Science.gov

Sample records for adaptive spectral estimation

  1. Adaptive spectral doppler estimation.

    PubMed

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-04-01

    In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence. The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to provide good spectral resolution and contrast even when the observation window is very short. The 2 adaptive techniques are tested and compared with the averaged periodogram (Welch's method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set of matched filters (one for each velocity component of interest) and filtering the blood process over slow-time and averaging over depth to find the PSD. The methods are tested using various experiments and simulations. First, controlled flow-rig experiments with steady laminar flow are carried out. Simulations in Field II for pulsating flow resembling the femoral artery are also analyzed. The simulations are followed by in vivo measurement on the common carotid artery. In all simulations and experiments it was concluded that the adaptive methods display superior performance for short observation windows compared with the averaged periodogram. Computational costs and implementation details are also discussed.

  2. Adaptive Spectral Envelope Estimation for Doppler Ultrasound.

    PubMed

    Kathpalia, Aditi; Karabiyik, Yucel; Eik-Nes, Sturla; Tegnander, Eva; Ekroll, Ingvild; Kiss, Gabriel; Torp, Hans

    2016-07-07

    Estimation of accurate maximum velocities and spectral envelope in ultrasound Doppler blood flow spectrograms are both essential for clinical diagnostic purposes. However, obtaining accurate maximum velocity is not straightforward due to intrinsic spectral broadening and variance in the power spectrum estimate. The method proposed in this work for maximum velocity point detection has been developed by modifying an existing method - Signal Noise Slope Intersection (SNSI), incorporating in it steps from an altered version of another method called Geometric Method (GM). Adaptive noise estimation from the spectrogram ensures that a smooth spectral envelope is obtained post detection of these maximum velocity points. The method has been tested on simulated Doppler signal with scatterers possessing a parabolic flow velocity profile constant in time, steady and pulsatile string phantom recordings as well as in vivo recordings from uterine, umbilical, carotid and subclavian arteries. Results from simulation experiments indicate a bias of less than 2.5% in maximum velocities when estimated for a range of peak velocities, Doppler angles and SNR levels. Standard deviation in the envelope is low - less than 2% in case of experiments done by varying the peak velocity and Doppler angle for steady phantom and simulated flow; and also less than 2% in case of experiments done by varying SNR but keeping constant flow conditions for in vivo and simulated flow. Low variability in the envelope makes the prospect of using the envelope for automated blood flow measurements possible and is illustrated for the case of Pulsatility Index estimation in uterine and umbilical arteries.

  3. Adaptive Spectral Envelope Estimation for Doppler Ultrasound.

    PubMed

    Kathpalia, Aditi; Karabiyik, Yucel; Eik-Nes, Sturla H; Tegnander, Eva; Ekroll, Ingvild Kinn; Kiss, Gabriel; Torp, Hans

    2016-11-01

    Estimation of accurate maximum velocities and spectral envelope in ultrasound Doppler blood flow spectrograms are both essential for clinical diagnostic purposes. However, obtaining accurate maximum velocity is not straightforward due to intrinsic spectral broadening and variance in the power spectrum estimate. The method proposed in this paper for maximum velocity point detection has been developed by modifying an existing method-signal noise slope intersection, incorporating in it steps from an altered version of another method called geometric method. Adaptive noise estimation from the spectrogram ensures that a smooth spectral envelope is obtained postdetection of these maximum velocity points. The method has been tested on simulated Doppler signal with scatterers possessing a parabolic flow velocity profile constant in time, steady and pulsatile string phantom recordings, as well as in vivo recordings from uterine, umbilical, carotid, and subclavian arteries. The results from simulation experiments indicate a bias of less than 2.5% in maximum velocities when estimated for a range of peak velocities, Doppler angles, and SNR levels. Standard deviation in the envelope is low-less than 2% in the case of experiments done by varying the peak velocity and Doppler angle for steady phantom and simulated flow, and also less than 2% in the case of experiments done by varying SNR but keeping constant flow conditions for in vivo and simulated flow. Low variability in the envelope makes the prospect of using the envelope for automated blood flow measurements possible and is illustrated for the case of pulsatility index estimation in uterine and umbilical arteries.

  4. Adaptive Parametric Spectral Estimation with Kalman Smoothing for Online Early Seizure Detection

    PubMed Central

    Park, Yun S.; Hochberg, Leigh R.; Eskandar, Emad N.; Cash, Sydney S.; Truccolo, Wilson

    2014-01-01

    Tracking spectral changes in neural signals, such as local field potentials (LFPs) and scalp or intracranial electroencephalograms (EEG, iEEG), is an important problem in early detection and prediction of seizures. Most approaches have focused on either parametric or nonparametric spectral estimation methods based on moving time windows. Here, we explore an adaptive (time-varying) parametric ARMA approach for tracking spectral changes in neural signals based on the fixed-interval Kalman smoother. We apply the method to seizure detection based on spectral features of intracortical LFPs recorded from a person with pharmacologically intractable focal epilepsy. We also devise and test an approach for real-time tracking of spectra based on the adaptive parametric method with the fixed-interval Kalman smoother. The order of ARMA models is determined via the AIC computed in moving time windows. We quantitatively demonstrate the advantages of using the adaptive parametric estimation method in seizure detection over nonparametric alternatives based exclusively on moving time windows. Overall, the adaptive parametric approach significantly improves the statistical separability of interictal and ictal epochs. PMID:24663686

  5. Adaptive modeling and spectral estimation of nonstationary biomedical signals based on Kalman filtering.

    PubMed

    Aboy, Mateo; Márquez, Oscar W; McNames, James; Hornero, Roberto; Trong, Tran; Goldstein, Brahm

    2005-08-01

    We describe an algorithm to estimate the instantaneous power spectral density (PSD) of nonstationary signals. The algorithm is based on a dual Kalman filter that adaptively generates an estimate of the autoregressive model parameters at each time instant. The algorithm exhibits superior PSD tracking performance in nonstationary signals than classical nonparametric methodologies, and does not assume local stationarity of the data. Furthermore, it provides better time-frequency resolution, and is robust to model mismatches. We demonstrate its usefulness by a sample application involving PSD estimation of intracranial pressure signals (ICP) from patients with traumatic brain injury (TBI).

