Science.gov

Sample records for adaptive spatial filtering

  1. Weighted adaptive spatial filtering in digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Hong, Yuan; Shi, Tielin; Wang, Xiao; Zhang, Yichun; Chen, Kepeng; Liao, Guanglan

    2017-01-01

    Spatial filtering, a key point to realize real-time measurement, is used commonly in digital off-axis holography to extract desired terms. In this paper, we propose a weighted adaptive spatial filtering method by weighting the adaptive filtering window (obtained from image segmentation) based on signal to noise ratio. The advantages of this method are evaluated by simulations and further verified by recorded digital image plane holograms. The results demonstrate that our method is effective in suppressing noise and retaining the sharp edges in the reconstructed 3D profiles.

  2. Adaptive conductance filtering for spatially varying noise in PET images

    NASA Astrophysics Data System (ADS)

    Padfield, Dirk R.; Manjeshwar, Ravindra

    2006-03-01

    PET images that have been reconstructed with unregularized algorithms are commonly smoothed with linear Gaussian filters to control noise. Since these filters are spatially invariant, they degrade feature contrast in the image, compromising lesion detectability. Edge-preserving smoothing filters can differentially preserve edges and features while smoothing noise. These filters assume spatially uniform noise models. However, the noise in PET images is spatially variant, approximately following a Poisson behavior. Therefore, different regions of a PET image need smoothing by different amounts. In this work, we introduce an adaptive filter, based on anisotropic diffusion, designed specifically to overcome this problem. In this algorithm, the diffusion is varied according to a local estimate of the noise using either the local median or the grayscale image opening to weight the conductance parameter. The algorithm is thus tailored to the task of smoothing PET images, or any image with Poisson-like noise characteristics, by adapting itself to varying noise while preserving significant features in the image. This filter was compared with Gaussian smoothing and a representative anisotropic diffusion method using three quantitative task-relevant metrics calculated on simulated PET images with lesions in the lung and liver. The contrast gain and noise ratio metrics were used to measure the ability to do accurate quantitation; the Channelized Hotelling Observer lesion detectability index was used to quantify lesion detectability. The adaptive filter improved the signal-to-noise ratio by more than 45% and lesion detectability by more than 55% over the Gaussian filter while producing "natural" looking images and consistent image quality across different anatomical regions.

  3. Reversible wavelet filter banks with side informationless spatially adaptive low-pass filters

    NASA Astrophysics Data System (ADS)

    Abhayaratne, Charith

    2011-07-01

    Wavelet transforms that have an adaptive low-pass filter are useful in applications that require the signal singularities, sharp transitions, and image edges to be left intact in the low-pass signal. In scalable image coding, the spatial resolution scalability is achieved by reconstructing the low-pass signal subband, which corresponds to the desired resolution level, and discarding other high-frequency wavelet subbands. In such applications, it is vital to have low-pass subbands that are not affected by smoothing artifacts associated with low-pass filtering. We present the mathematical framework for achieving 1-D wavelet transforms that have a spatially adaptive low-pass filter (SALP) using the prediction-first lifting scheme. The adaptivity decisions are computed using the wavelet coefficients, and no bookkeeping is required for the perfect reconstruction. Then, 2-D wavelet transforms that have a spatially adaptive low-pass filter are designed by extending the 1-D SALP framework. Because the 2-D polyphase decompositions are used in this case, the 2-D adaptivity decisions are made nonseparable as opposed to the separable 2-D realization using 1-D transforms. We present examples using the 2-D 5/3 wavelet transform and their lossless image coding and scalable decoding performances in terms of quality and resolution scalability. The proposed 2-D-SALP scheme results in better performance compared to the existing adaptive update lifting schemes.

  4. Regional spatially adaptive total variation super-resolution with spatial information filtering and clustering.

    PubMed

    Yuan, Qiangqiang; Zhang, Liangpei; Shen, Huanfeng

    2013-06-01

    Total variation is used as a popular and effective image prior model in the regularization-based image processing fields. However, as the total variation model favors a piecewise constant solution, the processing result under high noise intensity in the flat regions of the image is often poor, and some pseudoedges are produced. In this paper, we develop a regional spatially adaptive total variation model. Initially, the spatial information is extracted based on each pixel, and then two filtering processes are added to suppress the effect of pseudoedges. In addition, the spatial information weight is constructed and classified with k-means clustering, and the regularization strength in each region is controlled by the clustering center value. The experimental results, on both simulated and real datasets, show that the proposed approach can effectively reduce the pseudoedges of the total variation regularization in the flat regions, and maintain the partial smoothness of the high-resolution image. More importantly, compared with the traditional pixel-based spatial information adaptive approach, the proposed region-based spatial information adaptive total variation model can better avoid the effect of noise on the spatial information extraction, and maintains robustness with changes in the noise intensity in the super-resolution process.

  5. Noise-adaptive nonlinear diffusion filtering of MR images with spatially varying noise levels.

    PubMed

    Samsonov, Alexei A; Johnson, Chris R

    2004-10-01

    Anisotropic diffusion filtering is widely used for MR image enhancement. However, the anisotropic filter is nonoptimal for MR images with spatially varying noise levels, such as images reconstructed from sensitivity-encoded data and intensity inhomogeneity-corrected images. In this work, a new method for filtering MR images with spatially varying noise levels is presented. In the new method, a priori information regarding the image noise level spatial distribution is utilized for the local adjustment of the anisotropic diffusion filter. Our new method was validated and compared with the standard filter on simulated and real MRI data. The noise-adaptive method was demonstrated to outperform the standard anisotropic diffusion filter in both image error reduction and image signal-to-noise ratio (SNR) improvement. The method was also applied to inhomogeneity-corrected and sensitivity encoding (SENSE) images. The new filter was shown to improve segmentation of MR brain images with spatially varying noise levels.

  6. Adaptive Spatial Filtering with Principal Component Analysis for Biomedical Photoacoustic Imaging

    NASA Astrophysics Data System (ADS)

    Nagaoka, Ryo; Yamazaki, Rena; Saijo, Yoshifumi

    Photoacoustic (PA) signal is very sensitive to noise generated by peripheral equipment such as power supply, stepping motor or semiconductor laser. Band-pass filter is not effective because the frequency bandwidth of the PA signal also covers the noise frequency. The objective of the present study is to reduce the noise by using an adaptive spatial filter with principal component analysis (PCA).

  7. Ensembles of adaptive spatial filters increase BCI performance: an online evaluation

    NASA Astrophysics Data System (ADS)

    Sannelli, Claudia; Vidaurre, Carmen; Müller, Klaus-Robert; Blankertz, Benjamin

    2016-08-01

    Objective: In electroencephalographic (EEG) data, signals from distinct sources within the brain are widely spread by volume conduction and superimposed such that sensors receive mixtures of a multitude of signals. This reduction of spatial information strongly hampers single-trial analysis of EEG data as, for example, required for brain-computer interfacing (BCI) when using features from spontaneous brain rhythms. Spatial filtering techniques are therefore greatly needed to extract meaningful information from EEG. Our goal is to show, in online operation, that common spatial pattern patches (CSPP) are valuable to counteract this problem. Approach: Even though the effect of spatial mixing can be encountered by spatial filters, there is a trade-off between performance and the requirement of calibration data. Laplacian derivations do not require calibration data at all, but their performance for single-trial classification is limited. Conversely, data-driven spatial filters, such as common spatial patterns (CSP), can lead to highly distinctive features; however they require a considerable amount of training data. Recently, we showed in an offline analysis that CSPP can establish a valuable compromise. In this paper, we confirm these results in an online BCI study. In order to demonstrate the paramount feature that CSPP requires little training data, we used them in an adaptive setting with 20 participants and focused on users who did not have success with previous BCI approaches. Main results: The results of the study show that CSPP adapts faster and thereby allows users to achieve better feedback within a shorter time than previous approaches performed with Laplacian derivations and CSP filters. The success of the experiment highlights that CSPP has the potential to further reduce BCI inefficiency. Significance: CSPP are a valuable compromise between CSP and Laplacian filters. They allow users to attain better feedback within a shorter time and thus reduce BCI

  8. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra.

    PubMed

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-26

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.

  9. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    PubMed Central

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  10. Common spatial pattern patches - an optimized filter ensemble for adaptive brain-computer interfaces.

    PubMed

    Sannelli, Claudia; Vidaurre, Carmen; Muller, Klaus-Robert; Blankertz, Benjamin

    2010-01-01

    Laplacian filters are commonly used in Brain Computer Interfacing (BCI). When only data from few channels are available, or when, like at the beginning of an experiment, no previous data from the same user is available complex features cannot be used. In this case band power features calculated from Laplacian filtered channels represents an easy, robust and general feature to control a BCI, since its calculation does not involve any class information. For the same reason, the performance obtained with Laplacian features is poor in comparison to subject-specific optimized spatial filters, such as Common Spatial Patterns (CSP) analysis, which, on the other hand, can be used just in a later phase of the experiment, since they require a considerable amount of training data in order to enroll a stable and good performance. This drawback is particularly evident in case of poor performing BCI users, whose data is highly non-stationary and contains little class relevant information. Therefore, Laplacian filtering is preferred to CSP, e.g., in the initial period of co-adaptive calibration, a novel BCI paradigm designed to alleviate the problem of BCI illiteracy. In fact, in the co-adaptive calibration design the experiment starts with a subject-independent classifier and simple features are needed in order to obtain a fast adaptation of the classifier to the newly acquired user's data. Here, the use of an ensemble of local CSP patches (CSPP) is proposed, which can be considered as a compromise between Laplacians and CSP: CSPP needs less data and channels than CSP, while being superior to Laplacian filtering. This property is shown to be particularly useful for the co-adaptive calibration design and is demonstrated on off-line data from a previous co-adaptive BCI study.

  11. Contrast enhancement in microscopy of human thyroid tumors by means of acousto-optic adaptive spatial filtering

    NASA Astrophysics Data System (ADS)

    Yushkov, Konstantin B.; Molchanov, Vladimir Y.; Belousov, Pavel V.; Abrosimov, Aleksander Y.

    2016-01-01

    We report a method for edge enhancement in the images of transparent samples using analog image processing in coherent light. The experimental technique is based on adaptive spatial filtering with an acousto-optic tunable filter in a telecentric optical system. We demonstrate processing of microscopic images of unstained and stained histological sections of human thyroid tumor with improved contrast.

  12. Spatial filtering with photonic crystals

    SciTech Connect

    Maigyte, Lina; Staliunas, Kestutis

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

  13. Contouring Of Tooth Imprints By Means Of A Fluorescence Technique Adapted To A Spatially Filtered Moire Illumination

    NASA Astrophysics Data System (ADS)

    Jongsma, Frans H. M.; Lambrechts, Paul; Vanherle, Guido

    1983-07-01

    A technique has been developed to produce plane equidistant contouring surfaces on tooth-imprints. This technique consists of spatially filtering a negative obtained by photographing the imprint under a Moire illumination. Unfortunately this technique turned out to be very sensitive for a non-uniform surface reflectivity. To obtain an object-brightness depending only upon the contouring mechanism, the imprint has been coated with a fluorescent dye. A HeCd-laser (λ=422 nm) served as a lightsource for the projection of the Moire-interference pattern on the imprint. The radiation of the fluorescent coating (λ=530 nm) is used to form an image on the negative. In this way the surface with specular reflection properties is transformed into a Labertian surface. The spatial filtering technique allows multiple exposures of the final negative enabling an increased depth of field. Contour mappings with a resolution in depth of less than 10 μm have been obtained.

  14. Adaptive spatial filtering for off-axis digital holographic microscopy based on region recognition approach with iterative thresholding

    NASA Astrophysics Data System (ADS)

    He, Xuefei; Nguyen, Chuong Vinh; Pratap, Mrinalini; Zheng, Yujie; Wang, Yi; Nisbet, David R.; Rug, Melanie; Maier, Alexander G.; Lee, Woei Ming

    2016-12-01

    Here we propose a region-recognition approach with iterative thresholding, which is adaptively tailored to extract the appropriate region or shape of spatial frequency. In order to justify the method, we tested it with different samples and imaging conditions (different objectives). We demonstrate that our method provides a useful method for rapid imaging of cellular dynamics in microfluidic and cell cultures.

  15. Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems.

    PubMed

    Correia, Carlos M; Teixeira, Joel

    2014-12-01

    Computationally efficient wave-front reconstruction techniques for astronomical adaptive-optics (AO) systems have seen great development in the past decade. Algorithms developed in the spatial-frequency (Fourier) domain have gathered much attention, especially for high-contrast imaging systems. In this paper we present the Wiener filter (resulting in the maximization of the Strehl ratio) and further develop formulae for the anti-aliasing (AA) Wiener filter that optimally takes into account high-order wave-front terms folded in-band during the sensing (i.e., discrete sampling) process. We employ a continuous spatial-frequency representation for the forward measurement operators and derive the Wiener filter when aliasing is explicitly taken into account. We further investigate and compare to classical estimates using least-squares filters the reconstructed wave-front, measurement noise, and aliasing propagation coefficients as a function of the system order. Regarding high-contrast systems, we provide achievable performance results as a function of an ensemble of forward models for the Shack-Hartmann wave-front sensor (using sparse and nonsparse representations) and compute point-spread-function raw intensities. We find that for a 32×32 single-conjugated AOs system the aliasing propagation coefficient is roughly 60% of the least-squares filters, whereas the noise propagation is around 80%. Contrast improvements of factors of up to 2 are achievable across the field in the H band. For current and next-generation high-contrast imagers, despite better aliasing mitigation, AA Wiener filtering cannot be used as a standalone method and must therefore be used in combination with optical spatial filters deployed before image formation actually takes place.

  16. An improved pinhole spatial filter

    SciTech Connect

    Estabrook, K.; Celliers, P.; Murray, J.; Wallace, R.; Stone, G.; Van Wonterghem, B.; MacGowan, B.; Da Silva, L.; Hunt, J.; Manes, K.

    1996-08-21

    Lasers generate phase aberrated light that can damage laser glass, frequency conversion crystals, lenses, and mirror coatings and can also reduce extractable energy and power. Spatial pinhole filters can partly eliminate such ``hot spots.`` Problems are that the pinhole closes during the laser pulse and has to be made too large initially. Debris from the pinhole can coat or damage spatial filter lenses. This paper presents a novel design for a more robust pinhole filter. Phase distorted (hot spot) light refracts at grazing incidence by plasma on the wall of a funnel shaped filter resulting in less absorption and debris. Refracted light absorbs at low intensities on the vacuum wall. We present 2D hydrodynamic computer simulations and compare the two types of filters with experiment.

  17. Adaptive filtering for the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Marié, Simon; Gloerfelt, Xavier

    2017-03-01

    In this study, a new selective filtering technique is proposed for the Lattice Boltzmann Method. This technique is based on an adaptive implementation of the selective filter coefficient σ. The proposed model makes the latter coefficient dependent on the shear stress in order to restrict the use of the spatial filtering technique in sheared stress region where numerical instabilities may occur. Different parameters are tested on 2D test-cases sensitive to numerical stability and on a 3D decaying Taylor-Green vortex. The results are compared to the classical static filtering technique and to the use of a standard subgrid-scale model and give significant improvements in particular for low-order filter consistent with the LBM stencil.

  18. Local image registration by adaptive filtering.

    PubMed

    Caner, Gulcin; Tekalp, A Murat; Sharma, Gaurav; Heinzelman, Wendi

    2006-10-01

    We propose a new adaptive filtering framework for local image registration, which compensates for the effect of local distortions/displacements without explicitly estimating a distortion/displacement field. To this effect, we formulate local image registration as a two-dimensional (2-D) system identification problem with spatially varying system parameters. We utilize a 2-D adaptive filtering framework to identify the locally varying system parameters, where a new block adaptive filtering scheme is introduced. We discuss the conditions under which the adaptive filter coefficients conform to a local displacement vector at each pixel. Experimental results demonstrate that the proposed 2-D adaptive filtering framework is very successful in modeling and compensation of both local distortions, such as Stirmark attacks, and local motion, such as in the presence of a parallax field. In particular, we show that the proposed method can provide image registration to: a) enable reliable detection of watermarks following a Stirmark attack in nonblind detection scenarios, b) compensate for lens distortions, and c) align multiview images with nonparametric local motion.

  19. Adaptive optical filter

    SciTech Connect

    Whittemore, Stephen Richard

    2013-09-10

    Imaging systems include a detector and a spatial light modulator (SLM) that is coupled so as to control image intensity at the detector based on predetermined detector limits. By iteratively adjusting SLM element values, image intensity at one or all detector elements or portions of an imaging detector can be controlled to be within limits. The SLM can be secured to the detector at a spacing such that the SLM is effectively at an image focal plane. In some applications, the SLM can be adjusted to impart visible or hidden watermarks to images or to reduce image intensity at one or a selected set of detector elements so as to reduce detector blooming

  20. An adaptive filter for smoothing noisy radar images

    NASA Technical Reports Server (NTRS)

    Frost, V. S.; Stiles, J. A.; Shanmugam, K. S.; Holtzman, J. C.; Smith, S. A.

    1981-01-01

    A spatial domain adaptive Wiener filter for smoothing radar images corrupted by multiplicative noise is presented. The filter is optimum in a minimum mean squared error sense, computationally efficient, and preserves edges in the image better than other filters. The proposed algorithm can also be used for processing optical images with illumination variations that have a multiplicative effect.

  1. Adaptive filters: stable but divergent

    NASA Astrophysics Data System (ADS)

    Rupp, Markus

    2015-12-01

    The pros and cons of a quadratic error measure in the context of various applications have often been discussed. In this tutorial, we argue that it is not only a suboptimal but definitely the wrong choice when describing the stability behavior of adaptive filters. We take a walk through the past and recent history of adaptive filters and present 14 canonical forms of adaptive algorithms and even more variants thereof contrasting their mean-square with their l 2-stability conditions. In particular, in safety critical applications, the convergence in the mean-square sense turns out to provide wrong results, often not leading to stability at all. Only the robustness concept with its l 2-stability conditions ensures the absence of divergence.

  2. Speed adaptation as Kalman filtering.

    PubMed

    Barraza, Jose F; Grzywacz, Norberto M

    2008-10-01

    If the purpose of adaptation is to fit sensory systems to different environments, it may implement an optimization of the system. What the optimum is depends on the statistics of these environments. Therefore, the system should update its parameters as the environment changes. A Kalman-filtering strategy performs such an update optimally by combining current estimations of the environment with those from the past. We investigate whether the visual system uses such a strategy for speed adaptation. We performed a matching-speed experiment to evaluate the time course of adaptation to an abrupt velocity change. Experimental results are in agreement with Kalman-modeling predictions for speed adaptation. When subjects adapt to a low speed and it suddenly increases, the time course of adaptation presents two phases, namely, a rapid decrease of perceived speed followed by a slower phase. In contrast, when speed changes from fast to slow, adaptation presents a single phase. In the Kalman-model simulations, this asymmetry is due to the prevalence of low speeds in natural images. However, this asymmetry disappears both experimentally and in simulations when the adapting stimulus is noisy. In both transitions, adaptation now occurs in a single phase. Finally, the model also predicts the change in sensitivity to speed discrimination produced by the adaptation.

  3. Spatial filters for high average power lasers

    DOEpatents

    Erlandson, Alvin C

    2012-11-27

    A spatial filter includes a first filter element and a second filter element overlapping with the first filter element. The first filter element includes a first pair of cylindrical lenses separated by a first distance. Each of the first pair of cylindrical lenses has a first focal length. The first filter element also includes a first slit filter positioned between the first pair of cylindrical lenses. The second filter element includes a second pair of cylindrical lenses separated by a second distance. Each of the second pair of cylindrical lenses has a second focal length. The second filter element also includes a second slit filter positioned between the second pair of cylindrical lenses.

  4. Frequency domain FIR and IIR adaptive filters

    NASA Technical Reports Server (NTRS)

    Lynn, D. W.

    1990-01-01

    A discussion of the LMS adaptive filter relating to its convergence characteristics and the problems associated with disparate eigenvalues is presented. This is used to introduce the concept of proportional convergence. An approach is used to analyze the convergence characteristics of block frequency-domain adaptive filters. This leads to a development showing how the frequency-domain FIR adaptive filter is easily modified to provide proportional convergence. These ideas are extended to a block frequency-domain IIR adaptive filter and the idea of proportional convergence is applied. Experimental results illustrating proportional convergence in both FIR and IIR frequency-domain block adaptive filters is presented.

  5. Adaptive filtering with correlated state noise

    NASA Technical Reports Server (NTRS)

    Argentiero, P.

    1972-01-01

    An adaptive filter which uses a minimum variance criteria to estimate state noise covariance is presented. It is not necessary to assume white state noise in order to implement the filter. Simulation results are given which demonstrate that the filter tracks a satellite in the presence of modeling errors better than a conventional minimum variance filter with state noise. It is also shown that the propagated convariance matrix of the filter is an accurate indicator of the filter's performance.

  6. Intensity invariant nonlinear correlation filtering in spatially disjoint noise.

    PubMed

    Ben Tara, Walid; Arsenault, Henri H; García-Martínez, Pascuala

    2010-08-01

    We analyze the performance of a nonlinear correlation called the Locally Adaptive Contrast Invariant Filter in the presence of spatially disjoint noise under the peak-to-sidelobe ratio (PSR) metric. We show that the PSR using the nonlinear correlation improves as the disjoint noise intensity increases, whereas, for common linear filtering, it goes to zero. Experimental results as well as comparisons with a classical matched filter are given.

  7. Coordinated adaptive filters for motion simulators.

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Dieudonne, J. E.; Bowles, R. L.; Martin, D. J.

    1973-01-01

    A new approach to providing motion drive signals to a flight simulator utilizing coordinated adaptive filters is presented. Some motivation for the use of coordinated washout is discussed, along with conditions that determine the burden of coordination. The coordinated adaptive filters are derived, based on continuous steepest descent, and the application of the filters to simulated flight data is demonstrated.

  8. CMOS analog switches for adaptive filters

    NASA Technical Reports Server (NTRS)

    Dixon, C. E.

    1980-01-01

    Adaptive active low-pass filters incorporate CMOS (Complimentary Metal-Oxide Semiconductor) analog switches (such as 4066 switch) that reduce variation in switch resistance when filter is switched to any selected transfer function.

  9. Spatial filters for high power lasers

    DOEpatents

    Erlandson, Alvin Charles; Bayramian, Andrew James

    2014-12-02

    A spatial filter includes a first filter element and a second filter element overlapping with the first filter element. The first filter element includes a first pair of cylindrical lenses separated by a first distance. Each of the first pair of cylindrical lenses has a first focal length. The first filter element also includes a first longitudinal slit filter positioned between the first pair of cylindrical lenses. The second filter element includes a second pair of cylindrical lenses separated by a second distance. Each of the second pair of cylindrical lenses has a second focal length. The second filter element also includes a second longitudinal slit filter positioned between the second pair of cylindrical lenses.

  10. On the properties of discrete spatial filters for CFD

    NASA Astrophysics Data System (ADS)

    Báez Vidal, A.; Lehmkuhl, O.; Trias, F. X.; Pérez-Segarra, C. D.

    2016-12-01

    The spatial filtering of variables in the context of Computational Fluid Dynamics (CFD) is a common practice. Most of the discrete filters used in CFD simulations are locally accurate models of continuous operators. However, when filters are adaptative, i.e. the filter width is not constant, or meshes are irregular, discrete filters sometimes break relevant global properties of the continuous models they are based on. For example, the principle of maxima and minima reduction or conservation are eventually infringed. In this paper, we analyze the properties of analytic continuous convolution filters and extract those we consider to define filtering. Then, we impose the accomplishment of these properties on explicit discrete filters by means of constraints. Three filters satisfying the derived conditions are deduced and compared to common differential discrete CFD filters on synthetic fields. Tests on the developed discrete filters show the fulfillment of the imposed properties. In particular, the problem of maxima and minima generation is resolved for physically relevant cases. The tests are conducted on the basis of the eigenvectors of graph Laplacian matrices of meshes. Thus, insight into the relations between filtering and oscillation growth on general meshes is provided. Further tests on singularity fields and on isentropic vortices have also been conducted to evaluate the performance of filters on basic CFD fields. Results confirm that imposing the proposed conditions makes discrete filters properties consistent with those of the continuous ones.

  11. Objects tracking with adaptive correlation filters and Kalman filtering

    NASA Astrophysics Data System (ADS)

    Ontiveros-Gallardo, Sergio E.; Kober, Vitaly

    2015-09-01

    Object tracking is commonly used for applications such as video surveillance, motion based recognition, and vehicle navigation. In this work, a tracking system using adaptive correlation filters and robust Kalman prediction of target locations is proposed. Tracking is performed by means of multiple object detections in reduced frame areas. A bank of filters is designed from multiple views of a target using synthetic discriminant functions. An adaptive approach is used to improve discrimination capability of the synthesized filters adapting them to multiple types of backgrounds. With the help of computer simulation, the performance of the proposed algorithm is evaluated in terms of detection efficiency and accuracy of object tracking.

  12. Decision-directed entropy-based adaptive filtering

    NASA Astrophysics Data System (ADS)

    Myler, Harley R.; Weeks, Arthur R.; Van Dyke-Lewis, Michelle

    1991-12-01

    A recurring problem in adaptive filtering is selection of control measures for parameter modification. A number of methods reported thus far have used localized order statistics to adaptively adjust filter parameters. The most effective techniques are based on edge detection as a decision mechanism to allow the preservation of edge information while noise is filtered. In general, decision-directed adaptive filters operate on a localized area within an image by using statistics of the area as a discrimination parameter. Typically, adaptive filters are based on pixel to pixel variations within a localized area that are due to either edges or additive noise. In homogeneous areas within the image where variances are due to additive noise, the filter should operate to reduce the noise. Using an edge detection technique, a decision directed adaptive filter can vary the filtering proportional to the amount of edge information detected. We show an approach using an entropy measure on edges to differentiate between variations in the image due to edge information as compared against noise. The method uses entropy calculated against the spatial contour variations of edges in the window.

  13. Adaptive Mallow's optimization for weighted median filters

    NASA Astrophysics Data System (ADS)

    Rachuri, Raghu; Rao, Sathyanarayana S.

    2002-05-01

    This work extends the idea of spectral optimization for the design of Weighted Median filters and employ adaptive filtering that updates the coefficients of the FIR filter from which the weights of the median filters are derived. Mallows' theory of non-linear smoothers [1] has proven to be of great theoretical significance providing simple design guidelines for non-linear smoothers. It allows us to find a set of positive weights for a WM filter whose sample selection probabilities (SSP's) are as close as possible to a SSP set predetermined by Mallow's. Sample selection probabilities have been used as a basis for designing stack smoothers as they give a measure of the filter's detail preserving ability and give non-negative filter weights. We will extend this idea to design weighted median filters admitting negative weights. The new method first finds the linear FIR filter coefficients adaptively, which are then used to determine the weights of the median filter. WM filters can be designed to have band-pass, high-pass as well as low-pass frequency characteristics. Unlike the linear filters, however, the weighted median filters are robust in the presence of impulsive noise, as shown by the simulation results.

  14. Adaptive marginal median filter for colour images.

    PubMed

    Morillas, Samuel; Gregori, Valentín; Sapena, Almanzor

    2011-01-01

    This paper describes a new filter for impulse noise reduction in colour images which is aimed at improving the noise reduction capability of the classical vector median filter. The filter is inspired by the application of a vector marginal median filtering process over a selected group of pixels in each filtering window. This selection, which is based on the vector median, along with the application of the marginal median operation constitutes an adaptive process that leads to a more robust filter design. Also, the proposed method is able to process colour images without introducing colour artifacts. Experimental results show that the images filtered with the proposed method contain less noisy pixels than those obtained through the vector median filter.

  15. Adaptable Iterative and Recursive Kalman Filter Schemes

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2014-01-01

    Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.

  16. An adaptive Kalman filter for ECG signal enhancement.

    PubMed

    Vullings, Rik; de Vries, Bert; Bergmans, Jan W M

    2011-04-01

    The ongoing trend of ECG monitoring techniques to become more ambulatory and less obtrusive generally comes at the expense of decreased signal quality. To enhance this quality, consecutive ECG complexes can be averaged triggered on the heartbeat, exploiting the quasi-periodicity of the ECG. However, this averaging constitutes a tradeoff between improvement of the SNR and loss of clinically relevant physiological signal dynamics. Using a bayesian framework, in this paper, a sequential averaging filter is developed that, in essence, adaptively varies the number of complexes included in the averaging based on the characteristics of the ECG signal. The filter has the form of an adaptive Kalman filter. The adaptive estimation of the process and measurement noise covariances is performed by maximizing the bayesian evidence function of the sequential ECG estimation and by exploiting the spatial correlation between several simultaneously recorded ECG signals, respectively. The noise covariance estimates thus obtained render the filter capable of ascribing more weight to newly arriving data when these data contain morphological variability, and of reducing this weight in cases of no morphological variability. The filter is evaluated by applying it to a variety of ECG signals. To gauge the relevance of the adaptive noise-covariance estimation, the performance of the filter is compared to that of a Kalman filter with fixed, (a posteriori) optimized noise covariance. This comparison demonstrates that, without using a priori knowledge on signal characteristics, the filter with adaptive noise estimation performs similar to the filter with optimized fixed noise covariance, favoring the adaptive filter in cases where no a priori information is available or where signal characteristics are expected to fluctuate.

  17. Suppression of Biodynamic Interference by Adaptive Filtering

    NASA Technical Reports Server (NTRS)

    Velger, M.; Merhav, S. J.; Grunwald, A. J.

    1984-01-01

    Preliminary experimental results obtained in moving base simulator tests are presented. Both for pursuit and compensatory tracking tasks, a strong deterioration in tracking performance due to biodynamic interference is found. The use of adaptive filtering is shown to substantially alleviate these effects, resulting in a markedly improved tracking performance and reduction in task difficulty. The effect of simulator motion and of adaptive filtering on human operator describing functions is investigated. Adaptive filtering is found to substantially increase pilot gain and cross-over frequency, implying a more tight tracking behavior. The adaptive filter is found to be effective in particular for high-gain proportional dynamics, low display forcing function power and for pursuit tracking task configurations.

  18. Enhancement of Electrolaryngeal Speech by Adaptive Filtering.

    ERIC Educational Resources Information Center

    Espy-Wilson, Carol Y.; Chari, Venkatesh R.; MacAuslan, Joel M.; Huang, Caroline B.; Walsh, Michael J.

    1998-01-01

    A study tested the quality and intelligibility, as judged by several listeners, of four users' electrolaryngeal speech, with and without filtering to compensate for perceptually objectionable acoustic characteristics. Results indicated that an adaptive filtering technique produced a noticeable improvement in the quality of the Transcutaneous…

  19. Development of a spatial filtering apparatus

    NASA Astrophysics Data System (ADS)

    Wilson, Nicolle

    This thesis contains a discussion of the theoretical background for Fourier spatial filtering and a description of the design and construction of a portable in-class spatial filtering apparatus. A portable, in-class spatial filtering demonstration apparatus was designed and built. This apparatus uses liquid crystal display (LCD) panels from two projectors as the object and filter masks. The blue LCD panel from the first projector serves as the object mask, and the red panel from the second projector serves as the filter mask. The panels were extracted from their projectors and mounted onto aluminum blocks which are held in place by optical component mounts. Images are written to the LCD panels via custom open source software developed for this apparatus which writes independent monochromatic images to the video signal. The software has two monochromatic image windows, basic image manipulation tools, and two video feed input display windows. Two complementary metal-oxide semiconductor (CMOS) sensors are positioned to record the reconstructed image of the object mask and the diffraction pattern created by the object mask. The object and filter mask can be digitally changed and the effects on the filtered image and diffraction pattern can be observed in real-time. The entire apparatus is assembled onto a rolling cart which allows it to be easily taken into classrooms.

  20. Adaptive two-pass rank order filter to remove impulse noise in highly corrupted images.

    PubMed

    Xu, Xiaoyin; Miller, Eric L; Chen, Dongbin; Sarhadi, Mansoor

    2004-02-01

    In this paper, we present an adaptive two-pass rank order filter to remove impulse noise in highly corrupted images. When the noise ratio is high, rank order filters, such as the median filter for example, can produce unsatisfactory results. Better results can be obtained by applying the filter twice, which we call two-pass filtering. To further improve the performance, we develop an adaptive two-pass rank order filter. Between the passes of filtering, an adaptive process is used to detect irregularities in the spatial distribution of the estimated impulse noise. The adaptive process then selectively replaces some pixels changed by the first pass of filtering with their original observed pixel values. These pixels are then kept unchanged during the second filtering. In combination, the adaptive process and the second filter eliminate more impulse noise and restore some pixels that are mistakenly altered by the first filtering. As a final result, the reconstructed image maintains a higher degree of fidelity and has a smaller amount of noise. The idea of adaptive two-pass processing can be applied to many rank order filters, such as a center-weighted median filter (CWMF), adaptive CWMF, lower-upper-middle filter, and soft-decision rank-order-mean filter. Results from computer simulations are used to demonstrate the performance of this type of adaptation using a number of basic rank order filters.

  1. Spatial filtering of radiation from wire lasers

    NASA Astrophysics Data System (ADS)

    Orlova, E. E.; Solyankin, P. M.; Angeluts, A. A.; Lee, A.; Kosareva, O. G.; Ozheredov, I. A.; Balakin, A. V.; Andreeva, V. A.; Panov, N. A.; Aksenov, V. N.; Shkurinov, A. P.

    2017-04-01

    In this letter we propose an approach to obtain directive radiation from wire lasers with subwavelength transverse dimensions and length much larger than the radiation wavelength (wire lasers) based on spatial filtering of their radiation using a combination of a spherical lens and a diaphragm. Theoretical modeling based on the antenna model for wire lasers shows that a directive beam with the uniform phase front can be formed when the diaphragm separates the maximum of the image field of the laser created by the lens. We demonstrate spatial filtering of wire laser radiation experimentally using a terahertz quantum cascade laser.

  2. Spatial filtering in ambient noise interferometry.

    PubMed

    Carrière, Olivier; Gerstoft, Peter; Hodgkiss, William S

    2014-03-01

    Theoretically, the empirical Green's function between a pair of receivers can be extracted from the cross correlation of the received diffuse noise. The diffuse noise condition rarely is met in the ocean and directional sources may bias the Green's function. Here matrix-based spatial filters are used for removing unwanted contributions in the cross correlations. Two methods are used for solving the matrix filter design problem. First a matrix least-square problem is solved with a low-rank approximation of the pseudo-inverse, here, derived for linear and planar arrays. Second, a convex optimization approach is used to solve the design problem reformulated with ad hoc constraints. The spatial filter is applied to real-data cross correlations of elements from a linear array to attenuate the contribution of a discrete interferer. In the case of a planar array and simulated data, a spatial filter enables a passive upgoing/downgoing wavefield separation along with an efficient rejection of horizontally propagating noise. The impact of array size and frequency band on the filtered cross correlations is discussed.

  3. Using the deformable mirror as a spatial filter: application to circular beams.

    PubMed

    Tyson, R K

    1982-03-01

    Adaptive optics correction of a wave front by a deformable mirror that acts as a lossless spatial filter is studied. The decomposition of the wave front into Zernike polynomials provides a means for deriving the rms error of a corrected wave front in analytic form. The spatial filter is given in a functional form related to deformable mirror characteristics. A step filter approximation is derived and the conditions where the approximation holds are examined. An example is provided to demonstrate the utility of the spatial filtering concept for adaptive optics systems analysis.

  4. Matched filter based iterative adaptive approach

    NASA Astrophysics Data System (ADS)

    Nepal, Ramesh; Zhang, Yan Rockee; Li, Zhengzheng; Blake, William

    2016-05-01

    Matched Filter sidelobes from diversified LPI waveform design and sensor resolution are two important considerations in radars and active sensors in general. Matched Filter sidelobes can potentially mask weaker targets, and low sensor resolution not only causes a high margin of error but also limits sensing in target-rich environment/ sector. The improvement in those factors, in part, concern with the transmitted waveform and consequently pulse compression techniques. An adaptive pulse compression algorithm is hence desired that can mitigate the aforementioned limitations. A new Matched Filter based Iterative Adaptive Approach, MF-IAA, as an extension to traditional Iterative Adaptive Approach, IAA, has been developed. MF-IAA takes its input as the Matched Filter output. The motivation here is to facilitate implementation of Iterative Adaptive Approach without disrupting the processing chain of traditional Matched Filter. Similar to IAA, MF-IAA is a user parameter free, iterative, weighted least square based spectral identification algorithm. This work focuses on the implementation of MF-IAA. The feasibility of MF-IAA is studied using a realistic airborne radar simulator as well as actual measured airborne radar data. The performance of MF-IAA is measured with different test waveforms, and different Signal-to-Noise (SNR) levels. In addition, Range-Doppler super-resolution using MF-IAA is investigated. Sidelobe reduction as well as super-resolution enhancement is validated. The robustness of MF-IAA with respect to different LPI waveforms and SNR levels is also demonstrated.

  5. Color image diffusion using adaptive bilateral filter.

    PubMed

    Xie, Jun; Ann Heng, Pheng

    2005-01-01

    In this paper, we propose an approach to diffuse color images based on the bilateral filter. Real image data has a level of uncertainty that is manifested in the variability of measures assigned to pixels. This uncertainty is usually interpreted as noise and considered an undesirable component of the image data. Image diffusion can smooth away small-scale structures and noise while retaining important features, thus improving the performances for many image processing algorithms such as image compression, segmentation and recognition. The bilateral filter is noniterative, simple and fast. It has been shown to give similar and possibly better filtering results than iterative approaches. However, the performance of this filter is greatly affected by the choose of the parameters of filtering kernels. In order to remove noise and maintain the significant features on images, we extend the bilateral filter by introducing an adaptive domain spread into the nonlinear diffusion scheme. For color images, we employ the CIE-Lab color system to describe input images and the filtering process is operated using three channels together. Our analysis shows that the proposed method is more suitable for preserving strong edges on noisy images than the original bilateral filter. Empirical results on both nature images and color medical images confirm the novel method's advantages, and show it can diffuse various kinds of color images correctly and efficiently.

  6. Kalman filtering to suppress spurious signals in adaptive optics control.

    PubMed

    Poyneer, Lisa A; Véran, Jean-Pierre

    2010-11-01

    In many scenarios, an adaptive optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common-path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  7. Kalman filtering to suppress spurious signals in Adaptive Optics control

    SciTech Connect

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  8. VSP wave separation by adaptive masking filters

    NASA Astrophysics Data System (ADS)

    Rao, Ying; Wang, Yanghua

    2016-06-01

    In vertical seismic profiling (VSP) data processing, the first step might be to separate the down-going wavefield from the up-going wavefield. When using a masking filter for VSP wave separation, there are difficulties associated with two termination ends of the up-going waves. A critical challenge is how the masking filter can restore the energy tails, the edge effect associated with these terminations uniquely exist in VSP data. An effective strategy is to implement masking filters in both τ-p and f-k domain sequentially. Meanwhile it uses a median filter, producing a clean but smooth version of the down-going wavefield, used as a reference data set for designing the masking filter. The masking filter is implemented adaptively and iteratively, gradually restoring the energy tails cut-out by any surgical mute. While the τ-p and the f-k domain masking filters target different depth ranges of VSP, this combination strategy can accurately perform in wave separation from field VSP data.

  9. Gearbox Fault Diagnosis Using Adaptive Wavelet Filter

    NASA Astrophysics Data System (ADS)

    LIN, J.; ZUO, M. J.

    2003-11-01

    Vibration signals from a gearbox are usually noisy. As a result, it is difficult to find early symptoms of a potential failure in a gearbox. Wavelet transform is a powerful tool to disclose transient information in signals. An adaptive wavelet filter based on Morlet wavelet is introduced in this paper. The parameters in the Morlet wavelet function are optimised based on the kurtosis maximisation principle. The wavelet used is adaptive because the parameters are not fixed. The adaptive wavelet filter is found to be very effective in detection of symptoms from vibration signals of a gearbox with early fatigue tooth crack. Two types of discrete wavelet transform (DWT), the decimated with DB4 wavelet and the undecimated with harmonic wavelet, are also used to analyse the same signals for comparison. No periodic impulses appear on any scale in either DWT decomposition.

  10. Kalman filter based control for Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry

    2004-12-01

    Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.

  11. Selected annotated bibliographies for adaptive filtering of digital image data

    USGS Publications Warehouse

    Mayers, Margaret; Wood, Lynnette

    1988-01-01

    Digital spatial filtering is an important tool both for enhancing the information content of satellite image data and for implementing cosmetic effects which make the imagery more interpretable and appealing to the eye. Spatial filtering is a context-dependent operation that alters the gray level of a pixel by computing a weighted average formed from the gray level values of other pixels in the immediate vicinity.Traditional spatial filtering involves passing a particular filter or set of filters over an entire image. This assumes that the filter parameter values are appropriate for the entire image, which in turn is based on the assumption that the statistics of the image are constant over the image. However, the statistics of an image may vary widely over the image, requiring an adaptive or "smart" filter whose parameters change as a function of the local statistical properties of the image. Then a pixel would be averaged only with more typical members of the same population. This annotated bibliography cites some of the work done in the area of adaptive filtering. The methods usually fall into two categories, (a) those that segment the image into subregions, each assumed to have stationary statistics, and use a different filter on each subregion, and (b) those that use a two-dimensional "sliding window" to continuously estimate the filter either the spatial or frequency domain, or may utilize both domains. They may be used to deal with images degraded by space variant noise, to suppress undesirable local radiometric statistics while enforcing desirable (user-defined) statistics, to treat problems where space-variant point spread functions are involved, to segment images into regions of constant value for classification, or to "tune" images in order to remove (nonstationary) variations in illumination, noise, contrast, shadows, or haze.Since adpative filtering, like nonadaptive filtering, is used in image processing to accomplish various goals, this bibliography

  12. Adaptive Filtering Using Recurrent Neural Networks

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.

    2005-01-01

    A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.

  13. Adaptive noise Wiener filter for scanning electron microscope imaging system.

    PubMed

    Sim, K S; Teh, V; Nia, M E

    2016-01-01

    Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments.

  14. A practical sub-space adaptive filter.

    PubMed

    Zaknich, A

    2003-01-01

    A Sub-Space Adaptive Filter (SSAF) model is developed using, as a basis, the Modified Probabilistic Neural Network (MPNN) and its extension the Tuneable Approximate Piecewise Linear Regression (TAPLR) model. The TAPLR model can be adjusted by a single smoothing parameter continuously from the best piecewise linear model in each sub-space to the best approximately piecewise linear model over the whole data space. A suitable value in between ensures that all neighbouring piecewise linear models merge together smoothly at their boundaries. This model was developed by altering the form of the MPNN, a network used for general nonlinear regression. The MPNNs special structure allows it to be easily used to model a process by appropriately weighting piecewise linear models associated with each of the network's radial basis functions. The model has now been further extended to allow each piecewise linear model section to be adapted separately as new data flows through it. By doing this, the proposed SSAF model represents a learning/filtering method for nonlinear processes that provides one solution to the stability/plasticity dilemma associated with standard adaptive filters.

  15. Musical noise reduction using an adaptive filter

    NASA Astrophysics Data System (ADS)

    Hanada, Takeshi; Murakami, Takahiro; Ishida, Yoshihisa; Hoya, Tetsuya

    2003-10-01

    This paper presents a method for reducing a particular noise (musical noise). The musical noise is artificially produced by Spectral Subtraction (SS), which is one of the most conventional methods for speech enhancement. The musical noise is the tin-like sound and annoying in human auditory. We know that the duration of the musical noise is considerably short in comparison with that of speech, and that the frequency components of the musical noise are random and isolated. In the ordinary SS-based methods, the musical noise is removed by the post-processing. However, the output of the ordinary post-processing is delayed since the post-processing uses the succeeding frames. In order to improve this problem, we propose a novel method using an adaptive filter. In the proposed system, the observed noisy signal is used as the input signal to the adaptive filter and the output of SS is used as the reference signal. In this paper we exploit the normalized LMS (Least Mean Square) algorithm for the adaptive filter. Simulation results show that the proposed method has improved the intelligibility of the enhanced speech in comparison with the conventional method.

  16. Nonuniform spatially adaptive wavelet packets

    NASA Astrophysics Data System (ADS)

    Carre, Philippe; Fernandez-Maloigne, Christine

    2000-12-01

    In this paper, we propose a new decomposition scheme for spatially adaptive wavelet packets. Contrary to the double tree algorithm, our method is non-uniform and shift- invariant in the time and frequency domains, and is minimal for an information cost function. We prose some-restrictions to our algorithm to reduce the complexity and permitting us to provide some time-frequency partitions of the signal in agreement with its structure. This new 'totally' non-uniform transform, more adapted than Malvar, Packets or dyadic double-tree decomposition, allows the study of all possible time-frequency partitions with the only restriction that the blocks are rectangular. It permits one to obtain a satisfying Time-Frequency representation, and is applied for the study of EEG signals.

  17. Generating single attosecond pulses via spatial filtering

    NASA Astrophysics Data System (ADS)

    Gaarde, Mette B.; Schafer, Kenneth J.

    2006-11-01

    The first observation of isolated attosecond pulses by Hentschel [Nature414, 509 (2001)] resulted from an experiment that left the exact mechanism of their generation unresolved. A complete simulation of the experiment reveals the reason for its success: single pulses were efficiently isolated from two or more generated pulses by spatial filtering in the far field. Our explanation suggests a new, simple paradigm for the production of isolated attosecond bursts. We show that this method can be used, in conjunction with carrier-envelope phase stabilization, to select single attosecond pulses by use of 10fs driving pulses.

  18. Spectrometer Baseline Control Via Spatial Filtering

    NASA Technical Reports Server (NTRS)

    Burleigh, M. R.; Richey, C. R.; Rinehart, S. A.; Quijada, M. A.; Wollack, E. J.

    2016-01-01

    An absorptive half-moon aperture mask is experimentally explored as a broad-bandwidth means of eliminating spurious spectral features arising from reprocessed radiation in an infrared Fourier transform spectrometer. In the presence of the spatial filter, an order of magnitude improvement in the fidelity of the spectrometer baseline is observed. The method is readily accommodated within the context of commonly employed instrument configurations and leads to a factor of two reduction in optical throughput. A detailed discussion of the underlying mechanism and limitations of the method are provided.

  19. Spatial filtering by using cascading plasmonic gratings.

    PubMed

    Wang, Chih-Ming; Chang, Yia-Chung; Tsai, Din Ping

    2009-04-13

    In this study, the optical properties of a plasmonic multilayer structure, consisting of two longitudinally cascaded gratings with a half pitch off-set, are investigated. The proposed structure, which is a system mixing extended and localized surface plasmon, forms transversely cascaded metal/insulator/metal cavities. The angle dependent reflection spectrum of the proposed structure displays a resonance peak at a specific angle. The full-width at half maximum (FWHM) of the resonant peak is smaller than 3 degrees. The angular dispersion of the cascading plasmonic gratings is about d theta/d lambda =0.15 degrees/nm. The cascading plasmonic gratings can be used as a spatial filter to improve the spatial coherence of a light source.

  20. Spatial region filtering in IRAF/PROS

    NASA Technical Reports Server (NTRS)

    Mandel, Eric; Roll, John; Schmidt, Dennis; Vanhilst, Mike; Burg, Richard

    1992-01-01

    In order to analyze x ray data, it is nearly always necessary to extract source and background events from a data set. Typically, this is done by defining geometric spatial regions of the data set to describe the source and background. For example, one might wish to extract source events from a circular or elliptical region centered at a particular pixel, and background events from a circular or elliptical annulus whose inner radius matches the source region. At the same time, it might be necessary to exclude one or more nearby sources from the source or background region in question. Thus, it might be necessary to define a pie-shaped region or even an entirely irregularly-shaped region to exclude. A spatial filtering scheme called REGIONS was implemented in IRAF/PROS to support these and other types of spatial region extraction. It allows users to create a spatial mask by specifying one or more ASCII geometric shape descriptors (box, circle, ellipse, pie, point, annulus, and polygon) as regions to be included or excluded in the mask. In addition, two or more shapes can be combined using Boolean algebra to create an infinite variety of sophisticated regions. Each geometric shape has a specific set of parameters that describe that shape. For example, a circle is described by a center and a radius, while a box is described by a center, length, width, and rotation angle. These quantities can be specified in units of pixels or, in cases where the target image contains world coordinate system information, they can be described in units such as RA and Dec. Users can create region mask files by feeding an ASCII region descriptor to the IRAF/PROS plcreate task. Temporary masks can also be created from ASCII region descriptors by individual applications that call the routines in the region creation library. This library implements a yacc-based region parser that compiles the ASCII descriptors into 'software CPU' instructions which are then executed to create the mask. The

  1. Nonlinear adaptive filtering of stimulus artifact.

    PubMed

    Grieve, R; Parker, P A; Hudgins, B; Englehart, K

    2000-03-01

    Noninvasive measurements of somatosensory evoked potentials have both clinical and research applications. The electrical artifact which results from the stimulus is an interference which can distort the evoked signal, and introduce errors in response onset timing estimation. Given that this interference is synchronous with the evoked signal, it cannot be reduced by the conventional technique of ensemble averaging. The technique of adaptive noise cancelling has potential in this regard however, and has been used effectively in other similar problems. An adaptive noise cancelling filter which uses a neural network as the adaptive element is investigated in this application. The filter is implemented and performance determined in the cancelling of artifact for in vivo measurements on the median nerve. A technique of segmented neural network training is proposed in which the network is trained on that segment of the record time window which does not contain the evoked signal. The neural network is found to generalize well from this training to include the segment of the window containing the evoked signal. Both quantitative and qualitative measures show that significant stimulus artifact reduction is achieved.

  2. Improved adaptive complex diffusion despeckling filter.

    PubMed

    Bernardes, Rui; Maduro, Cristina; Serranho, Pedro; Araújo, Adérito; Barbeiro, Sílvia; Cunha-Vaz, José

    2010-11-08

    Despeckling optical coherence tomograms from the human retina is a fundamental step to a better diagnosis or as a preprocessing stage for retinal layer segmentation. Both of these applications are particularly important in monitoring the progression of retinal disorders. In this study we propose a new formulation for a well-known nonlinear complex diffusion filter. A regularization factor is now made to be dependent on data, and the process itself is now an adaptive one. Experimental results making use of synthetic data show the good performance of the proposed formulation by achieving better quantitative results and increasing computation speed.

  3. Image super-resolution via adaptive filtering and regularization

    NASA Astrophysics Data System (ADS)

    Ren, Jingbo; Wu, Hao; Dong, Weisheng; Shi, Guangming

    2014-11-01

    Image super-resolution (SR) is widely used in the fields of civil and military, especially for the low-resolution remote sensing images limited by the sensor. Single-image SR refers to the task of restoring a high-resolution (HR) image from the low-resolution image coupled with some prior knowledge as a regularization term. One classic method regularizes image by total variation (TV) and/or wavelet or some other transform which introduce some artifacts. To compress these shortages, a new framework for single image SR is proposed by utilizing an adaptive filter before regularization. The key of our model is that the adaptive filter is used to remove the spatial relevance among pixels first and then only the high frequency (HF) part, which is sparser in TV and transform domain, is considered as the regularization term. Concretely, through transforming the original model, the SR question can be solved by two alternate iteration sub-problems. Before each iteration, the adaptive filter should be updated to estimate the initial HF. A high quality HF part and HR image can be obtained by solving the first and second sub-problem, respectively. In experimental part, a set of remote sensing images captured by Landsat satellites are tested to demonstrate the effectiveness of the proposed framework. Experimental results show the outstanding performance of the proposed method in quantitative evaluation and visual fidelity compared with the state-of-the-art methods.

  4. Spectral analysis and filtering techniques in digital spatial data processing

    USGS Publications Warehouse

    Pan, Jeng-Jong

    1989-01-01

    A filter toolbox has been developed at the EROS Data Center, US Geological Survey, for retrieving or removing specified frequency information from two-dimensional digital spatial data. This filter toolbox provides capabilities to compute the power spectrum of a given data and to design various filters in the frequency domain. Three types of filters are available in the toolbox: point filter, line filter, and area filter. Both the point and line filters employ Gaussian-type notch filters, and the area filter includes the capabilities to perform high-pass, band-pass, low-pass, and wedge filtering techniques. These filters are applied for analyzing satellite multispectral scanner data, airborne visible and infrared imaging spectrometer (AVIRIS) data, gravity data, and the digital elevation models (DEM) data. -from Author

  5. Bayesian adaptive estimation of the auditory filter.

    PubMed

    Shen, Yi; Richards, Virginia M

    2013-08-01

    A Bayesian adaptive procedure for estimating the auditory-filter shape was proposed and evaluated using young, normal-hearing listeners at moderate stimulus levels. The resulting quick-auditory-filter (qAF) procedure assumed the power spectrum model of masking with the auditory-filter shape being modeled using a spectrally symmetric, two-parameter rounded-exponential (roex) function. During data collection using the qAF procedure, listeners detected the presence of a pure-tone signal presented in the spectral notch of a noise masker. Dependent on the listener's response on each trial, the posterior probability distributions of the model parameters were updated, and the resulting parameter estimates were then used to optimize the choice of stimulus parameters for the subsequent trials. Results showed that the qAF procedure gave similar parameter estimates to the traditional threshold-based procedure in many cases and was able to reasonably predict the masked signal thresholds. Additional measurements suggested that occasional failures of the qAF procedure to reliably converge could be a consequence of incorrect responses early in a qAF track. The addition of a parameter describing lapses of attention reduced the likelihood of such failures.

  6. Damping filter method for obtaining spatially localized solutions.

    PubMed

    Teramura, Toshiki; Toh, Sadayoshi

    2014-05-01

    Spatially localized structures are key components of turbulence and other spatiotemporally chaotic systems. From a dynamical systems viewpoint, it is desirable to obtain corresponding exact solutions, though their existence is not guaranteed. A damping filter method is introduced to obtain variously localized solutions and adapted in two typical cases. This method introduces a spatially selective damping effect to make a good guess at the exact solution, and we can obtain an exact solution through a continuation with the damping amplitude. The first target is a steady solution to the Swift-Hohenberg equation, which is a representative of bistable systems in which localized solutions coexist and a model for spanwise-localized cases. Not only solutions belonging to the well-known snaking branches but also those belonging to isolated branches known as "isolas" are found with continuation paths between them in phase space extended with the damping amplitude. This indicates that this spatially selective excitation mechanism has an advantage in searching spatially localized solutions. The second target is a spatially localized traveling-wave solution to the Kuramoto-Sivashinsky equation, which is a model for streamwise-localized cases. Since the spatially selective damping effect breaks Galilean and translational invariances, the propagation velocity cannot be determined uniquely while the damping is active, and a singularity arises when these invariances are recovered. We demonstrate that this singularity can be avoided by imposing a simple condition, and a localized traveling-wave solution is obtained with a specific propagation speed.

