is a purely numerical particle regularisation device. The interface remains a true material discontinuity at a high density ratio with continuous pressure and velocity at the interface. This approach with the physics of compressibility and incompressibility represented is novel within SPH and is validated against semi-analytical results for a two-phase elongating and oscillating water drop, analytical results for low amplitude inviscid standing waves, the Kelvin-Helmholtz instability, and a dam break problem with high interface distortion and impact on a vertical wall where experimental and other numerical results are available.

  17. Consistent temperature coupling with thermal fluctuations of smooth particle hydrodynamics and molecular dynamics.

    PubMed

    Ganzenmüller, Georg C; Hiermaier, Stefan; Steinhauser, Martin O

    2012-01-01

    We propose a thermodynamically consistent and energy-conserving temperature coupling scheme between the atomistic and the continuum domain. The coupling scheme links the two domains using the DPDE (Dissipative Particle Dynamics at constant Energy) thermostat and is designed to handle strong temperature gradients across the atomistic/continuum domain interface. The fundamentally different definitions of temperature in the continuum and atomistic domain - internal energy and heat capacity versus particle velocity - are accounted for in a straightforward and conceptually intuitive way by the DPDE thermostat. We verify the here-proposed scheme using a fluid, which is simultaneously represented as a continuum using Smooth Particle Hydrodynamics, and as an atomistically resolved liquid using Molecular Dynamics. In the case of equilibrium contact between both domains, we show that the correct microscopic equilibrium properties of the atomistic fluid are obtained. As an example of a strong non-equilibrium situation, we consider the propagation of a steady shock-wave from the continuum domain into the atomistic domain, and show that the coupling scheme conserves both energy and shock-wave dynamics. To demonstrate the applicability of our scheme to real systems, we consider shock loading of a phospholipid bilayer immersed in water in a multi-scale simulation, an interesting topic of biological relevance.

  18. An incompressible smoothed particle hydrodynamics method for the motion of rigid bodies in fluids

    NASA Astrophysics Data System (ADS)

    Tofighi, N.; Ozbulut, M.; Rahmat, A.; Feng, J. J.; Yildiz, M.

    2015-09-01

    A two-dimensional incompressible smoothed particle hydrodynamics scheme is presented for simulation of rigid bodies moving through Newtonian fluids. The scheme relies on combined usage of the rigidity constraints and the viscous penalty method to simulate rigid body motion. Different viscosity ratios and interpolation schemes are tested by simulating a rigid disc descending in quiescent medium. A viscosity ratio of 100 coupled with weighted harmonic averaging scheme has been found to provide satisfactory results. The performance of the resulting scheme is systematically tested for cases with linear motion, rotational motion and their combination. The test cases include sedimentation of a single and a pair of circular discs, sedimentation of an elliptic disc and migration and rotation of a circular disc in linear shear flow. Comparison with previous results at various Reynolds numbers indicates that the proposed method captures the motion of rigid bodies driven by flow or external body forces accurately.

  19. Simulation of explosively driven metallic tubes by the cylindrical smoothed particle hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Yang, G.; Han, X.; Hu, D. A.

    2015-11-01

    Modified cylindrical smoothed particle hydrodynamics (MCSPH) approximation equations are derived for hydrodynamics with material strength in axisymmetric cylindrical coordinates. The momentum equation and internal energy equation are represented to be in the axisymmetric form. The MCSPH approximation equations are applied to simulate the process of explosively driven metallic tubes, which includes strong shock waves, large deformations and large inhomogeneities, etc. The meshless and Lagrangian character of the MCSPH method offers the advantages in treating the difficulties embodied in these physical phenomena. Two test cases, the cylinder test and the metallic tube driven by two head-on colliding detonation waves, are presented. Numerical simulation results show that the new form of the MCSPH method can predict the detonation process of high explosives and the expansion process of metallic tubes accurately and robustly.

  20. Simulating hypervelocity impact effects on structures using the smoothed particle hydrodynamics code MAGI

    NASA Technical Reports Server (NTRS)

    Libersky, Larry; Allahdadi, Firooz A.; Carney, Theodore C.

    1992-01-01

    Analysis of interaction occurring between space debris and orbiting structures is of great interest to the planning and survivability of space assets. Computer simulation of the impact events using hydrodynamic codes can provide some understanding of the processes but the problems involved with this fundamental approach are formidable. First, any realistic simulation is necessarily three-dimensional, e.g., the impact and breakup of a satellite. Second, the thickness of important components such as satellite skins or bumper shields are small with respect to the dimension of the structure as a whole, presenting severe zoning problems for codes. Thirdly, the debris cloud produced by the primary impact will yield many secondary impacts which will contribute to the damage and possible breakup of the structure. The problem was approached by choosing a relatively new computational technique that has virtues peculiar to space impacts. The method is called Smoothed Particle Hydrodynamics.

  1. Two-fluid dust and gas mixtures in smoothed particle hydrodynamics: a semi-implicit approach

    NASA Astrophysics Data System (ADS)

    Lorén-Aguilar, Pablo; Bate, Matthew R.

    2014-09-01

    A method to avoid the explicit time integration of small dust grains in the two-fluid gas/dust smoothed particle hydrodynamics (SPH) approach is proposed. By assuming a very simple exponential decay model for the relative velocity between the gas and dust components, all the effective characteristics of the drag force can be reproduced. A series of tests has been performed to compare the accuracy of the method with analytical and explicit integration results. We find that the method performs well on a wide range of tests, and can provide large speed-ups over explicit integration when the dust stopping time is small. We have also found that the method is much less dissipative than conventional explicit or implicit two-fluid SPH approaches when modelling dusty shocks.

  2. Coupling of Smoothed Particle Hydrodynamics with Finite Volume method for free-surface flows

    NASA Astrophysics Data System (ADS)

    Marrone, S.; Di Mascio, A.; Le Touzé, D.

    2016-04-01

    A new algorithm for the solution of free surface flows with large front deformation and fragmentation is presented. The algorithm is obtained by coupling a classical Finite Volume (FV) approach, that discretizes the Navier-Stokes equations on a block structured Eulerian grid, with an approach based on the Smoothed Particle Hydrodynamics (SPH) method, implemented in a Lagrangian framework. The coupling procedure is formulated in such a way that each solver is applied in the region where its intrinsic characteristics can be exploited in the most efficient and accurate way: the FV solver is used to resolve the bulk flow and the wall regions, whereas the SPH solver is implemented in the free surface region to capture details of the front evolution. The reported results clearly prove that the combined use of the two solvers is convenient from the point of view of both accuracy and computing time.

  3. Smoothed Particle Hydrodynamics pore-scale simulations of unstable immiscible flow in porous media

    SciTech Connect

    Bandara, Dunusinghe Mudiyanselage Uditha C.; Tartakovsky, Alexandre M.; Oostrom, Martinus; Palmer, Bruce J.; Grate, Jay W.; Zhang, Changyong

    2013-12-01

    We have conducted a series of high-resolution numerical experiments using the Pair-Wise Force Smoothed Particle Hydrodynamics (PF-SPH) multiphase flow model. First, we derived analytical expressions relating parameters in the PF-SPH model to the surface tension and static contact angle. Next, we used the model to study viscous fingering, capillary fingering, and stable displacement of immiscible fluids in porous media for a wide range of capillary numbers and viscosity ratios. We demonstrated that the steady state saturation profiles and the boundaries of viscous fingering, capillary fingering, and stable displacement regions compare favorably with micromodel laboratory experimental results. For displacing fluid with low viscosity, we observed that the displacement pattern changes from viscous fingering to stable displacement with increasing injection rate. When a high viscosity fluid is injected, transition behavior from capillary fingering to stable displacement occurred as the flow rate was increased. These observation also agree with the results of the micromodel laboratory experiments.

  4. Scattering and bound states of spinless particles in a mixed vector-scalar smooth step potential

    SciTech Connect

    Garcia, M.G.; Castro, A.S. de

    2009-11-15

    Scattering and bound states for a spinless particle in the background of a kink-like smooth step potential, added with a scalar uniform background, are considered with a general mixing of vector and scalar Lorentz structures. The problem is mapped into the Schroedinger-like equation with an effective Rosen-Morse potential. It is shown that the scalar uniform background present subtle and trick effects for the scattering states and reveals itself a high-handed element for formation of bound states. In that process, it is shown that the problem of solving a differential equation for the eigenenergies is transmuted into the simpler and more efficient problem of solving an irrational algebraic equation.

  5. Survey of shock-wave structures of smooth-particle granular flows.

    PubMed

    Padgett, D A; Mazzoleni, A P; Faw, S D

    2015-12-01

    We show the effects of simulated supersonic granular flow made up of smooth particles passing over two prototypical bodies: a wedge and a disk. We describe a way of computationally identifying shock wave locations in granular flows and tabulate the shock wave locations for flow over wedges and disks. We quantify the shock structure in terms of oblique shock angle for wedge impediments and shock standoff distance for disk impediments. We vary granular flow parameters including upstream volume fraction, average upstream velocity, granular temperature, and the collision coefficient of restitution. Both wedges and disks have been used in the aerospace community as prototypical impediments to flowing air in order to investigate the fundamentally different shock structures emanating from sharp and blunt bodies, and we present these results in order to increase the understanding of the fundamental behavior of supersonic granular flow. PMID:26764684

  6. Simulation of a ceramic impact experiment using the SPHINX smooth particle hydrodynamics code

    SciTech Connect

    Mandell, D.A.; Wingate, C.A.; Schwalbe, L.A.

    1996-08-01

    We are developing statistically based, brittle-fracture models and are implementing them into hydrocodes that can be used for designing systems with components of ceramics, glass, and/or other brittle materials. Because of the advantages it has simulating fracture, we are working primarily with the smooth particle hydrodynamics code SPHINX. We describe a new brittle fracture model that we have implemented into SPHINX, and we discuss how the model differs from others. To illustrate the code`s current capability, we simulate an experiment in which a tungsten rod strikes a target of heavily confined ceramic. Simulations in 3D at relatively coarse resolution yield poor results. However, 2D plane-strain approximations to the test produce crack patterns that are strikingly similar to the data, although the fracture model needs further refinement to match some of the finer details. We conclude with an outline of plans for continuing research and development.

  7. Smoothed Particle Hydrodynamics: Numerical Techniques and Applications to Accretion Disks in Close Binaries.

    NASA Astrophysics Data System (ADS)

    Simpson, James Charles

    1995-01-01

    Numerical techniques for the method of smoothed particle hydrodynamics (SPH) are described for three dimensional systems in the absence of self-gravity. These include a method for locating neighboring particles using an Eulerian grid that conserves memory by partitioning the computational space into manageable layers. Further savings in memory and computational time are achieved using interparticle distances that are discretized with respect to integral increments of the smoothing length. We also present a time integration algorithm using multiple time steps which guarantees that all particles maintain phase space synchronicity to at least first order accuracy with respect to the time steps. These techniques are used to compare currently available SPH artificial viscosities in accretion disks in low mass ratio systems (q = {M_2 }over{M_1} = 0.02) using the ideal gas law and low adiabatic gamma (gamma = 1.01): radiation effects and magnetic fields are excluded. The standard artificial viscosity given by Monaghan (1992) consistently gives results which agree qualitatively with the Shukura-Sunyaev alpha -disk model. The radial temperature profile is overestimated by a factor of about 10, indicating that radiation effects must be included for a complete model. This viscosity is also used to compare accretion disks in systems with the four different extreme mass ratios: q = 0.01, 0.02, 0.03, and 0.05. These simulated disks are stable with high mass transfer rates. The outer disk edges do not extend into the regions of the low order corotation resonances, consequently no precession is observed. The disks are slightly asymmetric with spiral density waves that appear stationary in the corotating frame. These may be responsible for the double humped pulses in the light curves of these systems. Finally, the free expansion of an ideal gas into a vacuum is simulated using elastic collisions between SPH particles and impenetrable flat surfaces. After _sp{~}<100 interparticle

  8. Differential Mitochondrial Adaptation in Primary Vascular Smooth Muscle Cells from a Diabetic Rat Model.

    PubMed

    Keller, Amy C; Knaub, Leslie A; McClatchey, P Mason; Connon, Chelsea A; Bouchard, Ron; Miller, Matthew W; Geary, Kate E; Walker, Lori A; Klemm, Dwight J; Reusch, Jane E B

    2016-01-01

    Diabetes affects more than 330 million people worldwide and causes elevated cardiovascular disease risk. Mitochondria are critical for vascular function, generate cellular reactive oxygen species (ROS), and are perturbed by diabetes, representing a novel target for therapeutics. We hypothesized that adaptive mitochondrial plasticity in response to nutrient stress would be impaired in diabetes cellular physiology via a nitric oxide synthase- (NOS-) mediated decrease in mitochondrial function. Primary smooth muscle cells (SMCs) from aorta of the nonobese, insulin resistant rat diabetes model Goto-Kakizaki (GK) and the Wistar control rat were exposed to high glucose (25 mM). At baseline, significantly greater nitric oxide evolution, ROS production, and respiratory control ratio (RCR) were observed in GK SMCs. Upon exposure to high glucose, expression of phosphorylated eNOS, uncoupled respiration, and expression of mitochondrial complexes I, II, III, and V were significantly decreased in GK SMCs (p < 0.05). Mitochondrial superoxide increased with high glucose in Wistar SMCs (p < 0.05) with no change in the GK beyond elevated baseline concentrations. Baseline comparisons show persistent metabolic perturbations in a diabetes phenotype. Overall, nutrient stress in GK SMCs caused a persistent decline in eNOS and mitochondrial function and disrupted mitochondrial plasticity, illustrating eNOS and mitochondria as potential therapeutic targets. PMID:27034743

  9. Flight test results from a supercritical mission adaptive wing with smooth variable camber

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke; Webb, Lannie D.; Friend, Edward L.; Lokos, William A.

    1992-01-01

    The mission adaptive wing (MAW) consisted of leading- and trailing-edge variable-camber surfaces that could be deflected in flight to provide a near-ideal wing camber shape for any flight condition. These surfaces featured smooth, flexible upper surfaces and fully enclosed lower surfaces, distinguishing them from conventional flaps that have discontinuous surfaces and exposed or semiexposed mechanisms. Camber shape was controlled by either a manual or automatic flight control system. The wing and aircraft were extensively instrumented to evaluate the local flow characteristics and the total aircraft performance. This paper discusses the interrelationships between the wing pressure, buffet, boundary-layer and flight deflection measurement system analyses and describes the flight maneuvers used to obtain the data. The results are for a wing sweep of 26 deg, a Mach number of 0.85, leading and trailing-edge cambers (delta(sub LE/TE)) of 0/2 and 5/10, and angles of attack from 3.0 deg to 14.0 deg. For the well-behaved flow of the delta(sub LE/TE) = 0/2 camber, a typical cruise camber shape, the local and global data are in good agreement with respect to the flow properties of the wing. For the delta(sub LE/TE) = 5/10 camber, a maneuvering camber shape, the local and global data have similar trends and conclusions, but not the clear-cut agreement observed for cruise camber.

  10. Particle Swarm Based Collective Searching Model for Adaptive Environment

    SciTech Connect

    Cui, Xiaohui; Patton, Robert M; Potok, Thomas E; Treadwell, Jim N

    2008-01-01

    This report presents a pilot study of an integration of particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the collective search behavior of self-organized groups in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social group adaptation for the dynamic environment and to provide insight and understanding of social group knowledge discovering and strategic searching. A new adaptive environment model, which dynamically reacts to the group collective searching behaviors, is proposed in this research. The simulations in the research indicate that effective communication between groups is not the necessary requirement for whole self-organized groups to achieve the efficient collective searching behavior in the adaptive environment.

  11. Particle Swarm Based Collective Searching Model for Adaptive Environment

    SciTech Connect

    Cui, Xiaohui; Patton, Robert M; Potok, Thomas E; Treadwell, Jim N

    2007-01-01

    This report presents a pilot study of an integration of particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the collective search behavior of self-organized groups in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social group adaptation for the dynamic environment and to provide insight and understanding of social group knowledge discovering and strategic searching. A new adaptive environment model, which dynamically reacts to the group collective searching behaviors, is proposed in this research. The simulations in the research indicate that effective communication between groups is not the necessary requirement for whole self-organized groups to achieve the efficient collective searching behavior in the adaptive environment.

  12. A smooth dissipative particle dynamics method for domains with arbitrary-geometry solid boundaries

    NASA Astrophysics Data System (ADS)

    Gatsonis, Nikolaos A.; Potami, Raffaele; Yang, Jun

    2014-01-01

    A smooth dissipative particle dynamics method with dynamic virtual particle allocation (SDPD-DV) for modeling and simulation of mesoscopic fluids in wall-bounded domains is presented. The physical domain in SDPD-DV may contain external and internal solid boundaries of arbitrary geometries, periodic inlets and outlets, and the fluid region. The SDPD-DV method is realized with fluid particles, boundary particles, and dynamically allocated virtual particles. The internal or external solid boundaries of the domain can be of arbitrary geometry and are discretized with a surface grid. These boundaries are represented by boundary particles with assigned properties. The fluid domain is discretized with fluid particles of constant mass and variable volume. Conservative and dissipative force models due to virtual particles exerted on a fluid particle in the proximity of a solid boundary supplement the original SDPD formulation. The dynamic virtual particle allocation approach provides the density and the forces due to virtual particles. The integration of the SDPD equations is accomplished with a velocity-Verlet algorithm for the momentum and a Runge-Kutta for the entropy equation. The velocity integrator is supplemented by a bounce-forward algorithm in cases where the virtual particle force model is not able to prevent particle penetration. For the incompressible isothermal systems considered in this work, the pressure of a fluid particle is obtained by an artificial compressibility formulation for liquids and the ideal gas law for gases. The self-diffusion coefficient is obtained by an implementation of the generalized Einstein and the Green-Kubo relations. Field properties are obtained by sampling SDPD-DV outputs on a post-processing grid that allows harnessing the particle information on desired spatiotemporal scales. The SDPD-DV method is verified and validated with simulations in bounded and periodic domains that cover the hydrodynamic and mesoscopic regimes for

  13. Smoothed Particle Hydrodynamics Simulation of Wave Overtopping Characteristics for Different Coastal Structures

    PubMed Central

    Pu, Jaan Hui; Shao, Songdong

    2012-01-01

    This research paper presents an incompressible smoothed particle hydrodynamics (ISPH) technique to investigate a regular wave overtopping on the coastal structure of different types. The SPH method is a mesh-free particle modeling approach that can efficiently treat the large deformation of free surface. The incompressible SPH approach employs a true hydrodynamic formulation to solve the fluid pressure that has less pressure fluctuations. The generation of flow turbulence during the wave breaking and overtopping is modeled by a subparticle scale (SPS) turbulence model. Here the ISPH model is used to investigate the wave overtopping over a coastal structure with and without the porous material. The computations disclosed the features of flow velocity, turbulence, and pressure distributions for different structure types and indicated that the existence of a layer of porous material can effectively reduce the wave impact pressure and overtopping rate. The proposed numerical model is expected to provide a promising practical tool to investigate the complicated wave-structure interactions. PMID:22919291

  14. Developing a weakly compressible smoothed particle hydrodynamics model for biological flows

    NASA Astrophysics Data System (ADS)

    Vasyliv, Yaroslav; Alexeev, Alexander

    2014-11-01

    Smoothed Particle Hydrodynamics (SPH) is a meshless particle method originally developed for astrophysics applications in 1977. Over the years, limitations of the original formulations have been addressed by different groups to extend the domain of SPH application. In biologically relevant internal flows, two of the several challenges still facing SPH are 1) treatment of inlet, outlet, and no slip boundary conditions and 2) treatment of second derivatives present in the viscous terms. In this work, we develop a 2D weakly compressible SPH (WCSPH) for simulating viscous internal flows which incorporates some of the recent advancements made by groups in the above two areas. The method is validated against several analytical and experimental benchmark solutions for both steady and unsteady laminar flows. In particular, the 2013 U.S. Food and Drug Administration benchmark test case for medical devices - steady forward flow through a nozzle with a sudden contraction and conical diffuser - is simulated for different Reynolds numbers in the laminar region and results are validated against the published experimental and CFD datasets. Support from the National Science Foundation Graduate Research Fellowship Program (NSF GRFP) is gratefully acknowledged.

  15. Resolution requirements for smoothed particle hydrodynamics simulations of self-gravitating accretion discs

    NASA Astrophysics Data System (ADS)

    Lodato, Giuseppe; Clarke, C. J.

    2011-06-01

    Stimulated by recent results by Meru & Bate, we revisit the issue of resolution requirements for simulating self-gravitating accretion discs with smoothed particle hydrodynamics (SPH). We show that all the results by Meru & Bate are actually consistent if they are interpreted as driven by resolution effects, therefore implying that the resolution criterion for cooling gaseous discs is a function of the imposed cooling rate. We discuss two possible numerical origins of such dependence, which are both consistent with the limited number of available data. Our results tentatively indicate that convergence for current simulations is being reached for a number of SPH particles approaching 10 million (for a disc mass of the order of 10 per cent of the central object mass), which would set the critical cooling time for fragmentation at about 15Ω-1, roughly a factor of 2 larger than previously thought. More in general, we discuss the extent to which the large number of recent numerical results are reliable or not. We argue that those results that pertain to the dynamics associated with gravitational instabilities (such as the locality of angular momentum transport, and the relationship between density perturbation and induced stress) are robust, while those pertaining to the thermodynamics of the system (such as the determination of the critical cooling time for fragmentation) can be affected by poor resolution.

  16. MASS TRANSFER IN BINARY STARS USING SMOOTHED PARTICLE HYDRODYNAMICS. I. NUMERICAL METHOD

    SciTech Connect

    Lajoie, Charles-Philippe; Sills, Alison E-mail: asills@mcmaster.ca

    2011-01-10

    Close interactions and mass transfer in binary stars can lead to the formation of many different exotic stellar populations, but detailed modeling of mass transfer is a computationally challenging problem. Here, we present an alternate smoothed particle hydrodynamics approach to the modeling of mass transfer in binary systems that allows a better resolution of the flow of matter between main-sequence stars. Our approach consists of modeling only the outermost layers of the stars using appropriate boundary conditions and ghost particles. We arbitrarily set the radius of the boundary and find that our boundary treatment behaves physically and conserves energy well. In particular, when used with our binary relaxation procedure, our treatment of boundary conditions is also shown to evolve circular binaries properly for many orbits. The results of our first simulation of mass transfer are also discussed and used to assess the strengths and limitations of our method. We conclude that it is well suited for the modeling of interacting binary stars. The method presented here represents a convenient alternative to previous hydrodynamical techniques aimed at modeling mass transfer in binary systems since it can be used to model both the donor and the accretor while maintaining the density profiles taken from realistic stellar models.

  17. Numerical Simulation of Interacting Stellar Winds Model Using Smoothed Particle Hydrodynamics (SPH)

    NASA Astrophysics Data System (ADS)

    Thronson, H. A., Jr.; Li, P. S.; Kwok, S.

    1997-12-01

    In the past decade, the Interacting Stellar Winds (ISW) model has been shown to be successful in explaining the formation of planetary nebulae, Wolf-Rayet nebulae, slow novae, and supernovae. Since analytical methods applied to the ISW model have been limited to the spherical symmetric (1D) geometry, numerical methods are necessary for axisymmetric (2D) or arbitrary (3D) geometries, such as the study of formation and evolution of planetary nebulae, and for symbiotic nova outbursts. The Smoothed Particle Hydrodynamics (SPH) algorithm has been developed to study hydrodynamics using the particle method. This algorithm has been applied in many different fields successfully. In this paper, we apply the SPH algorithm using the TREE code to the problem of interacting winds dynamics. We present three simulations: (1) the interaction of two winds in spherical symmetry to demonstrate the validity of the algorithm in dealing with ISW modeling, (2) the formation and evolution of an axisymmetric nebula in the first 500 years, and (3) the interacting-colliding winds caused by a slow nova outburst in a symbiotic system. It is the first time that the SPH algorithm has been applied to an ISW simulation. The SPH algorithm is proved to be an accurate and powerful tool in studying ISW model. This work is supported by NASA's US ISO program and the University of Calgary.

  18. Smoothed particle hydrodynamics: Applications to migration of radionuclides in confined aqueous systems.

    PubMed

    Mayoral-Villa, Estela; Alvarado-Rodríguez, Carlos E; Klapp, Jaime; Gómez-Gesteira, Moncho; Sigalotti, Leonardo Di G

    2016-04-01

    A smoothed particle hydrodynamics (SPH) model is presented for simulating the decay chain transport of radionuclides in confined aqueous solutions. The SPH formulation is based on the open-source parallel code DualSPHysics extended to solve the advective-diffusion equation for the evolution of the concentration field coupled to the fluid-dynamic equations, including the effects of radioactive decay of the tracer contaminants. The performance of the method is demonstrated for environmental engineering problems dealing with the transport of contaminants in still and flowing water. The results from a series of benchmark test calculations are described in two- and three-space dimensions, where the advection, diffusion, and radioactive decay modes are tested separately and in combined form. The accuracy of the present SPH transport model is shown by direct comparison with the analytical solutions and results from other SPH approaches. For a given problem, convergence of the SPH solution is seen to increase with decreasing particle size and spacing. PMID:26921532

  19. Smoothed particle hydrodynamics: Applications to migration of radionuclides in confined aqueous systems.

    PubMed

    Mayoral-Villa, Estela; Alvarado-Rodríguez, Carlos E; Klapp, Jaime; Gómez-Gesteira, Moncho; Sigalotti, Leonardo Di G

    2016-04-01

    A smoothed particle hydrodynamics (SPH) model is presented for simulating the decay chain transport of radionuclides in confined aqueous solutions. The SPH formulation is based on the open-source parallel code DualSPHysics extended to solve the advective-diffusion equation for the evolution of the concentration field coupled to the fluid-dynamic equations, including the effects of radioactive decay of the tracer contaminants. The performance of the method is demonstrated for environmental engineering problems dealing with the transport of contaminants in still and flowing water. The results from a series of benchmark test calculations are described in two- and three-space dimensions, where the advection, diffusion, and radioactive decay modes are tested separately and in combined form. The accuracy of the present SPH transport model is shown by direct comparison with the analytical solutions and results from other SPH approaches. For a given problem, convergence of the SPH solution is seen to increase with decreasing particle size and spacing.

  20. Smoothed particle hydrodynamics: Applications to migration of radionuclides in confined aqueous systems

    NASA Astrophysics Data System (ADS)

    Mayoral-Villa, Estela; Alvarado-Rodríguez, Carlos E.; Klapp, Jaime; Gómez-Gesteira, Moncho; Di G. Sigalotti, Leonardo

    2016-04-01

    A smoothed particle hydrodynamics (SPH) model is presented for simulating the decay chain transport of radionuclides in confined aqueous solutions. The SPH formulation is based on the open-source parallel code DualSPHysics extended to solve the advective-diffusion equation for the evolution of the concentration field coupled to the fluid-dynamic equations, including the effects of radioactive decay of the tracer contaminants. The performance of the method is demonstrated for environmental engineering problems dealing with the transport of contaminants in still and flowing water. The results from a series of benchmark test calculations are described in two- and three-space dimensions, where the advection, diffusion, and radioactive decay modes are tested separately and in combined form. The accuracy of the present SPH transport model is shown by direct comparison with the analytical solutions and results from other SPH approaches. For a given problem, convergence of the SPH solution is seen to increase with decreasing particle size and spacing.

  1. A smooth dissipative particle dynamics method for domains with arbitrary-geometry solid boundaries

    NASA Astrophysics Data System (ADS)

    Gatsonis, Nikolaos A.; Potami, Raffaele; Yang, Jun

    2014-01-01

    A smooth dissipative particle dynamics method with dynamic virtual particle allocation (SDPD-DV) for modeling and simulation of mesoscopic fluids in wall-bounded domains is presented. The physical domain in SDPD-DV may contain external and internal solid boundaries of arbitrary geometries, periodic inlets and outlets, and the fluid region. The SDPD-DV method is realized with fluid particles, boundary particles, and dynamically allocated virtual particles. The internal or external solid boundaries of the domain can be of arbitrary geometry and are discretized with a surface grid. These boundaries are represented by boundary particles with assigned properties. The fluid domain is discretized with fluid particles of constant mass and variable volume. Conservative and dissipative force models due to virtual particles exerted on a fluid particle in the proximity of a solid boundary supplement the original SDPD formulation. The dynamic virtual particle allocation approach provides the density and the forces due to virtual particles. The integration of the SDPD equations is accomplished with a velocity-Verlet algorithm for the momentum and a Runge-Kutta for the entropy equation. The velocity integrator is supplemented by a bounce-forward algorithm in cases where the virtual particle force model is not able to prevent particle penetration. For the incompressible isothermal systems considered in this work, the pressure of a fluid particle is obtained by an artificial compressibility formulation for liquids and the ideal gas law for gases. The self-diffusion coefficient is obtained by an implementation of the generalized Einstein and the Green-Kubo relations. Field properties are obtained by sampling SDPD-DV outputs on a post-processing grid that allows harnessing the particle information on desired spatiotemporal scales. The SDPD-DV method is verified and validated with simulations in bounded and periodic domains that cover the hydrodynamic and mesoscopic regimes for

  2. A Bayesian Adaptive Basis Algorithm for Single Particle Reconstruction

    PubMed Central

    Kucukelbir, Alp; Sigworth, Fred J.; Tagare, Hemant D.

    2012-01-01

    Traditional single particle reconstruction methods use either the Fourier or the delta function basis to represent the particle density map. This paper proposes a more flexible algorithm that adaptively chooses the basis based on the data. Because the basis adapts to the data, the reconstruction resolution and signal-to-noise ratio (SNR) is improved compared to a reconstruction with a fixed basis. Moreover, the algorithm automatically masks the particle, thereby separating it from the background. This eliminates the need for ad-hoc filtering or masking in the refinement loop. The algorithm is formulated in a Bayesian maximum-a-posteriori framework and uses an efficient optimization algorithm for the maximization. Evaluations using simulated and actual cryogenic electron microscopy data show resolution and SNR improvements as well as the effective masking of particle from background. PMID:22564910

  3. Adaptation of a cubic smoothing spline algortihm for multi-channel data stitching at the National Ignition Facility

    SciTech Connect

    Brown, C; Adcock, A; Azevedo, S; Liebman, J; Bond, E

    2010-12-28

    Some diagnostics at the National Ignition Facility (NIF), including the Gamma Reaction History (GRH) diagnostic, require multiple channels of data to achieve the required dynamic range. These channels need to be stitched together into a single time series, and they may have non-uniform and redundant time samples. We chose to apply the popular cubic smoothing spline technique to our stitching problem because we needed a general non-parametric method. We adapted one of the algorithms in the literature, by Hutchinson and deHoog, to our needs. The modified algorithm and the resulting code perform a cubic smoothing spline fit to multiple data channels with redundant time samples and missing data points. The data channels can have different, time-varying, zero-mean white noise characteristics. The method we employ automatically determines an optimal smoothing level by minimizing the Generalized Cross Validation (GCV) score. In order to automatically validate the smoothing level selection, the Weighted Sum-Squared Residual (WSSR) and zero-mean tests are performed on the residuals. Further, confidence intervals, both analytical and Monte Carlo, are also calculated. In this paper, we describe the derivation of our cubic smoothing spline algorithm. We outline the algorithm and test it with simulated and experimental data.

  4. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations

    SciTech Connect

    Kordilla, Jannes; Pan, Wenxiao Tartakovsky, Alexandre

    2014-12-14

    We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called “giant fluctuations” of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power −4 of the wavenumber—except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  5. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations

    NASA Astrophysics Data System (ADS)

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre

    2014-12-01

    We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber—except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  6. A Smoothed Particle Hydrodynamics Model for Ice Sheet and Ice Shelf Dynamics

    SciTech Connect

    Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.

    2012-02-08

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) model for coupled ice sheet and ice shelf dynamics. SPH is a fully Lagrangian particle method. It is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper SPH is used to study ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from the SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is further verified by simulating the plane shear flow of two immiscible fluids and the propagation of a highly viscous blob of fluid along a horizontal surface. In the experiment, the ice was represented with a viscous newtonian fluid. For consistency, in the described SPH model the ice is also modeled as a viscous newtonian fluid. Typically, ice sheets are modeled as a non-Newtonian fluid, accounting for the changes in the mechanical properties of ice. Implementation of a non-Newtonian rheology in the SPH model is the subject of our ongoing research.

  7. Smoothed particle hydrodynamics non-Newtonian model for ice-sheet and ice-shelf dynamics

    SciTech Connect

    Pan, W.; Tartakovsky, A. M.; Monaghan, J. J.

    2013-06-01

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) non-Newtonian model for coupled ice sheet and ice shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper, SPH is used to study 3D ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios, similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is verif;ed by simulating Poiseuille flow, plane shear flow with free surface and the propagation of a blob of ice along a horizontal surface. In the laboratory experiment, the ice was represented with a viscous Newtonian fluid. In the present work, however, the ice is modeled as both viscous Newtonian fluid and non-Newtonian fluid, such that the effect of non-Newtonian rheology on the dynamics of grounding line was examined. The non-Newtonian constitutive relation is prescribed to be Glen’s law for the creep of polycrystalline ice. A V-shaped bedrock ramp is further introduced to model the real geometry of bedrock slope.

  8. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations.

    PubMed

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre

    2014-12-14

    We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber-except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  9. Smoothed particle hydrodynamics model for Landau-Lifshitz Navier-Stokes and advection-diffusion equations

    SciTech Connect

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre M.

    2014-12-14

    We propose a novel Smoothed Particle Hydrodynamics (SPH) discretization of the fully-coupled Landau-Lifshitz-Navier-Stokes (LLNS) and advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations are found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for the coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study the formation of the so-called giant fluctuations of the front between light and heavy fluids with and without gravity, where the light fluid lays on the top of the heavy fluid. We find that the power spectra of the simulated concentration field is in good agreement with the experiments and analytical solutions. In the absence of gravity the the power spectra decays as the power -4 of the wave number except for small wave numbers which diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations resulting in the much weaker dependence of the power spectra on the wave number. Finally the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  10. Influences of sequential cuts on micro-cutting process studied by smooth particle hydrodynamic (SPH)

    NASA Astrophysics Data System (ADS)

    Zhao, Hongwei; Liu, Chuang; Cui, Tao; Tian, Ye; Shi, Chengli; Li, Jianping; Huang, Hu

    2013-11-01

    Machined surface properties have a great influence on the service life of component. The residual stress in machined surface layer is affected by the micro-cutting process. Sequential cuts influence the machined surface layer. In this paper, a mesh-less method called SPH (smooth particle hydrodynamic) is used to investigate the effect of sequential cuts and residual stress on chip formation, cutting force and the residual stress in machined surface for oxygen-free high-conductivity copper (OFHC). In micro-cutting process the cutting edge radius plays a crucial role. The effect of the cutting edge radius on residual stress is also investigated in this paper. The simulation results showed that the chip curled severely and the minimum chip thickness decreased in the second cut because of residual stress in the machined surface after the first cut. Meanwhile, the cutting force in the second cut was smaller than the first cut, while the thrust force was nearly the same during two cuts. In addition, the tensile residual stress beneath the machined surface layer would change to compressive stress after the second cut. Therefore, the residual stress in machined surface can be changed through sequential cuts with proper machining parameters to get high quality machined surface.

  11. Modelling shear flows with smoothed particle hydrodynamics and grid-based methods

    NASA Astrophysics Data System (ADS)

    Junk, Veronika; Walch, Stefanie; Heitsch, Fabian; Burkert, Andreas; Wetzstein, Markus; Schartmann, Marc; Price, Daniel

    2010-09-01

    Given the importance of shear flows for astrophysical gas dynamics, we study the evolution of the Kelvin-Helmholtz instability (KHI) analytically and numerically. We derive the dispersion relation for the two-dimensional KHI including viscous dissipation. The resulting expression for the growth rate is then used to estimate the intrinsic viscosity of four numerical schemes depending on code-specific as well as on physical parameters. Our set of numerical schemes includes the Tree-SPH code VINE, an alternative smoothed particle hydrodynamics (SPH) formulation developed by Price and the finite-volume grid codes FLASH and PLUTO. In the first part, we explicitly demonstrate the effect of dissipation-inhibiting mechanisms such as the Balsara viscosity on the evolution of the KHI. With VINE, increasing density contrasts lead to a continuously increasing suppression of the KHI (with complete suppression from a contrast of 6:1 or higher). The alternative SPH formulation including an artificial thermal conductivity reproduces the analytically expected growth rates up to a density contrast of 10:1. The second part addresses the shear flow evolution with FLASH and PLUTO. Both codes result in a consistent non-viscous evolution (in the equal as well as in the different density case) in agreement with the analytical prediction. The viscous evolution studied with FLASH shows minor deviations from the analytical prediction.

  12. Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Hu, Haoyue; Eberhard, Peter

    2016-10-01

    Process simulations of conduction mode laser welding are performed using the meshless Lagrangian smoothed particle hydrodynamics (SPH) method. The solid phase is modeled based on the governing equations in thermoelasticity. For the liquid phase, surface tension effects are taken into account to simulate the melt flow in the weld pool, including the Marangoni force caused by a temperature-dependent surface tension gradient. A non-isothermal solid-liquid phase transition with the release or absorption of additional energy known as the latent heat of fusion is considered. The major heat transfer through conduction is modeled, whereas heat convection and radiation are neglected. The energy input from the laser beam is modeled as a Gaussian heat source acting on the initial material surface. The developed model is implemented in Pasimodo. Numerical results obtained with the model are presented for laser spot welding and seam welding of aluminum and iron. The change of process parameters like welding speed and laser power, and their effects on weld dimensions are investigated. Furthermore, simulations may be useful to obtain the threshold for deep penetration welding and to assess the overall welding quality. A scalability and performance analysis of the implemented SPH algorithm in Pasimodo is run in a shared memory environment. The analysis reveals the potential of large welding simulations on multi-core machines.

  13. A smooth particle hydrodynamics code to model collisions between solid, self-gravitating objects

    NASA Astrophysics Data System (ADS)

    Schäfer, C.; Riecker, S.; Maindl, T. I.; Speith, R.; Scherrer, S.; Kley, W.