  6. Comparison of Adaptive Spectral Estimation for Vehicle Speed Measurement with Radar Sensors.

    PubMed

    Shariff, Khairul Khaizi Mohd; Hoare, Edward; Daniel, Liam; Antoniou, Michail; Cherniakov, Mikhail

    2017-04-02

    Vehicle speed-over-ground (SoG) radar offers significant advantages over conventional speed measurement systems. Radar sensors enable contactless speed measurement, which is free from wheel slip. One of the key issues in SoG radar is the development of the Doppler shift estimation algorithm. In this paper, we compared two algorithms to estimate a mean Doppler frequency accurately. The first is the center-of-mass algorithm, which based on spectrum center-of-mass estimation with a bandwidth-limiting technique. The second is the cross-correlation algorithm, which is based on a cross-correlation technique by cross-correlating Doppler spectrum with a theoretical Gaussian curve. Analysis shows that both algorithms are computationally efficient and suitable for real-time SoG systems. Our extensive simulated and experimental results show both methods achieved low estimation error between 0.5% and 1.5% for flat road conditions. In terms of reliability, the cross-correlation method shows good performance under low Signal-to-Noise Ratio (SNR) while the center-of-mass method failed in this condition.

  7. Power spectral estimation algorithms

    NASA Technical Reports Server (NTRS)

    Bhatia, Manjit S.

    1989-01-01

    Algorithms to estimate the power spectrum using Maximum Entropy Methods were developed. These algorithms were coded in FORTRAN 77 and were implemented on the VAX 780. The important considerations in this analysis are: (1) resolution, i.e., how close in frequency two spectral components can be spaced and still be identified; (2) dynamic range, i.e., how small a spectral peak can be, relative to the largest, and still be observed in the spectra; and (3) variance, i.e., how accurate the estimate of the spectra is to the actual spectra. The application of the algorithms based on Maximum Entropy Methods to a variety of data shows that these criteria are met quite well. Additional work in this direction would help confirm the findings. All of the software developed was turned over to the technical monitor. A copy of a typical program is included. Some of the actual data and graphs used on this data are also included.

  8. Maximum-likelihood spectral estimation and adaptive filtering techniques with application to airborne Doppler weather radar. Thesis Technical Report No. 20

    NASA Technical Reports Server (NTRS)

    Lai, Jonathan Y.

    1994-01-01

    This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.

  9. The G-Spectral Estimator.

    DTIC Science & Technology

    1982-05-01

    correlation function and is equivalent to an en-transformation [11] of the same function. Gray, Houston and Morgan ( GHM ) noted the estimator to have some...satis- factory way of selecting the proper value n in the en-transform. GHM went on to conclude that an ARMA spectral estimator would probably have...which will be seen to avoid the difficulties noted by GHM , and will in fact, be shown to be equivalent to a method of moments ARMA spectral estimator

  10. Adaptive mesh strategies for the spectral element method

    NASA Technical Reports Server (NTRS)

    Mavriplis, Catherine

    1992-01-01

    An adaptive spectral method was developed for the efficient solution of time dependent partial differential equations. Adaptive mesh strategies that include resolution refinement and coarsening by three different methods are illustrated on solutions to the 1-D viscous Burger equation and the 2-D Navier-Stokes equations for driven flow in a cavity. Sharp gradients, singularities, and regions of poor resolution are resolved optimally as they develop in time using error estimators which indicate the choice of refinement to be used. The adaptive formulation presents significant increases in efficiency, flexibility, and general capabilities for high order spectral methods.

  11. [Modern spectral estimation of ICP-AES].

    PubMed

    Zhang, Z; Jia, Q; Liu, S; Guo, L; Chen, H; Zeng, X

    2000-06-01

    The inductively coupled plasma atomic emission spectrometry (ICP-AES) and its signal characteristics were discussed using modern spectral estimation technique. The power spectra density (PSD) was calculated using the auto-regression (AR) model of modern spectra estimation. The Levinson-Durbin recursion method was used to estimate the model parameters which were used for the PSD computation. The results obtained with actual ICP-AES spectra and measurements showed that the spectral estimation technique was helpful for the better understanding about spectral composition and signal characteristics.

  12. Spectral procedures for estimating crop biomass

    SciTech Connect

    Wanjura, D.F.; Hatfield, J.L.

    1985-05-01

    Spectral reflectance was measured semi-weekly and used to estimate leaf area and plant dry weight accumulation in cotton, soybeans, and sunflower. Integration of spectral crop growth cycle curves explained up to 95 and 91%, respectively, of the variation in cotton lint yield and dry weight. A theoretical relationship for dry weight accumulation, in which only intercepted radiation or intercepted radiation and solar energy to biomass conversion efficiency were spectrally estimated, explained 99 and 96%, respectively, of the observed plant dry weight variation of the three crops. These results demonstrate the feasibility of predicting crop biomass from spectral measurements collected frequently during the growing season. 15 references.

  13. Standard methods for spectral estimation and prewhitening

    SciTech Connect

    Stearns, S.D.

    1986-07-01

    A standard FFT periodogram-averaging method for power spectral estimation is described in detail, with examples that the reader can use to verify his own software. The parameters that must be specified in order to repeat a given spectral estimate are listed. A standard technique for prewhitening is also described, again with repeatable examples and a summary of the parameters that must be specified.

  14. TP89 - SIRZ Decomposition Spectral Estimation

    SciTech Connect

    Seetho, Isacc M.; Azevedo, Steve; Smith, Jerel; Brown, William D.; Martz, Jr., Harry E.