  7. Adaptive filters for detection of gravitational waves from coalescing binaries

    SciTech Connect

    Eleuteri, Antonio; Milano, Leopoldo; De Rosa, Rosario; Garufi, Fabio; Acernese, Fausto; Barone, Fabrizio; Giordano, Lara; Pardi, Silvio

    2006-06-15

    In this work we propose use of infinite impulse response adaptive line enhancer (IIR ALE) filters for detection of gravitational waves from coalescing binaries. We extend our previous work and define an adaptive matched filter structure. Filter performance is analyzed in terms of the tracking capability and determination of filter parameters. Furthermore, following the Neyman-Pearson strategy, receiver operating characteristics are derived, with closedform expressions for detection threshold, false alarm, and detection probability. Extensive tests demonstrate the effectiveness of adaptive filters both in terms of small computational cost and robustness.

  8. Design of suboptimal adaptive filter for stochastic systems

    NASA Astrophysics Data System (ADS)

    Ahn, Jun Il; Shin, Vladimir

    2005-12-01

    In this paper, the problem of estimating the system state in for linear discrete-time systems with uncertainties is considered. In [1], [2], we have proposed the fusion formula (FF) for an arbitrary number of correlated and uncorrelated estimates. The FF is applied to detection and filtering problem. The new suboptimal adaptive filter with parallel structure is herein proposed. In consequence of parallel structure of the proposed filter, parallel computers can be used for their design. A lower computational complexity and lower memory demand are achieved with the proposed filter than in the optimal adaptive Lainiotis-Kalman filter. Example demonstrates the accuracy of the new filter.

  9. [Evaluation of an adaptive filter for CT under low-CNR condition: comparison with linear filter].

    PubMed

    Mori, Issei; Uchida, Miho; Sato, Ami; Sato, Shingo; Tamura, Hajime; Takai, Yoshihiro; Ishibashi, Tadashi; Saito, Haruo; Hosokai, Yoshiyuki; Ogura, Takahide; Chida, Koichi; Machida, Yoshio

    2009-01-20

    The use of an adaptive filter for CT images is becoming a common procedure and is said to reduce image noise while preserving sharpness and helping to reduce the required X-ray dose. Although many reports support this view, the validity of such evaluations is arguable. When the linearity of a system is in question, physical performance indexes should be measured under conditions similar to those of clinical use. Evaluations of diagnosis using clinical images may be fallible because the non-filtered image used as the reference might not have been optimally reconstructed. We have chosen simple, but commonly used, adaptive filters for our evaluation. As a reference for comparing performance, we designed linear filters that best approximate the noise characteristics of the adaptive filters. MTF is measured through observation of the edge-spread function. Clinical abdominal images are used to compare the performance of adaptive filters and linear filters. We conclude that the performance of the type of adaptive filter we have chosen is virtually the same as that of the linear filter, as long as the image quality of soft tissues is our interest. Both the noise SD and MTF are virtually the same if the contrast of the object is not substantially higher than 150 HU. Images of soft tissues obtained with the use of adaptive filters are also virtually the same as those obtained by linear filters. The edge-preservation characteristic of this adaptive filter is not observable for soft tissues.

  10. Multimodal Medical Image Fusion by Adaptive Manifold Filter.

    PubMed

    Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna

    2015-01-01

    Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images.

  11. Adaptive filtering of Echelle spectra of distant Quasars

    NASA Technical Reports Server (NTRS)

    Priebe, A.; Liebscher, D.-E.; Lorenz, H.; Richter, G.-M.

    1992-01-01

    The study of the Ly alpha - forest of distant (approximately greater than 3) Quasars is an important tool in obtaining a more detailed picture of the distribution of matter along the line of sight and thus of the general distribution of matter in the Universe and is therefore of important cosmological significance. Obviously, this is one of the tasks where spectral resolution plays an important role. The spectra used were obtained with the EFOSC at the ESO 3.6m telescope. Applying for the data reduction the standard Echelle procedure, as it is implemented for instance in the MIDAS-package, one uses stationary filters (e.g. median) for noise and cosmic particle event reduction in the 2-dimensional Echelle image. These filters are useful if the spatial spectrum of the noise reaches essentially higher frequencies then the highest resolution features in the image. Otherwise the resolution in the data will be degraded and the spectral lines smoothed. However, in the Echelle spectra the highest resolution is already in the range of one or a few pixels and therefore stationary filtering means always a loss of resolution. An Echelle reduction procedure on the basis of a space variable filter described which recognizes the local resolution in the presence of noise and adapts to it is developed. It was shown that this technique leads to an improvement in resolution by a factor of 2 with respect to standard procedures.

  12. Adaptive filter design using recurrent cerebellar model articulation controller.

    PubMed

    Lin, Chih-Min; Chen, Li-Yang; Yeung, Daniel S

    2010-07-01

    A novel adaptive filter is proposed using a recurrent cerebellar-model-articulation-controller (CMAC). The proposed locally recurrent globally feedforward recurrent CMAC (RCMAC) has favorable properties of small size, good generalization, rapid learning, and dynamic response, thus it is more suitable for high-speed signal processing. To provide fast training, an efficient parameter learning algorithm based on the normalized gradient descent method is presented, in which the learning rates are on-line adapted. Then the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so the stability of the filtering error can be guaranteed. To demonstrate the performance of the proposed adaptive RCMAC filter, it is applied to a nonlinear channel equalization system and an adaptive noise cancelation system. The advantages of the proposed filter over other adaptive filters are verified through simulations.

  13. Improved Spatial Filter for high power Lasers

    SciTech Connect

    Estabrook, Kent G.; Celliers, Peter M.; Murray, James E.; DaSilva, Luiz; MacGowan, Brian J.; Rubenchik, Alexander M.; Manes, Kenneth R.; Drake, Robert P.; Afeyan, Bedros

    1998-06-01

    A new pinhole architecture incorporates features intended to reduce the rate of plasma generation in a spatial filter for high-energy laser pulse beams. An elongated pinhole aperture is provided in an apertured body for rejecting off-axis rays of the laser pulse beam. The internal surface of the elongated aperture has a diameter which progressively tapers from a larger entrance cross-sectional area at an inlet to a smaller output cross-sectional area at an outlet. The tapered internal surface causes off-axis rays to be refracted in a low density plasma layer that forms on the internal surface or specularly reflected at grazing incidence from the internal surface. Off-axis rays of the high-energy pulse beam are rejected by this design. The external surface of the apertured body adjacent to the larger entrance cross-sectional area at the inlet to the elongated aperture is angled obliquely with respect to the to direction of the path of the high-energy laser pulse beam to backscatter off-axis rays away from the high-energy pulse beam. The aperture is formed as a truncated cone or alternatively with a tapered square cross-section. The internal surface of the aperture is coated with an ablative material, preferably high-density material which can be deposited with an exploding wire.

  14. Adaptive mean filtering for noise reduction in CT polymer gel dosimetry

    SciTech Connect

    Hilts, Michelle; Jirasek, Andrew

    2008-01-15

    X-ray computed tomography (CT) as a method of extracting 3D dose information from irradiated polymer gel dosimeters is showing potential as a practical means to implement gel dosimetry in a radiation therapy clinic. However, the response of CT contrast to dose is weak and noise reduction is critical in order to achieve adequate dose resolutions with this method. Phantom design and CT imaging technique have both been shown to decrease image noise. In addition, image postprocessing using noise reduction filtering techniques have been proposed. This work evaluates in detail the use of the adaptive mean filter for reducing noise in CT gel dosimetry. Filter performance is systematically tested using both synthetic patterns mimicking a range of clinical dose distribution features as well as actual clinical dose distributions. Both low and high signal-to-noise ratio (SNR) situations are examined. For all cases, the effects of filter kernel size and the number of iterations are investigated. Results indicate that adaptive mean filtering is a highly effective tool for noise reduction CT gel dosimetry. The optimum filtering strategy depends on characteristics of the dose distributions and image noise level. For low noise images (SNR {approx}20), the filtered results are excellent and use of adaptive mean filtering is recommended as a standard processing tool. For high noise images (SNR {approx}5) adaptive mean filtering can also produce excellent results, but filtering must be approached with more caution as spatial and dose distortions of the original dose distribution can occur.

  15. Adjustment of adaptive sum comb filter for PPG signals.

    PubMed

    Pilt, Kristjan; Meigas, Kalju; Ferenets, Rain; Kaik, Juri

    2009-01-01

    AC component of photoplethysmography signal carries important information for diagnostics. Registered signal may be affected by noises, which are sharing the same bandwidth. Adaptive comb filter is used for the AC component extraction. Due to filter averaging behavior it decreases the signal shape difference between consecutive beats. Comb filter needs to be adjusted for PPG signal. Comb filter new weight values are determined through numerical computation. Experiments with generated photoplethysmographic signals were carried out to compare adjusted and non-adjusted adaptive sum comb filter.

  16. Autonomous navigation system using a fuzzy adaptive nonlinear H∞ filter.

    PubMed

    Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim

    2014-09-19

    Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds  and adaptive disturbance attenuation , which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter.

  17. Adaptive Filtering in the Wavelet Transform Domain via Genetic Algorithms

    DTIC Science & Technology

    2004-08-06

    identification. Figure 1 shows a very basic example of this type of system . x(n) Figure 1. Basic system identification using adaptive filters block diagram...block diagram of adaptive wavelet filtering system . The main objective of the system shown in Figure 2 is to minimize the error signal, e(k), which is...in Table 1. Daub4 wavelets use filter banks (Vaidyanathan 1992) containing exactly four elements. 5 Figure 4. Time-Domain Representation of

  18. Progress in adaptive control of flexible spacecraft using lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Montgomery, R. C.

    1985-01-01

    This paper reviews the use of the least square lattice filter in adaptive control systems. Lattice filters have been used primarily in speech and signal processing, but they have utility in adaptive control because of their order-recursive nature. They are especially useful in dealing with structural dynamics systems wherein the order of a controller required to damp a vibration is variable depending on the number of modes significantly excited. Applications are presented for adaptive control of a flexible beam. Also, difficulties in the practical implementation of the lattice filter in adaptive control are discussed.

  19. Spatial adaptation on video display terminals

    SciTech Connect

    Greenhouse, D.S.; Bailey, I.L.; Howarth, P.A.; Berman, S.M.

    1989-01-01

    Spatial adaptation, in the form of a frequency-specific reduction in contrast sensitivity, can occur when the visual system is exposed to certain stimuli. We employed vertical sinusoidal test gratings to investigate adaptation to the horizontal structure of text presented on a standard video display terminal. The parameters of the contrast sensitivity test were selected on the basis of waveform analysis of spatial luminance scans of the text stimulus. We found that subjects exhibited a small, but significant, frequency-specific adaptation consistent with the spatial frequency spectrum of the stimulus. Theoretical and practical significance of this finding are discussed. 6 refs., 4 figs.

  20. Investigation of Adaptive Robust Kalman Filtering Algorithms for GPS/DR Navigation System Filters

    NASA Astrophysics Data System (ADS)

    Elzoghby, MOSTAFA; Arif, USMAN; Li, FU; Zhi Yu, XI

    2017-03-01

    The conventional Kalman filter (KF) algorithm is suitable if the characteristic noise covariance for states as well as measurements is readily known but in most cases these are unknown. Similarly robustness is required instead of smoothing if states are changing abruptly. Such an adaptive as well as robust Kalman filter is vital for many real time applications, like target tracking and navigating aerial vehicles. A number of adaptive as well as robust Kalman filtering methods are available in the literature. In order to investigate the performance of some of these methods, we have selected three different Kalman filters, namely Sage Husa KF, Modified Adaptive Robust KF and Adaptively Robust KF, which are easily simulate able as well as implementable for real time applications. These methods are simulated for land based vehicle and the results are compared with conventional Kalman filter. Results show that the Modified Adaptive Robust KF is best amongst the selected methods and can be used for Navigation applications.

  1. Dynamics of Adaptation in Spatially Heterogeneous Metapopulations

    PubMed Central

    Papaïx, Julien; David, Olivier; Lannou, Christian; Monod, Hervé

    2013-01-01

    The selection pressure experienced by organisms often varies across the species range. It is hence crucial to characterise the link between environmental spatial heterogeneity and the adaptive dynamics of species or populations. We address this issue by studying the phenotypic evolution of a spatial metapopulation using an adaptive dynamics approach. The singular strategy is found to be the mean of the optimal phenotypes in each habitat with larger weights for habitats present in large and well connected patches. The presence of spatial clusters of habitats in the metapopulation is found to facilitate specialisation and to increase both the level of adaptation and the evolutionary speed of the population when dispersal is limited. By showing that spatial structures are crucial in determining the specialisation level and the evolutionary speed of a population, our results give insight into the influence of spatial heterogeneity on the niche breadth of species. PMID:23424618

  2. Noncausal spatial prediction filtering based on an ARMA model

    NASA Astrophysics Data System (ADS)

    Liu, Zhipeng; Chen, Xiaohong; Li, Jingye

    2009-06-01

    Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assumption inconsistency before and after filtering. In this paper, an autoregressive, moving-average model is employed to avoid the model inconsistency. Based on the ARMA model, a noncasual prediction filter is computed and a self-deconvolved projection filter is used for estimating additive noise in order to suppress random noise. The 1-D ARMA model is also extended to the 2-D spatial domain, which is the basis for noncasual spatial prediction filtering for random noise attenuation on 3-D seismic data. Synthetic and field data processing indicate this method can suppress random noise more effectively and preserve the signal simultaneously and does much better than other conventional prediction filtering methods.

  3. Real time microcontroller implementation of an adaptive myoelectric filter.

    PubMed

    Bagwell, P J; Chappell, P H

    1995-03-01

    This paper describes a real time digital adaptive filter for processing myoelectric signals. The filter time constant is automatically selected by the adaptation algorithm, giving a significant improvement over linear filters for estimating the muscle force and controlling a prosthetic device. Interference from mains sources often produces problems for myoelectric processing, and so 50 Hz and all harmonic frequencies are reduced by an averaging filter and differential process. This makes practical electrode placement and contact less critical and time consuming. An economic real time implementation is essential for a prosthetic controller, and this is achieved using an Intel 80C196KC microcontroller.

  4. Construction of point process adaptive filter algorithms for neural systems using sequential Monte Carlo methods.

    PubMed

    Ergün, Ayla; Barbieri, Riccardo; Eden, Uri T; Wilson, Matthew A; Brown, Emery N

    2007-03-01

    The stochastic state point process filter (SSPPF) and steepest descent point process filter (SDPPF) are adaptive filter algorithms for state estimation from point process observations that have been used to track neural receptive field plasticity and to decode the representations of biological signals in ensemble neural spiking activity. The SSPPF and SDPPF are constructed using, respectively, Gaussian and steepest descent approximations to the standard Bayes and Chapman-Kolmogorov (BCK) system of filter equations. To extend these approaches for constructing point process adaptive filters, we develop sequential Monte Carlo (SMC) approximations to the BCK equations in which the SSPPF and SDPPF serve as the proposal densities. We term the two new SMC point process filters SMC-PPFs and SMC-PPFD, respectively. We illustrate the new filter algorithms by decoding the wind stimulus magnitude from simulated neural spiking activity in the cricket cercal system. The SMC-PPFs and SMC-PPFD provide more accurate state estimates at low number of particles than a conventional bootstrap SMC filter algorithm in which the state transition probability density is the proposal density. We also use the SMC-PPFs algorithm to track the temporal evolution of a spatial receptive field of a rat hippocampal neuron recorded while the animal foraged in an open environment. Our results suggest an approach for constructing point process adaptive filters using SMC methods.

  5. A model for radar images and its application to adaptive digital filtering of multiplicative noise

    NASA Technical Reports Server (NTRS)

    Frost, V. S.; Stiles, J. A.; Shanmugan, K. S.; Holtzman, J. C.

    1982-01-01

    Standard image processing techniques which are used to enhance noncoherent optically produced images are not applicable to radar images due to the coherent nature of the radar imaging process. A model for the radar imaging process is derived in this paper and a method for smoothing noisy radar images is also presented. The imaging model shows that the radar image is corrupted by multiplicative noise. The model leads to the functional form of an optimum (minimum MSE) filter for smoothing radar images. By using locally estimated parameter values the filter is made adaptive so that it provides minimum MSE estimates inside homogeneous areas of an image while preserving the edge structure. It is shown that the filter can be easily implemented in the spatial domain and is computationally efficient. The performance of the adaptive filter is compared (qualitatively and quantitatively) with several standard filters using real and simulated radar images.

  6. Development of an adaptive bilateral filter for evaluating color image difference

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Hardeberg, Jon Yngve

    2012-04-01

    Spatial filtering, which aims to mimic the contrast sensitivity function (CSF) of the human visual system (HVS), has previously been combined with color difference formulae for measuring color image reproduction errors. These spatial filters attenuate imperceptible information in images, unfortunately including high frequency edges, which are believed to be crucial in the process of scene analysis by the HVS. The adaptive bilateral filter represents a novel approach, which avoids the undesirable loss of edge information introduced by CSF-based filtering. The bilateral filter employs two Gaussian smoothing filters in different domains, i.e., spatial domain and intensity domain. We propose a method to decide the parameters, which are designed to be adaptive to the corresponding viewing conditions, and the quantity and homogeneity of information contained in an image. Experiments and discussions are given to support the proposal. A series of perceptual experiments were conducted to evaluate the performance of our approach. The experimental sample images were reproduced with variations in six image attributes: lightness, chroma, hue, compression, noise, and sharpness/blurriness. The Pearson's correlation values between the model-predicted image difference and the observed difference were employed to evaluate the performance, and compare it with that of spatial CIELAB and image appearance model.

  7. The cerebellum as an adaptive filter: a general model?

    PubMed

    Dean, Paul; Porrill, John

    2010-01-01

    Many functional models of the cerebellar microcircuit are based on the adaptive-filter model first proposed by Fujita. The adaptive filter has powerful signal processing capacities that are suitable for both sensory and motor tasks, and uses a simple and intuitively plausible decorrelation learning rule that offers and account of the evolution of the inferior olive. Moreover, in those cases where the input-output transformations of cerebellar microzones have been sufficiently characterised, they appear to conform to those predicted by the adaptive-filter model. However, these cases are few in number, and comparing the model with the internal operations of the microcircuit itself has not proved straightforward. Whereas some microcircuit features appear compatible with adaptive-filter function, others such as simple granular-layer processing or Purkinje cell bistability, do not. How far these seeming incompatibilities indicate additional computational roles for the cerebellar microcircuit remains to be determined.

  8. Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.

    ERIC Educational Resources Information Center

    Butler, Ronald W.

    The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…

  9. Adaptive median filtering for preprocessing of time series measurements

    NASA Technical Reports Server (NTRS)

    Paunonen, Matti

    1993-01-01

    A median (L1-norm) filtering program using polynomials was developed. This program was used in automatic recycling data screening. Additionally, a special adaptive program to work with asymmetric distributions was developed. Examples of adaptive median filtering of satellite laser range observations and TV satellite time measurements are given. The program proved to be versatile and time saving in data screening of time series measurements.

  10. Spatial filtering efficiency of monostatic biaxial lidar: analysis and applications

    NASA Astrophysics Data System (ADS)

    Agishev, Ravil R.; Comeron, Adolfo

    2002-12-01

    Results of lidar modeling based on spatial-angular filtering efficiency criteria are presented. Their analysis shows that the low spatial-angular filtering efficiency of traditional visible and near-infrared systems is an important cause of low signal/background-radiation ratio (SBR) at the photodetector input. The low SBR may be responsible for considerable measurement errors and ensuing the low accuracy of the retrieval of atmospheric optical parameters. As shown, the most effective protection against sky background radiation for groundbased biaxial lidars is the modifying of their angular field according to a spatial-angular filtering efficiency criterion. Some effective approaches to achieve a high filtering efficiency for the receiving system optimization are discussed.

  11. Spatial filtering efficiency of monostatic biaxial lidar: analysis and applications.

    PubMed

    Agishev, Ravil R; Comeron, Adolfo

    2002-12-20

    Results of lidar modeling based on spatial-angular filtering efficiency criteria are presented. Their analysis shows that the low spatial-angular filtering efficiency of traditional visible and near-infrared systems is an important cause of low signal/background-radiation ratio (SBR) at the photodetector input The low SBR may be responsible for considerable measurement errors and ensuing the low accuracy of the retrieval of atmospheric optical parameters. As shown, the most effective protection against sky background radiation for groundbased biaxial lidars is the modifying of their angular field according to a spatial-angular filtering efficiency criterion. Some effective approaches to achieve a high filtering efficiency for the receiving system optimization are discussed.

  12. Enhanced adaptive loop filter for motion compensated frame.

    PubMed

    Yoo, Young-Joe; Seo, Chan-Won; Han, Jong-Ki; Nguyen, Truong Q

    2011-08-01

    We propose an adaptive loop filter to remove the redundancy between current and motion compensated frames so that the residual signal is minimized, thus coding efficiency increases. The loop filter coefficients and offset are optimized for each frame or a set of blocks to minimize the total energy of the residual signal resulting from motion estimation and compensation. The optimized loop filter with offset is applied for the set of blocks where the filtering process gives coding gain based upon rate-distortion cost. The proposed loop filter is used for the motion compensated frame whereas the conventional adaptive interpolation filter (AIF) is applied to the reference frames to interpolate the subpixel values. Another conventional scheme adaptive loop filter (ALF), is used after deblocking filtering to enhance quality of reconstructed frames, not to minimize energy of residual signal. The proposed loop filter can be used in combination with the AIF and ALF. Experimental results show that proposed algorithm provides the averaged bit reduction of 8% compared to conventional H.264/AVC scheme. When the proposed scheme is combined with AIF and ALF, the coding gain increases even further.

  13. Filter. Remix. Make.: Cultivating Adaptability through Multimodality

    ERIC Educational Resources Information Center

    Dusenberry, Lisa; Hutter, Liz; Robinson, Joy

    2015-01-01

    This article establishes traits of adaptable communicators in the 21st century, explains why adaptability should be a goal of technical communication educators, and shows how multimodal pedagogy supports adaptability. Three examples of scalable, multimodal assignments (infographics, research interviews, and software demonstrations) that evidence…

  14. Adaptive Control of Flexible Structures Using Residual Mode Filters

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Frost, Susan

    2010-01-01

    Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter. We have proposed a modified adaptive controller with a residual mode filter. The RMF is used to accommodate troublesome modes in the system that might otherwise inhibit the adaptive controller, in particular the ASPR condition. This new theory accounts for leakage of the disturbance term into the Q modes. A simple three-mode example shows that the RMF can restore stability to an otherwise unstable adaptively controlled system. This is done without modifying the adaptive controller design.

  15. Computationally efficient video restoration for Nyquist sampled imaging sensors combining an affine-motion-based temporal Kalman filter and adaptive Wiener filter.

    PubMed

    Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J

    2014-05-01

    In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.

  16. The effects of spatial filtering and artifacts on electrocorticographic signals

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Coon, W. G.; de Pesters, A.; Brunner, P.; Schalk, G.

    2015-10-01

    Objective. Electrocorticographic (ECoG) signals contain noise that is common to all channels and noise that is specific to individual channels. Most published ECoG studies use common average reference (CAR) spatial filters to remove common noise, but CAR filters may introduce channel-specific noise into other channels. To address this concern, scientists often remove artifactual channels prior to data analysis. However, removing these channels depends on expert-based labeling and may also discard useful data. Thus, the effects of spatial filtering and artifacts on ECoG signals have been largely unknown. This study aims to quantify these effects and thereby address this gap in knowledge. Approach. In this study, we address these issues by exploring the effects of application of two types of unsupervised spatial filters and three methods of detecting signal artifacts using a large ECoG data set (20 subjects, four task conditions in each subject). Main results. Our results confirm that spatial filtering improves performance, i.e., it reduces ECoG signal variance that is not related to the task. They also show that removing artifactual channels automatically (using quantitatively defined rejection criteria) or manually (using expert opinion) does not increase the total amount of task-related information, but does avoid potential contamination from one or more noisy channels. Finally, applying a novel ‘median average reference’ filter does not require the elimination of artifactual channels prior to spatial filtering and still mitigates the influence of channels with channel-specific noise. Thus, it allows the investigator to retain more potentially useful task-related data. Significance. In summary, our results show that appropriately designed spatial filters that account for both common noise and channel-specific noise greatly improve the quality of ECoG signal analyses, and that artifacts in only a single channel can result in profound and undesired effects on

  17. A hybrid method for optimization of the adaptive Goldstein filter

    NASA Astrophysics Data System (ADS)

    Jiang, Mi; Ding, Xiaoli; Tian, Xin; Malhotra, Rakesh; Kong, Weixue

    2014-12-01

    The Goldstein filter is a well-known filter for interferometric filtering in the frequency domain. The main parameter of this filter, alpha, is set as a power of the filtering function. Depending on it, considered areas are strongly or weakly filtered. Several variants have been developed to adaptively determine alpha using different indicators such as the coherence, and phase standard deviation. The common objective of these methods is to prevent areas with low noise from being over filtered while simultaneously allowing stronger filtering over areas with high noise. However, the estimators of these indicators are biased in the real world and the optimal model to accurately determine the functional relationship between the indicators and alpha is also not clear. As a result, the filter always under- or over-filters and is rarely correct. The study presented in this paper aims to achieve accurate alpha estimation by correcting the biased estimator using homogeneous pixel selection and bootstrapping algorithms, and by developing an optimal nonlinear model to determine alpha. In addition, an iteration is also merged into the filtering procedure to suppress the high noise over incoherent areas. The experimental results from synthetic and real data show that the new filter works well under a variety of conditions and offers better and more reliable performance when compared to existing approaches.

  18. Lidar receiver spatial filters for recording multiple scattering

    NASA Astrophysics Data System (ADS)

    Abramochkin, Alexander I.; Abramochkin, Serge A.; Tikhomirov, Alexander A.

    1999-11-01

    For lidar receivers, spatial filtration problems with separate recording of the multiply backscattered flux incident at different angles relative to the optical axis of the receiving lens are considered. Beam separation is performed with spatial filters selecting image fragments within the lidar receiver field of view, which greatly exceeds the transmitted beam divergence. Various instrumental realizations of spatial filter-separators are examined, such as multielement photodetectors with concentric rings, multifiber and refractive separators, and changeable diaphragms. Possibilities and peculiarities of simultaneous and sequential recording of image fragments are considered.

  19. Estimated spectrum adaptive postfilter and the iterative prepost filtering algirighms

    NASA Technical Reports Server (NTRS)

    Linares, Irving (Inventor)

    2004-01-01

    The invention presents The Estimated Spectrum Adaptive Postfilter (ESAP) and the Iterative Prepost Filter (IPF) algorithms. These algorithms model a number of image-adaptive post-filtering and pre-post filtering methods. They are designed to minimize Discrete Cosine Transform (DCT) blocking distortion caused when images are highly compressed with the Joint Photographic Expert Group (JPEG) standard. The ESAP and the IPF techniques of the present invention minimize the mean square error (MSE) to improve the objective and subjective quality of low-bit-rate JPEG gray-scale images while simultaneously enhancing perceptual visual quality with respect to baseline JPEG images.

  20. A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Sanner, Robert M.

    2012-01-01

    Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.

  1. Fast HDR image upscaling using locally adapted linear filters

    NASA Astrophysics Data System (ADS)

    Talebi, Hossein; Su, Guan-Ming; Yin, Peng

    2015-02-01

    A new method for upscaling high dynamic range (HDR) images is introduced in this paper. Overshooting artifact is the common problem when using linear filters such as bicubic interpolation. This problem is visually more noticeable while working on HDR images where there exist more transitions from dark to bright. Our proposed method is capable of handling these artifacts by computing a simple gradient map which enables the filter to be locally adapted to the image content. This adaptation consists of first, clustering pixels into regions with similar edge structures and second, learning the shape and length of our symmetric linear filter for each of these pixel groups. This new filter can be implemented in a separable fashion which perfectly fits hardware implementations. Our experimental results show that training our filter with HDR images can effectively reduce the overshooting artifacts and improve upon the visual quality of the existing linear upscaling approaches.

  2. Improving nonlinear modeling capabilities of functional link adaptive filters.

    PubMed

    Comminiello, Danilo; Scarpiniti, Michele; Scardapane, Simone; Parisi, Raffaele; Uncini, Aurelio

    2015-09-01

    The functional link adaptive filter (FLAF) represents an effective solution for online nonlinear modeling problems. In this paper, we take into account a FLAF-based architecture, which separates the adaptation of linear and nonlinear elements, and we focus on the nonlinear branch to improve the modeling performance. In particular, we propose a new model that involves an adaptive combination of filters downstream of the nonlinear expansion. Such combination leads to a cooperative behavior of the whole architecture, thus yielding a performance improvement, particularly in the presence of strong nonlinearities. An advanced architecture is also proposed involving the adaptive combination of multiple filters on the nonlinear branch. The proposed models are assessed in different nonlinear modeling problems, in which their effectiveness and capabilities are shown.

  3. Spatial filter pinhole for high-energy pulsed lasers

    SciTech Connect

    Celliers, P.M.; Estabrook, K.G.; Wallace, R.J.; Murray, J.E.; Da Silva, L.B.; MacGowan, B.J.; Van Wonterghem, B.M.; Manes, K.R.

    1998-04-01

    Spatial filters are essential components for maintaining high beam quality in high-energy pulsed laser systems. The long-duration (21 ns) high-energy pulses envisioned for future inertial-confinement fusion drive systems, such as the U. S. National Ignition Facility (NIF), are likely to lead to increased plasma generation and closure effects within the pinholes in the spatial filters. The design goal for the pinhole spatial filter for the NIF design is to remove small-angle scatter in the beam to as little as a {plus_minus}100-{mu}rad divergence. It is uncertain whether this design requirement can be met with a conventional pinhole design. We propose a new pinhole architecture that addresses these issues by incorporating features intended to reduce the rate of plasma generation. Initial experiments with this design have verified its performance improvement relative to a conventional pinhole design. {copyright} 1998 Optical Society of America

  4. Time-Domain Filtering for Spatial Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    An approach to large-eddy simulation (LES) is developed whose subgrid-scale model incorporates filtering in the time domain, in contrast to conventional approaches, which exploit spatial filtering. The method is demonstrated in the simulation of a heated, compressible, axisymmetric jet, and results are compared with those obtained from fully resolved direct numerical simulation. The present approach was, in fact, motivated by the jet-flow problem and the desire to manipulate the flow by localized (point) sources for the purposes of noise suppression. Time-domain filtering appears to be more consistent with the modeling of point sources; moreover, time-domain filtering may resolve some fundamental inconsistencies associated with conventional space-filtered LES approaches.

  5. Adaptive comb filtering for motion artifact reduction from PPG with a structure of adaptive lattice IIR notch filter.

    PubMed

    Lee, Boreom; Kee, Youngwook; Han, Jonghee; Yi, Won Jin

    2011-01-01

    Photoplethysmographic (PPG) signal can provide important information about cardiovascular and respiratory conditions of individuals in a hospital or daily life. However, PPG can be distorted by motion artifacts significantly. Therefore, the reduction of the effects of motion artifacts is very important procedure for monitoring cardio-respiratory system by PPG. There have been many adaptive techniques to reduce motion artifacts from PPG signal including normalized least mean squares (NLMS) method, recursive least squares (RLS) filter, and Kalman filter. In the present study, we propose the adaptive comb filter (ACF) for reducing the effects of motion artifacts from PPG signal. ACF with adaptive lattice infinite impulse response (IIR) notch filter (ALNF) successfully reduced the motion artifacts from the quasi-periodic PPG signal.

  6. Efficient Lane Boundary Detection with Spatial-Temporal Knowledge Filtering

    PubMed Central

    Nan, Zhixiong; Wei, Ping; Xu, Linhai; Zheng, Nanning

    2016-01-01

    Lane boundary detection technology has progressed rapidly over the past few decades. However, many challenges that often lead to lane detection unavailability remain to be solved. In this paper, we propose a spatial-temporal knowledge filtering model to detect lane boundaries in videos. To address the challenges of structure variation, large noise and complex illumination, this model incorporates prior spatial-temporal knowledge with lane appearance features to jointly identify lane boundaries. The model first extracts line segments in video frames. Two novel filters—the Crossing Point Filter (CPF) and the Structure Triangle Filter (STF)—are proposed to filter out the noisy line segments. The two filters introduce spatial structure constraints and temporal location constraints into lane detection, which represent the spatial-temporal knowledge about lanes. A straight line or curve model determined by a state machine is used to fit the line segments to finally output the lane boundaries. We collected a challenging realistic traffic scene dataset. The experimental results on this dataset and other standard dataset demonstrate the strength of our method. The proposed method has been successfully applied to our autonomous experimental vehicle. PMID:27529248

  7. Convergence Analysis of LMS based Adaptive filter

    NASA Astrophysics Data System (ADS)

    Rai, Amrita; Kohli, Amit Kumar

    2010-11-01

    A standard algorithm for LMS-filter simulation, tested with several convergence criteria is presented in this paper. We analyze the steady-state mean square error (MSE) convergence of the LMS algorithm when random functions are used as reference inputs. In this paper, we make a more precise analysis using the deterministic nature of the reference inputs and their time-variant correlation matrix. Simulations performed under MATLAB show remarkable differences between convergence criteria with various value of the step size.

  8. Adaptive Control Using Residual Mode Filters Applied to Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.

  9. Evaluation of rosette infrasonic noise-reducing spatial filters.

    PubMed

    Hedlin, Michael A H; Alcoverro, Benoit; D'Spain, Gerald

    2003-10-01

    This paper presents results from recent tests of rosette infrasonic noise-reducing spatial filters at the Pinon Flat Observatory in southern California. Data from 18- and 70-m aperture rosette filters and a reference port are used to gauge the reduction in atmospheric wind-generated noise levels provided by the filters and to examine the effect of these spatial filters on spatially coherent acoustic signals in the 0.02- to 10-Hz band. At wind speeds up to 5.5 m/s, the 18-m rosette filter reduces wind noise levels above 0.2 Hz by 15 to 20 dB. Under the same conditions, the 70-m rosette filter provides noise reduction of up to 15 to 20 dB between 0.02 and 0.7 Hz. Standing wave resonance inside the 70-m filter degrades the reception of acoustic signals above 0.7 Hz. The fundamental mode of the resonance, 15 dB above background, is centered at 2.65-Hz and the first odd harmonic is observed at 7.95 Hz in data from the large filter. Analytical simulations accurately reproduce the noise reduction and resonance observed in the 70-m filter at all wind speeds above 1.25 m/s. Resonance theory indicates that internal reflections that give rise to the resonance observed in the passband are occurring at the summing manifolds, and not at the inlets. Rosette filters are designed for acoustic arrivals with infinite phase velocity. The plane-wave response of the 70-m rosette filter has a strong dependence on frequency above 3.5 Hz at grazing angles of less than 15 degrees from the horizontal. At grazing angles, complete cancellation of the signal occurs at 5 Hz. Theoretical predictions of the phase and amplitude response of 18- and 70-m rosette filters, that take into account internal resonance and time delays between the inlets, compare favorably with observations derived from a cross-spectral analysis of signals from the explosion of a large bolide.

  10. High-Resolution Cortical Dipole Imaging Using Spatial Inverse Filter Based on Filtering Property

    PubMed Central

    2016-01-01

    Cortical dipole imaging has been developed to visualize brain electrical activity in high spatial resolution. It is necessary to solve an inverse problem to estimate the cortical dipole distribution from the scalp potentials. In the present study, the accuracy of cortical dipole imaging was improved by focusing on filtering property of the spatial inverse filter. We proposed an inverse filter that optimizes filtering property using a sigmoid function. The ability of the proposed method was compared with the traditional inverse techniques, such as Tikhonov regularization, truncated singular value decomposition (TSVD), and truncated total least squares (TTLS), in a computer simulation. The proposed method was applied to human experimental data of visual evoked potentials. As a result, the estimation accuracy was improved and the localized dipole distribution was obtained with less noise. PMID:27688747

  11. Discrete spatial filtering with SQUID gradiometers in biomagnetism

    SciTech Connect

    Bruno, A.C.; Costa Ribeiro, P.; von der Weid, J.P.; Symko, O.G.

    1986-04-01

    First-, second-, and third-order gradiometers used in detecting biomagnetic signals are analyzed as spatial filters. Their transfer functions independent of the source to be measured are presented and both the magnitude and phase characteristics of the transfer functions are analyzed. The distortion introduced by the gradiometer can be estimated from these characteristics. In order to treat the signal in that approach, the spatial Fourier transform of a magnetic signal produced by a current dipole at a given distance is discussed.

  12. Building block for an orthonormal-lattice-filter adaptive network

    NASA Astrophysics Data System (ADS)

    Gabriel, W. F.

    1980-07-01

    The recent algorithm for a multistage multichannel orthonormal lattice filter proposed by M. Aftab Alam is a welcome addition to the library of adaptive-processing algorithms and provides a flexible alternative to the conventional approach of an optimum Weiner filter. This algorithm is based on a Gram-Schmidt orthonormalization procedure which is similar to cascade adaptive processing techniques described in earlier works. One of the most desirable features of this type of processing network is that it can be implemented with simple one-stage orthogonal-filter building blocks which directly filter the input data samples. These building blocks are the major subject of this report, and a particular configuration is developed based on a modified version of the familiar Howells-Applebaum algorithm. It can be implemented in either analog or digital form, data storage is not required, it is unconditionally stable, speed of convergence is no longer a problem, and the design is simple. The performance characteristics of a complete orthogonal-lattice-filter network operating in the spacial domain were simulated for example cases of one, two, and three strong incoherent signal sources spaced within a beamwidth for a eight-element linear-array antenna. The adaptive spacial filter patterns and the transient responses demonstrate that the building block has sufficient transient-response speed and control to permit full use of the processing capabilities inherent in a Gram-Schmidt cascade network.

  13. 3-D adaptive nonlinear complex-diffusion despeckling filter.

    PubMed

    Rodrigues, Pedro; Bernardes, Rui

    2012-12-01

    This work aims to improve the process of speckle noise reduction while preserving edges and other relevant features through filter expansion from 2-D to 3-D. Despeckling is very important for data visual inspection and as a preprocessing step for other algorithms, as they are usually notably influenced by speckle noise. To that intent, a 3-D approach is proposed for the adaptive complex-diffusion filter. This 3-D iterative filter was applied to spectral-domain optical coherence tomography medical imaging volumes of the human retina and a quantitative evaluation of the results was performed to allow a demonstration of the better performance of the 3-D over the 2-D filtering and to choose the best total diffusion time. In addition, we propose a fast graphical processing unit parallel implementation so that the filter can be used in a clinical setting.

  14. A reduced bias delay lock loop for adaptive filters

    NASA Astrophysics Data System (ADS)

    Fan, Guangteng; Huang, Yangbo; Su, Yingxue; Li, Jingyuan; Sun, Guangfu

    2017-01-01

    Narrowband interferences (NBIs) severely degrade the quality of a received signal and can hinder the operation of GPS receivers, and therefore, they are commonly excised using an adaptive transversal filter. This filter does not cause code tracking bias in the case of an ideal analog receiver channel when its magnitude and phase response are constant; however, distortion is induced by RF cables, amplifiers, and mixers that results in an asymmetric correlation function. This correlation function is further deformed by the adaptive transversal filter, resulting in a nonzero bias. Given the adaptive nature of this transversal filter, the bias varies based on the jamming pattern. For precision navigation applications, this bias must be mitigated. With this problem in mind, a new technique called amplitude estimating delay lock loop (AEDLL) is presented. By using data related to a known structure of the adaptive transversal filter, the proposed method only needs to estimate the amplitude of the correlation function and revise the correlation function for code tracking. Simulations show that the AEDLL method is capable of reducing the RMSE of code tracking bias to less than 0.12 ns, which is significantly smaller than that achieved using existing methods.

  15. An Adaptive Kalman Filter Excisor for Suppressing Narrowband Interference

    DTIC Science & Technology

    1993-11-01

    interferences in- connues. Le filtre de Kalman doit alors "apprendre" ý ajuster un de ses param~tres pour effectuer le meilleur traitement. L’erreur est...4"L l B"• -- -- - - -.- ,_, . An~. A)7cQ 0 -QGOP II liii 111111 IIa( Naional 06fenso I ’ I Deence nitonals I "It AN ADAPTIVE KALMAN FILTER EXCISOR...Ottawa 0 A o~ oO Best Available COpy 4INational Defense Defence nationals AN ADAPTIVE KALMAN FILTER EXCISOR FOR SUPPRESSING NARROWBAND INTERFERENCE by

  16. Spatially recursive filtering and smoothing for multibody dynamics

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1988-01-01

    Methods developed recently by the author to solve the problem of forward dynamics for nonlinear joint-connected multibody systems are summarized. Solution of this problem is of interest in such application areas as robotics, deploying structures, ground vehicles, and pointing of antennas and instrumented platforms. The problem is solved by the recursive filtering and smoothing techniques of state estimation theory. The filtering stage takes the applied joint moments as inputs to produce a sequence of spatial constraint forces acting at the joints of the system. The smoothing stage takes the innovations process resulting from the filter as an input and produces a set of spatial accelerations and a corresponding set of joint-angle accelerations.

  17. Asymmetric 2D spatial beam filtering by photonic crystals

    NASA Astrophysics Data System (ADS)

    Gailevicius, D.; Purlys, V.; Maigyte, L.; Gaizauskas, E.; Peckus, M.; Gadonas, R.; Staliunas, K.

    2016-04-01

    Spatial filtering techniques are important for improving the spatial quality of light beams. Photonic crystals (PhCs) with a selective spatial (angular) transmittance can also provide spatial filtering with the added benefit transversal symmetries, submillimeter dimensions and monolithic integration in other devices, such as micro-lasers or semiconductor lasers. Workable bandgap PhC configurations require a modulated refractive index with period lengths that are approximately less than the wavelength of radiation. This imposes technical limitations, whereby the available direct laser write (DLW) fabrication techniques are limited in resolution and refractive index depth. If, however, a deflection mechanism is chosen instead, a functional filter PhC can be produced that is operational in the visible wavelength regime. For deflection based PhCs glass is an attractive choice as it is highly stable medium. 2D and 3D PhC filter variations have already been produced on soda-lime glass. However, little is known about how to control the scattering of PhCs when approaching the smallest period values. Here we look into the internal structure of the initially symmetric geometry 2D PhCs and associating it with the resulting transmittance spectra. By varying the DLW fabrication beam parameters and scanning algorithms, we show that such PhCs contain layers that are comprised of semi-tilted structure voxels. We show the appearance of asymmetry can be compensated in order to circumvent some negative effects at the cost of potentially maximum scattering efficiency.

  18. Robust Wiener filtering for Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2004-06-17

    In many applications of optical systems, the observed field in the pupil plane has a non-uniform phase component. This deviation of the phase of the field from uniform is called a phase aberration. In imaging systems this aberration will degrade the quality of the images. In the case of a large astronomical telescope, random fluctuations in the atmosphere lead to significant distortion. These time-varying distortions can be corrected using an Adaptive Optics (AO) system, which is a real-time control system composed of optical, mechanical and computational parts. Adaptive optics is also applicable to problems in vision science, laser propagation and communication. For a high-level overview, consult this web site. For an in-depth treatment of the astronomical case, consult these books.

  19. An adaptive neural fuzzy filter and its applications.

    PubMed

    Lin, C T; Juang, C F

    1997-01-01

    A new kind of nonlinear adaptive filter, the adaptive neural fuzzy filter (ANFF), based upon a neural network's learning ability and fuzzy if-then rule structure, is proposed in this paper. The ANFF is inherently a feedforward multilayered connectionist network which can learn by itself according to numerical training data or expert knowledge represented by fuzzy if-then rules. The adaptation here includes the construction of fuzzy if-then rules (structure learning), and the tuning of the free parameters of membership functions (parameter learning). In the structure learning phase, fuzzy rules are found based on the matching of input-output clusters. In the parameter learning phase, a backpropagation-like adaptation algorithm is developed to minimize the output error. There are no hidden nodes (i.e., no membership functions and fuzzy rules) initially, and both the structure learning and parameter learning are performed concurrently as the adaptation proceeds. However, if some linguistic information about the design of the filter is available, such knowledge can be put into the ANFF to form an initial structure with hidden nodes. Two major advantages of the ANFF can thus be seen: 1) a priori knowledge can be incorporated into the ANFF which makes the fusion of numerical data and linguistic information in the filter possible; and 2) no predetermination, like the number of hidden nodes, must be given, since the ANFF can find its optimal structure and parameters automatically.

  20. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    SciTech Connect

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold

  1. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    PubMed Central

    Maier, Andreas; Wigström, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu, Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-01-01

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia’s CUDA Interface provided an 8

  2. A New Method to Cancel RFI---The Adaptive Filter

    NASA Astrophysics Data System (ADS)

    Bradley, R.; Barnbaum, C.

    1996-12-01

    An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation

  3. Performance of an Adaptive Matched Filter Using the Griffiths Algorithm

    DTIC Science & Technology

    1988-12-01

    Simon. Introduction to Adaptive Filters. New York: Macmillan Publishing Company, 1984. 11. Sklar , Bernard . Digital Communications Fundamentals and...York: Harper and Row, 1986. 8. Widrow, Bernard and Samuel D. Stearns. Adaptive Signal Processing. Englewood Cliffs, N.J.: Prentice-Hall, 1985. 9...Fourier Transforms. and Optics. New York: John Wiley and Sons, 1978. 15. Widrow, Bernard and others. "The Complex LMS Algorithm," Proceedings of the IEEE

  4. Robust common spatial filters with a maxmin approach.

    PubMed

    Kawanabe, Motoaki; Vidaurre, Carmen; Scholler, Simon; Müller, Klaus-Robert

    2009-01-01

    Electroencephalographic signals are known to be non-stationary and easily affected by artifacts, therefore their analysis requires methods that can deal with noise. In this work we present two ways of calculating robust common spatial patterns under a maxmin approach. The worst-case objective function is optimized within prefixed sets of the covariance matrices that are defined either very simply as identity matrices or in a data driven way using PCA. We test common spatial filters derived with these two approaches with real world brain-computer interface (BCI) data sets in which we expect substantial "day-to-day" fluctuations (session transfer problem). We compare our results with the classical common spatial filters and show that both can improve the performance of the latter.

  5. Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Lu, Jun; McFarland, Dennis J.; Wolpaw, Jonathan R.

    2013-02-01

    Objective. Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an ‘adaptive Laplacian (ALAP) filter’, can provide better performance for SMR-based BCIs. Approach. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Main results. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Significance. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.

  6. Streak image denoising and segmentation using adaptive Gaussian guided filter.

    PubMed

    Jiang, Zhuocheng; Guo, Baoping

    2014-09-10

    In streak tube imaging lidar (STIL), streak images are obtained using a CCD camera. However, noise in the captured streak images can greatly affect the quality of reconstructed 3D contrast and range images. The greatest challenge for streak image denoising is reducing the noise while preserving details. In this paper, we propose an adaptive Gaussian guided filter (AGGF) for noise removal and detail enhancement of streak images. The proposed algorithm is based on a guided filter (GF) and part of an adaptive bilateral filter (ABF). In the AGGF, the details are enhanced by optimizing the offset parameter. AGGF-denoised streak images are significantly sharper than those denoised by the GF. Moreover, the AGGF is a fast linear time algorithm achieved by recursively implementing a Gaussian filter kernel. Experimentally, AGGF demonstrates its capacity to preserve edges and thin structures and outperforms the existing bilateral filter and domain transform filter in terms of both visual quality and peak signal-to-noise ratio performance.

  7. Enhancing Adaptive Filtering Approaches for Land Data Assimilation Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent work has presented the initial application of adaptive filtering techniques to land surface data assimilation systems. Such techniques are motivated by our current lack of knowledge concerning the structure of large-scale error in either land surface modeling output or remotely-sensed estima...

  8. Robust visual tracking via adaptive kernelized correlation filter

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Desheng; Liao, Qingmin

    2016-10-01

    Correlation filter based trackers have proved to be very efficient and robust in object tracking with a notable performance competitive with state-of-art trackers. In this paper, we propose a novel object tracking method named Adaptive Kernelized Correlation Filter (AKCF) via incorporating Kernelized Correlation Filter (KCF) with Structured Output Support Vector Machines (SOSVM) learning method in a collaborative and adaptive way, which can effectively handle severe object appearance changes with low computational cost. AKCF works by dynamically adjusting the learning rate of KCF and reversely verifies the intermediate tracking result by adopting online SOSVM classifier. Meanwhile, we bring Color Names in this formulation to effectively boost the performance owing to its rich feature information encoded. Experimental results on several challenging benchmark datasets reveal that our approach outperforms numerous state-of-art trackers.

  9. Low-pass spatial filtering of satellite radar data

    NASA Technical Reports Server (NTRS)

    Mueller, Paul W.; Hoffer, Roger N.

    1989-01-01

    Thirty-four low-pass spatial filter treatments were applied to a multi-angle SIR-B data set to reduce speckle effects and improve classification performance. These treatments were based on four algorithms: square mean, separable mean, square median, and separable recursive median. The filtered images were evaluated using both quantitative and qualitative techniques. It was determined that the square median algorithm implemented at two iterations with a window size of 3 by 3 produced the best overall results with the 28.5-m SIR-B data.

  10. Spatial filtering of light by chirped photonic crystals

    SciTech Connect

    Staliunas, Kestutis; Sanchez-Morcillo, Victor J.

    2009-05-15

    We propose an efficient method for spatial filtering of light beams by propagating them through two-dimensional (also three dimensional) chirped photonic crystals, i.e., through the photonic structures with fixed transverse lattice period and with the longitudinal lattice period varying along the direction of the beam propagation. We prove the proposed idea by numerically solving the paraxial propagation equation in refraction-index-modulated media and we evaluate the efficiency of the process by harmonic-expansion analysis. The technique can be also applied for filtering (for cleaning) of the packages of atomic waves (Bose condensates), also to improve the directionality of acoustic and mechanical waves.

  11. Adaptive enhancement of magnetoencephalographic signals via multichannel filtering

    SciTech Connect

    Lewis, P.S.

    1989-01-01

    A time-varying spatial/temporal filter for enhancing multichannel magnetoencephalographic (MEG) recordings of evoked responses is described. This filter is based in projections derived from a combination of measured data and a priori models of the expected response. It produces estimates of the evoked fields in single trial measurements. These estimates can reduce the need for signal averaging in some situations. The filter uses the a priori model information to enhance responses where they exist, but avoids creating responses that do not exist. Examples are included of the filter's application to both MEG single trial data containing an auditory evoked field and control data with no evoked field. 5 refs., 7 figs.

  12. An adaptive switching filter based on approximated variance for detection of impulse noise from color images.

    PubMed

    Pritamdas, K; Singh, Kh Manglem; Singh, L Lolitkumar

    2016-01-01

    A new adaptive switching algorithm is presented where two adaptive filters are switched correspondingly for lower and higher noise ratio of the image. An adaptive center weighted vector median filter is used for the lower noise ratio whereas for higher noise ratio the noisy pixels are detected based on the comparison of the difference between the mean of the vector pixels in the window and the approximated variance of the vector pixels in the window. Then the window comprising the detected noisy pixel is further considered where the pixels are given exponential weights according to their similarity to the other neighboring pixels, spatially and radio metrically. The noisy pixels are then replaced by the weighted average of the pixels within the window. The filter is able to preserve higher signal content in the higher noise ratio as compared to other robust filters in comparison. With a little high in computational complexity, this technique performs well both in lower and higher noise ratios. Simulation results on various RGB images show that the proposed algorithm outperforms many other existing nonlinear filters in terms of preservation of edges and fine details.

  13. Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang

    2016-07-01

    The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only needs to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.

  14. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.

    PubMed

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-07-26

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.

  15. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems

    PubMed Central

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-01-01

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336

  16. Extended adaptive filtering for wide-angle SAR image formation

    NASA Astrophysics Data System (ADS)

    Wang, Yanwei; Roberts, William; Li, Jian

    2005-05-01

    For two-dimensional (2-D) spectral analysis, the adaptive filtering based technologies, such as CAPON and APES (Amplitude and Phase EStimation), are developed under the implicit assumption that the data sets are rectangular. However, in real SAR applications, especially for the wide-angle cases, the collected data sets are always non-rectangular. This raises the problem of how to extend the original adaptive filtering based algorithms for such kind of scenarios. In this paper, we propose an extended adaptive filtering (EAF) approach, which includes Extended APES (E-APES) and Extended CAPON (E-CAPON), for arbitrarily shaped 2-D data. The EAF algorithms adopt a missing-data approach where the unavailable data samples close to the collected data set are assumed missing. Using a group of filter-banks with varying sizes, these algorithms are non-iterative and do not require the estimation of the unavailable samples. The improved imaging results of the proposed algorithms are demonstrated by applying them to two different SAR data sets.

  17. Random effects specifications in eigenvector spatial filtering: a simulation study

    NASA Astrophysics Data System (ADS)

    Murakami, Daisuke; Griffith, Daniel A.

    2015-10-01

    Eigenvector spatial filtering (ESF) is becoming a popular way to address spatial dependence. Recently, a random effects specification of ESF (RE-ESF) is receiving considerable attention because of its usefulness for spatial dependence analysis considering spatial confounding. The objective of this study was to analyze theoretical properties of RE-ESF and extend it to overcome some of its disadvantages. We first compare the properties of RE-ESF and ESF with geostatistical and spatial econometric models. There, we suggest two major disadvantages of RE-ESF: it is specific to its selected spatial connectivity structure, and while the current form of RE-ESF eliminates the spatial dependence component confounding with explanatory variables to stabilize the parameter estimation, the elimination can yield biased estimates. RE-ESF is extended to cope with these two problems. A computationally efficient residual maximum likelihood estimation is developed for the extended model. Effectiveness of the extended RE-ESF is examined by a comparative Monte Carlo simulation. The main findings of this simulation are as follows: Our extension successfully reduces errors in parameter estimates; in many cases, parameter estimates of our RE-ESF are more accurate than other ESF models; the elimination of the spatial component confounding with explanatory variables results in biased parameter estimates; efficiency of an accuracy maximization-based conventional ESF is comparable to RE-ESF in many cases.

  18. Spatial filter system as an optical relay line

    DOEpatents

    Hunt, John T.; Renard, Paul A.

    1979-01-01

    A system consisting of a set of spatial filters that are used to optically relay a laser beam from one position to a downstream position with minimal nonlinear phase distortion and beam intensity variation. The use of the device will result in a reduction of deleterious beam self-focusing and produce a significant increase in neutron yield from the implosion of targets caused by their irradiation with multi-beam glass laser systems.

  19. Adaptive nonlocal means filtering based on local noise level for CT denoising

    SciTech Connect

    Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.; Blezek, Daniel J.; Manduca, Armando; Yu, Lifeng; Fletcher, Joel G.; McCollough, Cynthia H.

    2014-01-15

    Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analytical noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the

  20. Object tracking under nonuniform illumination with adaptive correlation filtering

    NASA Astrophysics Data System (ADS)

    Picos, Kenia; Díaz-Ramírez, Víctor H.; Kober, Vitaly

    2013-09-01

    A real-time system for illumination-invariant object tracking is proposed. The system is able to estimate at high-rate the position of a moving target in an input scene when is corrupted by the presence of a high cluttering background and nonuniform illumination. The position of the target is estimated with the help of a filter bank of space-variant correlation filters. The filters in the bank, adapt their parameters according to the local statistical parameters of the observed scene in a small region centered at coordinates of a predicted position for the target in each frame. The prediction is carried out by exploiting information of present and past frames, and by using a dynamic motion model of the target in a two-dimensional plane. Computer simulation results obtained with the proposed system are presented and discussed in terms of tracking accuracy, computational complexity, and tolerance to nonuniform illumination.