    2016-05-01

    Context. Modern graphics processing units (GPUs) lead to a major increase in the performance of the computation of astrophysical simulations. Owing to the different nature of GPU architecture compared to traditional central processing units (CPUs) such as x86 architecture, existing numerical codes cannot be easily migrated to run on GPU. Here, we present a new implementation of the numerical method smooth particle hydrodynamics (SPH) using CUDA and the first astrophysical application of the new code: the collision between Ceres-sized objects. Aims: The new code allows for a tremendous increase in speed of astrophysical simulations with SPH and self-gravity at low costs for new hardware. Methods: We have implemented the SPH equations to model gas, liquids and elastic, and plastic solid bodies and added a fragmentation model for brittle materials. Self-gravity may be optionally included in the simulations and is treated by the use of a Barnes-Hut tree. Results: We find an impressive performance gain using NVIDIA consumer devices compared to our existing OpenMP code. The new code is freely available to the community upon request. If you are interested in our CUDA SPH code miluphCUDA, please write an email to Christoph Schäfer. miluphCUDA is the CUDA port of miluph. miluph is pronounced [maßl2v]. We do not support the use of the code for military purposes.

  14. A two-dimensional Segmented Boundary Algorithm for complex moving solid boundaries in Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Khorasanizade, Sh.; Sousa, J. M. M.

    2016-03-01

    A Segmented Boundary Algorithm (SBA) is proposed to deal with complex boundaries and moving bodies in Smoothed Particle Hydrodynamics (SPH). Boundaries are formed in this algorithm with chains of lines obtained from the decomposition of two-dimensional objects, based on simple line geometry. Various two-dimensional, viscous fluid flow cases have been studied here using a truly incompressible SPH method with the aim of assessing the capabilities of the SBA. Firstly, the flow over a stationary circular cylinder in a plane channel was analyzed at steady and unsteady regimes, for a single value of blockage ratio. Subsequently, the flow produced by a moving circular cylinder with a prescribed acceleration inside a plane channel was investigated as well. Next, the simulation of the flow generated by the impulsive start of a flat plate, again inside a plane channel, has been carried out. This was followed by the study of confined sedimentation of an elliptic body subjected to gravity, for various density ratios. The set of test cases was completed with the simulation of periodic flow around a sunflower-shaped object. Extensive comparisons of the results obtained here with published data have demonstrated the accuracy and effectiveness of the proposed algorithms, namely in cases involving complex geometries and moving bodies.

  15. The effect of density estimation on the conservativeness in Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Suresh, Pranav; Kumar, S. S. Prasanna; Patnaik, B. S. V.

    2015-11-01

    Smoothed Particle Hydrodynamics (SPH) is a popular mesh-free method for solving a wide range of problems that involve interfaces. In SPH, the Lagrangian nature of the method enables mass conservation to be naturally satisfied. However, satisfying the conservation of momentum and energy are indeed formulation dependent. One major aspect of ensuring conservativeness comes from the density estimation. There are two distinct types of density estimation approaches, namely continuity density approach and summation density approach. Both approaches are indeed popular with single and multi-phase flow communities. In the present study, we assess the role of density evaluation on the conservativeness, using several representative numerical examples. In particular, we have simulated the Rayleigh-Taylor instability problem, Non-Boussinesq lock exchange problem, bubble rise in water column etc. Although for shorter time scales of simulation, both methods have similar conservative properties, we observe that for longer time scales, summation-density approach is better. For free surface detection and normal vector computations, efficient computational procedures have been devised.

  16. Shock-produced ejecta from tin: Comparative study by molecular dynamics and smoothed particle hydrodynamics methods

    NASA Astrophysics Data System (ADS)

    Dyachkov, S. A.; Parshikov, A. N.; Zhakhovsky, V. V.

    2015-11-01

    Experimental methods of observation of early stage of shock-induced ejecta from metal surface with micrometer-sized perturbations are still limited in terms of following a complete sequence of processes having microscale dimensions and nanoscale times. Therefore, simulations by the smoothed particle hydrodynamics (SPH) and molecular dynamics (MD) methods can shed of light on details of micro-jet evolution. The size of simulated sample is too restricted in MD, but the simulations with large enough number of atoms can be scaled well to the sizes of realistic samples. To validate such scaling the comparative MD and SPH simulations of tin samples are performed. SPH simulation takes the realistic experimental sizes, while MD uses the proportionally scaled sizes of samples. It is shown that the velocity and mass distributions along the jets simulated by MD and SPH are in a good agreement. The observed difference in velocity of spikes between MD and experiments can be partially explained by a profound effect of surface tension on jets ejected from the small-scale samples.

  17. Geometrical on-the-fly shock detection in smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Beck, A. M.; Dolag, K.; Donnert, J. M. F.

    2016-05-01

    We present an on-the-fly geometrical approach for shock detection and Mach number calculation in simulations employing smoothed particle hydrodynamics (SPH). We utilize pressure gradients to select shock candidates and define up- and downstream positions. We obtain hydrodynamical states in the up- and downstream regimes with a series of normal and inverted kernel weightings parallel and perpendicular to the shock normals. Our on-the-fly geometrical Mach detector incorporates well within the SPH formalism and has low computational cost. We implement our Mach detector into the simulation code GADGET and alongside many SPH improvements. We test our shock finder in a sequence of shock tube tests with successively increasing Mach numbers exceeding by far the typical values inside galaxy clusters. For all shocks, we resolve the shocks well and the correct Mach numbers are assigned. An application to a strong magnetized shock tube gives stable results in full magnetohydrodynamic setups. We simulate a merger of two idealized galaxy clusters and study the shock front. Shock structures within the merging clusters as well as the cluster shock are well captured by our algorithm and assigned correct Mach numbers.

  18. MASS TRANSFER IN BINARY STARS USING SMOOTHED PARTICLE HYDRODYNAMICS. II. ECCENTRIC BINARIES

    SciTech Connect

    Lajoie, Charles-Philippe; Sills, Alison E-mail: asills@mcmaster.ca

    2011-01-10

    Despite numerous efforts to better understand binary star evolution, some aspects of it remain poorly constrained. In particular, the evolution of eccentric binaries has remained elusive mainly because the Roche lobe formalism derived for circular binaries does not apply. Here we report the results of our smoothed particle hydrodynamic simulations of mass transfer in eccentric binaries using an alternate method in which we model only the outermost layers of the stars with appropriate boundary conditions. Using this technique, along with properly relaxed model stars, we characterize the mass transfer episodes of binaries with various orbital parameters. In particular, we show that these episodes can be described by Gaussians with an FWHM of {approx}0.12P{sub orb} and that the peak rates occur after periastron, at an orbital phase of {approx}0.58, independently of the eccentricity and mass of the stars. The accreted material is observed to form a rather sparse envelope around either or both stars. Although the fate of this envelope is not modeled in our simulations, we show that a constant fraction ({approx}5%) of the material transferred is ejected from the systems. We discuss this result in terms of the non-conservative mass transfer scenario. We suggest that our results could be incorporated in analytical and binary population synthesis studies to help better understand the evolution of eccentric binaries and the formation of exotic stellar populations.

  19. Numerical modeling of debris flow runout for a case in southwestern China with Smooth Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Braun, Anika; Cuomo, Sabatino; Wang, Xueliang; Zhang, Luqing

    2016-04-01

    Debris flows and landslide dams are a major natural hazard causing high socioeconomic risk in inhabited mountainous areas. This is also true for vast parts of southwestern China, which are highly prone to slope failures due to several factors, such as a humid climate with high precipitation in the summer months, geological predisposing factors with highly weathered sedimentary rocks and a high seismicity. Not only do the landslides and flooding related to landslide dams threaten residents, buildings and transportation structures, but also do flooding conditions endanger power supply, which relies in this region partly on hydropower. In order to assess the potential of landslides to block rivers, it is crucial to understand which factors influence possible run-out distances and how they can be quantified. In the study we are presenting a numerical modeling analysis for a particular case of a complex landslide in Ningnan county, southwestern China, which transformed into a debris flow and blocked the river and the major road leading through the valley after heavy rainfall. For this purpose a quasi-3D Smooth Particle Hydrodynamics (SPH) model was implemented that can account for geotechnical slope parameters, run-out distance, velocities and deposition heights. A digital terrain model and the geometry information of the landslide were used as input data in order to estimate the relevant geotechnical parameters by back-analysis. The results of the analysis can be used for the prediction of run-out distances for future events at this site and other similar sites.

  20. How smooth are particle trajectories in a ΛCDM Universe?

    NASA Astrophysics Data System (ADS)

    Rampf, Cornelius; Villone, Barbara; Frisch, Uriel

    2015-09-01

    It is shown here that in a flat, cold dark matter (CDM)-dominated Universe with positive cosmological constant (Λ), modelled in terms of a Newtonian and collisionless fluid, particle trajectories are analytical in time (representable by a convergent Taylor series) until at least a finite time after decoupling. The time variable used for this statement is the cosmic scale factor, i.e. the `a-time', and not the cosmic time. For this, a Lagrangian-coordinate formulation of the Euler-Poisson equations is employed, originally used by Cauchy for 3D incompressible flow. Temporal analyticity for ΛCDM is found to be a consequence of novel explicit all-order recursion relations for the a-time Taylor coefficients of the Lagrangian displacement field, from which we derive the convergence of the a-time Taylor series. A lower bound for the a-time where analyticity is guaranteed and shell-crossing is ruled out is obtained, whose value depends only on Λ and on the initial spatial smoothness of the density field. The largest time interval is achieved when Λ vanishes, i.e. for an Einstein-de Sitter universe. Analyticity holds also if, instead of the a-time, one uses the linear structure growth D-time, but no simple recursion relations are then obtained. The analyticity result also holds when a curvature term is included in the Friedmann equation for the background, but inclusion of a radiation term arising from the primordial era spoils analyticity.

  1. Ejecta from shocked metals: comparative simulations using molecular dynamics and smoothed-particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dyachkov, Sergey; Parshikov, Anatoly; Zhakhovsky, Vasily

    2015-06-01

    The machining of materials produces regular micrometer-sized surface perturbations. The microscopic cumulative jets can be generated from such surface under shock loading. It is a problem to trace space-time evolution of such jets with good enough resolution in experimental conditions. Comparative simulations by molecular dynamics (MD) and smoothed-particle hydrodynamics (SPH) methods, using an equation of state consistent with the employed interatomic potential, can shed of light on details of jet formation. The realistic experimental samples can be directly simulated by SPH method, while the linear size of a MD sample is restricted by the order of 100 nm. To compare the SPH and MD simulations the MD results must to be scaled to micrometer-sized samples. We demonstrate that the scaling provides the similar jet velocity profiles and mass distributions obtained by both methods. Furthermore, the simulated results agree well with the experimental observations with Copper and Tin. The effect of surface tension, which guides evolution of nanoscale-sized jet shape, may lead to discrepancies between MD and SPH simulations, especially for weak shocks and small surface perturbations.

  2. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations

    SciTech Connect

    Swegle, J.W.; Attaway, S.W.

    1995-02-01

    SPH (Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique which is appealing as a possible alternative to numerical techniques currently used to analyze high deformation impulsive loading events. In the present study, the SPH algorithm has been subjected to detailed testing and analysis to determine the feasibility of using PRONTO/SPH for the analysis of various types of underwater explosion problems involving fluid-structure and shock-structure interactions. Of particular interest are effects of bubble formation and collapse and the permanent deformation of thin walled structures due to these loadings. These are exceptionally difficult problems to model. Past attempts with various types of codes have not been satisfactory. Coupling SPH into the finite element code PRONTO represents a new approach to the problem. Results show that the method is well-suited for transmission of loads from underwater explosions to nearby structures, but the calculation of late time effects due to acceleration of gravity and bubble buoyancy will require additional development, and possibly coupling with implicit or incompressible methods.

  3. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing

    NASA Astrophysics Data System (ADS)

    Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide

    2015-09-01

    The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.

  4. Smooth pursuit adaptation (SPA) exhibits features useful to compensate changes in the properties of the smooth pursuit eye movement system due to usage.

    PubMed

    Dash, Suryadeep; Thier, Peter

    2013-01-01

    Smooth-pursuit adaptation (SPA) refers to the fact that pursuit gain in the early, still open-loop response phase of the pursuit eye movement can be adjusted based on experience. For instance, if the target moves initially at a constant velocity for ~100-200 ms and then steps to a higher velocity, subjects learn to up-regulate the pursuit gain associated with the initial target velocity (gain-increase SPA) in order to reduce the retinal error resulting from the velocity step. Correspondingly, a step to a lower target velocity leads to a decrease in gain (gain-decrease SPA). In this study we demonstrate that the increase in peak eye velocity during gain-increase SPA is a consequence of expanding the duration of the eye acceleration profile while the decrease in peak velocity during gain-decrease SPA results from reduced peak eye acceleration but unaltered duration. Furthermore, we show that carrying out stereotypical smooth pursuit eye movements elicited by constant velocity target ramps for several hundred trials (=test of pursuit resilience) leads to a clear drop in initial peak acceleration, a reflection of oculomotor and/or cognitive fatigue. However, this drop in acceleration gets compensated by an increase in the duration of the acceleration profile, thereby keeping initial pursuit gain constant. The compensatory expansion of the acceleration profile in the pursuit resilience experiment is reminiscent of the one leading to gain-increase SPA, suggesting that both processes tap one and the same neuronal mechanism warranting a precise acceleration-duration trade-off. Finally, we show that the ability to adjust acceleration duration during pursuit resilience depends on the integrity of the oculomotor vermis (OMV) as indicated by the complete loss of the duration adjustment following a surgical lesion of the OMV in one rhesus monkey we could study.

  5. Insights from inside the spinodal: Bridging thermalization time scales with smoothed particle hydrodynamics.

    PubMed

    Pütz, Martin; Nielaba, Peter

    2016-08-01

    We report the influence of the strength of heat bath coupling on the demixing behavior in spinodal decomposing one component liquid-vapor systems. The smoothed particle hydrodynamics (SPH) method with a van der Waals equation of state is used for the simulation. A thermostat for SPH is introduced that is based on the Berendsen thermostat. It controls the strength of heat bath coupling and allows for quenches with exponential temperature decay at a certain thermalization time scale. The present method allows us to bridge several orders of magnitude in the thermalization time scale. The early stage is highly affected by the choice of time scale. A transition from exponential growth to a 1/2 ordinary power law scaling in the characteristic lengths is observed. At high initial temperatures the growth is logarithmic. The comparison with pure thermal simulations reveals latent heat to raise the mean system temperature. Large thermalization time scales and thermal conductivity are figured out to affect a stagnation of heating, which is explained with convective processes. Furthermore, large thermalization time scales are responsible for a stagnation of growth of domains, which is temporally embedded between early and late stage of phase separation. Therefore, it is considered as an intermediate stage. We present an aspect concerning this stage, namely that choosing larger thermalization time scales increases the duration. Moreover, it is observed that diffuse interfaces are formed during this stage, provided that the stage is apparent. We show that the differences in the evolution between pure thermal simulations and simulations with an instantaneously scaled mean temperature can be explained by the thermalization process, since a variation of the time scale allows for the bridging between these cases of limit. PMID:27627369

  6. Chemo-Dynamical Evolution of Disk Galaxies, Smoothed Particles Hydrodynamics Approach

    NASA Astrophysics Data System (ADS)

    Berczik, P.

    In this paper I present, the new Chemo-Dynamical code, incorporated to the standard Smoothed Particle Hydrodynamics (CD-SPH). This code used to modelling the complex evolution of disk galaxy systems. The more detailed description of SPH code and the Star Formation (SF) and Super Novae (SN) algorithms you can find in our earlier work Berczik P. & Kravchuk S.G., 1996, ApSpSci, 245, 27. The galaxy presented via tree component system. The Dark Matter Halo described as an external gravitational potential with distribution of Dark Matter density (Burkert A. 1995, ApJ, 447, L25): ρDM (r) = frac ρ0 (1 + r / r0) cdot (1 + r / r0)2. The total mass of Dark Matter Halo is 1012 Modot. The second component is a hot coronal gas, with Thot ~106 K. This component presented as a uniformly distributed SPH gas with initial solid body rotation and with additisional random velocity component Δ V ~100 km/sec. The total mass of this component is 5 cdot 1010 Modot. The last component is a cold gas (Tcold ~104 K). This component presented also as a uniformly distributed SPH gas with initial solid body rotation and with additional random velocity component Δ V ~10 km/sec. The total mass of this component also is 5 cdot 1010 Modot. In the paper presented a more complex and may be more realistic incorporation of SF & SN in the SPH code. The presented calculation is clearly show, what the some interestiong and important properties of isolated disk galaxies we can explain using this simple, tree component "collapsing" model. In the frame of this approach we are able to reproduce the presently observed kinematics of star and gaseous components as well as their distributions and heavy element abundances. The developed model provide the realystic description of dynamics and chemical evolution of typical disk galaxies over the Hubble timescale.

  7. Galaxy mergers on a moving mesh: a comparison with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Hayward, Christopher C.; Torrey, Paul; Springel, Volker; Hernquist, Lars; Vogelsberger, Mark

    2014-08-01

    Galaxy mergers have been investigated for decades using smoothed particle hydrodynamics (SPH), but recent work highlighting inaccuracies inherent in the traditional SPH technique calls into question the reliability of previous studies. We explore this issue by comparing a suite of GADGET-3 SPH simulations of idealized (i.e. non-cosmological) isolated discs and galaxy mergers with otherwise identical calculations performed using the moving-mesh code AREPO. When black hole (BH) accretion and active galactic nucleus (AGN) feedback are not included, the star formation histories (SFHs) obtained from the two codes agree well. When BHs are included, the code- and resolution-dependent variations in the SFHs are more significant, but the agreement is still good, and the stellar mass formed over the course of a simulation is robust to variations in the numerical method. During a merger, the gas morphology and phase structure are initially similar prior to the starburst phase. However, once a hot gaseous halo has formed from shock heating and AGN feedback (when included), the agreement is less good. In particular, during the post-starburst phase, the SPH simulations feature more prominent hot gaseous haloes and spurious clumps, whereas with AREPO, gas clumps and filaments are less apparent and the hot halo gas can cool more efficiently. We discuss the origin of these differences and explain why the SPH technique yields trustworthy results for some applications (such as the idealized isolated disc and galaxy merger simulations presented here) but not others (e.g. gas flows on to galaxies in cosmological hydrodynamical simulations).

  8. The Emergence of Negative Superhumps in Cataclysmic Variables: Smoothed Particle Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Thomas, David M.; Wood, Matt A.

    2015-04-01

    Negative superhumps are believed to arise in cataclysmic variable systems when the accretion disk is tilted with respect to the orbital plane. Slow retrograde precession of the line-of-nodes results in a signal—the negative superhump—with a period slightly less than the orbital period. Previous studies have shown that tilted disks exhibit negative superhumps, but a consensus on how a disk initially tilts has not been reached. Analytical work by Lai (1999, ApJ, 524, 1030) suggests that a magnetic field on the primary can lead to a tilt instability in a disk when the dipole moment is offset in angle from the spin axis of the primary and when the primary’s spin axis is, itself, not aligned with the angular momentum axis of the binary orbit. However, Lai did not apply his work to the formation of negative superhumps. In this paper, we add Lai’s model to an existing smoothed particle hydrodynamics code. Using this code, we demonstrate the emergence of negative superhumps in the “light curve” for a range of magnetic dipole moments. We show that the period deficits calculated from these negative superhumps match those in simulations using manually tilted disks. When positive superhumps appear (q≲ 0.33), we show that the period excesses calculated from these signals are also consistent with previous results. Using examples, we show that the disks are tilted, though the tilt varies periodically, and that they precess in the retrograde direction. The magnetic fields found to lead to the emergence of negative superhumps lie in the kilogauss regime.

  9. Insights from inside the spinodal: Bridging thermalization time scales with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Pütz, Martin; Nielaba, Peter

    2016-08-01

    We report the influence of the strength of heat bath coupling on the demixing behavior in spinodal decomposing one component liquid-vapor systems. The smoothed particle hydrodynamics (SPH) method with a van der Waals equation of state is used for the simulation. A thermostat for SPH is introduced that is based on the Berendsen thermostat. It controls the strength of heat bath coupling and allows for quenches with exponential temperature decay at a certain thermalization time scale. The present method allows us to bridge several orders of magnitude in the thermalization time scale. The early stage is highly affected by the choice of time scale. A transition from exponential growth to a 1 /2 ordinary power law scaling in the characteristic lengths is observed. At high initial temperatures the growth is logarithmic. The comparison with pure thermal simulations reveals latent heat to raise the mean system temperature. Large thermalization time scales and thermal conductivity are figured out to affect a stagnation of heating, which is explained with convective processes. Furthermore, large thermalization time scales are responsible for a stagnation of growth of domains, which is temporally embedded between early and late stage of phase separation. Therefore, it is considered as an intermediate stage. We present an aspect concerning this stage, namely that choosing larger thermalization time scales increases the duration. Moreover, it is observed that diffuse interfaces are formed during this stage, provided that the stage is apparent. We show that the differences in the evolution between pure thermal simulations and simulations with an instantaneously scaled mean temperature can be explained by the thermalization process, since a variation of the time scale allows for the bridging between these cases of limit.

  10. Spherical tensor multipolar electrostatics and smooth particle mesh Ewald summation: a theoretical study.

    PubMed

    Zielinski, François; Popelier, Paul L A

    2014-07-01

    The point-charge approximation, typically used by classical molecular mechanics force-fields, can be overcome by a multipolar expansion. For decades multipole moments were only used in the context of the rigid body approximation but recently it has become possible to combine multipolar electrostatics with molecular flexibility. The program DL_MULTI, which is derived from DL_POLY_2, includes efficient multipolar Ewald functionality up to the hexadecapole moment but the code is restricted to rigid bodies. The incorporation of flexibility into DL_MULTI would cause too large an impact on its architecture whereas the package DL_POLY_4 offers a more attractive and sustainable route to handle multipolar electrostatics. This package inherently handles molecular flexibility, which warrants sufficiently transferable atoms or atoms that are "knowledgeable" about their chemical environment (as made possible by quantum chemical topology and machine learning). DL_MULTI uses the spherical multipole formalism, which is mathematically more involved than the Cartesian one but which is more compact. DL_POLY_4 uses the computationally efficient method of smooth particle mesh Ewald (SPME) summation, which has also been parallellized by others. Therefore, combining the strengths of DL_POLY_4 and DL_MULTI poses the challenge of merging SPME with multipolar electrostatics by spherical multipole. In an effort to recast as clearly as possible the principles behind DL_MULTI, its key equations have been reformulated by the more streamlined route involving the algebra of complex numbers, and some of these equations' peculiarities clarified. This article explores theoretically the repercussions of the merging of SPME with spherical multipole electrostatics (as implemented in DL_MULTI). Difficulties in design and implementation of possible future code are discussed.

  11. Insights from inside the spinodal: Bridging thermalization time scales with smoothed particle hydrodynamics.

    PubMed

    Pütz, Martin; Nielaba, Peter

    2016-08-01

    We report the influence of the strength of heat bath coupling on the demixing behavior in spinodal decomposing one component liquid-vapor systems. The smoothed particle hydrodynamics (SPH) method with a van der Waals equation of state is used for the simulation. A thermostat for SPH is introduced that is based on the Berendsen thermostat. It controls the strength of heat bath coupling and allows for quenches with exponential temperature decay at a certain thermalization time scale. The present method allows us to bridge several orders of magnitude in the thermalization time scale. The early stage is highly affected by the choice of time scale. A transition from exponential growth to a 1/2 ordinary power law scaling in the characteristic lengths is observed. At high initial temperatures the growth is logarithmic. The comparison with pure thermal simulations reveals latent heat to raise the mean system temperature. Large thermalization time scales and thermal conductivity are figured out to affect a stagnation of heating, which is explained with convective processes. Furthermore, large thermalization time scales are responsible for a stagnation of growth of domains, which is temporally embedded between early and late stage of phase separation. Therefore, it is considered as an intermediate stage. We present an aspect concerning this stage, namely that choosing larger thermalization time scales increases the duration. Moreover, it is observed that diffuse interfaces are formed during this stage, provided that the stage is apparent. We show that the differences in the evolution between pure thermal simulations and simulations with an instantaneously scaled mean temperature can be explained by the thermalization process, since a variation of the time scale allows for the bridging between these cases of limit.

  12. Adaptive Fuzzy Tracking Control of Nonlinear Systems With Asymmetric Actuator Backlash Based on a New Smooth Inverse.

    PubMed

    Lai, Guanyu; Liu, Zhi; Zhang, Yun; Philip Chen, C L

    2016-06-01

    This paper is concentrated on the problem of adaptive fuzzy tracking control for an uncertain nonlinear system whose actuator is encountered by the asymmetric backlash behavior. First, we propose a new smooth inverse model which can approximate the asymmetric actuator backlash arbitrarily. By applying it, two adaptive fuzzy control scenarios, namely, the compensation-based control scheme and nonlinear decomposition-based control scheme, are then developed successively. It is worth noticing that the first fuzzy controller exhibits a better tracking control performance, although it recourses to a known slope ratio of backlash nonlinearity. The second one further removes the restriction, and also gets a desirable control performance. By the strict Lyapunov argument, both adaptive fuzzy controllers guarantee that the output tracking error is convergent to an adjustable region of zero asymptotically, while all the signals remain semiglobally uniformly ultimately bounded. Lastly, two comparative simulations are conducted to verify the effectiveness of the proposed fuzzy controllers. PMID:27187937

  13. Smoothed Particle Hydrodynamics Modeling of Gravity Currents on a Dry Porous Medium

    NASA Astrophysics Data System (ADS)

    Daly, E.; Grimaldi, S.; Bui, H.

    2014-12-01

    Gravity currents flowing over porous media occur in many environmental processes and industrial applications, such as irrigation, benthic boundary layers, and oil spills. The coupling of the flow over the porous surface and the infiltration of the fluid in the porous media is complex and difficult to model. Of particular interest is the prediction of the position of the runoff front and the depth of the infiltration front. We present here a model for the flow of a finite volume of a highly viscous Newtonian fluid over a dry, homogenous porous medium. The Navier-Stokes equations describing the runoff flow are coupled to the Volume Averaged Navier-Stokes equations for the infiltration flow. The numerical solution of these equations is challenging because of the presence of two free surfaces (runoff and infiltration waves), the lack of fixed boundary conditions at the runoff front, and the difficulties in defining appropriate conditions at the surface of the porous medium. The first two challenges were addressed by using Smoothed Particle Hydrodynamics, which is a Lagrangian, mesh-free particle method particularly suitable for modelling free surface flows. Two different approaches were used to model the flow conditions at the surface of the porous medium. The Two Domain Approach (TDA) assumes that runoff and infiltration flows occur in two separate homogenous domains; here, we assume the continuity of velocity and stresses at the interface of the two domains. The One Domain Approach (ODA) models runoff and infiltration flows as occurring through a medium whose hydraulic properties vary continuously in space. The transition from the hydraulic properties of the atmosphere and the porous medium occur in a layer near the surface of the porous medium. Expressions listed in literature were used to compute the thickness of this transition layer and the spatial variation of porosity and permeability within it. Our results showed that ODA led to slower velocities of the runoff

  14. Particle tracking velocimetry and particle image velocimetry study of the slow motion of rough and smooth solid spheres in a yield-stress fluid.

    PubMed

    Holenberg, Yulia; Lavrenteva, Olga M; Shavit, Uri; Nir, Avinoam

    2012-12-01

    We report experimental evidence of an effect opposite to the "solidification" of small bubbles in liquid where the surface can become immobile. Namely, it is demonstrated that smooth solid spheres falling in a yield-stress fluid under the action of gravity can behave similar to drops. Particle tracking velocimetry was used to determine the shape of the yielded region around solid spherical particles undergoing slow stationary motion in 0.07% w/w Carbopol gel due to gravity under creeping flow conditions. The flow field inside the yielded region was determined by particle image velocimetry. It was found that the shape of the yielded region and the flow field around slow-moving rough particles is similar to the published results of numerical simulations, whereas those around smooth spheres resemble the experimental results obtained for viscous drops. The effect was explained by a slip of the gel on the smooth surface. Most likely, the slip originated from seepage of clean water from the gel, forming a thin lubricating layer near the solid surface.

  15. A faster algorithm for smoothed particle hydrodynamics with radiative transfer in the flux-limited diffusion approximation

    NASA Astrophysics Data System (ADS)

    Whitehouse, Stuart C.; Bate, Matthew R.; Monaghan, Joe J.

    2005-12-01

    We describe a new, faster implicit algorithm for solving the radiation hydrodynamics equations in the flux-limited diffusion approximation for smoothed particle hydrodynamics. This improves on the method elucidated in Whitehouse and Bate by using a Gauss-Seidel iterative method rather than iterating over the exchange of energy between pairs of particles. The new algorithm is typically many thousands of times faster than the old one, which will enable more complex problems to be solved. The new algorithm is tested using the same tests performed by Turner and Stone for ZEUS-2D, and repeated by Whitehouse and Bate.

  16. Application of Smoothed Particle MHD (SPMHD) techniques to the simulation of magnetically confined plasma dynamics

    NASA Astrophysics Data System (ADS)

    Vela-Vela, Luis; Sanchez, Raul; Reynolds-Barredo, J. Miguel

    2015-11-01

    Magnetically confined plasmas relevant for fusion scenarios are, to first approximation, well described by ideal and resistive MHD. This includes the description of their equilibrium and stability properties, as well as their medium-to-long term nonlinear evolution under external forcing. In many of these cases, one needs to deal with magnetic topologies that include magnetic islands, stochastic regions or that require the consideration of free-moving boundaries. The present work is part of an on-going effort to develop of a numerical code capable of dealing with these situations by taking advantage of the SPMHD formalism that, although widely used in astrophysical plasmas, is not widespread within the fusion community. SPMHD is a particle (i.e., Lagrangian) method particularly well-suited to deal with complicated boundaries while retaining great parallelization benefits. Here, we will report on the adaptation of the SPMHD equations to the case of magnetically confined plasmas, several benchmarking tests typical for MHD codes, and some preliminary results obtained for more elaborate scenarios. Our results suggest that our new code (EVA) can be very advantageous to deal with problems of current interest for the fusion community, including tokamaks and stellarators.

  17. Improving smoothed particle hydrodynamics with an integral approach to calculating gradients

    NASA Astrophysics Data System (ADS)

    García-Senz, D.; Cabezón, R. M.; Escartín, J. A.

    2012-02-01

    Context. The smoothed particle hydrodynamics (SPH) technique is a well-known numerical method that has been applied to simulate the evolution of a wide variety of systems. Modern astrophysical applications of the method rely on the Lagrangian formulation of fluid Euler equations, which is fully conservative. A different scheme, based on a matrix approach to the SPH equations is currently being used in computational fluid dynamics. These matrix formulations achieve better interpolations of the physical magnitudes but they are, in general, not fully conservative. The matrix approach to the Euler equations has never been used in astrophysics. Aims: We develop and test a fully conservative SPH scheme based on a tensor formulation that can be applied to simulate astrophysical systems. Methods: In the proposed scheme, derivatives are calculated from an integral expression that leads to a tensor (instead of a vectorial) estimation of gradients and reduces to the standard formulation in the continuum limit. The new formulation improves the interpolation of physical magnitudes, leading to a set of conservative equations that resembles those of standard SPH. The resulting scheme is verified using a variety of well-known tests, all of them simulated in two dimensions. We also discuss an application of the proposed tensor method to astrophysics by simulating the stability of a Sun-like polytrope calculated in three dimensions. Results: The proposed scheme is able to improve the results of standard SPH in the two-dimensional tests, especially in the simulation of subsonic hydrodynamic instabilities. Our results for the stability of the Sun-like polytrope suggest that the new method can be used in astrophysics to carry out three-dimensional calculations with a computational cost that is only slightly higher (i.e. ≤50% for a serial code) than that of a standard SPH formulation. Conclusions: A formalism based on a matrix approach to Euler SPH equations was developed and checked

  18. Model Adaptation for Prognostics in a Particle Filtering Framework

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Goebel, Kai Frank

    2011-01-01

    One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the "curse of dimensionality", i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for "well-designed" particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.

  19. Convergence of smoothed particle hydrodynamics simulations of self-gravitating accretion discs: sensitivity to the implementation of radiative cooling

    NASA Astrophysics Data System (ADS)

    Rice, W. K. M.; Forgan, D. H.; Armitage, P. J.

    2012-02-01

    Recent simulations of self-gravitating accretion discs, carried out using a three-dimensional smoothed particle hydrodynamics (SPH) code by Meru & Bate, have been interpreted as implying that three-dimensional global discs fragment much more easily than would be expected from a two-dimensional local model. Subsequently, global and local two-dimensional models have been shown to display similar fragmentation properties, leaving it unclear whether the three-dimensional results reflect a physical effect or a numerical problem associated with the treatment of cooling or artificial viscosity in SPH. Here, we study how fragmentation of self-gravitating disc flows in SPH depends upon the implementation of cooling. We run disc simulations that compare a simple cooling scheme, in which each particle loses energy based upon its internal energy per unit mass, with a method in which the cooling is derived from a smoothed internal energy density field. For the simple per particle cooling scheme, we find a significant increase in the minimum cooling time-scale for fragmentation with increasing resolution, matching previous results. Switching to smoothed cooling, however, results in lower critical cooling time-scales, and tentative evidence for convergence at the highest spatial resolution tested. We conclude that precision studies of fragmentation using SPH require careful consideration of how cooling (and, probably, artificial viscosity) is implemented, and that the apparent non-convergence of the fragmentation boundary seen in prior simulations is likely a numerical effect. In real discs, where cooling is physically smoothed by radiative transfer effects, the fragmentation boundary is probably displaced from the two-dimensional value by a factor that is only of the order of unity.

  20. Swine confinement buildings: effects of airborne particles and settled dust on airway smooth muscles.

    PubMed

    Demanche, Annick; Bonlokke, Jakob; Beaulieu, Marie-Josee; Assayag, Evelyne; Cormier, Yvon

    2009-01-01

    Swine confinement workers are exposed to various contaminants. These agents can cause airway inflammation and bronchoconstriction. This study was undertaken to evaluate if the bronchoconstrictive effects of swine barn air and settled dust are mediated by endotoxin, and if these effects are directly mediated on airway smooth muscles. Mouse tracheas where isolated and mounted isometrically in organ baths. Tracheas, with or without epithelium, were attached to a force transducer and tension was recorded. Concentrated swine building air at 68 EU/ml or settled dust extract at 0.01 g/ml were added for 20 minutes and tracheal smooth muscle contraction was measured. Direct role of LPS was assessed by removing it from air concentrates with an endotoxin affinity resin. Swine barn air and settled dust extract caused contraction of tracheal smooth muscle by 26 and 20%, respectively, of the maximal induced by methacholine. Removal of epithelium did not affect the contractile effects. LPS alone and LPS with peptidoglycans did not induce contraction. However, when endotoxin was removed from swine barn air concentrates, it lost 24% of its contractile effect. Concentrated swine barn air and settled dust have direct effects on airway smooth muscles. This effect is partially due to LPS but a synergy with other components of the environment of swine confinement buildings is required. PMID:20047256

  1. Local Adaptive Calibration of the GLASS Surface Incident Shortwave Radiation Product Using Smoothing Spline

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Liang, S.; Wang, G.

    2015-12-01

    Incident solar radiation (ISR) over the Earth's surface plays an important role in determining the Earth's climate and environment. Generally, can be obtained from direct measurements, remotely sensed data, or reanalysis and general circulation models (GCMs) data. Each type of product has advantages and limitations: the surface direct measurements provide accurate but sparse spatial coverage, whereas other global products may have large uncertainties. Ground measurements have been normally used for validation and occasionally calibration, but transforming their "true values" spatially to improve the satellite products is still a new and challenging topic. In this study, an improved thin-plate smoothing spline approach is presented to locally "calibrate" the Global LAnd Surface Satellite (GLASS) ISR product using the reconstructed ISR data from surface meteorological measurements. The influences of surface elevation on ISR estimation was also considered in the proposed method. The point-based surface reconstructed ISR was used as the response variable, and the GLASS ISR product and the surface elevation data at the corresponding locations as explanatory variables to train the thin plate spline model. We evaluated the performance of the approach using the cross-validation method at both daily and monthly time scales over China. We also evaluated estimated ISR based on the thin-plate spline method using independent ground measurements at 10 sites from the Coordinated Enhanced Observation Network (CEON). These validation results indicated that the thin plate smoothing spline method can be effectively used for calibrating satellite derived ISR products using ground measurements to achieve better accuracy.

  2. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    PubMed Central

    Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  3. Adaptive mean-shift tracking with auxiliary particles.

    PubMed

    Wang, Junqiu; Yagi, Yasushi

    2009-12-01

    We present a new approach for robust and efficient tracking by incorporating the efficiency of the mean-shift algorithm with the multihypothesis characteristics of particle filtering in an adaptive manner. The aim of the proposed algorithm is to cope with problems that were brought about by sudden motions and distractions. The mean-shift tracking algorithm is robust and effective when the representation of a target is sufficiently discriminative, the target does not jump beyond the bandwidth, and no serious distractions exist. We propose a novel two-stage motion estimation method that is efficient and reliable. If a sudden motion is detected by the motion estimator, some particle-filtering-based trackers can be used to outperform the mean-shift algorithm, at the expense of using a large particle set. In our approach, the mean-shift algorithm is used, as long as it provides reasonable performance. Auxiliary particles are introduced to cope with distractions and sudden motions when such threats are detected. Moreover, discriminative features are selected according to the separation of the foreground and background distributions when threats do not exist. This strategy is important, because it is dangerous to update the target model when the tracking is in an unsteady state. We demonstrate the performance of our approach by comparing it with other trackers in tracking several challenging image sequences.

  4. Support vector machine based on adaptive acceleration particle swarm optimization.

    PubMed

    Abdulameer, Mohammed Hasan; Sheikh Abdullah, Siti Norul Huda; Othman, Zulaiha Ali

    2014-01-01

    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584

  5. A fast and explicit algorithm for simulating the dynamics of small dust grains with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Price, Daniel J.; Laibe, Guillaume

    2015-07-01

    We describe a simple method for simulating the dynamics of small grains in a dusty gas, relevant to micron-sized grains in the interstellar medium and grains of centimetre size and smaller in protoplanetary discs. The method involves solving one extra diffusion equation for the dust fraction in addition to the usual equations of hydrodynamics. This `diffusion approximation for dust' is valid when the dust stopping time is smaller than the computational timestep. We present a numerical implementation using smoothed particle hydrodynamics that is conservative, accurate and fast. It does not require any implicit timestepping and can be straightforwardly ported into existing 3D codes.

  6. Investigating the relationships between peristaltic contraction and fluid transport in the human colon using Smoothed Particle Hydrodynamics.