    2016-12-08

    The primary objective of this test plan is to provide X-ray CT measurements of known materials for the purposes of generating and testing MicroCT and EDS spectral estimates. These estimates are to be used in subsequent Ze/RhoE decomposition analyses of acquired data.

  15. Spectral estimation of plasma fluctuations. I. Comparison of methods

    SciTech Connect

    Riedel, K.S.; Sidorenko, A. ); Thomson, D.J. )

    1994-03-01

    The relative root mean squared errors (RMSE) of nonparametric methods for spectral estimation is compared for microwave scattering data of plasma fluctuations. These methods reduce the variance of the periodogram estimate by averaging the spectrum over a frequency bandwidth. As the bandwidth increases, the variance decreases, but the bias error increases. The plasma spectra vary by over four orders of magnitude, and therefore, using a spectral window is necessary. The smoothed tapered periodogram is compared with the adaptive multiple taper methods and hybrid methods. It is found that a hybrid method, which uses four orthogonal tapers and then applies a kernel smoother, performs best. For 300 point data segments, even an optimized smoothed tapered periodogram has a 24% larger relative RMSE than the hybrid method. Two new adaptive multitaper weightings which outperform Thomson's original adaptive weighting are presented.

  16. Adaptable Multivariate Calibration Models for Spectral Applications

    SciTech Connect

    THOMAS,EDWARD V.

    1999-12-20

    Multivariate calibration techniques have been used in a wide variety of spectroscopic situations. In many of these situations spectral variation can be partitioned into meaningful classes. For example, suppose that multiple spectra are obtained from each of a number of different objects wherein the level of the analyte of interest varies within each object over time. In such situations the total spectral variation observed across all measurements has two distinct general sources of variation: intra-object and inter-object. One might want to develop a global multivariate calibration model that predicts the analyte of interest accurately both within and across objects, including new objects not involved in developing the calibration model. However, this goal might be hard to realize if the inter-object spectral variation is complex and difficult to model. If the intra-object spectral variation is consistent across objects, an effective alternative approach might be to develop a generic intra-object model that can be adapted to each object separately. This paper contains recommendations for experimental protocols and data analysis in such situations. The approach is illustrated with an example involving the noninvasive measurement of glucose using near-infrared reflectance spectroscopy. Extensions to calibration maintenance and calibration transfer are discussed.

  17. Simultaneous Spectral Temporal Adaptive Raman Spectrometer - SSTARS

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana

    2010-01-01

    Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis, which is structure and composition. However, large fluorescence return from many mineral samples under visible light excitation can render Raman spectra unattainable. Using the described approach, Raman and fluorescence, which occur on different time scales, can be simultaneously obtained from mineral samples using a compact instrument in a planetary environment. This new approach is taken based on the use of time-resolved spectroscopy for removing the fluorescence background from Raman spectra in the laboratory. In the SSTARS instrument, a visible excitation source (a green, pulsed laser) is used to generate Raman and fluorescence signals in a mineral sample. A spectral notch filter eliminates the directly reflected beam. A grating then disperses the signal spectrally, and a streak camera provides temporal resolution. The output of the streak camera is imaged on the CCD (charge-coupled device), and the data are read out electronically. By adjusting the sweep speed of the streak camera, anywhere from picoseconds to milliseconds, it is possible to resolve Raman spectra from numerous fluorescence spectra in the same sample. The key features of SSTARS include a compact streak tube capable of picosecond time resolution for collection of simultaneous spectral and temporal information, adaptive streak tube electronics that can rapidly change from one sweep rate to another over ranges of picoseconds to milliseconds, enabling collection of both Raman and fluorescence signatures versus time and wavelength, and Synchroscan integration that allows for a compact, low-power laser without compromising ultimate sensitivity.

  18. Optimized spectral estimation for nonlinear synchronizing systems

    NASA Astrophysics Data System (ADS)

    Sommerlade, Linda; Mader, Malenka; Mader, Wolfgang; Timmer, Jens; Thiel, Marco; Grebogi, Celso; Schelter, Björn

    2014-03-01

    In many fields of research nonlinear dynamical systems are investigated. When more than one process is measured, besides the distinct properties of the individual processes, their interactions are of interest. Often linear methods such as coherence are used for the analysis. The estimation of coherence can lead to false conclusions when applied without fulfilling several key assumptions. We introduce a data driven method to optimize the choice of the parameters for spectral estimation. Its applicability is demonstrated based on analytical calculations and exemplified in a simulation study. We complete our investigation with an application to nonlinear tremor signals in Parkinson's disease. In particular, we analyze electroencephalogram and electromyogram data.

  19. Perceptual Adaptation of Voice Gender Discrimination with Spectrally Shifted Vowels

    ERIC Educational Resources Information Center

    Li, Tianhao; Fu, Qian-Jie

    2011-01-01

    Purpose: To determine whether perceptual adaptation improves voice gender discrimination of spectrally shifted vowels and, if so, which acoustic cues contribute to the improvement. Method: Voice gender discrimination was measured for 10 normal-hearing subjects, during 5 days of adaptation to spectrally shifted vowels, produced by processing the…

  20. Bayesian adaptive estimation of the auditory filter.

    PubMed

    Shen, Yi; Richards, Virginia M

    2013-08-01

    A Bayesian adaptive procedure for estimating the auditory-filter shape was proposed and evaluated using young, normal-hearing listeners at moderate stimulus levels. The resulting quick-auditory-filter (qAF) procedure assumed the power spectrum model of masking with the auditory-filter shape being modeled using a spectrally symmetric, two-parameter rounded-exponential (roex) function. During data collection using the qAF procedure, listeners detected the presence of a pure-tone signal presented in the spectral notch of a noise masker. Dependent on the listener's response on each trial, the posterior probability distributions of the model parameters were updated, and the resulting parameter estimates were then used to optimize the choice of stimulus parameters for the subsequent trials. Results showed that the qAF procedure gave similar parameter estimates to the traditional threshold-based procedure in many cases and was able to reasonably predict the masked signal thresholds. Additional measurements suggested that occasional failures of the qAF procedure to reliably converge could be a consequence of incorrect responses early in a qAF track. The addition of a parameter describing lapses of attention reduced the likelihood of such failures.