  1. Adaptive gain and filtering circuit for a sound reproduction system

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)

    1998-01-01

    Adaptive compressive gain and level dependent spectral shaping circuitry for a hearing aid include a microphone to produce an input signal and a plurality of channels connected to a common circuit output. Each channel has a preset frequency response. Each channel includes a filter with a preset frequency response to receive the input signal and to produce a filtered signal, a channel amplifier to amplify the filtered signal to produce a channel output signal, a threshold register to establish a channel threshold level, and a gain circuit. The gain circuit increases the gain of the channel amplifier when the channel output signal falls below the channel threshold level and decreases the gain of the channel amplifier when the channel output signal rises above the channel threshold level. A transducer produces sound in response to the signal passed by the common circuit output.

  2. Parameter testing for lattice filter based adaptive modal control systems

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Williams, J. P.; Montgomery, R. C.

    1983-01-01

    For Large Space Structures (LSS), an adaptive control system is highly desirable. The present investigation is concerned with an 'indirect' adaptive control scheme wherein the system order, mode shapes, and modal amplitudes are estimated on-line using an identification scheme based on recursive, least-squares, lattice filters. Using the identified model parameters, a modal control law based on a pole-placement scheme with the objective of vibration suppression is employed. A method is presented for closed loop adaptive control of a flexible free-free beam. The adaptive control scheme consists of a two stage identification scheme working in series and a modal pole placement control scheme. The main conclusion from the current study is that the identified parameters cannot be directly used for controller design purposes.

  3. Adaptive-filter models of the cerebellum: computational analysis.

    PubMed

    Dean, Paul; Porrill, John

    2008-01-01

    Many current models of the cerebellar cortical microcircuit are equivalent to an adaptive filter using the covariance learning rule. The adaptive filter is a development of the original Marr-Albus framework that deals naturally with continuous time-varying signals, thus addressing the issue of 'timing' in cerebellar function, and it can be connected in a variety of ways to other parts of the system, consistent with the microzonal organization of cerebellar cortex. However, its computational capacities are not well understood. Here we summarise the results of recent work that has focused on two of its intrinsic properties. First, an adaptive filter seeks to decorrelate its (mossy fibre) inputs from a (climbing fibre) teaching signal. This procedure can be used both for sensory processing, e.g. removal of interference from sensory signals, and for learning accurate motor commands, by decorrelating an efference copy of those commands from a sensory signal of inaccuracy. As a model of the cerebellum the adaptive filter thus forms a natural link between events at the cellular level, such as forms of synaptic plasticity and the learning rules they embody, and intelligent behaviour at the system level. Secondly, it has been shown that the covariance learning rule enables the filter to handle input and intrinsic noise optimally. Such optimality may underlie the recently described role of the cerebellum in producing accurate smooth pursuit eye movements in the face of sensory noise. Moreover, it has the consequence of driving most input weights to very small values, consistent with experimental data that many parallel-fibre synapses are normally silent. The effectiveness of silent synapses can only be altered by LTP, so learning tasks depending on a reduction of Purkinje cell firing require the synapses to be embedded in a second, inhibitory pathway from parallel fibre to Purkinje cell. This pathway and the appropriate climbing-fibre related plasticity have been described

  4. Adaptive control of large space structures using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Goglia, G. L.

    1985-01-01

    The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.

  5. A novel adaptive noise filtering method for SAR images

    NASA Astrophysics Data System (ADS)

    Li, Weibin; He, Mingyi

    2009-08-01

    In the most application situation, signal or image always is corrupted by additive noise. As a result there are mass methods to remove the additive noise while few approaches can work well for the multiplicative noise. The paper presents an improved MAP-based filter for multiplicative noise by adaptive window denoising technique. A Gamma noise models is discussed and a preprocessing technique to differential the matured and un-matured pixel is applied to get accurate estimate for Equivalent Number of Looks. Also the adaptive local window growth and 3 different denoise strategies are applied to smooth noise while keep its subtle information according to its local statistics feature. The simulation results show that the performance is better than existing filter. Several image experiments demonstrate its theoretical performance.

  6. Adaptive control of large space structures using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.

    1985-01-01

    The use of recursive lattice filters for identification and adaptive control of large space structures was studied. Lattice filters are used widely in the areas of speech and signal processing. Herein, they are used to identify the structural dynamics model of the flexible structures. This identified model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures control is engaged. This type of validation scheme prevents instability when the overall loop is closed. The results obtained from simulation were compared to those obtained from experiments. In this regard, the flexible beam and grid apparatus at the Aerospace Control Research Lab (ACRL) of NASA Langley Research Center were used as the principal candidates for carrying out the above tasks. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods.

  7. Model Adaptation for Prognostics in a Particle Filtering Framework

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Goebel, Kai Frank

    2011-01-01

    One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the "curse of dimensionality", i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for "well-designed" particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.

  8. Microseismic event denoising via adaptive directional vector median filters

    NASA Astrophysics Data System (ADS)

    Zheng, Jing; Lu, Ji-Ren; Jiang, Tian-Qi; Liang, Zhe

    2017-01-01

    We present a novel denoising scheme via Radon transform-based adaptive vector directional median filters named adaptive directional vector median filter (AD-VMF) to suppress noise for microseismic downhole dataset. AD-VMF contains three major steps for microseismic downhole data processing: (i) applying Radon transform on the microseismic data to obtain the parameters of the waves, (ii) performing S-transform to determine the parameters for filters, and (iii) applying the parameters for vector median filter (VMF) to denoise the data. The steps (i) and (ii) can realize the automatic direction detection. The proposed algorithm is tested with synthetic and field datasets that were recorded with a vertical array of receivers. The P-wave and S-wave direct arrivals are properly denoised for poor signal-to-noise ratio (SNR) records. In the simulation case, we also evaluate the performance with mean square error (MSE) in terms of signal-to-noise ratio (SNR). The result shows that the distortion of the proposed method is very low; the SNR is even less than 0 dB.

  9. A Kalman filter approach to adaptive estimation of multispectral signatures

    NASA Technical Reports Server (NTRS)

    Crane, R. B.

    1973-01-01

    The signatures of remote sensing data from agricultural crops exhibit significant non-stationarity, so that the performance of fixed parameter classifiers degenerates with time and distance from the initial training data. A class of adaptive decision-directed classifiers are being developed, based on Kalman filter theory. Limited results to date on two data sets indicate approximately a 25 to 40% reduction in rates of misclassification.

  10. Adaptive spatial sampling of contaminated soil

    SciTech Connect

    Cox, L.A. Jr.

    1999-12-01

    Suppose that a residential neighborhood may have been contaminated by a nearby abandoned hazardous waste site. The suspected contamination consists of elevated soil concentrations o chemicals that are also found in the absence of site-related contamination. How should a risk manager decide which residential properties to sample and which ones to clean? This paper introduces an adaptive spatial sampling approach which uses initial observations to guide subsequent search. Unlike some recent model-based spatial data analysis methods, it does not require any specific statistical model for the spatial distribution of hazards, but instead constructs an increasingly accurate nonparametric approximation to it as sampling proceeds. Possible cost-effective sampling and cleanup decision rules are described by decision parameters such as the number of randomly selected locations used to initialize the process, the number of highest-concentration locations searched around, the number of samples taken at each location, a stopping rule, and a remediation action threshold. These decision parameters are optimized by simulating the performance of each decision rule. The simulation is performed using the data collected so far to impute multiple probably values of unknown soil concentration distributions during each simulation run.

  11. Filtered kriging for spatial data with heterogeneous measurement error variances.

    PubMed

    Christensen, William F

    2011-09-01

    When predicting values for the measurement-error-free component of an observed spatial process, it is generally assumed that the process has a common measurement error variance. However, it is often the case that each measurement in a spatial data set has a known, site-specific measurement error variance, rendering the observed process nonstationary. We present a simple approach for estimating the semivariogram of the unobservable measurement-error-free process using a bias adjustment of the classical semivariogram formula. We then develop a new kriging predictor that filters the measurement errors. For scenarios where each site's measurement error variance is a function of the process of interest, we recommend an approach that also uses a variance-stabilizing transformation. The properties of the heterogeneous variance measurement-error-filtered kriging (HFK) predictor and variance-stabilized HFK predictor, and the improvement of these approaches over standard measurement-error-filtered kriging are demonstrated using simulation. The approach is illustrated with climate model output from the Hudson Strait area in northern Canada. In the illustration, locations with high or low measurement error variances are appropriately down- or upweighted in the prediction of the underlying process, yielding a realistically smooth picture of the phenomenon of interest.

  12. Robust myelin water quantification: averaging vs. spatial filtering.

    PubMed

    Jones, Craig K; Whittall, Kenneth P; MacKay, Alex L

    2003-07-01

    The myelin water fraction is calculated, voxel-by-voxel, by fitting decay curves from a multi-echo data acquisition. Curve-fitting algorithms require a high signal-to-noise ratio to separate T(2) components in the T(2) distribution. This work compared the effect of averaging, during acquisition, to data postprocessed with a noise reduction filter. Forty regions, from five volunteers, were analyzed. A consistent decrease in the myelin water fraction variability with no bias in the mean was found for all 40 regions. Images of the myelin water fraction of white matter were more contiguous and had fewer "holes" than images of myelin water fractions from unfiltered echoes. Spatial filtering was effective for decreasing the variability in myelin water fraction calculated from 4-average multi-echo data.

  13. Filter bank common spatial patterns in mental workload estimation.

    PubMed

    Arvaneh, Mahnaz; Umilta, Alberto; Robertson, Ian H

    2015-01-01

    EEG-based workload estimation technology provides a real time means of assessing mental workload. Such technology can effectively enhance the performance of the human-machine interaction and the learning process. When designing workload estimation algorithms, a crucial signal processing component is the feature extraction step. Despite several studies on this field, the spatial properties of the EEG signals were mostly neglected. Since EEG inherently has a poor spacial resolution, features extracted individually from each EEG channel may not be sufficiently efficient. This problem becomes more pronounced when we use low-cost but convenient EEG sensors with limited stability which is the case in practical scenarios. To address this issue, in this paper, we introduce a filter bank common spatial patterns algorithm combined with a feature selection method to extract spatio-spectral features discriminating different mental workload levels. To evaluate the proposed algorithm, we carry out a comparative analysis between two representative types of working memory tasks using data recorded from an Emotiv EPOC headset which is a mobile low-cost EEG recording device. The experimental results showed that the proposed spatial filtering algorithm outperformed the state-of-the algorithms in terms of the classification accuracy.

  14. Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.

    PubMed

    Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent

    2015-12-01

    In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information.

  15. A New Adaptive Framework for Collaborative Filtering Prediction.

    PubMed

    Almosallam, Ibrahim A; Shang, Yi

    2008-06-01

    Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics with item-based values based on data density level. We present a new adaptive framework that encapsulates various CF algorithms and the relationships among them. An adaptive CF predictor is developed that can self adapt from user-based to item-based to hybrid methods based on the amount of available ratings. Our experimental results show that the new predictor consistently obtained more accurate predictions than existing CF methods, with the most significant improvement on sparse data sets. When applied to the Netflix Challenge data set, our method performed better than existing CF and singular value decomposition (SVD) methods and achieved 4.67% improvement over Netflix's system.

  16. Switched Band-Pass Filters for Adaptive Transceivers

    NASA Technical Reports Server (NTRS)

    Wang, Ray

    2007-01-01

    Switched band-pass filters are key components of proposed adaptive, software- defined radio transceivers that would be parts of envisioned digital-data-communication networks that would enable real-time acquisition and monitoring of data from geographically distributed sensors. Examples of sensors to be connected to such networks include security cameras, radio-frequency identification units, and geolocation units based on the Global Positioning System. Through suitable software configuration and without changing hardware, these transceivers could be made to operate according to any of a number of complex wireless-communication standards that could be characterized by diverse modulation schemes, bandwidths, and data-handling protocols. The adaptive transceivers would include field-programmable gate arrays (FPGAs) and digital signal-processing hardware. In the receiving path of a transceiver, the incoming signal would be amplified by a low-noise amplifier (LNA). The output spectrum of the LNA would be processed by a band-pass filter operating in the frequency range between 900 MHz and 2.4 GHz. Then a down-converter would translate the signal to a lower frequency range to facilitate analog-to-digital conversion, which would be followed by baseband processing by one or more FPGAs. In the transmitting path, a digital stream would first be converted to an analog signal, which would then be up-converted to a selected frequency band before being applied to a transmitting power amplifier. The aforementioned band-pass filter in the receiving path would be a combination of resonant inductor-and-capacitor filters and switched band-pass filters. The overall combination would implement a switch function designed mathematically to exhibit desired frequency responses and to switch the signal in each frequency band to an analog-to-digital converter appropriate for that band to produce a digital intermediate-frequency signal for digital signal processing.

  17. Beamforming using spatial matched filtering with annular arrays (L).

    PubMed

    Kim, Kang-Sik; Liu, Jie; Insana, Michael F

    2007-04-01

    A linear array beamforming method for ultrasonic B-mode imaging using spatial matched filtering (SMF) and a rectangular aperture geometry was recently proposed Kim et al., [J. Acoust. Soc. Am. 120, 852-861 (2006)]. This letter extends those results to include circularly symmetric apertures. SMF applied to annular arrays can improve the lateral resolution and echo signal-to-noise ratio as compared with conventional dynamic-receive delay-sum beamforming. At high frequencies, where delay and sum beamforming is problematic, SMF showed greatly improved target contrast over an extended field of view.

  18. Covariance matching based adaptive unscented Kalman filter for direct filtering in INS/GNSS integration

    NASA Astrophysics Data System (ADS)

    Meng, Yang; Gao, Shesheng; Zhong, Yongmin; Hu, Gaoge; Subic, Aleksandar

    2016-03-01

    The use of the direct filtering approach for INS/GNSS integrated navigation introduces nonlinearity into the system state equation. As the unscented Kalman filter (UKF) is a promising method for nonlinear problems, an obvious solution is to incorporate the UKF concept in the direct filtering approach to address the nonlinearity involved in INS/GNSS integrated navigation. However, the performance of the standard UKF is dependent on the accurate statistical characterizations of system noise. If the noise distributions of inertial instruments and GNSS receivers are not appropriately described, the standard UKF will produce deteriorated or even divergent navigation solutions. This paper presents an adaptive UKF with noise statistic estimator to overcome the limitation of the standard UKF. According to the covariance matching technique, the innovation and residual sequences are used to determine the covariance matrices of the process and measurement noises. The proposed algorithm can estimate and adjust the system noise statistics online, and thus enhance the adaptive capability of the standard UKF. Simulation and experimental results demonstrate that the performance of the proposed algorithm is significantly superior to that of the standard UKF and adaptive-robust UKF under the condition without accurate knowledge on system noise, leading to improved navigation precision.

  19. A comparison of ERP spatial filtering methods for optimal mental workload estimation.

    PubMed

    Roy, Raphaelle N; Bonnet, Stephane; Charbonnier, Sylvie; Jallon, Pierre; Campagne, Aurelie

    2015-01-01

    Mental workload estimation is of crucial interest for user adaptive interfaces and neuroergonomics. Its estimation can be performed using event-related potentials (ERPs) extracted from electroencephalographic recordings (EEG). Several ERP spatial filtering methods have been designed to enhance relevant EEG activity for active brain-computer interfaces. However, to our knowledge, they have not yet been used and compared for mental state monitoring purposes. This paper presents a thorough comparison of three ERP spatial filtering methods: principal component analysis (PCA), canonical correlation analysis (CCA) and the xDAWN algorithm. Those methods are compared in their performance to allow for an accurate classification of mental workload when applied in an otherwise similar processing chain. The data of 20 healthy participants that performed a memory task for 10 minutes each was used for classification. Two levels of mental workload were considered depending on the number of digits participants had to memorize (2/6). The highest performances were obtained using the CCA filtering and the xDAWN algorithm respectively with 98% and 97% of correct classification. Their performances were significantly higher than that obtained using the PCA filtering (88%).

  20. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation.

    PubMed

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-12-19

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms.

  1. Spatial perception and adaptive sonar behavior.

    PubMed

    Aytekin, Murat; Mao, Beatrice; Moss, Cynthia F

    2010-12-01

    Bat echolocation is a dynamic behavior that allows for real-time adaptations in the timing and spectro-temporal design of sonar signals in response to a particular task and environment. To enable detailed, quantitative analyses of adaptive sonar behavior, echolocation call design was investigated in big brown bats, trained to rest on a stationary platform and track a tethered mealworm that approached from a starting distance of about 170 cm in the presence of a stationary sonar distracter. The distracter was presented at different angular offsets and distances from the bat. The results of this study show that the distance and the angular offset of the distracter influence sonar vocalization parameters of the big brown bat, Eptesicus fuscus. Specifically, the bat adjusted its call duration to the closer of two objects, distracter or insect target, and the magnitude of the adjustment depended on the angular offset of the distracter. In contrast, the bat consistently adjusted its call rate to the distance of the insect, even when this target was positioned behind the distracter. The results hold implications for understanding spatial information processing and perception by echolocation.

  2. Adaptive probabilistic collocation based Kalman filter for unsaturated flow problem

    NASA Astrophysics Data System (ADS)

    Man, J.; Li, W.; Zeng, L.; Wu, L.

    2015-12-01

    The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a relatively large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the Polynomial Chaos to approximate the original system. In this way, the sampling error can be reduced. However, PCKF suffers from the so called "cure of dimensionality". When the system nonlinearity is strong and number of parameters is large, PCKF is even more computationally expensive than EnKF. Motivated by recent developments in uncertainty quantification, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problem. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected. The "restart" technology is used to alleviate the inconsistency between model parameters and states. The performance of RAPCKF is tested by unsaturated flow numerical cases. It is shown that RAPCKF is more efficient than EnKF with the same computational cost. Compared with the traditional PCKF, the RAPCKF is more applicable in strongly nonlinear and high dimensional problems.

  3. Retinal Image Denoising via Bilateral Filter with a Spatial Kernel of Optimally Oriented Line Spread Function

    PubMed Central

    He, Yunlong; Zhao, Yanna; Ren, Yanju; Gee, James

    2017-01-01

    Filtering belongs to the most fundamental operations of retinal image processing and for which the value of the filtered image at a given location is a function of the values in a local window centered at this location. However, preserving thin retinal vessels during the filtering process is challenging due to vessels' small area and weak contrast compared to background, caused by the limited resolution of imaging and less blood flow in the vessel. In this paper, we present a novel retinal image denoising approach which is able to preserve the details of retinal vessels while effectively eliminating image noise. Specifically, our approach is carried out by determining an optimal spatial kernel for the bilateral filter, which is represented by a line spread function with an orientation and scale adjusted adaptively to the local vessel structure. Moreover, this approach can also be served as a preprocessing tool for improving the accuracy of the vessel detection technique. Experimental results show the superiority of our approach over state-of-the-art image denoising techniques such as the bilateral filter. PMID:28261320

  4. Image denoising using a directional adaptive diffusion filter

    NASA Astrophysics Data System (ADS)

    Zhao, Cuifang; Shi, Caicheng; He, Peikun

    2006-11-01

    Partial differential equations (PDEs) are well-known due to their good processing results which it can not only smooth the noise but also preserve the edges. But the shortcomings of these processes came to being noticed by people. In some sense, PDE filter is called "cartoon model" as it produces an approximation of the input image, use the same diffusion model and parameters to process noise and signal because it can not differentiate them, therefore, the image is naturally modified toward piecewise constant functions. A new method called a directional adaptive diffusion filter is proposed in the paper, which combines PDE mode with wavelet transform. The undecimated discrete wavelet transform (UDWT) is carried out to get different frequency bands which have obviously directional selectivity and more redundancy details. Experimental results show that the proposed method provides a performance better to preserve textures, small details and global information.

  5. Fast Source Camera Identification Using Content Adaptive Guided Image Filter.

    PubMed

    Zeng, Hui; Kang, Xiangui

    2016-03-01

    Source camera identification (SCI) is an important topic in image forensics. One of the most effective fingerprints for linking an image to its source camera is the sensor pattern noise, which is estimated as the difference between the content and its denoised version. It is widely believed that the performance of the sensor-based SCI heavily relies on the denoising filter used. This study proposes a novel sensor-based SCI method using content adaptive guided image filter (CAGIF). Thanks to the low complexity nature of the CAGIF, the proposed method is much faster than the state-of-the-art methods, which is a big advantage considering the potential real-time application of SCI. Despite the advantage of speed, experimental results also show that the proposed method can achieve comparable or better performance than the state-of-the-art methods in terms of accuracy.

  6. An Adaptive Multipath Mitigation Filter for GNSS Applications

    NASA Astrophysics Data System (ADS)

    Chang, Chung-Liang; Juang, Jyh-Ching

    2008-12-01

    Global navigation satellite system (GNSS) is designed to serve both civilian and military applications. However, the GNSS performance suffers from several errors, such as ionosphere delay, troposphere delay, ephemeris error, and receiver noise and multipath. Among these errors, the multipath is one of the most unpredictable error sources in high-accuracy navigation. This paper applies a modified adaptive filter to reduce code and carrier multipath errors in GPS. The filter employs a tap-delay line with an Adaline network to estimate the direction and the delayed-signal parameters. Then, the multipath effect is mitigated by subtracting the estimated multipath effects from the processed correlation function. The hardware complexity of the method is also compared with other existing methods. Simulation results show that the proposed method using field data has a significant reduction in multipath error especially in short-delay multipath scenarios.

  7. Adaptive spatio-temporal filtering for movement related potentials in EEG-based brain-computer interfaces.

    PubMed

    Lu, Jun; Xie, Kan; McFarland, Dennis J

    2014-07-01

    Movement related potentials (MRPs) are used as features in many brain-computer interfaces (BCIs) based on electroencephalogram (EEG). MRP feature extraction is challenging since EEG is noisy and varies between subjects. Previous studies used spatial and spatio-temporal filtering methods to deal with these problems. However, they did not optimize temporal information or may have been susceptible to overfitting when training data are limited and the feature space is of high dimension. Furthermore, most of these studies manually select data windows and low-pass frequencies. We propose an adaptive spatio-temporal (AST) filtering method to model MRPs more accurately in lower dimensional space. AST automatically optimizes all parameters by employing a Gaussian kernel to construct a low-pass time-frequency filter and a linear ridge regression (LRR) algorithm to compute a spatial filter. Optimal parameters are simultaneously sought by minimizing leave-one-out cross-validation error through gradient descent. Using four BCI datasets from 12 individuals, we compare the performances of AST filter to two popular methods: the discriminant spatial pattern filter and regularized spatio-temporal filter. The results demonstrate that our AST filter can make more accurate predictions and is computationally feasible.

  8. Cloud Filtering Using a Bi-Spectral Spatial Coherence Approach

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.; Lecue, Juan M.; Jedlovec, Gary J.; Whitworth, Brandon N.

    1998-01-01

    The research in this paper focuses on describing a technique developed for cloud filtering using a bi-spectral approach on GOES-8/9 Imager data. The application was developed for use with infrared retrievals of geophysical parameters in mind, where cloud cover contaminates the derived product. However, numerous potential applications of the technique exist. The technique will be described and a preliminary validation of the algorithm will be presented. Although initially based on the spatial coherence approach from Coakley and Brethereton (1982), it has evolved to utilize a difference image of the I I and 3.9 micrometer channels on the GOES-8/9 Imager. This image is very similar to that produced by Nelson and Ellrod (1996). During the daytime the technique makes use of the varying solar reflectance in the 3.9 micrometer channel by clouds and land to identify cloudy pixels. While at night, the technique makes use of the varying emissivity of the clouds in the scene to discriminate between clear and cloudy pixels. The technique applies three basic threshold tests to produce the final cloud filtered image: 1) a standard deviation threshold to detect the spatial variance in the scene, 2) a difference threshold between adjacent pixels, and 3) a simple infrared temperature threshold. The first test is applied to the entire image at once, then in a second pass the next two tests are applied. The final infrared temperature threshold is only meant to identify the coldest clouds that might pass the previous tests. The technique performs well during the daytime, while nighttime performance is degraded but is promising. The technique has proven to be robust and shows great promise of meeting its original goal of cloud filtering for use in an infrared retrieval algorithm for use in climate studies.

  9. Cloud Filtering Using a Bi-Spectral Spatial Coherence Approach

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.; Lecue, Juan M.; Jedlovec, Gary J.; Whitworth, Brandon N.

    1998-01-01

    The research in this paper focuses on describing a technique developed for cloud filtering using a bi-spectral approach on GOES-8/9 Imager data. The application was developed for use with infrared retrievals of geophysical parameters in mind, where cloud cover contaminates the derived product. However, numerous potential applications of the technique exist. The technique will be described and a preliminary validation of the algorithm will be presented. Although initially based on the spatial coherence approach from Coakley and Brethereton (1982), it has evolved to utilize a difference image of the 11 and 3.9 micrometer channels on the GOES-8/9 Imager. This image is very similar to that produced by Nelson and Ellrod (1996). During the daytime the technique makes use of the varying solar reflectance in the 3.9 micrometer channel by clouds and land to identify cloudy pixels. While at night, the technique makes use of the varying emissivity of the clouds in the scene to discriminate between clear and cloudy pixels. The technique applies three basic threshold tests to produce the final cloud filtered image: 1) a standard deviation threshold to detect the spatial variance in the scene, 2) a difference threshold between adjacent pixels, and 3) a simple infrared temperature threshold. The first test is applied to the entire image at once, then in a second pass the next two tests are applied. The final infrared temperature threshold is only meant to identify the coldest clouds that might pass the previous tests. The technique performs well during the daytime, while nighttime performance is degraded but is promising. The technique has proven to be robust and shows great promise of meeting its original goal of cloud filtering for use in an infrared retrieval algorithm for use in climate studies.

  10. Hyperspectral Region Classification Using Three-Dimensional Spectral/Spatial Gabor Filters

    NASA Astrophysics Data System (ADS)

    Bau, Tien Cheng

    A three-dimensional (3D) spectral/spatial DFT can be used to represent a hyperspectral image region using a dense sampling in the frequency domain. In many cases, a more compact frequency-domain representation that preserves the three-dimensional structure of the data can be exploited. For this purpose, we have developed a new model for spectral/spatial information based on 3D Gabor filters. These filters capture specific orientation, scale, and wavelength-dependent properties of hyperspectral image data and provide an efficient means of sampling a three-dimensional frequency-domain representation. Since 3D Gabor filters allow for a large number of spectral/spatial features to be used to represent an image region, the performance and efficiency of algorithms that use this representation can be further improved if methods are available to reduce the size of the model. Thus, we have derived methods for selecting features that emphasize the most significant spectral/spatial differences for a set of classes. In addition, the orientation and scale selective properties of the filters allow the development of new algorithms that are invariant to rotation and scale. The new approach can also adapt to changes in the environmental conditions. The analysis of 3D textures under changing environmental conditions is addressed using an invariant recognition algorithm. The new features are compared against pure spectral features and multiband generalizations of gray-level co-occurrence matrix (GLCM) features using both synthesized and real-world data. We have demonstrated that the 3D Gabor features can be used to improve the classification of hyperspectral regions over using only spectral features.

  11. Attitude determination using an adaptive multiple model filtering Scheme

    NASA Technical Reports Server (NTRS)

    Lam, Quang; Ray, Surendra N.

    1995-01-01

    Attitude determination has been considered as a permanent topic of active research and perhaps remaining as a forever-lasting interest for spacecraft system designers. Its role is to provide a reference for controls such as pointing the directional antennas or solar panels, stabilizing the spacecraft or maneuvering the spacecraft to a new orbit. Least Square Estimation (LSE) technique was utilized to provide attitude determination for the Nimbus 6 and G. Despite its poor performance (estimation accuracy consideration), LSE was considered as an effective and practical approach to meet the urgent need and requirement back in the 70's. One reason for this poor performance associated with the LSE scheme is the lack of dynamic filtering or 'compensation'. In other words, the scheme is based totally on the measurements and no attempts were made to model the dynamic equations of motion of the spacecraft. We propose an adaptive filtering approach which employs a bank of Kalman filters to perform robust attitude estimation. The proposed approach, whose architecture is depicted, is essentially based on the latest proof on the interactive multiple model design framework to handle the unknown of the system noise characteristics or statistics. The concept fundamentally employs a bank of Kalman filter or submodel, instead of using fixed values for the system noise statistics for each submodel (per operating condition) as the traditional multiple model approach does, we use an on-line dynamic system noise identifier to 'identify' the system noise level (statistics) and update the filter noise statistics using 'live' information from the sensor model. The advanced noise identifier, whose architecture is also shown, is implemented using an advanced system identifier. To insure the robust performance for the proposed advanced system identifier, it is also further reinforced by a learning system which is implemented (in the outer loop) using neural networks to identify other unknown

  12. Noninvasive fetal ECG estimation using adaptive comb filter.

    PubMed

    Wei, Zheng; Xueyun, Wei; Jian jian, Zhong; Hongxing, Liu

    2013-10-01

    This paper describes a robust and simple algorithm for fetal electrocardiogram (FECG) estimation from abdominal signal using adaptive comb filter (ACF). The ACF can adjust itself to the temporal variations in fundamental frequency, which makes it qualified for the estimation of quasi-periodic component from physiologic signal, such as ECG. The validity and performance of the described method are confirmed through experiments on real fetal ECG data. A comparison with the well-known independent component analysis (ICA) method has also been presented.

  13. An innovations-based noise cancelling technique on inverse kepstrum whitening filter and adaptive FIR filter in beamforming structure.

    PubMed

    Jeong, Jinsoo

    2011-01-01

    This paper presents an acoustic noise cancelling technique using an inverse kepstrum system as an innovations-based whitening application for an adaptive finite impulse response (FIR) filter in beamforming structure. The inverse kepstrum method uses an innovations-whitened form from one acoustic path transfer function between a reference microphone sensor and a noise source so that the rear-end reference signal will then be a whitened sequence to a cascaded adaptive FIR filter in the beamforming structure. By using an inverse kepstrum filter as a whitening filter with the use of a delay filter, the cascaded adaptive FIR filter estimates only the numerator of the polynomial part from the ratio of overall combined transfer functions. The test results have shown that the adaptive FIR filter is more effective in beamforming structure than an adaptive noise cancelling (ANC) structure in terms of signal distortion in the desired signal and noise reduction in noise with nonminimum phase components. In addition, the inverse kepstrum method shows almost the same convergence level in estimate of noise statistics with the use of a smaller amount of adaptive FIR filter weights than the kepstrum method, hence it could provide better computational simplicity in processing. Furthermore, the rear-end inverse kepstrum method in beamforming structure has shown less signal distortion in the desired signal than the front-end kepstrum method and the front-end inverse kepstrum method in beamforming structure.

  14. Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI

    NASA Astrophysics Data System (ADS)

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R.

    2017-04-01

    Objective. Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. Approach. To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. Main results. The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. Significance. In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We

  15. Spatial filter and feature selection optimization based on EA for multi-channel EEG.

    PubMed

    Wang, Yubo; Mohanarangam, Krithikaa; Mallipeddi, Rammohan; Veluvolu, K C

    2015-01-01

    The EEG signals employed for BCI systems are generally band-limited. The band-limited multiple Fourier linear combiner (BMFLC) with Kalman filter was developed to obtain amplitude estimates of the EEG signal in a pre-fixed frequency band in real-time. However, the high-dimensionality of the feature vector caused by the application of BMFLC to multi-channel EEG based BCI deteriorates the performance of the classifier. In this work, we apply evolutionary algorithm (EA) to tackle this problem. The real-valued EA encodes both the spatial filter and the feature selection into its solution and optimizes it with respect to the classification error. Three BMFLC based BCI configurations are proposed. Our results show that the BMFLC-KF with covariance matrix adaptation evolution strategy (CMAES) has the best overall performance.

  16. Adaptive de-blocking filter for low bit rate applications

    NASA Astrophysics Data System (ADS)

    Jin, Xin; Zhu, Guangxi

    2006-01-01

    In block-based video compression technology, blocking artifacts are obvious because of the luminance and chrominance discontinuities which are caused by block-based discrete cosine transform (DCT) and motion compensation. As a kind of solution, an in-loop filter has been successfully used in H.264 adapting to quantization parameter and video content. In this paper, blocking artifacts distribution properties are analyzed carefully to reflect the blocking effect more accurately in the low bit rate applications. Two important parameters, named blocking severity and pixel variation, are defined to describe the boundary strength and the gradient of the samples across the edge respectively. Through series of statistical data retrieval and analysis for these parameters using multiple representative video sequences, a novel blocking artifacts distribution model is concluded. Based on this distribution model, an improved filter is proposed to H.264 with novel strength determination rule and different alpha model. Comparing with H.264 anchor results, the proposed de-blocking filter shows better performance especially in subjective aspect, which could be widely used in low bit rate applications.

  17. Residual mode filters and adaptive control in large space structures

    NASA Technical Reports Server (NTRS)

    Davidson, Roger A.; Balas, Mark J.

    1989-01-01

    One of the most difficult problems in controlling large systems and structures is compensating for the destructive interaction which can occur between the reduced-order model (ROM) of the plant, which is used by the controller, and the unmodeled dynamics of the plant, often called the residual modes. The problem is more significant in the case of large space structures because their naturally light damping and high performance requirements lead to more frequent, destructive residual mode interaction (RMI). Using the design/compensation technique of residual mode filters (RMF's), effective compensation of RMI can be accomplished in a straightforward manner when using linear controllers. The use of RMF's has been shown to be effective for a variety of large structures, including a space-based laser and infinite dimensional systems. However, the dynamics of space structures is often uncertain and may even change over time due to on-orbit erosion from space debris and corrosive chemicals in the upper atmosphere. In this case, adaptive control can be extremely beneficial in meeting the performance requirements of the structure. Adaptive control for large structures is also based on ROM's and so destructive RMI may occur. Unfortunately, adaptive control is inherently nonlinear, and therefore the known results of RMF's cannot be applied. The purpose is to present the results of new research showing the effects of RMI when using adaptive control and the work which will hopefully lead to RMF compensation of this problem.

  18. An adaptive filtered back-projection for photoacoustic image reconstruction

    SciTech Connect

    Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong

    2015-05-15

    Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing

  19. An adaptive filtered back-projection for photoacoustic image reconstruction

    PubMed Central

    Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong

    2015-01-01

    Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing

  20. Evaluating the adaptive-filter model of the cerebellum.

    PubMed

    Dean, Paul; Porrill, John

    2011-07-15

    The adaptive-filter model of the cerebellar microcircuit is in widespread use, combining as it does an explanation of key microcircuit features with well-specified computational power. Here we consider two methods for its evaluation. One is to test its predictions concerning relations between cerebellar inputs and outputs. Where the relevant experimental data are available, e.g. for the floccular role in image stabilization, the predictions appear to be upheld. However, for the majority of cerebellar microzones these data have yet to be obtained. The second method is to test model predictions about details of the microcircuit. We focus on features apparently incompatible with the model, in particular non-linear patterns in Purkinje cell simple-spike firing. Analysis of these patterns suggests the following three conclusions. (i) It is important to establish whether they can be observed during task-related behaviour. (ii) Highly non-linear models based on these patterns are unlikely to be universal, because they would be incompatible with the (approximately) linear nature of floccular function. (iii) The control tasks for which these models are computationally suited need to be identified. At present, therefore, the adaptive filter remains a candidate model of at least some cerebellar microzones, and its evaluation suggests promising lines for future enquiry.

  1. Optical amplification and optical filter based signal processing for cost and energy efficient spatial multiplexing.

    PubMed

    Krummrich, Peter M

    2011-08-15

    Spatial division multiplexing has been proposed as an option for further capacity increase of transmission fibers. Application of this concept is attractive only, if cost and energy efficient implementations can be found. In this work, optical amplification and optical filter based signal processing concepts are investigated. Deployment of multi mode fibers as the waveguide type for erbium doped fiber amplifiers potentially offers cost and energy efficiency advantages compared to using multi core fibers in preamplifier as well as booster stages. Additional advantages can be gained from optimization of the amplifier module design. Together with transponder design optimizations, they can increase the attractiveness of inverse spatial multiplexing, which is proposed as an intermediate step. Signal processing based on adaptive passive optical filters offers an alternative approach for the separation of channels at the receiver which have experienced mode coupling along the link. With this optical filter based approach, fiber capacity can potentially be increased faster and more energy efficiently than with solutions relying solely on electronic signal processing.

  2. Spatial-filter models to describe IC lithographic behavior

    NASA Astrophysics Data System (ADS)

    Stirniman, John P.; Rieger, Michael L.

    1997-07-01

    Proximity correction systems require an accurate, fast way to predict how a pattern configuration will transfer to the wafer. In this paper we present an efficient method for modeling the pattern transfer process based on Dennis Gabor's `theory of communication'. This method is based on a `convolution form' where any 2D transfer process can be modeled with a set of linear, 2D spatial filters, even when the transfer process is non-linear. We will show that this form is a general case from which other well-known process simulation models can be derived. Furthermore, we will demonstrate that the convolution form can be used to model observed phenomena, even when the physical mechanisms involved are unknown.

  3. Controller-structure interaction compensation using adaptive residual mode filters

    NASA Technical Reports Server (NTRS)

    Davidson, Roger A.; Balas, Mark J.

    1990-01-01

    It is not feasible to construct controllers for large space structures or large scale systems (LSS's) which are of the same order as the structures. The complexity of the dynamics of these systems is such that full knowledge of its behavior cannot by processed by today's controller design methods. The controller for system performance of such a system is therefore based on a much smaller reduced-order model (ROM). Unfortunately, the interaction between the LSS and the ROM-based controller can produce instabilities in the closed-loop system due to the unmodeled dynamics of the LSS. Residual mode filters (RMF's) allow the systematic removal of these instabilities in a matter which does not require a redesign of the controller. In addition RMF's have a strong theoretical basis. As simple first- or second-order filters, the RMF CSI compensation technique is at once modular, simple and highly effective. RMF compensation requires knowledge of the dynamics of the system modes which resulted in the previous closed-loop instabilities (the residual modes), but this information is sometimes known imperfectly. An adaptive, self-tuning RMF design, which compensates for uncertainty in the frequency of the residual mode, has been simulated using continuous-time and discrete-time models of a flexible robot manipulator. Work has also been completed on the discrete-time experimental implementation on the Martin Marietta flexible robot manipulator experiment. This paper will present the results of that work on adaptive, self-tuning RMF's, and will clearly show the advantage of this adaptive compensation technique for controller-structure interaction (CSI) instabilities in actively-controlled LSS's.

  4. Suppression of impulse noise in medical images with the use of Fuzzy Adaptive Median Filter.

    PubMed

    Toprak, Abdullah; Güler, Inan

    2006-12-01

    A new rule based fuzzy filter for removal of highly impulse noise, called Rule Based Fuzzy Adaptive Median (RBFAM) Filter, is aimed to be discussed in this paper. The RBFAM filter is an improved version of Adaptive Median Filter (AMF) and is presented in the aim of noise reduction of images corrupted with additive impulse noise. The filter has three stages. Two of those stages are fuzzy rule based and last stage is based on standard median and adaptive median filter. The proposed filter can preserve image details better then AMF while suppressing additive salt & pepper or impulse type noise. In this paper, we placed our preference on bell-shaped membership function instead of triangular membership function in order to observe better results. Experimental results indicates that the proposed filter is improvable with increased fuzzy rules to reduce more noise corrupted images and to remove salt and pepper noise in a more effective way than what AMF filter does.

  5. Filter ensemble regularized common spatial pattern for EEG classification

    NASA Astrophysics Data System (ADS)

    Su, Yuxi; Li, Yali; Wang, Shengjin

    2015-07-01

    Common Spatial Pattern (CSP) is one of the most effective feature extraction algorithm for Brain-Computer Interfaces (BCI). Despite its advantages of wide versatility and high efficiency, CSP is shown to be non-robust to noise and prone to over fitting when training sample number is limited. In order to overcome these problems, Regularized Common Spatial Pattern (RCSP) is further proposed. RCSP regularized covariance matrix estimation by two parameters, which reduces the estimation difference and improves the stationarity under small sample condition. However, RCSP does not make full use of the frequency information. In this paper, we presents a filter ensemble technique for RCSP (FERCSP) to further extract frequency information and aggregate all the RCSPs efficiently to get an ensemble-based solution. The performance of the proposed algorithm is evaluated on data set IVa of BCI Competition III against other five RCSPbased algorithms. The experimental results show that FERCSP significantly outperforms those of the existing methods in classification accuracy. The FERCSP outperforms the CSP algorithm and R-CSP-A algorithm in all five subjects with an average improvement of 6% in accuracy.

  6. Optimizing spatial filters with kernel methods for BCI applications

    NASA Astrophysics Data System (ADS)

    Zhang, Jiacai; Tang, Jianjun; Yao, Li

    2007-11-01

    Brain Computer Interface (BCI) is a communication or control system in which the user's messages or commands do not depend on the brain's normal output channels. The key step of BCI technology is to find a reliable method to detect the particular brain signals, such as the alpha, beta and mu components in EEG/ECOG trials, and then translate it into usable control signals. In this paper, our objective is to introduce a novel approach that is able to extract the discriminative pattern from the non-stationary EEG signals based on the common spatial patterns(CSP) analysis combined with kernel methods. The basic idea of our Kernel CSP method is performing a nonlinear form of CSP by the use of kernel methods that can efficiently compute the common and distinct components in high dimensional feature spaces related to input space by some nonlinear map. The algorithm described here is tested off-line with dataset I from the BCI Competition 2005. Our experiments show that the spatial filters employed with kernel CSP can effectively extract discriminatory information from single-trial EGOG recorded during imagined movements. The high recognition of linear discriminative rates and computational simplicity of "Kernel Trick" make it a promising method for BCI systems.

  7. Adaptive Current Control Method for Hybrid Active Power Filter

    NASA Astrophysics Data System (ADS)

    Chau, Minh Thuyen

    2016-09-01

    This paper proposes an adaptive current control method for Hybrid Active Power Filter (HAPF). It consists of a fuzzy-neural controller, identification and prediction model and cost function. The fuzzy-neural controller parameters are adjusted according to the cost function minimum criteria. For this reason, the proposed control method has a capability on-line control clings to variation of the load harmonic currents. Compared to the single fuzzy logic control method, the proposed control method shows the advantages of better dynamic response, compensation error in steady-state is smaller, able to online control is better and harmonics cancelling is more effective. Simulation and experimental results have demonstrated the effectiveness of the proposed control method.

  8. Adaptive filtering for white-light LED visible light communication

    NASA Astrophysics Data System (ADS)

    Hsu, Chin-Wei; Chen, Guan-Hong; Wei, Liang-Yu; Chow, Chi-Wai; Lu, I.-Cheng; Liu, Yen-Liang; Chen, Hsing-Yu; Yeh, Chien-Hung; Liu, Yang

    2017-01-01

    White-light phosphor-based light-emitting diode (LED) can be used to provide lighting and visible light communication (VLC) simultaneously. However, the long relaxation time of phosphor can reduce the modulation bandwidth and limit the VLC data rate. Recent VLC works focus on improving the LED modulation bandwidths. Here, we propose and demonstrate the use of adaptive Volterra filtering (AVF) to increase the data rate of a white-light LED VLC system. The detailed algorithm and implementation of the AVF for the VLC system have been discussed. Using our proposed electrical frontend circuit and the proposed AVF, a significant data rate enhancement to 700.68 Mbit/s is achieved after 1-m free-space transmission using a single white-light phosphor-based LED.

  9. Adaptive noise cancellation based on beehive pattern evolutionary digital filter

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaojun; Shao, Yimin

    2014-01-01

    Evolutionary digital filtering (EDF) exhibits the advantage of avoiding the local optimum problem by using cloning and mating searching rules in an adaptive noise cancellation system. However, convergence performance is restricted by the large population of individuals and the low level of information communication among them. The special beehive structure enables the individuals on neighbour beehive nodes to communicate with each other and thus enhance the information spread and random search ability of the algorithm. By introducing the beehive pattern evolutionary rules into the original EDF, this paper proposes an improved beehive pattern evolutionary digital filter (BP-EDF) to overcome the defects of the original EDF. In the proposed algorithm, a new evolutionary rule which combines competing cloning, complete cloning and assistance mating methods is constructed to enable the individuals distributed on the beehive to communicate with their neighbours. Simulation results are used to demonstrate the improved performance of the proposed algorithm in terms of convergence speed to the global optimum compared with the original methods. Experimental results also verify the effectiveness of the proposed algorithm in extracting feature signals that are contaminated by significant amounts of noise during the fault diagnosis task.

  10. Adaptive data filtering of inertial sensors with variable bandwidth.

    PubMed

    Alam, Mushfiqul; Rohac, Jan

    2015-02-02

    MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing.

  11. Hybrid vs Adaptive Ensemble Kalman Filtering for Storm Surge Forecasting

    NASA Astrophysics Data System (ADS)

    Altaf, M. U.; Raboudi, N.; Gharamti, M. E.; Dawson, C.; McCabe, M. F.; Hoteit, I.

    2014-12-01

    Recent storm surge events due to Hurricanes in the Gulf of Mexico have motivated the efforts to accurately forecast water levels. Toward this goal, a parallel architecture has been implemented based on a high resolution storm surge model, ADCIRC. However the accuracy of the model notably depends on the quality and the recentness of the input data (mainly winds and bathymetry), model parameters (e.g. wind and bottom drag coefficients), and the resolution of the model grid. Given all these uncertainties in the system, the challenge is to build an efficient prediction system capable of providing accurate forecasts enough ahead of time for the authorities to evacuate the areas at risk. We have developed an ensemble-based data assimilation system to frequently assimilate available data into the ADCIRC model in order to improve the accuracy of the model. In this contribution we study and analyze the performances of different ensemble Kalman filter methodologies for efficient short-range storm surge forecasting, the aim being to produce the most accurate forecasts at the lowest possible computing time. Using Hurricane Ike meteorological data to force the ADCIRC model over a domain including the Gulf of Mexico coastline, we implement and compare the forecasts of the standard EnKF, the hybrid EnKF and an adaptive EnKF. The last two schemes have been introduced as efficient tools for enhancing the behavior of the EnKF when implemented with small ensembles by exploiting information from a static background covariance matrix. Covariance inflation and localization are implemented in all these filters. Our results suggest that both the hybrid and the adaptive approach provide significantly better forecasts than those resulting from the standard EnKF, even when implemented with much smaller ensembles.

  12. Adaptive Data Filtering of Inertial Sensors with Variable Bandwidth

    PubMed Central

    Alam, Mushfiqul; Rohac, Jan

    2015-01-01

    MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing. PMID:25648711

  13. Identification of spatially filtered stimuli as function of the semantic category.

    PubMed

    Vannucci, M; Viggiano, M P; Argenti, F

    2001-12-01

    The different weight of spatial frequency content in the identification of visual objects was investigated. Subjects were required to identify spatially filtered pictures of animals, vegetables and nonliving objects, displayed at 9 resolution levels of filtering following a coarse-to-fine order. Results showed that spatial frequency content differentially affected the three categories of stimuli. Data suggested a different involvement of low and high spatial frequency channels in visual processing of objects in relation to the semantic category.

  14. Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter.

    PubMed

    Zhang, Zhen; Ma, Yaopeng

    2016-02-06

    A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed filter, the input signal vector consists of the output of a tapped delay line. GPOs with various thresholds are used to construct a nonlinear network and connected with the input signals. The output signal of the filter is composed of a linear combination of signals from the output of GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is compared to the proposed adaptive filter. The various rate-dependent modeling methods are applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent hysteresis nonlinear of the GMA more accurately and effectively.

  15. Application of spatial filtering techniques to frequency domain imaging through scattering media

    NASA Astrophysics Data System (ADS)

    Morgan, Stephen P.; Somekh, Michael G.

    1995-12-01

    The application of spatial filtering techniques to frequency domain imaging through scattering media has been investigated using a diffusion model. The criterion used to evaluate the imaging performance of any given system is the trade-off between signal to noise ratio and resolution. Spatial filtering is shown to offer the greatest improvement in system performance for objects positioned near to the detector.

  16. Maximally reliable spatial filtering of steady state visual evoked potentials.

    PubMed

    Dmochowski, Jacek P; Greaves, Alex S; Norcia, Anthony M

    2015-04-01

    Due to their high signal-to-noise ratio (SNR) and robustness to artifacts, steady state visual evoked potentials (SSVEPs) are a popular technique for studying neural processing in the human visual system. SSVEPs are conventionally analyzed at individual electrodes or linear combinations of electrodes which maximize some variant of the SNR. Here we exploit the fundamental assumption of evoked responses--reproducibility across trials--to develop a technique that extracts a small number of high SNR, maximally reliable SSVEP components. This novel spatial filtering method operates on an array of Fourier coefficients and projects the data into a low-dimensional space in which the trial-to-trial spectral covariance is maximized. When applied to two sample data sets, the resulting technique recovers physiologically plausible components (i.e., the recovered topographies match the lead fields of the underlying sources) while drastically reducing the dimensionality of the data (i.e., more than 90% of the trial-to-trial reliability is captured in the first four components). Moreover, the proposed technique achieves a higher SNR than that of the single-best electrode or the Principal Components. We provide a freely-available MATLAB implementation of the proposed technique, herein termed "Reliable Components Analysis".

  17. Adaptive Wiener filter super-resolution of color filter array images.

    PubMed

    Karch, Barry K; Hardie, Russell C

    2013-08-12

    Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data.

  18. Adaptive modulation of bilateral filtering based on a practical noise model for streaking and noise reduction in multi-slice CT

    NASA Astrophysics Data System (ADS)

    Yu, Lifeng; Manduca, Armando; Jacobsen, Megan; Trzasko, Joshua D.; Fletcher, Joel G.; DeLone, David R.; McCollough, Cynthia H.

    2010-04-01

    We have recently developed a locally-adaptive method for noise control in CT based upon bilateral filtering. Different from the previous adaptive filters, which were locally adaptive by adjusting the filter strength according to local photon statistics, our use of bilateral filtering in projection data incorporates a practical CT noise model and takes into account the local structural characteristics, and thus can preserve edge information in the projection data and maintain the spatial resolution. Despite the incorporation of the CT noise model and local structural characteristics in the bilateral filtering, the noise-resolution properties of the filtered image are still highly dependent on predefined parameters that control the weighting factors in the bilateral filtering. An inappropriate selection of these parameters may result in a loss of spatial resolution or an insufficient reduction of noise. In this work, we employed an adaptive strategy to modulate the bilateral filtering strength according to the noise-equivalent photon numbers determined from each projection measurement. We applied the proposed technique to head/neck angiographic CT exams, which had highly non-uniform attenuation levels during the scan. The results demonstrated that the technique can effectively reduce the noise and streaking artifacts caused by high attenuation, while maintaining the reconstruction accuracy in less attenuating regions.

  19. Spatial filtering of electrical resistivity and slope intensity: Enhancement of spatial estimates of a soil property

    NASA Astrophysics Data System (ADS)

    Bourennane, Hocine; Hinschberger, Florent; Chartin, Caroline; Salvador-Blanes, Sébastien

    2017-03-01

    To best utilize the electrical resistivity data and slope intensity derived from a Digital Elevation Model, the kriging spatial components technique was applied to separate the nuggets and small- and large-scale structures for both resistivity and slope intensity data. The spatial structures in the resistivity and slope intensity data, which are poorly correlated with soil thickness (ST), are then filtered out prior to integrating the resistivity data and slope intensity into soil thickness estimation over a 12 ha area located in the south-western Parisian Basin (France). ST was measured at 650 locations over the study area by manual augering. Twenty percent of the observations (131 points) were randomly selected to constitute the validation dataset. The remaining 80% of the dataset (519 points) was used as the prediction dataset. The resistivity data represent a set of 7394 measurement points for each of the three investigated depths over the study area. The methodology involves successively (1) a principal component analysis (PCA) on the electrical measurements and (2) a geostatistical filtering of the small-scale component and noise in the first component (PC1) of the PCA. The results show that the correlation between ST and PC1 is greatly improved when the small-scale component and noise are filtered out, and similarly, the correlation between ST and slope intensity is greatly improved once the geostatistical filtering is carried out on the slope data. Thus, the large scales of both slope intensity and the electrical resistivity's PC1 were used as external drifts to predict ST over the entire study area. This prediction was compared with ordinary kriging and kriging either with a large scale of slope intensity or with a large scale of the electrical resistivity's PC1 taken as an external drift. The first prediction of ST by ordinary kriging, which was considered as our reference, was also compared to those achieved by kriging using the raw secondary variables

  20. Microscopy with spatial filtering for monitoring subcellular morphology

    NASA Astrophysics Data System (ADS)

    Zheng, Jing-Yi

    Dynamic alteration in organelle morphology is an important indicator of cellular function and many efforts have been made to monitor the subcellular morphology. Optical scatter imaging (OSI), which combines light scattering spectroscopy with microscopic imaging, was developed to non-invasively track real-time changes in particle morphology in situ. Using a variable diameter iris as a Fourier spatial filter, the technique consisted of collecting images that encoded the intensity ratio of wide-to-narrow angle scatter (OSIR, optical scatter imaging ratio) at each pixel in the full field of view. For spherical particles, the OSIR was shown to decrease monotonically with diameter. In living cells, we reported this technique is able to detect mitochondrial morphological alterations, which were mediated by the Bcl- xL transmembrane domain, but could not be observed by fluorescence or DIC images1. However, the initial design was based on Mie theory of scattering by spheres, and hence only adequate for measuring spherical particles. This limits the applicability of OSI to cellular functional studies involving organelles, which are naturally non-spherical. In this project, we aim to enhance the current capability of the existing optical scatter microscope to assess size and shape information for both spherical and non-spherical particles, and eventually apply this technique for monitoring and quantifying subcellular morphology within living cells. To reach this goal, we developed an improved system, in which the variable diameter iris is replaced with a digital micromirror device and adopted the concept of Gabor filtering to extend our assessment of morphology to the characterization of particle shape and orientation. Using bacteria and polystyrene spheres, we show how this system can be used to assess particle aspect ratio even when imaged at low resolution. We also show the feasibility of detecting alterations in organelle aspect ratio in situ within living cells. This

  1. MR images restoration with the use of fuzzy filter having adaptive membership parameters.

    PubMed

    Güler, I; Toprak, A; Demirhan, A; Karakiş, R

    2008-06-01

    A new fuzzy adaptive median filter is presented for the noise reduction of magnetic resonance images corrupted with heavy impulse (salt and pepper) noise. In this paper, we have proposed a Fuzzy Adaptive Median Filter with Adaptive Membership Parameters (FAMFAMP) for removing highly corrupted salt and pepper noise, with preserving image edges and details. The FAMFAMP filter is an improved version of Adaptive Median Filter (AMF) and is presented in the aim of noise reduction of images corrupted with additive impulse noise. The proposed filter can preserve image details better than AMF while suppressing additive salt and pepper or impulse type noise. In this paper, we placed our preference on bell-shaped membership function with adaptive parameters instead of triangular membership function without variable coefficients in order to observe better results.