    PubMed

    Sinnott, M D; Cleary, P W; Arkwright, J W; Dinning, P G

    2012-04-01

    Complex relationships exist between gut contractility and the flow of digesta. We propose here a Smoothed Particle Hydrodynamics model coupling the flow of luminal content and wall flexure to help investigate these relationships. The model indicates that a zone of muscular relaxation preceding the contraction is an important element for transport. Low pressures in this zone generate positive thrust for low viscosity content. The viscosity of luminal content controls the localization of the flow and the magnitude of the radial pressure gradient and together with contraction amplitude they control the transport rate. For high viscosity content, high lumen occlusion is required for effective propulsion. PMID:22297431

  7. Parallel Godunov smoothed particle hydrodynamics (SPH) with improved treatment of Boundary Conditions and an application to granular flows

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Patra, A. K.; Pitman, E. B.; Chi, H.

    2013-10-01

    Smoothed Particle Hydrodynamics has been successfully used for various fluid-dynamics problems, such as breaking-waves, flooding etc., since it was originally proposed. While the Lagrangian approach is naturally suitable for free-surface flows, enforcing boundary conditions and poor approximations in the presence of discontinuities in the solution are major difficulties with the method. In this paper we present an enhanced conservative Godunov SPH based on the work of Inutsuka [S. Inutsuka, Reformulation of smoothed particle hydrodynamics with Riemann solver, Journal of Computational Physics 179 (2002) 238-267] that accurately resolves discontinuities without the need to use artificial viscosity, preserves partition of unity everywhere in the domain, correctly and flexibly enforces necessary essential and frictional slip boundary conditions to approximately solve free-surface granular flows. The development is motivated by the need to improve upon depth averaged grid based models of large scale debris flows and avalanches often characterized as granular flows. Simple validation of the results is obtained by comparison to table-top experiments.

  8. Adaptation of Block-Structured Adaptive Mesh Refinement to Particle-In-Cell simulations

    NASA Astrophysics Data System (ADS)

    Vay, Jean-Luc; Colella, Phillip; McCorquodale, Peter; Friedman, Alex; Grote, Dave

    2001-10-01

    Particle-In-Cell (PIC) methods which solve the Maxwell equations (or a simplification) on a regular Cartesian grid are routinely used to simulate plasma and particle beam systems. Several techniques have been developed to accommodate irregular boundaries and scale variations. We describe here an ongoing effort to adapt the block-structured Adaptive Mesh Refinement (AMR) algorithm (http://seesar.lbl.gov/AMR/) to the Particle-In-Cell method. The AMR technique connects grids having different resolutions, using interpolation. Special care has to be taken to avoid the introduction of spurious forces close to the boundary of the inner, high-resolution grid, or at least to reduce such forces to an acceptable level. The Berkeley AMR library CHOMBO has been modified and coupled to WARP3d (D.P. Grote et al., Fusion Engineering and Design), 32-33 (1996), 193-200, a PIC code which is used for the development of high current accelerators for Heavy Ion Fusion. The methods and preliminary results will be presented.

  9. A vermal Purkinje cell simple spike population response encodes the changes in eye movement kinematics due to smooth pursuit adaptation

    PubMed Central

    Dash, Suryadeep; Dicke, Peter W.; Thier, Peter

    2013-01-01

    Smooth pursuit adaptation (SPA) is an example of cerebellum-dependent motor learning that depends on the integrity of the oculomotor vermis (OMV). In an attempt to unveil the neuronal basis of the role of the OMV in SPA, we recorded Purkinje cell simple spikes (PC SS) of trained monkeys. Individual PC SS exhibited specific changes of their discharge patterns during the course of SPA. However, these individual changes did not provide a reliable explanation of the behavioral changes. On the other hand, the population response of PC SS perfectly reflected the changes resulting from adaptation. Population vector was calculated using all cells recorded independent of their location. A population code conveying the behavioral changes is in full accordance with the anatomical convergence of PC axons on target neurons in the cerebellar nuclei. Its computational advantage is the ease with which it can be adjusted to the needs of the behavior by changing the contribution of individual PC SS based on error feedback. PMID:23494070

  10. Does smooth muscle in an intact airway undergo length adaptation during a sustained change in transmural pressure?

    PubMed

    Ansell, Thomas K; McFawn, Peter K; McLaughlin, Robert A; Sampson, David D; Eastwood, Peter R; Hillman, David R; Mitchell, Howard W; Noble, Peter B

    2015-03-01

    In isolated airway smooth muscle (ASM) strips, an increase or decrease in ASM length away from its current optimum length causes an immediate reduction in force production followed by a gradual time-dependent recovery in force, a phenomenon termed length adaptation. In situ, length adaptation may be initiated by a change in transmural pressure (Ptm), which is a primary physiological determinant of ASM length. The present study sought to determine the effect of sustained changes in Ptm and therefore, ASM perimeter, on airway function. We measured contractile responses in whole porcine bronchial segments in vitro before and after a sustained inflation from a baseline Ptm of 5 cmH2O to 25 cmH2O, or deflation to -5 cmH2O, for ∼50 min in each case. In one group of airways, lumen narrowing and stiffening in response to electrical field stimulation (EFS) were assessed from volume and pressure signals using a servo-controlled syringe pump with pressure feedback. In a second group of airways, lumen narrowing and the perimeter of the ASM in situ were determined by anatomical optical coherence tomography. In a third group of airways, active tension was determined under isovolumic conditions. Both inflation and deflation reduced the contractile response to EFS. Sustained Ptm change resulted in a further decrease in contractile response, which returned to baseline levels upon return to the baseline Ptm. These findings reaffirm the importance of Ptm in regulating airway narrowing. However, they do not support a role for ASM length adaptation in situ under physiological levels of ASM lengthening and shortening. PMID:25729015

  11. Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter

    NASA Astrophysics Data System (ADS)

    Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio

    2012-01-01

    Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.

  12. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smoothed particle hydrodynamics

    SciTech Connect

    Pan, Wenxiao; Daily, Michael; Baker, Nathan A.

    2015-05-07

    Background: The calculation of diffusion-controlled ligand binding rates is important for understanding enzyme mechanisms as well as designing enzyme inhibitors. Methods: We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) BC, is considered on the reactive boundaries. This new BC treatment allows for the analysis of enzymes with “imperfect” reaction rates. Results: The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to a mouse acetylcholinesterase (mAChE) monomer. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Conclusions: Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.

  13. Smooth Particle Hydrodynamics with nonlinear Moving-Least-Squares WENO reconstruction to model anisotropic dispersion in porous media

    NASA Astrophysics Data System (ADS)

    Avesani, Diego; Herrera, Paulo; Chiogna, Gabriele; Bellin, Alberto; Dumbser, Michael

    2015-06-01

    Most numerical schemes applied to solve the advection-diffusion equation are affected by numerical diffusion. Moreover, unphysical results, such as oscillations and negative concentrations, may emerge when an anisotropic dispersion tensor is used, which induces even more severe errors in the solution of multispecies reactive transport. To cope with this long standing problem we propose a modified version of the standard Smoothed Particle Hydrodynamics (SPH) method based on a Moving-Least-Squares-Weighted-Essentially-Non-Oscillatory (MLS-WENO) reconstruction of concentrations. This scheme formulation (called MWSPH) approximates the diffusive fluxes with a Rusanov-type Riemann solver based on high order WENO scheme. We compare the standard SPH with the MWSPH for different a few test cases, considering both homogeneous and heterogeneous flow fields and different anisotropic ratios of the dispersion tensor. We show that, MWSPH is stable and accurate and that it reduces the occurrence of negative concentrations compared to standard SPH. When negative concentrations are observed, their absolute values are several orders of magnitude smaller compared to standard SPH. In addition, MWSPH limits spurious oscillations in the numerical solution more effectively than classical SPH. Convergence analysis shows that MWSPH is computationally more demanding than SPH, but with the payoff a more accurate solution, which in addition is less sensitive to particles position. The latter property simplifies the time consuming and often user dependent procedure to define the initial dislocation of the particles.

  14. Effect of lobe pumping on human albumin: development of a lobe pump simulator using smoothed particle hydrodynamics.

    PubMed

    Gomme, Peter T; Prakash, Mahesh; Hunt, Ben; Stokes, Nick; Cleary, Paul; Tatford, Owen C; Bertolini, Joseph

    2006-02-01

    Using SPH (smoothed particle hydrodynamics), the motion of a lobe pump under load was simulated in order to predict the level of shear stress experienced by a protein solution. By varying the gap size between the lobes and pump housing, variations in pump efficiency and shear stress were determined. The simulations indicated that pump shear was dependent on gap size, with shear stress levels (0-40 Pa) correlating with those estimated in previous albumin-pumping studies. As gap size increased, the number of fluid particles experiencing low shear (<10 Pa) increased, whereas those experiencing high shear (>20 Pa) showed a decreasing trend. The pump efficiency, however, decreased with gap size, requiring more lobe revolutions to pass a unit volume. Taken together, these observations indicate that lobe pumps operated with increased gaps between the rotors and the housing result in larger number of particles within the fluid experiencing shear stresses. Moreover, the simulations indicate that it is best to use larger lobe pumps operated at high efficiency to transfer protein-containing solutions. PMID:16246177

  15. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smoothed particle hydrodynamics

    DOE PAGES

    Pan, Wenxiao; Daily, Michael; Baker, Nathan A.

    2015-05-07

    Background: The calculation of diffusion-controlled ligand binding rates is important for understanding enzyme mechanisms as well as designing enzyme inhibitors. Methods: We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) BC, is considered on the reactive boundaries. This new BC treatment allows for the analysis of enzymes with “imperfect” reaction rates. Results: The numerical method is first verified in simple systems and thenmore » applied to the calculation of ligand binding to a mouse acetylcholinesterase (mAChE) monomer. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Conclusions: Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.« less

  16. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smooth particle hydrodynamics

    SciTech Connect

    Pan, Wenxiao; Daily, Michael D.; Baker, Nathan A.

    2015-12-01

    We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to an acetylcholinesterase monomer. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) boundary condition, is considered on the reactive boundaries. This new boundary condition treatment allows for the analysis of enzymes with "imperfect" reaction rates. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.

  17. Numerical modelling of shock-induced chemical reactions (SICR) in reactive powder mixtures using smoothed particle hydrodynamics (SPH)

    NASA Astrophysics Data System (ADS)

    S, Siva Prasad A. V.; Basu, Sumit

    2015-10-01

    Shock compaction of reactive powder mixtures to synthesize new materials is one of the oldest material processing techniques and has been studied extensively by several researchers over the past few decades. The quantitative connection between the shock energy imparted and the extent of reaction that can be completed in the small time window associated with the passage of the shock wave is complicated and depends on a large variety of parameters. In particular, our understanding of the complex interplay between the thermo-elasto-viscoplastic behaviour of the granular constituents and their temperature dependent, diffusion-limited reaction mechanism may be enriched through careful numerical simulations. A robust numerical model should be able to handle extremely large deformations coupled with diffusion mediated fast reaction kinetics. In this work, a meshfree discrete particle numerical method based on smoothed particle hydrodynamics (SPH) to simulate shock-induced chemical reactions (SICR) in reactive powder mixtures is proposed. We present a numerical strategy to carry out reactions between reactant powder particles and partition the obtained products between the particles in a manner that accounts for the requirement that the total mass of the entire system remains constant as the reactions occur. Instead of solving the reaction-diffusion problem, we propose a ‘pseudo-diffusion’ model in which a distance dependent reaction rate constant is defined to carry out chemical reaction kinetics. This approach mimics the actual reaction-diffusion process at short times. Our numerical model is demonstrated for the well-studied reaction system Nb  +  2Si \\rightleftharpoons NbSi 2 . The predicted mass fractions of the product obtained from the simulations are in agreement with experimental observations. Finally, the effects of impact speed, particle arrangement and mixing ratio on the predicted product mass fractions are discussed.

  18. Numerical simulation of landslide-generated waves using a soil-water coupling smoothed particle hydrodynamics model

    NASA Astrophysics Data System (ADS)

    Shi, Chuanqi; An, Yi; Wu, Qiang; Liu, Qingquan; Cao, Zhixian

    2016-06-01

    We simulate the generation of a landslide-induced impulse wave with a newly-developed soil-water coupling model in the smoothed particle hydrodynamics (SPH) framework. The model includes an elasto-plastic constitutive model for soil, a Navier-Stokes equation based model for water, and a bilateral coupling model at the interface. The model is tested with simulated waves induced by a slow and a fast landslide. Good agreement is obtained between simulation results and experimental data. The generated wave and the deformation of the landslide body can both be resolved satisfactorily. All parameters in our model have their physical meaning in soil mechanics and can be obtained from conventional soil mechanics experiments directly. The influence of the dilatancy angle of soil shows that the non-associated flow rule must be selected, and the value of the dilatancy angle should not be chosen arbitrarily, if it is not determined with relative experiments.

  19. Hourglass control for Smooth Particle Hydrodynamics removes tensile and rank-deficiency instabilities. Hourglass control for SPH

    NASA Astrophysics Data System (ADS)

    Ganzenmüller, G. C.; Sauer, M.; May, M.; Hiermaier, S.

    2016-05-01

    We present a stabilization scheme for elastoplastic Smooth-Particle Hydrodynamics (SPH) which overcomes two major challenges: (i) the tensile instability inherent to the updated Lagrangian approach is suppressed and (ii) the rank-deficiency instability inherent to the nodal integration approach is cured. To achieve these goals, lessons learned from the Finite-Element Method are transferred to SPH. In particular, an analogue of hourglass control is derived for SPH, which locally linearizes the deformation field to obtain stable and accurate solutions, without the need to resort to stabilization via excessive artificial viscosity. The resulting SPH scheme combines the ability of updated Lagrangian SPH to model truly large deformations with the accuracy and stability needed to faithfully perform simulations. This claim is supported by the analysis of problematic cases and the simulation of an impact scenario.

  20. Application of SALSSA Framework to the Validation of Smoothed Particle Hydrodynamics Simulations of Low Reynolds Number Flows

    SciTech Connect

    Schuchardt, Karen L.; Chase, Jared M.; Daily, Jeffrey A.; Elsethagen, Todd O.; Palmer, Bruce J.; Scheibe, Timothy D.

    2009-06-15

    The Support Architecture for Large-Scale Subsurface Analysis (SALSSA) provides an extensible framework, sophisticated graphical user interface (GUI), and underlying data management system that simplifies the process of running subsurface models, tracking provenance information, and analyzing the model results. The SALSSA software framework is currently being applied to validating the Smoothed Particle Hydrodynamics (SPH) model. SPH is a three-dimensional model of flow and transport in porous media at the pore scale. Fluid flow in porous media at velocities common in natural porous media occur at low Reynolds numbers and therefore it is important to verify that the SPH model is producing accurate flow solutions in this regime. Validating SPH requires performing a series of simulations and comparing these simulation flow solutions to analytical results or numerical results using other methods. This validation study is being facilitated by the SALLSA framework, which provides capabilities to setup, execute, analyze, and administer these SPH simulations.

  1. Using smooth particle hydrodynamics to investigate femoral cortical bone remodelling at the Haversian level.

    PubMed

    Fernandez, J W; Das, R; Cleary, P W; Hunter, P J; Thomas, C D L; Clement, J G

    2013-01-01

    In the neck of the femur, about 70% of the strength is contributed by the cortical bone, which is the most highly stressed part of the structure and is the site where failure is almost certainly initiated. A better understanding of cortical bone remodelling mechanisms can help discern changes at this anatomical site, which are essential if an understanding of the mechanisms by which hips weaken and become vulnerable to fracture is to be gained. The aims of this study were to (i) examine a hypothesis that low strain fields arise because of subject-specific Haversian canal distributions causing bone resorption and reduced bone integrity and (ii) introduce the use of a meshless particle-based computational modelling approach SPH to capture bone remodelling features at the level of the Haversian canals. We show that bone remodelling initiated by strain at the Haversian level is highly influenced by the subject-specific pore distribution, bone density, loading and osteocyte density. SPH is shown to be effective at capturing the intricate bone pore shapes that evolved over time.

  2. Modeling the Structural Response from a Propagating High Explosive Using Smooth Particle Hydrodynamics

    SciTech Connect

    Margraf, J

    2012-06-12

    material flows through a still mesh. This is not typically done in an ALE3D analysis, especially if Lagrange elements exist. Deforming Lagrange elements would certainly tangle with a Eulerian mesh eventually. The best method in this case is to have an advecting mesh positioned as some relaxed version of the pre and post Lagrange step; this gives the best opportunity of modeling a high energy event with a combination of Lagrange and ALE elements. Dyne3D is another explicit dynamic analysis code, ParaDyn being the parallel version. ParaDyn is used for predicting the transient response of three dimensional structures using Lagrangian solid mechanics. Large deformation and mesh tangling is often resolved through the use of an element deletion scheme. This is useful to accommodate component failure, but if it is done purely as a means to preserve a useful mesh it can lead to problems because it does not maintain continuity of the material bulk response. Whatever medium exists between structural components is typically not modeled in ParaDyn. Instead, a structure either has a known loading profile applied or given initial conditions. The many included contact algorithms can calculate the loading response of materials if and when they collide. A recent implementation of an SPH module in which failed or deleted material nodes are converted to independent particles is currently being utilized for a variety of spall related problems and high velocity impact scenarios. Figure 4 shows an example of a projectile, given an initial velocity, and how it fails the first plate which generates SPH particles which then interact with and damage the second plate.

  3. Benchmark tests and spin adaptation for the particle-particle random phase approximation

    SciTech Connect

    Yang, Yang; Steinmann, Stephan N.; Peng, Degao; Aggelen, Helen van; Yang, Weitao

    2013-11-07

    The particle-particle random phase approximation (pp-RPA) provides an approximation to the correlation energy in density functional theory via the adiabatic connection [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)]. It has virtually no delocalization error nor static correlation error for single-bond systems. However, with its formal O(N{sup 6}) scaling, the pp-RPA is computationally expensive. In this paper, we implement a spin-separated and spin-adapted pp-RPA algorithm, which reduces the computational cost by a substantial factor. We then perform benchmark tests on the G2/97 enthalpies of formation database, DBH24 reaction barrier database, and four test sets for non-bonded interactions (HB6/04, CT7/04, DI6/04, and WI9/04). For the G2/97 database, the pp-RPA gives a significantly smaller mean absolute error (8.3 kcal/mol) than the direct particle-hole RPA (ph-RPA) (22.7 kcal/mol). Furthermore, the error in the pp-RPA is nearly constant with the number of atoms in a molecule, while the error in the ph-RPA increases. For chemical reactions involving typical organic closed-shell molecules, pp- and ph-RPA both give accurate reaction energies. Similarly, both RPAs perform well for reaction barriers and nonbonded interactions. These results suggest that the pp-RPA gives reliable energies in chemical applications. The adiabatic connection formalism based on pairing matrix fluctuation is therefore expected to lead to widely applicable and accurate density functionals.

  4. A comparison of finite element analysis to smooth particle hydrodynamics for application to projectile impact on cementitious material

    NASA Astrophysics Data System (ADS)

    Nordendale, Nikolas A.; Heard, William F.; Sherburn, Jesse A.; Basu, Prodyot K.

    2016-03-01

    The response of structural components of high-strength cementitious (HSC) materials to projectile impact is characterized by high-rate fragmentation resulting from strong compressive shock waves coupled with reflected tensile waves. Accurate modeling of armor panels of such brittle materials under high-velocity projectile impact is a complex problem requiring meticulous experimental characterization of material properties. In a recent paper by the authors, an approach to handle such problems based on a modified Advanced Fundamental Concrete (AFC) constitutive model was developed. In the HSC panels considered in this study, an analogous approach is applied, and the predictions are verified with ballistic impact test data. Traditional Lagrangian finite element analysis (FEA) of these problems tends to introduce errors and suffers from convergence issues resulting from large deformations at free surfaces. Also, FEA cannot properly account for the issues of secondary impact of spalled fragments when multiple armor panels are used. Smoothed particle hydrodynamics (SPH) is considered to be an attractive alternative to resolve these and other issues. However, SPH-based quantitative results have been found to be less accurate than the FEA-based ones when the deformations are not sufficiently large. This paper primarily focuses on a comparison of FEA and SPH models to predict high-velocity projectile impact on single and stacked HSC panels. Results are compared to recent ballistic experiments performed as a part of this research, and conclusions are drawn based on the findings.

  5. Tsunami Simulator Integrating the Smoothed-Particle Hydrodynamics Method and the Nonlinear Shallow Water Wave Model with High Performance Computer

    NASA Astrophysics Data System (ADS)

    Suwa, T.; Imamura, F.; Sugawara, D.; Ogasawara, K.; Watanabe, M.; Hirahara, T.

    2014-12-01

    A tsunami simulator integrating a 3-D fluid simulation technology that runs on large-scale parallel computers using smoothed-particle hydrodynamics (SPH) method has been developed together with a 2-D tsunami propagation simulation technique using a nonlinear shallow water wave model. We use the 2-D simulation to calculate tsunami propagation of scale of about 1000km from epicenter to near shore. The 3-D SPH method can be used to calculate the water surface and hydraulic force that a tsunami can exert on a building, and to simulate flooding patterns at urban area of at most km scale. With our simulator we can also see three dimensional fluid feature such as complex changes a tsunami undergoes as it interacts with coastal topography or structures. As a result it is hoped that, e.g. , effect of the structures to dissipate waves energy passing over it can be elucidated. The authors utilize the simulator in the third of five fields of the Strategic Programs for Innovative Research, "Advanced Prediction Researches for Natural Disaster Prevention and Reduction," or the theme "Improvement of the tsunami forecasting system on the HPCI computer." The results of tsunami simulation using the K computer will be reported. We are going to apply it to a real problem of the disaster prevention in future.

  6. A new approach to model weakly nonhydrostatic shallow water flows in open channels with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Chang, Tsang-Jung; Chang, Kao-Hua; Kao, Hong-Ming

    2014-11-01

    A new approach to model weakly nonhydrostatic shallow water flows in open channels is proposed by using a Lagrangian meshless method, smoothed particle hydrodynamics (SPH). The Lagrangian form of the Boussinesq equations is solved through SPH to merge the local and convective derivatives as the material derivative. In the numerical SPH procedure, the present study uses a predictor-corrector method, in which the pure space derivative terms (the hydrostatic and source terms) are explicitly solved and the mixed space and time derivatives term (the material term of B1 and B2) is computed with an implicit scheme. It is thus a convenient tool in the processes of the space discretization compared to other Eulerian approaches. Four typical benchmark problems in weakly nonhydrostatic shallow water flows, including solitary wave propagation, nonlinear interaction of two solitary waves, dambreak flow propagation, and undular bore development, are selected to employ model validation under the closed and open boundary conditions. Numerical results are compared with the analytical solutions or published laboratory and numerical results. It is found that the proposed approach is capable of resolving weakly nonhydrostatic shallow water flows. Thus, the proposed SPH approach can supplement the lack of the SPH-Boussinesq researches in the literatures, and provide an alternative to model weakly nonhydrostatic shallow water flows in open channels.

  7. Moment preserving adaptive particle weights using octree velocity distributions for PIC simulations

    SciTech Connect

    Martin, Robert Scott; Cambier, Jean-Luc

    2012-11-27

    The ratio of computational to physical particles is of primary concern to statistical particle based simulations such as DSMC and PIC. An adaptive computational particle weight algorithm is presented that conserves mass, momentum, and energy. This algorithm is then enhanced with an octree adaptive mesh in velocity space to mitigate artificial thermalization. The new octree merge is compared to a merge that randomly selects merge partners for a bi-Maxwellian velocity distribution. Results for crossing beams in a fixed potential well along with an electrostatic PIC version with and without MCC collisions based ionizing breakdown show the advantages of the merge algorithm to both fixed particle weights and randomly selected merge partners.

  8. Effects of temperature on spinodal decomposition and domain growth of liquid-vapor systems with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Pütz, Martin; Nielaba, Peter

    2015-03-01

    We present a numerical method for simulations of spinodal decomposition of liquid-vapor systems. The results are in excellent agreement with theoretical predictions for all expected time regimes from the initial growth of "homophase fluctuations" up to the inertial hydrodynamics regime. The numerical approach follows a modern formulation of the smoothed particle hydrodynamics method with a van der Waals equation of state and thermal conduction. The dynamics and thermal evolution of instantaneously temperature-quenched systems are investigated. Therefore, we introduce a simple scaling thermostat that allows thermal fluctuations at a constant predicted mean temperature. We find that the initial stage spinodal decomposition is strongly affected by the temperature field. The separated phases react on density changes with a change in temperature. Although, the thermal conduction acts very slowly, thermal deviations are eventually compensated. The domain growth in the late stage of demixing is found to be rather unaffected by thermal fluctuations. We observe a transition from the Lifshitz-Slyozov growth rate with 1 /3 exponent to the inertial hydrodynamics regime with a rate of 2 /3 , only excepted from simulations near the critical point where the liquid droplets are observed to nucleate directly in a spherical shape. The transition between the growth regimes is found to occur earlier for higher initial temperatures. We explain this time dependency with the phase interfaces that become more diffuse and overlap with approaching the critical point. A prolonging behavior of the demixing process is observed and also expected to depend on temperature. It is further found that the observations can excellently explain the growth behavior for pure nonisothermal simulations that are performed without thermostat.

  9. Smoothed particle hydrodynamic modeling of volcanic debris flows: Application to Huiloac Gorge lahars (Popocatépetl volcano, Mexico)

    NASA Astrophysics Data System (ADS)

    Haddad, Bouchra; Palacios, David; Pastor, Manuel; Zamorano, José Juan

    2016-09-01

    Lahars are among the most catastrophic volcanic processes, and the ability to model them is central to mitigating their effects. Several lahars recently generated by the Popocatépetl volcano (Mexico) moved downstream through the Huiloac Gorge towards the village of Santiago Xalitzintla. The most dangerous was the 2001 lahar, in which the destructive power of the debris flow was maintained throughout the extent of the flow. Identifying the zone of hazard can be based either on numerical or empirical models, but a calibration and validation process is required to ensure hazard map quality. The Geoflow-SPH depth integrated numerical model used in this study to reproduce the 2001 lahar was derived from the velocity-pressure version of the Biot-Zienkiewicz model, and was discretized using the smoothed particle hydrodynamics (SPH) method. The results of the calibrated SPH model were validated by comparing the simulated deposit depth with the field depth measured at 16 cross sections distributed strategically along the gorge channel. Moreover, the dependency of the results on topographic mesh resolution, initial lahar mass shape and dimensions is also investigated. The results indicate that to accurately reproduce the 2001 lahar flow dynamics the channel topography needed to be discretized using a mesh having a minimum 5 m resolution, and an initial lahar mass shape that adopted the source area morphology. Field validation of the calibrated model showed that there was a satisfactory relationship between the simulated and field depths, the error being less than 20% for 11 of the 16 cross sections. This study demonstrates that the Geoflow-SPH model was able to accurately reproduce the lahar path and the extent of the flow, but also reproduced other parameters including flow velocity and deposit depth.

  10. A self-organizing Lagrangian particle method for adaptive-resolution advection-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Reboux, Sylvain; Schrader, Birte; Sbalzarini, Ivo F.

    2012-05-01

    We present a novel adaptive-resolution particle method for continuous parabolic problems. In this method, particles self-organize in order to adapt to local resolution requirements. This is achieved by pseudo forces that are designed so as to guarantee that the solution is always well sampled and that no holes or clusters develop in the particle distribution. The particle sizes are locally adapted to the length scale of the solution. Differential operators are consistently evaluated on the evolving set of irregularly distributed particles of varying sizes using discretization-corrected operators. The method does not rely on any global transforms or mapping functions. After presenting the method and its error analysis, we demonstrate its capabilities and limitations on a set of two- and three-dimensional benchmark problems. These include advection-diffusion, the Burgers equation, the Buckley-Leverett five-spot problem, and curvature-driven level-set surface refinement.

  11. Gas Flow and Star Formation in the Centre of the Milky Way : Investigations with Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lucas, William Evan

    2015-06-01

    The centre of the Milky Way, commonly referred to as the Galactic Centre, is roughly that region within 500 pc of the central black hole, Sagittarius A*. Within the innermost parsec around the supermassive black hole Sagittarius A* are more than a hundred massive young stars whose orbits align to form one or possibly two discs. At about 100 pc is a ring containing more than ten million solar masses of molecular gas which could be the origin of some of the most massive star clusters in the Galaxy. I have performed a number of numerical simulations to help us understand how it is that these structures may have been formed. I firstly describe and test an improvement to the smoothed particle hydrodynamics code I used. This improves conservation of energy and momentum in certain situations such as in strong shocks from supernovae, which were to be included in a later chapter. The discs of massive stars around Sagittarius A* are believed to have been born there within fragmenting gaseous discs. This is problematic, as the formation of two stellar discs would require two gaseous counterparts. A method is described of forming multiple discs around a black hole from a single cloud's infall and subsequent tidal destruction. This is due to its prolate shape providing a naturally large distribution in the direction of the angular momentum vectors within the cloud. The resulting discs may then go on to form stars. Energetically, it would appear that a sequence of supernovae could potentially cause a giant molecular cloud to fall inwards towards the central black hole from an originally large orbit around the Galactic Centre. I simulate the impact on a giant molecular cloud of supernovae originating from a massive stellar cluster located a parsec away. Ultimately, the supernovae are found to have little effect. Finally, I simulate the formation of the dense ring of clouds observed in the Central Molecular Zone at a distance of about 100 pc from Sgr A*. Infalling gas is shown to

  12. Independent motion detection with a rival penalized adaptive particle filter

    NASA Astrophysics Data System (ADS)

    Becker, Stefan; Hübner, Wolfgang; Arens, Michael

    2014-10-01

    Aggregation of pixel based motion detection into regions of interest, which include views of single moving objects in a scene is an essential pre-processing step in many vision systems. Motion events of this type provide significant information about the object type or build the basis for action recognition. Further, motion is an essential saliency measure, which is able to effectively support high level image analysis. When applied to static cameras, background subtraction methods achieve good results. On the other hand, motion aggregation on freely moving cameras is still a widely unsolved problem. The image flow, measured on a freely moving camera is the result from two major motion types. First the ego-motion of the camera and second object motion, that is independent from the camera motion. When capturing a scene with a camera these two motion types are adverse blended together. In this paper, we propose an approach to detect multiple moving objects from a mobile monocular camera system in an outdoor environment. The overall processing pipeline consists of a fast ego-motion compensation algorithm in the preprocessing stage. Real-time performance is achieved by using a sparse optical flow algorithm as an initial processing stage and a densely applied probabilistic filter in the post-processing stage. Thereby, we follow the idea proposed by Jung and Sukhatme. Normalized intensity differences originating from a sequence of ego-motion compensated difference images represent the probability of moving objects. Noise and registration artefacts are filtered out, using a Bayesian formulation. The resulting a posteriori distribution is located on image regions, showing strong amplitudes in the difference image which are in accordance with the motion prediction. In order to effectively estimate the a posteriori distribution, a particle filter is used. In addition to the fast ego-motion compensation, the main contribution of this paper is the design of the probabilistic

  13. Modified smoothed particle hydrodynamics (MSPH) for the analysis of centrifugally assisted TiC-Fe-Al2O3 combustion synthesis.

    PubMed

    Hassan, M A; Mahmoodian, Reza; Hamdi, M

    2014-01-01

    A modified smoothed particle hydrodynamic (MSPH) computational technique was utilized to simulate molten particle motion and infiltration speed on multi-scale analysis levels. The radial velocity and velocity gradient of molten alumina, iron infiltration in the TiC product and solidification rate, were predicted during centrifugal self-propagating high-temperature synthesis (SHS) simulation, which assisted the coating process by MSPH. The effects of particle size and temperature on infiltration and solidification of iron and alumina were mainly investigated. The obtained results were validated with experimental microstructure evidence. The simulation model successfully describes the magnitude of iron and alumina diffusion in a centrifugal thermite SHS and Ti + C hybrid reaction under centrifugal acceleration. PMID:24430621

  14. Modified smoothed particle hydrodynamics (MSPH) for the analysis of centrifugally assisted TiC-Fe-Al2O3 combustion synthesis

    PubMed Central

    Hassan, M. A.; Mahmoodian, Reza; Hamdi, M.

    2014-01-01

    A modified smoothed particle hydrodynamic (MSPH) computational technique was utilized to simulate molten particle motion and infiltration speed on multi-scale analysis levels. The radial velocity and velocity gradient of molten alumina, iron infiltration in the TiC product and solidification rate, were predicted during centrifugal self-propagating high-temperature synthesis (SHS) simulation, which assisted the coating process by MSPH. The effects of particle size and temperature on infiltration and solidification of iron and alumina were mainly investigated. The obtained results were validated with experimental microstructure evidence. The simulation model successfully describes the magnitude of iron and alumina diffusion in a centrifugal thermite SHS and Ti + C hybrid reaction under centrifugal acceleration. PMID:24430621

  15. Particle Swarm Social Adaptive Model for Multi-Agent Based Insurgency Warfare Simulation

    SciTech Connect

    Cui, Xiaohui; Potok, Thomas E

    2009-12-01

    To better understand insurgent activities and asymmetric warfare, a social adaptive model for modeling multiple insurgent groups attacking multiple military and civilian targets is proposed and investigated. This report presents a pilot study using the particle swarm modeling, a widely used non-linear optimal tool to model the emergence of insurgency campaign. The objective of this research is to apply the particle swarm metaphor as a model of insurgent social adaptation for the dynamically changing environment and to provide insight and understanding of insurgency warfare. Our results show that unified leadership, strategic planning, and effective communication between insurgent groups are not the necessary requirements for insurgents to efficiently attain their objective.

  16. Particle Swarm Social Model for Group Social Learning in Adaptive Environment

    SciTech Connect

    Cui, Xiaohui; Potok, Thomas E; Treadwell, Jim N; Patton, Robert M; Pullum, Laura L

    2008-01-01

    This report presents a study of integrating particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the social learning of self-organized groups and their collective searching behavior in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social learning for a dynamic environment. The research provides a platform for understanding and insights into knowledge discovery and strategic search in human self-organized social groups, such as insurgents or online communities.

  17. Deletion of the protein kinase A/protein kinase G target SMTNL1 promotes an exercise-adapted phenotype in vascular smooth muscle.

    PubMed

    Wooldridge, Anne A; Fortner, Christopher N; Lontay, Beata; Akimoto, Takayuki; Neppl, Ronald L; Facemire, Carie; Datto, Michael B; Kwon, Ashley; McCook, Everett; Li, Ping; Wang, Shiliang; Thresher, Randy J; Miller, Sara E; Perriard, Jean-Claude; Gavin, Timothy P; Hickner, Robert C; Coffman, Thomas M; Somlyo, Avril V; Yan, Zhen; Haystead, Timothy A J

    2008-04-25

    In vivo protein kinases A and G (PKA and PKG) coordinately phosphorylate a broad range of substrates to mediate their various physiological effects. The functions of many of these substrates have yet to be defined genetically. Herein we show a role for smoothelin-like protein 1 (SMTNL1), a novel in vivo target of PKG/PKA, in mediating vascular adaptations to exercise. Aortas from smtnl1(-/-) mice exhibited strikingly enhanced vasorelaxation before exercise, similar in extent to that achieved after endurance training of wild-type littermates. Additionally, contractile responses to alpha-adrenergic agonists were greatly attenuated. Immunological studies showed SMTNL1 is expressed in smooth muscle and type 2a striated muscle fibers. Consistent with a role in adaptations to exercise, smtnl1(-/-) mice also exhibited increased type 2a fibers before training and better performance after forced endurance training compared smtnl1(+/+) mice. Furthermore, exercise was found to reduce expression of SMTNL1, particularly in female mice. In both muscle types, SMTNL1 is phosphorylated at Ser-301 in response to adrenergic signals. In vitro SMTNL1 suppresses myosin phosphatase activity through a substrate-directed effect, which is relieved by Ser-301 phosphorylation. Our findings suggest roles for SMTNL1 in cGMP/cAMP-mediated adaptations to exercise through mechanisms involving direct modulation of contractile activity.

  18. Adaptive Fraunhofer diffraction particle sizing instrument using a spatial light modulator.

    PubMed

    Hirleman, E D; Dellenback, P A

    1989-11-15

    Integration of a magnetooptic spatial light modulator into a Fraunhofer diffraction particle sizing instrument is proposed and demonstrated theoretically and experimentally. The concept gives the instrument the ability to reconfigure a detector array on-line and thereby adapt to the measurement context.

  19. Adaptive Fraunhofer diffraction particle sizing instrument using a spatial light modulator.

    PubMed

    Hirleman, E D; Dellenback, P A

    1989-11-15

    Integration of a magnetooptic spatial light modulator into a Fraunhofer diffraction particle sizing instrument is proposed and demonstrated theoretically and experimentally. The concept gives the instrument the ability to reconfigure a detector array on-line and thereby adapt to the measurement context. PMID:20555963

  20. Defect structure of a nematic liquid crystal around a spherical particle: adaptive mesh refinement approach.

    PubMed

    Fukuda, Jun-ichi; Yoneya, Makoto; Yokoyama, Hiroshi

    2002-04-01

    We investigate numerically the structure of topological defects close to a spherical particle immersed in a uniformly aligned nematic liquid crystal. To this end we have implemented an adaptive mesh refinement scheme in an axi-symmetric three-dimensional system, which makes it feasible to take into account properly the large length scale difference between the particle and the topological defects. The adaptive mesh refinement scheme proves to be quite efficient and useful in the investigation of not only the macroscopic properties such as the defect position but also the fine structure of defects. It can be shown that a hyperbolic hedgehog that accompanies a particle with strong homeotropic anchoring takes the structure of a ring.

  1. Adaptive optics enables three-dimensional single particle tracking at the sub-millisecond scale

    NASA Astrophysics Data System (ADS)

    Juette, Manuel F.; Rivera-Molina, Felix E.; Toomre, Derek K.; Bewersdorf, Joerg

    2013-04-01

    We present the integration of an adaptive optics element into a feedback-driven single particle tracking microscope. Our instrument captures three-dimensional (3D) trajectories with down to 130 μs temporal resolution for dynamic studies on the nanoscale. Our 3D beam steering approach tracks particles over an axial range of >6 μm with ˜2 ms mechanical response times and isolates the sample from any tracking motion. Tracking of transport vesicles containing Alexa488-labeled transferrin glycoprotein in living cells demonstrates the speed and sensitivity of our instrument.