  1. Spectrally Adaptable Compressive Sensing Imaging System

    DTIC Science & Technology

    2014-05-01

    2D coded projections. The underlying spectral 3D data cube is then recovered using compressed sensing (CS) reconstruction algorithms which assume...introduced in [?], is a remarkable imaging architecture that allows capturing spectral imaging information of a 3D cube with just a single 2D mea...allows capturing spectral imaging information of a 3D cube with just a single 2D measurement of the coded and spectrally dispersed source field

  2. An efficient quantum algorithm for spectral estimation

    NASA Astrophysics Data System (ADS)

    Steffens, Adrian; Rebentrost, Patrick; Marvian, Iman; Eisert, Jens; Lloyd, Seth

    2017-03-01

    We develop an efficient quantum implementation of an important signal processing algorithm for line spectral estimation: the matrix pencil method, which determines the frequencies and damping factors of signals consisting of finite sums of exponentially damped sinusoids. Our algorithm provides a quantum speedup in a natural regime where the sampling rate is much higher than the number of sinusoid components. Along the way, we develop techniques that are expected to be useful for other quantum algorithms as well—consecutive phase estimations to efficiently make products of asymmetric low rank matrices classically accessible and an alternative method to efficiently exponentiate non-Hermitian matrices. Our algorithm features an efficient quantum–classical division of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step, requiring much fewer parameters, can operate classically. We show that frequencies and damping factors can be obtained in time logarithmic in the number of sampling points, exponentially faster than known classical algorithms.

  3. Adaptive spectral window sizes for feature extraction from optical spectra

    NASA Astrophysics Data System (ADS)

    Kan, Chih-Wen; Lee, Andy Y.; Pham, Nhi; Nieman, Linda T.; Sokolov, Konstantin; Markey, Mia K.

    2008-02-01

    We propose an approach to adaptively adjust the spectral window size used to extract features from optical spectra. Previous studies have employed spectral features extracted by dividing the spectra into several spectral windows of a fixed width. However, the choice of spectral window size was arbitrary. We hypothesize that by adaptively adjusting the spectral window sizes, the trends in the data will be captured more accurately. Our method was tested on a diffuse reflectance spectroscopy dataset obtained in a study of oblique polarization reflectance spectroscopy of oral mucosa lesions. The diagnostic task is to classify lesions into one of four histopathology groups: normal, benign, mild dysplasia, or severe dysplasia (including carcinoma). Nine features were extracted from each of the spectral windows. We computed the area (AUC) under Receiver Operating Characteristic curve to select the most discriminatory wavelength intervals. We performed pairwise classifications using Linear Discriminant Analysis (LDA) with leave-one-out cross validation. The results showed that for discriminating benign lesions from mild or severe dysplasia, the adaptive spectral window size features achieved AUC of 0.84, while a fixed spectral window size of 20 nm had AUC of 0.71, and an AUC of 0.64 is achieved with a large window size containing all wavelengths. The AUCs of all feature combinations were also calculated. These results suggest that the new adaptive spectral window size method effectively extracts features that enable accurate classification of oral mucosa lesions.

  4. Robust, Adaptive Radar Detection and Estimation

    DTIC Science & Technology

    2015-07-21

    AFRL-OSR-VA-TR-2015-0208 Robust, Adaptive Radar Detection and Estimation Vishal Monga PENNSYLVANIA STATE UNIVERSITY THE Final Report 07/21/2015...Robust, Adaptive Radar Detection and Estimation 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0333 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Monga...we develop robust estimators that can adapt to imperfect knowledge of physical constraints using an expected likelihood (EL) approach. We analyze

  5. Adaptive stellar spectral subclass classification based on Bayesian SVMs

    NASA Astrophysics Data System (ADS)

    Du, Changde; Luo, Ali; Yang, Haifeng

    2017-02-01

    Stellar spectral classification is one of the most fundamental tasks in survey astronomy. Many automated classification methods have been applied to spectral data. However, their main limitation is that the model parameters must be tuned repeatedly to deal with different data sets. In this paper, we utilize the Bayesian support vector machines (BSVM) to classify the spectral subclass data. Based on Gibbs sampling, BSVM can infer all model parameters adaptively according to different data sets, which allows us to circumvent the time-consuming cross validation for penalty parameter. We explored different normalization methods for stellar spectral data, and the best one has been suggested in this study. Finally, experimental results on several stellar spectral subclass classification problems show that the BSVM model not only possesses good adaptability but also provides better prediction performance than traditional methods.

  6. J-adaptive estimation with estimated noise statistics

    NASA Technical Reports Server (NTRS)

    Jazwinski, A. H.; Hipkins, C.

    1973-01-01

    The J-adaptive sequential estimator is extended to include simultaneous estimation of the noise statistics in a model for system dynamics. This extension completely automates the estimator, eliminating the requirement of an analyst in the loop. Simulations in satellite orbit determination demonstrate the efficacy of the sequential estimation algorithm.

  7. Parallel phase-shifting digital holography using spectral estimation technique.

    PubMed

    Xia, Peng; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Matoba, Osamu

    2014-09-20

    We propose a parallel phase-shifting digital holography using a spectral estimation technique, which enables the instantaneous acquisition of spectral information and three-dimensional (3D) information of a moving object. In this technique, an interference fringe image that contains six holograms with two phase shifts for three laser lines, such as red, green, and blue, is recorded by a space-division multiplexing method with single-shot exposure. The 3D monochrome images of these three laser lines are numerically reconstructed by a computer and used to estimate the spectral reflectance distribution of object using a spectral estimation technique. Preliminary experiments demonstrate the validity of the proposed technique.