  2. Cascaded Effects of Spatial Adaptation in the Early Visual System

    PubMed Central

    Dhruv, Neel T.; Carandini, Matteo

    2014-01-01

    Summary Virtually all stages of the visual system exhibit adaptation: neurons adjust their responses based on the recent stimulus history. While some of these adjustments occur at specific stages, others may be inherited from earlier stages. How do adaptation effects cascade along the visual system? We measured spatially selective adaptation at two successive stages in the mouse visual system: visual thalamus (LGN) and primary visual cortex (V1). This form of adaptation affected both stages but in drastically different ways: in LGN it only changed response gain, while in V1 it also shifted spatial tuning away from the adaptor. These effects, however, are reconciled by a simple model whereby V1 neurons summate LGN inputs with a fixed, unadaptable weighting profile. These results indicate that adaptation effects cascade through the visual system, that this cascading can shape selectivity, and that the rules of integration from one stage to the next are not themselves adaptable. PMID:24507190

  3. Cascaded effects of spatial adaptation in the early visual system.

    PubMed

    Dhruv, Neel T; Carandini, Matteo

    2014-02-05

    Virtually all stages of the visual system exhibit adaptation: neurons adjust their responses based on the recent stimulus history. While some of these adjustments occur at specific stages, others may be inherited from earlier stages. How do adaptation effects cascade along the visual system? We measured spatially selective adaptation at two successive stages in the mouse visual system: visual thalamus (LGN) and primary visual cortex (V1). This form of adaptation affected both stages but in drastically different ways: in LGN it only changed response gain, while in V1 it also shifted spatial tuning away from the adaptor. These effects, however, are reconciled by a simple model whereby V1 neurons summate LGN inputs with a fixed, unadaptable weighting profile. These results indicate that adaptation effects cascade through the visual system, that this cascading can shape selectivity, and that the rules of integration from one stage to the next are not themselves adaptable.

  4. Simultaneous learning and filtering without delusions: a Bayes-optimal combination of Predictive Inference and Adaptive Filtering.

    PubMed

    Kneissler, Jan; Drugowitsch, Jan; Friston, Karl; Butz, Martin V

    2015-01-01

    Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.

  5. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation

    PubMed Central

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-01-01

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix ‘R’ and the system noise V-C matrix ‘Q’. Then, the global filter uses R to calculate the information allocation factor ‘β’ for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835

  6. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.

    PubMed

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-07-16

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively.

  7. An Adaptive Fourier Filter for Relaxing Time Stepping Constraints for Explicit Solvers

    SciTech Connect

    Gelb, Anne; Archibald, Richard K

    2015-01-01

    Filtering is necessary to stabilize piecewise smooth solutions. The resulting diffusion stabilizes the method, but may fail to resolve the solution near discontinuities. Moreover, high order filtering still requires cost prohibitive time stepping. This paper introduces an adaptive filter that controls spurious modes of the solution, but is not unnecessarily diffusive. Consequently we are able to stabilize the solution with larger time steps, but also take advantage of the accuracy of a high order filter.

  8. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  9. A high-power spatial filter for Thomson scattering stray light reduction.

    PubMed

    Levesque, J P; Litzner, K D; Mauel, M E; Maurer, D A; Navratil, G A; Pedersen, T S

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  10. A high-power spatial filter for Thomson scattering stray light reduction

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  11. Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array

    NASA Astrophysics Data System (ADS)

    Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J.; Urbas, Augustine

    2016-10-01

    In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed “algorithmic spectrometry”. We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme.

  12. Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array.

    PubMed

    Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J; Urbas, Augustine

    2016-10-10

    In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed "algorithmic spectrometry". We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme.

  13. Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array

    PubMed Central

    Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J.; Urbas, Augustine

    2016-01-01

    In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed “algorithmic spectrometry”. We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme. PMID:27721506

  14. A gradient-adaptive lattice-based complex adaptive notch filter

    NASA Astrophysics Data System (ADS)

    Zhu, Rui; Yang, Feiran; Yang, Jun

    2016-12-01

    This paper presents a new complex adaptive notch filter to estimate and track the frequency of a complex sinusoidal signal. The gradient-adaptive lattice structure instead of the traditional gradient one is adopted to accelerate the convergence rate. It is proved that the proposed algorithm results in unbiased estimations by using the ordinary differential equation approach. The closed-form expressions for the steady-state mean square error and the upper bound of step size are also derived. Simulations are conducted to validate the theoretical analysis and demonstrate that the proposed method generates considerably better convergence rates and tracking properties than existing methods, particularly in low signal-to-noise ratio environments.

  15. A Novel Adaptive Frequency Estimation Algorithm Based on Interpolation FFT and Improved Adaptive Notch Filter

    NASA Astrophysics Data System (ADS)

    Shen, Ting-ao; Li, Hua-nan; Zhang, Qi-xin; Li, Ming

    2017-02-01

    The convergence rate and the continuous tracking precision are two main problems of the existing adaptive notch filter (ANF) for frequency tracking. To solve the problems, the frequency is detected by interpolation FFT at first, which aims to overcome the convergence rate of the ANF. Then, referring to the idea of negative feedback, an evaluation factor is designed to monitor the ANF parameters and realize continuously high frequency tracking accuracy. According to the principle, a novel adaptive frequency estimation algorithm based on interpolation FFT and improved ANF is put forward. Its basic idea, specific measures and implementation steps are described in detail. The proposed algorithm obtains a fast estimation of the signal frequency, higher accuracy and better universality qualities. Simulation results verified the superiority and validity of the proposed algorithm when compared with original algorithms.

  16. Complex lung motion estimation via adaptive bilateral filtering of the deformation field.

    PubMed

    Papiez, Bartlomiej W; Heinrich, Mattias Paul; Risser, Laurent; Schnabel, Julia A

    2013-01-01

    Estimation of physiologically plausible deformations is critical for several medical applications. For example, lung cancer diagnosis and treatment requires accurate image registration which preserves sliding motion in the pleural cavity, and the rigidity of chest bones. This paper addresses these challenges by introducing a novel approach for regularisation of non-linear transformations derived from a bilateral filter. For this purpose, the classic Gaussian kernel is replaced by a new kernel that smoothes the estimated deformation field with respect to the spatial position, intensity and deformation dissimilarity. The proposed regularisation is a spatially adaptive filter that is able to preserve discontinuity between the lungs and the pleura and reduces any rigid structures deformations in volumes. Moreover, the presented framework is fully automatic and no prior knowledge of the underlying anatomy is required. The performance of our novel regularisation technique is demonstrated on phantom data for a proof of concept as well as 3D inhale and exhale pairs of clinical CT lung volumes. The results of the quantitative evaluation exhibit a significant improvement when compared to the corresponding state-of-the-art method using classic Gaussian smoothing.

  17. Adaptive Filtering Methods for Identifying Cross-Frequency Couplings in Human EEG

    PubMed Central

    Van Zaen, Jérôme; Murray, Micah M.; Meuli, Reto A.; Vesin, Jean-Marc

    2013-01-01

    Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations. PMID:23560098

  18. Adaptive filtering methods for identifying cross-frequency couplings in human EEG.

    PubMed

    Van Zaen, Jérôme; Murray, Micah M; Meuli, Reto A; Vesin, Jean-Marc

    2013-01-01

    Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.

  19. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation

    PubMed Central

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-01-01

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361

  20. Adaptation of a Filter Assembly to Assess Microbial Bioburden of Pressurant Within a Propulsion System

    NASA Technical Reports Server (NTRS)

    Benardini, James N.; Koukol, Robert C.; Schubert, Wayne W.; Morales, Fabian; Klatte, Marlin F.

    2012-01-01

    A report describes an adaptation of a filter assembly to enable it to be used to filter out microorganisms from a propulsion system. The filter assembly has previously been used for particulates greater than 2 micrometers. Projects that utilize large volumes of nonmetallic materials of planetary protection concern pose a challenge to their bioburden budget, as a conservative specification value of 30 spores per cubic centimeter is typically used. Helium was collected utilizing an adapted filtration approach employing an existing Millipore filter assembly apparatus used by the propulsion team for particulate analysis. The filter holder on the assembly has a 47-mm diameter, and typically a 1.2-5 micrometer pore-size filter is used for particulate analysis making it compatible with commercially available sterilization filters (0.22 micrometers) that are necessary for biological sampling. This adaptation to an existing technology provides a proof-of-concept and a demonstration of successful use in a ground equipment system. This adaptation has demonstrated that the Millipore filter assembly can be utilized to filter out microorganisms from a propulsion system, whereas in previous uses the filter assembly was utilized for particulates greater than 2 micrometers.

  1. Short spatial filters with spherical lenses for high-power pulsed lasers

    SciTech Connect

    Burdonov, K F; Soloviev, A A; Shaikin, A A; Potemkin, A K; Egorov, A S

    2013-11-30

    We report possible employment of short spatial filters based on spherical lenses in a pulsed laser source (neodymium glass, 300 J, 1 ns). The influence of the spherical aberration on the quality of output radiation and coefficient of conversion to the second harmonics is studied. The ultra-short aberration spatial filter of length 1.9 m with an aperture of 122 mm is experimentally tested. A considerable shortening of multi-cascade pump lasers for modern petawatt laser systems is demonstrated by the employment of short spatial filters without expensive aspherical optics. (elements of laser systems)

  2. Image Restoration on Copper Inscription Using Nonlinear Filtering and Adaptive Threshold

    NASA Astrophysics Data System (ADS)

    Chairy, A.; Suprapto, Y. K.; Yuniarno, E. M.

    2017-01-01

    Inscription is an important document inherited by history of kingdom. Inscription made on hard stuff such as stone and copper. Therefore it is necessary digitizing documents, to keep the authenticity of the document. But the document of the historical heritage have disruption on inscription plate which be called noise. So that, it is necessary to reduce the noise in the image of the inscription, to ease the documentation of historical digital. Then, separation between the background and the writing object carved on inscription is conducted so easy to read. This research is using nonlinear filtering method to reduce the noise and adaptive threshold to separate between the background and letter inscription. Nonlinear filtering method used is median filter, harmonic mean filter and contra harmonic mean filter, whereas in the adaptive threshold using adaptive mean and adaptive median threshold. The results of this research is using measurement methods MSE (Mean Square Error), PSNR (Peak Signal to Noise Ratio) and SNR (Signal to Noise Ratio).

  3. On the difference between single- and double-sided bandpass filtering of spatial frequencies

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Jia, Wei; Wu, Di; Poon, Ting-Chung

    2017-02-01

    It is well-known that bandpass filtering will lead to edge extraction in image processing. However, the difference between single- and double-sided bandpass filtering has never been compared and investigated in the literature. We investigate the difference between single- and double-sided bandpass spatial filtering in a 4-f coherent optical image processing system. We find that single-sided filtering can approximate the operation of a first-order derivative, while double-sided filtering gives a second-order derivative. Simulations and optical experiments confirm our findings.

  4. Blood Cell Separation Device Using Serially Connected Membrane Filters for Adapting to Blood Flow Properties

    NASA Astrophysics Data System (ADS)

    Kobayashi, Taizo; Kato, Daiki; Koga, Hiroyuki; Morimoto, Kenichi; Fukuda, Makoto; Kinoshita, Yoshiharu; Yoshida, Hiroshi; Konishi, Satoshi

    This paper proposes a cooperative operation of serially connected membrane filters toward adaptive blood cell separation system in order to overcome a restriction of a single membrane filter. Serially connected membrane filters allow that downstream filters extract blood plasma from residual blood at upstream filters. Consequently, it becomes possible to adapt filtering characteristics to changing properties of blood. We focus on trans-membrane pressure difference in order to prevent hemolysis. Our strategy can be realized as a miniaturized PDMS fluidic chip. Our laboratory experiment using a prototype shows that plasma extraction efficiency is improved from 34% to 75%. Toward an integrated system, this paper also demonstrates multiple filters are successfully integrated into a PDMS fluidic chip.

  5. Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain.

    PubMed

    Yu, Hancheng; Zhao, Li; Wang, Haixian

    2009-10-01

    This correspondence proposes an efficient algorithm for removing Gaussian noise from corrupted image by incorporating a wavelet-based trivariate shrinkage filter with a spatial-based joint bilateral filter. In the wavelet domain, the wavelet coefficients are modeled as trivariate Gaussian distribution, taking into account the statistical dependencies among intrascale wavelet coefficients, and then a trivariate shrinkage filter is derived by using the maximum a posteriori (MAP) estimator. Although wavelet-based methods are efficient in image denoising, they are prone to producing salient artifacts such as low-frequency noise and edge ringing which relate to the structure of the underlying wavelet. On the other hand, most spatial-based algorithms output much higher quality denoising image with less artifacts. However, they are usually too computationally demanding. In order to reduce the computational cost, we develop an efficient joint bilateral filter by using the wavelet denoising result rather than directly processing the noisy image in the spatial domain. This filter could suppress the noise while preserve image details with small computational cost. Extension to color image denoising is also presented. We compare our denoising algorithm with other denoising techniques in terms of PSNR and visual quality. The experimental results indicate that our algorithm is competitive with other denoising techniques.

  6. Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters

    PubMed Central

    Marathe, A R.; Taylor, D M

    2013-01-01

    Objective Our goal was to identify spatial filtering methods that would improve decoding of continuous arm movements from epidural field potentials as well as demonstrate the use of the epidural signals in a closed-loop brain-machine interface (BMI) system in monkeys. Approach Eleven spatial filtering options were compared offline using field potentials collected from 64-channel high-density epidural arrays in monkeys. Arrays were placed over arm/hand motor cortex in which intracortical microelectrodes had previously been implanted and removed leaving focal cortical damage but no lasting motor deficits. Spatial filters tested included: no filtering, common average referencing (CAR), principle component analysis (PCA), and eight novel modifications of the common spatial pattern (CSP) algorithm. The spatial filtering method and decoder combination that performed the best offline was then used online where monkeys controlled cursor velocity using continuous wrist position decoded from epidural field potentials in real time. Main results Optimized CSP methods improved continuous wrist position decoding accuracy by 69% over CAR and by 80% compared to no filtering. Kalman decoders performed better than linear regression decoders and benefitted from including more spatially-filtered signals but not from pre-smoothing the calculated power spectra. Conversely, linear regression decoders required fewer spatially-filtered signals and were improved by pre-smoothing the power values. The ‘position-to-velocity’ transformation used during online control enabled the animals to generate smooth closed-loop movement trajectories using the somewhat limited position information available in the epidural signals. The monkeys’ online performance significantly improved across days of closed-loop training. Significance Most published BMI studies that use electrocortographic signals to decode continuous limb movements either use no spatial filtering or CAR. This study suggests a

  7. Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters

    NASA Astrophysics Data System (ADS)

    Marathe, A. R.; Taylor, D. M.

    2013-06-01

    Objective. Our goal was to identify spatial filtering methods that would improve decoding of continuous arm movements from epidural field potentials as well as demonstrate the use of the epidural signals in a closed-loop brain-machine interface (BMI) system in monkeys. Approach. Eleven spatial filtering options were compared offline using field potentials collected from 64-channel high-density epidural arrays in monkeys. Arrays were placed over arm/hand motor cortex in which intracortical microelectrodes had previously been implanted and removed leaving focal cortical damage but no lasting motor deficits. Spatial filters tested included: no filtering, common average referencing (CAR), principle component analysis, and eight novel modifications of the common spatial pattern (CSP) algorithm. The spatial filtering method and decoder combination that performed the best offline was then used online where monkeys controlled cursor velocity using continuous wrist position decoded from epidural field potentials in real time. Main results. Optimized CSP methods improved continuous wrist position decoding accuracy by 69% over CAR and by 80% compared to no filtering. Kalman decoders performed better than linear regression decoders and benefitted from including more spatially-filtered signals but not from pre-smoothing the calculated power spectra. Conversely, linear regression decoders required fewer spatially-filtered signals and were improved by pre-smoothing the power values. The ‘position-to-velocity’ transformation used during online control enabled the animals to generate smooth closed-loop movement trajectories using the somewhat limited position information available in the epidural signals. The monkeys’ online performance significantly improved across days of closed-loop training. Significance. Most published BMI studies that use electrocorticographic signals to decode continuous limb movements either use no spatial filtering or CAR. This study suggests a

  8. Spatially constrained adaptive rewiring in cortical networks creates spatially modular small world architectures.

    PubMed

    Jarman, Nicholas; Trengove, Chris; Steur, Erik; Tyukin, Ivan; van Leeuwen, Cees

    2014-12-01

    A modular small-world topology in functional and anatomical networks of the cortex is eminently suitable as an information processing architecture. This structure was shown in model studies to arise adaptively; it emerges through rewiring of network connections according to patterns of synchrony in ongoing oscillatory neural activity. However, in order to improve the applicability of such models to the cortex, spatial characteristics of cortical connectivity need to be respected, which were previously neglected. For this purpose we consider networks endowed with a metric by embedding them into a physical space. We provide an adaptive rewiring model with a spatial distance function and a corresponding spatially local rewiring bias. The spatially constrained adaptive rewiring principle is able to steer the evolving network topology to small world status, even more consistently so than without spatial constraints. Locally biased adaptive rewiring results in a spatial layout of the connectivity structure, in which topologically segregated modules correspond to spatially segregated regions, and these regions are linked by long-range connections. The principle of locally biased adaptive rewiring, thus, may explain both the topological connectivity structure and spatial distribution of connections between neuronal units in a large-scale cortical architecture.

  9. A fast image super-resolution algorithm using an adaptive Wiener filter.

    PubMed

    Hardie, Russell

    2007-12-01

    A computationally simple super-resolution algorithm using a type of adaptive Wiener filter is proposed. The algorithm produces an improved resolution image from a sequence of low-resolution (LR) video frames with overlapping field of view. The algorithm uses subpixel registration to position each LR pixel value on a common spatial grid that is referenced to the average position of the input frames. The positions of the LR pixels are not quantized to a finite grid as with some previous techniques. The output high-resolution (HR) pixels are obtained using a weighted sum of LR pixels in a local moving window. Using a statistical model, the weights for each HR pixel are designed to minimize the mean squared error and they depend on the relative positions of the surrounding LR pixels. Thus, these weights adapt spatially and temporally to changing distributions of LR pixels due to varying motion. Both a global and spatially varying statistical model are considered here. Since the weights adapt with distribution of LR pixels, it is quite robust and will not become unstable when an unfavorable distribution of LR pixels is observed. For translational motion, the algorithm has a low computational complexity and may be readily suitable for real-time and/or near real-time processing applications. With other motion models, the computational complexity goes up significantly. However, regardless of the motion model, the algorithm lends itself to parallel implementation. The efficacy of the proposed algorithm is demonstrated here in a number of experimental results using simulated and real video sequences. A computational analysis is also presented.

  10. Impact imaging of aircraft composite structure based on a model-independent spatial-wavenumber filter.

    PubMed

    Qiu, Lei; Liu, Bin; Yuan, Shenfang; Su, Zhongqing

    2016-01-01

    The spatial-wavenumber filtering technique is an effective approach to distinguish the propagating direction and wave mode of Lamb wave in spatial-wavenumber domain. Therefore, it has been gradually studied for damage evaluation in recent years. But for on-line impact monitoring in practical application, the main problem is how to realize the spatial-wavenumber filtering of impact signal when the wavenumber of high spatial resolution cannot be measured or the accurate wavenumber curve cannot be modeled. In this paper, a new model-independent spatial-wavenumber filter based impact imaging method is proposed. In this method, a 2D cross-shaped array constructed by two linear piezoelectric (PZT) sensor arrays is used to acquire impact signal on-line. The continuous complex Shannon wavelet transform is adopted to extract the frequency narrowband signals from the frequency wideband impact response signals of the PZT sensors. A model-independent spatial-wavenumber filter is designed based on the spatial-wavenumber filtering technique. Based on the designed filter, a wavenumber searching and best match mechanism is proposed to implement the spatial-wavenumber filtering of the frequency narrowband signals without modeling, which can be used to obtain a wavenumber-time image of the impact relative to a linear PZT sensor array. By using the two wavenumber-time images of the 2D cross-shaped array, the impact direction can be estimated without blind angle. The impact distance relative to the 2D cross-shaped array can be calculated by using the difference of time-of-flight between the frequency narrowband signals of two different central frequencies and the corresponding group velocities. The validations performed on a carbon fiber composite laminate plate and an aircraft composite oil tank show a good impact localization accuracy of the model-independent spatial-wavenumber filter based impact imaging method.

  11. An algorithmic approach to adaptive state filtering using recurrent neural networks.

    PubMed

    Parlos, A G; Menon, S K; Atiya, A

    2001-01-01

    Practical algorithms are presented for adaptive state filtering in nonlinear dynamic systems when the state equations are unknown. The state equations are constructively approximated using neural networks. The algorithms presented are based on the two-step prediction-update approach of the Kalman filter. The proposed algorithms make minimal assumptions regarding the underlying nonlinear dynamics and their noise statistics. Non-adaptive and adaptive state filtering algorithms are presented with both off-line and online learning stages. The algorithms are implemented using feedforward and recurrent neural network and comparisons are presented. Furthermore, extended Kalman filters (EKFs) are developed and compared to the filter algorithms proposed. For one of the case studies, the EKF converges but results in higher state estimation errors that the equivalent neural filters. For another, more complex case study with unknown system dynamics and noise statistics, the developed EKFs do not converge. The off-line trained neural state filters converge quite rapidly and exhibit acceptable performance. Online training further enhances the estimation accuracy of the developed adaptive filters, effectively decoupling the eventual filter accuracy from the accuracy of the process model.

  12. Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.

    PubMed

    Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui

    2017-01-01

    To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.

  13. Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems.

    PubMed

    Majda, Andrew J; Grote, Marcus J

    2007-01-23

    Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and physical instabilities on both large and small scales. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Here, explicit off-line test criteria for stable accurate discrete filtering are developed for use in the above context and mimic the classical stability analysis for finite difference schemes. First, constant coefficient partial differential equations, which are randomly forced and damped to mimic mesh scale energy spectra in the above problems are developed as off-line filtering test problems. Then mathematical analysis is used to show that under natural suitable hypothesis the time filtering algorithms for general finite difference discrete approximations to an sxs partial differential equation system with suitable observations decompose into much simpler independent s-dimensional filtering problems for each spatial wave number separately; in other test problems, such block diagonal models rigorously provide upper and lower bounds on the filtering algorithm. In this fashion, elementary off-line filtering criteria can be developed for complex spatially extended systems. The theory is illustrated for time filters by using both unstable and implicit difference scheme approximations to the stochastically forced heat equation where the combined effects of filter stability and model error are analyzed through the simpler off-line criteria.

  14. Robust optical flow using adaptive Lorentzian filter for image reconstruction under noisy condition

    NASA Astrophysics Data System (ADS)

    Kesrarat, Darun; Patanavijit, Vorapoj

    2017-02-01

    In optical flow for motion allocation, the efficient result in Motion Vector (MV) is an important issue. Several noisy conditions may cause the unreliable result in optical flow algorithms. We discover that many classical optical flows algorithms perform better result under noisy condition when combined with modern optimized model. This paper introduces effective robust models of optical flow by using Robust high reliability spatial based optical flow algorithms using the adaptive Lorentzian norm influence function in computation on simple spatial temporal optical flows algorithm. Experiment on our proposed models confirm better noise tolerance in optical flow's MV under noisy condition when they are applied over simple spatial temporal optical flow algorithms as a filtering model in simple frame-to-frame correlation technique. We illustrate the performance of our models by performing an experiment on several typical sequences with differences in movement speed of foreground and background where the experiment sequences are contaminated by the additive white Gaussian noise (AWGN) at different noise decibels (dB). This paper shows very high effectiveness of noise tolerance models that they are indicated by peak signal to noise ratio (PSNR).

  15. A spatially and temporally adaptive solution of Richards’ equation

    NASA Astrophysics Data System (ADS)

    Miller, Cass T.; Abhishek, Chandra; Farthing, Matthew W.

    2006-04-01

    Efficient, robust simulation of groundwater flow in the unsaturated zone remains computationally expensive, especially for problems characterized by sharp fronts in both space and time. Standard approaches that employ uniform spatial and temporal discretizations for the numerical solution of these problems lead to inefficient and expensive simulations. In this work, we solve Richards' equation using adaptive methods in both space and time. Spatial adaption is based upon a coarse grid solve and a gradient error indicator using a fixed-order approximation. Temporal adaption is accomplished using variable order, variable step size approximations based upon the backward difference formulas up to fifth order. Since the advantages of similar adaptive methods in time are now established, we evaluate our method by comparison with a uniform spatial discretization that is adaptive in time for four different one-dimensional test problems. The numerical results demonstrate that the proposed method provides a robust and efficient alternative to standard approaches for simulating variably saturated flow in one spatial dimension.

  16. Design of coupled mace filters for optical pattern recognition using practical spatial light modulators

    NASA Technical Reports Server (NTRS)

    Rajan, P. K.; Khan, Ajmal

    1993-01-01

    Spatial light modulators (SLMs) are being used in correlation-based optical pattern recognition systems to implement the Fourier domain filters. Currently available SLMs have certain limitations with respect to the realizability of these filters. Therefore, it is necessary to incorporate the SLM constraints in the design of the filters. The design of a SLM-constrained minimum average correlation energy (SLM-MACE) filter using the simulated annealing-based optimization technique was investigated. The SLM-MACE filter was synthesized for three different types of constraints. The performance of the filter was evaluated in terms of its recognition (discrimination) capabilities using computer simulations. The correlation plane characteristics of the SLM-MACE filter were found to be reasonably good. The SLM-MACE filter yielded far better results than the analytical MACE filter implemented on practical SLMs using the constrained magnitude technique. Further, the filter performance was evaluated in the presence of noise in the input test images. This work demonstrated the need to include the SLM constraints in the filter design. Finally, a method is suggested to reduce the computation time required for the synthesis of the SLM-MACE filter.

  17. Bayesian learning for spatial filtering in an EEG-based brain-computer interface.

    PubMed

    Zhang, Haihong; Yang, Huijuan; Guan, Cuntai

    2013-07-01

    Spatial filtering for EEG feature extraction and classification is an important tool in brain-computer interface. However, there is generally no established theory that links spatial filtering directly to Bayes classification error. To address this issue, this paper proposes and studies a Bayesian analysis theory for spatial filtering in relation to Bayes error. Following the maximum entropy principle, we introduce a gamma probability model for describing single-trial EEG power features. We then formulate and analyze the theoretical relationship between Bayes classification error and the so-called Rayleigh quotient, which is a function of spatial filters and basically measures the ratio in power features between two classes. This paper also reports our extensive study that examines the theory and its use in classification, using three publicly available EEG data sets and state-of-the-art spatial filtering techniques and various classifiers. Specifically, we validate the positive relationship between Bayes error and Rayleigh quotient in real EEG power features. Finally, we demonstrate that the Bayes error can be practically reduced by applying a new spatial filter with lower Rayleigh quotient.

  18. Efficient array beam forming by spatial filtering for ultrasound B-mode imaging

    PubMed Central

    Kim, Kang-Sik; Liu, Jie; Insana, Michael F.

    2009-01-01

    This paper proposes an efficient array beam-forming method using spatial matched filtering (SMF) for ultrasonic imaging. In the proposed method, ultrasonic waves are transmitted from an array subaperture with fixed transmit focus as in conventional array imaging. At receive, radio frequency echo signals from each receive channel are passed through a spatial matched filter that is constructed based on the system transmit-receive spatial impulse response. The filtered echo signals are then summed without time delays. The filter concentrates and spatially registers the echo energy from each element so that the pulse-echo impulse response of the summed output is focused with acceptably low side lobes. Analytical beam pattern analysis and simulation results using a linear array show that this spatial filtering method can improve lateral resolution and contrast-to-noise ratio as compared with conventional dynamic receive focusing (DRF) methods. Experimental results with a linear array are consistent but point out the need to address additional practical issues. Spatial filtering is equivalent to synthetic aperture methods that dynamically focus on both transmit and receive throughout the field of view. In one common example of phase aberrations, the SMF method was degraded to a degree comparable to conventional DRF methods. PMID:16938973

  19. Adaptive multidirectional frequency domain filter for noise removal in wrapped phase patterns.

    PubMed

    Liu, Guixiong; Chen, Dongxue; Peng, Yanhua; Zeng, Qilin

    2016-08-01

    In order to avoid the detrimental effects of excessive noise in the phase fringe patterns of a laser digital interferometer over the accuracy of phase unwrapping and the successful detection of mechanical fatigue defects, an effective method of adaptive multidirectional frequency domain filtering is introduced based on the characteristics of the energy spectrum of localized wrapped phase patterns. Not only can this method automatically set the cutoff frequency, but it can also effectively filter out noise while preserving the image edge information. Compared with the sine and cosine transform filtering and the multidirectional frequency domain filtering, the experimental results demonstrate that the image filtered by our method has the fewest number of residues and is the closest to the noise-free image, compared to the two aforementioned methods, demonstrating the effectiveness of this adaptive multidirectional frequency domain filter.

  20. A complex-valued nonlinear neural adaptive filter with a gradient adaptive amplitude of the activation function.

    PubMed

    Hanna, Andrew I; Mandic, Danilo P

    2003-03-01

    A complex-valued nonlinear gradient descent (CNGD) learning algorithm for a simple finite impulse response (FIR) nonlinear neural adaptive filter with an adaptive amplitude of the complex activation function is proposed. This way the amplitude of the complex-valued analytic nonlinear activation function of a neuron in the learning algorithm is made gradient adaptive to give the complex-valued adaptive amplitude nonlinear gradient descent (CAANGD). Such an algorithm is beneficial when dealing with signals that have rich dynamical behavior. Simulations on the prediction of complex-valued coloured and nonlinear input signals show the gradient adaptive amplitude, CAANGD, outperforming the standard CNGD algorithm.

  1. Infrared moving point target detection based on spatial-temporal local contrast filter

    NASA Astrophysics Data System (ADS)

    Deng, Lizhen; Zhu, Hu; Tao, Chao; Wei, Yantao

    2016-05-01

    Infrared moving point target detection is a challenging task. In this paper, we define a novel spatial local contrast (SLC) and a novel temporal local contrast (TLC) to enhance the target's contrast. Based on the defined spatial local contrast and temporal local contrast, we propose a simple but powerful spatial-temporal local contrast filter (STLCF) to detect moving point target from infrared image sequences. In order to verify the performance of spatial-temporal local contrast filter on detecting moving point target, different detection methods are used to detect the target from several infrared image sequences for comparison. The experimental results show that the proposed spatial-temporal local contrast filter has great superiority in moving point target detection.

  2. Adaptive Filtering for Large Space Structures: A Closed-Form Solution

    NASA Technical Reports Server (NTRS)

    Rauch, H. E.; Schaechter, D. B.

    1985-01-01

    In a previous paper Schaechter proposes using an extended Kalman filter to estimate adaptively the (slowly varying) frequencies and damping ratios of a large space structure. The time varying gains for estimating the frequencies and damping ratios can be determined in closed form so it is not necessary to integrate the matrix Riccati equations. After certain approximations, the time varying adaptive gain can be written as the product of a constant matrix times a matrix derived from the components of the estimated state vector. This is an important savings of computer resources and allows the adaptive filter to be implemented with approximately the same effort as the nonadaptive filter. The success of this new approach for adaptive filtering was demonstrated using synthetic data from a two mode system.

  3. Impulse radar imaging for dispersive concrete using inverse adaptive filtering techniques

    SciTech Connect

    Arellano, J.; Hernandez, J.M.; Brase, J.

    1993-05-01

    This publication addresses applications of a delayed inverse model adaptive filter for modeled data obtained from short-pulse radar reflectometry. To determine the integrity of concrete, a digital adaptive filter was used, which allows compensation of dispersion and clutter generated by the concrete. A standard set of weights produced by an adaptive filter are used on modeled data to obtain the inverse-impulse response of the concrete. The data for this report include: Multiple target, nondispersive data; single-target, variable-size dispersive data; single-target, variable-depth dispersive data; and single-target, variable transmitted-pulse-width dispersive data. Results of this simulation indicate that data generated by the weights of the adaptive filter, coupled with a two-dimensional, synthetic-aperture focusing technique, successfully generate two-dimensional images of targets within the concrete from modeled data.

  4. Extraction of a Weak Co-Channel Interfering Communication Signal Using Adaptive Filtering

    DTIC Science & Technology

    2015-03-01

    unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Conventional separation techniques such as filters cannot be used in a scenario where a...to achieve a reasonable error rate. 14. SUBJECT TERMS Adaptive filter, signal separation 15. NUMBER OF PAGES 71 16. PRICE CODE 17. SECURITY...INTENTIONALLY LEFT BLANK iv ABSTRACT Conventional separation techniques such as filters cannot be used in a scenario where a weak signal is embedded

  5. Microwave Photonic Filters for Interference Cancellation and Adaptive Beamforming

    NASA Astrophysics Data System (ADS)

    Chang, John

    Wireless communication has experienced an explosion of growth, especially in the past half- decade, due to the ubiquity of wireless devices, such as tablets, WiFi-enabled devices, and especially smartphones. Proliferation of smartphones with powerful processors and graphic chips have given an increasing amount of people the ability to access anything from anywhere. Unfortunately, this ease of access has greatly increased mobile wireless bandwidth and have begun to stress carrier networks and spectra. Wireless interference cancellation will play a big role alongside the popularity of wire- less communication. In this thesis, we will investigate optical signal processing methods for wireless interference cancellation methods. Optics provide the perfect backdrop for interference cancellation. Mobile wireless data is already aggregated and transported through fiber backhaul networks in practice. By sandwiching the signal processing stage between the receiver and the fiber backhaul, processing can easily be done locally in one location. Further, optics offers the advantages of being instantaneously broadband and size, weight, and power (SWAP). We are primarily concerned with two methods for interference cancellation, based on microwave photonic filters, in this thesis. The first application is for a co-channel situation, in which a transmitter and receiver are co-located and transmitting at the same frequency. A novel analog optical technique extended for multipath interference cancellation of broadband signals is proposed and experimentally demonstrated in this thesis. The proposed architecture was able to achieve a maximum of 40 dB of cancellation over 200 MHz and 50 dB of cancellation over 10 MHz. The broadband nature of the cancellation, along with its depth, demonstrates both the precision of the optical components and the validity of the architecture. Next, we are interested in a scenario with dynamically changing interference, which requires an adaptive photonic

  6. Adaptive box filters for removal of random noise from digital images

    USGS Publications Warehouse

    Eliason, E.M.; McEwen, A.S.

    1990-01-01

    We have developed adaptive box-filtering algorithms to (1) remove random bit errors (pixel values with no relation to the image scene) and (2) smooth noisy data (pixels related to the image scene but with an additive or multiplicative component of noise). For both procedures, we use the standard deviation (??) of those pixels within a local box surrounding each pixel, hence they are adaptive filters. This technique effectively reduces speckle in radar images without eliminating fine details. -from Authors

  7. Feasability of adaptive vibration control of a space truss using modal filters and a neural network

    NASA Astrophysics Data System (ADS)

    Bosse, Albert; Fisher, Shalom; Shelley, Stuart J.; Lim, Tae W.

    1996-05-01

    An adaptive algorithm is proposed for the control of a large space truss structure which uses modal filters for independent modal space control and a simple neural network that provides an on-line system identification capability. The modal filters are computed off-line using measured frequency response functions and estimated pole values for the modes of interest, and provide a coordinate transformation that yields modal coordinates from physical response measurements. The time histories for the modal coordinates are then processed in real time by the neural network, which models a single degree of freedom system transfer function and provides estimates of modal parameters, namely, frequency, damping ratio and modal gain. The modal filters are used to implement independent modal space control on a 3.74 meter space truss using a single reaction-mass actuator and 32 accelerometers. The performance of the modal filter based controller is compared to that of a local rate feedback controller using the same actuator. The applicability of the adaptive filter to adaptive control is demonstrated by real time estimation of the modal parameters of the truss with and without control. Because the modal filter control gain can be adjusted to maintain a desired closed loop damping ratio, which is tracked by the adaptive filter, adaptive control of individual modes in a time-varying system is possible. The goal of this work is to field a control system which can maintain desired closed loop damping ratios for mode frequency variations as high as 10%.

  8. CHOUGH: spatially filtered Shack-Hartmann wave-front sensor for HOAO

    NASA Astrophysics Data System (ADS)

    Hölck, Daniel; Bharmal, Nazim Ali; Dubbeldam, Cornelis M.; Myers, Richard M.

    2016-07-01

    The CANARY-Hosted Upgrade for High-Order Adaptive Optics (CHOUGH), is a narrow-field of view High- Order Single Conjugate on-sky AO demonstrator to be placed on the 4.2m WHT telescope. It aims to produce a Strehl ratio greater than 0.5 in the visible region of the spectrum (> 640nm). A High-Order wave-front sensor (HOWFS) is a central piece of the experiment; it is a Shack-Hartmann with a sampling of 31x31 subapertures across the pupil. A variable aperture spatial filter designed to reduce aliasing for high-spatial frequencies, located at a focal plane preceding the lenslet array. The HOWFS has a quad-cell configuration on the detector with a one-pixel guard ring and 48μm subaperture. The detector is a NuVu EMCCD camera, 24μm pixel size, operating at >500Hz. The lenslet array, collimator and relay are commercial off-the-shelf. This was technically challenging due to the small size of the pupil, 2.3mm, and the small optics involved in the design.

  9. A neural network-based optimal spatial filter design method for motor imagery classification.

    PubMed

    Yuksel, Ayhan; Olmez, Tamer

    2015-01-01

    In this study, a novel spatial filter design method is introduced. Spatial filtering is an important processing step for feature extraction in motor imagery-based brain-computer interfaces. This paper introduces a new motor imagery signal classification method combined with spatial filter optimization. We simultaneously train the spatial filter and the classifier using a neural network approach. The proposed spatial filter network (SFN) is composed of two layers: a spatial filtering layer and a classifier layer. These two layers are linked to each other with non-linear mapping functions. The proposed method addresses two shortcomings of the common spatial patterns (CSP) algorithm. First, CSP aims to maximize the between-classes variance while ignoring the minimization of within-classes variances. Consequently, the features obtained using the CSP method may have large within-classes variances. Second, the maximizing optimization function of CSP increases the classification accuracy indirectly because an independent classifier is used after the CSP method. With SFN, we aimed to maximize the between-classes variance while minimizing within-classes variances and simultaneously optimizing the spatial filter and the classifier. To classify motor imagery EEG signals, we modified the well-known feed-forward structure and derived forward and backward equations that correspond to the proposed structure. We tested our algorithm on simple toy data. Then, we compared the SFN with conventional CSP and its multi-class version, called one-versus-rest CSP, on two data sets from BCI competition III. The evaluation results demonstrate that SFN is a good alternative for classifying motor imagery EEG signals with increased classification accuracy.

  10. Adaptive high temperature superconducting filters for interference rejection

    SciTech Connect

    Raihn, K.F.; Fenzi, N.O.; Hey-Shipton, G.L.; Saito, E.R.; Loung, P.V.; Aidnik, D.L.

    1996-07-01

    An optically switched high temperature superconducting (HTS) band-reject filter bank is presented. Fast low loss switching of high quality (Q) factor HTS filter elements enables digital selection of arbitrary pass-bands and stop-bands. Patterned pieces of GaAs and silicon are used in the manufacture of the photosensitive switches. Fiber optic cabling is used to transfer the optical energy from an LED to the switch. The fiber optic cable minimizes the thermal loading of the filter package and de-couples the switch`s power source from the RF circuit. This paper will discuss the development of a computer-controlled HTS bank of optically switchable, narrow band, high Q bandstop filters which incorporates a cryocooler to maintain the 77 K operating temperature of the HTS microwave circuit.

  11. A new adaptive method to filter terrestrial laser scanner point clouds using morphological filters and spectral information to conserve surface micro-topography

    NASA Astrophysics Data System (ADS)

    Rodríguez-Caballero, E.; Afana, A.; Chamizo, S.; Solé-Benet, A.; Canton, Y.

    2016-07-01

    Terrestrial laser scanning (TLS), widely known as light detection and ranging (LiDAR) technology, is increasingly used to provide highly detailed digital terrain models (DTM) with millimetric precision and accuracy. In order to generate a DTM, TLS data has to be filtered from undesired spurious objects, such as vegetation, artificial structures, etc., Early filtering techniques, successfully applied to airborne laser scanning (ALS), fail when applied to TLS data, as they heavily smooth the terrain surface and do not retain their real morphology. In this article, we present a new methodology for filtering TLS data based on the geometric and radiometric properties of the scanned surfaces. This methodology was built on previous morphological filters that select the minimum point height within a sliding window as the real surface. However, contrary to those methods, which use a fixed window size, the new methodology operates under different spatial scales represented by different window sizes, and can be adapted to different types and sizes of plants. This methodology has been applied to two study areas of differing vegetation type and density. The accuracy of the final DTMs was improved by ∼30% under dense canopy plants and over ∼40% on the open spaces between plants, where other methodologies drastically underestimated the real surface heights. This resulted in more accurate representation of the soil surface and microtopography than up-to-date techniques, eventually having strong implications in hydrological and geomorphological studies.

  12. Adaptive Filter Design Using Type-2 Fuzzy Cerebellar Model Articulation Controller.

    PubMed

    Lin, Chih-Min; Yang, Ming-Shu; Chao, Fei; Hu, Xiao-Min; Zhang, Jun

    2016-10-01

    This paper aims to propose an efficient network and applies it as an adaptive filter for the signal processing problems. An adaptive filter is proposed using a novel interval type-2 fuzzy cerebellar model articulation controller (T2FCMAC). The T2FCMAC realizes an interval type-2 fuzzy logic system based on the structure of the CMAC. Due to the better ability of handling uncertainties, type-2 fuzzy sets can solve some complicated problems with outstanding effectiveness than type-1 fuzzy sets. In addition, the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so that the convergence of the filtering error can be guaranteed. In order to demonstrate the performance of the proposed adaptive T2FCMAC filter, it is tested in signal processing applications, including a nonlinear channel equalization system, a time-varying channel equalization system, and an adaptive noise cancellation system. The advantages of the proposed filter over the other adaptive filters are verified through simulations.

  13. Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter

    NASA Astrophysics Data System (ADS)

    Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio

    2012-01-01

    Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.

  14. Adaptive two-pass median filter based on support vector machines for image restoration.

    PubMed

    Lin, Tzu-Chao; Yu, Pao-Ta

    2004-02-01

    In this letter, a novel adaptive filter, the adaptive two-pass median (ATM) filter based on support vector machines (SVMs), is proposed to preserve more image details while effectively suppressing impulse noise for image restoration. The proposed filter is composed of a noise decision maker and two-pass median filters. Our new approach basically uses an SVM impulse detector to judge whether the input pixel is noise. If a pixel is detected as a corrupted pixel, the noise-free reduction median filter will be triggered to replace it. Otherwise, it remains unchanged. Then, to improve the quality of the restored image, a decision impulse filter is put to work in the second-pass filtering procedure. As for the noise suppressing both fixed-valued and random-valued impulses without degrading the quality of the fine details, the results of our extensive experiments demonstrate that the proposed filter outperforms earlier median-based filters in the literature. Our new filter also provides excellent robustness at various percentages of impulse noise.

  15. Spatially adaptive bases in wavelet-based coding of semi-regular meshes

    NASA Astrophysics Data System (ADS)

    Denis, Leon; Florea, Ruxandra; Munteanu, Adrian; Schelkens, Peter

    2010-05-01

    In this paper we present a wavelet-based coding approach for semi-regular meshes, which spatially adapts the employed wavelet basis in the wavelet transformation of the mesh. The spatially-adaptive nature of the transform requires additional information to be stored in the bit-stream in order to allow the reconstruction of the transformed mesh at the decoder side. In order to limit this overhead, the mesh is first segmented into regions of approximately equal size. For each spatial region, a predictor is selected in a rate-distortion optimal manner by using a Lagrangian rate-distortion optimization technique. When compared against the classical wavelet transform employing the butterfly subdivision filter, experiments reveal that the proposed spatially-adaptive wavelet transform significantly decreases the energy of the wavelet coefficients for all subbands. Preliminary results show also that employing the proposed transform for the lowest-resolution subband systematically yields improved compression performance at low-to-medium bit-rates. For the Venus and Rabbit test models the compression improvements add up to 1.47 dB and 0.95 dB, respectively.

  16. Bayesian approaches for adaptive spatial sampling : an example application.

    SciTech Connect

    Johnson, R. L.; LePoire, D.; Huttenga, A.; Quinn, J.

    2005-05-25

    BAASS (Bayesian Approaches for Adaptive Spatial Sampling) is a set of computational routines developed to support the design and deployment of spatial sampling programs for delineating contamination footprints, such as those that might result from the accidental or intentional environmental release of radionuclides. BAASS presumes the existence of real-time measurement technologies that provide information quickly enough to affect the progress of data collection. This technical memorandum describes the application of BAASS to a simple example, compares the performance of a BAASS-based program with that of a traditional gridded program, and explores the significance of several of the underlying assumptions required by BAASS. These assumptions include the range of spatial autocorrelation present, the value of prior information, the confidence level required for decision making, and ''inside-out'' versus ''outside-in'' sampling strategies. In the context of the example, adaptive sampling combined with prior information significantly reduced the number of samples required to delineate the contamination footprint.

  17. Time-sequenced adaptive filtering using a modified P-vector algorithm

    NASA Astrophysics Data System (ADS)

    Williams, Robert L.

    1996-10-01

    An adaptive algorithm and two stage filter structure were developed for adaptive filtering of certain classes of signals that exhibit cyclostationary characteristics. The new modified P-vector algorithm (mPa) eliminates the need for a separate desired signal which is typically required by conventional adaptive algorithms. It is then implemented in a time-sequenced manner to counteract the nonstationary characteristics typically found in certain radar and bioelectromagnetic signals. Initial algorithm testing is performed on evoked responses generated by the visual cortex of the human brain with the objective, ultimately, to transition the results to radar signals. Each sample of the evoked response is modeled as the sum of three uncorrelated signal components, a time-varying mean (M), a noise component (N), and a random jitter component (Q). A two stage single channel time-sequenced adaptive filter structure was developed which improves convergence characteristics by de coupling the time-varying mean component from the `Q' and noise components in the first stage. The EEG statistics must be known a priori and are adaptively estimated from the pre stimulus data. The performance of the two stage mPa time-sequenced adaptive filter approaches the performance for the ideal case of an adaptive filter having a noiseless desired response.

  18. Adaptive Kalman filtering for real-time mapping of the visual field.

    PubMed

    Ward, B Douglas; Janik, John; Mazaheri, Yousef; Ma, Yan; DeYoe, Edgar A

    2012-02-15

    This paper demonstrates the feasibility of real-time mapping of the visual field for clinical applications. Specifically, three aspects of this problem were considered: (1) experimental design, (2) statistical analysis, and (3) display of results. Proper experimental design is essential to achieving a successful outcome, particularly for real-time applications. A random-block experimental design was shown to have less sensitivity to measurement noise, as well as greater robustness to error in modeling of the hemodynamic impulse response function (IRF) and greater flexibility than common alternatives. In addition, random encoding of the visual field allows for the detection of voxels that are responsive to multiple, not necessarily contiguous, regions of the visual field. Due to its recursive nature, the Kalman filter is ideally suited for real-time statistical analysis of visual field mapping data. An important feature of the Kalman filter is that it can be used for nonstationary time series analysis. The capability of the Kalman filter to adapt, in real time, to abrupt changes in the baseline arising from subject motion inside the scanner and other external system disturbances is important for the success of clinical applications. The clinician needs real-time information to evaluate the success or failure of the imaging run and to decide whether to extend, modify, or terminate the run. Accordingly, the analytical software provides real-time displays of (1) brain activation maps for each stimulus segment, (2) voxel-wise spatial tuning profiles, (3) time plots of the variability of response parameters, and (4) time plots of activated volume.

  19. Adaptive Low Dissipative High Order Filter Methods for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, Bjoern

    2004-01-01

    Adaptive low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous MHD flows has been constructed. Several variants of the filter approach that cater to different flow types are proposed. These filters provide a natural and efficient way for the minimization of the divergence of the magnetic field [divergence of B] numerical error in the sense that no standard divergence cleaning is required. For certain 2-D MHD test problems, divergence free preservation of the magnetic fields of these filter schemes has been achieved.

  20. Adaptive box filters for removal of random noise from digital images

    NASA Technical Reports Server (NTRS)

    Eliason, Eric M.; Mcewen, Alfred S.

    1990-01-01

    Adaptive box-filtering algorithms to remove random bit errors and to smooth noisy data have been developed. For both procedures, the standard deviation of those pixels within a local box surrounding each pixel is used. A series of two or three filters with decreasing box sizes can be run to clean up extremely noisy images and to remove bit errors near sharp edges. The second filter, for noise smoothing, is similar to the 'sigma filter' of Lee (1983). The technique effectively reduces speckle in radar images without eliminating fine details.

  1. Design of a composite filter realizable on practical spatial light modulators

    NASA Technical Reports Server (NTRS)

    Rajan, P. K.; Ramakrishnan, Ramachandran

    1994-01-01

    Hybrid optical correlator systems use two spatial light modulators (SLM's), one at the input plane and the other at the filter plane. Currently available SLM's such as the deformable mirror device (DMD) and liquid crystal television (LCTV) SLM's exhibit arbitrarily constrained operating characteristics. The pattern recognition filters designed with the assumption that the SLM's have ideal operating characteristic may not behave as expected when implemented on the DMD or LCTV SLM's. Therefore it is necessary to incorporate the SLM constraints in the design of the filters. In this report, an iterative method is developed for the design of an unconstrained minimum average correlation energy (MACE) filter. Then using this algorithm a new approach for the design of a SLM constrained distortion invariant filter in the presence of input SLM is developed. Two different optimization algorithms are used to maximize the objective function during filter synthesis, one based on the simplex method and the other based on the Hooke and Jeeves method. Also, the simulated annealing based filter design algorithm proposed by Khan and Rajan is refined and improved. The performance of the filter is evaluated in terms of its recognition/discrimination capabilities using computer simulations and the results are compared with a simulated annealing optimization based MACE filter. The filters are designed for different LCTV SLM's operating characteristics and the correlation responses are compared. The distortion tolerance and the false class image discrimination qualities of the filter are comparable to those of the simulated annealing based filter but the new filter design takes about 1/6 of the computer time taken by the simulated annealing filter design.

  2. Block-adaptive filtering and its application to seismic-event detection

    SciTech Connect

    Clark, G.A.

    1981-04-01

    Block digital filtering involves the calculation of a block or finite set of filter output samples from a block of input samples. The motivation for block processing arises from computational advantages of the technique. Block filters take good advantage of parallel processing architectures, which are becoming more and more attractive with the advent of very large scale integrated (VLSI) circuits. This thesis extends the block technique to Wiener and adaptive filters, both of which are statistical filters. The key ingredient to this extension turns out to be the definition of a new performance index, block mean square error (BMSE), which combines the well known sum square error (SSE) and mean square error (MSE). A block adaptive filtering procedure is derived in which the filter coefficients are adjusted once per each output block in accordance with a generalized block least mean-square (BLMS) algorithm. Convergence properties of the BLMS algorithm are studied, including conditions for guaranteed convergence, convergence speed, and convergence accuracy. Simulation examples are given for clarity. Convergence properties of the BLMS and LMS algorithms are analyzed and compared. They are shown to be analogous, and under the proper circumstances, equivalent. The block adaptive filter was applied to the problem of detecting small seismic events in microseismic background noise. The predictor outperformed the world-wide standardized seismograph network (WWSSN) seismometers in improving signal-to-noise ratio (SNR).

  3. Real-time 3D adaptive filtering for portable imaging systems

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often not able to run with sufficient performance on a portable platform. In recent years, advanced multicore DSPs have been introduced that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms like 3D adaptive filtering, improving the image quality of portable medical imaging devices. In this study, the performance of a 3D adaptive filtering algorithm on a digital signal processor (DSP) is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec.

  4. Low-Complexity Lossless Compression of Hyperspectral Imagery via Adaptive Filtering

    NASA Technical Reports Server (NTRS)

    Klimesh, M.

    2005-01-01

    A low-complexity, adaptive predictive technique for lossless compression of hyperspectral data is presented. The technique relies on the sign algorithm from the repertoire of adaptive filtering. The compression effectiveness obtained with the technique is competitive with that of the best of previously described techniques with similar complexity.

  5. Learning Motivation and Adaptive Video Caption Filtering for EFL Learners Using Handheld Devices

    ERIC Educational Resources Information Center

    Hsu, Ching-Kun

    2015-01-01

    The aim of this study was to provide adaptive assistance to improve the listening comprehension of eleventh grade students. This study developed a video-based language learning system for handheld devices, using three levels of caption filtering adapted to student needs. Elementary level captioning excluded 220 English sight words (see Section 1…

  6. Spatial filtering velocimetry for real-time out-of-plane displacement measurements

    NASA Astrophysics Data System (ADS)

    Olesen, A. S.; Yura, H. T.; Jakobsen, M. L.

    2016-04-01

    We probe the dynamics of objective laser speckles as the axial distance between the object and the observation plane changes. With the purpose of measuring out-of-plane motion in real time, we apply optical spatial filtering velocimetry to the speckle dynamics. To achieve this, a rotationally symmetric spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion. The selectivity of the sensor relates directly to the uncertainty on sensor measurements. The selectivity most be derived from a temporal power spectrum of the photocurrent produced by this filter. This main contribution of this paper is a model, which describe the selectivity of the sensor, applied to speckle dynamics generated by an object moving out-of-plane. To motivate our interest in these filters we also present an all optical element which implements the spatial filter and experimentally demonstrate the ability of the technology to obtain displacement measurements of a vibrating object in real-time.

  7. Study on GPS attitude determination system aided INS using adaptive Kalman filter

    NASA Astrophysics Data System (ADS)

    Bian, Hongwei; Jin, Zhihua; Tian, Weifeng

    2005-10-01

    A marine INS/GPS (inertial navigation system/global positioning system) adaptive navigation system is presented in this paper. The GPS with two antennae providing vessel attitude is selected as the auxiliary system to fuse with INS. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The conventional Kalman filter (CKF) assumes that the statistics of the noise of each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However, the GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce a fuzzy logic control method into innovation-based adaptive estimation Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However, how to design the fuzzy logic controller is a very complicated problem, which is still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAE-AKF algorithm theoretically in detail, the approach is tested in the developed INS/GPS integrated marine navigation system. Real field test results show that the adaptive Kalman filter outperforms the CKF with higher accuracy and robustness. It is demonstrated that this proposed approach is a valid solution for the unknown changing measurement noise existing in the Kalman filter.

  8. Signal-to-noise ratio adaptive post-filtering method for intelligibility enhancement of telephone speech.

    PubMed

    Jokinen, Emma; Yrttiaho, Santeri; Pulakka, Hannu; Vainio, Martti; Alku, Paavo

    2012-12-01

    Post-filtering can be utilized to improve the quality and intelligibility of telephone speech. Previous studies have shown that energy reallocation with a high-pass type filter works effectively in improving the intelligibility of speech in difficult noise conditions. The present study introduces a signal-to-noise ratio adaptive post-filtering method that utilizes energy reallocation to transfer energy from the first formant to higher frequencies. The proposed method adapts to the level of the background noise so that, in favorable noise conditions, the post-filter has a flat frequency response and the effect of the post-filtering is increased as the level of the ambient noise increases. The performance of the proposed method is compared with a similar post-filtering algorithm and unprocessed speech in subjective listening tests which evaluate both intelligibility and listener preference. The results indicate that both of the post-filtering methods maintain the quality of speech in negligible noise conditions and are able to provide intelligibility improvement over unprocessed speech in adverse noise conditions. Furthermore, the proposed post-filtering algorithm performs better than the other post-filtering method under evaluation in moderate to difficult noise conditions, where intelligibility improvement is mostly required.