  2. Adaptive particle swarm optimization for optimal orbital elements of binary stars

    NASA Astrophysics Data System (ADS)

    Attia, Abdel-Fattah

    2016-10-01

    The paper presents an adaptive particle swarm optimization (APSO) as an alternative method to determine the optimal orbital elements of the star η Bootis of MK type G0 IV. The proposed algorithm transforms the problem of finding periodic orbits into the problem of detecting global minimizers as a function, to get a best fit of Keplerian and Phase curves. The experimental results demonstrate that the proposed approach of APSO generally more accurate than the standard particle swarm optimization (PSO) and other published optimization algorithms, in terms of solution accuracy, convergence speed and algorithm reliability.

  3. Crop classification by forward neural network with adaptive chaotic particle swarm optimization.

    PubMed

    Zhang, Yudong; Wu, Lenan

    2011-01-01

    This paper proposes a hybrid crop classifier for polarimetric synthetic aperture radar (SAR) images. The feature sets consisted of span image, the H/A/α decomposition, and the gray-level co-occurrence matrix (GLCM) based texture features. Then, the features were reduced by principle component analysis (PCA). Finally, a two-hidden-layer forward neural network (NN) was constructed and trained by adaptive chaotic particle swarm optimization (ACPSO). K-fold cross validation was employed to enhance generation. The experimental results on Flevoland sites demonstrate the superiority of ACPSO to back-propagation (BP), adaptive BP (ABP), momentum BP (MBP), Particle Swarm Optimization (PSO), and Resilient back-propagation (RPROP) methods. Moreover, the computation time for each pixel is only 1.08 × 10(-7) s.

  4. Adaptive Particle Filter for Nonparametric Estimation with Measurement Uncertainty in Wireless Sensor Networks.

    PubMed

    Li, Xiaofan; Zhao, Yubin; Zhang, Sha; Fan, Xiaopeng

    2016-01-01

    Particle filters (PFs) are widely used for nonlinear signal processing in wireless sensor networks (WSNs). However, the measurement uncertainty makes the WSN observations unreliable to the actual case and also degrades the estimation accuracy of the PFs. In addition to the algorithm design, few works focus on improving the likelihood calculation method, since it can be pre-assumed by a given distribution model. In this paper, we propose a novel PF method, which is based on a new likelihood fusion method for WSNs and can further improve the estimation performance. We firstly use a dynamic Gaussian model to describe the nonparametric features of the measurement uncertainty. Then, we propose a likelihood adaptation method that employs the prior information and a belief factor to reduce the measurement noise. The optimal belief factor is attained by deriving the minimum Kullback-Leibler divergence. The likelihood adaptation method can be integrated into any PFs, and we use our method to develop three versions of adaptive PFs for a target tracking system using wireless sensor network. The simulation and experimental results demonstrate that our likelihood adaptation method has greatly improved the estimation performance of PFs in a high noise environment. In addition, the adaptive PFs are highly adaptable to the environment without imposing computational complexity. PMID:27249002

  5. Adaptive Particle Filter for Nonparametric Estimation with Measurement Uncertainty in Wireless Sensor Networks

    PubMed Central

    Li, Xiaofan; Zhao, Yubin; Zhang, Sha; Fan, Xiaopeng

    2016-01-01

    Particle filters (PFs) are widely used for nonlinear signal processing in wireless sensor networks (WSNs). However, the measurement uncertainty makes the WSN observations unreliable to the actual case and also degrades the estimation accuracy of the PFs. In addition to the algorithm design, few works focus on improving the likelihood calculation method, since it can be pre-assumed by a given distribution model. In this paper, we propose a novel PF method, which is based on a new likelihood fusion method for WSNs and can further improve the estimation performance. We firstly use a dynamic Gaussian model to describe the nonparametric features of the measurement uncertainty. Then, we propose a likelihood adaptation method that employs the prior information and a belief factor to reduce the measurement noise. The optimal belief factor is attained by deriving the minimum Kullback–Leibler divergence. The likelihood adaptation method can be integrated into any PFs, and we use our method to develop three versions of adaptive PFs for a target tracking system using wireless sensor network. The simulation and experimental results demonstrate that our likelihood adaptation method has greatly improved the estimation performance of PFs in a high noise environment. In addition, the adaptive PFs are highly adaptable to the environment without imposing computational complexity. PMID:27249002

  6. Simulations of flow mode distributions on rough fracture surfaces using a parallelized Smoothed Particle Hydrodynamics (SPH) model

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Shigorina, E.; Tartakovsky, A. M.; Pan, W.; Geyer, T.

    2015-12-01

    Under idealized conditions (smooth surfaces, linear relationship between Bond number and Capillary number of droplets) steady-state flow modes on fracture surfaces have been shown to develop from sliding droplets to rivulets and finally (wavy) film flow, depending on the specified flux. In a recent study we demonstrated the effect of surface roughness on droplet flow in unsaturated wide aperture fractures, however, its effect on other prevailing flow modes is still an open question. The objective of this work is to investigate the formation of complex flow modes on fracture surfaces employing an efficient three-dimensional parallelized SPH model. The model is able to simulate highly intermittent, gravity-driven free-surface flows under dynamic wetting conditions. The effect of surface tension is included via efficient pairwise interaction forces. We validate the model using various analytical and semi-analytical relationships for droplet and complex flow dynamics. To investigate the effect of surface roughness on flow dynamics we construct surfaces with a self-affine fractal geometry and roughness characterized by the Hurst exponent. We demonstrate the effect of surface roughness (on macroscopic scales this can be understood as a tortuosity) on the steady-state distribution of flow modes. Furthermore we show the influence of a wide range of natural wetting conditions (defined by static contact angles) on the final distribution of surface coverage, which is of high importance for matrix-fracture interaction processes.

  7. Large-eddy simulations of 3D Taylor-Green vortex: comparison of Smoothed Particle Hydrodynamics, Lattice Boltzmann and Finite Volume methods

    NASA Astrophysics Data System (ADS)

    Kajzer, A.; Pozorski, J.; Szewc, K.

    2014-08-01

    In the paper we present Large-eddy simulation (LES) results of 3D Taylor- Green vortex obtained by the three different computational approaches: Smoothed Particle Hydrodynamics (SPH), Lattice Boltzmann Method (LBM) and Finite Volume Method (FVM). The Smagorinsky model was chosen as a subgrid-scale closure in LES for all considered methods and a selection of spatial resolutions have been investigated. The SPH and LBM computations have been carried out with the use of the in-house codes executed on GPU and compared, for validation purposes, with the FVM results obtained using the open-source CFD software OpenFOAM. A comparative study in terms of one-point statistics and turbulent energy spectra shows a good agreement of LES results for all methods. An analysis of the GPU code efficiency and implementation difficulties has been made. It is shown that both SPH and LBM may offer a significant advantage over mesh-based CFD methods.

  8. Identification of robust adaptation gene regulatory network parameters using an improved particle swarm optimization algorithm.

    PubMed

    Huang, X N; Ren, H P

    2016-01-01

    Robust adaptation is a critical ability of gene regulatory network (GRN) to survive in a fluctuating environment, which represents the system responding to an input stimulus rapidly and then returning to its pre-stimulus steady state timely. In this paper, the GRN is modeled using the Michaelis-Menten rate equations, which are highly nonlinear differential equations containing 12 undetermined parameters. The robust adaption is quantitatively described by two conflicting indices. To identify the parameter sets in order to confer the GRNs with robust adaptation is a multi-variable, multi-objective, and multi-peak optimization problem, which is difficult to acquire satisfactory solutions especially high-quality solutions. A new best-neighbor particle swarm optimization algorithm is proposed to implement this task. The proposed algorithm employs a Latin hypercube sampling method to generate the initial population. The particle crossover operation and elitist preservation strategy are also used in the proposed algorithm. The simulation results revealed that the proposed algorithm could identify multiple solutions in one time running. Moreover, it demonstrated a superior performance as compared to the previous methods in the sense of detecting more high-quality solutions within an acceptable time. The proposed methodology, owing to its universality and simplicity, is useful for providing the guidance to design GRN with superior robust adaptation. PMID:27323043

  9. Detection of Anthropogenic Particles in Fish Stomachs: An Isolation Method Adapted to Identification by Raman Spectroscopy.

    PubMed

    Collard, France; Gilbert, Bernard; Eppe, Gauthier; Parmentier, Eric; Das, Krishna

    2015-10-01

    Microplastic particles (MP) contaminate oceans and affect marine organisms in several ways. Ingestion combined with food intake is generally reported. However, data interpretation often is circumvented by the difficulty to separate MP from bulk samples. Visual examination often is used as one or the only step to sort these particles. However, color, size, and shape are insufficient and often unreliable criteria. We present an extraction method based on hypochlorite digestion and isolation of MP from the membrane by sonication. The protocol is especially well adapted to a subsequent analysis by Raman spectroscopy. The method avoids fluorescence problems, allowing better identification of anthropogenic particles (AP) from stomach contents of fish by Raman spectroscopy. It was developed with commercial samples of microplastics and cotton along with stomach contents from three different Clupeiformes fishes: Clupea harengus, Sardina pilchardus, and Engraulis encrasicolus. The optimized digestion and isolation protocol showed no visible impact on microplastics and cotton particles while the Raman spectroscopic spectrum allowed the precise identification of microplastics and textile fibers. Thirty-five particles were isolated from nine fish stomach contents. Raman analysis has confirmed 11 microplastics and 13 fibers mainly made of cellulose or lignin. Some particles were not completely identified but contained artificial dyes. The novel approach developed in this manuscript should help to assess the presence, quantity, and composition of AP in planktivorous fish stomachs. PMID:26289815

  10. Artificial frame filling using adaptive neural fuzzy inference system for particle image velocimetry dataset

    NASA Astrophysics Data System (ADS)

    Akdemir, Bayram; Doǧan, Sercan; Aksoy, Muharrem H.; Canli, Eyüp; Özgören, Muammer

    2015-03-01

    Liquid behaviors are very important for many areas especially for Mechanical Engineering. Fast camera is a way to observe and search the liquid behaviors. Camera traces the dust or colored markers travelling in the liquid and takes many pictures in a second as possible as. Every image has large data structure due to resolution. For fast liquid velocity, there is not easy to evaluate or make a fluent frame after the taken images. Artificial intelligence has much popularity in science to solve the nonlinear problems. Adaptive neural fuzzy inference system is a common artificial intelligence in literature. Any particle velocity in a liquid has two dimension speed and its derivatives. Adaptive Neural Fuzzy Inference System has been used to create an artificial frame between previous and post frames as offline. Adaptive neural fuzzy inference system uses velocities and vorticities to create a crossing point vector between previous and post points. In this study, Adaptive Neural Fuzzy Inference System has been used to fill virtual frames among the real frames in order to improve image continuity. So this evaluation makes the images much understandable at chaotic or vorticity points. After executed adaptive neural fuzzy inference system, the image dataset increase two times and has a sequence as virtual and real, respectively. The obtained success is evaluated using R2 testing and mean squared error. R2 testing has a statistical importance about similarity and 0.82, 0.81, 0.85 and 0.8 were obtained for velocities and derivatives, respectively.

  11. A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy

    SciTech Connect

    Pan, Wenxiao; Li, Dongsheng; Tartakovsky, Alexandre M.; Ahzi, Said; Khraisheh, Marwan; Khaleel, Moe

    2013-09-01

    We present a new smoothed particle hydrodynamics (SPH) model for friction stir welding (FSW). FSW has broad commercial application in the marine, aerospace, rail, and automotive industries. However, development of the FSW process for each new application has remained largely empirical. Few established numerical modeling techniques have been developed that can explain and predict important features of the process physics involved in FSW. This is particularly true in the areas of material flow and mixing mechanisms. In this paper, we present a novel modeling approach to simulate FSW that may have significant advantages over current finite element or finite difference based methods. Unlike traditional grid-based methods, Lagrangian particle methods such as SPH can simulate the dynamics of interfaces, large material deformations, and the material’s strain and temperature history without employing complex tracking schemes. Three-dimensional simulations of FSW on AZ31 Mg alloy are performed. The temperature history and distribution, grain size, microhardness as well as the texture evolution are presented. Numerical results are found to be in good agreement with experimental observations.

  12. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    PubMed

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928

  13. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    PubMed

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  14. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    PubMed Central

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928

  15. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU)

    NASA Astrophysics Data System (ADS)

    Fourtakas, G.; Rogers, B. D.

    2016-06-01

    A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.

  16. Adaptive hybrid likelihood model for visual tracking based on Gaussian particle filter

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Tan, Yihua; Tian, Jinwen

    2010-07-01

    We present a new scheme based on multiple-cue integration for visual tracking within a Gaussian particle filter framework. The proposed method integrates the color, shape, and texture cues of an object to construct a hybrid likelihood model. During the measurement step, the likelihood model can be switched adaptively according to environmental changes, which improves the object representation to deal with the complex disturbances, such as appearance changes, partial occlusions, and significant clutter. Moreover, the confidence weights of the cues are adjusted online through the estimation using a particle filter, which ensures the tracking accuracy and reliability. Experiments are conducted on several real video sequences, and the results demonstrate that the proposed method can effectively track objects in complex scenarios. Compared with previous similar approaches through some quantitative and qualitative evaluations, the proposed method performs better in terms of tracking robustness and precision.

  17. An adaptive procedure for the numerical parameters of a particle simulation

    NASA Astrophysics Data System (ADS)

    Galitzine, Cyril; Boyd, Iain D.

    2015-01-01

    In this article, a computational procedure that automatically determines the optimum time step, cell weight and species weights for steady-state multi-species DSMC (direct simulation Monte Carlo) simulations is presented. The time step is required to satisfy the basic requirements of the DSMC method while the weight and relative weights fields are chosen so as to obtain a user-specified average number of particles in all cells of the domain. The procedure allows the conduct of efficient DSMC simulations with minimal user input and is integrable into existing DSMC codes. The adaptive method is used to simulate a test case consisting of two counterflowing jets at a Knudsen number of 0.015. Large accuracy gains for sampled number densities and velocities over a standard simulation approach for the same number of particles are observed.

  18. Flight Wing Surface Pressure and Boundary-Layer Data Report from the F-111 Smooth Variable-Camber Supercritical Mission Adaptive Wing

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke; Webb, Lannie D.

    1997-01-01

    Flight tests were conducted using the advanced fighter technology integration F-111 (AFTI/F-111) aircraft modified with a variable-sweep supercritical mission adaptive wing (MAW). The MAW leading- and trailing-edge variable-camber surfaces were deflected in flight to provide a near-ideal wing camber shape for the flight condition. The MAW features smooth, flexible upper surfaces and fully enclosed lower surfaces, which distinguishes it from conventional flaps that have discontinuous surfaces and exposed or semi-exposed mechanisms. Upper and lower surface wing pressure distributions were measured along four streamwise rows on the right wing for cruise, maneuvering, and landing configurations. Boundary-layer measurements were obtained near the trailing edge for one of the rows. Cruise and maneuvering wing leading-edge sweeps were 26 deg for Mach numbers less than 1 and 45 deg or 58 deg for Mach numbers greater than 1. The landing wing sweep was 9 deg or 16 deg. Mach numbers ranged from 0.27 to 1.41, angles of attack from 2 deg to 13 deg, and Reynolds number per unit foot from 1.4 x 10(exp 6) to 6.5 x 10(exp 6). Leading-edge cambers ranged from O deg to 20 deg down, and trailing-edge cambers ranged from 1 deg up to 19 deg down. Wing deflection data for a Mach number of 0.85 are shown for three cambers. Wing pressure and boundary-layer data are given. Selected data comparisons are shown. Measured wing coordinates are given for three streamwise semispan locations for cruise camber and one spanwise location for maneuver camber.

  19. Smooth Sailing.

    ERIC Educational Resources Information Center

    Price, Beverley; Pincott, Maxine; Rebman, Ashley; Northcutt, Jen; Barsanti, Amy; Silkunas, Betty; Brighton, Susan K.; Reitz, David; Winkler, Maureen

    1999-01-01

    Presents discipline tips from several teachers to keep classrooms running smoothly all year. Some of the suggestions include the following: a bear-cave warning system, peer mediation, a motivational mystery, problem students acting as the teacher's assistant, a positive-behavior-reward chain, a hallway scavenger hunt (to ensure quiet passage…

  20. Scalable evaluation of polarization energy and associated forces in polarizable molecular dynamics: II. Toward massively parallel computations using smooth particle mesh Ewald.

    PubMed

    Lagardère, Louis; Lipparini, Filippo; Polack, Étienne; Stamm, Benjamin; Cancès, Éric; Schnieders, Michael; Ren, Pengyu; Maday, Yvon; Piquemal, Jean-Philip

    2015-06-01

    In this article, we present a parallel implementation of point dipole-based polarizable force fields for molecular dynamics (MD) simulations with periodic boundary conditions (PBC). The smooth particle mesh Ewald technique is combined with two optimal iterative strategies, namely, a preconditioned conjugate gradient solver and a Jacobi solver in conjunction with the direct inversion in the iterative subspace for convergence acceleration, to solve the polarization equations. We show that both solvers exhibit very good parallel performances and overall very competitive timings in an energy and force computation needed to perform a MD step. Various tests on large systems are provided in the context of the polarizable AMOEBA force field as implemented in the newly developed Tinker-HP package, which is the first implementation of a polarizable model that makes large-scale experiments for massively parallel PBC point dipole models possible. We show that using a large number of cores offers a significant acceleration of the overall process involving the iterative methods within the context of SPME and a noticeable improvement of the memory management, giving access to very large systems (hundreds of thousands of atoms) as the algorithm naturally distributes the data on different cores. Coupled with advanced MD techniques, gains ranging from 2 to 3 orders of magnitude in time are now possible compared to nonoptimized, sequential implementations, giving new directions for polarizable molecular dynamics with periodic boundary conditions using massively parallel implementations. PMID:26575557

  1. A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Leduc, Julien; Nunez-Ramirez, Jorge; Combescure, Alain; Marongiu, Jean-Christophe

    2015-04-01

    We propose a non-intrusive numerical coupling method for transient fluid-structure interaction (FSI) problems simulated by means of different discretization methods: smoothed particle hydrodynamics (SPH) and finite element (FE) methods for the fluid and the solid sub-domains, respectively. As a partitioned coupling method, the present algorithm can ensure a zero interface energy during the whole period of numerical simulation, even in the presence of large interface motion. In other words, the time integrations of the two sub-domains (second order Runge-Kutta scheme for fluid and Newmark integrator for solid) are synchronized. Thanks to this energy-conserving feature, one can preserve the minimal order of accuracy in time and the numerical stability of the FSI simulations, which are validated with a 1D and a 2D trivial numerical test cases. Additionally, some other 2D FSI simulations involving large interface motion have also been carried out with the proposed SPH-FE coupling method. Finally, an example of aquaplaning problem is given in order to show the feasibility of such coupling method in multi-dimensional applications with complicated structural geometries.

  2. Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II.Towards Massively Parallel Computations using Smooth Particle Mesh Ewald

    PubMed Central

    Lagardère, Louis; Lipparini, Filippo; Polack, Étienne; Stamm, Benjamin; Cancès, Éric; Schnieders, Michael; Ren, Pengyu; Maday, Yvon; Piquemal, Jean-Philip

    2015-01-01

    In this paper, we present a scalable and efficient implementation of point dipole-based polarizable force fields for molecular dynamics (MD) simulations with periodic boundary conditions (PBC). The Smooth Particle-Mesh Ewald technique is combined with two optimal iterative strategies, namely, a preconditioned conjugate gradient solver and a Jacobi solver in conjunction with the Direct Inversion in the Iterative Subspace for convergence acceleration, to solve the polarization equations. We show that both solvers exhibit very good parallel performances and overall very competitive timings in an energy-force computation needed to perform a MD step. Various tests on large systems are provided in the context of the polarizable AMOEBA force field as implemented in the newly developed Tinker-HP package which is the first implementation for a polarizable model making large scale experiments for massively parallel PBC point dipole models possible. We show that using a large number of cores offers a significant acceleration of the overall process involving the iterative methods within the context of spme and a noticeable improvement of the memory management giving access to very large systems (hundreds of thousands of atoms) as the algorithm naturally distributes the data on different cores. Coupled with advanced MD techniques, gains ranging from 2 to 3 orders of magnitude in time are now possible compared to non-optimized, sequential implementations giving new directions for polarizable molecular dynamics in periodic boundary conditions using massively parallel implementations. PMID:26512230

  3. 3D Printing Meets Computational Astrophysics: Deciphering the Structure of Eta Carinae’s Colliding Winds Using 3D Prints of Smoothed Particle Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Gull, Theodore R.; Clementel, Nicola; Paardekooper, Jan-Pieter; Kruip, Chael; Corcoran, Michael F.; Hamaguchi, Kenji; Teodoro, Mairan

    2015-01-01

    We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (>120 MSun), highly eccentric (e ~ 0.9) binary Eta Carinae. Using a consumer-grade 3D printer (Makerbot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of Eta Carinae's inner (r ~110 AU) wind-wind collision interface at multiple orbital phases. These 3D prints reveal important, previously unknown 'finger-like' structures at orbital phases shortly after periastron (φ ~1.045) that protrude radially outward from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. Rayleigh-Taylor) that arise at the interface between the radiatively-cooled layer of dense post-shock primary-star wind and the hot, adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unknown physical features highlight the important role 3D printing can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.

  4. Dynamic fission instabilities in rapidly rotating n = 3/2 polytropes - A comparison of results from finite-difference and smoothed particle hydrodynamics codes

    SciTech Connect

    Durisen, R.H.; Gingold, R.A.; Tohline, J.E.; Boss, A.P.

    1986-06-01

    The effectiveness of three different hydrodynamics models is evaluated for the analysis of the effects of fission instabilities in rapidly rotating, equilibrium flows. The instabilities arise in nonaxisymmetric Kelvin modes as rotational energy in the flow increases, which may occur in the formation of close binary stars and planets when the fluid proto-object contracts quasi-isostatically. Two finite-difference, donor-cell methods and a smoothed particle hydrodynamics (SPH) code are examined, using a polytropic index of 3/2 and ratios of total rotational kinetic energy to gravitational energy of 0.33 and 0.38. The models show that dynamic bar instabilities with the 3/2 polytropic index do not yield detached binaries and multiple systems. Ejected mass and angular momentum form two trailing spiral arms that become a disk or ring around the central remnant. The SPH code yields the same data as the finite difference codes but with less computational effort and without acceptable fluid constraints in low density regions. Methods for improving both types of codes are discussed. 68 references.

  5. Collocated approximations on unstructured grids: a comparison between General Finite Differences (GFD), Moving Least Squares (MLS), and Smoothed Particle Hydrodynamics (SPH)

    NASA Astrophysics Data System (ADS)

    Vasyliv, Yaroslav; Alexeev, Alexander

    2015-11-01

    In the meshfree family of methods, partial differential equations are solved on unstructured grids where a search radius establishes an implicit nodal connectivity used to determine whether to include or exclude neighboring nodes in the constructed approximation. Smoothed Particle Hydrodynamics (SPH) is widely attributed to be the eldest of the meshfree methods dating back to an astrophysics paper published in 1977 by Gingold and Monaghan. However, beating them by five years was Jensen when he published Finite Differences for Arbitrary Grids (FIDAG) in 1972. Ultimately this work and others were generalized by Liszka and Orkisz in 1979 as a weighted least squares formulation solving for the Taylor coefficients and is now commonly known as General Finite Differences (GFD). Shortly after in 1981, Lancaster and Salkauskas introduced the Moving Least Squares (MLS) approximation for surface reconstruction using a weighted least squares formulation where the unknown coefficients are treated as functions varying from node to node in the support domain. Here we examine important differences, similarities and limitations of each method by solving the 2D Poisson equation on unstructured grids. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1148903.

  6. Geometric phases in electric dipole searches with trapped spin-1/2 particles in general fields and measurement cells of arbitrary shape with smooth or rough walls

    NASA Astrophysics Data System (ADS)

    Golub, R.; Kaufman, C.; Müller, G.; Steyerl, A.

    2015-12-01

    The important role of geometric phases in searches for a permanent electric dipole moment of the neutron, using Ramsey separated oscillatory field nuclear magnetic resonance, was first noted by Commins [Am. J. Phys. 59, 1077 (1991), 10.1119/1.16616] and investigated in detail by Pendlebury et al. [Phys. Rev. A 70, 032102 (2004), 10.1103/PhysRevA.70.032102]. Their analysis was based on the Bloch equations. In subsequent work using the spin-density matrix, Lamoreaux and Golub [Phys. Rev. A 71, 032104 (2005), 10.1103/PhysRevA.71.032104] showed the relation between the frequency shifts and the correlation functions of the fields seen by trapped particles in general fields (Redfield theory). More recently, we presented a solution of the Schrödinger equation for spin-1 /2 particles in circular cylindrical traps with smooth walls and exposed to arbitrary fields [A. Steyerl et al., Phys. Rev. A 89, 052129 (2014), 10.1103/PhysRevA.89.052129]. Here, we extend this work to show how the Redfield theory follows directly from the Schrödinger equation solution. This serves to highlight the conditions of validity of the Redfield theory, a subject of considerable discussion in the literature [e.g., M. P. Nicholas et al., Prog. Nucl. Magn. Reson. Spectrosc. 57, 111 (2010), 10.1016/j.pnmrs.2010.04.003]. Our results can be applied where the Redfield result no longer holds, such as observation times on the order of or shorter than the correlation time and nonstochastic systems, and thus we can illustrate the transient spin dynamics, i.e., the gradual development of the shift with increasing time subsequent to the start of the free precession. We consider systems with rough, diffuse reflecting walls, cylindrical trap geometry with arbitrary cross section, and field perturbations that do not, in the frame of the moving particles, average to zero in time. We show by direct, detailed, calculation the agreement of the results from the Schrödinger equation with the Redfield theory for the

  7. Beamline smoothing of the Advanced Photon Source

    SciTech Connect

    Friedsam, H.; Penicka, M.; Zhao, S.

    1995-06-01

    This paper outlines a general beamline smoothing concept based on the use of First Principle Component analysis. Bean-dine smoothing is commonly used for the detection of blunders in the positioning of beam elements and to provide a smooth particle beam path with the fewest adjustments to individual beam components. It also provides the data for assessment of the achieved positioning quality.

  8. Pairwise adaptive thermostats for improved accuracy and stability in dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Leimkuhler, Benedict; Shang, Xiaocheng

    2016-11-01

    We examine the formulation and numerical treatment of dissipative particle dynamics (DPD) and momentum-conserving molecular dynamics. We show that it is possible to improve both the accuracy and the stability of DPD by employing a pairwise adaptive Langevin thermostat that precisely matches the dynamical characteristics of DPD simulations (e.g., autocorrelation functions) while automatically correcting thermodynamic averages using a negative feedback loop. In the low friction regime, it is possible to replace DPD by a simpler momentum-conserving variant of the Nosé-Hoover-Langevin method based on thermostatting only pairwise interactions; we show that this method has an extra order of accuracy for an important class of observables (a superconvergence result), while also allowing larger timesteps than alternatives. All the methods mentioned in the article are easily implemented. Numerical experiments are performed in both equilibrium and nonequilibrium settings; using Lees-Edwards boundary conditions to induce shear flow.

  9. Adaptive impedance control of a hydraulic suspension system using particle swarm optimisation

    NASA Astrophysics Data System (ADS)

    Fateh, Mohammad Mehdi; Moradi Zirkohi, Majid

    2011-12-01

    This paper presents a novel active control approach for a hydraulic suspension system subject to road disturbances. A novel impedance model is used as a model reference in a particular robust adaptive control which is applied for the first time to the hydraulic suspension system. A scheme is introduced for selecting the impedance parameters. The impedance model prescribes a desired behaviour of the active suspension system in a wide range of different road conditions. Moreover, performance of the control system is improved by applying a particle swarm optimisation algorithm for optimising control design parameters. Design of the control system consists of two interior loops. The inner loop is a force control of the hydraulic actuator, while the outer loop is a robust model reference adaptive control (MRAC). This type of MRAC has been applied for uncertain linear systems. As another novelty, despite nonlinearity of the hydraulic actuator, the suspension system and the force loop together are presented as an uncertain linear system to the MRAC. The proposed control method is simulated on a quarter-car model. Simulation results show effectiveness of the method.

  10. Radar data smoothing filter study

    NASA Technical Reports Server (NTRS)

    White, J. V.

    1984-01-01

    The accuracy of the current Wallops Flight Facility (WFF) data smoothing techniques for a variety of radars and payloads is examined. Alternative data reduction techniques are given and recommendations are made for improving radar data processing at WFF. A data adaptive algorithm, based on Kalman filtering and smoothing techniques, is also developed for estimating payload trajectories above the atmosphere from noisy time varying radar data. This algorithm is tested and verified using radar tracking data from WFF.

  11. AP-Cloud: Adaptive Particle-in-Cloud method for optimal solutions to Vlasov-Poisson equation

    NASA Astrophysics Data System (ADS)

    Wang, Xingyu; Samulyak, Roman; Jiao, Xiangmin; Yu, Kwangmin

    2016-07-01

    We propose a new adaptive Particle-in-Cloud (AP-Cloud) method for obtaining optimal numerical solutions to the Vlasov-Poisson equation. Unlike the traditional particle-in-cell (PIC) method, which is commonly used for solving this problem, the AP-Cloud adaptively selects computational nodes or particles to deliver higher accuracy and efficiency when the particle distribution is highly non-uniform. Unlike other adaptive techniques for PIC, our method balances the errors in PDE discretization and Monte Carlo integration, and discretizes the differential operators using a generalized finite difference (GFD) method based on a weighted least square formulation. As a result, AP-Cloud is independent of the geometric shapes of computational domains and is free of artificial parameters. Efficient and robust implementation is achieved through an octree data structure with 2:1 balance. We analyze the accuracy and convergence order of AP-Cloud theoretically, and verify the method using an electrostatic problem of a particle beam with halo. Simulation results show that the AP-Cloud method is substantially more accurate and faster than the traditional PIC, and it is free of artificial forces that are typical for some adaptive PIC techniques.

  12. AP-Cloud: Adaptive particle-in-cloud method for optimal solutions to Vlasov–Poisson equation

    DOE PAGES

    Wang, Xingyu; Samulyak, Roman; Jiao, Xiangmin; Yu, Kwangmin

    2016-04-19

    We propose a new adaptive Particle-in-Cloud (AP-Cloud) method for obtaining optimal numerical solutions to the Vlasov–Poisson equation. Unlike the traditional particle-in-cell (PIC) method, which is commonly used for solving this problem, the AP-Cloud adaptively selects computational nodes or particles to deliver higher accuracy and efficiency when the particle distribution is highly non-uniform. Unlike other adaptive techniques for PIC, our method balances the errors in PDE discretization and Monte Carlo integration, and discretizes the differential operators using a generalized finite difference (GFD) method based on a weighted least square formulation. As a result, AP-Cloud is independent of the geometric shapes ofmore » computational domains and is free of artificial parameters. Efficient and robust implementation is achieved through an octree data structure with 2:1 balance. We analyze the accuracy and convergence order of AP-Cloud theoretically, and verify the method using an electrostatic problem of a particle beam with halo. Here, simulation results show that the AP-Cloud method is substantially more accurate and faster than the traditional PIC, and it is free of artificial forces that are typical for some adaptive PIC techniques.« less

  13. Conservative smoothing versus artificial viscosity

    SciTech Connect

    Guenther, C.; Hicks, D.L.; Swegle, J.W.

    1994-08-01

    This report was stimulated by some recent investigations of S.P.H. (Smoothed Particle Hydrodynamics method). Solid dynamics computations with S.P.H. show symptoms of instabilities which are not eliminated by artificial viscosities. Both analysis and experiment indicate that conservative smoothing eliminates the instabilities in S.P.H. computations which artificial viscosities cannot. Questions were raised as to whether conservative smoothing might smear solutions more than artificial viscosity. Conservative smoothing, properly used, can produce more accurate solutions than the von Neumann-Richtmyer-Landshoff artificial viscosity which has been the standard for many years. The authors illustrate this using the vNR scheme on a test problem with known exact solution involving a shock collision in an ideal gas. They show that the norms of the errors with conservative smoothing are significantly smaller than the norms of the errors with artificial viscosity.

  14. Charging Guidance of Electric Taxis Based on Adaptive Particle Swarm Optimization

    PubMed Central

    Niu, Liyong; Zhang, Di

    2015-01-01

    Electric taxis are playing an important role in the application of electric vehicles. The actual operational data of electric taxis in Shenzhen, China, is analyzed, and, in allusion to the unbalanced time availability of the charging station equipment, the electric taxis charging guidance system is proposed basing on the charging station information and vehicle information. An electric taxis charging guidance model is established and guides the charging based on the positions of taxis and charging stations with adaptive mutation particle swarm optimization. The simulation is based on the actual data of Shenzhen charging stations, and the results show that electric taxis can be evenly distributed to the appropriate charging stations according to the charging pile numbers in charging stations after the charging guidance. The even distribution among the charging stations in the area will be achieved and the utilization of charging equipment will be improved, so the proposed charging guidance method is verified to be feasible. The improved utilization of charging equipment can save public charging infrastructure resources greatly. PMID:26236770

  15. Charging Guidance of Electric Taxis Based on Adaptive Particle Swarm Optimization.

    PubMed

    Niu, Liyong; Zhang, Di

    2015-01-01

    Electric taxis are playing an important role in the application of electric vehicles. The actual operational data of electric taxis in Shenzhen, China, is analyzed, and, in allusion to the unbalanced time availability of the charging station equipment, the electric taxis charging guidance system is proposed basing on the charging station information and vehicle information. An electric taxis charging guidance model is established and guides the charging based on the positions of taxis and charging stations with adaptive mutation particle swarm optimization. The simulation is based on the actual data of Shenzhen charging stations, and the results show that electric taxis can be evenly distributed to the appropriate charging stations according to the charging pile numbers in charging stations after the charging guidance. The even distribution among the charging stations in the area will be achieved and the utilization of charging equipment will be improved, so the proposed charging guidance method is verified to be feasible. The improved utilization of charging equipment can save public charging infrastructure resources greatly.

  16. Charging Guidance of Electric Taxis Based on Adaptive Particle Swarm Optimization.

    PubMed

    Niu, Liyong; Zhang, Di

    2015-01-01

    Electric taxis are playing an important role in the application of electric vehicles. The actual operational data of electric taxis in Shenzhen, China, is analyzed, and, in allusion to the unbalanced time availability of the charging station equipment, the electric taxis charging guidance system is proposed basing on the charging station information and vehicle information. An electric taxis charging guidance model is established and guides the charging based on the positions of taxis and charging stations with adaptive mutation particle swarm optimization. The simulation is based on the actual data of Shenzhen charging stations, and the results show that electric taxis can be evenly distributed to the appropriate charging stations according to the charging pile numbers in charging stations after the charging guidance. The even distribution among the charging stations in the area will be achieved and the utilization of charging equipment will be improved, so the proposed charging guidance method is verified to be feasible. The improved utilization of charging equipment can save public charging infrastructure resources greatly. PMID:26236770

  17. Goal-based angular adaptivity applied to a wavelet-based discretisation of the neutral particle transport equation

    SciTech Connect

    Goffin, Mark A.; Buchan, Andrew G.; Dargaville, Steven; Pain, Christopher C.; Smith, Paul N.; Smedley-Stevenson, Richard P.

    2015-01-15

    A method for applying goal-based adaptive methods to the angular resolution of the neutral particle transport equation is presented. The methods are applied to an octahedral wavelet discretisation of the spherical angular domain which allows for anisotropic resolution. The angular resolution is adapted across both the spatial and energy dimensions. The spatial domain is discretised using an inner-element sub-grid scale finite element method. The goal-based adaptive methods optimise the angular discretisation to minimise the error in a specific functional of the solution. The goal-based error estimators require the solution of an adjoint system to determine the importance to the specified functional. The error estimators and the novel methods to calculate them are described. Several examples are presented to demonstrate the effectiveness of the methods. It is shown that the methods can significantly reduce the number of unknowns and computational time required to obtain a given error. The novelty of the work is the use of goal-based adaptive methods to obtain anisotropic resolution in the angular domain for solving the transport equation. -- Highlights: •Wavelet angular discretisation used to solve transport equation. •Adaptive method developed for the wavelet discretisation. •Anisotropic angular resolution demonstrated through the adaptive method. •Adaptive method provides improvements in computational efficiency.

  18. Registration of 'Newell' Smooth Bromegrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Newell’ (Reg. No. CV-xxxx, PI 671851) smooth bromegrass (Bromus inermis Leyss.) is a steppe or southern type cultivar that is primarily adapted in the USA to areas north of 40o N lat. and east of 100o W long. that have 500 mm or more annual precipitation or in areas that have similar climate cond...

  19. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  20. contbin: Contour binning and accumulative smoothing

    NASA Astrophysics Data System (ADS)

    Sanders, Jeremy S.

    2016-09-01

    Contbin bins X-ray data using contours on an adaptively smoothed map. The generated bins closely follow the surface brightness, and are ideal where the surface brightness distribution is not smooth, or the spectral properties are expected to follow surface brightness. Color maps can be used instead of surface brightness maps.

  1. Nematic liquid crystal around a spherical particle: Investigation of the defect structure and its stability using adaptive mesh refinement.

    PubMed

    Fukuda, Jun-Ichi; Yoneya, Makoto; Yokoyama, Hiroshi

    2004-01-01

    We investigate the orientation profile and the structure of topological defects of a nematic liquid crystal around a spherical particle using an adaptive mesh refinement scheme developed by us previously. The previous work [J. Fukuda et al., Phys. Rev. E 65, 041709 (2002)] was devoted to the investigation of the fine structure of a hyperbolic hedgehog defect that the particle accompanies and in this paper we present the equilibrium profile of the Saturn ring configuration. The radius of the Saturn ring r(d) in units of the particle radius R(0) increases weakly with the increase of Epsilon, the ratio of the nematic coherence length to R(0). Next we discuss the energetic stability of a hedgehog and a Saturn ring. The use of adaptive mesh refinement scheme together with a tensor orientational order parameter Q (alpha, beta) allows us to calculate the elastic energy of a nematic liquid crystal without any assumption of the structure and the energy of the defect core as in the previous similar studies. The reduced free energy of a nematic liquid crystal, F= F/L1RO, with L(1) being the elastic constant, is almost independent of Epsilon in the hedgehog configuration, while it shows a logarithmic dependence in the Saturn ring configuration. This result clearly indicates that the energetic stability of a hedgehog to a Saturn ring for a large particle is definitely attributed to the large defect energy of the Saturn ring with a large radius.