  8. Adaptive density estimator for galaxy surveys

    NASA Astrophysics Data System (ADS)

    Saar, Enn

    2016-10-01

    Galaxy number or luminosity density serves as a basis for many structure classification algorithms. Several methods are used to estimate this density. Among them kernel methods have probably the best statistical properties and allow also to estimate the local sample errors of the estimate. We introduce a kernel density estimator with an adaptive data-driven anisotropic kernel, describe its properties and demonstrate the wealth of additional information it gives us about the local properties of the galaxy distribution.

  9. Spectral reflectance estimation using a six-color scanner

    NASA Astrophysics Data System (ADS)

    Tominaga, Shoji; Kohno, Satoshi; Kakinuma, Hirokazu; Nohara, Fuminori; Horiuchi, Takahiko

    2009-01-01

    A method is proposed for estimating the spectral reflectance function of an object surface by using a six-color scanner. The scanner is regarded as a six-band spectral imaging system, since it captures six color channels in total from two separate scans using two difference lamps. First, we describe the basic characteristics of the imaging systems for a HP color scanner and a multiband camera used for comparison. Second, we describe a computational method for recovering surface-spectral reflectances from the noisy sensor outputs. A LMMSE estimator is presented as an optimal estimator. We discuss the reflectance estimation for non-flat surfaces with shading effect. A solution method is presented for the reliable reflectance estimation. Finally, the performance of the proposed method is examined in detail on experiments using the Macbeth Color Checker and non-flat objects.

  10. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  11. Assessing dynamic spectral causality by lagged adaptive directed transfer function and instantaneous effect factor.

    PubMed

    Xu, Haojie; Lu, Yunfeng; Zhu, Shanan; He, Bin

    2014-07-01

    It is of significance to assess the dynamic spectral causality among physiological signals. Several practical estimators adapted from spectral Granger causality have been exploited to track dynamic causality based on the framework of time-varying multivariate autoregressive (tvMVAR) models. The nonzero covariance of the model's residuals has been used to describe the instantaneous effect phenomenon in some causality estimators. However, for the situations with Gaussian residuals in some autoregressive models, it is challenging to distinguish the directed instantaneous causality if the sufficient prior information about the "causal ordering" is missing. Here, we propose a new algorithm to assess the time-varying causal ordering of tvMVAR model under the assumption that the signals follow the same acyclic causal ordering for all time lags and to estimate the instantaneous effect factor (IEF) value in order to track the dynamic directed instantaneous connectivity. The time-lagged adaptive directed transfer function (ADTF) is also estimated to assess the lagged causality after removing the instantaneous effect. In this study, we first investigated the performance of the causal-ordering estimation algorithm and the accuracy of IEF value. Then, we presented the results of IEF and time-lagged ADTF method by comparing with the conventional ADTF method through simulations of various propagation models. Statistical analysis results suggest that the new algorithm could accurately estimate the causal ordering and give a good estimation of the IEF values in the Gaussian residual conditions. Meanwhile, the time-lagged ADTF approach is also more accurate in estimating the time-lagged dynamic interactions in a complex nervous system after extracting the instantaneous effect. In addition to the simulation studies, we applied the proposed method to estimate the dynamic spectral causality on real visual evoked potential (VEP) data in a human subject. Its usefulness in time

  12. Assessing Dynamic Spectral Causality by Lagged Adaptive Directed Transfer Function and Instantaneous Effect Factor

    PubMed Central

    Xu, Haojie; Lu, Yunfeng; Zhu, Shanan

    2014-01-01

    It is of significance to assess the dynamic spectral causality among physiological signals. Several practical estimators adapted from spectral Granger causality have been exploited to track dynamic causality based on the framework of time-varying multivariate autoregressive (tvMVAR) models. The non-zero covariance of the model’s residuals has been used to describe the instantaneous effect phenomenon in some causality estimators. However, for the situations with Gaussian residuals in some autoregressive models, it is challenging to distinguish the directed instantaneous causality if the sufficient prior information about the “causal ordering” is missing. Here, we propose a new algorithm to assess the time-varying causal ordering of tvMVAR model under the assumption that the signals follow the same acyclic causal ordering for all time lags and to estimate the instantaneous effect factor (IEF) value in order to track the dynamic directed instantaneous connectivity. The time-lagged adaptive directed transfer function (ADTF) is also estimated to assess the lagged causality after removing the instantaneous effect. In the present study, we firstly investigated the performance of the causal-ordering estimation algorithm and the accuracy of IEF value. Then, we presented the results of IEF and time-lagged ADTF method by comparing with the conventional ADTF method through simulations of various propagation models. Statistical analysis results suggest that the new algorithm could accurately estimate the causal ordering and give a good estimation of the IEF values in the Gaussian residual conditions. Meanwhile, the time-lagged ADTF approach is also more accurate in estimating the time-lagged dynamic interactions in a complex nervous system after extracting the instantaneous effect. In addition to the simulation studies, we applied the proposed method to estimate the dynamic spectral causality on real visual evoked potential (VEP) data in a human subject. Its usefulness in