  9. Fourier-based layout for grating function structure in spatial filtering velocimetry

    NASA Astrophysics Data System (ADS)

    Schaeper, M.; Damaschke, N.

    2017-04-01

    Optical spatial filtering velocimetry (SFV) has been used for several decades for velocity measurements. Since the 1990s, charge-coupled device (CCD) line sensors have been used for the realization of spatial filtering systems by the inherent implementation of grating functions using a specialized clock regime. Another approach is the realization of optical SFV systems by utilizing array detectors (CCD or CMOS) with software-implemented grating functions, especially for two-dimensional velocity measurements. Choosing a suitable grating function for the observed scene can be an obstacle when using SFV, and relies on the experience of the user. With this in mind, this contribution presents an overview of how to assemble an optical spatial filtering system. After a general description of signal generation in spatial filtering systems, a straightforward approach to identifying matching harmonic grating functions by using Fourier analysis is presented. This approach has particular advantages for observed scenes with a periodically structured pattern, which were problematic when using SFV in connection with a fixed grating function. Matching periods of harmonic grating functions can be found as peaks in the spectral density distribution of the imaged scene. Once a matching grating function has been found, the signal processing can be made with SFV, which is simpler than calculating the cross-correlation of full frames and is suitable for real-time application. Criteria for the layout of an array-detector-based spatial filtering velocimeter are then discussed.

  10. An Adaptive Kalman Filter using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  11. An Adaptive Kalman Filter Using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  12. Radiotherapy Adapted to Spatial and Temporal Variability in Tumor Hypoxia

    SciTech Connect

    Sovik, Aste; Malinen, Eirik . E-mail: emalinen@fys.uio.no; Skogmo, Hege K.; Bentzen, Soren M.; Bruland, Oyvind S.; Olsen, Dag Rune

    2007-08-01

    Purpose: To explore the feasibility and clinical potential of adapting radiotherapy to temporal and spatial variations in tumor oxygenation. Methods and Materials: Repeated dynamic contrast enhanced magnetic resonance (DCEMR) images were taken of a canine sarcoma during the course of fractionated radiation therapy. The tumor contrast enhancement was assumed to represent the oxygen distribution. The IMRT plans were retrospectively adapted to the DCEMR images by employing tumor dose redistribution. Optimized nonuniform tumor dose distributions were calculated and compared with a uniform dose distribution delivering the same integral dose to the tumor. Clinical outcome was estimated from tumor control probability (TCP) and normal tissue complication probability (NTCP) modeling. Results: The biologically adapted treatment was found to give a substantial increase in TCP compared with conventional radiotherapy, even when only pretreatment images were used as basis for the treatment planning. The TCP was further increased by repeated replanning during the course of treatment, and replanning twice a week was found to give near optimal TCP. Random errors in patient positioning were found to give a small decrease in TCP, whereas systematic errors were found to reduce TCP substantially. NTCP for the adapted treatment was similar to or lower than for the conventional treatment, both for parallel and serial normal tissue structures. Conclusion: Biologically adapted radiotherapy is estimated to improve treatment outcome of tumors having spatial and temporal variations in radiosensitivity.

  13. Accurate mask-based spatially regularized correlation filter for visual tracking

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodong; Xu, Xinping

    2017-01-01

    Recently, discriminative correlation filter (DCF)-based trackers have achieved extremely successful results in many competitions and benchmarks. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier. However, this assumption will produce unwanted boundary effects, which severely degrade the tracking performance. Correlation filters with limited boundaries and spatially regularized DCFs were proposed to reduce boundary effects. However, their methods used the fixed mask or predesigned weights function, respectively, which was unsuitable for large appearance variation. We propose an accurate mask-based spatially regularized correlation filter for visual tracking. Our augmented objective can reduce the boundary effect even in large appearance variation. In our algorithm, the masking matrix is converted into the regularized function that acts on the correlation filter in frequency domain, which makes the algorithm fast convergence. Our online tracking algorithm performs favorably against state-of-the-art trackers on OTB-2015 Benchmark in terms of efficiency, accuracy, and robustness.

  14. The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish.

    PubMed

    Stagaman, Keaton; Burns, Adam R; Guillemin, Karen; Bohannan, Brendan Jm

    2017-03-17

    All animals live in intimate association with communities of microbes, collectively referred to as their microbiota. Certain host traits can influence which microbial taxa comprise the microbiota. One potentially important trait in vertebrate animals is the adaptive immune system, which has been hypothesized to act as an ecological filter, promoting the presence of some microbial taxa over others. Here we surveyed the intestinal microbiota of 68 wild-type zebrafish, with functional adaptive immunity, and 61 rag1(-) zebrafish, lacking functional B- and T-cell receptors, to test the role of adaptive immunity as an ecological filter on the intestinal microbiota. In addition, we tested the robustness of adaptive immunity's filtering effects to host-host interaction by comparing the microbiota of fish populations segregated by genotype to those containing both genotypes. The presence of adaptive immunity individualized the gut microbiota and decreased the contributions of neutral processes to gut microbiota assembly. Although mixing genotypes led to increased phylogenetic diversity in each, there was no significant effect of adaptive immunity on gut microbiota composition in either housing condition. Interestingly, the most robust effect on microbiota composition was co-housing within a tank. In all, these results suggest that adaptive immunity has a role as an ecological filter of the zebrafish gut microbiota, but it can be overwhelmed by other factors, including transmission of microbes among hosts.The ISME Journal advance online publication, 17 March 2017; doi:10.1038/ismej.2017.28.

  15. Signatures of light-beam spatial filtering in a three-dimensional photonic crystal

    SciTech Connect

    Maigyte, L.; Trull, J.; Cojocaru, C.; Gertus, T.; Peckus, M.; Sirutkaitis, V.; Staliunas, K.

    2010-10-15

    We report experimental evidence of spatial filtering of light beams by three-dimensional, low-refraction-index-contrast photonic crystals. The photonic crystals were fabricated in a glass bulk, where the refraction index has been periodically modulated using tightly focused femtosecond laser pulses. We observe filtered areas in the angular distributions of the transmitted radiation, and we interpret the observations by theoretical and numerical study of light propagation in index-modulated material in paraxial model.

  16. Temporal Correlation-Based Spatial Filtering of Rician Noise for Functional MRIs

    NASA Astrophysics Data System (ADS)

    Amir., A. Khaliq; M. Qureshi, I.; Jawad., A. Shah

    2012-01-01

    A novel correlation-based filter is presented for de-noising functional magnetic resonance imaging (fMRI) data. Temporal correlation-based exponential weights are defined for spatial smoothing of the data, with bias reduction using estimated noise variance. The proposed scheme is tested on simulated and real fMRI data. Finally, the results are compared with conventional filters. The method is found to be effectively suppressing the Rician noise in fMRI data, while improving the SNR.

  17. Stent enhancement in digital x-ray fluoroscopy using an adaptive feature enhancement filter

    NASA Astrophysics Data System (ADS)

    Jiang, Yuhao; Zachary, Josey

    2016-03-01

    Fluoroscopic images belong to the classes of low contrast and high noise. Simply lowering radiation dose will render the images unreadable. Feature enhancement filters can reduce patient dose by acquiring images at low dose settings and then digitally restoring them to the original quality. In this study, a stent contrast enhancement filter is developed to selectively improve the contrast of stent contour without dramatically boosting the image noise including quantum noise and clinical background noise. Gabor directional filter banks are implemented to detect the edges and orientations of the stent. A high orientation resolution of 9° is used. To optimize the use of the information obtained from Gabor filters, a computerized Monte Carlo simulation followed by ROC study is used to find the best nonlinear operator. The next stage of filtering process is to extract symmetrical parts in the stent. The global and local symmetry measures are used. The information gathered from previous two filter stages are used to generate a stent contour map. The contour map is then scaled and added back to the original image to get a contrast enhanced stent image. We also apply a spatio-temporal channelized Hotelling observer model and other numerical measures to characterize the response of the filters and contour map to optimize the selections of parameters for image quality. The results are compared to those filtered by an adaptive unsharp masking filter previously developed. It is shown that stent enhancement filter can effectively improve the stent detection and differentiation in the interventional fluoroscopy.

  18. Multi-Antenna Data Collector for Smart Metering Networks with Integrated Source Separation by Spatial Filtering

    NASA Astrophysics Data System (ADS)

    Quednau, Philipp; Trommer, Ralph; Schmidt, Lorenz-Peter

    2016-03-01

    Wireless transmission systems in smart metering networks share the advantage of lower installation costs due to the expandability of separate infrastructure but suffer from transmission problems. In this paper the issue of interference of wireless transmitted smart meter data with third party systems and data from other meters is investigated and an approach for solving the problem is presented. A multi-channel wireless m-bus receiver was developed to separate the desired data from unwanted interferers by spatial filtering. The according algorithms are presented and the influence of different antenna types on the spatial filtering is investigated. The performance of the spatial filtering is evaluated by extensive measurements in a realistic surrounding with several hundreds of active wireless m-bus transponders. These measurements correspond to the future environment for data-collectors as they took place in rural and urban areas with smart gas meters equipped with wireless m-bus transponders installed in almost all surrounding buildings.

  19. NIF Inert Gas/Vacuum Management Prestart Review Phase 3 - Permit Spatial Filter Vacuum

    SciTech Connect

    Williams, J; Beavers, T; Bryan, S; Hermes, G; Patton, H

    2001-03-01

    A Management Prestart Review (MPR) for the National Ignition Facility (NIF) vacuum testing of spatial filters, the Cavity Spatial Filter (CSF) and the Transport Spatial Filter (TSF), was conducted during March 2001. The review was performed to determine the readiness of the Beamline Infrastucture System (BIS) team and the Integration Management and Installation (IMI) contractor to start the vacuum testing of the components and assemblies that constitute the four CSF clusters and four TSF clusters in the NIF laser. This review assures that appropriate engineering, planning and management is in place to start this testing. Completion and acceptance of this report satisfies the LLNL requirement for MPRs to be conducted whenever a significant new risk is introduced into a project and is an essential part of the ISM work authorization process.

  20. Spatial filter with volume gratings for high-peak-power multistage laser amplifiers

    NASA Astrophysics Data System (ADS)

    Tan, Yi-zhou; Yang, Yi-sheng; Zheng, Guang-wei; Shen, Ben-jian; Pan, Heng-yue; Liu, Li

    2010-08-01

    The regular spatial filters comprised of lens and pinhole are essential component in high power laser systems, such as lasers for inertial confinement fusion, nonlinear optical technology and directed-energy weapon. On the other hand the pinhole is treated as a bottleneck of high power laser due to harmful plasma created by the focusing beam. In this paper we present a spatial filter based on angular selectivity of Bragg diffraction grating to avoid the harmful focusing effect in the traditional pinhole filter. A spatial filter consisted of volume phase gratings in two-pass amplifier cavity were reported. Two-dimensional filter was proposed by using single Pi-phase-shifted Bragg grating, numerical simulation results shown that its angular spectrum bandwidth can be less than 160urad. The angular selectivity of photo-thermorefractive glass and RUGATE film filters, construction stability, thermal stability and the effects of misalignments of gratings on the diffraction efficiencies under high-pulse-energy laser operating condition are discussed.

  1. Adaptive Kalman filtering methods for tracking GPS signals in high noise/high dynamic environments

    NASA Astrophysics Data System (ADS)

    Zuo, Qiyao; Yuan, Hong; Lin, Baojun

    2007-11-01

    GPS C/A signal tracking algorithms have been developed based on adaptive Kalman filtering theory. In the research, an adaptive Kalman filter is used to substitute for standard tracking loop filters. The goal is to improve estimation accuracy and tracking stabilization in high noise and high dynamic environments. The linear dynamics model and the measurements model are designed to estimate code phase, carrier phase, Doppler shift, and rate of change of Doppler shift. Two adaptive algorithms are applied to improve robustness and adaptive faculty of the tracking, one is Sage adaptive filtering approach and the other is strong tracking method. Both the new algorithms and the conventional tracking loop have been tested by using simulation data. In the simulation experiment, the highest jerk of the receiver is set to 10G m/s 3 with the lowest C/No 30dBHz. The results indicate that the Kalman filtering algorithms are more robust than the standard tracking loop, and performance of tracking loop using the algorithms is satisfactory in such extremely adverse circumstances.

  2. Chi-squared smoothed adaptive particle-filtering based prognosis

    NASA Astrophysics Data System (ADS)

    Ley, Christopher P.; Orchard, Marcos E.

    2017-01-01

    This paper presents a novel form of selecting the likelihood function of the standard sequential importance sampling/re-sampling particle filter (SIR-PF) with a combination of sliding window smoothing and chi-square statistic weighting, so as to: (a) increase the rate of convergence of a flexible state model with artificial evolution for online parameter learning (b) improve the performance of a particle-filter based prognosis algorithm. This is applied and tested with real data from oil total base number (TBN) measurements from three haul trucks. The oil data has high measurement uncertainty and an unknown phenomenological state model. Performance of the proposed algorithm is benchmarked against the standard form of SIR-PF estimation which utilises the Normal (Gaussian) likelihood function. Both implementations utilise the same particle filter based prognosis algorithm so as to provide a common comparison. A sensitivity analysis is also performed to further explore the effects of the combination of sliding window smoothing and chi-square statistic weighting to the SIR-PF.

  3. A particle filtering approach for spatial arrival time tracking in ocean acoustics.

    PubMed

    Jain, Rashi; Michalopoulou, Zoi-Heleni

    2011-06-01

    The focus of this work is on arrival time and amplitude estimation from acoustic signals recorded at spatially separated hydrophones in the ocean. A particle filtering approach is developed that treats arrival times as "targets" and tracks their "location" across receivers, also modeling arrival time gradient. The method is evaluated via Monte Carlo simulations and is compared to a maximum likelihood estimator, which does not relate arrivals at neighboring receivers. The comparison demonstrates a significant advantage in using the particle filter. It is also shown that posterior probability density functions of times and amplitudes become readily available with particle filtering.

  4. Examining the effects of one- and three-dimensional spatial filtering analyses in magnetoencephalography.

    PubMed

    Johnson, Sam; Prendergast, Garreth; Hymers, Mark; Green, Gary

    2011-01-01

    Spatial filtering, or beamforming, is a commonly used data-driven analysis technique in the field of Magnetoencephalography (MEG). Although routinely referred to as a single technique, beamforming in fact encompasses several different methods, both with regard to defining the spatial filters used to reconstruct source-space time series and in terms of the analysis of these time series. This paper evaluates two alternative methods of spatial filter construction and application. It demonstrates how encoding different requirements into the design of these filters has an effect on the results obtained. The analyses presented demonstrate the potential value of implementations which examine the timeseries projections in multiple orientations at a single location by showing that beamforming can reconstruct predominantly radial sources in the case of a multiple-spheres forward model. The accuracy of source reconstruction appears to be more related to depth than source orientation. Furthermore, it is shown that using three 1-dimensional spatial filters can result in inaccurate source-space time series reconstruction. The paper concludes with brief recommendations regarding reporting beamforming methodologies in order to help remove ambiguity about the specifics of the techniques which have been used.

  5. Independent motion detection with a rival penalized adaptive particle filter

    NASA Astrophysics Data System (ADS)

    Becker, Stefan; Hübner, Wolfgang; Arens, Michael

    2014-10-01

    Aggregation of pixel based motion detection into regions of interest, which include views of single moving objects in a scene is an essential pre-processing step in many vision systems. Motion events of this type provide significant information about the object type or build the basis for action recognition. Further, motion is an essential saliency measure, which is able to effectively support high level image analysis. When applied to static cameras, background subtraction methods achieve good results. On the other hand, motion aggregation on freely moving cameras is still a widely unsolved problem. The image flow, measured on a freely moving camera is the result from two major motion types. First the ego-motion of the camera and second object motion, that is independent from the camera motion. When capturing a scene with a camera these two motion types are adverse blended together. In this paper, we propose an approach to detect multiple moving objects from a mobile monocular camera system in an outdoor environment. The overall processing pipeline consists of a fast ego-motion compensation algorithm in the preprocessing stage. Real-time performance is achieved by using a sparse optical flow algorithm as an initial processing stage and a densely applied probabilistic filter in the post-processing stage. Thereby, we follow the idea proposed by Jung and Sukhatme. Normalized intensity differences originating from a sequence of ego-motion compensated difference images represent the probability of moving objects. Noise and registration artefacts are filtered out, using a Bayesian formulation. The resulting a posteriori distribution is located on image regions, showing strong amplitudes in the difference image which are in accordance with the motion prediction. In order to effectively estimate the a posteriori distribution, a particle filter is used. In addition to the fast ego-motion compensation, the main contribution of this paper is the design of the probabilistic

  6. Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression.

    PubMed

    Riaz, Nadeem; Shanker, Piyush; Wiersma, Rodney; Gudmundsson, Olafur; Mao, Weihua; Widrow, Bernard; Xing, Lei

    2009-10-07

    Intra-fraction tumor tracking methods can improve radiation delivery during radiotherapy sessions. Image acquisition for tumor tracking and subsequent adjustment of the treatment beam with gating or beam tracking introduces time latency and necessitates predicting the future position of the tumor. This study evaluates the use of multi-dimensional linear adaptive filters and support vector regression to predict the motion of lung tumors tracked at 30 Hz. We expand on the prior work of other groups who have looked at adaptive filters by using a general framework of a multiple-input single-output (MISO) adaptive system that uses multiple correlated signals to predict the motion of a tumor. We compare the performance of these two novel methods to conventional methods like linear regression and single-input, single-output adaptive filters. At 400 ms latency the average root-mean-square-errors (RMSEs) for the 14 treatment sessions studied using no prediction, linear regression, single-output adaptive filter, MISO and support vector regression are 2.58, 1.60, 1.58, 1.71 and 1.26 mm, respectively. At 1 s, the RMSEs are 4.40, 2.61, 3.34, 2.66 and 1.93 mm, respectively. We find that support vector regression most accurately predicts the future tumor position of the methods studied and can provide a RMSE of less than 2 mm at 1 s latency. Also, a multi-dimensional adaptive filter framework provides improved performance over single-dimension adaptive filters. Work is underway to combine these two frameworks to improve performance.

  7. Attitude determination and calibration using a recursive maximum likelihood-based adaptive Kalman filter

    NASA Technical Reports Server (NTRS)

    Kelly, D. A.; Fermelia, A.; Lee, G. K. F.

    1990-01-01

    An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.

  8. Gear Fault Signal Detection based on an Adaptive Fractional Fourier Transform Filter

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaojun; Shao, Yimin; Zhen, Dong; Gu, Fengshou; Ball, Andrew

    2011-07-01

    Vibration-based fault diagnosis is widely used for gearbox monitoring. However, it often needs considerable effort to extract effective diagnostic feature signal from noisy vibration signals because of rich signal components contained in a complex gear transmission system. In this paper, an adaptive fractional Fourier transform filter is proposed to suppress noise in gear vibration signals and hence to highlight signal components originated from gear fault dynamic characteristics. The approach relies on the use of adaptive filters in the fractional Fourier transform domain with the optimised fractional transform order and the filter parameters, while the transform orders are selected when the signal have the highest energy gathering and the filter parameters are determined by evolutionary rules. The results from the simulation and experiments have verified the performance of the proposed algorithm in extracting the gear failure signal components from the noisy signals based on a multistage gearbox system.

  9. A study of infrared spectroscopy de-noising based on LMS adaptive filter

    NASA Astrophysics Data System (ADS)

    Mo, Jia-qing; Lv, Xiao-yi; Yu, Xiao

    2015-12-01

    Infrared spectroscopy has been widely used, but which often contains a lot of noise, so the spectral characteristic of the sample is seriously affected. Therefore the de-noising is very important in the spectrum analysis and processing. In the study of infrared spectroscopy, the least mean square (LMS) adaptive filter was applied in the field firstly. LMS adaptive filter algorithm can reserve the detail and envelope of the effective signal when the method was applied to infrared spectroscopy of breast cancer which signal-to-noise ratio (SNR) is lower than 10 dB, contrast and analysis the result with result of wavelet transform and ensemble empirical mode decomposition (EEMD). The three evaluation standards (SNR, root mean square error (RMSE) and the correlation coefficient (ρ)) fully proved de-noising advantages of LMS adaptive filter in infrared spectroscopy of breast cancer.

  10. Seasonal signal capturing in time series of up coordinates by means of adaptive filters

    NASA Astrophysics Data System (ADS)

    Yalvac, S.; Ustun, A.

    2013-12-01

    Digital filters, is a system that performs mathematical operations on a sampled or discrete time signals. Adaptive filters designed for noise canceling are capable tools of decomposing correlated parts of data sets. This kind of filters which optimize itself using Least Mean Square (LMS) algorithm is a powerful tool for understand the truth hidden into the complex data sets like time series in Geosciences. The complex data sets such as CGPS (Continuously operating reference station) station's time series can be understood better with adaptive noise canceling by means of decompose coherent (seasonal effect, tectonic plate motion) and incoherent (noise; site-specific effects) parts of data. In this study, it is aimed to model the subsidence caused by groundwater withdrawal based on the seasonal correlation between consecutive years of CGPS time series. For this purpose, two stations where located into subsidence area of 3 year time series have analyzed with adaptive noise canceling filter. According to the results, the annual movement of these two stations have strong relationship. Also, subsidence behavior are correlated with annual rainfall data. BELD station one year filtered movement KAMN station one year filtered movements

  11. An Adaptive Filter for the Removal of Drifting Sinusoidal Noise Without a Reference.

    PubMed

    Kelly, John W; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2016-01-01

    This paper presents a method for filtering sinusoidal noise with a variable bandwidth filter that is capable of tracking a sinusoid's drifting frequency. The method, which is based on the adaptive noise canceling (ANC) technique, will be referred to here as the adaptive sinusoid canceler (ASC). The ASC eliminates sinusoidal contamination by tracking its frequency and achieving a narrower bandwidth than typical notch filters. The detected frequency is used to digitally generate an internal reference instead of relying on an external one as ANC filters typically do. The filter's bandwidth adjusts to achieve faster and more accurate convergence. In this paper, the focus of the discussion and the data is physiological signals, specifically electrocorticographic (ECoG) neural data contaminated with power line noise, but the presented technique could be applicable to other recordings as well. On simulated data, the ASC was able to reliably track the noise's frequency, properly adjust its bandwidth, and outperform comparative methods including standard notch filters and an adaptive line enhancer. These results were reinforced by visual results obtained from real ECoG data. The ASC showed that it could be an effective method for increasing signal to noise ratio in the presence of drifting sinusoidal noise, which is of significant interest for biomedical applications.

  12. The prediction of EEG signals using a feedback-structured adaptive rational function filter.

    PubMed

    Kim, H S; Kim, T S; Choi, Y H; Park, S H

    2000-08-01

    In this article, we present a feedback-structured adaptive rational function filter based on a recursive modified Gram-Schmidt algorithm and apply it to the prediction of an EEG signal that has nonlinear and nonstationary characteristics. For the evaluation of the prediction performance, the proposed filter is compared with other methods, where a single-step prediction and a multi-step prediction are considered for a short-term prediction, and the prediction performance is assessed in normalized mean square error. The experimental results show that the proposed filter shows better performance than other methods considered for the short-term prediction of EEG signals.

  13. Fault estimation of satellite reaction wheels using covariance based adaptive unscented Kalman filter

    NASA Astrophysics Data System (ADS)

    Rahimi, Afshin; Kumar, Krishna Dev; Alighanbari, Hekmat

    2017-05-01

    Reaction wheels, as one of the most commonly used actuators in satellite attitude control systems, are prone to malfunction which could lead to catastrophic failures. Such malfunctions can be detected and addressed in time if proper analytical redundancy algorithms such as parameter estimation and control reconfiguration are employed. Major challenges in parameter estimation include speed and accuracy of the employed algorithm. This paper presents a new approach for improving parameter estimation with adaptive unscented Kalman filter. The enhancement in tracking speed of unscented Kalman filter is achieved by systematically adapting the covariance matrix to the faulty estimates using innovation and residual sequences combined with an adaptive fault annunciation scheme. The proposed approach provides the filter with the advantage of tracking sudden changes in the system non-measurable parameters accurately. Results showed successful detection of reaction wheel malfunctions without requiring a priori knowledge about system performance in the presence of abrupt, transient, intermittent, and incipient faults. Furthermore, the proposed approach resulted in superior filter performance with less mean squared errors for residuals compared to generic and adaptive unscented Kalman filters, and thus, it can be a promising method for the development of fail-safe satellites.

  14. New cardiac MRI gating method using event-synchronous adaptive digital filter.

    PubMed

    Park, Hodong; Park, Youngcheol; Cho, Sungpil; Jang, Bongryoel; Lee, Kyoungjoung

    2009-11-01

    When imaging the heart using MRI, an artefact-free electrocardiograph (ECG) signal is not only important for monitoring the patient's heart activity but also essential for cardiac gating to reduce noise in MR images induced by moving organs. The fundamental problem in conventional ECG is the distortion induced by electromagnetic interference. Here, we propose an adaptive algorithm for the suppression of MR gradient artefacts (MRGAs) in ECG leads of a cardiac MRI gating system. We have modeled MRGAs by assuming a source of strong pulses used for dephasing the MR signal. The modeled MRGAs are rectangular pulse-like signals. We used an event-synchronous adaptive digital filter whose reference signal is synchronous to the gradient peaks of MRI. The event detection processor for the event-synchronous adaptive digital filter was implemented using the phase space method-a sort of topology mapping method-and least-squares acceleration filter. For evaluating the efficiency of the proposed method, the filter was tested using simulation and actual data. The proposed method requires a simple experimental setup that does not require extra hardware connections to obtain the reference signals of adaptive digital filter. The proposed algorithm was more effective than the multichannel approach.

  15. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  16. An Application Specific Instruction Set Processor (ASIP) for Adaptive Filters in Neural Prosthetics.

    PubMed

    Xin, Yao; Li, Will X Y; Zhang, Zhaorui; Cheung, Ray C C; Song, Dong; Berger, Theodore W

    2015-01-01

    Neural coding is an essential process for neuroprosthetic design, in which adaptive filters have been widely utilized. In a practical application, it is needed to switch between different filters, which could be based on continuous observations or point process, when the neuron models, conditions, or system requirements have changed. As candidates of coding chip for neural prostheses, low-power general purpose processors are not computationally efficient especially for large scale neural population coding. Application specific integrated circuits (ASICs) do not have flexibility to switch between different adaptive filters while the cost for design and fabrication is formidable. In this research work, we explore an application specific instruction set processor (ASIP) for adaptive filters in neural decoding activity. The proposed architecture focuses on efficient computation for the most time-consuming matrix/vector operations among commonly used adaptive filters, being able to provide both flexibility and throughput. Evaluation and implementation results are provided to demonstrate that the proposed ASIP design is area-efficient while being competitive to commercial CPUs in computational performance.

  17. Steganalysis of content-adaptive JPEG steganography based on Gauss partial derivative filter bank

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Liu, Fenlin; Yang, Chunfang; Luo, Xiangyang; Song, Xiaofeng; Lu, Jicang

    2017-01-01

    A steganalysis feature extraction method based on Gauss partial derivative filter bank is proposed in this paper to improve the detection performance for content-adaptive JPEG steganography. Considering that the embedding changes of content-adaptive steganographic schemes are performed in the texture and edge regions, the proposed method generates filtered images comprising rich texture and edge information using Gauss partial derivative filter bank, and histograms of absolute values of filtered subimages are extracted as steganalysis features. Gauss partial derivative filter bank can represent texture and edge information in multiple orientations with less computation load than conventional methods and prevent redundancy in different filtered images. These two properties are beneficial in the extraction of low-complexity sensitive features. The results of experiments conducted on three selected modern JPEG steganographic schemes-uniform embedding distortion, JPEG universal wavelet relative distortion, and side-informed UNIWARD-indicate that the proposed feature set is superior to the prior art feature sets-discrete cosine transform residual, phase aware rich model, and Gabor filter residual.

  18. Robust adaptive extended Kalman filtering for real time MR-thermometry guided HIFU interventions.

    PubMed

    Roujol, Sébastien; de Senneville, Baudouin Denis; Hey, Silke; Moonen, Chrit; Ries, Mario

    2012-03-01

    Real time magnetic resonance (MR) thermometry is gaining clinical importance for monitoring and guiding high intensity focused ultrasound (HIFU) ablations of tumorous tissue. The temperature information can be employed to adjust the position and the power of the HIFU system in real time and to determine the therapy endpoint. The requirement to resolve both physiological motion of mobile organs and the rapid temperature variations induced by state-of-the-art high-power HIFU systems require fast MRI-acquisition schemes, which are generally hampered by low signal-to-noise ratios (SNRs). This directly limits the precision of real time MR-thermometry and thus in many cases the feasibility of sophisticated control algorithms. To overcome these limitations, temporal filtering of the temperature has been suggested in the past, which has generally an adverse impact on the accuracy and latency of the filtered data. Here, we propose a novel filter that aims to improve the precision of MR-thermometry while monitoring and adapting its impact on the accuracy. For this, an adaptive extended Kalman filter using a model describing the heat transfer for acoustic heating in biological tissues was employed together with an additional outlier rejection to address the problem of sparse artifacted temperature points. The filter was compared to an efficient matched FIR filter and outperformed the latter in all tested cases. The filter was first evaluated on simulated data and provided in the worst case (with an approximate configuration of the model) a substantial improvement of the accuracy by a factor 3 and 15 during heat up and cool down periods, respectively. The robustness of the filter was then evaluated during HIFU experiments on a phantom and in vivo in porcine kidney. The presence of strong temperature artifacts did not affect the thermal dose measurement using our filter whereas a high measurement variation of 70% was observed with the FIR filter.

  19. Adaptive identification and control of structural dynamics systems using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Montgomery, R. C.; Williams, J. P.

    1985-01-01

    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.

  20. Adaptive Collaborative Gaussian Mixture Probability Hypothesis Density Filter for Multi-Target Tracking.

    PubMed

    Yang, Feng; Wang, Yongqi; Chen, Hao; Zhang, Pengyan; Liang, Yan

    2016-10-11

    In this paper, an adaptive collaborative Gaussian Mixture Probability Hypothesis Density (ACo-GMPHD) filter is proposed for multi-target tracking with automatic track extraction. Based on the evolutionary difference between the persistent targets and the birth targets, the measurements are adaptively partitioned into two parts, persistent and birth measurement sets, for updating the persistent and birth target Probability Hypothesis Density, respectively. Furthermore, the collaboration mechanism of multiple probability hypothesis density (PHDs) is established, where tracks can be automatically extracted. Simulation results reveal that the proposed filter yields considerable computational savings in processing requirements and significant improvement in tracking accuracy.

  1. Performance Analysis of Adaptive Volterra Filters in the Finite-Alphabet Input Case

    NASA Astrophysics Data System (ADS)

    Besbes, Hichem; Jaïdane, Mériem; Ezzine, Jelel

    2004-12-01

    This paper deals with the analysis of adaptive Volterra filters, driven by the LMS algorithm, in the finite-alphabet inputs case. A tailored approach for the input context is presented and used to analyze the behavior of this nonlinear adaptive filter. Complete and rigorous mean square analysis is provided without any constraining independence assumption. Exact transient and steady-state performances expressed in terms of critical step size, rate of transient decrease, optimal step size, excess mean square error in stationary mode, and tracking nonstationarities are deduced.

  2. Adaptive data assimilation including the effect of spatial variations in observation error

    NASA Astrophysics Data System (ADS)

    Frehlich, Rod

    2006-04-01

    An optimal adaptive data assimilation algorithm is derived using the maximum likelihood method based on a conditional Gaussian probability density function for the first-guess and direct observations of the state variables but including local estimates of the observation and first-guess error statistics. An interpolation of the first-guess field to the observation coordinates is not required under the assumption of locally homogeneous statistics for the random atmosphere. However, the definition of observation error requires a definition of model 'truth' which is defined as a spatial average of the continuous random atmospheric variables. Then the total observation error consists of two independent components: an instrument error and an observation sampling error defined by the spatial average of the observation and the statistics of the local turbulence. Estimates of the observation sampling error statistics are determined from an ensemble of background or first-guess fields or from the analysis of the raw data from instrumented aircraft, Doppler lidars, or radar profilers. The spatial variations of the sampling error are referenced to the local turbulence conditions at each analysis coordinate and therefore each observation can have a different observation error for each nearby analysis coordinate. The extension of the adaptive assimilation concept to include the spatial variations in observation error for statistical interpolation, 3D-Var, 4D-Var, extended Kalman filtering, and ensemble Kalman filtering is also presented for the traditional meaning of observation error, i.e. each observation is assigned a single error. The conditional analysis error is derived for a single observation at the analysis coordinate and multiple observations around the analysis point. Example calculations of the conditional analysis error are presented for a few simple set of observation and measurement geometries to demonstrate the impact of the spatially variable observation errors

  3. Segmentation and tracking of the electro-encephalogram signal using an adaptive recursive bandpass filter.

    PubMed

    Gharieb, R R; Cichocki, A

    2001-03-01

    An adaptive filtering approach for the segmentation and tracking of electro-encephalogram (EEG) signal waves is described. In this approach, an adaptive recursive bandpass filter is employed for estimating and tracking the centre frequency associated with each EEG wave. The main advantage inherent in the approach is that the employed adaptive filter has only one unknown coefficient to be updated. This coefficient, having an absolute value less than 1, represents an efficient distinct feature for each EEG specific wave, and its time function reflects the non-stationarity behaviour of the EEG signal. Therefore the proposed approach is simple and accurate in comparison with existing multivariate adaptive approaches. The approach is examined using extensive computer simulations. It is applied to computer-generated EEG signals composed of different waves. The adaptive filter coefficient (i.e. the segmentation parameter) is -0.492 for the delta wave, -0.360 for the theta wave, -0.191 for the alpha wave, -0.027 for the sigma wave, 0.138 for the beta wave and 0.605 for the gamma wave. This implies that the segmentation parameter increases with the increase in the centre frequency of the EEG waves, which provides fast on-line information about the behaviour of the EEG signal. The approach is also applied to real-world EEG data for the detection of sleep spindles.

  4. Distinct brain mechanisms support spatial vs temporal filtering of nociceptive information.

    PubMed

    Nahman-Averbuch, Hadas; Martucci, Katherine T; Granovsky, Yelena; Weissman-Fogel, Irit; Yarnitsky, David; Coghill, Robert C

    2014-12-01

    The role of endogenous analgesic mechanisms has largely been viewed in the context of gain modulation during nociceptive processing. However, these analgesic mechanisms may play critical roles in the extraction and subsequent utilization of information related to spatial and temporal features of nociceptive input. To date, it remains unknown if spatial and temporal filtering of nociceptive information is supported by similar analgesic mechanisms. To address this question, human volunteers were recruited to assess brain activation with functional magnetic resonance imaging during conditioned pain modulation (CPM) and offset analgesia (OA). CPM provides one paradigm for assessing spatial filtering of nociceptive information while OA provides a paradigm for assessing temporal filtering of nociceptive information. CPM and OA both produced statistically significant reductions in pain intensity. However, the magnitude of pain reduction elicited by CPM was not correlated with that elicited by OA across different individuals. Different patterns of brain activation were consistent with the psychophysical findings. CPM elicited widespread reductions in regions engaged in nociceptive processing such as the thalamus, insula, and secondary somatosensory cortex. OA produced reduced activity in the primary somatosensory cortex but was associated with greater activation in the anterior insula, dorsolateral prefrontal cortex, intraparietal sulcus, and inferior parietal lobule relative to CPM. In the brain stem, CPM consistently produced reductions in activity, while OA produced increases in activity. Conjunction analysis confirmed that CPM-related activity did not overlap with that of OA. Thus, dissociable mechanisms support inhibitory processes engaged during spatial vs temporal filtering of nociceptive information.

  5. The Amateur Scientist: Simple Optical Experiments in Which Spatial Filtering Removes the "Noise" from Pictures.

    ERIC Educational Resources Information Center

    Walker, Jearl

    1982-01-01

    Spatial filtering, based on diffraction/interference of light waves, is a technique by which unwanted information in a picture ("noise") can be separated from wanted information. A series of experiments is described in which students can create a system that functions as an optical computer to create clearer pictures. (Author/JN)

  6. Interference Suppression for Spread Spectrum Signals Using Adaptive Beamforming and Adaptive Temporal Filter

    DTIC Science & Technology

    1996-12-01

    algorithms for obtaining rapid convergence of the tap weights of a transversal filter to their optimum settings ( Godard , 1974). This algorithm is...1366, Dec. 1989. 10. Godard , D. N. (1974) "Channel equalization using a Kalman filter for fast data transmission," IBM K. Res. Dev., vol. 18, pp. 267

  7. Modeling of porous filter penneability via image-based stochastic reconstruction of spatial porosity correlations.

    PubMed

    Zhao, Fu; Landis, Heather R; Skerlos, Steven J

    2005-01-01

    A methodology for producing a pore-scale, 3D computational model of porous filter permeability is developed that is based on the analysis of 2D images of the filter matrix and first principles. The computationally reconstructed porous filter model retains statistical details of porosity and the spatial correlations of porosity within the filter and can be used to calculate permeability for either isotropic or 1D anisotropic porous filters. In the isotropic case, validation of the methodology was conducted using 0.2 and 0.8 microm ceramic membrane filters,forwhich it is shown that the image-based computational models provide a viable statistical reproduction of actual porosity characteristics. It is also shown that these models can predict water flux directly from first principles with deviations from experimental measurements in the range of experimental error. In the anisotropic case, validation of the methodology was conducted using a natural river sand filter. For this case, it is shown that the methodology yields predictions of filtration velocity that are similar or better than predictions offered by existing filtration models. It was found for the sand filter that the deviation between observation and prediction was mostly due to swelling during the preparation of the sand filter for imaging and can be reduced significantly using alternative methods reported in the literature. On the basis of these results, it is concluded that the computational reconstruction methodology is valid for porous filter modeling, and given that it captures pore-scale details, it has potential application to the investigation of permeability decline underthe influence of pore-scale fouling mechanisms.

  8. A New Synchronized Miniature Rubidium Oscillator with an Auto-Adaptive Disciplining Filter

    DTIC Science & Technology

    2001-11-01

    33rd Annual Precise Time and Time Interval (PTTI) Meeting A NEW SYNCHRONIZED MINIATURE RUBIDIUM DISCIPLINING FILTER OSCILLATOR WITH AN AUTO...ADAPTIVE Pascal Rochat and Bernard Leuenberger Temex Neuchfitel Time SA, Switzerland Abstract A new rubidium line (SRO) integrating timing functions and... time interval measurements was developed using an auto-adaptive disciplining algorithm. This led to an ultra-stable time & frequency machine usable

  9. Spatially adaptive regularized iterative high-resolution image reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Lim, Won Bae; Park, Min K.; Kang, Moon Gi

    2000-12-01

    High resolution images are often required in applications such as remote sensing, frame freeze in video, military and medical imaging. Digital image sensor arrays, which are used for image acquisition in many imaging systems, are not dense enough to prevent aliasing, so the acquired images will be degraded by aliasing effects. To prevent aliasing without loss of resolution, a dense detector array is required. But it may be very costly or unavailable, thus, many imaging systems are designed to allow some level of aliasing during image acquisition. The purpose of our work is to reconstruct an unaliased high resolution image from the acquired aliased image sequence. In this paper, we propose a spatially adaptive regularized iterative high resolution image reconstruction algorithm for blurred, noisy and down-sampled image sequences. The proposed approach is based on a Constrained Least Squares (CLS) high resolution reconstruction algorithm, with spatially adaptive regularization operators and parameters. These regularization terms are shown to improve the reconstructed image quality by forcing smoothness, while preserving edges in the reconstructed high resolution image. Accurate sub-pixel motion registration is the key of the success of the high resolution image reconstruction algorithm. However, sub-pixel motion registration may have some level of registration error. Therefore, a reconstruction algorithm which is robust against the registration error is required. The registration algorithm uses a gradient based sub-pixel motion estimator which provides shift information for each of the recorded frames. The proposed algorithm is based on a technique of high resolution image reconstruction, and it solves spatially adaptive regularized constrained least square minimization functionals. In this paper, we show that the reconstruction algorithm gives dramatic improvements in the resolution of the reconstructed image and is effective in handling the aliased information. The

  10. Detecting discontinuities in time series of upper air data: Demonstration of an adaptive filter technique

    SciTech Connect

    Zurbenko, I.; Chen, J.; Rao, S.T.

    1997-11-01

    The issue of global climate change due to increased anthropogenic emissions of greenhouse gases in the atmosphere has gained considerable attention and importance. Climate change studies require the interpretation of weather data collected in numerous locations and/or over the span of several decades. Unfortunately, these data contain biases caused by changes in instruments and data acquisition procedures. It is essential that biases are identified and/or removed before these data can be used confidently in the context of climate change research. The purpose of this paper is to illustrate the use of an adaptive moving average filter and compare it with traditional parametric methods. The advantage of the adaptive filter over traditional parametric methods is that it is less effected by seasonal patterns and trends. The filter has been applied to upper air relative humidity and temperature data. Applied to generated data, the filter has a root mean squared error accuracy of about 600 days when locating changes of 0.1 standard deviations and about 20 days for changes of 0.5 standard deviations. In some circumstances, the accuracy of location estimation can be improved through parametric techniques used in conjunction with the adaptive filter.

  11. Adaptive error covariances estimation methods for ensemble Kalman filters

    SciTech Connect

    Zhen, Yicun; Harlim, John

    2015-08-01

    This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.

  12. Global Spatial Filtering (GSF) of GNSS Coordinates to Capture Small Transient Signals

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Kreemer, C.; Goldfarb, J.; Plag, H.-P.; Hammond, W. C.

    2012-04-01

    GNSS station coordinate time series have spatially-correlated variations that are the sum of geophysical signals plus non-local errors. For geophysical applications such as strain modeling, co-seismic displacements, transient detection, the signal can be over a limited spatial scale, in which case, the signal can be enhanced by filtering out the non-local errors of a much larger scale. Indeed, there are examples of geophysical transients in GNSS time series that may have gone undetected without some form of spatial filtering. Global spatial filtering (GSF) was introduced by Rius et al. [1995], who applied the method globally to geocentric radial coordinate time series. Unlike the regional common-mode error (CME) correction method of Wdowinski et al. [1997], which is broadly used with some modifications today, Rius et al. [1995] applied corrections to coordinates using a different similarity transformation at each station i, computed from the residuals of all stations j with distance rij < s to that station, where s is the spatial scale of the filter. The advantage of GSF is that it is seamless, whereas CME requires an ad hoc separation of the global network into distinct regions, each with its own set of corrections. Moreover, with GSF it becomes possible to systematically investigate the effect of varying the scale of the filter. Rather than enforce Rius' condition rij < s, we allow all stations in the global reference frame to contribute with weights as a continuous function of dimensionless variable (rij/s), thus avoiding spatial discontinuities in the pattern of corrections. We have designed a weighting function wij(s) = (s/rij)e-(rij/s+s/rij), which has elegant properties for GSF. Marquez-Azua and DeMets [2003] applied a similar technique over a large region, noting that it could be applied to a global scale network, provided the stations were sufficiently close. In our case, solutions during 2011 contain > 7000 stations with ambiguity resolution applied

  13. Suppression of gradient across seam line using a smoothing filter in spatially compounded ultrasonic diagnostic images.

    PubMed

    Choi, Myoung Hwan

    2007-01-01

    A method to reduce seam line artifact in spatial compounding of ultrasonic images is presented. Spatial compounding is a speckle reducing imaging technique in which a number of ultrasound images of a given target that have been obtained from multiple view angles are combined into a single compounded image by combining the data received from each data point in the compounded image. Since different view angle results in different view area, and the images of different view areas are combined into an image, the compounded image consists of regions with different signal to noise ratio, and the boundary lines between these regions are visible in the compounded images. In this paper, we present an algorithm that effectively reduces the visibility of this seam line in the spatially compounded images. Design procedure for a smoothing filter is described and the results of applying the filter to in-vivo ultrasonic images are analyzed.

  14. Multiple path interference and differential modal delay reduction using spatial filters in a 4F system.

    PubMed

    Wang, Hao; Kumar, Shiva; Xu, Changqing

    2008-05-01

    Multiple path interference (MPI) and differential modal delay (DMD) are two major impairments in fiber optic communication systems. MPI can be found in a few mode fibers in which a higher order mode propagates as a weak replica of the signal and interferes with the fundamental mode at the output of the fiber link. DMD in multimode fibers (MMF) leads to intersymbol interference, which limits the bit rate-distance product of the system. A simple method is proposed to reduce MPI and DMD effects using spatial filters in a 4F system. Higher order modes have higher spatial frequency components. Therefore by choosing a proper spatial filter with a suitable bandwidth, a fraction of the unwanted higher order modes can be suppressed, and therefore MPI and DMD effects can be reduced.

  15. Speckle reduction in ultrasound medical images using adaptive filter based on second order statistics.

    PubMed

    Thakur, A; Anand, R S

    2007-01-01

    This article discusses an adaptive filtering technique for reducing speckle using second order statistics of the speckle pattern in ultrasound medical images. Several region-based adaptive filter techniques have been developed for speckle noise suppression, but there are no specific criteria for selecting the region growing size in the post processing of the filter. The size appropriate for one local region may not be appropriate for other regions. Selection of the correct region size involves a trade-off between speckle reduction and edge preservation. Generally, a large region size is used to smooth speckle and a small size to preserve the edges into an image. In this paper, a smoothing procedure combines the first order statistics of speckle for the homogeneity test and second order statistics for selection of filters and desired region growth. Grey level co-occurrence matrix (GLCM) is calculated for every region during the region contraction and region growing for second order statistics. Further, these GLCM features determine the appropriate filter for the region smoothing. The performance of this approach is compared with the aggressive region-growing filter (ARGF) using edge preservation and speckle reduction tests. The processed image results show that the proposed method effectively reduces speckle noise and preserves edge details.

  16. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    NASA Astrophysics Data System (ADS)

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  17. An optimized locally adaptive non-local means denoising filter for cryo-electron microscopy data.

    PubMed

    Wei, Dai-Yu; Yin, Chang-Cheng

    2010-12-01

    Cryo-electron microscopy (cryo-EM) now plays an important role in structural analysis of macromolecular complexes, organelles and cells. However, the cryo-EM images obtained close to focus and under low dose conditions have a very high level of noise and a very low contrast, which hinders high-resolution structural analysis. Here, an optimized locally adaptive non-local (LANL) means filter, which can preserve signal details and simultaneously significantly suppress noise for cryo-EM data, is presented. This filter takes advantage of a wide range of pixels to estimate the denoised pixel values instead of the traditional filter that only uses pixels in the local neighborhood. The filter performed well on simulated data and showed promising results on raw cryo-EM images and tomograms. The predominant advantage of this optimized LANL-means filter is the structural signal and the background are clearly distinguishable. This locally adaptive non-local means filter may become a useful tool in the analysis of cryo-EM data, such as automatic particle picking, extracting structural features and segmentation of tomograms.

  18. Adaptive Control of Linear Modal Systems Using Residual Mode Filters and a Simple Disturbance Estimator

    NASA Technical Reports Server (NTRS)

    Balas, Mark; Frost, Susan

    2012-01-01

    Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter.

  19. Adaptive Filter Techniques for Optical Beam Jitter Control and Target Tracking

    DTIC Science & Technology

    2008-12-01

    Analysis ......................................................51 5. Standard Deviation of Beam Position Error ...................................51 6...Organization of Analysis ...................................................................51 B. FEEDFORWARD ADAPTIVE FILTERS USING MULTIPLE...actuator (loud speaker or CFSM) before its effect reaches the error sensor. In ANC lingo , y(t) must first pass through the secondary plant dynamics of the

  20. Design of adaptive filter amplifier in UV communication based on DSP

    NASA Astrophysics Data System (ADS)

    Lv, Zhaoshun; Wu, Hanping; Li, Junyu

    2016-10-01

    According to the problem of the weak signal at receiving end in UV communication, we design a high gain, continuously adjustable adaptive filter amplifier. Based on proposing overall technical indicators and analyzing its working principle of the signal amplifier, we use chip LMH6629MF and two chips of AD797BN to achieve three-level cascade amplification. And apply hardware of DSP TMS320VC5509A to implement digital filtering. Design and verification by Multisim, Protel 99SE and CCS, the results show that: the amplifier can realize continuously adjustable amplification from 1000 to 10000 times without distortion. Magnification error is <=%4@1000 10000. And equivalent input noise voltage of amplification circuit is <=6 nV/ √Hz @30KHz 45KHz, and realizing function of adaptive filtering. The design provides theoretical reference and technical support for the UV weak signal processing.

  1. Improved electromagnetic induction processing with novel adaptive matched filter and matched subspace detection

    NASA Astrophysics Data System (ADS)

    Hayes, Charles E.; McClellan, James H.; Scott, Waymond R.; Kerr, Andrew J.

    2016-05-01

    This work introduces two advances in wide-band electromagnetic induction (EMI) processing: a novel adaptive matched filter (AMF) and matched subspace detection methods. Both advances make use of recent work with a subspace SVD approach to separating the signal, soil, and noise subspaces of the frequency measurements The proposed AMF provides a direct approach to removing the EMI self-response while improving the signal to noise ratio of the data. Unlike previous EMI adaptive downtrack filters, this new filter will not erroneously optimize the EMI soil response instead of the EMI target response because these two responses are projected into separate frequency subspaces. The EMI detection methods in this work elaborate on how the signal and noise subspaces in the frequency measurements are ideal for creating the matched subspace detection (MSD) and constant false alarm rate matched subspace detection (CFAR) metrics developed by Scharf The CFAR detection metric has been shown to be the uniformly most powerful invariant detector.

  2. Spatial filter lens design for the main laser of the National Ignition Facility

    SciTech Connect

    Korniski, R. J., Optics 1 Inc, Westlake Village, CA

    1998-06-05

    The National Ignition Facility (NIF), being designed and constructed at Lawrence Livermore National Laboratory (LLNL), comprises 192 laser beams The lasing medium is neodymium in phosphate glass with a fundamental frequency (1{omega}) of 1 053{micro}m Sum frequency generation in a pair of conversion crystals (KDP/KD*P) will produce 1 8 megajoules of the third harmonic light (3{omega} or {lambda}=351{micro}m) at the target The purpose of this paper is to provide the lens design community with the current lens design details of the large optics in the Main Laser This paper describes the lens design configuration and design considerations of the Main Laser The Main Laser is 123 meters long and includes two spatial filters one 13 5 meters and one 60 meters These spatial filters perform crucial beam filtering and relaying functions We shall describe the significant lens design aspects of these spatial filter lenses which allow them to successfully deliver the appropriate beam characteristic onto the target For an overview of NIF please see ``Optical system design of the National Ignition Facility,`` by R Edward English. et al also found in this volume.

  3. Impact of Rician adapted Non-Local Means filtering on HARDI.

    PubMed

    Descoteaux, Maxime; Wiest-Daesslé, Nicolas; Prima, Sylvain; Barillot, Christian; Deriche, Rachid

    2008-01-01

    In this paper we study the impact of denoising the raw high angular resolution diffusion imaging (HARDI) data with the Non-Local Means filter adapted to Rician noise (NLMr). We first show that NLMr filtering improves robustness of apparent diffusion coefficient (ADC) and orientation distribution function (ODF) reconstructions from synthetic HARDI datasets. Our results suggest that the NLMr filtering improve the quality of anisotropy maps computed from ADC and ODF and improve the coherence of q-ball ODFs with the underlying anatomy while not degrading angular resolution. These results are shown on a biological phantom with known ground truth and on a real human brain dataset. Most importantly, we show that multiple measurements of diffusion-weighted (DW) images and averaging these images along each direction can be avoided because NLMr filtering of the individual DW images produces better quality generalized fractional anisotropy maps and more accurate ODF fields than when computed from the averaged DW datasets.

  4. Spatial downscaling of precipitation using adaptable random forests

    NASA Astrophysics Data System (ADS)

    He, Xiaogang; Chaney, Nathaniel W.; Schleiss, Marc; Sheffield, Justin

    2016-10-01

    This paper introduces Prec-DWARF (Precipitation Downscaling With Adaptable Random Forests), a novel machine-learning based method for statistical downscaling of precipitation. Prec-DWARF sets up a nonlinear relationship between precipitation at fine resolution and covariates at coarse/fine resolution, based on the advanced binary tree method known as Random Forests (RF). In addition to a single RF, we also consider a more advanced implementation based on two independent RFs which yield better results for extreme precipitation. Hourly gauge-radar precipitation data at 0.125° from NLDAS-2 are used to conduct synthetic experiments with different spatial resolutions (0.25°, 0.5°, and 1°). Quantitative evaluation of these experiments demonstrates that Prec-DWARF consistently outperforms the baseline (i.e., bilinear interpolation in this case) and can reasonably reproduce the spatial and temporal patterns, occurrence and distribution of observed precipitation fields. However, Prec-DWARF with a single RF significantly underestimates precipitation extremes and often cannot correctly recover the fine-scale spatial structure, especially for the 1° experiments. Prec-DWARF with a double RF exhibits improvement in the simulation of extreme precipitation as well as its spatial and temporal structures, but variogram analyses show that the spatial and temporal variability of the downscaled fields are still strongly underestimated. Covariate importance analysis shows that the most important predictors for the downscaling are the coarse-scale precipitation values over adjacent grid cells as well as the distance to the closest dry grid cell (i.e., the dry drift). The encouraging results demonstrate the potential of Prec-DWARF and machine-learning based techniques in general for the statistical downscaling of precipitation.

  5. Chasing Small Signals Using Global Spatial Filtering (GSF) of GNSS Coordinates

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Kreemer, C. W.; Goldfarb, J. M.; Plag, H.; Hammond, W. C.