  2. Particle System Based Adaptive Sampling on Spherical Parameter Space to Improve the MDL Method for Construction of Statistical Shape Models

    PubMed Central

    Zhou, Xiangrong; Hirano, Yasushi; Tachibana, Rie; Hara, Takeshi; Kido, Shoji; Fujita, Hiroshi

    2013-01-01

    Minimum description length (MDL) based group-wise registration was a state-of-the-art method to determine the corresponding points of 3D shapes for the construction of statistical shape models (SSMs). However, it suffered from the problem that determined corresponding points did not uniformly spread on original shapes, since corresponding points were obtained by uniformly sampling the aligned shape on the parameterized space of unit sphere. We proposed a particle-system based method to obtain adaptive sampling positions on the unit sphere to resolve this problem. Here, a set of particles was placed on the unit sphere to construct a particle system whose energy was related to the distortions of parameterized meshes. By minimizing this energy, each particle was moved on the unit sphere. When the system became steady, particles were treated as vertices to build a spherical mesh, which was then relaxed to slightly adjust vertices to obtain optimal sampling-positions. We used 47 cases of (left and right) lungs and 50 cases of livers, (left and right) kidneys, and spleens for evaluations. Experiments showed that the proposed method was able to resolve the problem of the original MDL method, and the proposed method performed better in the generalization and specificity tests. PMID:23861721

  3. Designing experimental setup and procedures for studying alpha-particle-induced adaptive response in zebrafish embryos in vivo

    NASA Astrophysics Data System (ADS)

    Choi, V. W. Y.; Lam, R. K. K.; Chong, E. Y. W.; Cheng, S. H.; Yu, K. N.

    2010-03-01

    The present work was devoted to designing the experimental setup and the associated procedures for alpha-particle-induced adaptive response in zebrafish embryos in vivo. Thin PADC films with a thickness of 16 μm were fabricated and employed as support substrates for holding dechorionated zebrafish embryos for alpha-particle irradiation from the bottom through the films. Embryos were collected within 15 min when the light photoperiod began, which were then incubated and dechorionated at 4 h post fertilization (hpf). They were then irradiated at 5 hpf by alpha particles using a planar 241Am source with an activity of 0.1151 μCi for 24 s (priming dose), and subsequently at 10 hpf using the same source for 240 s (challenging dose). The levels of apoptosis in irradiated zebrafish embryos at 24 hpf were quantified through staining with the vital dye acridine orange, followed by counting the stained cells under a florescent microscope. The results revealed the presence of the adaptive response in zebrafish embryos in vivo, and demonstrated the feasibility of the adopted experimental setup and procedures.

  4. Technical Assessment of Internal Surface Smoothness and Particle Transmission to the American National Standard ANSI/HPS N13.1-2011

    SciTech Connect

    Fritz, Brad G.; Barnett, J. M.

    2015-11-01

    Clause 6.4.4 in the American National Standards Institute / Health Physics Society (ANSI/HPS) N13.1 standard, Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities, addresses the internal smoothness of sample transport lines present between the nozzle and the analyzer (or collector). This paper evaluates the appropriateness of this clause by comparing roughness length of various materials against the required relative roughness, and by conducting computational fluid dynamic modeling. The results indicate that the inclusion of numerical criteria for the relative roughness of pipe by the ANSI Standard N13.1 (Section 6.4.4) is not appropriate. Recommended alternatives would be elimination of the numerical criteria, or modification of the standard to include a variable criteria for relative roughness.

  5. Technical Assessment of Internal Surface Smoothness and Particle Transmission to the American National Standard ANSI/HPS N13.1-2011.

    PubMed

    Fritz, Bradley G; Barnett, J Matthew

    2015-11-01

    Clause 6.4.4 in the American National Standard ANSI/HPS N13.1 standard "Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities" addresses the internal smoothness of sample transport lines present between the nozzle and the analyzer (or collector). The appropriateness of this clause is evaluated by comparing roughness length of various materials against the required relative roughness and by conducting computational fluid dynamic modeling. The results indicate that the inclusion of numerical criteria for the relative roughness of pipe by the ANSI/HPS N13.1-2011 (clause 6.4.4) is not appropriate. Recommended alternatives would be elimination of the numerical criteria or modification of the standard to include a variable criterion for relative roughness.

  6. Effects of rigid or adaptive confinement on colloidal self-assembly. Fixed vs. fluctuating number of confined particles

    SciTech Connect

    Pȩkalski, J.; Ciach, A.; Almarza, N. G.

    2015-05-28

    The effects of confinement on colloidal self-assembly in the case of fixed number of confined particles are studied in the one dimensional lattice model solved exactly in the grand canonical ensemble (GCE) in Pȩkalski et al. [J. Chem. Phys. 142, 014903 (2015)]. The model considers a pair interaction defined by a short-range attraction plus a longer-range repulsion. We consider thermodynamic states corresponding to self-assembly into clusters. Both fixed and adaptive boundaries are studied. For fixed boundaries, there are particular states in which, for equal average densities, the number of clusters in the GCE is larger than in the canonical ensemble. The dependence of pressure on density has a different form when the system size changes with fixed number of particles and when the number of particles changes with fixed size of the system. In the former case, the pressure has a nonmonotonic dependence on the system size. The anomalous increase of pressure for expanding system is accompanied by formation of a larger number of smaller clusters. In the case of elastic confining surfaces, we observe a bistability, i.e., two significantly different system sizes occur with almost the same probability. The mechanism of the bistability in the closed system is different to that of the case of permeable walls, where the two equilibrium system sizes correspond to a different number of particles.

  7. An adaptive extended finite element method for the analysis of agglomeration of colloidal particles in a flowing fluid

    SciTech Connect

    Choi, Young Joon; Jorshari, Razzi Movassaghi; Djilali, Ned

    2015-03-10

    Direct numerical simulations of the flow-nanoparticle interaction in a colloidal suspension are presented using an extended finite element method (XFEM) in which the dynamics of the nanoparticles is solved in a fully-coupled manner with the flow. The method is capable of accurately describing solid-fluid interfaces without the need of boundary-fitted meshes to investigate the dynamics of particles in complex flows. In order to accurately compute the high interparticle shear stresses and pressures while minimizing computing costs, an adaptive meshing technique is incorporated with the fluid-structure interaction algorithm. The particle-particle interaction at the microscopic level is modeled using the Lennard-Jones (LJ) potential and the corresponding potential parameters are determined by a scaling procedure. The study is relevant to the preparation of inks used in the fabrication of catalyst layers for fuel cells. In this paper, we are particularly interested in investigating agglomeration of the nanoparticles under external shear flow in a sliding bi-periodic Lees-Edwards frame. The results indicate that the external shear has a crucial impact on the structure formation of colloidal particles in a suspension.

  8. An Adaptive Particle Filtering Approach to Tracking Modes in a Varying Shallow Ocean Environment

    SciTech Connect

    Candy, J V

    2011-03-22

    The shallow ocean environment is ever changing mostly due to temperature variations in its upper layers (< 100m) directly affecting sound propagation throughout. The need to develop processors that are capable of tracking these changes implies a stochastic as well as an 'adaptive' design. The stochastic requirement follows directly from the multitude of variations created by uncertain parameters and noise. Some work has been accomplished in this area, but the stochastic nature was constrained to Gaussian uncertainties. It has been clear for a long time that this constraint was not particularly realistic leading a Bayesian approach that enables the representation of any uncertainty distribution. Sequential Bayesian techniques enable a class of processors capable of performing in an uncertain, nonstationary (varying statistics), non-Gaussian, variable shallow ocean. In this paper adaptive processors providing enhanced signals for acoustic hydrophonemeasurements on a vertical array as well as enhanced modal function estimates are developed. Synthetic data is provided to demonstrate that this approach is viable.

  9. Application of adaptive mesh refinement to particle-in-cell simulations of plasmas and beams

    SciTech Connect

    Vay, J.-L.; Colella, P.; Kwan, J.W.; McCorquodale, P.; Serafini, D.B.; Friedman, A.; Grote, D.P.; Westenskow, G.; Adam, J.-C.; Heron, A.; Haber, I.

    2003-11-04

    Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation domain, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this technique with plasma Particle-In-Cell simulations, and present examples of application in Heavy Ion Fusion and related fields which illustrate the effectiveness of the approach. We also report on the status of a collaboration under way at Lawrence Berkeley National Laboratory between the Applied Numerical Algorithms Group (ANAG) and the Heavy Ion Fusion group to upgrade ANAG's mesh refinement library Chombo to include the tools needed by Particle-In-Cell simulation codes.

  10. Adaptive Square-Root Cubature-Quadrature Kalman Particle Filter for satellite attitude determination using vector observations

    NASA Astrophysics Data System (ADS)

    Kiani, Maryam; Pourtakdoust, Seid H.

    2014-12-01

    A novel algorithm is presented in this study for estimation of spacecraft's attitudes and angular rates from vector observations. In this regard, a new cubature-quadrature particle filter (CQPF) is initially developed that uses the Square-Root Cubature-Quadrature Kalman Filter (SR-CQKF) to generate the importance proposal distribution. The developed CQPF scheme avoids the basic limitation of particle filter (PF) with regards to counting the new measurements. Subsequently, CQPF is enhanced to adjust the sample size at every time step utilizing the idea of confidence intervals, thus improving the efficiency and accuracy of the newly proposed adaptive CQPF (ACQPF). In addition, application of the q-method for filter initialization has intensified the computation burden as well. The current study also applies ACQPF to the problem of attitude estimation of a low Earth orbit (LEO) satellite. For this purpose, the undertaken satellite is equipped with a three-axis magnetometer (TAM) as well as a sun sensor pack that provide noisy geomagnetic field data and Sun direction measurements, respectively. The results and performance of the proposed filter are investigated and compared with those of the extended Kalman filter (EKF) and the standard particle filter (PF) utilizing a Monte Carlo simulation. The comparison demonstrates the viability and the accuracy of the proposed nonlinear estimator.

  11. A feature extraction method of the particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization for Brillouin scattering spectra

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjun; Zhao, Yu; Fu, Xinghu; Xu, Jinrui

    2016-10-01

    A novel particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization is proposed for extracting the features of Brillouin scattering spectra. Firstly, the adaptive inertia weight parameter of the velocity is introduced to the basic particle swarm algorithm. Based on the current iteration number of particles and the adaptation value, the algorithm can change the weight coefficient and adjust the iteration speed of searching space for particles, so the local optimization ability can be enhanced. Secondly, the logical self-mapping chaotic search is carried out by using the chaos optimization in particle swarm optimization algorithm, which makes the particle swarm optimization algorithm jump out of local optimum. The novel algorithm is compared with finite element analysis-Levenberg Marquardt algorithm, particle swarm optimization-Levenberg Marquardt algorithm and particle swarm optimization algorithm by changing the linewidth, the signal-to-noise ratio and the linear weight ratio of Brillouin scattering spectra. Then the algorithm is applied to the feature extraction of Brillouin scattering spectra in different temperatures. The simulation analysis and experimental results show that this algorithm has a high fitting degree and small Brillouin frequency shift error for different linewidth, SNR and linear weight ratio. Therefore, this algorithm can be applied to the distributed optical fiber sensing system based on Brillouin optical time domain reflection, which can effectively improve the accuracy of Brillouin frequency shift extraction.

  12. Nonlinear Effects of Nanoparticles: Biological Variability From Hormetic Doses, Small Particle Sizes, and Dynamic Adaptive Interactions

    PubMed Central

    Bell, Iris R.; Ives, John A.; Jonas, Wayne B.

    2014-01-01

    Researchers are increasingly focused on the nanoscale level of organization where biological processes take place in living systems. Nanoparticles (NPs, e.g., 1–100 nm diameter) are small forms of natural or manufactured source material whose properties differ markedly from those of the respective bulk forms of the “same” material. Certain NPs have diagnostic and therapeutic uses; some NPs exhibit low-dose toxicity; other NPs show ability to stimulate low-dose adaptive responses (hormesis). Beyond dose, size, shape, and surface charge variations of NPs evoke nonlinear responses in complex adaptive systems. NPs acquire unique size-dependent biological, chemical, thermal, optical, electromagnetic, and atom-like quantum properties. Nanoparticles exhibit high surface adsorptive capacity for other substances, enhanced bioavailability, and ability to cross otherwise impermeable cell membranes including the blood-brain barrier. With super-potent effects, nano-forms can evoke cellular stress responses or therapeutic effects not only at lower doses than their bulk forms, but also for longer periods of time. Interactions of initial effects and compensatory systemic responses can alter the impact of NPs over time. Taken together, the data suggest the need to downshift the dose-response curve of NPs from that for bulk forms in order to identify the necessarily decreased no-observed-adverse-effect-level and hormetic dose range for nanoparticles. PMID:24910581

  13. Adaptive particle-based pore-level modeling of incompressible fluid flow in porous media: a direct and parallel approach

    NASA Astrophysics Data System (ADS)

    Ovaysi, S.; Piri, M.

    2009-12-01

    obtained for sample B that has more uniform distribution of solid particles leading to a superior load balancing. The model is then used to simulate fluid flow directly in REV size three-dimensional x-ray images of a naturally occurring sandstone. We analyze the quality and consistency of the predicted flow behavior and calculate absolute permeability, which compares well with the available network modeling and Lattice-Boltzmann permeabilities available in the literature for the same sandstone. We show that the model conserves mass very well and is stable computationally even at very narrow fluid conduits. The transient- and the steady-state fluid flow patterns are presented as well as the steady-state flow rates to compute absolute permeability. Furthermore, we discuss the vital role of our adaptive particle resolution scheme in preserving the original pore connectivity of the samples and their narrow channels through splitting and merging of fluid particles.

  14. Adaptive Particle Swarm Optimizer with Varying Acceleration Coefficients for Finding the Most Stable Conformer of Small Molecules.

    PubMed

    Agrawal, Shikha; Silakari, Sanjay; Agrawal, Jitendra

    2015-11-01

    A novel parameter automation strategy for Particle Swarm Optimization called APSO (Adaptive PSO) is proposed. The algorithm is designed to efficiently control the local search and convergence to the global optimum solution. Parameters c1 controls the impact of the cognitive component on the particle trajectory and c2 controls the impact of the social component. Instead of fixing the value of c1 and c2 , this paper updates the value of these acceleration coefficients by considering time variation of evaluation function along with varying inertia weight factor in PSO. Here the maximum and minimum value of evaluation function is use to gradually decrease and increase the value of c1 and c2 respectively. Molecular energy minimization is one of the most challenging unsolved problems and it can be formulated as a global optimization problem. The aim of the present paper is to investigate the effect of newly developed APSO on the highly complex molecular potential energy function and to check the efficiency of the proposed algorithm to find the global minimum of the function under consideration. The proposed algorithm APSO is therefore applied in two cases: Firstly, for the minimization of a potential energy of small molecules with up to 100 degrees of freedom and finally for finding the global minimum energy conformation of 1,2,3-trichloro-1-flouro-propane molecule based on a realistic potential energy function. The computational results of all the cases show that the proposed method performs significantly better than the other algorithms. PMID:27491033

  15. Adaptive Particle Swarm Optimizer with Varying Acceleration Coefficients for Finding the Most Stable Conformer of Small Molecules.

    PubMed

    Agrawal, Shikha; Silakari, Sanjay; Agrawal, Jitendra

    2015-11-01

    A novel parameter automation strategy for Particle Swarm Optimization called APSO (Adaptive PSO) is proposed. The algorithm is designed to efficiently control the local search and convergence to the global optimum solution. Parameters c1 controls the impact of the cognitive component on the particle trajectory and c2 controls the impact of the social component. Instead of fixing the value of c1 and c2 , this paper updates the value of these acceleration coefficients by considering time variation of evaluation function along with varying inertia weight factor in PSO. Here the maximum and minimum value of evaluation function is use to gradually decrease and increase the value of c1 and c2 respectively. Molecular energy minimization is one of the most challenging unsolved problems and it can be formulated as a global optimization problem. The aim of the present paper is to investigate the effect of newly developed APSO on the highly complex molecular potential energy function and to check the efficiency of the proposed algorithm to find the global minimum of the function under consideration. The proposed algorithm APSO is therefore applied in two cases: Firstly, for the minimization of a potential energy of small molecules with up to 100 degrees of freedom and finally for finding the global minimum energy conformation of 1,2,3-trichloro-1-flouro-propane molecule based on a realistic potential energy function. The computational results of all the cases show that the proposed method performs significantly better than the other algorithms.

  16. Generalized smooth models

    SciTech Connect

    Glosup, J.

    1992-07-23

    The class of gene linear models is extended to develop a class of nonparametric regression models known as generalized smooth models. The technique of local scoring is used to estimate a generalized smooth model and the estimation procedure based on locally weighted regression is shown to produce local likelihood estimates. The asymptotically correct distribution of the deviance difference is derived and its use in comparing the fits of generalized linear models and generalized smooth models is illustrated. The relationship between generalized smooth models and generalized additive models is discussed, also.

  17. Comparison of smoothing methods for the development of a smoothed seismicity model for Alaska and the implications for seismic hazard

    NASA Astrophysics Data System (ADS)

    Moschetti, M. P.; Mueller, C. S.; Boyd, O. S.; Petersen, M. D.

    2013-12-01

    In anticipation of the update of the Alaska seismic hazard maps (ASHMs) by the U. S. Geological Survey, we report progress on the comparison of smoothed seismicity models developed using fixed and adaptive smoothing algorithms, and investigate the sensitivity of seismic hazard to the models. While fault-based sources, such as those for great earthquakes in the Alaska-Aleutian subduction zone and for the ~10 shallow crustal faults within Alaska, dominate the seismic hazard estimates for locations near to the sources, smoothed seismicity rates make important contributions to seismic hazard away from fault-based sources and where knowledge of recurrence and magnitude is not sufficient for use in hazard studies. Recent developments in adaptive smoothing methods and statistical tests for evaluating and comparing rate models prompt us to investigate the appropriateness of adaptive smoothing for the ASHMs. We develop smoothed seismicity models for Alaska using fixed and adaptive smoothing methods and compare the resulting models by calculating and evaluating the joint likelihood test. We use the earthquake catalog, and associated completeness levels, developed for the 2007 ASHM to produce fixed-bandwidth-smoothed models with smoothing distances varying from 10 to 100 km and adaptively smoothed models. Adaptive smoothing follows the method of Helmstetter et al. and defines a unique smoothing distance for each earthquake epicenter from the distance to the nth nearest neighbor. The consequence of the adaptive smoothing methods is to reduce smoothing distances, causing locally increased seismicity rates, where seismicity rates are high and to increase smoothing distances where seismicity is sparse. We follow guidance from previous studies to optimize the neighbor number (n-value) by comparing model likelihood values, which estimate the likelihood that the observed earthquake epicenters from the recent catalog are derived from the smoothed rate models. We compare likelihood

  18. Comparison of smoothing methods for the development of a smoothed seismicity model for Alaska and the implications for seismic hazard

    USGS Publications Warehouse

    Moschetti, Morgan P.; Mueller, Charles S.; Boyd, Oliver S.; Petersen, Mark D.

    2014-01-01

    In anticipation of the update of the Alaska seismic hazard maps (ASHMs) by the U. S. Geological Survey, we report progress on the comparison of smoothed seismicity models developed using fixed and adaptive smoothing algorithms, and investigate the sensitivity of seismic hazard to the models. While fault-based sources, such as those for great earthquakes in the Alaska-Aleutian subduction zone and for the ~10 shallow crustal faults within Alaska, dominate the seismic hazard estimates for locations near to the sources, smoothed seismicity rates make important contributions to seismic hazard away from fault-based sources and where knowledge of recurrence and magnitude is not sufficient for use in hazard studies. Recent developments in adaptive smoothing methods and statistical tests for evaluating and comparing rate models prompt us to investigate the appropriateness of adaptive smoothing for the ASHMs. We develop smoothed seismicity models for Alaska using fixed and adaptive smoothing methods and compare the resulting models by calculating and evaluating the joint likelihood test. We use the earthquake catalog, and associated completeness levels, developed for the 2007 ASHM to produce fixed-bandwidth-smoothed models with smoothing distances varying from 10 to 100 km and adaptively smoothed models. Adaptive smoothing follows the method of Helmstetter et al. and defines a unique smoothing distance for each earthquake epicenter from the distance to the nth nearest neighbor. The consequence of the adaptive smoothing methods is to reduce smoothing distances, causing locally increased seismicity rates, where seismicity rates are high and to increase smoothing distances where seismicity is sparse. We follow guidance from previous studies to optimize the neighbor number (n-value) by comparing model likelihood values, which estimate the likelihood that the observed earthquake epicenters from the recent catalog are derived from the smoothed rate models. We compare likelihood

  19. SMOOTH MUSCLE STEM CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vascular smooth muscle cells (SMCs) originate from multiple types of progenitor cells. In the embryo, the most well-studied SMC progenitor is the cardiac neural crest stem cell. Smooth muscle differentiation in the neural crest lineage is controlled by a combination of cell intrinsic factors, includ...

  20. Diamond Smoothing Tools

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg

    2007-01-01

    Diamond smoothing tools have been proposed for use in conjunction with diamond cutting tools that are used in many finish-machining operations. Diamond machining (including finishing) is often used, for example, in fabrication of precise metal mirrors. A diamond smoothing tool according to the proposal would have a smooth spherical surface. For a given finish machining operation, the smoothing tool would be mounted next to the cutting tool. The smoothing tool would slide on the machined surface left behind by the cutting tool, plastically deforming the surface material and thereby reducing the roughness of the surface, closing microcracks and otherwise generally reducing or eliminating microscopic surface and subsurface defects, and increasing the microhardness of the surface layer. It has been estimated that if smoothing tools of this type were used in conjunction with cutting tools on sufficiently precise lathes, it would be possible to reduce the roughness of machined surfaces to as little as 3 nm. A tool according to the proposal would consist of a smoothing insert in a metal holder. The smoothing insert would be made from a diamond/metal functionally graded composite rod preform, which, in turn, would be made by sintering together a bulk single-crystal or polycrystalline diamond, a diamond powder, and a metallic alloy at high pressure. To form the spherical smoothing tip, the diamond end of the preform would be subjected to flat grinding, conical grinding, spherical grinding using diamond wheels, and finally spherical polishing and/or buffing using diamond powders. If the diamond were a single crystal, then it would be crystallographically oriented, relative to the machining motion, to minimize its wear and maximize its hardness. Spherically polished diamonds could also be useful for purposes other than smoothing in finish machining: They would likely also be suitable for use as heat-resistant, wear-resistant, unlubricated sliding-fit bearing inserts.

  1. Enhanced Production of Chikungunya Virus-Like Particles Using a High-pH Adapted Spodoptera frugiperda Insect Cell Line

    PubMed Central

    Wagner, James M.; Pajerowski, J. David; Daniels, Christopher L.; McHugh, Patrick M.; Flynn, Jessica A.; Balliet, John W.; Casimiro, Danilo R.; Subramanian, Shyamsundar

    2014-01-01

    Chikungunya virus-like particles (VLPs) have potential to be used as a prophylactic vaccine based on testing in multiple animal models and are currently being evaluated for human use in a Phase I clinical trial. The current method for producing these enveloped alphavirus VLPs by transient gene expression in mammalian cells presents challenges for scalable and robust industrial manufacturing, so the insect cell baculovirus expression vector system was evaluated as an alternative expression technology. Subsequent to recombinant baculovirus infection of Sf21 cells in standard culture media (pH 6.2–6.4), properly processed Chikungunya structural proteins were detected and assembled capsids were observed. However, an increase in culture pH to 6.6–6.8 was necessary to produce detectable concentrations of assembled VLPs. Since this elevated production pH exceeds the optimum for growth medium stability and Sf21 culture, medium modifications were made and a novel insect cell variant (SfBasic) was derived by exposure of Sf21 to elevated culture pH for a prolonged period of time. The high-pH adapted SfBasic insect cell line described herein is capable of maintaining normal cell growth into the typical mammalian cell culture pH range of 7.0–7.2 and produces 11-fold higher Chikungunya VLP yields relative to the parental Sf21 cell line. After scale-up into stirred tank bioreactors, SfBasic derived VLPs were chromatographically purified and shown to be similar in size and structure to a VLP standard derived from transient gene expression in HEK293 cells. Total serum anti-Chikungunya IgG and neutralizing titers from guinea pigs vaccinated with SfBasic derived VLPs or HEK293 derived VLPs were not significantly different with respect to production method, suggesting that this adapted insect cell line and production process could be useful for manufacturing Chikungunya VLPs for use as a vaccine. The adaptation of Sf21 to produce high levels of recombinant protein and VLPs in an

  2. Particle hydrodynamics with tessellation techniques

    NASA Astrophysics Data System (ADS)

    Heß, Steffen; Springel, Volker

    2010-08-01

    Lagrangian smoothed particle hydrodynamics (SPH) is a well-established approach to model fluids in astrophysical problems, thanks to its geometric flexibility and ability to automatically adjust the spatial resolution to the clumping of matter. However, a number of recent studies have emphasized inaccuracies of SPH in the treatment of fluid instabilities. The origin of these numerical problems can be traced back to spurious surface effects across contact discontinuities, and to SPH's inherent prevention of mixing at the particle level. We here investigate a new fluid particle model where the density estimate is carried out with the help of an auxiliary mesh constructed as the Voronoi tessellation of the simulation particles instead of an adaptive smoothing kernel. This Voronoi-based approach improves the ability of the scheme to represent sharp contact discontinuities. We show that this eliminates spurious surface tension effects present in SPH and that play a role in suppressing certain fluid instabilities. We find that the new `Voronoi Particle Hydrodynamics' (VPH) described here produces comparable results to SPH in shocks, and better ones in turbulent regimes of pure hydrodynamical simulations. We also discuss formulations of the artificial viscosity needed in this scheme and how judiciously chosen correction forces can be derived in order to maintain a high degree of particle order and hence a regular Voronoi mesh. This is especially helpful in simulating self-gravitating fluids with existing gravity solvers used for N-body simulations.

  3. Discrete square root smoothing.

    NASA Technical Reports Server (NTRS)

    Kaminski, P. G.; Bryson, A. E., Jr.

    1972-01-01

    The basic techniques applied in the square root least squares and square root filtering solutions are applied to the smoothing problem. Both conventional and square root solutions are obtained by computing the filtered solutions, then modifying the results to include the effect of all measurements. A comparison of computation requirements indicates that the square root information smoother (SRIS) is more efficient than conventional solutions in a large class of fixed interval smoothing problems.

  4. A Generalized Eigensolver based on Smoothed Aggregation (GES-SA) for Initializing Smoothed Aggregation Multigrid (SA)

    SciTech Connect

    Brezina, M; Manteuffel, T; McCormick, S; Ruge, J; Sanders, G; Vassilevski, P S

    2007-05-31

    Consider the linear system Ax = b, where A is a large, sparse, real, symmetric, and positive definite matrix and b is a known vector. Solving this system for unknown vector x using a smoothed aggregation multigrid (SA) algorithm requires a characterization of the algebraically smooth error, meaning error that is poorly attenuated by the algorithm's relaxation process. For relaxation processes that are typically used in practice, algebraically smooth error corresponds to the near-nullspace of A. Therefore, having a good approximation to a minimal eigenvector is useful to characterize the algebraically smooth error when forming a linear SA solver. This paper discusses the details of a generalized eigensolver based on smoothed aggregation (GES-SA) that is designed to produce an approximation to a minimal eigenvector of A. GES-SA might be very useful as a standalone eigensolver for applications that desire an approximate minimal eigenvector, but the primary aim here is for GES-SA to produce an initial algebraically smooth component that may be used to either create a black-box SA solver or initiate the adaptive SA ({alpha}SA) process.

  5. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    NASA Astrophysics Data System (ADS)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  6. Anti-smooth muscle antibody

    MedlinePlus

    ... medlineplus.gov/ency/article/003531.htm Anti-smooth muscle antibody To use the sharing features on this page, please enable JavaScript. Anti-smooth muscle antibody is a blood test that detects the ...

  7. Shallow water SPH for flooding with dynamic particle coalescing and splitting

    NASA Astrophysics Data System (ADS)

    Vacondio, R.; Rogers, B. D.; Stansby, P. K.; Mignosa, P.

    2013-08-01

    In this paper an adaptive algorithm for Smoothed Particle Hydrodynamics (SPH) for the Shallow Water Equations (SWEs) is presented. The area of a particle is inversely proportional to depth giving poor resolution in small depths without particle refinement. This is a particular limitation for flooding problems of interest here. Higher resolution is created by splitting the particles, while particle coalescing (or merging) improves efficiency by reducing the number of the particles when acceptable. The new particle coalescing procedure merges two particles together if their area becomes less than a predefined threshold value. Both particle splitting and coalescing procedures conserve mass and momentum and the smoothing length of new particles is calculated by minimizing the density error of the SPH summation. The new dynamic particle refinement procedure is assessed by testing the numerical scheme against analytical, experimental and benchmark test cases. The analytical cases show that with particle splitting and coalescing typical convergence rates remain faster than linear. For the practical test case, in comparison to using particle splitting alone, the particle coalescing procedure leads to a significant reduction of computational time, by a factor of 15. This makes the computational time of the same order as mesh-based methods with the advantage of not having to specify a mesh over a flood domain of unknown extent a priori.

  8. Stabilizing S.P.H. with conservative smoothing

    SciTech Connect

    Wen, Y.; Hicks, D.L.; Swegle, J.W.

    1994-08-01

    There is an instability in certain S.P.H. (Smoothed Particle Hydrodynamics method) material dynamics computations. Evidence from analyses and experiments suggests that the instabilities in S.P.H. are not removable with artificial viscosities. However, the analysis shows that a type of conservative smoothing does remove the instability. Also, numerical experiments, on certain test problems, show that SPHCS, and S.P.H. code with conservative smoothing, compares well in accuracy with computations based on the von Neumann-Richtmyer method.

  9. Study on a compact and adaptable Thomson Spectrometer for laser-initiated 11B(p,α)8Be reactions and low-medium energy particle detection

    NASA Astrophysics Data System (ADS)

    Consoli, F.; De Angelis, R.; Bonasera, A.; Sura, J.; Andreoli, P.; Cristofari, G.; Cipriani, M.; Di Giorgio, G.; Ingenito, F.; Barbarino, M.; Labaune, C.; Baccou, C.; Depierreux, S.; Goyon, C.; Yahia, V.

    2016-05-01

    Thomson Spectrometers are of primary importance in the discrimination of particles produced by laser-plasma interaction, according to their energy and charge-mass ratio. We describe here a detailed study on a set of Thomson Spectrometers, adaptable to different experimental situations, with the aim of being placed directly within the experimental chamber, rather than in additional extensions, in order to increase the solid angle of observation. These instruments are suitable for detection of low-medium energy particles and can be effectively employed in laser-plasma experiments of 11B(p,α)8Be fusion. They are provided with permanent magnets, have small dimensions and compact design. In these small configurations electric and magnetic fringing fields play a primary role for particle deflection, and their accurate characterization is required. It was accomplished by means of COMSOL electromagnetic solver coupled to an effective analytical model, very suitable for practical use of the spectrometers. Data from experimental measurements of the magnetic fields have been also used. We describe the application of the spectrometers to an experiment of laser-plasma interaction, coupled to Imaging Plate detectors. Data analysis for spectrum and yield of the detected radiation is discussed in detail.

  10. Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles

    NASA Astrophysics Data System (ADS)

    Hummel, M.; Hoose, C.; Gallagher, M.; Healy, D. A.; Huffman, J. A.; O'Connor, D.; Pöschl, U.; Pöhlker, C.; Robinson, N. H.; Schnaiter, M.; Sodeau, J. R.; Toprak, E.; Vogel, H.

    2014-04-01

    Fungal spores as a prominent type of primary biological aerosol particles (PBAP) have been incorporated into the COSMO-ART regional atmospheric model, using and comparing three different emission parameterizations. Two literature-based emission rates derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization was adapted to field measurements of fluorescent biological aerosol particles (FBAP) from four locations across Northern Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at approx. 3 μm, corresponding to a diameter range characteristic for many fungal spores. Previous studies have suggested the majority of FBAP in several locations are dominated by fungal spores. Thus, we suggest that simulated fungal spore concentrations obtained from the emission parameterizations can be compared to the sum of total FBAP concentrations. A comparison reveals that parameterized estimates of fungal spore concentrations based on literature numbers underestimate measured FBAP concentrations. In agreement with measurement data, the model results show a diurnal cycle in simulated fungal spore concentrations, which may develop partially as a consequence of a varying boundary layer height between day and night. Measured FBAP and simulated fungal spore concentrations also correlate similarly with simulated temperature and humidity. These meteorological variables, together with leaf area index, were chosen to drive the new emission parameterization discussed here. Using the new emission parameterization on a model domain covering Western Europe, fungal spores in the lowest model layer comprise a fraction of 15% of the total aerosol mass over land and reach average number concentrations of 26 L-1. The results confirm that fungal spores and biological particles may account for a

  11. Accurate statistical tests for smooth classification images.

    PubMed

    Chauvin, Alan; Worsley, Keith J; Schyns, Philippe G; Arguin, Martin; Gosselin, Frédéric

    2005-10-05

    Despite an obvious demand for a variety of statistical tests adapted to classification images, few have been proposed. We argue that two statistical tests based on random field theory (RFT) satisfy this need for smooth classification images. We illustrate these tests on classification images representative of the literature from F. Gosselin and P. G. Schyns (2001) and from A. B. Sekuler, C. M. Gaspar, J. M. Gold, and P. J. Bennett (2004). The necessary computations are performed using the Stat4Ci Matlab toolbox.

  12. Enhanced flow in smooth single-file channel.

    PubMed

    Roy Majumder, Shashwati; Choudhury, Niharendu; Ghosh, Swapan K

    2007-08-01

    We investigate the flux of particles in a smooth single-file channel where particles cannot cross each other as well as in wider channels of varying cross section where particles execute normal diffusion. All the channels are connected to an infinite reservoir at one end and the flux of particles is measured at the other open end. We perform random walk Monte Carlo simulation using lattice model. The flux decreases monotonically as the channel cross section is increased from single-file channel to wider channel and finally reaches a constant value for a sufficiently wide channel. The observation of enhanced flux in single-file channel as compared to a wider channel can be tested for efficient separation of particles through smooth nanochannels.

  13. Smooth eigenvalue correction

    NASA Astrophysics Data System (ADS)

    Hendrikse, Anne; Veldhuis, Raymond; Spreeuwers, Luuk

    2013-12-01

    Second-order statistics play an important role in data modeling. Nowadays, there is a tendency toward measuring more signals with higher resolution (e.g., high-resolution video), causing a rapid increase of dimensionality of the measured samples, while the number of samples remains more or less the same. As a result the eigenvalue estimates are significantly biased as described by the Marčenko Pastur equation for the limit of both the number of samples and their dimensionality going to infinity. By introducing a smoothness factor, we show that the Marčenko Pastur equation can be used in practical situations where both the number of samples and their dimensionality remain finite. Based on this result we derive methods, one already known and one new to our knowledge, to estimate the sample eigenvalues when the population eigenvalues are known. However, usually the sample eigenvalues are known and the population eigenvalues are required. We therefore applied one of the these methods in a feedback loop, resulting in an eigenvalue bias correction method. We compare this eigenvalue correction method with the state-of-the-art methods and show that our method outperforms other methods particularly in real-life situations often encountered in biometrics: underdetermined configurations, high-dimensional configurations, and configurations where the eigenvalues are exponentially distributed.

  14. New smooth hybrid inflation

    SciTech Connect

    Lazarides, George; Vamvasakis, Achilleas

    2007-10-15

    We consider the extension of the supersymmetric Pati-Salam model which solves the b-quark mass problem of supersymmetric grand unified models with exact Yukawa unification and universal boundary conditions and leads to the so-called new shifted hybrid inflationary scenario. We show that this model can also lead to a new version of smooth hybrid inflation based only on renormalizable interactions provided that a particular parameter of its superpotential is somewhat small. The potential possesses valleys of minima with classical inclination, which can be used as inflationary paths. The model is consistent with the fitting of the three-year Wilkinson microwave anisotropy probe data by the standard power-law cosmological model with cold dark matter and a cosmological constant. In particular, the spectral index turns out to be adequately small so that it is compatible with the data. Moreover, the Pati-Salam gauge group is broken to the standard model gauge group during inflation and, thus, no monopoles are formed at the end of inflation. Supergravity corrections based on a nonminimal Kaehler potential with a convenient choice of a sign keep the spectral index comfortably within the allowed range without generating maxima and minima of the potential on the inflationary path. So, unnatural restrictions on the initial conditions for inflation can be avoided.

  15. Ceramic coatings on smooth surfaces

    NASA Technical Reports Server (NTRS)

    Miller, R. A. (Inventor); Brindley, W. J. (Inventor); Rouge, C. J. (Inventor)

    1991-01-01

    A metallic coating is plasma sprayed onto a smooth surface of a metal alloy substitute or on a bond coating. An initial thin ceramic layer is low pressure sprayed onto the smooth surface of the substrate or bond coating. Another ceramic layer is atmospheric plasma sprayed onto the initial ceramic layer.

  16. A novel adaptive time stepping variant of the Boris–Buneman integrator for the simulation of particle accelerators with space charge

    SciTech Connect

    Toggweiler, Matthias; Adelmann, Andreas; Arbenz, Peter; Yang, Jianjun

    2014-09-15

    We show that adaptive time stepping in particle accelerator simulation is an enhancement for certain problems. The new algorithm has been implemented in the OPAL (Object Oriented Parallel Accelerator Library) framework. The idea is to adjust the frequency of costly self-field calculations, which are needed to model Coulomb interaction (space charge) effects. In analogy to a Kepler orbit simulation that requires a higher time step resolution at the close encounter, we propose to choose the time step based on the magnitude of the space charge forces. Inspired by geometric integration techniques, our algorithm chooses the time step proportional to a function of the current phase space state instead of calculating a local error estimate like a conventional adaptive procedure. Building on recent work, a more profound argument is given on how exactly the time step should be chosen. An intermediate algorithm, initially built to allow a clearer analysis by introducing separate time steps for external field and self-field integration, turned out to be useful by its own, for a large class of problems.