  13. In-vivo validation of fast spectral velocity estimation techniques.

    PubMed

    Hansen, K L; Gran, F; Pedersen, M M; Holfort, I K; Jensen, J A; Nielsen, M B

    2010-01-01

    Spectrograms in medical ultrasound are usually estimated with Welch's method (WM). WM is dependent on an observation window (OW) of up to 256 emissions per estimate to achieve sufficient spectral resolution and contrast. Two adaptive filterbank methods have been suggested to reduce the OW: Blood spectral Power Capon (BPC) and the Blood Amplitude and Phase EStimation method (BAPES). Ten volunteers were scanned over the carotid artery. From each data set, 28 spectrograms were produced by combining four approaches (WM with a Hanning window (W.HAN), WM with a boxcar window (W.BOX), BPC and BAPES) and seven OWs (128, 64, 32, 16, 8, 4, 2). The full-width-at-half-maximum (FWHM) and the ratio between main and side-lobe levels were calculated at end-diastole for each spectrogram. Furthermore, all 280 spectrograms were randomized and presented to nine radiologists for visual evaluation: useful/not useful. BAPES and BPC compared to WM had better resolution (lower FWHM) for all OW<128 while only BAPES compared to WM had improved contrast (higher ratio). According to the scores given by the radiologists, BAPES, BPC and W.HAN performed equally well (p>0.05) at OW 128 and 64, while W.BOX scored less (p<0.05). At OW 32, BAPES and BPC performed better than WM (p<0.0001) and BAPES was significantly superior to BPC at OW 16 (p=0.0002) and 8 (p<0.0001). BPC at OW 32 performed as well as BPC at OW 128 (p=0.29) and BAPES at OW 16 as BAPES at OW 128 (p=0.55). WM at OW 16 and 8 failed as all four methods at OW 4 and 2. The intra-observer variability tested for three radiologist showed on average good agreement (90%, kappa=0.79) and inter-observer variability showed moderate agreement (78%, kappa=0.56). The results indicated that BPC and BAPES had better resolution and BAPES better contrast than WM, and that OW can be reduced to 32 using BPC and 16 using BAPES without reducing the usefulness of the spectrogram. This could potentially increase the temporal resolution of the spectrogram or

  14. A parametric estimation approach to instantaneous spectral imaging.

    PubMed

    Oktem, Figen S; Kamalabadi, Farzad; Davila, Joseph M

    2014-12-01

    Spectral imaging, the simultaneous imaging and spectroscopy of a radiating scene, is a fundamental diagnostic technique in the physical sciences with widespread application. Due to the intrinsic limitation of two-dimensional (2D) detectors in capturing inherently three-dimensional (3D) data, spectral imaging techniques conventionally rely on a spatial or spectral scanning process, which renders them unsuitable for dynamic scenes. In this paper, we present a nonscanning (instantaneous) spectral imaging technique that estimates the physical parameters of interest by combining measurements with a parametric model and solving the resultant inverse problem computationally. The associated inverse problem, which can be viewed as a multiframe semiblind deblurring problem (with shift-variant blur), is formulated as a maximum a posteriori (MAP) estimation problem since in many such experiments prior statistical knowledge of the physical parameters can be well estimated. Subsequently, an efficient dynamic programming algorithm is developed to find the global optimum of the nonconvex MAP problem. Finally, the algorithm and the effectiveness of the spectral imaging technique are illustrated for an application in solar spectral imaging. Numerical simulation results indicate that the physical parameters can be estimated with the same order of accuracy as state-of-the-art slit spectroscopy but with the added benefit of an instantaneous, 2D field-of-view. This technique will be particularly useful for studying the spectra of dynamic scenes encountered in space remote sensing.

  15. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Knuth, Kevin H.; Castle, Joseph P.; Lvov, Nikolay

    2005-01-01

    The following concepts were introduced: a) Bayesian adaptive sampling for solving biomass estimation; b) Characterization of MISR Rahman model parameters conditioned upon MODIS landcover. c) Rigorous non-parametric Bayesian approach to analytic mixture model determination. d) Unique U.S. asset for science product validation and verification.

  16. Spectral estimates of solar radiation intercepted by corn canopies

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Daughtry, C. S. T.; Gallo, K. P.

    1982-01-01

    Reflectance factor data were acquired with a Landsat band radiometer throughout two growing seasons for corn (Zea mays L.) canopies differing in planting dates, populations, and soil types. Agronomic data collected included leaf area index (LAI), biomass, development stage, and final grain yields. The spectral variable, greenness, was associated with 78 percent of the variation in LAI over all treatments. Single observations of LAI or greenness have limited value in predicting corn yields. The proportions of solar radiation intercepted (SRI) by these canopies were estimated using either measured LAI or greenness. Both SRI estimates, when accumulated over the growing season, accounted for approximately 65 percent of the variation in yields. Models which simulated the daily effects of weather and intercepted solar radiation on growth had the highest correlations to grain yields. This concept of estimating intercepted solar radiation using spectral data represents a viable approach for merging spectral and meteorological data for crop yield models.

  17. Adaptive link selection algorithms for distributed estimation

    NASA Astrophysics Data System (ADS)

    Xu, Songcen; de Lamare, Rodrigo C.; Poor, H. Vincent

    2015-12-01

    This paper presents adaptive link selection algorithms for distributed estimation and considers their application to wireless sensor networks and smart grids. In particular, exhaustive search-based least mean squares (LMS) / recursive least squares (RLS) link selection algorithms and sparsity-inspired LMS / RLS link selection algorithms that can exploit the topology of networks with poor-quality links are considered. The proposed link selection algorithms are then analyzed in terms of their stability, steady-state, and tracking performance and computational complexity. In comparison with the existing centralized or distributed estimation strategies, the key features of the proposed algorithms are as follows: (1) more accurate estimates and faster convergence speed can be obtained and (2) the network is equipped with the ability of link selection that can circumvent link failures and improve the estimation performance. The performance of the proposed algorithms for distributed estimation is illustrated via simulations in applications of wireless sensor networks and smart grids.

  18. Optimal spectral tracking--adapting to dynamic regime change.

    PubMed

    Brittain, John-Stuart; Halliday, David M

    2011-01-30

    Real world data do not always obey the statistical restraints imposed upon them by sophisticated analysis techniques. In spectral analysis for instance, an ergodic process--the interchangeability of temporal for spatial averaging--is assumed for a repeat-trial design. Many evolutionary scenarios, such as learning and motor consolidation, do not conform to such linear behaviour and should be approached from a more flexible perspective. To this end we previously introduced the method of optimal spectral tracking (OST) in the study of trial-varying parameters. In this extension to our work we modify the OST routines to provide an adaptive implementation capable of reacting to dynamic transitions in the underlying system state. In so doing, we generalise our approach to characterise both slow-varying and rapid fluctuations in time-series, simultaneously providing a metric of system stability. The approach is first applied to a surrogate dataset and compared to both our original non-adaptive solution and spectrogram approaches. The adaptive OST is seen to display fast convergence and desirable statistical properties. All three approaches are then applied to a neurophysiological recording obtained during a study on anaesthetic monitoring. Local field potentials acquired from the posterior hypothalamic region of a deep brain stimulation patient undergoing anaesthesia were analysed. The characterisation of features such as response delay, time-to-peak and modulation brevity are considered.