    2011-12-01

    GNSS station coordinate time series have spatially-correlated variations that are the sum of real geophysical signals plus non-local systematic errors. For certain geophysical applications, the signal of interest can be over a limited spatial scale (e.g., for strain modeling, co-seismic displacements, transient detection), in which case, the real geophysical signal can be enhanced by filtering out the non-local systematic errors of a much larger spatial scale. Indeed, there are examples of geophysical transients in GNSS time series that may have gone undetected without some form of spatial filtering. Global spatial filtering (GSF) was introduced by Rius et al. [1995], who applied the method globally to geocentric radial coordinate time series without any reference frame alignment. Unlike the regional common-mode error (CME) correction method of Wdowinski et al. [1997], which is broadly used with some modifications today, Rius et al. [1995] applied corrections to coordinates using a different 7-parameter transformation at each station i, computed from the residuals of all stations j with distance rij < R to that station, where R is the spatial scale of the filter. Signal to noise ratio in the time series depends on R, according to the different spatial scales of surface deformation and GNSS errors (such as orbit mismodeling). Here we extend the method so that coordinates are aligned to a secular reference frame defined by a subset of globally distributed stations. Rather than enforce the condition rij < R, we allow all stations in the global reference frame to contribute with weights as a continuous function of dimensionless variable ρij = rij /R, thus avoiding spatial discontinuities in the pattern of corrections. Márquez-Azúa and DeMets [2003] applied a similar technique over a large region, noting that it could be applied to a global scale network, provided the stations were sufficiently close. In our case, our solutions now contain up to ~7,000 stations with

  6. Parametric adaptive estimation and backstepping control of electro-hydraulic actuator with decayed memory filter.

    PubMed

    Guo, Qing; Sun, Ping; Yin, Jing-Min; Yu, Tian; Jiang, Dan

    2016-05-01

    Some unknown parameter estimation of electro-hydraulic system (EHS) should be considered in hydraulic controller design due to many parameter uncertainties in practice. In this study, a parametric adaptive backstepping control method is proposed to improve the dynamic behavior of EHS under parametric uncertainties and unknown disturbance (i.e., hydraulic parameters and external load). The unknown parameters of EHS model are estimated by the parametric adaptive estimation law. Then the recursive backstepping controller is designed by Lyapunov technique to realize the displacement control of EHS. To avoid explosion of virtual control in traditional backstepping, a decayed memory filter is presented to re-estimate the virtual control and the dynamic external load. The effectiveness of the proposed controller has been demonstrated by comparison with the controller without adaptive and filter estimation. The comparative experimental results in critical working conditions indicate the proposed approach can achieve better dynamic performance on the motion control of Two-DOF robotic arm.

  7. FASART: An iterative reconstruction algorithm with inter-iteration adaptive NAD filter.

    PubMed

    Zhou, Ziying; Li, Yugang; Zhang, Fa; Wan, Xiaohua

    2015-01-01

    Electron tomography (ET) is an essential imaging technique for studying structures of large biological specimens. These structures are reconstructed from a set of projections obtained at different sample orientations by tilting the specimen. However, most of existing reconstruction methods are not appropriate when the data are extremely noisy and incomplete. A new iterative method has been proposed: adaptive simultaneous algebraic reconstruction with inter-iteration adaptive non-linear anisotropic diffusion (NAD) filter (FASART). We also adopted an adaptive parameter and discussed the step for the filter in this reconstruction method. Experimental results show that FASART can restrain the noise generated in the process of iterative reconstruction and still preserve the more details of the structure edges.

  8. Neural Network Aided Adaptive Extended Kalman Filtering Approach for DGPS Positioning

    NASA Astrophysics Data System (ADS)

    Jwo, Dah-Jing; Huang, Hung-Chih

    2004-09-01

    The extended Kalman filter, when employed in the GPS receiver as the navigation state estimator, provides optimal solutions if the noise statistics for the measurement and system are completely known. In practice, the noise varies with time, which results in performance degradation. The covariance matching method is a conventional adaptive approach for estimation of noise covariance matrices. The technique attempts to make the actual filter residuals consistent with their theoretical covariance. However, this innovation-based adaptive estimation shows very noisy results if the window size is small. To resolve the problem, a multilayered neural network is trained to identify the measurement noise covariance matrix, in which the back-propagation algorithm is employed to iteratively adjust the link weights using the steepest descent technique. Numerical simulations show that based on the proposed approach the adaptation performance is substantially enhanced and the positioning accuracy is substantially improved.

  9. Active listening room compensation for massive multichannel sound reproduction systems using wave-domain adaptive filtering.

    PubMed

    Spors, Sascha; Buchner, Herbert; Rabenstein, Rudolf; Herbordt, Wolfgang

    2007-07-01

    The acoustic theory for multichannel sound reproduction systems usually assumes free-field conditions for the listening environment. However, their performance in real-world listening environments may be impaired by reflections at the walls. This impairment can be reduced by suitable compensation measures. For systems with many channels, active compensation is an option, since the compensating waves can be created by the reproduction loudspeakers. Due to the time-varying nature of room acoustics, the compensation signals have to be determined by an adaptive system. The problems associated with the successful operation of multichannel adaptive systems are addressed in this contribution. First, a method for decoupling the adaptation problem is introduced. It is based on a generalized singular value decomposition and is called eigenspace adaptive filtering. Unfortunately, it cannot be implemented in its pure form, since the continuous adaptation of the generalized singular value decomposition matrices to the variable room acoustics is numerically very demanding. However, a combination of this mathematical technique with the physical description of wave propagation yields a realizable multichannel adaptation method with good decoupling properties. It is called wave domain adaptive filtering and is discussed here in the context of wave field synthesis.

  10. Spatial structure enhanced cooperation in dissatisfied adaptive snowdrift game

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Xu, Chen; Hui, Pak Ming

    2013-05-01

    The dissatisfied adaptive snowdrift game (DASG) describes the adaptive actions driven by the level of dissatisfaction when two connected agents interact. We study the DASG in static networks both numerically and analytically. In a random network of uniform degree k, the system evolves into a homogeneous state consisting only of cooperators when the cost-to-benefit ratio r < r 0 and a mixed phase with the coexistence of cooperators and defectors when r > r 0, where r 0 is a threshold. For an infinite population, the large k limit corresponding to the well-mixed case is solved analytically. A theory is developed based on the pair approximation. It gives the frequency of cooperation f c and the densities of different pairs that are in good agreement with simulation results. The results revealed that f c is enhanced in networked populations with a finite k, when compared with the well-mixed case. The reasons that the theory works well for the present model are traced back to the weak spatial correlation implied by the random network and the fact that the adaptive actions in DASG are driven only by the strategy pairs. The results shed light on the class of models that the pair approximation is applicable.

  11. Spatial Compression Impairs Prism Adaptation in Healthy Individuals

    PubMed Central

    Scriven, Rachel J.; Newport, Roger

    2013-01-01

    Neglect patients typically present with gross inattention to one side of space following damage to the contralateral hemisphere. While prism-adaptation (PA) is effective in ameliorating some neglect behaviors, the mechanisms involved and their relationship to neglect remain unclear. Recent studies have shown that conscious strategic control (SC) processes in PA may be impaired in neglect patients, who are also reported to show extraordinarily long aftereffects compared to healthy participants. Determining the underlying cause of these effects may be the key to understanding therapeutic benefits. Alternative accounts suggest that reduced SC might result from a failure to detect prism-induced reaching errors properly either because (a) the size of the error is underestimated in compressed visual space or (b) pathologically increased error-detection thresholds reduce the requirement for error correction. The purpose of this study was to model these two alternatives in healthy participants and to examine whether SC and subsequent aftereffects were abnormal compared to standard PA. Each participant completed three PA procedures within a MIRAGE mediated reality environment with direction errors recorded before, during and after adaptation. During PA, visual feedback of the reach could be compressed, perturbed by noise, or represented veridically. Compressed visual space significantly reduced SC and aftereffects compared to control and noise conditions. These results support recent observations in neglect patients, suggesting that a distortion of spatial representation may successfully model neglect and explain neglect performance while adapting to prisms. PMID:23675332

  12. Spatial routing of optical beams through time-domain spatial-spectral filtering

    NASA Astrophysics Data System (ADS)

    Babbitt, W. R.; Mossberg, T. W.

    1995-04-01

    We propose a novel new method of temporal-waveform-controlled high-speed passive spatial routing of optical beams. The method provides for the redirection of optical signals contained within a single input beam into output directions that are specified entirely by temporal information encoded on the waveform of each incident signal. The routing is effected by means of deflection from spectrally structured spatial gratings that may be optically programmed into materials with or without intrinsic frequency selectivity.

  13. Adaptive clutter rejection filters for airborne Doppler weather radar applied to the detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1989-01-01

    An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.

  14. Motion artifact removal from photoplethysmographic signals by combining temporally constrained independent component analysis and adaptive filter

    PubMed Central

    2014-01-01

    Background The calculation of arterial oxygen saturation (SpO2) relies heavily on the amplitude information of the high-quality photoplethysmographic (PPG) signals, which could be contaminated by motion artifacts (MA) during monitoring. Methods A new method combining temporally constrained independent component analysis (cICA) and adaptive filters is presented here to extract the clean PPG signals from the MA corrupted PPG signals with the amplitude information reserved. The underlying PPG signal could be extracted from the MA contaminated PPG signals automatically by using cICA algorithm. Then the amplitude information of the PPG signals could be recovered by using adaptive filters. Results Compared with conventional ICA algorithms, the proposed approach is permutation and scale ambiguity-free. Numerical examples with both synthetic datasets and real-world MA corrupted PPG signals demonstrate that the proposed method could remove the MA from MA contaminated PPG signals more effectively than the two existing FFT-LMS and moving average filter (MAF) methods. Conclusions This paper presents a new method which combines the cICA algorithm and adaptive filter to extract the underlying PPG signals from the MA contaminated PPG signals with the amplitude information reserved. The new method could be used in the situations where one wants to extract the interested source automatically from the mixed observed signals with the amplitude information reserved. The results of study demonstrated the efficacy of this proposed method. PMID:24761769

  15. Effect of adaptive threshold filtering on ultrasonic nakagami parameter to detect variation in scatterer concentration.

    PubMed

    Tsui, Po-Hsiang; Wan, Yung-Liang; Huang, Chih-Chung; Wang, Ming-Chen

    2010-10-01

    The Nakagami parameter is associated with the Nakagami distribution estimated from ultrasonic backscattered signals and closely reflects the scatterer concentrations in tissues. There is an interest in exploring the possibility of enhancing the ability of the Nakagami parameter to characterize tissues. In this paper, we explore the effect of adaptive thresholdfiltering based on the noise-assisted empirical mode decomposition of the ultrasonic backscattered signals on the Nakagami parameter as a function of scatterer concentration for improving the Nakagami parameter performance. We carried out phantom experiments using 5 MHz focused and nonfocused transducers. Before filtering, the dynamic ranges of the Nakagami parameter, estimated using focused and nonfocused transducers between the scatterer concentrations of 2 and 32 scatterers/mm3, were 0.44 and 0.1, respectively. After filtering, the dynamic ranges of the Nakagami parameter, using the focused and nonfocused transducers, were 0.71 and 0.79, respectively. The experimental results showed that the adaptive threshold filter makes the Nakagami parameter measured by a focused transducer more sensitive to the variation in the scatterer concentration. The proposed method also endows the Nakagami parameter measured by a nonfocused transducer with the ability to differentiate various scatterer concentrations. However, the Nakagami parameters estimated by focused and nonfocused transducers after adaptive threshold filtering have different physical meanings: the former represents the statistics of signals backscattered from unresolvable scatterers while the latter is associated with stronger resolvable scatterers or local inhomogeneity due to scatterer aggregation.

  16. Reducing the effect of respiration in baroreflex sensitivity estimation with adaptive filtering.

    PubMed

    Tiinanen, Suvi; Tulppo, Mikko; Seppänen, Tapio

    2008-01-01

    Cardiac baroreflex is described by baroreflex sensitivity (BRS) from blood pressure and heart rate interval (RRi) fluctuations. However, respiration affects both blood pressure and RRi via mechanisms that are not necessarily of baroreflex origin. To separate the effects of baroreflex and respiration, metronome-guided breathing in a high frequency band (HF, 0.25-0.4 Hz) and a low frequency spectral band (LF, 0.04-0.15 Hz) have therefore been commonly used for BRS estimation. The controlled breathing may, however, change the natural functioning of the autonomic system and interfere BRS estimates. To enable usage of spontaneous breathing, we propose an adaptive LMS-based filter for removing the respiration effect from the BRS estimates. ECG, continuous blood pressure and respiration were measured during 5 min spontaneous and 5 min controlled breathing at 0.25 Hz in healthy males (n = 24, 33+/-7 years). BRS was calculated with spectral methods from the LF band with and without filtering. In those subjects whose spontaneous breathing rate was <0.15 Hz, the BRS(LF) values were overestimated, whereas the adaptive filtering reduced the bias significantly. As a conclusion, the adaptive filter reduces the distorting effect of respiration on BRS values, which enables more accurate estimation of BRS and the usage of spontaneous breathing as a measurement protocol.

  17. Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators

    SciTech Connect

    Stuart, Andrew M.; Shukla, Abhishek; Sanz-Alonso, Daniel; Law, K. J. H.

    2016-02-23

    In the context of filtering chaotic dynamical systems it is well-known that partial observations, if sufficiently informative, can be used to control the inherent uncertainty due to chaos. The purpose of this paper is to investigate, both theoretically and numerically, conditions on the observations of chaotic systems under which they can be accurately filtered. In particular, we highlight the advantage of adaptive observation operators over fixed ones. The Lorenz ’96 model is used to exemplify our findings. Here, we consider discrete-time and continuous-time observations in our theoretical developments. We prove that, for fixed observation operator, the 3DVAR filter can recover the system state within a neighbourhood determined by the size of the observational noise. It is required that a sufficiently large proportion of the state vector is observed, and an explicit form for such sufficient fixed observation operator is given. Numerical experiments, where the data is incorporated by use of the 3DVAR and extended Kalman filters, suggest that less informative fixed operators than given by our theory can still lead to accurate signal reconstruction. Adaptive observation operators are then studied numerically; we show that, for carefully chosen adaptive observation operators, the proportion of the state vector that needs to be observed is drastically smaller than with a fixed observation operator. Indeed, we show that the number of state coordinates that need to be observed may even be significantly smaller than the total number of positive Lyapunov exponents of the underlying system.

  18. Optimization of an adaptive nonlinear filter for the analysis of nystagmus.

    PubMed

    Engelken, E J; Stevens, K W; Enderle, J D

    1991-01-01

    An adaptive nonlinear digital filter has been designed for the analysis of an eye-movement signal called nystagmus. Nystagmus is a bi-phasic signal consisting of a sequence of tracking eye movements called "slow-phase" interspersed with brief, high-velocity refixation movements called "fast-phase." The objective of the analysis is to separate the nystagmus signal into its fast- and slow-phase components. Specifically, the goal is to produce an evenly sampled estimate of slow-phase velocity (SPV) and an estimate of the peak fast-phase velocity. Classically this has been done using pattern recognition methods that exploit the fact that the fast-phase is a relatively short duration, high-velocity movement compared to the slow-phase. Unfortunately, these velocity and duration differences do not reliably separate the slow- and fast-phases under all conditions, especially when the signal is noisy. We have designed and built an adaptive nonlinear digital filter that easily outperforms the more complex pattern recognition algorithms. This new filter, called an Adaptive Asymmetrically Trimmed-Mean (AATM) filter, works under the assumption that, on the average, the eyes spend more time in slow-phase than in fast-phase. Thus, in any given data segment, most of the data samples are slow-phase samples. By analyzing the amplitude distribution of the data samples in the segment we can determine which of these samples are slow-phase. We used computer generated nystagmus signals contaminated with 3 levels of noise to evaluate the filter. The filter parameters were then optimized using Monte Carlo procedures producing an extremely robust analysis method.

  19. Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer

    NASA Astrophysics Data System (ADS)

    Huang, S.-Y.; Wung, T.-C.; Fuh, A. Y.-G.; Yeh, H.-C.; Huang, C.-Y.; Ma, C.-M.; Huang, S.-C.; Mo, T.-S.; Lee, C.-R.

    2009-12-01

    This work presents an electro- and photo-controllable spatial filter that is based on a liquid crystal (LC) film with a photoconductive layer. The controllable spatial filter can be formed because of the controllability of the photoelectro-induced screen effect of the space charge in the LC cell. An applied dc voltage or incident pumped intensity can be controlled to enable different spatial distributions of the diffraction pattern of the target object to be selected for filtering by the LC cell, such that various reconstructed images can be obtained. A simulation using Fourier analysis is developed, and its results agree closely with experimental results. Additionally, the LC spatial filter has the extra advantage of controllable low or high filtering functions: they are controlled by switching the configuration between normally black and normally white modes.

  20. Envelope analysis with a genetic algorithm-based adaptive filter bank for bearing fault detection.

    PubMed

    Kang, Myeongsu; Kim, Jaeyoung; Choi, Byeong-Keun; Kim, Jong-Myon

    2015-07-01

    This paper proposes a fault detection methodology for bearings using envelope analysis with a genetic algorithm (GA)-based adaptive filter bank. Although a bandpass filter cooperates with envelope analysis for early identification of bearing defects, no general consensus has been reached as to which passband is optimal. This study explores the impact of various passbands specified by the GA in terms of a residual frequency components-to-defect frequency components ratio, which evaluates the degree of defectiveness in bearings and finally outputs an optimal passband for reliable bearing fault detection.

  1. The application of dummy noise adaptive Kalman filter in underwater navigation

    NASA Astrophysics Data System (ADS)

    Li, Song; Zhang, Chun-Hua; Luan, Jingde

    2011-10-01

    The track of underwater target is easy to be affected by the various by the various factors, which will cause poor performance in Kalman filter with the error in the state and measure model. In order to solve the situation, a method is provided with dummy noise compensative technology. Dummy noise is added to state and measure model artificially, and then the question can be solved by the adaptive Kalman filter with unknown time-changed statistical character. The simulation result of underwater navigation proves the algorithm is effective.

  2. ATLID receiving spatial and spectral filtering units: design and associated performances

    NASA Astrophysics Data System (ADS)

    Vaché, Maxime; de Saint Seine, Diego; Leblay, Pierrick; Hélière, Arnaud; Pereira Do Carmo, João.; Berlioz, Philippe; Archer, Julien

    2015-09-01

    ATLID (ATmospheric LIDar) is one of the four key instruments of EarthCARE (Earth Clouds, Aerosols and Radiations Explorer) satellite. It is a program of and funded by the European Space Agency and under prime contractorship of Airbus Defence and Space. ATLID is dedicated to the understanding of aerosols and clouds contribution to earth climate. It is an atmospheric LIDAR that measures the emitted 354.8nm ultraviolet laser which is backscattered by the atmosphere. The molecules and the particles have different optical signatures and can consequently be distinguished thanks to polarization analyses and spectral filtering of the backscattered signal. The following optical units of ATLID receiver chain directly contribute to this function : after ATLID afocal telescope, the CAS-OA, the Optical Assembly of the Co Alignment Sensor, samples and images the beam on the CAS sensor in order to optimize the alignment of transmitting and receiving telescopes. The beam goes through the BF sub-assemblies, the Blocking Filter which has two filtering functions: (1) spatial with the ERO-BF, which is a Kepler afocal spatial filtering module that defines the instrument field of view and blocks the background and straylight out of the useful field of view; (2) spectral with the ERO-EFO, the Entrance Filtering Optic, which is mainly composed of a very narrow bandpass filter with a high rejection factor. This filter rejects the background from the useful signal and contributes to increase the signal-to-noise ratio. The EFO also allows an on-ground adjustment of the orientation of the linear polarization of the input beam. After filtering and polarization adjustment, the beam is injected in several optical fibers and transported to the instrument detectors. This last transport function is done by the FCA, the Fiber Coupler Assembly. This paper presents the flight models of the previously described units, details the opto-mechanical design, and reviews the main achieved performances with a

  3. Contrasting patterns of receptive field plasticity in the hippocampus and the entorhinal cortex: an adaptive filtering approach.

    PubMed

    Frank, Loren M; Eden, Uri T; Solo, Victor; Wilson, Matthew A; Brown, Emery N

    2002-05-01

    Neural receptive fields are frequently plastic: a neural response to a stimulus can change over time as a result of experience. We developed an adaptive point process filtering algorithm that allowed us to estimate the dynamics of both the spatial receptive field (spatial intensity function) and the interspike interval structure (temporal intensity function) of neural spike trains on a millisecond time scale without binning over time or space. We applied this algorithm to both simulated data and recordings of putative excitatory neurons from the CA1 region of the hippocampus and the deep layers of the entorhinal cortex (EC) of awake, behaving rats. Our simulation results demonstrate that the algorithm accurately tracks simultaneous changes in the spatial and temporal structure of the spike train. When we applied the algorithm to experimental data, we found consistent patterns of plasticity in the spatial and temporal intensity functions of both CA1 and deep EC neurons. These patterns tended to be opposite in sign, in that the spatial intensity functions of CA1 neurons showed a consistent increase over time, whereas those of deep EC neurons tended to decrease, and the temporal intensity functions of CA1 neurons showed a consistent increase only in the "theta" (75-150 msec) region, whereas those of deep EC neurons decreased in the region between 20 and 75 msec. In addition, the minority of deep EC neurons whose spatial intensity functions increased in area over time fired in a significantly more spatially specific manner than non-increasing deep EC neurons. We hypothesize that this subset of deep EC neurons may receive more direct input from CA1 and may be part of a neural circuit that transmits information about the animal's location to the neocortex.

  4. Modified Log-LMS adaptive filter with low signal distortion for biomedical applications.

    PubMed

    Jiao, Yuzhong; Cheung, Rex Y P; Mok, Mark P C

    2012-01-01

    Life signals from human body, e.g. heartbeat or electrocardiography (ECG), are usually weak and susceptible to external noise and interference. Adaptive filter is a good tool to reduce the influence of ambient noise/interference on the life signals. Least mean squares (LMS) algorithm, as one of most popular adaptive algorithms for active noise cancellation (ANC) by adaptive filtering, has the advantage of easy implementation. In order to further decrease the complexity of LMS algorithm based adaptive filter, a Log-LMS algorithm was proposed, which quantized signals by the function of log2. The algorithm can replace multipliers by simple shifting. However, both LMS algorithm and Log-LMS algorithm have the disadvantage of serious signal distortion in biomedical applications. In this paper, a modified Log-LMS algorithm is presented, which divides the convergence process into two different stages, and utilizes different quantization method in each stage. Two scenarios of biomedical applications are used for analysis, 1) using stethoscope in emergence medical helicopter and 2) measuring ECG under power line interference. The simulated results show that the modified algorithm can achieve fast convergence and low signal distortion in processing periodic life signals.

  5. Adaptive filtering and feed-forward control for suppression of vibration and jitter

    NASA Astrophysics Data System (ADS)

    Anderson, Eric H.; Blankinship, Ross L.; Fowler, Leslie P.; Glaese, Roger M.; Janzen, Paul C.

    2007-04-01

    This paper describes the use of adaptive filtering to control vibration and optical jitter. Adaptive filtering is a class of signal processing techniques developed over the last several decades and applied since to applications ranging from communications to image processing. Basic concepts in adaptive filtering and feedforward control are reviewed. A series of examples in vibration, motion and jitter control, including cryocoolers, ground-based active optics systems, flight motion simulators, wind turbines and airborne optical beam control systems, illustrates the effectiveness of the adaptive methods. These applications make use of information and signals that originate from system disturbances and minimize the correlations between disturbance information and error and performance measures. The examples incorporate a variety of disturbance types including periodic, multi-tonal, broadband stationary and non-stationary. Control effectiveness with slowly-varying narrowband disturbances originating from cryocoolers can be extraordinary, reaching 60 dB of reduction or rejection. In other cases, performance improvements are only 30-50%, but such reductions effectively complement feedback servo performance in many applications.

  6. An adaptive panoramic filter bank as a qualitative model of the filtering system of the cochlea: the peculiarities in linear and nonlinear mode.

    PubMed

    Stasiunas, Antanas; Verikas, Antanas; Bacauskiene, Marija; Miliauskas, Rimvydas

    2012-03-01

    Outer hair cells in the cochlea of the ear, together with the local structures of the basilar membrane, reticular lamina and tectorial membrane constitute the adaptive primary filters (PF) of the second order. We used them for designing a serial-parallel signal filtering system. We determined a rational number of the PF included in Gaussian channels of the system, summation weights of the output signals, and distribution of the PF along the basilar membrane. A Gaussian panoramic filter bank each channel of which consists of five PF is presented as an example. The properties of the PF, the channel and the filter bank operating in the linear and nonlinear modes are determined during adaptation and under efferent control. The results suggest that application of biological filtering principles can be useful for designing cochlear implants with new speech encoding strategies.

  7. Variation in coastal Antarctic microbial community composition at sub-mesoscale: spatial distance or environmental filtering?

    PubMed

    Moreno-Pino, Mario; De la Iglesia, Rodrigo; Valdivia, Nelson; Henríquez-Castilo, Carlos; Galán, Alexander; Díez, Beatriz; Trefault, Nicole

    2016-07-01

    Spatial environmental heterogeneity influences diversity of organisms at different scales. Environmental filtering suggests that local environmental conditions provide habitat-specific scenarios for niche requirements, ultimately determining the composition of local communities. In this work, we analyze the spatial variation of microbial communities across environmental gradients of sea surface temperature, salinity and photosynthetically active radiation and spatial distance in Fildes Bay, King George Island, Antarctica. We hypothesize that environmental filters are the main control of the spatial variation of these communities. Thus, strong relationships between community composition and environmental variation and weak relationships between community composition and spatial distance are expected. Combining physical characterization of the water column, cell counts by flow cytometry, small ribosomal subunit genes fingerprinting and next generation sequencing, we contrast the abundance and composition of photosynthetic eukaryotes and heterotrophic bacterial local communities at a submesoscale. Our results indicate that the strength of the environmental controls differed markedly between eukaryotes and bacterial communities. Whereas eukaryotic photosynthetic assemblages responded weakly to environmental variability, bacteria respond promptly to fine-scale environmental changes in this polar marine system.

  8. Neural nets for aligning optical components in harsh environments: Beam smoothing spatial filter as an example

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Krasowski, Michael J.

    1991-01-01

    The goal is to develop an approach to automating the alignment and adjustment of optical measurement, visualization, inspection, and control systems. Classical controls, expert systems, and neural networks are three approaches to automating the alignment of an optical system. Neural networks were chosen for this project and the judgements that led to this decision are presented. Neural networks were used to automate the alignment of the ubiquitous laser-beam-smoothing spatial filter. The results and future plans of the project are presented.

  9. An Adaptive Non-Local-Means Filter for Real-Time MR-Thermometry.

    PubMed

    Zachiu, Cornel; Ries, Mario; Moonen, Chrit; de Senneville, Baudouin Denis

    2017-04-01

    Proton resonance frequency shift-based magnetic resonance thermometry is a currently used technique for monitoring temperature during targeted thermal therapies. However, in order to provide temperature updates with very short latency times, fast MR acquisition schemes are usually employed, which in turn might lead to noisy temperature measurements. This will, in general, have a direct impact on therapy control and endpoint detection. In this paper, we address this problem through an improved non-local filtering technique applied on the temperature images. Compared with previous non-local filtering methods, the proposed approach considers not only spatial information but also exploits temporal redundancies. The method is fully automatic and designed to improve the precision of the temperature measurements while at the same time maintaining output accuracy. In addition, the implementation was optimized in order to ensure real-time availability of the temperature measurements while having a minimal impact on latency. The method was validated in three complementary experiments: a simulation, an ex-vivo and an in-vivo study. Compared to the original non-local means filter and two other previously employed temperature filtering methods, the proposed approach shows considerable improvement in both accuracy and precision of the filtered data. Together with the low computational demands of the numerical scheme, the proposed filtering technique shows great potential for improving temperature measurements during real-time MR thermometry dedicated to targeted thermal therapies.

  10. Adaptive spatially dependent weighting scheme for tomosynthesis reconstruction

    NASA Astrophysics Data System (ADS)

    Levakhina, Yulia; Duschka, Robert; Vogt, Florian; Barkhausen, JOErg; Buzug, Thorsten M.

    2012-03-01

    Digital Tomosynthesis (DT) is an x-ray limited-angle imaging technique. An accurate image reconstruction in tomosynthesis is a challenging task due to the violation of the tomographic sufficiency conditions. A classical "shift-and-add" algorithm (or simple backprojection) suffers from blurring artifacts, produced by structures located above and below the plane of interest. The artifact problem becomes even more prominent in the presence of materials and tissues with a high x-ray attenuation, such as bones, microcalcifications or metal. The focus of the current work is on reduction of ghosting artifacts produced by bones in the musculoskeletal tomosynthesis. A novel dissimilarity concept and a modified backprojection with an adaptive spatially dependent weighting scheme (ωBP) are proposed. Simulated data of software phantom, a structured hardware phantom and a human hand raw-data acquired with a Siemens Mammomat Inspiration tomosynthesis system were reconstructed using conventional backprojection algorithm and the new ωBP-algorithm. The comparison of the results to the non-weighted case demonstrates the potential of the proposed weighted backprojection to reduce the blurring artifacts in musculoskeletal DT. The proposed weighting scheme is not limited to the tomosynthesis limitedangle geometry. It can also be adapted for Computed Tomography (CT) and included in iterative reconstruction algorithms (e.g. SART).

  11. Efficiency enhancement of RELAP/PANBOX using adaptive spatial kinetics

    SciTech Connect

    Jackson, C.J.; Cacuci, D.G.; Finnemann, H.B.

    1996-12-31

    The coupled RELAP/PANBOX code system was developed to analyze more accurately those pressurized water reactor (PWR) plant transients in which the core neutron flux distribution changes significantly in time. Examples of such transients are those initiated by steam-line breaks and rapid boron dilution events. On the other hand, instances may occur during long thermal-hydraulic transients when the neutron flux shape varies slowly in time. During such slow transients, a one-dimensional (1-D) model in the axial direction or a point-kinetics model, rather than a three-dimensional (3-D) one, would suffice to calculate the power distribution. To switch between 3-D, 1-D, and/or point-kinetics models, it is very advantageous to generate the respective 1-D and/or point-kinetics parameters automatically and internally within the code. In this paper, the authors describe the features of an adaptive spatial kinetics algorithm that performs the switching process between 3-D and 1-D and/or point-kinetics models according to the physical phenomena underlying the specific plant transient under investigation. The adaptive algorithm has been implemented as a module of the core simulation package PANBOX and therefore does not disturb the subroutines that couple PANBOX to RELAP.

  12. Fast unsupervised Bayesian image segmentation with adaptive spatial regularisation.

    PubMed

    Pereyra, Marcelo; McLaughlin, Stephen

    2017-03-15

    This paper presents a new Bayesian estimation technique for hidden Potts-Markov random fields with unknown regularisation parameters, with application to fast unsupervised K-class image segmentation. The technique is derived by first removing the regularisation parameter from the Bayesian model by marginalisation, followed by a small-variance-asymptotic (SVA) analysis in which the spatial regularisation and the integer-constrained terms of the Potts model are decoupled. The evaluation of this SVA Bayesian estimator is then relaxed into a problem that can be computed efficiently by iteratively solving a convex total-variation denoising problem and a least-squares clustering (K-means) problem, both of which can be solved straightforwardly, even in high-dimensions, and with parallel computing techniques. This leads to a fast fully unsupervised Bayesian image segmentation methodology in which the strength of the spatial regularisation is adapted automatically to the observed image during the inference procedure, and that can be easily applied in large 2D and 3D scenarios or in applications requiring low computing times. Experimental results on synthetic and real images, as well as extensive comparisons with state-ofthe- art algorithms, confirm that the proposed methodology offer extremely fast convergence and produces accurate segmentation results, with the important additional advantage of self-adjusting regularisation parameters.

  13. Adapting a truly nonlinear filter to the ocean acoustic inverse problem

    NASA Astrophysics Data System (ADS)

    Ganse, Andrew A.; Odom, Robert I.

    2005-04-01

    Nonlinear inverse problems including the ocean acoustic problem have been solved by Monte Carlo, locally-linear, and filter based techniques such as the Extended Kalman Filter (EKF). While these techniques do provide statistical information about the solution (e.g., mean and variance), each suffers from inherent limitations in their approach to nonlinear problems. Monte Carlo techniques are expensive to compute and do not contribute to intuitive interpretation of a problem, and locally-linear techniques (including the EKF) are limited by the multimodal objective landscape of nonlinear problems. A truly nonlinear filter, based on recent work in nonlinear tracking, estimates state information for a nonlinear problem in continual measurement updates and is adapted to solving nonlinear inverse problems. Additional terms derived from the system's state PDF are added to the mean and covariance of the solution to address the nonlinearities of the problem, and overall the technique offers improved performance in nonlinear inversion. [Work supported by ONR.

  14. Design of a nonlinear adaptive filter for suppression of shuttle pilot-induced oscillation tendencies

    NASA Technical Reports Server (NTRS)

    Smith, J. W.; Edwards, J. W.

    1980-01-01

    Analysis of a longitudinal pilot-induced oscillation (PIO) experienced just prior to touchdown on the final flight of the space shuttle's approach landing tests indicated that the source of the problem was a combination of poor basic handling qualities aggravated by time delays through the digital flight control computer and rate limiting of the elevator actuators due to high pilot gain. A nonlinear PIO suppression (PIOS) filter was designed and developed to alleviate the vehicle's PIO tendencies by reducing the gain in the command path. From analytical and simulator studies it was shown that the PIOS filter, in an adaptive fashion, can attenuate the command path gain without adding phase lag to the system. With the pitch attitude loop of a simulated shuttle model closed, the PIOS filter increased the gain margin by a factor of about two.

  15. Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images.

    PubMed

    Bamber, J C; Daft, C

    1986-01-01

    Current medical ultrasonic scanning instrumentation permits the display of fine image detail (speckle) which does not transfer useful information but degrades the apparent low contrast resolution in the image. An adaptive two-dimensional filter has been developed which uses local features of image texture to recognize and maximally low-pass filter those parts of the image which correspond to fully developed speckle, while substantially preserving information associated with resolved-object structure. A first implementation of the filter is described which uses the ratio of the local variance and the local mean as the speckle recognition feature. Preliminary results of applying this form of display processing to medical ultrasound images are very encouraging; it appears that the visual perception of features such as small discrete structures, subtle fluctuations in mean echo level and changes in image texture may be enhanced relative to that for unprocessed images.

  16. Robust respiration rate estimation using adaptive Kalman filtering with textile ECG sensor and accelerometer.

    PubMed

    Lepine, Nicholas N; Tajima, Takuro; Ogasawara, Takayuki; Kasahara, Ryoichi; Koizumi, Hiroshi; Lepine, Nicholas N; Tajima, Takuro; Ogasawara, Takayuki; Kasahara, Ryoichi; Koizumi, Hiroshi; Koizumi, Hiroshi; Ogasawara, Takayuki; Tajima, Takuro; Kasahara, Ryoichi; Lepine, Nicholas N

    2016-08-01

    An adaptive Kalman filter-based fusion algorithm capable of estimating respiration rate for unobtrusive respiratory monitoring is proposed. Using both signal characteristics and a priori information, the Kalman filter is adaptively optimized to improve accuracy. Furthermore, the system is able to combine the respiration-related signals extracted from a textile ECG sensor and an accelerometer to create a single robust measurement. We measured derived respiratory rates and, when compared to a reference, found root-mean-square error of 2.11 breaths-per-minute (BrPM) while lying down, 2.30 BrPM while sitting, 5.97 BrPM while walking, and 5.98 BrPM while running. These results demonstrate that the proposed system is applicable to unobtrusive monitoring for various applications.

  17. Adaptive filtering and maximum entropy spectra with application to changes in atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Penland, Cecile; Ghil, Michael; Weickmann, Klaus M.

    1991-01-01

    The spectral resolution and statistical significance of a harmonic analysis obtained by low-order MEM can be improved by subjecting the data to an adaptive filter. This adaptive filter consists of projecting the data onto the leading temporal empirical orthogonal functions obtained from singular spectrum analysis (SSA). The combined SSA-MEM method is applied both to a synthetic time series and a time series of AAM data. The procedure is very effective when the background noise is white and less so when the background noise is red. The latter case obtains in the AAM data. Nevertheless, reliable evidence for intraseasonal and interannual oscillations in AAM is detected. The interannual periods include a quasi-biennial one and an LF one, of 5 years, both related to the El Nino/Southern Oscillation. In the intraseasonal band, separate oscillations of about 48.5 and 51 days are ascertained.

  18. Adaptive control of a flexible beam using least square lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Montgomery, R. C.

    1983-01-01

    This paper presents an indirect adaptive control scheme for the control of flexible structures using recursive least square lattice filters. The identification scheme uses lattice filters which provide an on-line estimate of the number of modes, mode shapes and modal amplitudes. These modes are coupled and a transformation to decouple them in order to obtain the natural modes is presented. The decoupled modal amplitude time series are then used in an equation error identification scheme to identify the model parameters in an autoregressive moving average (ARMA) form. The control is based on modal pole placement scheme with the objective of vibration suppression. The control gains are calculated based on the identified ARMA parameters. Before using the identified parameters for control, detailed testing and validation procedures are carried out on the identified parameters. The full adaptive control scheme is demonstrated using the simulation for the 12 foot free-free beam apparatus at NASA Langley Research Center.

  19. Simulation of underresolved turbulent flows by adaptive filtering using the high order discontinuous Galerkin spectral element method

    NASA Astrophysics Data System (ADS)

    Flad, David; Beck, Andrea; Munz, Claus-Dieter

    2016-05-01

    Scale-resolving simulations of turbulent flows in complex domains demand accurate and efficient numerical schemes, as well as geometrical flexibility. For underresolved situations, the avoidance of aliasing errors is a strong demand for stability. For continuous and discontinuous Galerkin schemes, an effective way to prevent aliasing errors is to increase the quadrature precision of the projection operator to account for the non-linearity of the operands (polynomial dealiasing, overintegration). But this increases the computational costs extensively. In this work, we present a novel spatially and temporally adaptive dealiasing strategy by projection filtering. We show this to be more efficient for underresolved turbulence than the classical overintegration strategy. For this novel approach, we discuss the implementation strategy and the indicator details, show its accuracy and efficiency for a decaying homogeneous isotropic turbulence and the transitional Taylor-Green vortex and compare it to the original overintegration approach and a state of the art variational multi-scale eddy viscosity formulation.

  20. Performance characteristics of an adaptive controller based on least-mean-square filters

    NASA Technical Reports Server (NTRS)

    Mehta, R. S.; Merhav, S. J.

    1986-01-01

    A closed-loop, adaptive-control scheme that uses a least-mean-square filter as the controller model is presented, along with simulation results that demonstrate the excellent robustness of this scheme. It is shown that the scheme adapts very well to unknown plants, even those that are marginally stable, responds appropriately to changes in plant parameters, and is not unduly affected by additive noise. A heuristic argument for the conditions necessary for convergence is presented. Potential applications and extensions of the scheme are also discussed.

  1. Performance characteristics of an adaptive controller based on least-mean-square filters

    NASA Technical Reports Server (NTRS)

    Mehta, Rajiv S.; Merhav, Shmuel J.

    1986-01-01

    A closed loop, adaptive control scheme that uses a least mean square filter as the controller model is presented, along with simulation results that demonstrate the excellent robustness of this scheme. It is shown that the scheme adapts very well to unknown plants, even those that are marginally stable, responds appropriately to changes in plant parameters, and is not unduly affected by additive noise. A heuristic argument for the conditions necessary for convergence is presented. Potential applications and extensions of the scheme are also discussed.

  2. Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum

    PubMed Central

    Wilson, Emma D.; Assaf, Tareq; Pearson, Martin J.; Rossiter, Jonathan M.; Dean, Paul; Anderson, Sean R.; Porrill, John

    2015-01-01

    The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks. PMID:26257638

  3. Adaptive filtering of biodynamic stick feedthrough in manipulation tasks on board moving platforms

    NASA Technical Reports Server (NTRS)

    Velger, M.; Grunwald, A.; Merhav, S.

    1986-01-01

    A novel approach to suppress the effects of biodynamic interference is presented. An adaptive noise canceling technique is employed for substracting the platform motion correlated components from the control stick output. The effects of biodynamic interference and its suppression by adaptive noise cancellation has been evaluated in a series of tracking tasks performed in a moving base simulator. Simulator motions were in pitch, roll and combined pitch and roll. Human operator performance was assessed from the mean square values of the tracking error and the control activity. The tracking error and the total stick output signal were found to increase significantly with motion and to diminish substantially with adaptive noise cancellation, thus providing a considerable improvement in tracking performance under conditions in which platform motion were present. The adaptive filter was found to cause a significant increase in the cross-over frequency and decrease in the phase margin. Moreover, the adaptive filter was found to significantly improve the human operator visual motor response. This improvement is manifested as an increased human operator gain, a smaller time delay and lower pilot workload.

  4. Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum.

    PubMed

    Wilson, Emma D; Assaf, Tareq; Pearson, Martin J; Rossiter, Jonathan M; Dean, Paul; Anderson, Sean R; Porrill, John

    2015-01-01

    The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks.

  5. Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.

    PubMed

    Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi

    2011-04-01

    Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system.

  6. Fuzzy adaptive interacting multiple model nonlinear filter for integrated navigation sensor fusion.

    PubMed

    Tseng, Chien-Hao; Chang, Chih-Wen; Jwo, Dah-Jing

    2011-01-01

    In this paper, the application of the fuzzy interacting multiple model unscented Kalman filter (FUZZY-IMMUKF) approach to integrated navigation processing for the maneuvering vehicle is presented. The unscented Kalman filter (UKF) employs a set of sigma points through deterministic sampling, such that a linearization process is not necessary, and therefore the errors caused by linearization as in the traditional extended Kalman filter (EKF) can be avoided. The nonlinear filters naturally suffer, to some extent, the same problem as the EKF for which the uncertainty of the process noise and measurement noise will degrade the performance. As a structural adaptation (model switching) mechanism, the interacting multiple model (IMM), which describes a set of switching models, can be utilized for determining the adequate value of process noise covariance. The fuzzy logic adaptive system (FLAS) is employed to determine the lower and upper bounds of the system noise through the fuzzy inference system (FIS). The resulting sensor fusion strategy can efficiently deal with the nonlinear problem for the vehicle navigation. The proposed FUZZY-IMMUKF algorithm shows remarkable improvement in the navigation estimation accuracy as compared to the relatively conventional approaches such as the UKF and IMMUKF.

  7. Design of adaptive control systems by means of self-adjusting transversal filters

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.

    1986-01-01

    The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.

  8. Hyperspectral Image Classification with Spatial Filtering and ℓ2,1 Norm

    PubMed Central

    Li, Hao; Li, Chang; Zhang, Cong; Liu, Zhe; Liu, Chengyin

    2017-01-01

    Recently, the sparse representation based classification methods have received particular attention in the classification of hyperspectral imagery. However, current sparse representation based classification models have not considered all the test pixels simultaneously. In this paper, we propose a hyperspectral classification method with spatial filtering and ℓ2,1 norm (SFL) that can deal with all the test pixels simultaneously. The ℓ2,1 norm regularization is used to extract relevant training samples among the whole training data set with joint sparsity. In addition, the ℓ2,1 norm loss function is adopted to make it robust for samples that deviate significantly from the rest of the samples. Moreover, to take the spatial information into consideration, a spatial filtering step is implemented where all the training and testing samples are spatially averaged with its nearest neighbors. Furthermore, the non-negative constraint is added to the sparse representation matrix motivated by hyperspectral unmixing. Finally, the alternating direction method of multipliers is used to solve SFL. Experiments on real hyperspectral images demonstrate that the proposed SFL method can obtain better classification performance than some other popular classifiers.

  9. Data assimilation for unsaturated flow models with restart adaptive probabilistic collocation based Kalman filter

    NASA Astrophysics Data System (ADS)

    Man, Jun; Li, Weixuan; Zeng, Lingzao; Wu, Laosheng

    2016-06-01

    The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a sufficiently large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the polynomial chaos expansion (PCE) to represent and propagate the uncertainties in parameters and states. However, PCKF suffers from the so-called "curse of dimensionality". Its computational cost increases drastically with the increasing number of parameters and system nonlinearity. Furthermore, PCKF may fail to provide accurate estimations due to the joint updating scheme for strongly nonlinear models. Motivated by recent developments in uncertainty quantification and EnKF, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problems. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected at each assimilation step; the "restart" scheme is utilized to eliminate the inconsistency between updated model parameters and states variables. The performance of RAPCKF is systematically tested with numerical cases of unsaturated flow models. It is shown that the adaptive approach and restart scheme can significantly improve the performance of PCKF. Moreover, RAPCKF has been demonstrated to be more efficient than EnKF with the same computational cost.

  10. Adaptive filter based two-probe noise suppression system for transient evoked otoacoustic emission detection.

    PubMed

    Subotić, Miško; Šarić, Zoran; Jovičić, Slobodan T

    2012-03-01

    Transient otoacoustic emission (TEOAE) is a method widely used in clinical practice for assessment of hearing quality. The main problem in TEOAE detection is its much lower level than the level of environmental and biological noise. While the environmental noise level can be controlled, the biological noise can be only reduced by appropriate signal processing. This paper presents a new two-probe preprocessing TEOAE system for suppression of the biological noise by adaptive filtering. The system records biological noises in both ears and applies a specific adaptive filtering approach for suppression of biological noise in the ear canal with TEOAE. The adaptive filtering approach includes robust sign error LMS algorithm, stimuli response summation according to the derived non-linear response (DNLR) technique, subtraction of the estimated TEOAE signal and residual noise suppression. The proposed TEOAE detection system is tested by three quality measures: signal-to-noise ratio (S/N), reproducibility of TEOAE, and measurement time. The maximal TEOAE detection improvement is dependent on the coherence function between biological noise in left and right ears. The experimental results show maximal improvement of 7 dB in S/N, improvement in reproducibility near 40% and reduction in duration of TEOAE measurement of over 30%.

  11. Experimental evidence of the spatial coherence moiré and the filtering of classes of radiator pairs.

    PubMed

    Castaneda, Roman; Usuga-Castaneda, Mario; Herrera-Ramírez, Jorge

    2007-08-01

    Evidence of the physical existence of the spatial coherence moiré is obtained by confronting numerical results with experimental results of spatially partial interference. Although it was performed for two particular cases, the results reveal a general behavior of the optical fields in any state of spatial coherence. Moreover, the study of the spatial coherence moiré deals with a new type of filtering, named filtering of classes of radiator pairs, which allows changing the power spectrum at the observation plane by modulating the complex degree of spatial coherence, without altering the power distribution at the aperture plane or introducing conventional spatial filters. This new procedure can optimize some technological applications of actual interest, as the beam shaping for instance.

  12. Fine-granularity and spatially-adaptive regularization for projection-based image deblurring.

    PubMed

    Li, Xin

    2011-04-01

    This paper studies two classes of regularization strategies to achieve an improved tradeoff between image recovery and noise suppression in projection-based image deblurring. The first is based on a simple fact that r-times Landweber iteration leads to a fixed level of regularization, which allows us to achieve fine-granularity control of projection-based iterative deblurring by varying the value r. The regularization behavior is explained by using the theory of Lagrangian multiplier for variational schemes. The second class of regularization strategy is based on the observation that various regularized filters can be viewed as nonexpansive mappings in the metric space. A deeper understanding about different regularization filters can be gained by probing into their asymptotic behavior--the fixed point of nonexpansive mappings. By making an analogy to the states of matter in statistical physics, we can observe that different image structures (smooth regions, regular edges and textures) correspond to different fixed points of nonexpansive mappings when the temperature(regularization) parameter varies. Such an analogy motivates us to propose a deterministic annealing based approach toward spatial adaptation in projection-based image deblurring. Significant performance improvements over the current state-of-the-art schemes have been observed in our experiments, which substantiates the effectiveness of the proposed regularization strategies.

  13. The use of impedance matching capillaries for reducing resonance in rosette infrasonic spatial filters.

    PubMed

    Hedlin, Michael A H; Alcoverro, Benoit

    2005-04-01

    Rosette spatial filters are used at International Monitoring System infrasound array sites to reduce noise due to atmospheric turbulence. A rosette filter consists of several clusters, or rosettes, of low-impedance inlets. Acoustic energy entering each rosette of inlets is summed, acoustically, at a secondary summing manifold. Acoustic energy from the secondary manifolds are summed acoustically at a primary summing manifold before entering the microbarometer. Although rosette filters have been found to be effective at reducing infrasonic noise across a broad frequency band, resonance inside the filters reduces the effectiveness of the filters at high frequencies. This paper presents theoretical and observational evidence that the resonance inside these filters that is seen below 10 Hz is due to reflections occuring at impedance discontinuities at the primary and secondary summing manifolds. Resonance involving reflections at the inlets amplifies noise levels at frequencies above 10 Hz. This paper further reports results from theoretical and observational tests of impedance matching capillaries for removing the resonance problem. Almost total removal of resonant energy below 5 Hz was found by placing impedance matching capillaries adjacent to the secondary summing manifolds in the pipes leading to the primary summing manifold and the microbarometer. Theory and recorded data indicate that capillaries with resistance equal to the characteristic impedance of the pipe connecting the secondary and primary summing manifolds suppresses resonance but does not degrade the reception of acoustic signals. Capillaries at the inlets can be used to remove resonant energy at higher frequencies but are found to be less effective due to the high frequency of this energy outside the frequency band of interest.

  14. Electrostatic Introduction Theory Based Spatial Filtering Method for Solid Particle Velocity Measurement

    NASA Astrophysics Data System (ADS)

    Xu, Chuanlong; Tang, Guanghua; Zhou, Bin; Yang, Daoye; Zhang, Jianyong; Wang, Shimin

    2007-06-01

    Electrostatic induction theory based spatial filtering method for particle velocity measurement has the advantages of the simplicity of measurement system and of the convenience of data processing. In this paper, the relationship between solid particle velocity and the power spectrum of the output signal of the electrostatic senor was derived theoretically. And the effects of the length of the electrode, the thickness of the dielectric pipe and its length on the spatial filtering characteristics of the electrostatic sensor were investigated numerically using finite element method. Additionally, as for the roughness and the difficult determination of the peak frequency fmax of the power spectrum characteristics curve of the output signal, a wavelet analysis based filtering method was adopted to smooth the curve, which can determine peak frequency fmax accurately. Finally, the velocity measurement method was applied in a dense phase pneumatic conveying system under high pressure, and the experimental results show that the system repeatability is within ±4% over the gas superficial velocity range of 8.63-18.62 m/s for particle concentration range 0.067-0.130 m3/m3.

  15. Lenticular array for spatial filtering velocimetry of laser speckles from solid surfaces.

    PubMed

    Jakobsen, Michael L; Hanson, Steen G

    2004-08-20

    We present a low-cost optical design for the detection of speckle translation, which can provide measures of in-plane translation or the rotation of a solid structure. A nonspecular target surface is illuminated with coherent light. The scattered light is propagated through an optical arrangement that has been particularly designed for the type of mechanical measurand for which the sensor is intended. The dynamics of the speckle field that arise from the target surface are projected onto a lenticular array, constituting a narrow spatial bandpass filter for the speckle spectrum. The filter provides access to the full phase information of the temporal quasi-sinusoidal intensity output; thus differential arrangements of photodetectors can provide suppression of low-frequency oscillations and higher harmonics, and the direction of the speckle translation can be determined. The spatial filter of the sensor is characterized, and the precision of the sensor when it is integrated with an electronic zero-crossing-detection processor is investigated. The best measurement accuracy obtained at constant velocity is 1% at 1.6-mm translation; the relative standard deviation decreases with the square root of the distance traveled.

  16. Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering

    SciTech Connect

    Ott, Dino; Oddershede, Lene B.; Reihani, S. Nader S.

    2014-05-15

    In dual-beam optical tweezers, the accuracy of position and force measurements is often compromised by crosstalk between the two detected signals, this crosstalk leading to systematic and significant errors on the measured forces and distances. This is true both for dual-beam optical traps where the splitting of the two traps is done by polarization optics and for dual optical traps constructed by other methods, e.g., holographic tweezers. If the two traps are orthogonally polarized, most often crosstalk is minimized by inserting polarization optics in front of the detector; however, this method is not perfect because of the de-polarization of the trapping beam introduced by the required high numerical aperture optics. Here we present a simple and easy-to-implement method to efficiently eliminate crosstalk. The method is based on spatial filtering by simply inserting a pinhole at the correct position and is highly compatible with standard back focal plane photodiode based detection of position and force. Our spatial filtering method reduces crosstalk up to five times better than polarization filtering alone. The effectiveness is dependent on pinhole size and distance between the traps and is here quantified experimentally and reproduced by theoretical modeling. The method here proposed will improve the accuracy of force-distance measurements, e.g., of single molecules, performed by dual-beam optical traps and hence give much more scientific value for the experimental efforts.

  17. Optimal synthesis of double-phase computer generated holograms using a phase-only spatial light modulator with grating filter.

    PubMed

    Song, Hoon; Sung, Geeyoung; Choi, Sujin; Won, Kanghee; Lee, Hong-Seok; Kim, Hwi

    2012-12-31

    We propose an optical system for synthesizing double-phase complex computer-generated holograms using a phase-only spatial light modulator and a phase grating filter. Two separated areas of the phase-only spatial light modulator are optically superposed by 4-f configuration with an optimally designed grating filter to synthesize arbitrary complex optical field distributions. The tolerances related to misalignment factors are analyzed, and the optimal synthesis method of double-phase computer-generated holograms is described.

  18. Ship detection for high resolution optical imagery with adaptive target filter

    NASA Astrophysics Data System (ADS)

    Ju, Hongbin

    2015-10-01

    Ship detection is important due to both its civil and military use. In this paper, we propose a novel ship detection method, Adaptive Target Filter (ATF), for high resolution optical imagery. The proposed framework can be grouped into two stages, where in the first stage, a test image is densely divided into different detection windows and each window is transformed to a feature vector in its feature space. The Histograms of Oriented Gradients (HOG) is accumulated as a basic feature descriptor. In the second stage, the proposed ATF highlights all the ship regions and suppresses the undesired backgrounds adaptively. Each detection window is assigned a score, which represents the degree of the window belonging to a certain ship category. The ATF can be adaptively obtained by the weighted Logistic Regression (WLR) according to the distribution of backgrounds and targets of the input image. The main innovation of our method is that we only need to collect positive training samples to build the filter, while the negative training samples are adaptively generated by the input image. This is different to other classification method such as Support Vector Machine (SVM) and Logistic Regression (LR), which need to collect both positive and negative training samples. The experimental result on 1-m high resolution optical images shows the proposed method achieves a desired ship detection performance with higher quality and robustness than other methods, e.g., SVM and LR.

  19. Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators

    DOE PAGES

    Stuart, Andrew M.; Shukla, Abhishek; Sanz-Alonso, Daniel; ...

    2016-02-23

    In the context of filtering chaotic dynamical systems it is well-known that partial observations, if sufficiently informative, can be used to control the inherent uncertainty due to chaos. The purpose of this paper is to investigate, both theoretically and numerically, conditions on the observations of chaotic systems under which they can be accurately filtered. In particular, we highlight the advantage of adaptive observation operators over fixed ones. The Lorenz ’96 model is used to exemplify our findings. Here, we consider discrete-time and continuous-time observations in our theoretical developments. We prove that, for fixed observation operator, the 3DVAR filter can recovermore » the system state within a neighbourhood determined by the size of the observational noise. It is required that a sufficiently large proportion of the state vector is observed, and an explicit form for such sufficient fixed observation operator is given. Numerical experiments, where the data is incorporated by use of the 3DVAR and extended Kalman filters, suggest that less informative fixed operators than given by our theory can still lead to accurate signal reconstruction. Adaptive observation operators are then studied numerically; we show that, for carefully chosen adaptive observation operators, the proportion of the state vector that needs to be observed is drastically smaller than with a fixed observation operator. Indeed, we show that the number of state coordinates that need to be observed may even be significantly smaller than the total number of positive Lyapunov exponents of the underlying system.« less

  20. Two-Dimensional Planar Lightwave Circuit Integrated Spatial Filter Array and Method of Use Thereof

    NASA Technical Reports Server (NTRS)

    Ai, Jun (Inventor); Dimov, Fedor (Inventor)

    2015-01-01

    A large coherent two-dimensional (2D) spatial filter array (SFA), 30 by 30 or larger, is produced by coupling a 2D planar lightwave circuit (PLC) array with a pair of lenslet arrays at the input and output side. The 2D PLC array is produced by stacking a plurality of chips, each chip with a plural number of straight PLC waveguides. A pupil array is coated onto the focal plane of the lenslet array. The PLC waveguides are produced by deposition of a plural number of silica layers on the silicon wafer, followed by photolithography and reactive ion etching (RIE) processes. A plural number of mode filters are included in the silica-on-silicon waveguide such that the PLC waveguide is transparent to the fundamental mode but higher order modes are attenuated by 40 dB or more.