  17. Material approximation of data smoothing and spline curves inspired by slime mould.

    PubMed

    Jones, Jeff; Adamatzky, Andrew

    2014-09-01

    The giant single-celled slime mould Physarum polycephalum is known to approximate a number of network problems via growth and adaptation of its protoplasmic transport network and can serve as an inspiration towards unconventional, material-based computation. In Physarum, predictable morphological adaptation is prevented by its adhesion to the underlying substrate. We investigate what possible computations could be achieved if these limitations were removed and the organism was free to completely adapt its morphology in response to changing stimuli. Using a particle model of Physarum displaying emergent morphological adaptation behaviour, we demonstrate how a minimal approach to collective material computation may be used to transform and summarise properties of spatially represented datasets. We find that the virtual material relaxes more strongly to high-frequency changes in data, which can be used for the smoothing (or filtering) of data by approximating moving average and low-pass filters in 1D datasets. The relaxation and minimisation properties of the model enable the spatial computation of B-spline curves (approximating splines) in 2D datasets. Both clamped and unclamped spline curves of open and closed shapes can be represented, and the degree of spline curvature corresponds to the relaxation time of the material. The material computation of spline curves also includes novel quasi-mechanical properties, including unwinding of the shape between control points and a preferential adhesion to longer, straighter paths. Interpolating splines could not directly be approximated due to the formation and evolution of Steiner points at narrow vertices, but were approximated after rectilinear pre-processing of the source data. This pre-processing was further simplified by transforming the original data to contain the material inside the polyline. These exemplary results expand the repertoire of spatially represented unconventional computing devices by demonstrating a

  18. A toxicology suite adapted for comparing parallel toxicity responses of model human lung cells to diesel exhaust particles and their extracts

    PubMed Central

    Turner, Jane; Hernandez, Mark; Snawder, John E.; Handorean, Alina; McCabe, Kevin M.

    2015-01-01

    Epidemiological studies have shown that exposure to airborne particulate matter can be an important risk factor for some common respiratory diseases. While many studies have shown that particulate matter exposures are associated with inflammatory reactions, the role of specific cellular responses in the manifestation of primary hypersensitivities, and the progression of respiratory diseases remains unclear. In order to better understand mechanisms by which particulate matter can exert adverse health effects, more robust approaches to support in vitro studies are warranted. In response to this need, a group of accepted toxicology assays were adapted to create an analytical suite for screening and evaluating the effects of important, ubiquitous atmospheric pollutants on two model human lung cell lines (epithelial and immature macrophage). To demonstrate the utility of this suite, responses to intact diesel exhaust particles, and mass-based equivalent doses of their organic extracts were examined. Results suggest that extracts have the potential to induce greater biological responses than those associated with their colloidal counterpart. Additionally, macrophage cells appear to be more susceptible to the cytotoxic effects of both intact diesel exhaust particles and their organic extract, than epithelial cells tested in parallel. As designed, the suite provided a more robust basis for characterizing toxicity mechanisms than the analysis of any individual assay. Findings suggest that cellular responses to particulate matter are cell line dependent, and show that the collection and preparation of PM and/or their extracts have the potential to impact cellular responses relevant to screening fundamental elements of respiratory toxicity. PMID:26412929

  19. Fast Particle Methods for Multiscale Phenomena Simulations

    NASA Technical Reports Server (NTRS)

    Koumoutsakos, P.; Wray, A.; Shariff, K.; Pohorille, Andrew

    2000-01-01

    We are developing particle methods oriented at improving computational modeling capabilities of multiscale physical phenomena in : (i) high Reynolds number unsteady vortical flows, (ii) particle laden and interfacial flows, (iii)molecular dynamics studies of nanoscale droplets and studies of the structure, functions, and evolution of the earliest living cell. The unifying computational approach involves particle methods implemented in parallel computer architectures. The inherent adaptivity, robustness and efficiency of particle methods makes them a multidisciplinary computational tool capable of bridging the gap of micro-scale and continuum flow simulations. Using efficient tree data structures, multipole expansion algorithms, and improved particle-grid interpolation, particle methods allow for simulations using millions of computational elements, making possible the resolution of a wide range of length and time scales of these important physical phenomena.The current challenges in these simulations are in : [i] the proper formulation of particle methods in the molecular and continuous level for the discretization of the governing equations [ii] the resolution of the wide range of time and length scales governing the phenomena under investigation. [iii] the minimization of numerical artifacts that may interfere with the physics of the systems under consideration. [iv] the parallelization of processes such as tree traversal and grid-particle interpolations We are conducting simulations using vortex methods, molecular dynamics and smooth particle hydrodynamics, exploiting their unifying concepts such as : the solution of the N-body problem in parallel computers, highly accurate particle-particle and grid-particle interpolations, parallel FFT's and the formulation of processes such as diffusion in the context of particle methods. This approach enables us to transcend among seemingly unrelated areas of research.

  20. Airway smooth muscle in the pathophysiology and treatment of asthma

    PubMed Central

    Solway, Julian

    2013-01-01

    Airway smooth muscle (ASM) plays an integral part in the pathophysiology of asthma. It is responsible for acute bronchoconstriction, which is potentiated by constrictor hyperresponsiveness, impaired relaxation and length adaptation. ASM also contributes to airway remodeling and inflammation in asthma. In light of this, ASM is an important target in the treatment of asthma. PMID:23305987

  1. The role of photo-osmotic adaptation in semi-continuous culture and lipid particle release from Dunaliella viridis

    DOE PAGES

    Davis, Ryan W.; Carvalho, Benjamin J.; Jones, Howland D. T.; Singh, Seema

    2014-05-13

    Great efforts have been made to elucidate the phenotypic responses of alga to varying levels of nutrients, osmotic environments, and photosynthetically active radiation intensities, though the role of interactions among these variables is largely nebulous. We also describe a general method for establishing and maintaining semi-continuous cultures of the halophilic microalgal production strain, Dunaliella viridis, that is independent of variations in salinity and illumination intensity. Using this method, the cultures were evaluated to elucidate the overlapping roles of photosynthetic and osmotic adaptation on the accumulation and compositional variation of the biomass, photosynthetic productivity, and physiological biomarkers, as well as spectroscopicmore » and morphological details at the single-cell level. Correlation matrices defining the relationships among the observables and based on variation of the illumination intensity and salinity were constructed for predicting bioproduct yields for varying culture conditions. Following maintenance of stable cultures for 6-week intervals, phenotypic responses to photo-osmotic drift were explored using a combination of single-cell hyperspectral fluorescence imaging and flow cytometry. In addition to morphological changes, release of lipid microparticles from the cells that is disproportionate to cell lysis was observed under hypotonic drift, indicating the existence of a reversible membrane permeation mechanism in Dunaliella. Furthermore, this phenomenon introduces the potential for low-cost strategies for recovering lipids and pigments from the microalgae by minimizing the requirement for energy intensive harvesting and dewatering of the biomass. The results should be applicable to outdoor culture, where seasonal changes resulting in variable solar flux and precipitation and evaporation rates are anticipated.« less

  2. The role of photo-osmotic adaptation in semi-continuous culture and lipid particle release from Dunaliella viridis

    SciTech Connect

    Davis, Ryan W.; Carvalho, Benjamin J.; Jones, Howland D. T.; Singh, Seema

    2014-05-13

    Great efforts have been made to elucidate the phenotypic responses of alga to varying levels of nutrients, osmotic environments, and photosynthetically active radiation intensities, though the role of interactions among these variables is largely nebulous. We also describe a general method for establishing and maintaining semi-continuous cultures of the halophilic microalgal production strain, Dunaliella viridis, that is independent of variations in salinity and illumination intensity. Using this method, the cultures were evaluated to elucidate the overlapping roles of photosynthetic and osmotic adaptation on the accumulation and compositional variation of the biomass, photosynthetic productivity, and physiological biomarkers, as well as spectroscopic and morphological details at the single-cell level. Correlation matrices defining the relationships among the observables and based on variation of the illumination intensity and salinity were constructed for predicting bioproduct yields for varying culture conditions. Following maintenance of stable cultures for 6-week intervals, phenotypic responses to photo-osmotic drift were explored using a combination of single-cell hyperspectral fluorescence imaging and flow cytometry. In addition to morphological changes, release of lipid microparticles from the cells that is disproportionate to cell lysis was observed under hypotonic drift, indicating the existence of a reversible membrane permeation mechanism in Dunaliella. Furthermore, this phenomenon introduces the potential for low-cost strategies for recovering lipids and pigments from the microalgae by minimizing the requirement for energy intensive harvesting and dewatering of the biomass. The results should be applicable to outdoor culture, where seasonal changes resulting in variable solar flux and precipitation and evaporation rates are anticipated.

  3. Smooth Muscle Strips for Intestinal Tissue Engineering

    PubMed Central

    Walthers, Christopher M.; Lee, Min; Wu, Benjamin M.; Dunn, James C. Y.

    2014-01-01

    Functionally contracting smooth muscle is an essential part of the engineered intestine that has not been replicated in vitro. The purpose of this study is to produce contracting smooth muscle in culture by maintaining the native smooth muscle organization. We employed intact smooth muscle strips and compared them to dissociated smooth muscle cells in culture for 14 days. Cells isolated by enzymatic digestion quickly lost maturity markers for smooth muscle cells and contained few enteric neural and glial cells. Cultured smooth muscle strips exhibited periodic contraction and maintained neural and glial markers. Smooth muscle strips cultured for 14 days also exhibited regular fluctuation of intracellular calcium, whereas cultured smooth muscle cells did not. After implantation in omentum for 14 days on polycaprolactone scaffolds, smooth muscle strip constructs expressed high levels of smooth muscle maturity markers as well as enteric neural and glial cells. Intact smooth muscle strips may be a useful component for engineered intestinal smooth muscle. PMID:25486279

  4. Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles

    NASA Astrophysics Data System (ADS)

    Hummel, M.; Hoose, C.; Gallagher, M.; Healy, D. A.; Huffman, J. A.; O'Connor, D.; Pöschl, U.; Pöhlker, C.; Robinson, N. H.; Schnaiter, M.; Sodeau, J. R.; Stengel, M.; Toprak, E.; Vogel, H.

    2015-06-01

    Fungal spores as a prominent type of primary biological aerosol particles (PBAP) have been incorporated into the COSMO-ART (Consortium for Small-scale Modelling-Aerosols and Reactive Trace gases) regional atmospheric model. Two literature-based emission rates for fungal spores derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization for fluorescent biological aerosol particles (FBAP) was adapted to field measurements from four locations across Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at approx. 3 μm, corresponding to a diameter range characteristic for many fungal spores. Previous studies for several locations have suggested that FBAP are in many cases dominated by fungal spores. Thus, we suggest that simulated FBAP and fungal spore concentrations obtained from the three different emission parameterizations can be compared to FBAP measurements. The comparison reveals that simulated fungal spore concentrations based on literature emission parameterizations are lower than measured FBAP concentrations. In agreement with the measurements, the model results show a diurnal cycle in simulated fungal spore concentrations, which may develop partially as a consequence of a varying boundary layer height between day and night. Temperature and specific humidity, together with leaf area index (LAI), were chosen to drive the new emission parameterization which is fitted to the FBAP observations. The new parameterization results in similar root mean square errors (RMSEs) and correlation coefficients compared to the FBAP observations as the previously existing fungal spore emission parameterizations, with some improvements in the bias. Using the new emission parameterization on a model domain covering western Europe, FBAP in the lowest model layer comprise a

  5. Smooth Sailing with Contract Services.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2001-01-01

    Discusses how to make the contract services relationship work smoothly for educational facilities. Covers topics of food, child care, and transportation services, along with a brief explanation of the benefits of outsourcing on-campus amenities. (GR)

  6. Active controls for ride smoothing

    NASA Technical Reports Server (NTRS)

    Conner, D. W.; Thompson, G. O.

    1976-01-01

    Active controls technology offers great promise for significantly smoothing the ride, and thus improving public and air carrier acceptance, of certain types of transport aircraft. Recent findings which support this promise are presented in the following three pertinent areas: (1) Ride quality versus degree of traveler satisfaction; (2) significant findings from a feasibility study of a ride smoothing system; and (3) potential ride problems identified for several advanced transport concepts.

  7. Smooth electrode and method of fabricating same

    DOEpatents

    Weaver, Stanton Earl; Kennerly, Stacey Joy; Aimi, Marco Francesco

    2012-08-14

    A smooth electrode is provided. The smooth electrode includes at least one metal layer having thickness greater than about 1 micron; wherein an average surface roughness of the smooth electrode is less than about 10 nm.

  8. Exotic smoothness and quantum gravity

    NASA Astrophysics Data System (ADS)

    Asselmeyer-Maluga, T.

    2010-08-01

    Since the first work on exotic smoothness in physics, it was folklore to assume a direct influence of exotic smoothness to quantum gravity. Thus, the negative result of Duston (2009 arXiv:0911.4068) was a surprise. A closer look into the semi-classical approach uncovered the implicit assumption of a close connection between geometry and smoothness structure. But both structures, geometry and smoothness, are independent of each other. In this paper we calculate the 'smoothness structure' part of the path integral in quantum gravity assuming that the 'sum over geometries' is already given. For that purpose we use the knot surgery of Fintushel and Stern applied to the class E(n) of elliptic surfaces. We mainly focus our attention to the K3 surfaces E(2). Then we assume that every exotic smoothness structure of the K3 surface can be generated by knot or link surgery in the manner of Fintushel and Stern. The results are applied to the calculation of expectation values. Here we discuss the two observables, volume and Wilson loop, for the construction of an exotic 4-manifold using the knot 52 and the Whitehead link Wh. By using Mostow rigidity, we obtain a topological contribution to the expectation value of the volume. Furthermore, we obtain a justification of area quantization.

  9. Null Steering of Adaptive Beamforming Using Linear Constraint Minimum Variance Assisted by Particle Swarm Optimization, Dynamic Mutated Artificial Immune System, and Gravitational Search Algorithm

    PubMed Central

    Sieh Kiong, Tiong; Tariqul Islam, Mohammad; Ismail, Mahamod; Salem, Balasem

    2014-01-01

    Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program. PMID:25147859

  10. Null steering of adaptive beamforming using linear constraint minimum variance assisted by particle swarm optimization, dynamic mutated artificial immune system, and gravitational search algorithm.

    PubMed

    Darzi, Soodabeh; Kiong, Tiong Sieh; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Salem, Balasem

    2014-01-01

    Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program.

  11. A Novel Four-Node Quadrilateral Smoothing Element for Stress Enhancement and Error Estimation

    NASA Technical Reports Server (NTRS)

    Tessler, A.; Riggs, H. R.; Dambach, M.

    1998-01-01

    A four-node, quadrilateral smoothing element is developed based upon a penalized-discrete-least-squares variational formulation. The smoothing methodology recovers C1-continuous stresses, thus enabling effective a posteriori error estimation and automatic adaptive mesh refinement. The element formulation is originated with a five-node macro-element configuration consisting of four triangular anisoparametric smoothing elements in a cross-diagonal pattern. This element pattern enables a convenient closed-form solution for the degrees of freedom of the interior node, resulting from enforcing explicitly a set of natural edge-wise penalty constraints. The degree-of-freedom reduction scheme leads to a very efficient formulation of a four-node quadrilateral smoothing element without any compromise in robustness and accuracy of the smoothing analysis. The application examples include stress recovery and error estimation in adaptive mesh refinement solutions for an elasticity problem and an aerospace structural component.

  12. 7 CFR 51.768 - Smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Smooth texture. 51.768 Section 51.768 Agriculture... Standards for Grades of Florida Grapefruit Definitions § 51.768 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit. “Thin” means that the...

  13. 7 CFR 51.698 - Smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Smooth texture. 51.698 Section 51.698 Agriculture..., California, and Arizona) Definitions § 51.698 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit....

  14. 7 CFR 51.1159 - Smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Smooth texture. 51.1159 Section 51.1159 Agriculture... Standards for Grades of Florida Oranges and Tangelos Definitions § 51.1159 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit....

  15. 7 CFR 51.636 - Smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Smooth texture. 51.636 Section 51.636 Agriculture... Florida, California, and Arizona) Definitions § 51.636 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit....

  16. 7 CFR 51.636 - Smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Smooth texture. 51.636 Section 51.636 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...) Definitions § 51.636 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety...

  17. 7 CFR 51.1159 - Smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Smooth texture. 51.1159 Section 51.1159 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.1159 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety...

  18. 7 CFR 51.698 - Smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Smooth texture. 51.698 Section 51.698 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.698 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and...

  19. 7 CFR 51.698 - Smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Smooth texture. 51.698 Section 51.698 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.698 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and...

  20. 7 CFR 51.768 - Smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Smooth texture. 51.768 Section 51.768 Agriculture... Standards for Grades of Florida Grapefruit Definitions § 51.768 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit. “Thin” means that the...

  1. 7 CFR 51.768 - Smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Smooth texture. 51.768 Section 51.768 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of...

  2. 7 CFR 51.1159 - Smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Smooth texture. 51.1159 Section 51.1159 Agriculture... Standards for Grades of Florida Oranges and Tangelos Definitions § 51.1159 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit....

  3. 7 CFR 51.768 - Smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Smooth texture. 51.768 Section 51.768 Agriculture... Standards for Grades of Florida Grapefruit Definitions § 51.768 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit. “Thin” means that the...

  4. 7 CFR 51.698 - Smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Smooth texture. 51.698 Section 51.698 Agriculture..., California, and Arizona) Definitions § 51.698 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit....

  5. 7 CFR 51.1159 - Smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Smooth texture. 51.1159 Section 51.1159 Agriculture... Standards for Grades of Florida Oranges and Tangelos Definitions § 51.1159 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit....

  6. 7 CFR 51.698 - Smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Smooth texture. 51.698 Section 51.698 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.698 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and...

  7. 7 CFR 51.636 - Smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Smooth texture. 51.636 Section 51.636 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...) Definitions § 51.636 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety...

  8. 7 CFR 51.636 - Smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Smooth texture. 51.636 Section 51.636 Agriculture... Florida, California, and Arizona) Definitions § 51.636 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit....

  9. 7 CFR 51.636 - Smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Smooth texture. 51.636 Section 51.636 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...) Definitions § 51.636 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety...

  10. 7 CFR 51.1159 - Smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Smooth texture. 51.1159 Section 51.1159 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.1159 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety...

  11. Application of multi-objective controller to optimal tuning of PID gains for a hydraulic turbine regulating system using adaptive grid particle swam optimization.

    PubMed

    Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu

    2015-05-01

    A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions.

  12. Surface antigens of smooth brucellae.

    PubMed

    Diaz, R; Jones, L M; Leong, D; Wilson, J B

    1968-10-01

    Surface antigens of smooth brucellae were extracted by ether-water, phenol-water, trichloroacetic acid, and saline and examined by immunoelectrophoresis and gel diffusion with antisera from infected and immunized rabbits. Ether-water extracts of Brucella melitensis contained a lipopolysaccharide protein component, which was specific for the surface of smooth brucellae and was correlated with the M agglutinogen of Wilson and Miles, a polysaccharide protein component devoid of lipid which was not restricted to the surface of smooth brucellae and was not correlated with the smooth agglutinogen (component 1), and several protein components which were associated with internal antigens of rough and smooth brucellae. Immunoelectrophoretic analysis of ether-water extracts of B. abortus revealed only two components, a lipopolysaccharide protein component, which was correlated with the A agglutinogen, and component 1. Component 1 from B. melitensis and B. abortus showed identity in gel diffusion tests, whereas component M from B. melitensis and component A from B. abortus showed partial identity with unabsorbed antisera and no cross-reactions with monospecific sera. Attempts to prepare monospecific sera directly by immunization of rabbits with cell walls or ether-water extracts were unsuccessful. Absorption of antisera with heavy fraction of ether-water extracts did not always result in monospecific sera. It was concluded (as has been described before) that the A and M antigens are present on a single antigenic complex, in different proportions depending upon the species and biotype, and that this component is a lipopolysaccharide protein complex of high molecular weight that diffuses poorly through agar gel. Components 1, A, and M were also demonstrated in trichloroacetic acid and phenol-water extracts. With all extracts, B. melitensis antigen showed greater diffusibility in agar than B. abortus antigens. After mild acid hydrolysis, B. abortus ether-water extract was able

  13. An Adaptive TVD Limiter

    NASA Astrophysics Data System (ADS)

    Jeng, Yih Nen; Payne, Uon Jan

    1995-05-01

    An adaptive TVD limiter, based on a limiter approximating the upper boundary of the TVD range and that of the third-order upwind TVD scheme, is developed in this work. The limiter switches to the comprressive limiter near a discontinuity, to the third-order TVD scheme's limiter in the smooth region, and to a weighted averaged scheme in the transition region between smooth and high gradient solutions. Numerical experiments show that the proposed scheme works very well for one-dimensional scalar equation problems but becomes less effective in one- and two-dimensional Euler equation problems. Further study is required for the two-dimensional scalar equation problems.

  14. Characterizing the Pressure Smoothing Scale of the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Hennawi, Joseph F.; Oñorbe, Jose; Rorai, Alberto; Springel, Volker

    2015-10-01

    The thermal state of the intergalactic medium (IGM) at z < 6 constrains the nature and timing of cosmic reionization events, but its inference from the Lyα forest is degenerate with the 3D structure of the IGM on ∼100 kpc scales, where, analogous to the classical Jeans argument, the pressure of the T ≃ 104 K gas supports it against gravity. We simulate the IGM using smoothed particle hydrodynamics, and find that, at z < 6, the gas density power spectrum does not exhibit the expected filtering scale cutoff, because dense gas in collapsed halos dominates the small-scale power masking pressure smoothing effects. We introduce a new statistic, the real-space Lyα flux, Freal, which naturally suppresses dense gas, and is thus robust against the poorly understood physics of galaxy formation, revealing pressure smoothing in the diffuse IGM. The Freal power spectrum is accurately described by a simple fitting function with cutoff at λF, allowing us to rigorously quantify the pressure smoothing scale for the first time: we find λF = 79 kpc (comoving) at z = 3 for our fiducial thermal model. This statistic has the added advantage that it directly relates to observations of correlated Lyα forest absorption in close quasar pairs, recently proposed as a method to measure the pressure smoothing scale. Our results enable one to quantify the pressure smoothing scale in simulations, and ask meaningful questions about its dependence on reionization and thermal history. Accordingly, the standard description of the IGM in terms of the amplitude T0 and slope γ of the temperature–density relation T={T}0{(ρ /\\bar{ρ })}γ -1 should be augmented with a third pressure smoothing scale parameter λF.

  15. Motion transparency: depth ordering and smooth pursuit eye movements.

    PubMed

    Schütz, Alexander C

    2011-12-28

    When two overlapping, transparent surfaces move in different directions, there is ambiguity with respect to the depth ordering of the surfaces. Little is known about the surface features that are used to resolve this ambiguity. Here, we investigated the influence of different surface features on the perceived depth order and the direction of smooth pursuit eye movements. Surfaces containing more dots, moving opposite to an adapted direction, moving at a slower speed, or moving in the same direction as the eyes were more likely to be seen in the back. Smooth pursuit eye movements showed an initial preference for surfaces containing more dots, moving in a non-adapted direction, moving at a faster speed, and being composed of larger dots. After 300 to 500 ms, smooth pursuit eye movements adjusted to perception and followed the surface whose direction had to be indicated. The differences between perceived depth order and initial pursuit preferences and the slow adjustment of pursuit indicate that perceived depth order is not determined solely by the eye movements. The common effect of dot number and motion adaptation suggests that global motion strength can induce a bias to perceive the stronger motion in the back.

  16. Young Craters on Smooth Plains

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Young craters (the largest of which is about 100 kilometers in diameter) superposed on smooth plains. Larger young craters have central peaks, flat floors, terraced walls, radial ejecta deposits, and surrounding fields of secondary craters. Smooth plains have well-developed ridges extending NW and NE. This image (FDS 167), acquired during the spacecraft's first encounter with Mercury, is located approximately 60 degrees N, 175 degrees W.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  17. Smoothing of mixed complementarity problems

    SciTech Connect

    Gabriel, S.A.; More, J.J.

    1995-09-01

    The authors introduce a smoothing approach to the mixed complementarity problem, and study the limiting behavior of a path defined by approximate minimizers of a nonlinear least squares problem. The main result guarantees that, under a mild regularity condition, limit points of the iterates are solutions to the mixed complementarity problem. The analysis is applicable to a wide variety of algorithms suitable for large-scale mixed complementarity problems.

  18. 7 CFR 51.768 - Smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit. “Thin” means that the skin thickness does not average more than 3/8 inch (9.5 mm), on a...

  19. 7 CFR 51.1870 - Fairly smooth.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly smooth. 51.1870 Section 51.1870 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Fresh Tomatoes 1 Definitions § 51.1870 Fairly smooth. Fairly smooth means that the tomato...

  20. 7 CFR 51.1870 - Fairly smooth.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Fairly smooth. 51.1870 Section 51.1870 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Fresh Tomatoes 1 Definitions § 51.1870 Fairly smooth. Fairly smooth means that the tomato is not conspicuously ridged or rough....

  1. 7 CFR 51.1910 - Fairly smooth.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly smooth. 51.1910 Section 51.1910 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Consumer Standards for Fresh Tomatoes Definitions § 51.1910 Fairly smooth. Fairly smooth means that...

  2. 7 CFR 51.1870 - Fairly smooth.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly smooth. 51.1870 Section 51.1870 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Fresh Tomatoes 1 Definitions § 51.1870 Fairly smooth. Fairly smooth means that the tomato is not conspicuously ridged or rough....

  3. 7 CFR 51.1870 - Fairly smooth.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly smooth. 51.1870 Section 51.1870 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Fresh Tomatoes 1 Definitions § 51.1870 Fairly smooth. Fairly smooth means that the tomato...

  4. 7 CFR 51.1870 - Fairly smooth.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly smooth. 51.1870 Section 51.1870 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Fresh Tomatoes 1 Definitions § 51.1870 Fairly smooth. Fairly smooth means that the tomato...

  5. 7 CFR 51.1910 - Fairly smooth.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly smooth. 51.1910 Section 51.1910 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Consumer Standards for Fresh Tomatoes Definitions § 51.1910 Fairly smooth. Fairly smooth means that...

  6. 7 CFR 51.1910 - Fairly smooth.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Fairly smooth. 51.1910 Section 51.1910 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... smooth. Fairly smooth means that the tomato is not conspicuously ridged or rough....

  7. 7 CFR 51.1910 - Fairly smooth.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly smooth. 51.1910 Section 51.1910 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... smooth. Fairly smooth means that the tomato is not conspicuously ridged or rough....

  8. 7 CFR 51.1910 - Fairly smooth.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly smooth. 51.1910 Section 51.1910 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Consumer Standards for Fresh Tomatoes Definitions § 51.1910 Fairly smooth. Fairly smooth means that...

  9. A SAS IML Macro for Loglinear Smoothing

    ERIC Educational Resources Information Center

    Moses, Tim; von Davier, Alina

    2011-01-01

    Polynomial loglinear models for one-, two-, and higher-way contingency tables have important applications to measurement and assessment. They are essentially regarded as a smoothing technique, which is commonly referred to as loglinear smoothing. A SAS IML (SAS Institute, 2002a) macro was created to implement loglinear smoothing according to…

  10. Radiative Transport for a Smoothed Particle Hydrodynamic Code

    NASA Astrophysics Data System (ADS)

    Lang, Bernd; Kessel-Deynet, Olaf; Burkert, Andreas

    One crude approximation to describe the effect of Radiative Transport in SPH simulations is to introduce a density dependent polytropic index in the equation of state (Matthew R. Bate 1998), which is larger than one if the medium becomes optically thick. By doing this one fixes the system to a special density-temperature dependence. But in principle the system should have the possibility to realize a variety of different density-temperature dependencies if radiative transport is involved and arbitrary heating and cooling functions can be used. We combine the advantages of the SPH Code with an algorithm describing a flux limited diffusive radiative transport to develop a RHD-Code. Flux limited diffusion involves the Rosseland-means of the absorption and scattering coefficients. To calculate this coefficients we use the model from Preibisch et al. 1993. This will restrict our simulations to low temperatures (T <= 1000 K) and high densities (ρ >= 103 cm-3) but on the other hand keeps the code as simple and as fast as possible. For a given energy-density distribution, the radiation field evolves towards the equilibrium solution on a time-scale much smaller than the typical dynamical time-step for the hydrodynamic equations. So the RT equations have to be solved implicit. To do this we use the nice convergence features of the Successive Over-Relaxing (SOR) method. The focus of the simulations than will be on the prestellar phase where molecular cloud cores become optically thick. The central temperature is still low (T = 10 dots 500 K) and thus the ionization and dissociation degree is low and nearly constant.

  11. Modeling partially coupled objects with smooth particle hydrodynamics

    SciTech Connect

    Wingate, C.A.

    1996-10-01

    A very simple phenomenological model is presented to model objects that are partially coupled (i.e. welded or bonded) where usually the coupled interface is weaker than the bulk material. The model works by letting objects fully interact in compression and having the objects only partially interact in tension. A disconnect factor is provided to adjust the tensile interaction to simulate coupling strengths. Three cases of an example impact calculation are shown-no coupling, full coupling and partial coupling.

  12. Smooth metrics for snapping strings

    NASA Astrophysics Data System (ADS)

    Gregory, Ruth; Hindmarsh, Mark

    1995-11-01

    We construct two possible metrics for Abelian Higgs vortices with ends on black holes. We show how the detail of the vortex fields smooths out the nodal singularities which exist in the idealized metrics. A corollary is that apparently topologically stable strings might be able to split by black hole pair production. We estimate the rate per unit length by reference to related Ernst and C-metric instantons, concluding that it is completely negligible for GUT-scale strings. The estimated rate for macroscopic superstrings is much higher, although still extremely small, unless there is an early phase of strong coupling.

  13. Smooth halos in the cosmic web

    NASA Astrophysics Data System (ADS)

    Gaite, José

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ``smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  14. Smooth halos in the cosmic web

    SciTech Connect

    Gaite, José

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  15. Standard-smooth hybrid inflation

    SciTech Connect

    Lazarides, George; Vamvasakis, Achilleas

    2007-12-15

    We consider the extended supersymmetric Pati-Salam model which, for {mu}>0 and universal boundary conditions, succeeds to yield experimentally acceptable b-quark masses by moderately violating Yukawa unification. It is known that this model can lead to new shifted or new smooth hybrid inflation. We show that a successful two-stage inflationary scenario can be realized within this model based only on renormalizable superpotential interactions. The cosmological scales exit the horizon during the first stage of inflation, which is of the standard hybrid type and takes place along the trivial flat direction with the inflaton driven by radiative corrections. Spectral indices compatible with the recent data can be achieved in global supersymmetry or minimal supergravity by restricting the number of e-foldings of our present horizon during the first inflationary stage. The additional e-foldings needed for solving the horizon and flatness problems are naturally provided by a second stage of inflation, which occurs mainly along the built-in new smooth hybrid inflationary path appearing right after the destabilization of the trivial flat direction at its critical point. Monopoles are formed at the end of the first stage of inflation and are, subsequently, diluted by the second stage of inflation to become utterly negligible in the present universe for almost all (for all) the allowed values of the parameters in the case of global supersymmetry (minimal supergravity)

  16. Locally-Based Kernal PLS Smoothing to Non-Parametric Regression Curve Fitting

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Trejo, Leonard J.; Wheeler, Kevin; Korsmeyer, David (Technical Monitor)

    2002-01-01

    We present a novel smoothing approach to non-parametric regression curve fitting. This is based on kernel partial least squares (PLS) regression in reproducing kernel Hilbert space. It is our concern to apply the methodology for smoothing experimental data where some level of knowledge about the approximate shape, local inhomogeneities or points where the desired function changes its curvature is known a priori or can be derived based on the observed noisy data. We propose locally-based kernel PLS regression that extends the previous kernel PLS methodology by incorporating this knowledge. We compare our approach with existing smoothing splines, hybrid adaptive splines and wavelet shrinkage techniques on two generated data sets.

  17. Efficient sinogram smoothing for dynamic neuroreceptor PET imaging

    NASA Astrophysics Data System (ADS)

    Pan, Xiaochuan; La Riviere, Patrick J.; Ye, James; Mukherjee, J.; Chen, Chin-Tu

    1997-05-01

    We have developed image-restoration techniques applicable to dynamic positron emission tomography that improve the visual quality and quantitative accuracy of neuroreceptor images. Starting wit data from a study of dopamine D-2 receptors in rhesus monkey striata using selective radioligands such as fallypride, we performed a novel effective 3D smoothing of the dynamic sinogram at a much lower computational cost than a truly 3D, adaptive smoothing. The processed sinogram was then input to a standard filtered back-projection algorithm and the resulting images were sharper and less noisy than images reconstructed from the unprocessed sinogram. Simulations were performed and the radioligand binding curves extracted from the restored images were found to be smoother and more accurate than those extracted form the unprocessed reconstructions. Comparison was also made to reconstructions from sinograms processed by the principal component analysis/projection onto convex sets algorithm.

  18. Two-way coupled SPH and particle level set fluid simulation.

    PubMed

    Losasso, Frank; Talton, Jerry; Kwatra, Nipun; Fedkiw, Ronald

    2008-01-01

    Grid-based methods have difficulty resolving features on or below the scale of the underlying grid. Although adaptive methods (e.g. RLE, octrees) can alleviate this to some degree, separate techniques are still required for simulating small-scale phenomena such as spray and foam, especially since these more diffuse materials typically behave quite differently than their denser counterparts. In this paper, we propose a two-way coupled simulation framework that uses the particle level set method to efficiently model dense liquid volumes and a smoothed particle hydrodynamics (SPH) method to simulate diffuse regions such as sprays. Our novel SPH method allows us to simulate both dense and diffuse water volumes, fully incorporates the particles that are automatically generated by the particle level set method in under-resolved regions, and allows for two way mixing between dense SPH volumes and grid-based liquid representations.

  19. Smoothing and the second law

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    1987-01-01

    The technique of obtaining second-order oscillation-free total -variation-diminishing (TVD), scalar difference schemes by adding a limited diffusive flux ('smoothing') to a second-order centered scheme is explored. It is shown that such schemes do not always converge to the correct physical answer. The approach presented here is to construct schemes that numerically satisfy the second law of thermodynamics on a cell-by-cell basis. Such schemes can only converge to the correct physical solution and in some cases can be shown to be TVD. An explicit scheme with this property and second-order spatial accuracy was found to have extremely restrictive time-step limitation. Switching to an implicit scheme removed the time-step limitation.

  20. Smoothing and the second law

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    1986-01-01

    The technique of obtaining second order, oscillation free, total variation diminishing (TVD), scalar difference schemes by adding a limited diffusion flux (smoothing) to a second order centered scheme is explored. It is shown that such schemes do not always converge to the correct physical answer. The approach presented here is to construct schemes that numerically satisfy the second law of thermodynamics on a cell by cell basis. Such schemes can only converge to the correct physical solution and in some cases can be shown to be TVD. An explicit scheme with this property and second order spatial accuracy was found to have an extremely restrictive time step limitation (Delta t less than Delta x squared). Switching to an implicit scheme removed the time step limitation.

  1. Smoothing Rotation Curves and Mass Profiles

    NASA Astrophysics Data System (ADS)

    Berrier, Joel C.; Sellwood, J. A.

    2015-02-01

    We show that spiral activity can erase pronounced features in disk galaxy rotation curves. We present simulations of growing disks, in which the added material has a physically motivated distribution, as well as other examples of physically less realistic accretion. In all cases, attempts to create unrealistic rotation curves were unsuccessful because spiral activity rapidly smoothed away features in the disk mass profile. The added material was redistributed radially by the spiral activity, which was itself provoked by the density feature. In the case of a ridge-like feature in the surface density profile, we show that two unstable spiral modes develop, and the associated angular momentum changes in horseshoe orbits remove particles from the ridge and spread them both inward and outward. This process rapidly erases the density feature from the disk. We also find that the lack of a feature when transitioning from disk to halo dominance in the rotation curves of disk galaxies, the so called "disk-halo conspiracy," could also be accounted for by this mechanism. We do not create perfectly exponential mass profiles in the disk, but suggest that this mechanism contributes to their creation.

  2. SMOOTHING ROTATION CURVES AND MASS PROFILES

    SciTech Connect

    Berrier, Joel C.; Sellwood, J. A.

    2015-02-01

    We show that spiral activity can erase pronounced features in disk galaxy rotation curves. We present simulations of growing disks, in which the added material has a physically motivated distribution, as well as other examples of physically less realistic accretion. In all cases, attempts to create unrealistic rotation curves were unsuccessful because spiral activity rapidly smoothed away features in the disk mass profile. The added material was redistributed radially by the spiral activity, which was itself provoked by the density feature. In the case of a ridge-like feature in the surface density profile, we show that two unstable spiral modes develop, and the associated angular momentum changes in horseshoe orbits remove particles from the ridge and spread them both inward and outward. This process rapidly erases the density feature from the disk. We also find that the lack of a feature when transitioning from disk to halo dominance in the rotation curves of disk galaxies, the so called ''disk-halo conspiracy'', could also be accounted for by this mechanism. We do not create perfectly exponential mass profiles in the disk, but suggest that this mechanism contributes to their creation.

  3. Adhesion of Ceramic Coating on Thin and Smooth Metal Substrate: A Novel Approach with a Nanostructured Ceramic Interlayer

    NASA Astrophysics Data System (ADS)

    Vert, R.; Carles, P.; Laborde, E.; Mariaux, G.; Meillot, E.; Vardelle, A.

    2012-12-01

    The adhesion of plasma-sprayed coating is, to a large extent, controlled by the cleanness and roughness of the surface on which the coating is deposited. So, most of the plasma spray procedures involve surface pretreatment by grit-blasting to adapt the roughness of the surface to the size of the impacting particles. This preparation process brings about compressive stresses that make it inappropriate for thin substrates. The present works aim to elaborate a thick ceramic coating (about 0.5 mm thick) on a thin metal substrate (1 mm thick) with a smooth surface (Ra of about 0.4 μm). The coating system is intended for use in a Generation-IV nuclear energy system. It must exhibit a good adhesion between the ceramic topcoat and the smooth metal substrate to meet the specifications of the application. Our approach consisted of depositing the ceramic topcoat by air plasma spraying on a few micrometers thick ceramic layer made by suspension plasma spraying. This nanostructured layer played the role of a bond coat for the topcoat and made it possible to deposit it on the as-received substrate. The adhesion of the nanostructured layer was measured by the Vickers indentation cracking technique and that of the ceramic duplex coating system by tensile test.

  4. Smooth Crossed Products of Rieffel's Deformations

    NASA Astrophysics Data System (ADS)

    Neshveyev, Sergey

    2014-03-01

    Assume is a Fréchet algebra equipped with a smooth isometric action of a vector group V, and consider Rieffel's deformation of . We construct an explicit isomorphism between the smooth crossed products and . When combined with the Elliott-Natsume-Nest isomorphism, this immediately implies that the periodic cyclic cohomology is invariant under deformation. Specializing to the case of smooth subalgebras of C*-algebras, we also get a simple proof of equivalence of Rieffel's and Kasprzak's approaches to deformation.