  19. Stochastic Adaptive Control and Estimation Enhancement

    DTIC Science & Technology

    1990-02-01

    ilM(k-S)1.izt-) (p. 1 and then the time after which the jump n’-* ’𔃻 takes place (i.e.. the sojourn time) is chosen 11 flp~ij) gil "’(n s~i,.k 39...Asilmar ant. pp 61-5. 184.Control or High Performance Aircraft using Adaptive ( Gil N.H. Ghalson and R.L. Moose. "Maneuverirng Target Aerstim ati nd...N It Dec. 1988. [ Gil N.H. Gholson and R.L. Moose, "Maneuveringl1(k.1) Is known, thus Target Tracking Using Adaptive State Estimation.- IEEE

  20. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Astrophysics Data System (ADS)

    Wheeler, K.; Knuth, K.; Castle, P.

    2005-12-01

    Typical estimates of standing wood derived from remote sensing sources take advantage of aggregate measurements of canopy heights (e.g. LIDAR) and canopy diameters (segmentation of IKONOS imagery) to obtain a wood volume estimate by assuming homogeneous species and a fixed function that returns volume. The validation of such techniques use manually measured diameter at breast height records (DBH). Our goal is to improve the accuracy and applicability of biomass estimation methods to heterogeneous forests and transitional areas. We are developing estimates with quantifiable uncertainty using a new form of estimation function, active sampling, and volumetric reconstruction image rendering for species specific mass truth. Initially we are developing a Bayesian adaptive sampling method for BRDF associated with the MISR Rahman model with respect to categorical biomes. This involves characterizing the probability distributions of the 3 free parameters of the Rahman model for the 6 categories of biomes used by MISR. Subsequently, these distributions can be used to determine the optimal sampling methodology to distinguish biomes during acquisition. We have a remotely controlled semi-autonomous helicopter that has stereo imaging, lidar, differential GPS, and spectrometers covering wavelengths from visible to NIR. We intend to automatically vary the way points of the flight path via the Bayesian adaptive sampling method. The second critical part of this work is in automating the validation of biomass estimates via using machine vision techniques. This involves taking 2-D pictures of trees of known species, and then via Bayesian techniques, reconstructing 3-D models of the trees to estimate the distribution moments associated with wood volume. Similar techniques have been developed by the medical imaging community. This then provides probability distributions conditional upon species. The final part of this work is in relating the BRDF actively sampled measurements to species

  1. Optimal estimation of spectral reflectance based on metamerism

    NASA Astrophysics Data System (ADS)

    Chou, Tzren-Ru; Lin, Wei-Ju

    2012-01-01

    In this paper, we proposed an accurate estimation method for spectral reflectance of objects captured in an image. The spectral reflectance is simply modeled by a linear combination of three basic spectrums of R, G, and B colors respectively, named as spectral reflective bases of objects, which are acquired by solving a linear system based on the principle of color metamerism. Some experiments were performed to evaluate the accuracy of the estimated spectral reflectance of objects. The average mean square error of 24 colors in Macbeth checker between we simulated and the measured is 0.0866, and the maximum is 0.310. In addition, the average color difference of the 24 colors is less than 1.5 under the D65 illuminant. There are 13 colors having their color difference values less than 1, and other 8 colors having the values during the range of 1 and 2. Only three colors are relatively larger, with the differences of 2.558, 4.130 and 2.569, from the colors of No. 2, No. 13, and No. 18 in Macbeth checker respectively. Furthermore, the computational cost of this spectral estimation is very low and suitable for many practical applications in real time.

  2. Adaptive Filter-bank Approach to Restoration and Spectral Analysis of Gapped Data

    NASA Astrophysics Data System (ADS)

    Stoica, Petre; Larsson, Erik G.; Li, Jian

    2000-10-01

    The main topic of this paper is the nonparametric estimation of complex (both amplitude and phase) spectra from gapped data, as well as the restoration of such data. The focus is on the extension of the APES (amplitude and phase estimation) approach to data sequences with gaps. APES, which is one of the most successful existing nonparametric approaches to the spectral analysis of full data sequences, uses a bank of narrowband adaptive (both frequency and data dependent) filters to estimate the spectrum. A recent interpretation of this approach showed that the filterbank used by APES and the resulting spectrum minimize a least-squares (LS) fitting criterion between the filtered sequence and its spectral decomposition. The extended approach, which is called GAPES for somewhat obvious reasons, capitalizes on the aforementioned interpretation: it minimizes the APES-LS fitting criterion with respect to the missing data as well. This should be a sensible thing to do whenever the full data sequence is stationary, and hence the missing data have the same spectral content as the available data. We use both simulated and real data examples to show that GAPES estimated spectra and interpolated data sequences have excellent accuracy. We also show the performance gain achieved by GAPES over two of the most commonly used approaches for gapped-data spectral analysis, viz., the periodogram and the parametric CLEAN method. This work was partly supported by the Swedish Foundation for Strategic Research.

  3. Experimental Demonstration of Adaptive Quantum State Estimation

    NASA Astrophysics Data System (ADS)

    Okamoto, Ryo; Iefuji, Minako; Oyama, Satoshi; Yamagata, Koichi; Imai, Hiroshi; Fujiwara, Akio; Takeuchi, Shigeki

    2012-09-01

    The first experimental demonstration of an adaptive quantum state estimation (AQSE) is reported. The strong consistency and asymptotic efficiency of AQSE have been mathematically proven [A. Fujiwara, J. Phys. A 39, 12489 (2006)JPHAC50305-447010.1088/0305-4470/39/40/014]. In this Letter, the angle of linear polarization of single photons, the phase parameter between the right and the left circularly polarization, is estimated using AQSE, and the strong consistency and asymptotic efficiency are experimentally verified. AQSE will provide a general useful method in both quantum information processing and metrology.