  1. Investigation of a spatial-temporal filter in the case of the processing of broadband signals

    NASA Astrophysics Data System (ADS)

    Danilevskii, L. N.; Domanov, Iu. A.; Korobko, O. V.

    1985-02-01

    A method for the synthesis of spatial-temporal filters is proposed which assures suppression of broadband signals from prescribed directions. The proposed method makes possible a considerable reduction in the number of necessary mathematical operations in the computation of weight coefficients as compared with previous methods. This is achieved by means of a simplified procedure of zero control for the linear antenna array for the selected frequency components, as well as by means of an independent computation of the weight coefficients on each element. The structure of the filter can be analyzed on the basis of the dependence of the suppression depth of noise sources on the value of the delay element and the number of taps on an array element.

  2. Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation

    SciTech Connect

    Gershgorin, B.; Harlim, J. Majda, A.J.

    2010-01-01

    The filtering and predictive skill for turbulent signals is often limited by the lack of information about the true dynamics of the system and by our inability to resolve the assumed dynamics with sufficiently high resolution using the current computing power. The standard approach is to use a simple yet rich family of constant parameters to account for model errors through parameterization. This approach can have significant skill by fitting the parameters to some statistical feature of the true signal; however in the context of real-time prediction, such a strategy performs poorly when intermittent transitions to instability occur. Alternatively, we need a set of dynamic parameters. One strategy for estimating parameters on the fly is a stochastic parameter estimation through partial observations of the true signal. In this paper, we extend our newly developed stochastic parameter estimation strategy, the Stochastic Parameterization Extended Kalman Filter (SPEKF), to filtering sparsely observed spatially extended turbulent systems which exhibit abrupt stability transition from time to time despite a stable average behavior. For our primary numerical example, we consider a turbulent system of externally forced barotropic Rossby waves with instability introduced through intermittent negative damping. We find high filtering skill of SPEKF applied to this toy model even in the case of very sparse observations (with only 15 out of the 105 grid points observed) and with unspecified external forcing and damping. Additive and multiplicative bias corrections are used to learn the unknown features of the true dynamics from observations. We also present a comprehensive study of predictive skill in the one-mode context including the robustness toward variation of stochastic parameters, imperfect initial conditions and finite ensemble effect. Furthermore, the proposed stochastic parameter estimation scheme applied to the same spatially extended Rossby wave system demonstrates

  3. Adaptive Particle Filter for Nonparametric Estimation with Measurement Uncertainty in Wireless Sensor Networks.

    PubMed

    Li, Xiaofan; Zhao, Yubin; Zhang, Sha; Fan, Xiaopeng

    2016-05-30

    Particle filters (PFs) are widely used for nonlinear signal processing in wireless sensor networks (WSNs). However, the measurement uncertainty makes the WSN observations unreliable to the actual case and also degrades the estimation accuracy of the PFs. In addition to the algorithm design, few works focus on improving the likelihood calculation method, since it can be pre-assumed by a given distribution model. In this paper, we propose a novel PF method, which is based on a new likelihood fusion method for WSNs and can further improve the estimation performance. We firstly use a dynamic Gaussian model to describe the nonparametric features of the measurement uncertainty. Then, we propose a likelihood adaptation method that employs the prior information and a belief factor to reduce the measurement noise. The optimal belief factor is attained by deriving the minimum Kullback-Leibler divergence. The likelihood adaptation method can be integrated into any PFs, and we use our method to develop three versions of adaptive PFs for a target tracking system using wireless sensor network. The simulation and experimental results demonstrate that our likelihood adaptation method has greatly improved the estimation performance of PFs in a high noise environment. In addition, the adaptive PFs are highly adaptable to the environment without imposing computational complexity.

  4. Impact of spatial filters during sensor selection in a visual P300 brain-computer interface.

    PubMed

    Rivet, B; Cecotti, H; Maby, E; Mattout, J

    2012-01-01

    A challenge in designing a Brain-Computer Interface (BCI) is the choice of the channels, e.g. the most relevant sensors. Although a setup with many sensors can be more efficient for the detection of Event-Related Potential (ERP) like the P300, it is relevant to consider only a low number of sensors for a commercial or clinical BCI application. Indeed, a reduced number of sensors can naturally increase the user comfort by reducing the time required for the installation of the EEG (electroencephalogram) cap and can decrease the price of the device. In this study, the influence of spatial filtering during the process of sensor selection is addressed. Two of them maximize the Signal to Signal-plus-Noise Ratio (SSNR) for the different sensor subsets while the third one maximizes the differences between the averaged P300 waveform and the non P300 waveform. We show that the locations of the most relevant sensors subsets for the detection of the P300 are highly dependent on the use of spatial filtering. Applied on data from 20 healthy subjects, this study proves that subsets obtained where sensors are suppressed in relation to their individual SSNR are less efficient than when sensors are suppressed in relation to their contribution once the different selected sensors are combined for enhancing the signal. In other words, it highlights the difference between estimating the P300 projection on the scalp and evaluating the more efficient sensor subsets for a P300-BCI. Finally, this study explores the issue of channel commonality across subjects. The results support the conclusion that spatial filters during the sensor selection procedure allow selecting better sensors for a visual P300 Brain-Computer Interface.

  5. Neural-network-directed alignment of optical systems using the laser-beam spatial filter as an example

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Krasowski, Michael J.; Weiland, Kenneth E.

    1993-01-01

    This report describes an effort at NASA Lewis Research Center to use artificial neural networks to automate the alignment and control of optical measurement systems. Specifically, it addresses the use of commercially available neural network software and hardware to direct alignments of the common laser-beam-smoothing spatial filter. The report presents a general approach for designing alignment records and combining these into training sets to teach optical alignment functions to neural networks and discusses the use of these training sets to train several types of neural networks. Neural network configurations used include the adaptive resonance network, the back-propagation-trained network, and the counter-propagation network. This work shows that neural networks can be used to produce robust sequencers. These sequencers can learn by example to execute the step-by-step procedures of optical alignment and also can learn adaptively to correct for environmentally induced misalignment. The long-range objective is to use neural networks to automate the alignment and operation of optical measurement systems in remote, harsh, or dangerous aerospace environments. This work also shows that when neural networks are trained by a human operator, training sets should be recorded, training should be executed, and testing should be done in a manner that does not depend on intellectual judgments of the human operator.

  6. Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks

    NASA Astrophysics Data System (ADS)

    Sbarufatti, Claudio; Corbetta, Matteo; Giglio, Marco; Cadini, Francesco

    2017-03-01

    Lithium-Ion rechargeable batteries are widespread power sources with applications to consumer electronics, electrical vehicles, unmanned aerial and spatial vehicles, etc. The failure to supply the required power levels may lead to severe safety and economical consequences. Thus, in view of the implementation of adequate maintenance strategies, the development of diagnostic and prognostic tools for monitoring the state of health of the batteries and predicting their remaining useful life is becoming a crucial task. Here, we propose a method for predicting the end of discharge of Li-Ion batteries, which stems from the combination of particle filters with radial basis function neural networks. The major innovation lies in the fact that the radial basis function model is adaptively trained on-line, i.e., its parameters are identified in real time by the particle filter as new observations of the battery terminal voltage become available. By doing so, the prognostic algorithm achieves the flexibility needed to provide sound end-of-discharge time predictions as the charge-discharge cycles progress, even in presence of anomalous behaviors due to failures or unforeseen operating conditions. The method is demonstrated with reference to actual Li-Ion battery discharge data contained in the prognostics data repository of the NASA Ames Research Center database.

  7. Performance Enhancement for a GPS Vector-Tracking Loop Utilizing an Adaptive Iterated Extended Kalman Filter

    PubMed Central

    Chen, Xiyuan; Wang, Xiying; Xu, Yuan

    2014-01-01

    This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively. PMID:25502124

  8. High performance 3D adaptive filtering for DSP based portable medical imaging systems

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable medical imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. Despite their constraints on power, size and cost, portable imaging devices must still deliver high quality images. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often cannot be run with sufficient performance on a portable platform. In recent years, advanced multicore digital signal processors (DSP) have been developed that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms on a portable platform. In this study, the performance of a 3D adaptive filtering algorithm on a DSP is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec with an Ultrasound 3D probe. Relative performance and power is addressed between a reference PC (Quad Core CPU) and a TMS320C6678 DSP from Texas Instruments.

  9. Automatic nevi segmentation using adaptive mean shift filters and feature analysis

    NASA Astrophysics Data System (ADS)

    King, Michael A.; Lee, Tim K.; Atkins, M. Stella; McLean, David I.

    2004-05-01

    A novel automatic method of segmenting nevi is explained and analyzed in this paper. The first step in nevi segmentation is to iteratively apply an adaptive mean shift filter to form clusters in the image and to remove noise. The goal of this step is to remove differences in skin intensity and hairs from the image, while still preserving the shape of nevi present on the skin. Each iteration of the mean shift filter changes pixel values to be a weighted average of pixels in its neighborhood. Some new extensions to the mean shift filter are proposed to allow for better segmentation of nevi from the skin. The kernel, that describes how the pixels in its neighborhood will be averaged, is adaptive; the shape of the kernel is a function of the local histogram. After initial clustering, a simple merging of clusters is done. Finally, clusters that are local minima are found and analyzed to determine which clusters are nevi. When this algorithm was compared to an assessment by an expert dermatologist, it showed a sensitivity rate and diagnostic accuracy of over 95% on the test set, for nevi larger than 1.5mm.

  10. Improving the response of accelerometers for automotive applications by using LMS adaptive filters.

    PubMed

    Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg; Fernández, Eduardo

    2010-01-01

    In this paper, the least-mean-squares (LMS) algorithm was used to eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications. This kind of accelerometer is designed to be easily mounted in hard to reach places on vehicles under test, and they usually feature ranges from 50 to 2,000 g (where is the gravitational acceleration, 9.81 m/s(2)) and frequency responses to 3,000 Hz or higher, with DC response, durable cables, reliable performance and relatively low cost. However, here we show that the response of the sensor under test had a lot of noise and we carried out the signal processing stage by using both conventional and optimal adaptive filtering. Usually, designers have to build their specific analog and digital signal processing circuits, and this fact increases considerably the cost of the entire sensor system and the results are not always satisfactory, because the relevant signal is sometimes buried in a broad-band noise background where the unwanted information and the relevant signal sometimes share a very similar frequency band. Thus, in order to deal with this problem, here we used the LMS adaptive filtering algorithm and compare it with others based on the kind of filters that are typically used for automotive applications. The experimental results are satisfactory.

  11. Performance enhancement for a GPS vector-tracking loop utilizing an adaptive iterated extended Kalman filter.

    PubMed

    Chen, Xiyuan; Wang, Xiying; Xu, Yuan

    2014-12-09

    This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively.

  12. Data assimilation for unsaturated flow models with restart adaptive probabilistic collocation based Kalman filter

    SciTech Connect

    Man, Jun; Li, Weixuan; Zeng, Lingzao; Wu, Laosheng

    2016-06-01

    The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a relatively large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the polynomial chaos to approximate the original system. In this way, the sampling error can be reduced. However, PCKF suffers from the so-called "curse of dimensionality". When the system nonlinearity is strong and number of parameters is large, PCKF could be even more computationally expensive than EnKF. Motivated by most recent developments in uncertainty quantification, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problems. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected. The "restart" technology is used to eliminate the inconsistency between model parameters and states. The performance of RAPCKF is tested with numerical cases of unsaturated flow models. It is shown that RAPCKF is more efficient than EnKF with the same computational cost. Compared with the traditional PCKF, the RAPCKF is more applicable in strongly nonlinear and high dimensional problems.

  13. Application of an automatic adaptive filter for Heart Rate Variability analysis.

    PubMed

    Dos Santos, Laurita; Barroso, Joaquim J; Macau, Elbert E N; de Godoy, Moacir F

    2013-12-01

    The presence of artifacts and noise effects in temporal series can seriously hinder the analysis of Heart Rate Variability (HRV). The tachograms should be carefully edited to avoid erroneous interpretations. The physician should carefully analyze the tachogram in order to detect points that might be associated with unlikely biophysical behavior and manually eliminate them from the data series. However, this is a time-consuming procedure. To facilitate the pre-analysis of the tachogram, this study uses a method of data filtering based on an adaptive filter which is quickly able to analyze a large amount of data. The method was applied to 229 time series from a database of patients with different clinical conditions: premature newborns, full-term newborns, healthy young adults, adults submitted to a very-low-calorie diet, and adults under preoperative evaluation for coronary artery bypass grafting. This proposed method is compared to the demanding conventional method, wherein the corrections of occasional ectopic beats and artifacts are usually manually executed by a specialist. To confirm the reliability of the results obtained, correlation coefficients were calculated, using both automatic and manual methods of ltering for each HRV index selected. A high correlation between the results was found, with highly significant p values, for all cases, except for some parameters analyzed in the premature newborns group, an issue that is thoroughly discussed. The authors concluded that the proposed adaptive filtering method helps to efficiently handle the task of editing temporal series for HRV analysis.

  14. Superconducting Magnetometry for Cardiovascular Studies and AN Application of Adaptive Filtering.

    NASA Astrophysics Data System (ADS)

    Leifer, Mark Curtis

    Sensitive magnetic detectors utilizing Superconducting Quantum Interference Devices (SQUID's) have been developed and used for studying the cardiovascular system. The theory of magnetic detection of cardiac currents is discussed, and new experimental data supporting the validity of the theory is presented. Measurements on both humans and dogs, in both healthy and diseased states, are presented using the new technique, which is termed vector magnetocardiography. In the next section, a new type of superconducting magnetometer with a room temperature pickup is analyzed, and techniques for optimizing its sensitivity to low-frequency sub-microamp currents are presented. Performance of the actual device displays significantly improved sensitivity in this frequency range, and the ability to measure currents in intact, in vivo biological fibers. The final section reviews the theoretical operation of a digital self-optimizing filter, and presents a four-channel software implementation of the system. The application of the adaptive filter to enhancement of geomagnetic signals for earthquake forecasting is discussed, and the adaptive filter is shown to outperform existing techniques in suppressing noise from geomagnetic records.

  15. Automated detection scheme of architectural distortion in mammograms using adaptive Gabor filter

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Ruriha; Teramoto, Atsushi; Matsubara, Tomoko; Fujita, Hiroshi

    2013-03-01

    Breast cancer is a serious health concern for all women. Computer-aided detection for mammography has been used for detecting mass and micro-calcification. However, there are challenges regarding the automated detection of the architectural distortion about the sensitivity. In this study, we propose a novel automated method for detecting architectural distortion. Our method consists of the analysis of the mammary gland structure, detection of the distorted region, and reduction of false positive results. We developed the adaptive Gabor filter for analyzing the mammary gland structure that decides filter parameters depending on the thickness of the gland structure. As for post-processing, healthy mammary glands that run from the nipple to the chest wall are eliminated by angle analysis. Moreover, background mammary glands are removed based on the intensity output image obtained from adaptive Gabor filter. The distorted region of the mammary gland is then detected as an initial candidate using a concentration index followed by binarization and labeling. False positives in the initial candidate are eliminated using 23 types of characteristic features and a support vector machine. In the experiments, we compared the automated detection results with interpretations by a radiologist using 50 cases (200 images) from the Digital Database of Screening Mammography (DDSM). As a result, true positive rate was 82.72%, and the number of false positive per image was 1.39. There results indicate that the proposed method may be useful for detecting architectural distortion in mammograms.

  16. Spatially-resolved stellar populations of nearby galaxies in multi-filter surveys

    NASA Astrophysics Data System (ADS)

    San Roman, Izaskun; Cenarro, A. Javier; Díaz-García, Luis A.; López-Sanjuan, Carlos; Varela, Jesús; J-PLUS Team

    2017-03-01

    We have developed a new technique using a novel approach to analyze unresolved stellar populations of spatially-resolved galaxies based on large sky multi-filter surveys. We have successfully applied this technique to 42 early-type galaxies in the ALHAMBRA survey. In agreement with some previous work, we find the gradients of early-type galaxies to be on average slightly positive in age and negative in metallicity at large radii (R > Reff). These mildly negative metallicity gradients support a merging scenario. The positive/flat age gradients could support a more uniformly distributed star formation or even secondary burst triggered by mergers.

  17. Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films

    SciTech Connect

    Lin, T.-H.; Fuh, Andy Y.-G.

    2005-07-04

    This work demonstrates the feasibility of exploiting the photoisomerization effect in azo-dye-doped cholesteric liquid crystal (DDCLC) films with a concomitant decline of the phase transition temperature from the cholesteric to an isotropic phase (T{sub Ch-I}) as a spatial filter. The fabrication depends on the fact that the various intensities of the diffracted orders are responsible for the various degrees of transparency associated with the photoisomerized DDCLC film. High- and low-pass images in the Fourier optical signal process can be simultaneously observed via reflected and transmitted signals, respectively. A simulation is also performed, and the results are consistent closely with experimental data.

  18. Maximum-Likelihood Adaptive Filter for Partially Observed Boolean Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Imani, Mahdi; Braga-Neto, Ulisses M.

    2017-01-01

    Partially-observed Boolean dynamical systems (POBDS) are a general class of nonlinear models with application in estimation and control of Boolean processes based on noisy and incomplete measurements. The optimal minimum mean square error (MMSE) algorithms for POBDS state estimation, namely, the Boolean Kalman filter (BKF) and Boolean Kalman smoother (BKS), are intractable in the case of large systems, due to computational and memory requirements. To address this, we propose approximate MMSE filtering and smoothing algorithms based on the auxiliary particle filter (APF) method from sequential Monte-Carlo theory. These algorithms are used jointly with maximum-likelihood (ML) methods for simultaneous state and parameter estimation in POBDS models. In the presence of continuous parameters, ML estimation is performed using the expectation-maximization (EM) algorithm; we develop for this purpose a special smoother which reduces the computational complexity of the EM algorithm. The resulting particle-based adaptive filter is applied to a POBDS model of Boolean gene regulatory networks observed through noisy RNA-Seq time series data, and performance is assessed through a series of numerical experiments using the well-known cell cycle gene regulatory model.

  19. Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations, and filters.

    SciTech Connect

    Ray, Jaideep; Lefantzi, Sophia; Najm, Habib N.; Kennedy, Christopher A.

    2006-01-01

    Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differential equations (PDEs) solved on large computational domains by clustering mesh points only where required by large gradients. Previous work has indicated that fourth-order convergence can be achieved on such meshes by using a suitable combination of high-order discretizations, interpolations, and filters and can deliver significant computational savings over conventional second-order methods at engineering error tolerances. In this paper, we explore the interactions between the errors introduced by discretizations, interpolations and filters. We develop general expressions for high-order discretizations, interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order SAMR implementation. We derive a formulation for the necessary interpolation order for given discretization and derivative orders. We also illustrate this order relationship empirically using one and two-dimensional model problems on refined meshes. We study the observed increase in accuracy with increasing interpolation order. We also examine the empirically observed order of convergence, as the effective resolution of the mesh is increased by successively adding levels of refinement, with different orders of discretization, interpolation, or filtering.

  20. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter

    PubMed Central

    Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang

    2017-01-01

    In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the “Velocity and Attitude” matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment. PMID:28098829

  1. Fuzzy adaptive strong tracking scaled unscented Kalman filter for initial alignment of large misalignment angles

    NASA Astrophysics Data System (ADS)

    Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui

    2016-07-01

    In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.

  2. Fuzzy adaptive strong tracking scaled unscented Kalman filter for initial alignment of large misalignment angles.

    PubMed

    Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui

    2016-07-01

    In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.

  3. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter.

    PubMed

    Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang

    2017-01-14

    In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the "Velocity and Attitude" matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.

  4. A stabilized dual Kalman filter for adaptive tracking of brain-computer interface decoding parameters.

    PubMed

    Zhang, Yin; Chase, Steve M

    2013-01-01

    Neural prosthetics are a promising technology for alleviating paralysis by actuating devices directly from the intention to move. Typical implementations of these devices require a calibration session to define decoding parameters that map recorded neural activity into movement of the device. However, a major factor limiting the clinical deployment of this technology is stability: with fixed decoding parameters, control of the prosthetic device has been shown to degrade over time. Here we apply a dual estimation procedure to adaptively capture changes in decoding parameters. In simulation, we find that our stabilized dual Kalman filter can run autonomously for hundreds of thousands of trials with little change in performance. Further, when we apply our algorithm off-line to estimate arm trajectories from neural data recorded over five consecutive days, we find that it outperforms a static Kalman filter, even when it is re-calibrated at the beginning of each day.

  5. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters.

    PubMed

    Daugman, J G

    1985-07-01

    Two-dimensional spatial linear filters are constrained by general uncertainty relations that limit their attainable information resolution for orientation, spatial frequency, and two-dimensional (2D) spatial position. The theoretical lower limit for the joint entropy, or uncertainty, of these variables is achieved by an optimal 2D filter family whose spatial weighting functions are generated by exponentiated bivariate second-order polynomials with complex coefficients, the elliptic generalization of the one-dimensional elementary functions proposed in Gabor's famous theory of communication [J. Inst. Electr. Eng. 93, 429 (1946)]. The set includes filters with various orientation bandwidths, spatial-frequency bandwidths, and spatial dimensions, favoring the extraction of various kinds of information from an image. Each such filter occupies an irreducible quantal volume (corresponding to an independent datum) in a four-dimensional information hyperspace whose axes are interpretable as 2D visual space, orientation, and spatial frequency, and thus such a filter set could subserve an optimally efficient sampling of these variables. Evidence is presented that the 2D receptive-field profiles of simple cells in mammalian visual cortex are well described by members of this optimal 2D filter family, and thus such visual neurons could be said to optimize the general uncertainty relations for joint 2D-spatial-2D-spectral information resolution. The variety of their receptive-field dimensions and orientation and spatial-frequency bandwidths, and the correlations among these, reveal several underlying constraints, particularly in width/length aspect ratio and principal axis organization, suggesting a polar division of labor in occupying the quantal volumes of information hyperspace.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Dynamic Pilot Channel Transmission with Adaptive Receive Filter Configuration for Cognitive Radio System

    NASA Astrophysics Data System (ADS)

    Sakata, Ren; Tomioka, Tazuko; Kobayashi, Takahiro

    When a cognitive radio system dynamically utilizes a frequency band, channel control information must be communicated over the network in order for the currently available carrier frequencies to be shared. In order to keep efficient spectrum utilization, this control information should also be dynamically transmitted through channels such as cognitive pilot channels based on the channel conditions. If transmitters dynamically select carrier frequencies, receivers must receive the control signal without knowledge of its carrier frequencies. A novel scheme called differential code parallel transmission (DCPT) enables receivers to receive low-rate information without any knowledge of the carrier frequency. The transmitter simultaneously transmits two signals whose carrier frequencies are separated by a predefined value. The absolute values of the carrier frequencies can be varied. When the receiver receives the DCPT signal, it multiplies the signal by a frequency-shifted version of itself; this yields a DC component that represents the data signal, which is then demodulated. However, the multiplication process results in the noise power being squared, necessitating high received signal power. In this paper, to realize a bandpass filter that passes only DCPT signals of unknown frequency and that suppresses noise and interference at other frequencies, a DCPT-adaptive bandpass filter (ABF) that employs an adaptive equalizer is proposed. In the training phase, the received signal is the filter input and the frequency-shifted signal is the training input. Then, the filter is trained to pass the higher-frequency signal of the two DCPT signals. The performance of DCPT-ABF is evaluated through computer simulations. We find that DCPT-ABF operates successfully even under strong interference.

  7. Automatic balancing of AMB systems using plural notch filter and adaptive synchronous compensation

    NASA Astrophysics Data System (ADS)

    Xu, Xiangbo; Chen, Shao; Zhang, Yanan

    2016-07-01

    To achieve automatic balancing in active magnetic bearing (AMB) system, a control method with notch filters and synchronous compensators is widely employed. However, the control precision is significantly affected by the synchronous compensation error, which is caused by parameter errors and variations of the power amplifiers. Furthermore, the computation effort may become intolerable if a 4-degree-of-freedom (dof) AMB system is studied. To solve these problems, an adaptive automatic balancing control method in the AMB system is presented in this study. Firstly, a 4-dof radial AMB system is described and analyzed. To simplify the controller design, the 4-dof dynamic equations are transferred into two plural functions related to translation and rotation, respectively. Next, to achieve automatic balancing of the AMB system, two synchronous equations are formed. Solution of them leads to a control strategy based on notch filters and feedforward controllers with an inverse function of the power amplifier. The feedforward controllers can be simplified as synchronous phases and amplitudes. Then, a plural phase-shift notch filter which can identify the synchronous components in 2-dof motions is formulated, and an adaptive compensation method that can form two closed-loop systems to tune the synchronous amplitude of the feedforward controller and the phase of the plural notch filter is proposed. Finally, the proposed control strategy is verified by both simulations and experiments on a test rig of magnetically suspended control moment gyro. The results indicate that this method can fulfill the automatic balancing of the AMB system with a light computational load.

  8. Flicker adaptation or superimposition raises the apparent spatial frequency of coarse test gratings.

    PubMed

    Kaneko, Sae; Giaschi, Deborah; Anstis, Stuart

    2015-03-01

    Independent channels respond to both the spatial and temporal characteristics of visual stimuli. Gratings <3 cycles per degree (cpd) are sensed by transient channels that prefer intermittent stimulation, while gratings >3 cpd are sensed by sustained channels that prefer steady stimulation. From this we predict that adaptation to a spatially uniform flickering field will selectively adapt the transient channels and raise the apparent spatial frequency of coarse sinusoidal gratings. Observers adapted to a spatially uniform field whose upper or lower half was steady and whose other half was flickering. They then adjusted the spatial frequency of a stationary test (matching) grating on the previously unmodulated half field until it matched the apparent spatial frequency of a grating falling on the previously flickering half field. The adapting field flickered at 8 Hz and the spatial frequency of the gratings was varied in octave steps from 0.25 to 16 cpd. As predicted, adapting to flicker raised the apparent spatial frequency of the test gratings. The aftereffect reached a peak of 11% between 0.5 and 1 cpd and disappeared above 4 cpd. We also observed that superimposed 10 Hz luminance flicker raised the apparent spatial frequency of 0.5 cpd test gratings. The effect was not seen with slower flicker or finer test gratings. Altogether, our study suggests that apparent spatial frequency is determined by the balance between transient and sustained channels and that an imbalance between the channels caused by flicker can alter spatial frequency perception.

  9. Accounting for spatial correlations of the observation errors with Ensemble Kalman filters

    NASA Astrophysics Data System (ADS)

    Cosme, Emmanuel; Jean-Michel, Brankart; Clément, Ubelmann; Jacques, Verron; Pierre, Brasseur

    2013-04-01

    The standard Kalman filter observational update requires the inversion of the innovation error covariance matrix, what is often impractical. Most implementations of the Ensemble Kalman filter circumvent this difficulty assuming the diagonality of the observation error covariance matrix, what makes the analysis calculation numerically tractable. However, when observation errors are actually correlated spatially, such hypothesis leads to an inappropriate use of observations. Experiments show that the analysis state error variances yielded by the Ensemble Kalman filter can be severely underestimated. In this presentation, we describe a parameterization of the observation error covariance matrix which preserves its diagonal shape, but represents a simple first order autoregressive correlation structure of the observation errors. This parameterization is based upon an augmentation of the observation vector with gradients of observations. Numerical applications to ocean altimetry show the detrimental effects of specifying a diagonal matrix when observations errors are correlated, and how the new parameterization not only removes the detrimental effects of correlations, but also makes use of these correlations to improve the data assimilation products.

  10. Bayesian spatial filters for the extraction of source signals, a study in the peripheral nerve

    PubMed Central

    Tang, Yuang; Durand, Dominique M.

    2015-01-01

    The ability to extract physiological source signals to control various prosthetics offer tremendous therapeutic potential to improve the quality of life for patients suffering from motor disabilities. Regardless of the modality, recordings of physiological source signals are contaminated with noise and interference along with crosstalk between the sources. These impediments render the task of isolating potential physiological source signals for control difficult. In this paper, a novel Bayesian Source Filter for signal Extraction (BSFE) algorithm for extracting physiological source signals for control is presented. The BSFE algorithm is based on the source localization method Champagne and constructs spatial filters using Bayesian methods that simultaneously maximize the signal to noise ratio of the recovered source signal of interest while minimizing crosstalk interference between sources. When evaluated over peripheral nerve recordings obtained in-vivo, the algorithm achieved the highest signal to noise interference ratio (>7.00±3.45dB) amongst the group of methodologies compared with average correlation between the extracted source signal and the original source signal > 0.93. The results support the efficacy of the BSFE algorithm for extracting source signals from the peripheral nerve or as a pre-filtering stage for BCI methods. PMID:24608686

  11. Spatial filter based light-sheet laser interference technique for three-dimensional nanolithography

    SciTech Connect

    Mohan, Kavya; Mondal, Partha Pratim

    2015-02-23

    We propose a laser interference technique for the fabrication of 3D nano-structures. This is possible with the introduction of specialized spatial filter in a 2π cylindrical lens system (consists of two opposing cylindrical lens sharing a common geometrical focus). The spatial filter at the back-aperture of a cylindrical lens gives rise to multiple light-sheet patterns. Two such interfering counter-propagating light-sheet pattern result in periodic 3D nano-pillar structure. This technique overcomes the existing slow point-by-point scanning, and has the ability to pattern selectively over a large volume. The proposed technique allows large-scale fabrication of periodic structures. Computational study shows a field-of-view (patterning volume) of approximately 12.2 mm{sup 3} with the pillar-size of 80 nm and inter-pillar separation of 180 nm. Applications are in nano-waveguides, 3D nano-electronics, photonic crystals, and optical microscopy.

  12. CT image artifacts from brachytherapy seed implants: A postprocessing 3D adaptive median filter

    SciTech Connect

    Basran, Parminder S.; Robertson, Andrew; Wells, Derek

    2011-02-15

    Purpose: To design a postprocessing 3D adaptive median filter that minimizes streak artifacts and improves soft-tissue contrast in postoperative CT images of brachytherapy seed implantations. Methods: The filter works by identifying voxels that are likely streaks and estimating more reflective voxel intensity by using voxel intensities in adjacent CT slices and applying a median filter over voxels not identified as seeds. Median values are computed over a 5x5x5 mm region of interest (ROI) within the CT volume. An acrylic phantom simulating a clinical seed implant arrangement and containing nonradioactive seeds was created. Low contrast subvolumes of tissuelike material were also embedded in the phantom. Pre- and postprocessed image quality metrics were compared using the standard deviation of ROIs between the seeds, the CT numbers of low contrast ROIs embedded within the phantom, the signal to noise ratio (SNR), and the contrast to noise ratio (CNR) of the low contrast ROIs. The method was demonstrated with a clinical postimplant CT dataset. Results: After the filter was applied, the standard deviation of CT values in streak artifact regions was significantly reduced from 76.5 to 7.2 HU. Within the observable low contrast plugs, the mean of all ROI standard deviations was significantly reduced from 60.5 to 3.9 HU, SNR significantly increased from 2.3 to 22.4, and CNR significantly increased from 0.2 to 4.1 (all P<0.01). The mean CT in the low contrast plugs remained within 5 HU of the original values. Conclusion: An efficient postprocessing filter that does not require access to projection data, which can be applied irrespective of CT scan parameters has been developed, provided the slice thickness and spacing is 3 mm or less.

  13. Speech intelligibility improvements with hearing aids using bilateral and binaural adaptive multichannel Wiener filtering based noise reduction.

    PubMed

    Cornelis, Bram; Moonen, Marc; Wouters, Jan

    2012-06-01

    This paper evaluates noise reduction techniques in bilateral and binaural hearing aids. Adaptive implementations (on a real-time test platform) of the bilateral and binaural speech distortion weighted multichannel Wiener filter (SDW-MWF) and a competing bilateral fixed beamformer are evaluated. As the SDW-MWF relies on a voice activity detector (VAD), a realistic binaural VAD is also included. The test subjects (both normal hearing subjects and hearing aid users) are tested by an adaptive speech reception threshold (SRT) test in different spatial scenarios, including a realistic cafeteria scenario with nonstationary noise. The main conclusions are: (a) The binaural SDW-MWF can further improve the SRT (up to 2 dB) over the improvements achieved by bilateral algorithms, although a significant difference is only achievable if the binaural SDW-MWF uses a perfect VAD. However, in the cafeteria scenario only the binaural SDW-MWF achieves a significant SRT improvement (2.6 dB with perfect VAD, 2.2 dB with real VAD), for the group of hearing aid users. (b) There is no significant degradation when using a real VAD at the input signal-to-noise ratio (SNR) levels where the hearing aid users reach their SRT. (c) The bilateral SDW-MWF achieves no SRT improvements compared to the bilateral fixed beamformer.

  14. Wavefront phase retrieval with multi-aperture Zernike filter for atmospheric sensing and adaptive optics applications

    NASA Astrophysics Data System (ADS)

    Bordbar, Behzad; Farwell, Nathan H.; Vorontsov, Mikhail A.

    2016-09-01

    A novel scintillation resistant wavefront sensor based on a densely packed array of classical Zernike filters, referred to as the multi-aperture Zernike wavefront sensor (MAZ-WFS), is introduced and analyzed through numerical simulations. Wavefront phase reconstruction in the MAZ-WFS is performed using iterative algorithms that are optimized for phase aberration sensing in severe atmospheric turbulence conditions. The results demonstrate the potential of the MAZ-WFS for high-resolution retrieval of turbulence-induced phase aberrations in strong scintillation conditions for atmospheric sensing and adaptive optics applications.

  15. Adaptive modeling and spectral estimation of nonstationary biomedical signals based on Kalman filtering.

    PubMed

    Aboy, Mateo; Márquez, Oscar W; McNames, James; Hornero, Roberto; Trong, Tran; Goldstein, Brahm

    2005-08-01

    We describe an algorithm to estimate the instantaneous power spectral density (PSD) of nonstationary signals. The algorithm is based on a dual Kalman filter that adaptively generates an estimate of the autoregressive model parameters at each time instant. The algorithm exhibits superior PSD tracking performance in nonstationary signals than classical nonparametric methodologies, and does not assume local stationarity of the data. Furthermore, it provides better time-frequency resolution, and is robust to model mismatches. We demonstrate its usefulness by a sample application involving PSD estimation of intracranial pressure signals (ICP) from patients with traumatic brain injury (TBI).

  16. SOGI-FLL Based Adaptive Filter for DSTATCOM Under Variable Supply Frequency

    NASA Astrophysics Data System (ADS)

    Puranik, Vishal; Arya, Sabha Raj

    2016-12-01

    This paper presents an adaptive filter based on second order generalized integrator-frequency locked loop (SOGI-FLL) for distribution static compensator (DSTATCOM) operating under variable supply frequency with nonlinear load. It is observed that under variable supply frequency, the FLL provides an excellent frequency tracking performance. Necessary compensation can be provided by DSTATCOM at any frequency with the help of SOGI-FLL. The MATLAB simulink model of DSTATCOM is developed with SOGI-FLL based control algorithm and rectifier based nonlinear load. This three wire system is simulated in power factor correction and zero voltage regulation mode under variable supply frequency.

  17. Target-adaptive polarimetric synthetic aperture radar target discrimination using maximum average correlation height filters.

    PubMed

    Sadjadi, Firooz A; Mahalanobis, Abhijit

    2006-05-01

    We report the development of a technique for adaptive selection of polarization ellipse tilt and ellipticity angles such that the target separation from clutter is maximized. From the radar scattering matrix [S] and its complex components, in phase and quadrature phase, the elements of the Mueller matrix are obtained. Then, by means of polarization synthesis, the radar cross section of the radar scatters are obtained at different transmitting and receiving polarization states. By designing a maximum average correlation height filter, we derive a target versus clutter distance measure as a function of four transmit and receive polarization state angles. The results of applying this method on real synthetic aperture radar imagery indicate a set of four transmit and receive angles that lead to maximum target versus clutter discrimination. These optimum angles are different for different targets. Hence, by adaptive control of the state of polarization of polarimetric radar, one can noticeably improve the discrimination of targets from clutter.

  18. Distractors less salient than targets capture attention rather than producing non-spatial filtering costs.

    PubMed

    Koch, A Isabel; Müller, Hermann J; Zehetleitner, Michael

    2013-09-01

    Distractors that are less salient than the target evoke reaction time interference in the distractor search paradigm. Here, we investigated whether this interference indeed results from spatial attentional capture or merely from non-spatial filtering costs. Target and distractor salience was manipulated parametrically and the modulation of reaction time interference by the distance between both stimuli was taken as an indicator of attentional capture. For distractors that were less salient than the target, we found distance to be predictive of reaction time interference. Moreover, this relationship was modulated by the difference in relative salience of target and distractor: the less salient the distractor was compared to the target, the weaker was the influence of distance. These results are in accordance with the sequential sampling model of salience-based selection by Zehetleitner et al. (Zehetleitner, M., Koch, A.I., Goschy, H., Müller, H.J., 2013. Salience-based selection: Interference by distractors less salient than the target. PLoS ONE 8: e52595.). This model assumes the salience map to be computed by noisy accumulation of sensory evidence. As a result, the salience map output fluctuates around its true value and less salient locations can be denoted as most salient. A distractor less salient than the target can therefore capture attention with a certain probability. We conclude that reaction time interference by less salient distractors in the distractor search paradigm is a result of attentional capture in a proportion of trials, rather than a result of non-spatial filtering costs.

  19. Adaptive Bloom Filter: A Space-Efficient Counting Algorithm for Unpredictable Network Traffic

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoshihide; Hazeyama, Hiroaki; Kadobayashi, Youki

    The Bloom Filter (BF), a space-and-time-efficient hashcoding method, is used as one of the fundamental modules in several network processing algorithms and applications such as route lookups, cache hits, packet classification, per-flow state management or network monitoring. BF is a simple space-efficient randomized data structure used to represent a data set in order to support membership queries. However, BF generates false positives, and cannot count the number of distinct elements. A counting Bloom Filter (CBF) can count the number of distinct elements, but CBF needs more space than BF. We propose an alternative data structure of CBF, and we called this structure an Adaptive Bloom Filter (ABF). Although ABF uses the same-sized bit-vector used in BF, the number of hash functions employed by ABF is dynamically changed to record the number of appearances of a each key element. Considering the hash collisions, the multiplicity of a each key element on ABF can be estimated from the number of hash functions used to decode the membership of the each key element. Although ABF can realize the same functionality as CBF, ABF requires the same memory size as BF. We describe the construction of ABF and IABF (Improved ABF), and provide a mathematical analysis and simulation using Zipf's distribution. Finally, we show that ABF can be used for an unpredictable data set such as real network traffic.

  20. Efficiency and adaptability of the benthic methane filter at Quepos Slide cold seeps, offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Steeb, P.; Krause, S.; Linke, P.; Hensen, C.; Dale, A. W.; Nuzzo, M.; Treude, T.

    2014-11-01

    Large amounts of methane are delivered by fluids through the erosive forearc of the convergent margin offshore Costa Rica and lead to the formation of cold seeps at the sediment surface. Besides mud extrusion, numerous cold seeps are created by landslides induced by seamount subduction or fluid migration along major faults. Most of the dissolved methane reaching the seafloor at cold seeps is oxidized within the benthic microbial methane filter by anaerobic oxidation of methane (AOM). Measurements of AOM and sulfate reduction as well as numerical modeling of porewater profiles revealed a highly active and efficient benthic methane filter at Quepos Slide site; a landslide on the continental slope between the Nicoya and Osa Peninsula. Integrated areal rates of AOM ranged from 12.9 ± 6.0 to 45.2 ± 11.5 mmol m-2 d-1, with only 1 to 2.5% of the upward methane flux being released into the water column. Additionally, two parallel sediment cores from Quepos Slide were used for in vitro experiments in a recently developed Sediment-F low-Through (SLOT) system to simulate an increased fluid and methane flux from the bottom of the sediment core. The benthic methane filter revealed a high adaptability whereby the methane oxidation efficiency responded to the increased fluid flow within 150-170 days. To our knowledge, this study provides the first estimation of the natural biogeochemical response of seep sediments to changes in fluid flow.

  1. Potential of hybrid adaptive filtering in inflammatory lesion detection from capsule endoscopy images

    PubMed Central

    Charisis, Vasileios S; Hadjileontiadis, Leontios J

    2016-01-01

    A new feature extraction technique for the detection of lesions created from mucosal inflammations in Crohn’s disease, based on wireless capsule endoscopy (WCE) images processing is presented here. More specifically, a novel filtering process, namely Hybrid Adaptive Filtering (HAF), was developed for efficient extraction of lesion-related structural/textural characteristics from WCE images, by employing Genetic Algorithms to the Curvelet-based representation of images. Additionally, Differential Lacunarity (DLac) analysis was applied for feature extraction from the HAF-filtered images. The resulted scheme, namely HAF-DLac, incorporates support vector machines for robust lesion recognition performance. For the training and testing of HAF-DLac, an 800-image database was used, acquired from 13 patients who undertook WCE examinations, where the abnormal cases were grouped into mild and severe, according to the severity of the depicted lesion, for a more extensive evaluation of the performance. Experimental results, along with comparison with other related efforts, have shown that the HAF-DLac approach evidently outperforms them in the field of WCE image analysis for automated lesion detection, providing higher classification results, up to 93.8% (accuracy), 95.2% (sensitivity), 92.4% (specificity) and 92.6% (precision). The promising performance of HAF-DLac paves the way for a complete computer-aided diagnosis system that could support physicians’ clinical practice. PMID:27818583

  2. Real-time scale-adaptive correlation filters tracker with depth information to handle occlusion

    NASA Astrophysics Data System (ADS)

    Pi, Jiatian; Gu, Yuzhang; Hu, Keli; Cheng, Xiaoliu; Zhan, Yunlong; Wang, Yingguan

    2016-07-01

    In visual object tracking, occlusions significantly undermine the performance of tracking algorithms. RGB-D cameras, such as Microsoft Kinect or the related PrimeSense camera, are widely available to consumers. Great attention has been focused on exploiting depth information for object tracking in recent years. We propose an algorithm that improves the existing correlation filter-based tracker for scale-adaptive tracking. Moreover, we utilize depth information provided by the Kinect camera to handle various types of occlusions. First, the optimal location of the target is obtained by the conventional kernelized correlation filter tracker. Then, we make use of the discriminative correlation filter for scale estimation as an independent part. At last, to further improve the tracking performance under occlusions, we present a simple yet effective occlusion handling mechanism to detect occlusion and recovery. In this mechanism, cluster analysis and object segmentation by K-means method have been applied to depth data. Numerous experiments on Princeton RGB-D tracking dataset demonstrate that the proposed algorithm outperforms several state-of-the-art trackers by successfully dealing with occlusions.

  3. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal

    PubMed Central

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-01-01

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal. PMID:26512665

  4. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal.

    PubMed

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-10-23

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal.

  5. Event synchronous adaptive filter based atrial activity estimation in single-lead atrial fibrillation electrocardiograms.

    PubMed

    Lee, Jeon; Song, Mi-hye; Shin, Dong-gu; Lee, Kyoung-joung

    2012-08-01

    In this paper, an event synchronous adaptive filter (ESAF) is proposed to estimate atrial activity (AA) from a single-lead AF ECG in real time. The proposed ESAF is a kind of adaptive filter designed to have the reference fed with the impulse train synchronized with the R peak in a raw atrial fibrillation (AF) ECG and to input the timely delayed AF ECG into the primary input. To assess the performance, for ten simulated AF ECGs, the cross-correlation coefficient (ρ) and the normalized mean square error (NMSE) between estimated AAs and ten original simulated AAs were calculated and, for ten real AF ECGs, the ventricular residue (VR) in QRS interval and similarity (S) in non-QRS interval were computed. As a result, these four parameters were revealed as ρ = 0.938 ± 0.016 and NMSE = 0.243 ± 0.051 for simulated AF ECGs and VR = 1.190 ± 0.476 and S = 0.967 ± 0.041 for real AF ECGs. These results were found to be better than those of the averaged beat subtraction (ABS) method, which had been previously considered the only way to estimate AA automatically in real time. In conclusion, even with single-lead AF ECGs, the proposed method estimated AAs accurately and calculated the atrial fibrillatory frequencies, the most valuable index in AF maintenance and therapy evaluation, with a remarkably low computational cost.

  6. An adaptive filter model of cerebellar zone C3 as a basis for safe limb control?

    PubMed

    Dean, Paul; Anderson, Sean; Porrill, John; Jörntell, Henrik

    2013-11-15

    The review asks how the adaptive filter model of the cerebellum might be relevant to experimental work on zone C3, one of the most extensively studied regions of cerebellar cortex. As far as features of the cerebellar microcircuit are concerned, the model appears to fit very well with electrophysiological discoveries concerning the importance of molecular layer interneurons and their plasticity, the significance of long-term potentiation and the striking number of silent parallel fibre synapses. Regarding external connectivity and functionality, a key feature of the adaptive filter model is its use of the decorrelation algorithm, which renders it uniquely suited to problems of sensory noise cancellation. However, this capacity can be extended to the avoidance of sensory interference, by appropriate movements of, for example, the eyes in the vestibulo-ocular reflex. Avoidance becomes particularly important when painful signals are involved, and as the climbing fibre input to zone C3 is extremely responsive to nociceptive stimuli, it is proposed that one function of this zone is the avoidance of pain by, for example, adjusting movements of the body to avoid self-harm. This hypothesis appears consistent with evidence from humans and animals concerning the role of the intermediate cerebellum in classically conditioned withdrawal reflexes, but further experiments focusing on conditioned avoidance are required to test the hypothesis more stringently. The proposed architecture may also be useful for automatic self-adjusting damage avoidance in robots, an important consideration for next generation 'soft' robots designed to interact with people.

  7. An adaptive filter-based method for robust, automatic detection and frequency estimation of whistles.

    PubMed

    Johansson, A Torbjorn; White, Paul R

    2011-08-01

    This paper proposes an adaptive filter-based method for detection and frequency estimation of whistle calls, such as the calls of birds and marine mammals, which are typically analyzed in the time-frequency domain using a spectrogram. The approach taken here is based on adaptive notch filtering, which is an established technique for frequency tracking. For application to automatic whistle processing, methods for detection and improved frequency tracking through frequency crossings as well as interfering transients are developed and coupled to the frequency tracker. Background noise estimation and compensation is accomplished using order statistics and pre-whitening. Using simulated signals as well as recorded calls of marine mammals and a human whistled speech utterance, it is shown that the proposed method can detect more simultaneous whistles than two competing spectrogram-based methods while not reporting any false alarms on the example datasets. In one example, it extracts complete 1.4 and 1.8 s bottlenose dolphin whistles successfully through frequency crossings. The method performs detection and estimates frequency tracks even at high sweep rates. The algorithm is also shown to be effective on human whistled utterances.

  8. Autonomous robotic capture of non-cooperative target by adaptive extended Kalman filter based visual servo

    NASA Astrophysics Data System (ADS)

    Dong, Gangqi; Zhu, Zheng H.

    2016-05-01

    This paper presents a real-time, vision-based algorithm for the pose and motion estimation of non-cooperative targets and its application in visual servo robotic manipulator to perform autonomous capture. A hybrid approach of adaptive extended Kalman filter and photogrammetry is developed for the real-time pose and motion estimation of non-cooperative targets. Based on the pose and motion estimates, the desired pose and trajectory of end-effector is defined and the corresponding desired joint angles of the robotic manipulator are derived by inverse kinematics. A close-loop visual servo control scheme is then developed for the robotic manipulator to track, approach and capture the target. Validating experiments are designed and performed on a custom-built six degrees of freedom robotic manipulator with an eye-in-hand configuration. The experimental results demonstrate the feasibility, effectiveness and robustness of the proposed adaptive extended Kalman filter enabled pose and motion estimation and visual servo strategy.

  9. Development of Shunt-Type Three-Phase Active Power Filter with Novel Adaptive Control for Wind Generators.

    PubMed

    Chen, Ming-Hung

    2015-01-01

    This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters.

  10. Development of Shunt-Type Three-Phase Active Power Filter with Novel Adaptive Control for Wind Generators

    PubMed Central

    Chen, Ming-Hung

    2015-01-01

    This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391

  11. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

    PubMed Central

    Carmena, Jose M.

    2016-01-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to

  12. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering.

    PubMed

    Shanechi, Maryam M; Orsborn, Amy L; Carmena, Jose M

    2016-04-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain's behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user's motor intention during CLDA-a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter

  13. Similar Processes but Different Environmental Filters for Soil Bacterial and Fungal Community Composition Turnover on a Broad Spatial Scale

    PubMed Central

    Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P. A.; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel

    2014-01-01

    Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landesfilters was assessed by distance-based redundancy analysis. This study demonstrates significant community composition turnover rates for soil bacteria and fungi, which were dependent on the region. Bacterial and fungal community composition turnovers were mainly driven by environmental selection explaining from 10% to 20% of community composition variations, but spatial variables also explained 3% to 9% of total variance. These variables highlighted significant spatial autocorrelation of both communities unexplained by the environmental variables measured and could partly be explained by dispersal limitations. Although the identified filters and their hierarchy were dependent on the region and organism, selection was systematically based on a common group of environmental variables: pH, trophic resources, texture and land use. Spatial autocorrelation was also important at coarse (80 to

  14. Similar processes but different environmental filters for soil bacterial and fungal community composition turnover on a broad spatial scale.

    PubMed

    Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P A; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel

    2014-01-01

    Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landesfilters was assessed by distance-based redundancy analysis. This study demonstrates significant community composition turnover rates for soil bacteria and fungi, which were dependent on the region. Bacterial and fungal community composition turnovers were mainly driven by environmental selection explaining from 10% to 20% of community composition variations, but spatial variables also explained 3% to 9% of total variance. These variables highlighted significant spatial autocorrelation of both communities unexplained by the environmental variables measured and could partly be explained by dispersal limitations. Although the identified filters and their hierarchy were dependent on the region and organism, selection was systematically based on a common group of environmental variables: pH, trophic resources, texture and land use. Spatial autocorrelation was also important at coarse (80 to

  15. Improving the quality of reconstructed X-ray CT images of polymer gel dosimeters: zero-scan coupled with adaptive mean filtering.

    PubMed

    Kakakhel, M B; Jirasek, A; Johnston, H; Kairn, T; Trapp, J V

    2017-03-01

    This study evaluated the feasibility of combining the 'zero-scan' (ZS) X-ray computed tomography (CT) based polymer gel dosimeter (PGD) readout with adaptive mean (AM) filtering for improving the signal to noise ratio (SNR), and to compare these results with available average scan (AS) X-ray CT readout techniques. NIPAM PGD were manufactured, irradiated with 6 MV photons, CT imaged and processed in Matlab. AM filter for two iterations, with 3 × 3 and 5 × 5 pixels (kernel size), was used in two scenarios (a) the CT images were subjected to AM filtering (pre-processing) and these were further employed to generate AS and ZS gel images, and (b) the AS and ZS images were first reconstructed from the CT images and then AM filtering was carried out (post-processing). SNR was computed in an ROI of 30 × 30 for different pre and post processing cases. Results showed that the ZS technique combined with AM filtering resulted in improved SNR. Using the previously-recommended 25 images for reconstruction the ZS pre-processed protocol can give an increase of 44% and 80% in SNR for 3 × 3 and 5 × 5 kernel sizes respectively. However, post processing using both techniques and filter sizes introduced blur and a reduction in the spatial resolution. Based on this work, it is possible to recommend that the ZS method may be combined with pre-processed AM filtering using appropriate kernel size, to produce a large increase in the SNR of the reconstructed PGD images.

  16. Spatial Prediction Filtering of Acoustic Clutter and Random Noise in Medical Ultrasound Imaging.

    PubMed

    Shin, Junseob; Huang, Lianjie

    2017-02-01

    One of the major challenges in array-based medical ultrasound imaging is the image quality degradation caused by sidelobes and off-axis clutter, which is an inherent limitation of the conventional delay-and-sum (DAS) beamforming operating on a finite aperture. Ultrasound image quality is further degraded in imaging applications involving strong tissue attenuation and/or low transmit power. In order to effectively suppress acoustic clutter from off-axis targets and random noise in a robust manner, we introduce in this paper a new adaptive filtering technique called frequency-space (F-X) prediction filtering or FXPF, which was first developed in seismic imaging for random noise attenuation. Seismologists developed FXPF based on the fact that linear and quasilinear events or wavefronts in the time-space (T-X) domain are manifested as a superposition of harmonics in the frequency-space (F-X) domain, which can be predicted using an auto-regressive (AR) model. We describe the FXPF technique as a spectral estimation or a direction-of-arrival problem, and explain why adaptation of this technique into medical ultrasound imaging is beneficial. We apply our new technique to simulated and tissue-mimicking phantom data. Our results demonstrate that FXPF achieves CNR improvements of 26% in simulated noise-free anechoic cyst, 109% in simulated anechoic cyst contaminated with random noise of 15 dB SNR, and 93% for experimental anechoic cyst from a custom-made tissue-mimicking phantom. Our findings suggest that FXPF is an effective technique to enhance ultrasound image contrast and has potential to improve the visualization of clinically important anatomical structures and diagnosis of diseased conditions.

  17. Memory efficient and constant time 2D-recursive spatial averaging filter for embedded implementations

    NASA Astrophysics Data System (ADS)

    Gan, Qifeng; Seoud, Lama; Ben Tahar, Houssem; Langlois, J. M. Pierre

    2016-04-01

    Spatial Averaging Filters (SAF) are extensively used in image processing for image smoothing and denoising. Their latest implementations have already achieved constant time computational complexity regardless of kernel size. However, all the existing O(1) algorithms require additional memory for temporary data storage. In order to minimize memory usage in embedded systems, we introduce a new two-dimensional recursive SAF. It uses previous resultant pixel values along both rows and columns to calculate the current one. It can achieve constant time computational complexity without using any additional memory usage. Experimental comparisons with previous SAF implementations shows that the proposed 2D-Recursive SAF does not require any additional memory while offering a computational time similar to the most efficient existing SAF algorithm. These features make it especially suitable for embedded systems with limited memory capacity.

  18. Storage capacity of an optically formed spatial filter for character recognition.

    PubMed

    Burckhardt, C B

    1967-08-01

    Optical spatial filtering has been proposed as a means of character recognition. The cross correlations between the unknown character and a number of stored masks are performed optically. In this paper an estimate is derived for the capacity of such a system, i.e., the number of masks one can store. Two estimates are made for the capacity. One holds for a noiseless optical system. The derivation of the second estimate takes into account noise of the photographic plate. Noise measurements of Kodak 649F plates are given. A numerical example shows the order of magnitude of the capacity. While, in our specific example, a capacity of several hundred thousand is computed for the noiseless system, this figure is reduced by two orders of magnitudes for the noisy system.