  5. Smooth GERBS, orthogonal systems and energy minimization

    SciTech Connect

    Dechevsky, Lubomir T. E-mail: pza@hin.no; Zanaty, Peter E-mail: pza@hin.no

    2013-12-18

    New results are obtained in three mutually related directions of the rapidly developing theory of generalized expo-rational B-splines (GERBS) [7, 6]: closed-form computability of C{sup ∞}-smooth GERBS in terms of elementary and special functions, Hermite interpolation and least-squares best approximation via smooth GERBS, energy minimizing properties of smooth GERBS similar to those of the classical cubic polynomial B-splines.

  6. On a smooth quintic 4-fold

    SciTech Connect

    Cheltsov, I A

    2000-10-31

    The birational geometry of an arbitrary smooth quintic 4-fold is studied using the properties of log pairs. As a result, a new proof of its birational rigidity is given and all birational maps of a smooth quintic 4-fold into fibrations with general fibre of Kodaira dimension zero are described. In the Addendum similar results are obtained for all smooth hypersurfaces of degree n in P{sup n} in the case of n equal to 6, 7, or 8.

  7. Excretion patterns of solute and different-sized particle passage markers in foregut-fermenting proboscis monkey (Nasalis larvatus) do not indicate an adaptation for rumination.

    PubMed

    Matsuda, Ikki; Sha, John C M; Ortmann, Sylvia; Schwarm, Angela; Grandl, Florian; Caton, Judith; Jens, Warner; Kreuzer, Michael; Marlena, Diana; Hagen, Katharina B; Clauss, Marcus

    2015-10-01

    Behavioral observations and small fecal particles compared to other primates indicate that free-ranging proboscis monkeys (Nasalis larvatus) have a strategy of facultative merycism(rumination). In functional ruminants (ruminant and camelids), rumination is facilitated by a particle sorting mechanism in the forestomach that selectively retains larger particles and subjects them to repeated mastication. Using a set of a solute and three particle markers of different sizes (b2, 5 and 8mm),we displayed digesta passage kinetics and measured mean retention times (MRTs) in four captive proboscis monkeys (6–18 kg) and compared the marker excretion patterns to those in domestic cattle. In addition, we evaluated various methods of calculating and displaying passage characteristics. The mean ± SD dry matter intake was 98 ± 22 g kg−0.75 d−1, 68 ± 7% of which was browse. Accounting for sampling intervals in MRT calculation yielded results that were not affected by the sampling frequency. Displaying marker excretion patterns using fecal marker concentrations (rather than amounts) facilitated comparisons with reactor theory outputs and indicated that both proboscis and cattle digestive tracts represent a series of very few tank reactors. However, the separation of the solute and particle marker and the different-sized particle markers, evident in cattle, did not occur in proboscis monkeys, in which all markers moved together, at MRTs of approximately 40 h. The results indicate that the digestive physiology of proboscis monkeys does not show typical characteristics of ruminants, which may explain why merycism is only a facultative strategy in this species. PMID:26004169

  8. Adaptations of Phytoplankton to Sunlight and Other Optical Properties of Aquatic Ecosystem Particles Detected With a Portable Integrating Sphere Version of QFT

    NASA Astrophysics Data System (ADS)

    Hargreaves, B. R.

    2006-12-01

    Suspended particles in aquatic ecosystems include autotrophic and heterotrophic micro-organisms, organic detritus, and suspended mineral particles. Spectral optical properties of these particles can be useful in characterizing the attenuation of sunlight underwater, the distribution and types of organisms, and their biological response to the underwater physical gradients, including photosynthesis and the release of dissolved organic matter. Recent measurements of spectral absorption of phytoplankton exposed to strong ultraviolet radiation (UVR) near the surface and declining irradiance with depth have shown a tendency to produce natural UV-B sunscreen compounds (MAA's) in proportion to the intensity of exposure to UV-B. A down-regulation of chlorophyll-a pigment with increasing intensity of visible wavelengths is well known. Some recent data also suggest a negative correlation between phytoplankton biomass and water column exposure to UV-B as mediated by stratospheric ozone. The standard method of characterizing the spectral optical properties of particles in aquatic ecosystems is the Quantitative Filterpad Technique (QFT) in which a water sample is concentrated on a fine glass fiber filter (GFF) and its optical density is then measured in the beam of a scanning spectrophotometer. An improved QFT method (QFT-TR) established in the past decade involves laboratory measurement of both transmittance and reflectance for each sample using an integrating sphere attachment in a scanning spectrophotometer. Both methods have disadvantages. Particle spectral data from a number of freshwater ecosystems were collected using a new battery-powered instrument that combines integrating sphere, lamp, and fiber optic spectrometer to create a portable improved QFT (pQFT-TR). Transmittance, reflectances, and absorbance spectra for particles from streams (rich in mineral particles) and lakes (some with humic particles, others with predominantly phytoplankton) are compared using the old

  9. Polarization smoothing for the National Ignition Facility

    SciTech Connect

    Rothenberg, J F

    1998-08-13

    Polarization smoothing (PS) is the illumination of the target with two distinct and orthogonally polarized speckle patterns. Since these two polarizations do not interfere, the intensity patterns add incoherently and thus the contrast of the intensity nonuniformity can be reduced by a factor of {radical}2 in addition to any reduction achieved by temporal smoothing techniques. Smoothing by PS is completely effective on an instantaneous basis and is therefore of particular interest for the suppression of laser plasma instabilities, which have a very rapid response time. The various implementations of PS are considered and their impact, in conjunction with temporal smoothing methods, on the spatial spectrum of the target illumination is analyzed.

  10. Smooth Passage For The Jetfoil

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Flying Princess is a Boeing Jetfoil, one of a family of commercial waterjets built by Boeing Marine Systems, a division of The Boeing Company, Seattle, Washington. The new Jetfoil offers a number of advantages over earlier hydrofoils, a major one being a smooth ride in rough waters. NASA technology contributed to jolt-free passenger comfort. Hydrofoils skim the surface at speeds considerably greater than those of conventional ships because there is little friction between hull and water. Hulls are raised above the water by the lift of the foils, which resemble and function like an airplane wing. The foils are attached to the hull by rigid struts, which ordinarily cause a vessel operating in coastal seas to follow the contour of the waves. In wind-whipped waters, this makes for a rough ride. Seeking to increase passenger acceptance, Boeing Marine System engineers looked for ways to improve rough-water ride quality. Langley Research Center conducts continuing ride quality research. Initially, it was aimed at improving aircraft ride; it was later expanded to include all modes of transportation. Research includes studies of vibration, acceleration, temperature, humidity, passenger seats and posture, and the psychological aspects of passenger reaction to vehicle ride. As part of the program, Langley developed instrumentation, ride quality models and methods of data analysis.

  11. Smooth horizons and quantum ripples

    NASA Astrophysics Data System (ADS)

    Golovnev, Alexey

    2015-05-01

    Black holes are unique objects which allow for meaningful theoretical studies of strong gravity and even quantum gravity effects. An infalling and a distant observer would have very different views on the structure of the world. However, a careful analysis has shown that it entails no genuine contradictions for physics, and the paradigm of observer complementarity has been coined. Recently this picture was put into doubt. In particular, it was argued that in old black holes a firewall must form in order to protect the basic principles of quantum mechanics. This AMPS paradox has already been discussed in a vast number of papers with different attitudes and conclusions. Here we want to argue that a possible source of confusion is the neglect of quantum gravity effects. Contrary to widespread perception, it does not necessarily mean that effective field theory is inapplicable in rather smooth neighbourhoods of large black hole horizons. The real offender might be an attempt to consistently use it over the huge distances from the near-horizon zone of old black holes to the early radiation. We give simple estimates to support this viewpoint and show how the Page time and (somewhat more speculative) scrambling time do appear.

  12. Thermal smoothing of rough surfaces in vacuo

    NASA Technical Reports Server (NTRS)

    Wahl, G.

    1986-01-01

    The derivation of equations governing the smoothing of rough surfaces, based on Mullins' (1957, 1960, and 1963) theories of thermal grooving and of capillarity-governed solid surface morphology is presented. As an example, the smoothing of a one-dimensional sine-shaped surface is discussed.

  13. Leiomodin and tropomodulin in smooth muscle

    NASA Technical Reports Server (NTRS)

    Conley, C. A.

    2001-01-01

    Evidence is accumulating to suggest that actin filament remodeling is critical for smooth muscle contraction, which implicates actin filament ends as important sites for regulation of contraction. Tropomodulin (Tmod) and smooth muscle leiomodin (SM-Lmod) have been found in many tissues containing smooth muscle by protein immunoblot and immunofluorescence microscopy. Both proteins cofractionate with tropomyosin in the Triton-insoluble cytoskeleton of rabbit stomach smooth muscle and are solubilized by high salt. SM-Lmod binds muscle tropomyosin, a biochemical activity characteristic of Tmod proteins. SM-Lmod staining is present along the length of actin filaments in rat intestinal smooth muscle, while Tmod stains in a punctate pattern distinct from that of actin filaments or the dense body marker alpha-actinin. After smooth muscle is hypercontracted by treatment with 10 mM Ca(2+), both SM-Lmod and Tmod are found near alpha-actinin at the periphery of actin-rich contraction bands. These data suggest that SM-Lmod is a novel component of the smooth muscle actin cytoskeleton and, furthermore, that the pointed ends of actin filaments in smooth muscle may be capped by Tmod in localized clusters.

  14. Lunar Smooth Plains Identification and Classification

    NASA Astrophysics Data System (ADS)

    Boyd, A. K.; Robinson, M. S.; Mahanti, P.; Lawrence, S. J.; Spudis, P.; Jolliff, B. L.

    2012-12-01

    Smooth plains are widespread on the Moon and have diverse origins. The maria comprise the majority of the smooth plains and are volcanic in origin. Highland smooth plains are patchy, and tend to fill large craters and basins; their origins have eluded unambiguous classification. Prior to the Apollo 16 mission, many workers thought that highland plains were volcanic, possibly more silicic than the maria. However, as the Apollo 16 samples are mostly impact breccias, the highland smooth plains were re-interpreted basin impact ejecta, most likely from the Imbrium and possibly Orientale basins. Conversely, some known non-mare volcanic units, such as the Apennine Bench Formation, contain light plains. These interpretations do not rule out alternate origins for a subset of highland smooth plains, including impact melt or volcanic origins (effusive or pyroclastic). We developed an algorithm to identify smooth plains using topographic parameters from the WAC Global Lunar Digital Terrain Model (DTM) (GLD100), sampled at 333 m/pixel. We classify the smooth plains using the Clementine UVVIS FeO map and photometrically corrected Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) images. Terrain with slopes less than 2° (1 km baseline) and standard deviation of slope less than 0.75° (1 km x 1 km box, n=9) are defined as smooth plains. Highland smooth plains are distinguished from basaltic smooth plains using the following criteria: LROC WAC 643 nm normalized reflectance > 0.056, LROC WAC 321 nm / 415 nm ratio < 0.74, and Clementine FeO < 12 wt.% (excluding Clementine non-coverage areas). The remaining smooth plains are classified as maria and are subdivided into two classes: LROC WAC 321 nm / 415 nm ratio > 0.77 is termed blue maria and a ratio ≤ 0.77 is termed red maria. The automatic classification was limited to the 87% of the Moon covered by photometrically normalized WAC data (60°S to 60°N). The differences between the maria and highland smooth plains

  15. A Relation for Nanodroplet Diffusion on Smooth Surfaces

    PubMed Central

    Li, Chu; Huang, Jizu; Li, Zhigang

    2016-01-01

    In this work, we study the diffusion of nanodroplets on smooth surfaces through molecular dynamics (MD) simulations and theoretical analyses. Molecular dynamics simulations show that nanodroplet surface diffusion is different from that of single molecules and solid particles. The dependence of nanodroplet diffusion coefficient on temperature undergoes a transition from linear to nonlinear as the surface wettability is weakened due to the coupling of temperature and surface energy. We also develop a simple relation for the diffusion coefficient by using the contact angle and contact radius of the droplet. It works well for a wide range of surface wettabilities and different sized nanodroplets, as confirmed by MD simulations. PMID:27215471

  16. Alternative methods to smooth the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Jekeli, C.

    1981-01-01

    Convolutions on the sphere with corresponding convolution theorems are developed for one and two dimensional functions. Some of these results are used in a study of isotropic smoothing operators or filters. Well known filters in Fourier spectral analysis, such as the rectangular, Gaussian, and Hanning filters, are adapted for data on a sphere. The low-pass filter most often used on gravity data is the rectangular (or Pellinen) filter. However, its spectrum has relatively large sidelobes; and therefore, this filter passes a considerable part of the upper end of the gravity spectrum. The spherical adaptations of the Gaussian and Hanning filters are more efficient in suppressing the high-frequency components of the gravity field since their frequency response functions are strongly field since their frequency response functions are strongly tapered at the high frequencies with no, or small, sidelobes. Formulas are given for practical implementation of these new filters.

  17. Real-time topological image smoothing on shared memory parallel machines

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Ramzi; Akil, Mohamed

    2011-03-01

    Smoothing filter is the method of choice for image preprocessing and pattern recognition. We present a new concurrent method for smoothing 2D object in binary case. Proposed method provides a parallel computation while preserving the topology by using homotopic transformations. We introduce an adapted parallelization strategy called split, distribute and merge (SDM) strategy which allows efficient parallelization of a large class of topological operators including, mainly, smoothing, skeletonization, and watershed algorithms. To achieve a good speedup, we cared about task scheduling. Distributed work during smoothing process is done by a variable number of threads. Tests on 2D binary image (512*512), using shared memory parallel machine (SMPM) with 8 CPU cores (2× Xeon E5405 running at frequency of 2 GHz), showed an enhancement of 5.2 thus a cadency of 32 images per second is achieved.

  18. SMACK - SMOOTHING FOR AIRCRAFT KINEMATICS

    NASA Technical Reports Server (NTRS)

    Bach, R.

    1994-01-01

    The computer program SMACK (SMoothing for AirCraft Kinematics) is designed to provide flightpath reconstruction of aircraft forces and motions from measurements that are noisy or incomplete. Additionally, SMACK provides a check on instrument accuracy and data consistency. The program can be used to analyze data from flight-test experiments prior to their use in performance, stability and control, or aerodynamic modeling calculations. It can also be used in the analysis of aircraft accidents, where the actual forces and motions may have to be determined from a very limited data set. Application of a state-estimation method for flightpath reconstruction is possible because aircraft forces and motions are related by well-known equations of motion. The task of postflight state estimation is known as a nonlinear, fixed-interval smoothing problem. SMACK utilizes a backward-filter, forward-smoother algorithm to solve the problem. The equations of motion are used to produce estimates that are compared with their corresponding measurement time histories. The procedure is iterative, providing improved state estimates until a minimum squared-error measure is achieved. In the SMACK program, the state and measurement models together represent a finite-difference approximation for the six-degree-of-freedom dynamics of a rigid body. The models are used to generate time histories which are likely to be found in a flight-test measurement set. These include onboard variables such as Euler angles, angular rates, and linear accelerations as well as tracking variables such as slant range, bearing, and elevation. Any bias or scale-factor errors associated with the state or measurement models are appended to the state vector and treated as constant but unknown parameters. The SMACK documentation covers the derivation of the solution algorithm, describes the state and measurement models, and presents several application examples that should help the analyst recognize the potential

  19. Bayesian smoothing of dipoles in magneto-/electroencephalography

    NASA Astrophysics Data System (ADS)

    Vivaldi, Valentina; Sorrentino, Alberto

    2016-04-01

    We describe a novel method for dynamic estimation of multi-dipole states from magneto-/electroencephalography (M/EEG) time series. The new approach builds on the recent development of particle filters for M/EEG; these algorithms approximate, with samples and weights, the posterior distribution of the neural sources at time t given the data up to time t. However, for off-line inference purposes it is preferable to work with the smoothing distribution, i.e. the distribution for the neural sources at time t conditioned on the whole time series. In this study, we use a Monte Carlo algorithm to approximate the smoothing distribution for a time-varying set of current dipoles. We show, using numerical simulations, that the estimates provided by the smoothing distribution are more accurate than those provided by the filtering distribution, particularly at the appearance of the source. We validate the proposed algorithm using an experimental data set recorded from an epileptic patient. Improved localization of the source onset can be particularly relevant in source modeling of epileptic patients, where the source onset brings information on the epileptogenic zone.

  20. AFSMO/AFSCL- AIRFOIL SMOOTHING AND SCALING

    NASA Technical Reports Server (NTRS)

    Morgan, H. L

    1994-01-01

    Since its early beginnings, NASA has been actively involved in the design and testing of airfoil sections for a wide variety of applications. Recently a set of programs has been developed to smooth and scale arbitrary airfoil coordinates. The smoothing program, AFSMO, utilizes both least-squares polynomial and least-squares cubic-spline techniques to iteratively smooth the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. The camber and thickness distribution of the smooth airfoil are also computed. The scaling program, AFSCL, may then be used to scale the thickness distribution generated by the smoothing program to a specified maximum thickness. Once the thickness distribution has been scaled, it is combined with the camber distribution to obtain the final scaled airfoil contour. The airfoil smoothing and scaling programs are written in FORTRAN IV for batch execution and have been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 70K (octal) of 60 bit words. Both programs generate plotted output via CALCOMP type plotting calls. These programs were developed in 1983.

  1. Small Heat Shock Proteins in Smooth Muscle

    PubMed Central

    Salinthone, Sonemany; Tyagi, Manoj; Gerthoffer, William T.

    2008-01-01

    The small heat shock proteins (HSPs) HSP20, HSP27 and αB-crystallin are chaperone proteins that are abundantly expressed in smooth muscles are important modulators of muscle contraction, cell migration and cell survival. This review focuses on factors regulating expression of small HSPs in smooth muscle, signaling pathways that regulate macromolecular structure and the biochemical and cellular functions of small HSPs. Cellular processes regulated by small HSPs include chaperoning denatured proteins, maintaining cellular redox state and modifying filamentous actin polymerization. These processes influence smooth muscle proliferation, cell migration, cell survival, muscle contraction and synthesis of signaling proteins. Understanding functions of small heat shock proteins is relevant to mechanisms of disease in which dysfunctional smooth muscle causes symptoms, or is a target of drug therapy. One example is that secreted HSP27 may be a useful marker of inflammation during atherogenesis. Another is that phosphorylated HSP20 which relaxes smooth muscle may prove to be highly relevant to treatment of hypertension, vasospasm, asthma, premature labor and overactive bladder. Because small HSPs also modulate smooth muscle proliferation and cell migration they may prove to be targets for developing effective, novel treatments of clinical problems arising from remodeling of smooth muscle in vascular, respiratory and urogenital systems. PMID:18579210

  2. Backward smoothing for precise GNSS applications

    NASA Astrophysics Data System (ADS)

    Vaclavovic, Pavel; Dousa, Jan

    2015-10-01

    The Extended Kalman filter is widely used for its robustness and simple implementation. Parameters estimated for solving dynamical systems usually require certain time to converge and need to be smoothed by a dedicated algorithms. The purpose of our study was to implement smoothing algorithms for processing both code and carrier phase observations with Precise Point Positioning method. We implemented and used the well known Rauch-Tung-Striebel smoother (RTS). It has been found out that the RTS suffer from significant numerical instability in smoothed state covariance matrix determination. We improved the processing with algorithms based on Singular Value Decomposition, which was more robust. Observations from many permanent stations have been processed with final orbits and clocks provided by the International GNSS service (IGS), and the smoothing improved stability and precision in every cases. Moreover, (re)convergence of the parameters were always successfully eliminated.

  3. Refractory thermal insulation for smooth metal surfaces

    NASA Technical Reports Server (NTRS)

    1964-01-01

    To protect rocket metal surfaces from engine exhaust heat, a refractory thermal insulation mixture, which adheres to smooth metals, has been developed. Insulation protection over a wide temperature range can be controlled by thickness of the applied mixture.

  4. Adaptive Finite-Element Solution of the Nonlinear Poisson-Boltzmann Equation: A Charged Spherical Particle at Various Distances from a Charged Cylindrical Pore in a Charged Planar Surface

    PubMed

    Bowen; Sharif

    1997-03-15

    A Galerkin finite-element approach combined with an error estimator and automatic mesh refinement has been used to provide a flexible numerical solution of the Poisson-Boltzmann equation. A Newton sequence technique was used to solve the nonlinear equations arising from the finite-element discretization procedure. Errors arising from the finite-element solution due to mesh refinement were calculated using the Zienkiewicz-Zhu error estimator, and an automatic remeshing strategy was adopted to achieve a solution satisfying a preset quality. Examples of the performance of the error estimator in adaptive mesh refinement are presented. The adaptive finite-element scheme presented in this study has proved to be an effective technique in minimizing errors in finite-element solutions for a given problem, in particular those of complex geometries. As an example, numerical solutions are presented for the case of a charged spherical particle at various distances from a charged cylindrical pore in a charged planar surface. Such a scheme provides a quantification of the significance of electrostatic interactions for an important industrial technology-membrane separation processes.

  5. A Population Decoding Framework for Motion Aftereffects on Smooth Pursuit Eye Movements

    PubMed Central

    Gardner, Justin L.; Tokiyama, Stefanie N.; Lisberger, Stephen G.

    2008-01-01

    Both perceptual and motor systems must decode visual information from the distributed activity of large populations of cortical neurons. We have sought a common framework for understanding decoding strategies for visually guided movement and perception by asking whether the strong motion aftereffects seen in the perceptual domain lead to similar expressions in motor output. We found that motion adaptation indeed has strong sequelae in the direction and speed of smooth pursuit eye movements. After adaptation with a stimulus that moves in a given direction for 7 sec, the direction of pursuit is repelled from the direction of pursuit targets that move within 90° of the adapting direction. The speed of pursuit decreases for targets that move at the direction and speed of the adapting stimulus and is repelled from the adapting speed in the sense that the decrease either becomes greater or smaller (eventually turning to an increase) when tracking targets move slower or faster than the adapting speed. The effects of adaptation are spatially specific and fixed to the retinal location of the adapting stimulus. The magnitude of adaptation of pursuit speed and direction is uncorrelated, suggesting that the two parameters are decoded independently. Computer simulation of motion adaptation in the middle temporal visual area (MT) shows that vector-averaging decoding of the population response in MT can account for the effects of adaptation on the direction of pursuit. Our results suggest a unified framework for thinking, in terms of population decoding, about motion adaptation for both perception and action. PMID:15483122

  6. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  7. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  8. Lunar Smooth Plains Identification and Classification

    NASA Astrophysics Data System (ADS)

    Boyd, A. K.; Mahanti, P.; Robinson, M. S.; Lawrence, S. J.; Spudis, P. D.; Jolliff, B. L.

    2012-09-01

    Smooth plains are widespread on the Moon and appear to have diverse origins. The maria comprise the majority of the smooth plains on the Moon and are volcanic in origin. Highland smooth plains are patchy and tend to fill large craters and basins; their origins have eluded unambiguous classification. Prior to the Apollo 16 mission, many workers thought that smooth highland plains were volcanic, possibly more silicic than the basaltic maria [e.g., 1]. However, as the Apollo 16 samples are mostly impact breccias, the highland smooth plains were re-interpreted as being deposits generated by impact events, most likely ejecta from the youngest and largest multi-ring basins, e.g., Imbrium and Orientale [1]. Spectral interpretations by Pieters [2] showed that the highland light plains are not mare basalt, but are composed of significantly more feldspathic, nonmare material [2]. Conversely, some known non-mare volcanic units, such as the Apennine Bench Formation (a deposit of post-Imbrium KREEP basalt [3,4]), contain light plains. These interpretations do not rule out alternate origins for a subset of highland smooth plains, including impact melt or volcanic origins (effusive or pyroclastic). We have developed an algorithm to identify smooth plains using topographic parameters from the WAC Global Lunar Digital Terrain Model (DTM) (GLD100) [5], sampled at 333 m/pixel. We classify the identified smooth plains using the Clementine UVVIS FeO map and photometrically corrected Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) images [6]. In this abstract, we do not address formation mechanisms for the nonmare deposits.

  9. Beam-smoothing investigation on Heaven I

    NASA Astrophysics Data System (ADS)

    Xiang, Yi-huai; Gao, Zhi-xing; Tong, Xiao-hui; Dai, Hui; Tang, Xiu-zhang; Shan, Yu-sheng

    2007-01-01

    Directly driven targets for inertial confinement fusion (ICF) require laser beams with extremely smooth irradiance profiles to prevent hydrodynamic instabilities that destroy the spherical symmetry of the target during implosion. Such instabilities can break up and mix together the target's wall and fuel material, preventing it from reaching the density and temperature required for fusion ignition. 1,2 Measurements in the equation of state (EOS) experiments require laser beams with flat-roofed profiles to generate uniform shockwave 3. Some method for beam smooth, is thus needed. A technique called echelon-free induced spatial incoherence (EFISI) is proposed for producing smooth target beam profiles with large KrF lasers. The idea is basically an image projection technique that projects the desired time-averaged spatial profile onto the target via the laser system, using partially coherent broadband lighe. Utilize the technique, we developing beam- smoothing investigation on "Heaven I". At China Institute of Atomic Energy , a new angular multiplexing providing with beam-smoothing function has been developed, the total energy is 158J, the stability of energy is 4%, the pulse duration is 25ns, the effective diameter of focusing spot is 400um, and the ununiformity is about 1.6%, the power density on the target is about 3.7×10 12W/cm2. At present, the system have provided steady and smooth laser irradiation for EOS experiments.

  10. Model emulates human smooth pursuit system producing zero-latency target tracking.

    PubMed

    Bahill, A T; McDonald, J D

    1983-01-01

    Humans can overcome the 150 ms time delay of the smooth pursuit eye movement system and track smoothly moving visual targets with zero-latency. Our target-selective adaptive control model can also overcome an inherent time delay and produce zero-latency tracking. No other model or man-made system can do this. Our model is physically realizable and physiologically realistic. The technique used in our model should be useful for analyzing other time-delay systems, such as man-machine systems and robots.

  11. Effects of hydrogen sulphide in smooth muscle.

    PubMed

    Dunn, William R; Alexander, Stephen P H; Ralevic, Vera; Roberts, Richard E

    2016-02-01

    In recent years, it has become apparent that the gaseous pollutant, hydrogen sulphide (H2S) can be synthesised in the body and has a multitude of biological actions. This review summarizes some of the actions of this 'gasotransmitter' in influencing the smooth muscle that is responsible for controlling muscular activity of hollow organs. In the vasculature, while H2S can cause vasoconstriction by complex interactions with other biologically important gases, such as nitric oxide, the prevailing response is vasorelaxation. While most vasorelaxation responses occur by a direct action of H2S on smooth muscle cells, it has recently been proposed to be an endothelium-derived hyperpolarizing factor. H2S also promotes relaxation in other smooth muscle preparations including bronchioles, the bladder, gastrointestinal tract and myometrium, opening up the opportunity of exploiting the pharmacology of H2S in the treatment of conditions where smooth muscle tone is excessive. The original concept, that H2S caused smooth muscle relaxation by activating ATP-sensitive K(+) channels, has been supplemented with observations that H2S can also modify the activity of other potassium channels, intracellular pH, phosphodiesterase activity and transient receptor potential channels on sensory nerves. While the enzymes responsible for generating endogenous H2S are widely expressed in smooth muscle preparations, it is much less clear what the physiological role of H2S is in determining smooth muscle contractility. Clarification of this requires the development of potent and selective inhibitors of H2S-generating enzymes.

  12. Turbulent flow in smooth and rough pipes.

    PubMed

    Allen, J J; Shockling, M A; Kunkel, G J; Smits, A J

    2007-03-15

    Recent experiments at Princeton University have revealed aspects of smooth pipe flow behaviour that suggest a more complex scaling than previously noted. In particular, the pressure gradient results yield a new friction factor relationship for smooth pipes, and the velocity profiles indicate the presence of a power-law region near the wall and, for Reynolds numbers greater than about 400x103 (R+>9x103), a logarithmic region further out. New experiments on a rough pipe with a honed surface finish with krms/D=19.4x10-6, over a Reynolds number range of 57x103-21x106, show that in the transitionally rough regime this surface follows an inflectional friction factor relationship rather than the monotonic relationship given in the Moody diagram. Outer-layer scaling of the mean velocity data and streamwise turbulence intensities for the rough pipe show excellent collapse and provide strong support for Townsend's outer-layer similarity hypothesis for rough-walled flows. The streamwise rough-wall spectra also agree well with the corresponding smooth-wall data. The pipe exhibited smooth behaviour for ks+ < or =3.5, which supports the suggestion that the original smooth pipe was indeed hydraulically smooth for ReD< or =24x106. The relationship between the velocity shift, DeltaU/utau, and the roughness Reynolds number, ks+, has been used to generalize the form of the transition from smooth to fully rough flow for an arbitrary relative roughness krms/D. These predictions apply for honed pipes when the separation of pipe diameter to roughness height is large, and they differ significantly from the traditional Moody curves.

  13. Immune/Inflammatory Response and Hypocontractility of Rabbit Colonic Smooth Muscle After TNBS-Induced Colitis

    PubMed Central

    Zhang, Yonggang; Li, Fang; Wang, Hong; Yin, Chaoran; Huang, JieAn; Mahavadi, Sunila; Murthy, Karnam S.

    2016-01-01

    Background The contractility of colonic smooth muscle is dysregulated due to immune/inflammatory responses in inflammatory bowel diseases. Inflammation in vitro induces up-regulation of regulator of G-protein signaling 4 (RGS4) expression in colonic smooth muscle cells. Aims To characterize the immune/inflammatory responses and RGS4 expression pattern in colonic smooth muscle after induction of colitis. Methods Colitis was induced in rabbits by intrarectal instillation of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Innate/adaptive immune response RT-qPCR array was performed using colonic circular muscle strips. At 1–9 weeks after colonic intramuscular microinjection of lentivirus, the distal and proximal colons were collected, and muscle strips and dispersed muscle cells were prepared from circular muscle layer. Expression levels of RGS4 and NFκB signaling components were determined by Western blot analysis. The biological consequences of RGS4 knockdown were assessed by measurement of muscle contraction and phospholipase C (PLC)-β activity in response to acetylcholine (ACh). Results Contraction in response to ACh was significantly inhibited in the inflamed colonic circular smooth muscle cells. RGS4, IL-1, IL-6, IL-8, CCL3, CD1D, and ITGB2 were significantly up-regulated, while IL-18, CXCR4, CD86, and C3 were significantly down-regulated in the inflamed muscle strips. RGS4 protein expression in the inflamed smooth muscles was dramatically increased. RGS4 stable knockdown in vivo augmented ACh-stimulated PLC-β activity and contraction in colonic smooth muscle cells. Conclusion Inflamed smooth muscle exhibits up-regulation of IL-1-related signaling components, Th1 cytokines and RGS4, and inhibition of contraction. Stable knockdown of endogenous RGS4 in colonic smooth muscle increases PLC-β activity and contractile responses. PMID:26879904

  14. Interstitial Cells: Regulators of Smooth Muscle Function

    PubMed Central

    Sanders, Kenton M.; Ward, Sean M.; Koh, Sang Don

    2014-01-01

    Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα+ cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα+ cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues. PMID:24987007

  15. Improved metabolite profile smoothing for flux estimation.

    PubMed

    Dromms, Robert A; Styczynski, Mark P

    2015-09-01

    As genome-scale metabolic models become more sophisticated and dynamic, one significant challenge in using these models is to effectively integrate increasingly prevalent systems-scale metabolite profiling data into them. One common data processing step when integrating metabolite data is to smooth experimental time course measurements: the smoothed profiles can be used to estimate metabolite accumulation (derivatives), and thus the flux distribution of the metabolic model. However, this smoothing step is susceptible to the (often significant) noise in experimental measurements, limiting the accuracy of downstream model predictions. Here, we present several improvements to current approaches for smoothing metabolite time course data using defined functions. First, we use a biologically-inspired mathematical model function taken from transcriptional profiling and clustering literature that captures the dynamics of many biologically relevant transient processes. We demonstrate that it is competitive with, and often superior to, previously described fitting schemas, and may serve as an effective single option for data smoothing in metabolic flux applications. We also implement a resampling-based approach to buffer out sensitivity to specific data sets and allow for more accurate fitting of noisy data. We found that this method, as well as the addition of parameter space constraints, yielded improved estimates of concentrations and derivatives (fluxes) in previously described fitting functions. These methods have the potential to improve the accuracy of existing and future dynamic metabolic models by allowing for the more effective integration of metabolite profiling data.

  16. Migration of Airway Smooth Muscle Cells

    PubMed Central

    Gerthoffer, William T.

    2008-01-01

    Migration of smooth muscle cells is a process fundamental to development of hollow organs, including blood vessels and the airways. Migration is also thought to be part of the response to tissue injury. It has also been suggested to contribute to airways remodeling triggered by chronic inflammation. In both nonmuscle and smooth muscle cells numerous external signaling molecules and internal signal transduction pathways contribute to cell migration. The review includes evidence for the functional significance of airway smooth muscle migration, a summary of promigratory and antimigratory agents, and summaries of important signaling pathways mediating migration. Important signaling pathways and effector proteins described include small G proteins, phosphatidylinositol 3-kinases (PI3-K), Rho activated protein kinase (ROCK), p21-activated protein kinases (PAK), Src family tyrosine kinases, and mitogen-activated protein kinases (MAPK). These signaling modules control multiple critical effector proteins including actin nucleating, capping and severing proteins, myosin motors, and proteins that remodel microtubules. Actin filament remodeling, focal contact remodeling and propulsive force of molecular motors are all coordinated to move cells along gradients of chemical cues, matrix adhesiveness, or matrix stiffness. Airway smooth muscle cell migration can be modulated in vitro by drugs commonly used in pulmonary medicine including β-adrenergic agonists and corticosteroids. Future studies of airway smooth muscle cell migration may uncover novel targets for drugs aimed at modifying airway remodeling. PMID:18094091

  17. Manual tracking enhances smooth pursuit eye movements

    PubMed Central

    Niehorster, Diederick C.; Siu, Wilfred W. F.; Li, Li

    2015-01-01

    Previous studies have reported that concurrent manual tracking enhances smooth pursuit eye movements only when tracking a self-driven or a predictable moving target. Here, we used a control-theoretic approach to examine whether concurrent manual tracking enhances smooth pursuit of an unpredictable moving target. In the eye-hand tracking condition, participants used their eyes to track a Gaussian target that moved randomly along a horizontal axis. In the meantime, they used their dominant hand to move a mouse to control the horizontal movement of a Gaussian cursor to vertically align it with the target. In the eye-alone tracking condition, the target and cursor positions recorded in the eye-hand tracking condition were replayed, and participants only performed eye tracking of the target. Catch-up saccades were identified and removed from the recorded eye movements, allowing for a frequency-response analysis of the smooth pursuit response to unpredictable target motion. We found that the overall smooth pursuit gain was higher and the number of catch-up saccades made was less when eye tracking was accompanied by manual tracking than when not. We conclude that concurrent manual tracking enhances smooth pursuit. This enhancement is a fundamental property of eye-hand coordination that occurs regardless of the predictability of the target motion. PMID:26605840

  18. Smooth muscle actin and myosin expression in cultured airway smooth muscle cells.

    PubMed

    Wong, J Z; Woodcock-Mitchell, J; Mitchell, J; Rippetoe, P; White, S; Absher, M; Baldor, L; Evans, J; McHugh, K M; Low, R B

    1998-05-01

    In this study, the expression of smooth muscle actin and myosin was examined in cultures of rat tracheal smooth muscle cells. Protein and mRNA analyses demonstrated that these cells express alpha- and gamma-smooth muscle actin and smooth muscle myosin and nonmuscle myosin-B heavy chains. The expression of the smooth muscle specific actin and myosin isoforms was regulated in the same direction when growth conditions were changed. Thus, at confluency in 1 or 10% serum-containing medium as well as for low-density cells (50-60% confluent) deprived of serum, the expression of the smooth muscle forms of actin and myosin was relatively high. Conversely, in rapidly proliferating cultures at low density in 10% serum, smooth muscle contractile protein expression was low. The expression of nonmuscle myosin-B mRNA and protein was more stable and was upregulated only to a small degree in growing cells. Our results provide new insight into the molecular basis of differentiation and contractile function in airway smooth muscle cells.

  19. Local, Optimization-based Simplicial Mesh Smoothing

    1999-12-09

    OPT-MS is a C software package for the improvement and untangling of simplicial meshes (triangles in 2D, tetrahedra in 3D). Overall mesh quality is improved by iterating over the mesh vertices and adjusting their position to optimize some measure of mesh quality, such as element angle or aspect ratio. Several solution techniques (including Laplacian smoothing, "Smart" Laplacian smoothing, optimization-based smoothing and several combinations thereof) and objective functions (for example, element angle, sin (angle), and aspectmore » ratio) are available to the user for both two and three-dimensional meshes. If the mesh contains invalid elements (those with negative area) a different optimization algorithm for mesh untangling is provided.« less

  20. Multiple predictor smoothing methods for sensitivity analysis.

    SciTech Connect

    Helton, Jon Craig; Storlie, Curtis B.

    2006-08-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (1) locally weighted regression (LOESS), (2) additive models, (3) projection pursuit regression, and (4) recursive partitioning regression. The indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present.

  1. Adaptive Management

    EPA Science Inventory

    Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive managem...

  2. Quality Tetrahedral Mesh Smoothing via Boundary-Optimized Delaunay Triangulation.

    PubMed

    Gao, Zhanheng; Yu, Zeyun; Holst, Michael

    2012-12-01

    Despite its great success in improving the quality of a tetrahedral mesh, the original optimal Delaunay triangulation (ODT) is designed to move only inner vertices and thus cannot handle input meshes containing "bad" triangles on boundaries. In the current work, we present an integrated approach called boundary-optimized Delaunay triangulation (B-ODT) to smooth (improve) a tetrahedral mesh. In our method, both inner and boundary vertices are repositioned by analytically minimizing the error between a paraboloid function and its piecewise linear interpolation over the neighborhood of each vertex. In addition to the guaranteed volume-preserving property, the proposed algorithm can be readily adapted to preserve sharp features in the original mesh. A number of experiments are included to demonstrate the performance of our method.

  3. Feature-preserving surface mesh smoothing via suboptimal Delaunay triangulation.

    PubMed

    Gao, Zhanheng; Yu, Zeyun; Holst, Michael

    2013-01-01

    A method of triangular surface mesh smoothing is presented to improve angle quality by extending the original optimal Delaunay triangulation (ODT) to surface meshes. The mesh quality is improved by solving a quadratic optimization problem that minimizes the approximated interpolation error between a parabolic function and its piecewise linear interpolation defined on the mesh. A suboptimal problem is derived to guarantee a unique, analytic solution that is significantly faster with little loss in accuracy as compared to the optimal one. In addition to the quality-improving capability, the proposed method has been adapted to remove noise while faithfully preserving sharp features such as edges and corners of a mesh. Numerous experiments are included to demonstrate the performance of the method.

  4. ibr: Iterative bias reduction multivariate smoothing

    SciTech Connect

    Hengartner, Nicholas W; Cornillon, Pierre-andre; Matzner - Lober, Eric

    2009-01-01

    Regression is a fundamental data analysis tool for relating a univariate response variable Y to a multivariate predictor X {element_of} E R{sup d} from the observations (X{sub i}, Y{sub i}), i = 1,...,n. Traditional nonparametric regression use the assumption that the regression function varies smoothly in the independent variable x to locally estimate the conditional expectation m(x) = E[Y|X = x]. The resulting vector of predicted values {cflx Y}{sub i} at the observed covariates X{sub i} is called a regression smoother, or simply a smoother, because the predicted values {cflx Y}{sub i} are less variable than the original observations Y{sub i}. Linear smoothers are linear in the response variable Y and are operationally written as {cflx m} = X{sub {lambda}}Y, where S{sub {lambda}} is a n x n smoothing matrix. The smoothing matrix S{sub {lambda}} typically depends on a tuning parameter which we denote by {lambda}, and that governs the tradeoff between the smoothness of the estimate and the goodness-of-fit of the smoother to the data by controlling the effective size of the local neighborhood over which the responses are averaged. We parameterize the smoothing matrix such that large values of {lambda} are associated to smoothers that averages over larger neighborhood and produce very smooth curves, while small {lambda} are associated to smoothers that average over smaller neighborhood to produce a more wiggly curve that wants to interpolate the data. The parameter {lambda} is the bandwidth for kernel smoother, the span size for running-mean smoother, bin smoother, and the penalty factor {lambda} for spline smoother.

  5. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation

    PubMed Central

    1986-01-01

    A monoclonal antibody (anti-alpha sm-1) recognizing exclusively alpha- smooth muscle actin was selected and characterized after immunization of BALB/c mice with the NH2-terminal synthetic decapeptide of alpha- smooth muscle actin coupled to keyhole limpet hemocyanin. Anti-alpha sm- 1 helped in distinguishing smooth muscle cells from fibroblasts in mixed cultures such as rat dermal fibroblasts and chicken embryo fibroblasts. In the aortic media, it recognized a hitherto unknown population of cells negative for alpha-smooth muscle actin and for desmin. In 5-d-old rats, this population is about half of the medial cells and becomes only 8 +/- 5% in 6-wk-old animals. In cultures of rat aortic media SMCs, there is a progressive increase of this cell population together with a progressive decrease in the number of alpha- smooth muscle actin-containing stress fibers per cell. Double immunofluorescent studies carried out with anti-alpha sm-1 and anti- desmin antibodies in several organs revealed a heterogeneity of stromal cells. Desmin-negative, alpha-smooth muscle actin-positive cells were found in the rat intestinal muscularis mucosae and in the dermis around hair follicles. Moreover, desmin-positive, alpha-smooth muscle actin- negative cells were identified in the intestinal submucosa, rat testis interstitium, and uterine stroma. alpha-Smooth muscle actin was also found in myoepithelial cells of mammary and salivary glands, which are known to express cytokeratins. Finally, alpha-smooth muscle actin is present in stromal cells of mammary carcinomas, previously considered fibroblastic in nature. Thus, anti-alpha sm-1 antibody appears to be a powerful probe in the study of smooth muscle differentiation in normal and pathological conditions. PMID:3539945

  6. Production of super-smooth articles

    SciTech Connect

    Duchane, D.V.

    1981-05-29

    Super-smooth rounded or formed articles made of thermoplastic materials including various poly(methyl methacrylate) or acrylonitrile-butadiene-styrene copolymers are produced by immersing the articles into a bath, the composition of which is slowly changed with time. The starting composition of the bath is made up of at least one solvent for the polymer and a diluent made up of at least one nonsolvent for the polymer and optional materials which are soluble in the bath. The resulting extremely smooth articles are useful as mandrels for laser fusion and should be useful for a wide variety of other purposes, for example lenses.

  7. Production of super-smooth articles

    DOEpatents

    Duchane, David V.

    1983-01-01

    Super-smooth rounded or formed articles made of thermoplastic materials including various poly(methyl methacrylate) or acrylonitrile-butadiene-styrene copolymers are produced by immersing the articles into a bath, the composition of which is slowly changed with time. The starting composition of the bath is made up of at least one solvent for the polymer and a diluent made up of at least one nonsolvent for the polymer and optional materials which are soluble in the bath. The resulting extremely smooth articles are useful as mandrels for laser fusion and should be useful for a wide variety of other purposes, for example lenses.

  8. Geometrical Wake of a Smooth Flat Collimator

    SciTech Connect

    Stupakov, G.V.; /SLAC

    2011-09-09

    A transverse geometrical wake generated by a beam passing through a smooth flat collimator with a gradually varying gap between the upper and lower walls is considered. Based on generalization of the approach recently developed for a smooth circular taper we reduce the electromagnetic problem of the impedance calculation to the solution of two much simpler static problems - a magnetostatic and an electrostatic ones. The solution shows that in the limit of not very large frequencies, the impedance increases with the ratio h/d where h is the width and d is the distance between the collimating jaws. Numerical results are presented for the NLC Post Linac collimator.

  9. Influence of rough and smooth walls on macroscale granular segregation patterns.

    PubMed

    D'Ortona, Umberto; Thomas, Nathalie; Lueptow, Richard M

    2016-02-01

    Size bidisperse granular materials in a spherical tumbler segregate into two different patterns of three bands with either small particles at the equator and large particles at the poles or vice versa, depending upon the fill level in the tumbler. Here we use discrete element method simulations with supporting qualitative experiments to explore the effect of the tumbler wall roughness on the segregation pattern, modeling the tumbler walls as either a closely packed monolayer of fixed particles resulting in a rough wall or a frictional geometrically smooth wall. Even though the tumbler wall is in contact with the flowing layer only at its periphery, the impact of wall roughness is profound. Smooth walls tend toward a small-large-small (SLS) band pattern at the pole-equator-pole at all but the highest fill fractions; rough walls tend toward a large-small-large (LSL) band pattern at all but the lowest fill fractions. This comes about because smooth walls induce poleward axial drift of small particles and an equator-directed drift for large particles, resulting in an SLS band pattern. On the other hand, rough walls result in both sizes of particles moving poleward at the surface of the flow. Due to radial segregation, small particles percolate lower in the flowing layer and when arriving near the pole are caught in the return current drift that carries them back toward the equator incrementally with each passage through the flowing layer, while large particles remain at the surface near the pole, resulting in an LSL band pattern. The tendency toward either of the two segregation patterns depends on the fill level in the tumbler and the roughness of the tumbler's bounding wall.

  10. Variational method for adaptive grid generation

    SciTech Connect

    Brackbill, J.U.

    1983-01-01

    A variational method for generating adaptive meshes is described. Functionals measuring smoothness, skewness, orientation, and the Jacobian are minimized to generate a mapping from a rectilinear domain in natural coordinate to an arbitrary domain in physical coordinates. From the mapping, a mesh is easily constructed. In using the method to adaptively zone computational problems, as few as one third the number of mesh points are required in each coordinate direction compared with a uniformly zoned mesh.

  11. Fireplace adapters

    SciTech Connect

    Hunt, R.L.

    1983-12-27

    An adapter is disclosed for use with a fireplace. The stove pipe of a stove standing in a room to be heated may be connected to the flue of the chimney so that products of combustion from the stove may be safely exhausted through the flue and outwardly of the chimney. The adapter may be easily installed within the fireplace by removing the damper plate and fitting the adapter to the damper frame. Each of a pair of bolts has a portion which hooks over a portion of the damper frame and a threaded end depending from the hook portion and extending through a hole in the adapter. Nuts are threaded on the bolts and are adapted to force the adapter into a tight fit with the adapter frame.

  12. Autophagic regulation of smooth muscle cell biology

    PubMed Central

    Salabei, Joshua K.; Hill, Bradford G.

    2014-01-01

    Autophagy regulates the metabolism, survival, and function of numerous cell types, including those comprising the cardiovascular system. In the vasculature, changes in autophagy have been documented in atherosclerotic and restenotic lesions and in hypertensive vessels. The biology of vascular smooth muscle cells appears particularly sensitive to changes in the autophagic program. Recent evidence indicates that stimuli or stressors evoked during the course of vascular disease can regulate autophagic activity, resulting in modulation of VSMC phenotype and viability. In particular, certain growth factors and cytokines, oxygen tension, and pharmacological drugs have been shown to trigger autophagy in smooth muscle cells. Importantly, each of these stimuli has a redox component, typically associated with changes in the abundance of reactive oxygen, nitrogen, or lipid species. Collective findings support the hypothesis that autophagy plays a critical role in vascular remodeling by regulating smooth muscle cell phenotype transitions and by influencing the cellular response to stress. In this graphical review, we summarize current knowledge on the role of autophagy in the biology of the smooth muscle cell in (patho)physiology. PMID:25544597

  13. Smooth PARAFAC Decomposition for Tensor Completion

    NASA Astrophysics Data System (ADS)

    Yokota, Tatsuya; Zhao, Qibin; Cichocki, Andrzej

    2016-10-01

    In recent years, low-rank based tensor completion, which is a higher-order extension of matrix completion, has received considerable attention. However, the low-rank assumption is not sufficient for the recovery of visual data, such as color and 3D images, where the ratio of missing data is extremely high. In this paper, we consider "smoothness" constraints as well as low-rank approximations, and propose an efficient algorithm for performing tensor completion that is particularly powerful regarding visual data. The proposed method admits significant advantages, owing to the integration of smooth PARAFAC decomposition for incomplete tensors and the efficient selection of models in order to minimize the tensor rank. Thus, our proposed method is termed as "smooth PARAFAC tensor completion (SPC)." In order to impose the smoothness constraints, we employ two strategies, total variation (SPC-TV) and quadratic variation (SPC-QV), and invoke the corresponding algorithms for model learning. Extensive experimental evaluations on both synthetic and real-world visual data illustrate the significant improvements of our method, in terms of both prediction performance and efficiency, compared with many state-of-the-art tensor completion methods.

  14. Autonomic Modification of Intestinal Smooth Muscle Contractility

    ERIC Educational Resources Information Center

    Montgomery, Laura E. A.; Tansey, Etain A.; Johnson, Chris D.; Roe, Sean M.; Quinn, Joe G.

    2016-01-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe…

  15. Smoothing Methods for Estimating Test Score Distributions.

    ERIC Educational Resources Information Center

    Kolen, Michael J.

    1991-01-01

    Estimation/smoothing methods that are flexible enough to fit a wide variety of test score distributions are reviewed: kernel method, strong true-score model-based method, and method that uses polynomial log-linear models. Applications of these methods include describing/comparing test score distributions, estimating norms, and estimating…

  16. Smoothness and Striation in Digital Learning Spaces

    ERIC Educational Resources Information Center

    Bayne, Sian

    2004-01-01

    It is Deleuze & Guattari's description of smooth and striated cultural spaces (Deleuze & Guattari, 1988) which informs this exploration of pedagogical alternatives within the learning environments of cyberspace. Digital spaces work to constitute subject and text in ways which are distinct, and it is awareness of this distinctiveness which must…

  17. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus

    PubMed Central

    Ji, Xianliang; Ren, Zhiguang; Xu, Na; Meng, Lingnan; Yu, Zhijun; Feng, Na; Sang, Xiaoyu; Li, Shengnan; Li, Yuanguo; Wang, Tiecheng; Zhao, Yongkun; Wang, Hualei; Zheng, Xuexing; Jin, Hongli; Li, Nan; Yang, Songtao; Cao, Jinshan; Liu, Wensen; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses. PMID:27110810

  18. Calcium Sensitization Mechanisms in Gastrointestinal Smooth Muscles

    PubMed Central

    Perrino, Brian A

    2016-01-01

    An increase in intracellular Ca2+ is the primary trigger of contraction of gastrointestinal (GI) smooth muscles. However, increasing the Ca2+ sensitivity of the myofilaments by elevating myosin light chain phosphorylation also plays an essential role. Inhibiting myosin light chain phosphatase activity with protein kinase C-potentiated phosphatase inhibitor protein-17 kDa (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation is considered to be the primary mechanism underlying myofilament Ca2+ sensitization. The relative importance of Ca2+ sensitization mechanisms to the diverse patterns of GI motility is likely related to the varied functional roles of GI smooth muscles. Increases in CPI-17 and MYPT1 phosphorylation in response to agonist stimulation regulate myosin light chain phosphatase activity in phasic, tonic, and sphincteric GI smooth muscles. Recent evidence suggests that MYPT1 phosphorylation may also contribute to force generation by reorganization of the actin cytoskeleton. The mechanisms responsible for maintaining constitutive CPI-17 and MYPT1 phosphorylation in GI smooth muscles are still largely unknown. The characteristics of the cell-types comprising the neuroeffector junction lead to fundamental differences between the effects of exogenous agonists and endogenous neurotransmitters on Ca2+ sensitization mechanisms. The contribution of various cell-types within the tunica muscularis to the motor responses of GI organs to neurotransmission must be considered when determining the mechanisms by which Ca2+ sensitization pathways are activated. The signaling pathways regulating Ca2+ sensitization may provide novel therapeutic strategies for controlling GI motility. This article will provide an overview of the current understanding of the biochemical basis for the regulation of Ca2+ sensitization, while also discussing the functional importance to different smooth muscles of the GI tract. PMID:26701920

  19. Adaptive SPECT

    PubMed Central

    Barrett, Harrison H.; Furenlid, Lars R.; Freed, Melanie; Hesterman, Jacob Y.; Kupinski, Matthew A.; Clarkson, Eric; Whitaker, Meredith K.

    2008-01-01

    Adaptive imaging systems alter their data-acquisition configuration or protocol in response to the image information received. An adaptive pinhole single-photon emission computed tomography (SPECT) system might acquire an initial scout image to obtain preliminary information about the radiotracer distribution and then adjust the configuration or sizes of the pinholes, the magnifications, or the projection angles in order to improve performance. This paper briefly describes two small-animal SPECT systems that allow this flexibility and then presents a framework for evaluating adaptive systems in general, and adaptive SPECT systems in particular. The evaluation is in terms of the performance of linear observers on detection or estimation tasks. Expressions are derived for the ideal linear (Hotelling) observer and the ideal linear (Wiener) estimator with adaptive imaging. Detailed expressions for the performance figures of merit are given, and possible adaptation rules are discussed. PMID:18541485

  20. Density estimators in particle hydrodynamics. DTFE versus regular SPH

    NASA Astrophysics Data System (ADS)

    Pelupessy, F. I.; Schaap, W. E.; van de Weygaert, R.

    2003-05-01

    We present the results of a study comparing density maps reconstructed by the Delaunay Tessellation Field Estimator (DTFE) and by regular SPH kernel-based techniques. The density maps are constructed from the outcome of an SPH particle hydrodynamics simulation of a multiphase interstellar medium. The comparison between the two methods clearly demonstrates the superior performance of the DTFE with respect to conventional SPH methods, in particular at locations where SPH appears to fail. Filamentary and sheetlike structures form telling examples. The DTFE is a fully self-adaptive technique for reconstructing continuous density fields from discrete particle distributions, and is based upon the corresponding Delaunay tessellation. Its principal asset is its complete independence of arbitrary smoothing functions and parameters specifying the properties of these. As a result it manages to faithfully reproduce the anisotropies of the local particle distribution and through its adaptive and local nature proves to be optimally suited for uncovering the full structural richness in the density distribution. Through the improvement in local density estimates, calculations invoking the DTFE will yield a much better representation of physical processes which depend on density. This will be crucial in the case of feedback processes, which play a major role in galaxy and star formation. The presented results form an encouraging step towards the application and insertion of the DTFE in astrophysical hydrocodes. We describe an outline for the construction of a particle hydrodynamics code in which the DTFE replaces kernel-based methods. Further discussion addresses the issue and possibilities for a moving grid-based hydrocode invoking the DTFE, and Delaunay tessellations, in an attempt to combine the virtues of the Eulerian and Lagrangian approaches.

  1. DEM Particle Fracture Model

    SciTech Connect

    Zhang, Boning; Herbold, Eric B.; Homel, Michael A.; Regueiro, Richard A.

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  2. Adaptive Computing.

    ERIC Educational Resources Information Center

    Harrell, William

    1999-01-01

    Provides information on various adaptive technology resources available to people with disabilities. (Contains 19 references, an annotated list of 129 websites, and 12 additional print resources.) (JOW)

  3. Contour adaptation.

    PubMed

    Anstis, Stuart

    2013-01-01

    It is known that adaptation to a disk that flickers between black and white at 3-8 Hz on a gray surround renders invisible a congruent gray test disk viewed afterwards. This is contrast adaptation. We now report that adapting simply to the flickering circular outline of the disk can have the same effect. We call this "contour adaptation." This adaptation does not transfer interocularly, and apparently applies only to luminance, not color. One can adapt selectively to only some of the contours in a display, making only these contours temporarily invisible. For instance, a plaid comprises a vertical grating superimposed on a horizontal grating. If one first adapts to appropriate flickering vertical lines, the vertical components of the plaid disappears and it looks like a horizontal grating. Also, we simulated a Cornsweet (1970) edge, and we selectively adapted out the subjective and objective contours of a Kanisza (1976) subjective square. By temporarily removing edges, contour adaptation offers a new technique to study the role of visual edges, and it demonstrates how brightness information is concentrated in edges and propagates from them as it fills in surfaces.

  4. Compensating for estimation smoothing in kriging

    USGS Publications Warehouse

    Olea, R.A.; Pawlowsky, Vera

    1996-01-01

    Smoothing is a characteristic inherent to all minimum mean-square-error spatial estimators such as kriging. Cross-validation can be used to detect and model such smoothing. Inversion of the model produces a new estimator-compensated kriging. A numerical comparison based on an exhaustive permeability sampling of a 4-fr2 slab of Berea Sandstone shows that the estimation surface generated by compensated kriging has properties intermediate between those generated by ordinary kriging and stochastic realizations resulting from simulated annealing and sequential Gaussian simulation. The frequency distribution is well reproduced by the compensated kriging surface, which also approximates the experimental semivariogram well - better than ordinary kriging, but not as well as stochastic realizations. Compensated kriging produces surfaces that are more accurate than stochastic realizations, but not as accurate as ordinary kriging. ?? 1996 International Association for Mathematical Geology.

  5. Tribological properties of smooth diamond films

    NASA Astrophysics Data System (ADS)

    Pimenov, S. M.; Smolin, A. A.; Obraztsova, E. D.; Konov, V. I.; Bögli, U.; Blatter, A.; Loubnin, E. N.; Maillat, M.; Leijala, A.; Burger, J.; Hintermann, H. E.

    1996-02-01

    The friction and wear properties of smooth diamond coatings sliding against a monocrystalline ruby ball were studied using a pin-on-disk tribometer. The smooth diamond film surface was prepared either by (i) deposition of ultrathin nanocrystalline films in the thickness range from 0.2 to 2 μm or by (ii) postgrowth polishing. Excimer laser surface ablation, microwave plasma etching and mechanical lapping with diamond grit were used for postgrowth polishing. A correlation of film surface properties examined with different techniques (atomic force microscopy, Auger electron spectroscopy, Raman spectroscopy, stylus profilometry) and the tribological properties of the diamond films tested was established. The influence of laser-induced surface graphitization on the friction coefficient of laser-polished films was investigated.

  6. A local particle filter for high dimensional geophysical systems

    NASA Astrophysics Data System (ADS)

    Penny, S. G.; Miyoshi, T.

    2015-12-01

    A local particle filter (LPF) is introduced that outperforms traditional ensemble Kalman filters in highly nonlinear/non-Gaussian scenarios, both in accuracy and computational cost. The standard Sampling Importance Resampling (SIR) particle filter is augmented with an observation-space localization approach, for which an independent analysis is computed locally at each gridpoint. The deterministic resampling approach of Kitagawa is adapted for application locally and combined with interpolation of the analysis weights to smooth the transition between neighboring points. Gaussian noise is applied with magnitude equal to the local analysis spread to prevent particle degeneracy while maintaining the estimate of the growing dynamical instabilities. The approach is validated against the Local Ensemble Transform Kalman Filter (LETKF) using the 40-variable Lorenz-96 model. The results show that: (1) the accuracy of LPF surpasses LETKF as the forecast length increases (thus increasing the degree of nonlinearity), (2) the cost of LPF is significantly lower than LETKF as the ensemble size increases, and (3) LPF prevents filter divergence experienced by LETKF in cases with non-Gaussian observation error distributions.

  7. Variational algorithms for nonlinear smoothing applications

    NASA Technical Reports Server (NTRS)

    Bach, R. E., Jr.

    1977-01-01

    A variational approach is presented for solving a nonlinear, fixed-interval smoothing problem with application to offline processing of noisy data for trajectory reconstruction and parameter estimation. The nonlinear problem is solved as a sequence of linear two-point boundary value problems. Second-order convergence properties are demonstrated. Algorithms for both continuous and discrete versions of the problem are given, and example solutions are provided.

  8. Structure-Preserving Smoothing of Biomedical Images

    NASA Astrophysics Data System (ADS)

    Gil, Debora; Hernàndez-Sabaté, Aura; Burnat, Mireia; Jansen, Steven; Martínez-Villalta, Jordi

    Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood.

  9. Very Smooth Ultrananocrystalline Diamond Film Growth by a Novel Pretreatment Technique.

    PubMed

    Park, Jong Cheon; Hwang, Sungu; Kim, Tae Gyu; Kim, Jin Kon; Chun, Ho Hwan; Shin, Sung Chul; Cho, Hyun

    2016-02-01

    Very smooth ultrananocrystalline diamond (UNCD) film growth on SiC substrate was achieved by a novel pretreatment technique consisted of SiC surface texturing and deaggregation of nanodiamond (ND) seed particles. Texturing of SiC surfaces in Ar and SF6/02 plasmas was found to be able to provide normalized roughness values of 0.5-7.0 compared to the untreated surface. SiC surface plasma-textured and seeded with H2 heat-treated ND particles at 600 degrees C showed the highest nucleation density of ~44.2 x 10(11) cm(-2) and a highly uniform coverage of surface with very fine ND seeds. The UNCD film grown with this new pretreatment technique showed a very smooth surface morphology consisted of small and uniformly distributed grains. PMID:27433650

  10. On the thermodynamics of smooth muscle contraction

    NASA Astrophysics Data System (ADS)

    Stålhand, Jonas; McMeeking, Robert M.; Holzapfel, Gerhard A.

    2016-09-01

    Cell function is based on many dynamically complex networks of interacting biochemical reactions. Enzymes may increase the rate of only those reactions that are thermodynamically consistent. In this paper we specifically treat the contraction of smooth muscle cells from the continuum thermodynamics point of view by considering them as an open system where matter passes through the cell membrane. We systematically set up a well-known four-state kinetic model for the cross-bridge interaction of actin and myosin in smooth muscle, where the transition between each state is driven by forward and reverse reactions. Chemical, mechanical and energy balance laws are provided in local forms, while energy balance is also formulated in the more convenient temperature form. We derive the local (non-negative) production of entropy from which we deduce the reduced entropy inequality and the constitutive equations for the first Piola-Kirchhoff stress tensor, the heat flux, the ion and molecular flux and the entropy. One example for smooth muscle contraction is analyzed in more detail in order to provide orientation within the established general thermodynamic framework. In particular the stress evolution, heat generation, muscle shorting rate and a condition for muscle cooling are derived.

  11. Smooth muscle tumours of the alimentary tract.

    PubMed Central

    Diamond, T.; Danton, M. H.; Parks, T. G.

    1990-01-01

    Neoplasms arising from smooth muscle of the gastrointestinal (GI) tract are uncommon, comprising only 1% of gastrointestinal tumours. A total of 51 cases of smooth muscle tumour of the GI tract were analysed; 44 leiomyomas and 7 leiomyosarcomas. Lesions occurred in all areas from the oesophagus to the rectum, the stomach being the commonest site. Thirty-six patients had clinical features referable to the tumour. The tumour was detected during investigation or management of an unrelated disease process in 15 patients. The clinical presentation varied depending on tumour location, but abdominal pain and GI bleeding were the commonest presenting symptoms. The lesion was demonstrated preoperatively, mainly by endoscopy and barium studies, in 27 patients. Surgical excision was the treatment of choice, where possible. There was no recurrence in the leiomyoma group but four patients died in the leiomyosarcoma group. Although rare, smooth muscle tumours should be considered in situations where clinical presentation and investigations are not suggestive of any common GI disorder. The preoperative assessment and diagnosis is difficult because of the variability in clinical features and their inaccessibility to routine GI investigation. It is recommended that, where possible, the lesion, whether symptomatic or discovered incidentally, should be excised completely to achieve a cure and prevent future complications. Images Figure 3 Figure 4 PMID:2221768

  12. Climate adaptation

    NASA Astrophysics Data System (ADS)

    Kinzig, Ann P.

    2015-03-01

    This paper is intended as a brief introduction to climate adaptation in a conference devoted otherwise to the physics of sustainable energy. Whereas mitigation involves measures to reduce the probability of a potential event, such as climate change, adaptation refers to actions that lessen the impact of climate change. Mitigation and adaptation differ in other ways as well. Adaptation does not necessarily have to be implemented immediately to be effective; it only needs to be in place before the threat arrives. Also, adaptation does not necessarily require global, coordinated action; many effective adaptation actions can be local. Some urban communities, because of land-use change and the urban heat-island effect, currently face changes similar to some expected under climate change, such as changes in water availability, heat-related morbidity, or changes in disease patterns. Concern over those impacts might motivate the implementation of measures that would also help in climate adaptation, despite skepticism among some policy makers about anthropogenic global warming. Studies of ancient civilizations in the southwestern US lends some insight into factors that may or may not be important to successful adaptation.

  13. Regular and chaotic dynamics of a piecewise smooth bouncer

    SciTech Connect

    Langer, Cameron K. Miller, Bruce N.

    2015-07-15

    The dynamical properties of a particle in a gravitational field colliding with a rigid wall moving with piecewise constant velocity are studied. The linear nature of the wall's motion permits further analytical investigation than is possible for the system's sinusoidal counterpart. We consider three distinct approaches to modeling collisions: (i) elastic, (ii) inelastic with constant restitution coefficient, and (iii) inelastic with a velocity-dependent restitution function. We confirm the existence of distinct unbounded orbits (Fermi acceleration) in the elastic model, and investigate regular and chaotic behavior in the inelastic cases. We also examine in the constant restitution model trajectories wherein the particle experiences an infinite number of collisions in a finite time, i.e., the phenomenon of inelastic collapse. We address these so-called “sticking solutions” and their relation to both the overall dynamics and the phenomenon of self-reanimating chaos. Additionally, we investigate the long-term behavior of the system as a function of both initial conditions and parameter values. We find the non-smooth nature of the system produces novel bifurcation phenomena not seen in the sinusoidal model, including border-collision bifurcations. The analytical and numerical investigations reveal that although our piecewise linear bouncer is a simplified version of the sinusoidal model, the former not only captures essential features of the latter but also exhibits behavior unique to the discontinuous dynamics.

  14. 7 CFR 51.772 - Fairly smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Definitions § 51.772 Fairly smooth texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the variety and size of the fruit. “Fairly thin” means that the skin thickness does...

  15. Dissipative particle dynamics with attractive and repulsive particle-particle interactions

    SciTech Connect

    Paul Meakin; Moubin Liu; Hai Huang

    2006-01-01

    In molecular dynamics simulations, a combination of short-range repulsive and long-range attractive interactions allows the behavior of gases, liquids, solids, and multiphase systems to be simulated. We demonstrate that dissipative particle dynamics (DPD) simulations with similar pairwise particle-particle interactions can also be used to simulate the dynamics of multiphase fluids. In these simulations, the positive, short-range, repulsive part of the interaction potentials were represented by polynomial spline functions such as those used as smoothing functions in smoothed particle hydrodynamics, and the negative long-range part of the interaction has the same form but a different range and amplitude. If a single spline function corresponding to a purely repulsive interaction is used, the DPD fluid is a gas, and we show that the Poiseuille flow of this gas can be described accurately by the Navier-Stokes equation at low Reynolds numbers. In a two-component system in which the purely repulsive interactions between different components are substantially larger than the purely repulsive intracomponent interactions, separation into two gas phases occurs, in agreement with results obtained using DPD simulations with standard repulsive particle-particle interactions. Finally, we show that a combination of short-range repulsive interactions and long-range attractive interactions can be used to simulate the behavior of liquid drops surrounded by a gas. Similar models can be used to simulate a wide range of processes such as multiphase fluid flow through fractures and porous media with complex geometries and wetting behaviors.

  16. Characterization of the structure of heterogeneous materials and particle packings

    NASA Astrophysics Data System (ADS)

    Jiao, Yang

    In this dissertation, we present a combination of computational and theoretical results concerning the characterization of the microstructure of heterogeneous materials and hard-particle packings. An overview of the dissertation is provided in Chapter 1. In Part I of this dissertation, we focus on the characterization of multi-phase heterogeneous materials. In Chapter 2, we present a detailed discussion of the correlation functions that statistically characterize the microstructure of a heterogeneous material. Examples of such materials include composites, colloids, foams and biological media. In Chapter 3, we introduce a microstructure reconstruction/construction procedure developed by Yeong and Torquato and devise a powerful universal sampling scheme, called the lattice-point scheme, that enables one to incorporate the widest class of lower-order correlation functions known to date into the Yeong-Torquato procedure, which opens the door to many fruitful applications. In Chapter 4, we present two major applications of our lattice-point scheme including modelling heterogeneous materials via two-point correlation functions and identifying superior microstructure descriptors of random media. These developments suggest novel approach for material design and more accurate rigorous structure-property relations; they also have ramifications in atomic and molecular systems. In Part II of this dissertation, we focus on quantitatively describing the structure of hard-particle packings, which have been employed to model a wide spectrum of condensed matters such as simple liquid, disordered/crystalline solids and granular media as well as biological systems. In Chapter 5, we present two major numerical packing protocols, namely the Donev-Torquato-Stillinger (DTS) event-driven molecular dynamics (MD) algorithm for smooth convex particles and the adaptive-shrinking-cell (ASC) scheme for hard polyhedral particles. In Chapter 6, the DTS event-driven MD algorithm is employed to

  17. Laboratorial study of continuously fed low-submergence gravity currents over smooth and rough beds

    NASA Astrophysics Data System (ADS)

    Lopes, Andreia F.; Nogueira, Helena I. S.; Ferreira, Rui M. L.; Franca, Mário J.

    2013-04-01

    Density or gravity currents are geophysical flows driven by density differences between two fluids which may be caused by temperature differences, dissolved substances or particles in suspension, among others. Examples of gravity currents include: in the atmosphere, sea breeze fronts driven by differences in temperature, avalanches of airborne snow, plumes of pyroclasts from volcanic eruptions and sand storms driven by suspended particles; in the water, oceanic fronts, resulting from differences in temperature and salinity, and turbidity currents caused by suspended particles. The release of pollutants into rivers and oceans and desalination plant outflows are examples of anthropogenic gravity currents frequently with negative environmental impacts. Closures for governing equations of gravity currents, mass and momentum conservation equations, are needed in what concerns the interaction between these and the lower fixed-bed and the upper permeable boundary. Herein experimental data obtained under laboratory controlled conditions is used to investigate the interaction between density currents and the fixed bed and the surrounding fluid. Instantaneous velocities are analyzed and discussed after application of double-averaging methods (D-AM), in time and space, for data processing. Experiments were performed at the Laboratory of Hydraulics and Water Resources, Department of Civil Engineering and Architecture at Instituto Superior Técnico, in a 12.5 m long, 40.9 cm wide and 50 cm deep recirculating, glass-walled channel with variable slope. Saline currents with two different initial densities of 1010 and 1020 kg/m3 were simulated over two types of horizontal beds (smooth and rough constituted by one layer of cobbles with 3.5 mm mean diameter) into the channel filled with fresh water (density of approximately 1000 kg/m3). The saline water was injected continuously, by means of a submersible pump (flow rate of 0.0339 l/s), at the upstream section of the channel and let

  18. Infant Attention and the Development of Smooth Pursuit Tracking.

    ERIC Educational Resources Information Center

    Richards, John E.; Holley, Felecia B.

    1999-01-01

    Studied effect of attention on smooth pursuit and saccadic tracking in infants at 8, 14, 20, and 26 weeks old. Found an increase across age in overall tracking, gain of smooth-pursuit eye movements, and increased amplitude of compensatory saccades at faster tracking speeds. Findings show that development of smooth pursuit, targeted saccadic eye…

  19. 7 CFR 51.1162 - Fairly smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly smooth texture. 51.1162 Section 51.1162 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... smooth texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the...

  20. 7 CFR 51.1008 - Fairly smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly smooth texture. 51.1008 Section 51.1008... STANDARDS) United States Standards for Persian (Tahiti) Limes Definitions § 51.1008 Fairly smooth texture. Fairly smooth texture means that the fruit is comparatively free from lumpiness and that pebbling is...

  1. 7 CFR 51.1162 - Fairly smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly smooth texture. 51.1162 Section 51.1162 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Definitions § 51.1162 Fairly smooth texture. Fairly smooth texture means that the skin is fairly thin and...

  2. 7 CFR 51.772 - Fairly smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly smooth texture. 51.772 Section 51.772... STANDARDS) United States Standards for Grades of Florida Grapefruit Definitions § 51.772 Fairly smooth texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the variety and...

  3. 7 CFR 51.1162 - Fairly smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly smooth texture. 51.1162 Section 51.1162 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... smooth texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the...

  4. 7 CFR 51.641 - Fairly smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly smooth texture. 51.641 Section 51.641 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards..., and Arizona) Definitions § 51.641 Fairly smooth texture. Fairly smooth texture means that the skin...

  5. 7 CFR 51.1008 - Fairly smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly smooth texture. 51.1008 Section 51.1008... STANDARDS) United States Standards for Persian (Tahiti) Limes Definitions § 51.1008 Fairly smooth texture. Fairly smooth texture means that the fruit is comparatively free from lumpiness and that pebbling is...

  6. 7 CFR 51.641 - Fairly smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly smooth texture. 51.641 Section 51.641 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards..., and Arizona) Definitions § 51.641 Fairly smooth texture. Fairly smooth texture means that the skin...

  7. Neurophysiology and Neuroanatomy of Smooth Pursuit in Humans

    ERIC Educational Resources Information Center

    Lencer, Rebekka; Trillenberg, Peter

    2008-01-01

    Smooth pursuit eye movements enable us to focus our eyes on moving objects by utilizing well-established mechanisms of visual motion processing, sensorimotor transformation and cognition. Novel smooth pursuit tasks and quantitative measurement techniques can help unravel the different smooth pursuit components and complex neural systems involved…

  8. 7 CFR 51.1008 - Fairly smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Fairly smooth texture. 51.1008 Section 51.1008 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards....1008 Fairly smooth texture. Fairly smooth texture means that the fruit is comparatively free...

  9. 7 CFR 51.1162 - Fairly smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly smooth texture. 51.1162 Section 51.1162 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... smooth texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the...

  10. 7 CFR 51.701 - Fairly smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly smooth texture. 51.701 Section 51.701 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards..., and Arizona) Definitions § 51.701 Fairly smooth texture. Fairly smooth texture means that the skin...

  11. 7 CFR 51.772 - Fairly smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly smooth texture. 51.772 Section 51.772... STANDARDS) United States Standards for Grades of Florida Grapefruit Definitions § 51.772 Fairly smooth texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the variety and...

  12. 7 CFR 51.641 - Fairly smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly smooth texture. 51.641 Section 51.641 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards..., and Arizona) Definitions § 51.641 Fairly smooth texture. Fairly smooth texture means that the skin...

  13. 7 CFR 51.1162 - Fairly smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Fairly smooth texture. 51.1162 Section 51.1162 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Definitions § 51.1162 Fairly smooth texture. Fairly smooth texture means that the skin is fairly thin and...

  14. 7 CFR 51.701 - Fairly smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly smooth texture. 51.701 Section 51.701 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards..., and Arizona) Definitions § 51.701 Fairly smooth texture. Fairly smooth texture means that the skin...

  15. 7 CFR 51.772 - Fairly smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly smooth texture. 51.772 Section 51.772 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Definitions § 51.772 Fairly smooth texture. Fairly smooth texture means that the skin is fairly thin and...

  16. 7 CFR 51.1008 - Fairly smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Fairly smooth texture. 51.1008 Section 51.1008 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards....1008 Fairly smooth texture. Fairly smooth texture means that the fruit is comparatively free...

  17. 7 CFR 51.701 - Fairly smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly smooth texture. 51.701 Section 51.701 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards..., and Arizona) Definitions § 51.701 Fairly smooth texture. Fairly smooth texture means that the skin...

  18. 7 CFR 51.1008 - Fairly smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Fairly smooth texture. 51.1008 Section 51.1008... STANDARDS) United States Standards for Persian (Tahiti) Limes Definitions § 51.1008 Fairly smooth texture. Fairly smooth texture means that the fruit is comparatively free from lumpiness and that pebbling is...

  19. Visual Short-Term Memory During Smooth Pursuit Eye Movements

    ERIC Educational Resources Information Center

    Kerzel, Dirk; Ziegler, Nathalie E.

    2005-01-01

    Visual short-term memory (VSTM) was probed while observers performed smooth pursuit eye movements. Smooth pursuit keeps a moving object stabilized in the fovea. VSTM capacity for position was reduced during smooth pursuit compared with a condition with eye fixation. There was no difference between a condition in which the items were approximately…

  20. Alternative Smoothing and Scaling Strategies for Weighted Composite Scores

    ERIC Educational Resources Information Center

    Moses, Tim

    2014-01-01

    In this study, smoothing and scaling approaches are compared for estimating subscore-to-composite scaling results involving composites computed as rounded and weighted combinations of subscores. The considered smoothing and scaling approaches included those based on raw data, on smoothing the bivariate distribution of the subscores, on smoothing…