  19. Filter based receive-side spatial compounding for veterinary ultrasound B-mode imaging.

    PubMed

    Liu, Wen; Cheng, Yangjie; Liu, Dong C

    2014-01-01

    Veterinary ultrasound has been used in a large number of animal husbandry-related circumstances while many corresponding applications also call for the use of ultrasound in human patients. However, veterinary ultrasound images are affected by speckle, an interference pattern that can reduce the quality and contrast of ultrasound images. In this paper, a filter-based receive-side spatial compounding technique for veterinary ultrasound B-Mode imaging is used to create a compounded veterinary B-Mode image based on multiple looks. In particular, filtering in the lateral direction has been proved to be able to preserve the axial information in the sub-bands and to create decorrelation between sub-bands at the expense of some lateral resolution. A new method was proposed to obtain B-Mode IQ data by special veterinary ultrasonic probe. This approach is tested on 275 in-vivo swine. The effect is accomplished in real-time veterinary ultrasonic imaging with a measurable improvement of SNRe. Meanwhile, the speckle and electronic noise in the compounded image have been greatly reduced and smoothed in the visual result.

  20. Two-microphone spatial filtering improves speech reception for cochlear-implant users in reverberant conditions with multiple noise sources.

    PubMed

    Goldsworthy, Raymond L

    2014-10-20

    This study evaluates a spatial-filtering algorithm as a method to improve speech reception for cochlear-implant (CI) users in reverberant environments with multiple noise sources. The algorithm was designed to filter sounds using phase differences between two microphones situated 1 cm apart in a behind-the-ear hearing-aid capsule. Speech reception thresholds (SRTs) were measured using a Coordinate Response Measure for six CI users in 27 listening conditions including each combination of reverberation level (T60=0, 270, and 540 ms), number of noise sources (1, 4, and 11), and signal-processing algorithm (omnidirectional response, dipole-directional response, and spatial-filtering algorithm). Noise sources were time-reversed speech segments randomly drawn from the Institute of Electrical and Electronics Engineers sentence recordings. Target speech and noise sources were processed using a room simulation method allowing precise control over reverberation times and sound-source locations. The spatial-filtering algorithm was found to provide improvements in SRTs on the order of 6.5 to 11.0 dB across listening conditions compared with the omnidirectional response. This result indicates that such phase-based spatial filtering can improve speech reception for CI users even in highly reverberant conditions with multiple noise sources.

  1. Extraction of mismatch negativity using a resampling-based spatial filtering method

    NASA Astrophysics Data System (ADS)

    Lin, Yanfei; Wu, Wei; Wu, Chaohua; Liu, Baolin; Gao, Xiaorong

    2013-04-01

    Objective. It is currently a challenge to extract the mismatch negativity (MMN) waveform on the basis of a small number of EEG trials, which are typically unbalanced between conditions. Approach. In order to address this issue, a method combining the techniques of resampling and spatial filtering is proposed in this paper. Specifically, the first step of the method, termed ‘resampling difference’, randomly samples the standard and deviant sweeps, and then subtracts standard sweeps from deviant sweeps. The second step of the method employs the spatial filters designed by a signal-to-noise ratio maximizer (SIM) to extract the MMN component. The SIM algorithm can maximize the signal-to-noise ratio for event-related potentials (ERPs) to improve extraction. Simulation data were used to evaluate the influence of three parameters (i.e. trial number, repeated-SIM times and sampling times) on the performance of the proposed method. Main results. Results demonstrated that it was feasible and reliable to extract the MMN waveform using the method. Finally, an oddball paradigm with auditory stimuli of different frequencies was employed to record a few trials (50 trials of deviant sweeps and 250 trials of standard sweeps) of EEG data from 11 adult subjects. Results showed that the method could effectively extract the MMN using the EEG data of each individual subject. Significance. The extracted MMN waveform has a significantly larger peak amplitude and shorter latencies in response to the more deviant stimuli than in response to the less deviant stimuli, which agreed with the MMN properties reported in previous literature using grand-averaged EEG data of multi-subjects.

  2. Tracking the Turn Maneuvering Target Using the Multi-Target Bayes Filter with an Adaptive Estimation of Turn Rate.

    PubMed

    Liu, Zong-Xiang; Wu, De-Hui; Xie, Wei-Xin; Li, Liang-Qun

    2017-02-15

    Tracking the target that maneuvers at a variable turn rate is a challenging problem. The traditional solution for this problem is the use of the switching multiple models technique, which includes several dynamic models with different turn rates for matching the motion mode of the target at each point in time. However, the actual motion mode of a target at any time may be different from all of the dynamic models, because these models are usually limited. To address this problem, we establish a formula for estimating the turn rate of a maneuvering target. By applying the estimation method of the turn rate to the multi-target Bayes (MB) filter, we develop a MB filter with an adaptive estimation of the turn rate, in order to track multiple maneuvering targets. Simulation results indicate that the MB filter with an adaptive estimation of the turn rate, is better than the existing filter at tracking the target that maneuvers at a variable turn rate.

  3. Rician noise reduction in magnetic resonance images using adaptive non-local mean and guided image filtering

    NASA Astrophysics Data System (ADS)

    Mahmood, Muhammad Tariq; Chu, Yeon-Ho; Choi, Young-Kyu

    2016-06-01

    This paper proposes a Rician noise reduction method for magnetic resonance (MR) images. The proposed method is based on adaptive non-local mean and guided image filtering techniques. In the first phase, a guidance image is obtained from the noisy image through an adaptive non-local mean filter. Sobel operators are applied to compute the strength of edges which is further used to control the spread of the kernel in non-local mean filtering. In the second phase, the noisy and the guidance images are provided to the guided image filter as input to restore the noise-free image. The improved performance of the proposed method is investigated using the simulated and real data sets of MR images. Its performance is also compared with the previously proposed state-of-the art methods. Comparative analysis demonstrates the superiority of the proposed scheme over the existing approaches.

  4. Effects of yellow, orange and red filter glasses on the thresholds of a dark-adapted human eye.

    PubMed

    Aarnisalo, E; Pehkonen, P

    1990-04-01

    Effects of 13 different yellow, orange and red (Schott) longpass filter glasses on the extrafoveal thresholds obtained by 3 normal subjects after dark-adaptation were measured using a Goldman-Weekers adaptometer. When filters GG400, GG420, GG435, GG455, GG475, GG495, OG515 and OG530 (cutting off radiation up to 527 nm) were used there was no significant change in the threshold value. However, significantly higher threshold values were obtained with the use of the filters OG550, OG570, OG590, RG610 and RG630.

  5. Singular spectrum analysis and adaptive filtering enhance the functional connectivity analysis of resting state fMRI data.

    PubMed

    Piaggi, Paolo; Menicucci, Danilo; Gentili, Claudio; Handjaras, Giacomo; Gemignani, Angelo; Landi, Alberto

    2014-05-01

    Sources of noise in resting-state fMRI experiments include instrumental and physiological noises, which need to be filtered before a functional connectivity analysis of brain regions is performed. These noisy components show autocorrelated and nonstationary properties that limit the efficacy of standard techniques (i.e. time filtering and general linear model). Herein we describe a novel approach based on the combination of singular spectrum analysis and adaptive filtering, which allows a greater noise reduction and yields better connectivity estimates between regions at rest, providing a new feasible procedure to analyze fMRI data.

  6. Determination of spatially dependent diffusion parameters in bovine bone using Kalman filter.

    PubMed

    Shokry, Abdallah; Ståhle, Per; Svensson, Ingrid

    2015-11-07

    Although many studies have been made for homogenous constant diffusion, bone is an inhomogeneous material. It has been suggested that bone porosity decreases from the inner boundaries to the outer boundaries of the long bones. The diffusivity of substances in the bone matrix is believed to increase as the bone porosity increases. In this study, an experimental set up is used where bovine bone samples, saturated with potassium chloride (KCl), were put into distilled water and the conductivity of the water was followed. Chloride ions in the bone samples escaped out in the water through diffusion and the increase of the conductivity was measured. A one-dimensional, spatially dependent mathematical model describing the diffusion process is used. The diffusion parameters in the model are determined using a Kalman filter technique. The parameters for spatially dependent at endosteal and periosteal surfaces are found to be (12.8 ± 4.7) × 10(-11) and (5 ± 3.5) × 10(-11)m(2)/s respectively. The mathematical model function using the obtained diffusion parameters fits very well with the experimental data with mean square error varies from 0.06 × 10(-6) to 0.183 × 10(-6) (μS/m)(2).

  7. Dose convolution filter: Incorporating spatial dose information into tissue response modeling

    SciTech Connect

    Huang Yimei; Joiner, Michael; Zhao Bo; Liao Yixiang; Burmeister, Jay

    2010-03-15

    Purpose: A model is introduced to integrate biological factors such as cell migration and bystander effects into physical dose distributions, and to incorporate spatial dose information in plan analysis and optimization. Methods: The model consists of a dose convolution filter (DCF) with single parameter {sigma}. Tissue response is calculated by an existing NTCP model with DCF-applied dose distribution as input. The authors determined {sigma} of rat spinal cord from published data. The authors also simulated the GRID technique, in which an open field is collimated into many pencil beams. Results: After applying the DCF, the NTCP model successfully fits the rat spinal cord data with a predicted value of {sigma}=2.6{+-}0.5 mm, consistent with 2 mm migration distances of remyelinating cells. Moreover, it enables the appropriate prediction of a high relative seriality for spinal cord. The model also predicts the sparing of normal tissues by the GRID technique when the size of each pencil beam becomes comparable to {sigma}. Conclusions: The DCF model incorporates spatial dose information and offers an improved way to estimate tissue response from complex radiotherapy dose distributions. It does not alter the prediction of tissue response in large homogenous fields, but successfully predicts increased tissue tolerance in small or highly nonuniform fields.

  8. Optoelectronic approach to adaptive radio-frequency transversal filter implementation with negative coefficients by using optical spectrum shaping.

    PubMed

    Arain, Muzammil A; Riza, Nabeel A

    2006-04-10

    A multitap negative and positive coefficient radio-frequency transversal filter is implemented by using a digital-micromirror-device spatial light modulator for weighting-factor control and a chirped fiber Bragg grating for time-delay control. The demonstrated architecture is reconfigurable, has high speed and low loss, and is robust through digital programmability for a wide variety of filtering algorithms. A design using an interleaver for differential detection realizes an ultrahigh bandwidth with a maximum processable frequency of 33.7 GHz. A multitap low-pass filter, a negative tap notch filter with 40 dB attenuation, and a multitap negative coefficient bandpass filter are experimentally demonstrated. The results are in agreement with theory.

  9. A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile.

    PubMed

    Inostroza, Luis; Palme, Massimo; de la Barrera, Francisco

    2016-01-01

    Climate change will worsen the high levels of urban vulnerability in Latin American cities due to specific environmental stressors. Some impacts of climate change, such as high temperatures in urban environments, have not yet been addressed through adaptation strategies, which are based on poorly supported data. These impacts remain outside the scope of urban planning. New spatially explicit approaches that identify highly vulnerable urban areas and include specific adaptation requirements are needed in current urban planning practices to cope with heat hazards. In this paper, a heat vulnerability index is proposed for Santiago, Chile. The index was created using a GIS-based spatial information system and was constructed from spatially explicit indexes for exposure, sensitivity and adaptive capacity levels derived from remote sensing data and socio-economic information assessed via principal component analysis (PCA). The objective of this study is to determine the levels of heat vulnerability at local scales by providing insights into these indexes at the intra city scale. The results reveal a spatial pattern of heat vulnerability with strong variations among individual spatial indexes. While exposure and adaptive capacities depict a clear spatial pattern, sensitivity follows a complex spatial distribution. These conditions change when examining PCA results, showing that sensitivity is more robust than exposure and adaptive capacity. These indexes can be used both for urban planning purposes and for proposing specific policies and measures that can help minimize heat hazards in highly dynamic urban areas. The proposed methodology can be applied to other Latin American cities to support policy making.

  10. Color filter array demosaicing: an adaptive progressive interpolation based on the edge type

    NASA Astrophysics Data System (ADS)

    Dong, Qiqi; Liu, Zhaohui

    2015-10-01

    Color filter array (CFA) is one of the key points for single-sensor digital cameras to produce color images. Bayer CFA is the most commonly used pattern. In this array structure, the sampling frequency of green is two times of red or blue, which is consistent with the sensitivity of human eyes to colors. However, each sensor pixel only samples one of three primary color values. To render a full-color image, an interpolation process, commonly referred to CFA demosaicing, is required to estimate the other two missing color values at each pixel. In this paper, we explore an adaptive progressive interpolation based on the edge type algorithm. The proposed demosaicing method consists of two successive steps: an interpolation step that estimates missing color values according to various edges and a post-processing step by iterative interpolation.

  11. Adaptive UAV Attitude Estimation Employing Unscented Kalman Filter, FOAM and Low-Cost MEMS Sensors

    PubMed Central

    de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos

    2012-01-01

    Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance. PMID:23012559

  12. Adaptive Kalman filter for indoor localization using Bluetooth Low Energy and inertial measurement unit.

    PubMed

    Yoon, Paul K; Zihajehzadeh, Shaghayegh; Bong-Soo Kang; Park, Edward J

    2015-08-01

    This paper proposes a novel indoor localization method using the Bluetooth Low Energy (BLE) and an inertial measurement unit (IMU). The multipath and non-line-of-sight errors from low-power wireless localization systems commonly result in outliers, affecting the positioning accuracy. We address this problem by adaptively weighting the estimates from the IMU and BLE in our proposed cascaded Kalman filter (KF). The positioning accuracy is further improved with the Rauch-Tung-Striebel smoother. The performance of the proposed algorithm is compared against that of the standard KF experimentally. The results show that the proposed algorithm can maintain high accuracy for position tracking the sensor in the presence of the outliers.

  13. Adaptive UAV attitude estimation employing unscented Kalman Filter, FOAM and low-cost MEMS sensors.

    PubMed

    de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos

    2012-01-01

    Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance.

  14. A hybrid robust fault tolerant control based on adaptive joint unscented Kalman filter.

    PubMed

    Shabbouei Hagh, Yashar; Mohammadi Asl, Reza; Cocquempot, Vincent

    2017-01-01

    In this paper, a new hybrid robust fault tolerant control scheme is proposed. A robust H∞ control law is used in non-faulty situation, while a Non-Singular Terminal Sliding Mode (NTSM) controller is activated as soon as an actuator fault is detected. Since a linear robust controller is designed, the system is first linearized through the feedback linearization method. To switch from one controller to the other, a fuzzy based switching system is used. An Adaptive Joint Unscented Kalman Filter (AJUKF) is used for fault detection and diagnosis. The proposed method is based on the simultaneous estimation of the system states and parameters. In order to show the efficiency of the proposed scheme, a simulated 3-DOF robotic manipulator is used.

  15. Adaptive wavelet packet-based de-speckling of ultrasound images with bilateral filter.

    PubMed

    Esakkirajan, Sankaralingam; Vimalraj, Chinna Thambi; Muhammed, Rashad; Subramanian, Ganapathi

    2013-12-01

    A new adaptive wavelet packet-based approach to minimize speckle noise in ultrasound images is proposed. This method combines wavelet packet thresholding with a bilateral filter. Here, the best bases after wavelet packet decomposition are selected by comparing the first singular value of all sub-bands, and the noisy coefficients are thresholded using a modified NeighShrink technique. The algorithm is tested with various ultrasound images, and the results, in terms of peak signal-to-noise ratio and mean structural similarity values, are compared with those for some well-known de-speckling techniques. The simulation results indicate that the proposed method has better potential to minimize speckle noise and retain fine details of the ultrasound image.

  16. Automatic seizure detection using correlation integral with nonlinear adaptive denoising and Kalman filter.

    PubMed

    Hongda Wang; Chiu-Sing Choy

    2016-08-01

    The ability of correlation integral for automatic seizure detection using scalp EEG data has been re-examined in this paper. To facilitate the detection performance and overcome the shortcoming of correlation integral, nonlinear adaptive denoising and Kalman filter have been adopted for pre-processing and post-processing. The three-stage algorithm has achieved 84.6% sensitivity and 0.087/h false detection rate, which are comparable to many machine learning based methods, but at much lower computational cost. Since this algorithm is tested with long-term scalp EEG, it has the potential to achieve higher performance with intracranial EEG. The clinical value of this algorithm includes providing a pre-judgement to assist the doctor's diagnosis procedure and acting as a reliable warning system in a wearable device for epilepsy patients.

  17. Powerline interference reduction in ECG signals using empirical wavelet transform and adaptive filtering.

    PubMed

    Singh, Omkar; Sunkaria, Ramesh Kumar

    2015-01-01

    Separating an information-bearing signal from the background noise is a general problem in signal processing. In a clinical environment during acquisition of an electrocardiogram (ECG) signal, The ECG signal is corrupted by various noise sources such as powerline interference (PLI), baseline wander and muscle artifacts. This paper presents novel methods for reduction of powerline interference in ECG signals using empirical wavelet transform (EWT) and adaptive filtering. The proposed methods are compared with the empirical mode decomposition (EMD) based PLI cancellation methods. A total of six methods for PLI reduction based on EMD and EWT are analysed and their results are presented in this paper. The EWT-based de-noising methods have less computational complexity and are more efficient as compared with the EMD-based de-noising methods.

  18. Adaptive update using visual models for lifting-based motion-compensated temporal filtering

    NASA Astrophysics Data System (ADS)

    Li, Song; Xiong, H. K.; Wu, Feng; Chen, Hong

    2005-03-01

    Motion compensated temporal filtering is a useful framework for fully scalable video compression schemes. However, when supposed motion models cannot represent a real motion perfectly, both the temporal high and the temporal low frequency sub-bands may contain artificial edges, which possibly lead to a decreased coding efficiency, and ghost artifacts appear in the reconstructed video sequence at lower bit rates or in case of temporal scaling. We propose a new technique that is based on utilizing visual models to mitigate ghosting artifacts in the temporal low frequency sub-bands. Specifically, we propose content adaptive update schemes where visual models are used to determine image dependent upper bounds on information to be updated. Experimental results show that the proposed algorithm can significantly improve subjective visual quality of the low-pass temporal frames and at the same time, coding performance can catch or exceed the classical update steps.

  19. Adaptive fused Kalman filter based on imaging laser radar for TAN

    NASA Astrophysics Data System (ADS)

    Gong, Junbin; Xu, Hongbo; Tian, Jinwen; Cheng, Hua; Zhang, Jun

    2007-11-01

    Terrain aided navigation (TAN) is an efficient way to periodically correct the error accumulation of INS. The imaging laser radar is an ideal imaging sensor in TAN for the low-flying aircraft and unmanned air vehicles for the high precision multi-dimensional data acquisition capability and concealable attribute. In this paper, a new framework for applying the laser radar to terrain aided navigation is put forward. Then a new adaptive fused Kalman Filter is proposed to improve the accuracy and robustness. At last, the key factors affected the algorithm are analyzed and the comparative experimentations are presented. The simulating experiments show that the proposed algorithm improves the location accuracy, and has good initial error tolerance and fine robustness. It shows that this approach is a valid solution for the application.

  20. Spatial frequency-specific contrast adaptation originates in the primary visual cortex.

    PubMed

    Duong, Thang; Freeman, Ralph D

    2007-07-01

    Adaptation to a high-contrast grating stimulus causes reduced sensitivity to subsequent presentation of a visual stimulus with similar spatial characteristics. This behavioral finding has been attributed by neurophysiological studies to processes within the visual cortex. However, some evidence indicates that contrast adaptation phenomena are also found in early visual pathways. Adaptation effects have been reported in retina and lateral geniculation nucleus (LGN). It is possible that these early pathways could be the physiological origin of the cortical adaptation effect. To study this, we recorded from single neurons in the cat's LGN. We find that contrast adaptation in the LGN, unlike that in the visual cortex, is not spatial frequency specific, i.e., adaptation effects apply to a broad range of spatial frequencies. In addition, aside from the amplitude attenuation, the shape of spatial frequency tuning curves of LGN cells is not affected by contrast adaptation. Again, these findings are unlike those found for cells in the visual cortex. Together, these results demonstrate that pattern specific contrast adaptation is a cortical process.

  1. Pipelined chebyshev functional link artificial recurrent neural network for nonlinear adaptive filter.

    PubMed

    Zhao, Haiquan; Zhang, Jiashu

    2010-02-01

    A novel nonlinear adaptive filter with pipelined Chebyshev functional link artificial recurrent neural network (PCFLARNN) is presented in this paper, which uses a modification real-time recurrent learning algorithm. The PCFLARNN consists of a number of simple small-scale Chebyshev functional link artificial recurrent neural network (CFLARNN) modules. Compared to the standard recurrent neural network (RNN), those modules of PCFLARNN can simultaneously be performed in a pipelined parallelism fashion, and this would lead to a significant improvement in its total computational efficiency. Furthermore, contrasted with the architecture of a pipelined RNN (PRNN), each module of PCFLARNN is a CFLARNN whose nonlinearity is introduced by enhancing the input pattern with Chebyshev functional expansion, whereas the RNN of each module in PRNN utilizing linear input and first-order recurrent term only fails to utilize the high-order terms of inputs. Therefore, the performance of PCFLARNN can further be improved at the cost of a slightly increased computational complexity. In addition, due to the introduced nonlinear functional expansion of each module in PRNN, the number of input signals can be reduced. Computer simulations have demonstrated that the proposed filter performs better than PRNN and RNN for nonlinear colored signal prediction, nonstationary speech signal prediction, and chaotic time series prediction.

  2. A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.

    PubMed

    Zhao, Haiquan; Zhang, Jiashu

    2009-12-01

    To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module.

  3. Use of adaptive hybrid filtering process in Crohn's disease lesion detection from real capsule endoscopy videos.

    PubMed

    Charisis, Vasileios S; Hadjileontiadis, Leontios J

    2016-03-01

    The aim of this Letter is to present a new capsule endoscopy (CE) image analysis scheme for the detection of small bowel ulcers that relate to Crohn's disease. More specifically, this scheme is based on: (i) a hybrid adaptive filtering (HAF) process, that utilises genetic algorithms to the curvelet-based representation of images for efficient extraction of the lesion-related morphological characteristics, (ii) differential lacunarity (DL) analysis for texture feature extraction from the HAF-filtered images and (iii) support vector machines for robust classification performance. For the training of the proposed scheme, namely HAF-DL, an 800-image database was used and the evaluation was based on ten 30-second long endoscopic videos. Experimental results, along with comparison with other related efforts, have shown that the HAF-DL approach evidently outperforms the latter in the field of CE image analysis for automated lesion detection, providing higher classification results. The promising performance of HAF-DL paves the way for a complete computer-aided diagnosis system that could support the physicians' clinical practice.

  4. Local stimulus disambiguation with global motion filters predicts adaptive surround modulation.

    PubMed

    Dellen, Babette; Torras, Carme

    2013-10-01

    Humans have no problem segmenting different motion stimuli despite the ambiguity of local motion signals. Adaptive surround modulation, i.e., the apparent switching between integrative and antagonistic modes, is assumed to play a crucial role in this process. However, so far motion processing models based on local integration have not been able to provide a unifying explanation for this phenomenon. This motivated us to investigate the problem of local stimulus disambiguation in an alternative and fundamentally distinct motion-processing model which uses global motion filters for velocity computation. Local information is reconstructed at the end of the processing stream through the constructive interference of global signals, i.e., inverse transformations. We show that in this model local stimulus disambiguation can be achieved by means of a novel filter embedded in this architecture. This gives rise to both integrative and antagonistic effects which are in agreement with those observed in psychophysical experiments with humans, providing a functional explanation for effects of motion repulsion.

  5. Adaptive Filter-bank Approach to Restoration and Spectral Analysis of Gapped Data

    NASA Astrophysics Data System (ADS)

    Stoica, Petre; Larsson, Erik G.; Li, Jian

    2000-10-01

    The main topic of this paper is the nonparametric estimation of complex (both amplitude and phase) spectra from gapped data, as well as the restoration of such data. The focus is on the extension of the APES (amplitude and phase estimation) approach to data sequences with gaps. APES, which is one of the most successful existing nonparametric approaches to the spectral analysis of full data sequences, uses a bank of narrowband adaptive (both frequency and data dependent) filters to estimate the spectrum. A recent interpretation of this approach showed that the filterbank used by APES and the resulting spectrum minimize a least-squares (LS) fitting criterion between the filtered sequence and its spectral decomposition. The extended approach, which is called GAPES for somewhat obvious reasons, capitalizes on the aforementioned interpretation: it minimizes the APES-LS fitting criterion with respect to the missing data as well. This should be a sensible thing to do whenever the full data sequence is stationary, and hence the missing data have the same spectral content as the available data. We use both simulated and real data examples to show that GAPES estimated spectra and interpolated data sequences have excellent accuracy. We also show the performance gain achieved by GAPES over two of the most commonly used approaches for gapped-data spectral analysis, viz., the periodogram and the parametric CLEAN method. This work was partly supported by the Swedish Foundation for Strategic Research.

  6. Method and system for spatial data input, manipulation and distribution via an adaptive wireless transceiver

    NASA Technical Reports Server (NTRS)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for spatial data manipulation input and distribution via an adaptive wireless transceiver. The method and system include a wireless transceiver for automatically and adaptively controlling wireless transmissions using a Waveform-DNA method. The wireless transceiver can operate simultaneously over both the short and long distances. The wireless transceiver is automatically adaptive and wireless devices can send and receive wireless digital and analog data from various sources rapidly in real-time via available networks and network services.

  7. Development of Climate Change Adaptation Platform using Spatial Information

    NASA Astrophysics Data System (ADS)

    Lee, J.; Oh, K. Y.; Lee, M. J.; Han, W. J.

    2014-12-01

    Climate change adaptation has attracted growing attention with the recent extreme weather conditions that affect people around the world. More and more countries, including the Republic of Korea, have begun to hatch adaptation plan to resolve these matters of great concern. They all, meanwhile, have mentioned that it should come first to integrate climate information in all analysed areas. That's because climate information is not independently made through one source; that is to say, the climate information is connected one another in a complicated way. That is the reason why we have to promote integrated climate change adaptation platform before setting up climate change adaptation plan. Therefore, the large-scaled project has been actively launched and worked on. To date, we researched 620 literatures and interviewed 51 government organizations. Based on the results of the researches and interviews, we obtained 2,725 impacts about vulnerability assessment information such as Monitoring and Forecasting, Health, Disaster, Agriculture, Forest, Water Management, Ecosystem, Ocean/Fisheries, Industry/Energy. Among 2,725 impacts, 995 impacts are made into a database until now. This database is made up 3 sub categories like Climate-Exposure, Sensitivity, Adaptive capacity, presented by IPCC. Based on the constructed database, vulnerability assessments were carried out in order to evaluate climate change capacity of local governments all over the country. These assessments were conducted by using web-based vulnerability assessment tool which was newly developed through this project. These results have shown that, metropolitan areas like Seoul, Pusan, Inchon, and so on have high risks more than twice than rural areas. Acknowledgements: The authors appreciate the support that this study has received from "Development of integrated model for climate change impact and vulnerability assessment and strengthening the framework for model implementation ", an initiative of the

  8. A Fuzzy Logic Based Controller for the Automated Alignment of a Laser-beam-smoothing Spatial Filter

    NASA Technical Reports Server (NTRS)

    Krasowski, M. J.; Dickens, D. E.

    1992-01-01

    A fuzzy logic based controller for a laser-beam-smoothing spatial filter is described. It is demonstrated that a human operator's alignment actions can easily be described by a system of fuzzy rules of inference. The final configuration uses inexpensive, off-the-shelf hardware and allows for a compact, readily implemented embedded control system.

  9. Two-microphone spatial filtering provides speech reception benefits for cochlear implant users in difficult acoustic environments

    PubMed Central

    Goldsworthy, Raymond L.; Delhorne, Lorraine A.; Desloge, Joseph G.; Braida, Louis D.

    2014-01-01

    This article introduces and provides an assessment of a spatial-filtering algorithm based on two closely-spaced (∼1 cm) microphones in a behind-the-ear shell. The evaluated spatial-filtering algorithm used fast (∼10 ms) temporal-spectral analysis to determine the location of incoming sounds and to enhance sounds arriving from straight ahead of the listener. Speech reception thresholds (SRTs) were measured for eight cochlear implant (CI) users using consonant and vowel materials under three processing conditions: An omni-directional response, a dipole-directional response, and the spatial-filtering algorithm. The background noise condition used three simultaneous time-reversed speech signals as interferers located at 90°, 180°, and 270°. Results indicated that the spatial-filtering algorithm can provide speech reception benefits of 5.8 to 10.7 dB SRT compared to an omni-directional response in a reverberant room with multiple noise sources. Given the observed SRT benefits, coupled with an efficient design, the proposed algorithm is promising as a CI noise-reduction solution. PMID:25096120

  10. A novel adaptive discrete cosine transform-domain filter for gap-inpainting of high resolution PET scanners

    SciTech Connect

    Shih, Cheng-Ting; Lin, Hsin-Hon; Chuang, Keh-Shih; Wu, Jay; Chang, Shu-Jun

    2014-08-15

    Purpose: Several positron emission tomography (PET) scanners with special detector block arrangements have been developed in recent years to improve the resolution of PET images. However, the discontinuous detector blocks cause gaps in the sinogram. This study proposes an adaptive discrete cosine transform-based (aDCT) filter for gap-inpainting. Methods: The gap-corrupted sinogram was morphologically closed and subsequently converted to the DCT domain. A certain number of the largest coefficients in the DCT spectrum were identified to determine the low-frequency preservation region. The weighting factors for the remaining coefficients were determined by an exponential weighting function. The aDCT filter was constructed and applied to two digital phantoms and a simulated phantom introduced with various levels of noise. Results: For the Shepp-Logan head phantom, the aDCT filter filled the gaps effectively. For the Jaszczak phantom, no secondary artifacts were induced after aDCT filtering. The percent mean square error and mean structure similarity of the aDCT filter were superior to those of the DCT2 filter at all noise levels. For the simulated striatal dopamine innervation study, the aDCT filter recovered the shape of the striatum and restored the striatum to reference activity ratios to the ideal value. Conclusions: The proposed aDCT filter can recover the missing gap data in the sinogram and improve the image quality and quantitative accuracy of PET images.

  11. Gearbox fault diagnosis using adaptive zero phase time-varying filter based on multi-scale chirplet sparse signal decomposition

    NASA Astrophysics Data System (ADS)

    Wu, Chunyan; Liu, Jian; Peng, Fuqiang; Yu, Dejie; Li, Rong

    2013-07-01

    When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.

  12. Optical Cluster-Finding with an Adaptive Matched-Filter Technique: Algorithm and Comparison with Simulations

    SciTech Connect

    Dong, Feng; Pierpaoli, Elena; Gunn, James E.; Wechsler, Risa H.

    2007-10-29

    We present a modified adaptive matched filter algorithm designed to identify clusters of galaxies in wide-field imaging surveys such as the Sloan Digital Sky Survey. The cluster-finding technique is fully adaptive to imaging surveys with spectroscopic coverage, multicolor photometric redshifts, no redshift information at all, and any combination of these within one survey. It works with high efficiency in multi-band imaging surveys where photometric redshifts can be estimated with well-understood error distributions. Tests of the algorithm on realistic mock SDSS catalogs suggest that the detected sample is {approx} 85% complete and over 90% pure for clusters with masses above 1.0 x 10{sup 14}h{sup -1} M and redshifts up to z = 0.45. The errors of estimated cluster redshifts from maximum likelihood method are shown to be small (typically less that 0.01) over the whole redshift range with photometric redshift errors typical of those found in the Sloan survey. Inside the spherical radius corresponding to a galaxy overdensity of {Delta} = 200, we find the derived cluster richness {Lambda}{sub 200} a roughly linear indicator of its virial mass M{sub 200}, which well recovers the relation between total luminosity and cluster mass of the input simulation.

  13. Low-complexity nonlinear adaptive filter based on a pipelined bilinear recurrent neural network.

    PubMed

    Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou

    2011-09-01

    To reduce the computational complexity of the bilinear recurrent neural network (BLRNN), a novel low-complexity nonlinear adaptive filter with a pipelined bilinear recurrent neural network (PBLRNN) is presented in this paper. The PBLRNN, inheriting the modular architectures of the pipelined RNN proposed by Haykin and Li, comprises a number of BLRNN modules that are cascaded in a chained form. Each module is implemented by a small-scale BLRNN with internal dynamics. Since those modules of the PBLRNN can be performed simultaneously in a pipelined parallelism fashion, it would result in a significant improvement of computational efficiency. Moreover, due to nesting module, the performance of the PBLRNN can be further improved. To suit for the modular architectures, a modified adaptive amplitude real-time recurrent learning algorithm is derived on the gradient descent approach. Extensive simulations are carried out to evaluate the performance of the PBLRNN on nonlinear system identification, nonlinear channel equalization, and chaotic time series prediction. Experimental results show that the PBLRNN provides considerably better performance compared to the single BLRNN and RNN models.

  14. Performance Enhancement of Pharmacokinetic Diffuse Fluorescence Tomography by Use of Adaptive Extended Kalman Filtering.

    PubMed

    Wang, Xin; Wu, Linhui; Yi, Xi; Zhang, Yanqi; Zhang, Limin; Zhao, Huijuan; Gao, Feng

    2015-01-01

    Due to both the physiological and morphological differences in the vascularization between healthy and diseased tissues, pharmacokinetic diffuse fluorescence tomography (DFT) can provide contrast-enhanced and comprehensive information for tumor diagnosis and staging. In this regime, the extended Kalman filtering (EKF) based method shows numerous advantages including accurate modeling, online estimation of multiparameters, and universal applicability to any optical fluorophore. Nevertheless the performance of the conventional EKF highly hinges on the exact and inaccessible prior knowledge about the initial values. To address the above issues, an adaptive-EKF scheme is proposed based on a two-compartmental model for the enhancement, which utilizes a variable forgetting-factor to compensate the inaccuracy of the initial states and emphasize the effect of the current data. It is demonstrated using two-dimensional simulative investigations on a circular domain that the proposed adaptive-EKF can obtain preferable estimation of the pharmacokinetic-rates to the conventional-EKF and the enhanced-EKF in terms of quantitativeness, noise robustness, and initialization independence. Further three-dimensional numerical experiments on a digital mouse model validate the efficacy of the method as applied in realistic biological systems.

  15. A tunable electrochromic fabry-perot filter for adaptive optics applications.

    SciTech Connect

    Blaich, Jonathan David; Kammler, Daniel R.; Ambrosini, Andrea; Sweatt, William C.; Verley, Jason C.; Heller, Edwin J.; Yelton, William Graham

    2006-10-01

    The potential for electrochromic (EC) materials to be incorporated into a Fabry-Perot (FP) filter to allow modest amounts of tuning was evaluated by both experimental methods and modeling. A combination of chemical vapor deposition (CVD), physical vapor deposition (PVD), and electrochemical methods was used to produce an ECFP film stack consisting of an EC WO{sub 3}/Ta{sub 2}O{sub 5}/NiO{sub x}H{sub y} film stack (with indium-tin-oxide electrodes) sandwiched between two Si{sub 3}N{sub 4}/SiO{sub 2} dielectric reflector stacks. A process to produce a NiO{sub x}H{sub y} charge storage layer that freed the EC stack from dependence on atmospheric humidity and allowed construction of this complex EC-FP stack was developed. The refractive index (n) and extinction coefficient (k) for each layer in the EC-FP film stack was measured between 300 and 1700 nm. A prototype EC-FP filter was produced that had a transmission at 500 nm of 36%, and a FWHM of 10 nm. A general modeling approach that takes into account the desired pass band location, pass band width, required transmission and EC optical constants in order to estimate the maximum tuning from an EC-FP filter was developed. Modeling shows that minor thickness changes in the prototype stack developed in this project should yield a filter with a transmission at 600 nm of 33% and a FWHM of 9.6 nm, which could be tuned to 598 nm with a FWHM of 12.1 nm and a transmission of 16%. Additional modeling shows that if the EC WO{sub 3} absorption centers were optimized, then a shift from 600 nm to 598 nm could be made with a FWHM of 11.3 nm and a transmission of 20%. If (at 600 nm) the FWHM is decreased to 1 nm and transmission maintained at a reasonable level (e.g. 30%), only fractions of a nm of tuning would be possible with the film stack considered in this study. These tradeoffs may improve at other wavelengths or with EC materials different than those considered here. Finally, based on our limited investigation and material set

  16. Preflight Adaptation Training for Spatial Orientation and Space Motion Sickness

    NASA Technical Reports Server (NTRS)

    Harm, Deborah L.; Parker, Donald E.

    1994-01-01

    Two part-task preflight adaptation trainers (PATs) are being developed at the NASA Johnson Space Center to preadapt astronauts to novel sensory stimulus conditions similar to those present in microgravity to facilitate adaptation to microgravity and readaptation to Earth. This activity is a major component of a general effort to develop countermeasures aimed at minimizing sensory and sensorimotor disturbances and Space Motion Sickness (SMS) associated with adaptation to microgravity and readaptation to Earth. Design principles for the development of the two trainers are discussed, along with a detailed description of both devices. In addition, a summary of four ground-based investigations using one of the trainers to determine the extent to which various novel sensory stimulus conditions produce changes in compensatory eye movement responses, postural equilibrium, motion sickness symptoms, and electrogastric responses are presented. Finally, a brief description of the general concept of dual-adopted states that underly the development of the PATs, and ongoing and future operational and basic research activities are presented.

  17. Adaptive clutter filter in 2-D color flow imaging based on in vivo I/Q signal.

    PubMed

    Zhou, Xiaoming; Zhang, Congyao; Liu, Dong C

    2014-01-01

    Color flow imaging has been well applied in clinical diagnosis. For the high quality color flow images, clutter filter is important to separate the Doppler signals from blood and tissue. Traditional clutter filters, such as finite impulse response, infinite impulse response and regression filters, were applied, which are based on the hypothesis that the clutter signal is stationary or tissue moves slowly. However, in realistic clinic color flow imaging, the signals are non-stationary signals because of accelerated moving tissue. For most related papers, simulated RF signals are widely used without in vivo I/Q signal. Hence, in this paper, adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, was proposed based on in vivo carotid I/Q signal in realistic color flow imaging. To get the best performance, the optimal polynomial order of polynomial regression filter and the optimal polynomial order for estimation of instantaneous clutter frequency respectively were confirmed. Finally, compared with the mean blood velocity and quality of 2-D color flow image, the experiment results show that adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, can significantly enhance the mean blood velocity and get high quality 2-D color flow image.

  18. Adaptive Control of Non-Minimum Phase Modal Systems Using Residual Mode Filters2. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Frost, Susan

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. This paper will be divided into two parts. Here in Part I we will review the basic adaptive control approach and introduce the primary ideas. In Part II, we will present the RMF methodology and complete the proofs of all our results. Also, we will apply the above theoretical results to a simple flexible structure example to illustrate the behavior with and without the residual mode filter.

  19. Aberration extraction in the hartmann test by use of spatial filters.

    PubMed

    Robledo-Sánchez, C; Camacho-Basilio, G; Jaramillo-Núñez, A; Gale, D

    1999-06-01

    Using a computer, we generated a set of filters to aid in the retrieval of aberration functions from Hartmanngrams. These filters consist of discrete two-dimensional data points, like the Hartmanngrams themselves, and are orthogonalized by the Gram-Schmidt procedure. The aberration coefficients are obtained by calculation of the scalar product of the Hartmanngram and each orthogonal filter.

  20. Presence of Motor-Intentional Aiming Deficit Predicts Functional Improvement of Spatial Neglect with Prism Adaptation

    PubMed Central

    Goedert, Kelly M.; Chen, Peii; Boston, Raymond C.; Foundas, Anne L.; Barrett, A. M.

    2013-01-01

    Spatial neglect is a debilitating disorder for which there is no agreed upon course of rehabilitation. The lack of consensus on treatment may result from systematic differences in the syndromes’ characteristics, with spatial cognitive deficits potentially affecting perceptual-attentional Where or motor-intentional Aiming spatial processing. Heterogeneity of response to treatment might be explained by different treatment impact on these dissociated deficits: prism adaptation, for example, might reduce Aiming deficits without affecting Where spatial deficits. Here, we tested the hypothesis that classifying patients by their profile of Where-vs-Aiming spatial deficit would predict response to prism adaptation, and specifically that patients with Aiming bias would have better recovery than those with isolated Where bias. We classified the spatial errors of 24 sub-acute right-stroke survivors with left spatial neglect as: 1) isolated Where bias, 2) isolated Aiming bias or 3) both. Participants then completed two weeks of prism adaptation treatment. They also completed the Behavioral Inattention Test (BIT) and Catherine Bergego Scale (CBS) tests of neglect recovery weekly for six weeks. As hypothesized, participants with only Aiming deficits improved on the CBS, whereas, those with only Where deficits did not improve. Participants with both deficits demonstrated intermediate improvement. These results support behavioral classification of spatial neglect patients as a potential valuable tool for assigning targeted, effective early rehabilitation. PMID:24376064

  1. Assessment of damage localization based on spatial filters using numerical crack propagation models

    NASA Astrophysics Data System (ADS)

    Deraemaeker, Arnaud

    2011-07-01

    This paper is concerned with vibration based structural health monitoring with a focus on non-model based damage localization. The type of damage investigated is cracking of concrete structures due to the loss of prestress. In previous works, an automated method based on spatial filtering techniques applied to large dynamic strain sensor networks has been proposed and tested using data from numerical simulations. In the simulations, simplified representations of cracks (such as a reduced Young's modulus) have been used. While this gives the general trend for global properties such as eigen frequencies, the change of more local features, such as strains, is not adequately represented. Instead, crack propagation models should be used. In this study, a first attempt is made in this direction for concrete structures (quasi brittle material with softening laws) using crack-band models implemented in the commercial software DIANA. The strategy consists in performing a non-linear computation which leads to cracking of the concrete, followed by a dynamic analysis. The dynamic response is then used as the input to the previously designed damage localization system in order to assess its performances. The approach is illustrated on a simply supported beam modeled with 2D plane stress elements.

  2. Spatially adaptive block-based super-resolution.

    PubMed

    Su, Heng; Tang, Liang; Wu, Ying; Tretter, Daniel; Zhou, Jie

    2012-03-01

    Super-resolution technology provides an effective way to increase image resolution by incorporating additional information from successive input images or training samples. Various super-resolution algorithms have been proposed based on different assumptions, and their relative performances can differ in regions of different characteristics within a single image. Based on this observation, an adaptive algorithm is proposed in this paper to integrate a higher level image classification task and a lower level super-resolution process, in which we incorporate reconstruction-based super-resolution algorithms, single-image enhancement, and image/video classification into a single comprehensive framework. The target high-resolution image plane is divided into adaptive-sized blocks, and different suitable super-resolution algorithms are automatically selected for the blocks. Then, a deblocking process is applied to reduce block edge artifacts. A new benchmark is also utilized to measure the performance of super-resolution algorithms. Experimental results with real-life videos indicate encouraging improvements with our method.

  3. Improved characterization of slow-moving landslides by means of adaptive NL-InSAR filtering

    NASA Astrophysics Data System (ADS)

    Albiol, David; Iglesias, Rubén.; Sánchez, Francisco; Duro, Javier

    2014-10-01

    Advanced remote sensing techniques based on space-borne Synthetic Aperture Radar (SAR) have been developed during the last decade showing their applicability for the monitoring of surface displacements in landslide areas. This paper presents an advanced Persistent Scatterer Interferometry (PSI) processing based on the Stable Point Network (SPN) technique, developed by the company Altamira-Information, for the monitoring of an active slowmoving landslide in the mountainous environment of El Portalet, Central Spanish Pyrenees. For this purpose, two TerraSAR-X data sets acquired in ascending mode corresponding to the period from April to November 2011, and from August to November 2013, respectively, are employed. The objective of this work is twofold. On the one hand, the benefits of employing Nonlocal Interferomtric SAR (NL-InSAR) adaptive filtering techniques over vegetated scenarios to maximize the chances of detecting natural distributed scatterers, such as bare or rocky areas, and deterministic point-like scatterers, such as man-made structures or poles, is put forward. In this context, the final PSI displacement maps retrieved with the proposed filtering technique are compared in terms of pixels' density and quality with classical PSI, showing a significant improvement. On the other hand, since SAR systems are only sensitive to detect displacements in the line-of-sight (LOS) direction, the importance of projecting the PSI displacement results retrieved along the steepest gradient of the terrain slope is discussed. The improvements presented in this paper are particularly interesting in these type of applications since they clearly allow to better determine the extension and dynamics of complex landslide phenomena.

  4. Investigation of the Spatial Propagation Properties of Type-I Parametric Fluorescence by Use of Tuning Curve Filtering Method

    NASA Astrophysics Data System (ADS)

    Kawabe, Yoshio; Fujiwara, Hideki; Takeuchi, Shigeki; Sasaki, Keiji

    2007-09-01

    The spatial propagation properties of photon-pairs generated via type-I spontaneous parametric down conversion is investigated with numerical calculations and experiments. The number of photon-pairs detected after the apparatuses and frequency filters is calculated using the “tuning curve filtering method” [Fujiwara et al.: Phys. Rev. A 75 (2007) 023802] taking fully into account the experimental configurations required to study type-I collinear conditions. The experimentally obtained iris size dependences of single count rates and coincidence count rates are well reproduced by the calculations.

  5. A family of variable step-size affine projection adaptive filter algorithms using statistics of channel impulse response

    NASA Astrophysics Data System (ADS)

    Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar

    2011-12-01

    This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.

  6. Accurate human limb angle measurement: sensor fusion through Kalman, least mean squares and recursive least-squares adaptive filtering

    NASA Astrophysics Data System (ADS)

    Olivares, A.; Górriz, J. M.; Ramírez, J.; Olivares, G.

    2011-02-01

    Inertial sensors are widely used in human body motion monitoring systems since they permit us to determine the position of the subject's limbs. Limb angle measurement is carried out through the integration of the angular velocity measured by a rate sensor and the decomposition of the components of static gravity acceleration measured by an accelerometer. Different factors derived from the sensors' nature, such as the angle random walk and dynamic bias, lead to erroneous measurements. Dynamic bias effects can be reduced through the use of adaptive filtering based on sensor fusion concepts. Most existing published works use a Kalman filtering sensor fusion approach. Our aim is to perform a comparative study among different adaptive filters. Several least mean squares (LMS), recursive least squares (RLS) and Kalman filtering variations are tested for the purpose of finding the best method leading to a more accurate and robust limb angle measurement. A new angle wander compensation sensor fusion approach based on LMS and RLS filters has been developed.

  7. Adaptive spatio-temporal filtering of disturbed ECGs: a multi-channel approach to heartbeat detection in smart clothing.

    PubMed

    Wiklund, Urban; Karlsson, Marcus; Ostlund, Nils; Berglin, Lena; Lindecrantz, Kaj; Karlsson, Stefan; Sandsjö, Leif

    2007-06-01

    Intermittent disturbances are common in ECG signals recorded with smart clothing: this is mainly because of displacement of the electrodes over the skin. We evaluated a novel adaptive method for spatio-temporal filtering for heartbeat detection in noisy multi-channel ECGs including short signal interruptions in single channels. Using multi-channel database recordings (12-channel ECGs from 10 healthy subjects), the results showed that multi-channel spatio-temporal filtering outperformed regular independent component analysis. We also recorded seven channels of ECG using a T-shirt with textile electrodes. Ten healthy subjects performed different sequences during a 10-min recording: resting, standing, flexing breast muscles, walking and pushups. Using adaptive multi-channel filtering, the sensitivity and precision was above 97% in nine subjects. Adaptive multi-channel spatio-temporal filtering can be used to detect heartbeats in ECGs with high noise levels. One application is heartbeat detection in noisy ECG recordings obtained by integrated textile electrodes in smart clothing.

  8. Spatial Cognitive Performance During Adaptation to Conflicting Tilt-Translation Stimuli as a Sensorimotor Spaceflight Analog

    NASA Technical Reports Server (NTRS)

    Kayanickupuram, A. J.; Ramos, K. A.; Cordova, M. L.; Wood, S. J.

    2009-01-01

    The need to resolve new patterns of sensory feedback in altered gravitoinertial environments requires cognitive processes to develop appropriate reference frames for spatial orientation awareness. The purpose of this study was to examine deficits in spatial cognitive performance during adaptation to conflicting tilt-translation stimuli. Fourteen subjects were tilted within a lighted enclosure that simultaneously translated at one of 3 frequencies. Tilt and translation motion was synchronized to maintain the resultant gravitoinertial force aligned with the longitudinal body axis, resulting in a mismatch analogous to spaceflight in which the canals and vision signal tilt while the otoliths do not. Changes in performance on different spatial cognitive tasks were compared 1) without motion, 2) with tilt motion alone (pitch at 0.15, 0.3 and 0.6 Hz or roll at 0.3 Hz), and 3) with conflicting tilt-translation motion. The adaptation paradigm was continued for up to 30 min or until the onset of nausea. The order of the adaptation conditions were counter-balanced across 4 different test sessions. There was a significant effect of stimulus frequency on both motion sickness and spatial cognitive performance. Only 3 of 14 were able to complete the full 30 min protocol at 0.15 Hz, while 7 of 14 completed 0.3 Hz and 13 of 14 completed 0.6 Hz. There were no changes in simple visual-spatial cognitive tests, e.g., mental rotation or match-to-sample. There were significant deficits during 0.15 Hz adaptation in both accuracy and reaction time during a spatial reference task in which subjects are asked to identify a match of a 3D reoriented cube assemblage. Our results are consistent with antidotal reports of cognitive impairment that are common during sensorimotor adaptation with G-transitions. We conclude that these cognitive deficits stem from the ambiguity of spatial reference frames for central processing of inertial motion cues.

  9. A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile

    PubMed Central

    Palme, Massimo; de la Barrera, Francisco

    2016-01-01

    Climate change will worsen the high levels of urban vulnerability in Latin American cities due to specific environmental stressors. Some impacts of climate change, such as high temperatures in urban environments, have not yet been addressed through adaptation strategies, which are based on poorly supported data. These impacts remain outside the scope of urban planning. New spatially explicit approaches that identify highly vulnerable urban areas and include specific adaptation requirements are needed in current urban planning practices to cope with heat hazards. In this paper, a heat vulnerability index is proposed for Santiago, Chile. The index was created using a GIS-based spatial information system and was constructed from spatially explicit indexes for exposure, sensitivity and adaptive capacity levels derived from remote sensing data and socio-economic information assessed via principal component analysis (PCA). The objective of this study is to determine the levels of heat vulnerability at local scales by providing insights into these indexes at the intra city scale. The results reveal a spatial pattern of heat vulnerability with strong variations among individual spatial indexes. While exposure and adaptive capacities depict a clear spatial pattern, sensitivity follows a complex spatial distribution. These conditions change when examining PCA results, showing that sensitivity is more robust than exposure and adaptive capacity. These indexes can be used both for urban planning purposes and for proposing specific policies and measures that can help minimize heat hazards in highly dynamic urban areas. The proposed methodology can be applied to other Latin American cities to support policy making. PMID:27606592

  10. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network

    PubMed Central

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006

  11. Incrementing data quality of multi-frequency echograms using the Adaptive Wiener Filter (AWF) denoising algorithm

    NASA Astrophysics Data System (ADS)

    Peña, M.

    2016-10-01

    Achieving acceptable signal-to-noise ratio (SNR) can be difficult when working in sparsely populated waters and/or when species have low scattering such as fluid filled animals. The increasing use of higher frequencies and the study of deeper depths in fisheries acoustics, as well as the use of commercial vessels, is raising the need to employ good denoising algorithms. The use of a lower Sv threshold to remove noise or unwanted targets is not suitable in many cases and increases the relative background noise component in the echogram, demanding more effectiveness from denoising algorithms. The Adaptive Wiener Filter (AWF) denoising algorithm is presented in this study. The technique is based on the AWF commonly used in digital photography and video enhancement. The algorithm firstly increments the quality of the data with a variance-dependent smoothing, before estimating the noise level as the envelope of the Sv minima. The AWF denoising algorithm outperforms existing algorithms in the presence of gaussian, speckle and salt & pepper noise, although impulse noise needs to be previously removed. Cleaned echograms present homogenous echotraces with outlined edges.

  12. Facilitating Joint Chaos and Fractal Analysis of Biosignals through Nonlinear Adaptive Filtering

    PubMed Central

    Gao, Jianbo; Hu, Jing; Tung, Wen-wen

    2011-01-01

    Background Chaos and random fractal theories are among the most important for fully characterizing nonlinear dynamics of complicated multiscale biosignals. Chaos analysis requires that signals be relatively noise-free and stationary, while fractal analysis demands signals to be non-rhythmic and scale-free. Methodology/Principal Findings To facilitate joint chaos and fractal analysis of biosignals, we present an adaptive algorithm, which: (1) can readily remove nonstationarities from the signal, (2) can more effectively reduce noise in the signals than linear filters, wavelet denoising, and chaos-based noise reduction techniques; (3) can readily decompose a multiscale biosignal into a series of intrinsically bandlimited functions; and (4) offers a new formulation of fractal and multifractal analysis that is better than existing methods when a biosignal contains a strong oscillatory component. Conclusions The presented approach is a valuable, versatile tool for the analysis of various types of biological signals. Its effectiveness is demonstrated by offering new important insights into brainwave dynamics and the very high accuracy in automatically detecting epileptic seizures from EEG signals. PMID:21915312

  13. Fault detection method for railway wheel flat using an adaptive multiscale morphological filter

    NASA Astrophysics Data System (ADS)

    Li, Yifan; Zuo, Ming J.; Lin, Jianhui; Liu, Jianxin

    2017-02-01

    This study explores the capacity of the morphology analysis for railway wheel flat fault detection. A dynamic model of vehicle systems with 56 degrees of freedom was set up along with a wheel flat model to calculate the dynamic responses of axle box. The vehicle axle box vibration signal is complicated because it not only contains the information of wheel defect, but also includes track condition information. Thus, how to extract the influential features of wheels from strong background noise effectively is a typical key issue for railway wheel fault detection. In this paper, an algorithm for adaptive multiscale morphological filtering (AMMF) was proposed, and its effect was evaluated by a simulated signal. And then this algorithm was employed to study the axle box vibration caused by wheel flats, as well as the influence of track irregularity and vehicle running speed on diagnosis results. Finally, the effectiveness of the proposed method was verified by bench testing. Research results demonstrate that the AMMF extracts the influential characteristic of axle box vibration signals effectively and can diagnose wheel flat faults in real time.

  14. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network.

    PubMed

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-08

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.

  15. A piezo-shunted kirigami auxetic lattice for adaptive elastic wave filtering

    NASA Astrophysics Data System (ADS)

    Ouisse, Morvan; Collet, Manuel; Scarpa, Fabrizio

    2016-11-01

    Tailoring the dynamical behavior of wave-guide structures can provide an efficient and physically elegant approach for optimizing mechanical components with regards to vibroacoustic propagation. Architectured materials as pyramidal core kirigami cells combined with smart systems may represent a promising way to improve the vibroacoustic quality of structural components. This paper describe