  4. [Optimized Spectral Indices Based Estimation of Forage Grass Biomass].

    PubMed

    An, Hai-bo; Li, Fei; Zhao, Meng-li; Liu, Ya-jun

    2015-11-01

    As an important indicator of forage production, aboveground biomass will directly illustrate the growth of forage grass. Therefore, Real-time monitoring biomass of forage grass play a crucial role in performing suitable grazing and management in artificial and natural grassland. However, traditional sampling and measuring are time-consuming and labor-intensive. Recently, development of hyperspectral remote sensing provides the feasibility in timely and nondestructive deriving biomass of forage grass. In the present study, the main objectives were to explore the robustness of published and optimized spectral indices in estimating biomass of forage grass in natural and artificial pasture. The natural pasture with four grazing density (control, light grazing, moderate grazing and high grazing) was designed in desert steppe, and different forage cultivars with different N rate were conducted in artificial forage fields in Inner Mongolia. The canopy reflectance and biomass in each plot were measured during critical stages. The result showed that, due to the influence in canopy structure and biomass, the canopy reflectance have a great difference in different type of forage grass. The best performing spectral index varied in different species of forage grass with different treatments (R² = 0.00-0.69). The predictive ability of spectral indices decreased under low biomass of desert steppe, while red band based spectral indices lost sensitivity under moderate-high biomass of forage maize. When band combinations of simple ratio and normalized difference spectral indices were optimized in combined datasets of natural and artificial grassland, optimized spectral indices significant increased predictive ability and the model between biomass and optimized spectral indices had the highest R² (R² = 0.72) compared to published spectral indices. Sensitive analysis further confirmed that the optimized index had the lowest noise equivalent and were the best performing index in

  5. A Spectral Estimate of Average Slip in Earthquakes

    NASA Astrophysics Data System (ADS)

    Boatwright, J.; Hanks, T. C.

    2014-12-01

    We demonstrate that the high-frequency acceleration spectral level ao of an ω-square source spectrum is directly proportional to the average slip of the earthquake ∆u divided by the travel time to the station r/βao = 1.37 Fs (β/r) ∆uand multiplied by the radiation pattern Fs. This simple relation is robust but depends implicitly on the assumed relation between the corner frequency and source radius, which we take from the Brune (1970, JGR) model. We use this relation to estimate average slip by fitting spectral ratios with smaller earthquakes as empirical Green's functions. For a pair of Mw = 1.8 and 1.2 earthquakes in Parkfield, we fit the spectral ratios published by Nadeau et al. (1994, BSSA) to obtain 0.39 and 0.10 cm. For the Mw= 3.9 earthquake that occurred on Oct 29, 2012, at the Pinnacles, we fit spectral ratios formed with respect to an Md = 2.4 aftershock to obtain 4.4 cm. Using the Sato and Hirasawa (1973, JPE) model instead of the Brune model increases the estimates of average slip by 75%. These estimates of average slip are factors of 5-40 (or 3-23) times less than the average slips of 3.89 cm and 23.3 cm estimated by Nadeau and Johnson (1998, BSSA) from the slip rates, average seismic moments and recurrence intervals for the two sequences to which they associate these earthquakes. The most reasonable explanation for this discrepancy is that the stress release and rupture processes of these earthquakes is strongly heterogeneous. However, the fits to the spectral ratios do not indicate that the spectral shapes are distorted in the first two octaves above the corner frequency.

  6. Estimating neugebauer primaries for multi-channel spectral printing modeling

    NASA Astrophysics Data System (ADS)

    Slavuj, Radovan; Coppel, Ludovic G.; Olen, Melissa; Hardeberg, Jon Yngve

    2014-02-01

    Multichannel printer modeling has been an active area of research in the field of spectral printing. The most commonly used models for characterization of such systems are the spectral Neugebauer (SN) and its extensions. This work addresses issues that can arise during calibration and testing of the SN model when modelling a 7-colorant printer. Since most substrates are limited in their capacity to take in large amount of ink, it is not always possible to print all colorant combinations necessary to determine the Neugebauer primaries (NP). A common solution is to estimate the nonprintable Neugebauer primaries from the single colorant primaries using the Kubelka-Munk (KM) optical model. In this work we test whether a better estimate can be obtained using general radiative transfer theory, which better represents the angular variation of the reflectance from highly absorbing media, and takes surface scattering into account. For this purpose we use the DORT2002 model. We conclude DORT2002 does not offer significant improvements over KM in the estimation of the NPs, but a significant improvement is obtained when using a simple surface scattering model. When the estimated primaries are used as inputs to the SN model instead of measured ones, it is found the SN model performs the same or better in terms of color difference and spectral error. If the mixed measured and estimated primaries are used as inputs to the SN model, it performs better than using either measured or estimated.

  7. Error estimation and adaptivity for transport problems with uncertain parameters

    NASA Astrophysics Data System (ADS)

    Sahni, Onkar; Li, Jason; Oberai, Assad

    2016-11-01

    Stochastic partial differential equations (PDEs) with uncertain parameters and source terms arise in many transport problems. In this study, we develop and apply an adaptive approach based on the variational multiscale (VMS) formulation for discretizing stochastic PDEs. In this approach we employ finite elements in the physical domain and generalize polynomial chaos based spectral basis in the stochastic domain. We demonstrate our approach on non-trivial transport problems where the uncertain parameters are such that the advective and diffusive regimes are spanned in the stochastic domain. We show that the proposed method is effective as a local error estimator in quantifying the element-wise error and in driving adaptivity in the physical and stochastic domains. We will also indicate how this approach may be extended to the Navier-Stokes equations. NSF Award 1350454 (CAREER).

  8. Ultimate Precision of Adaptive Noise Estimation

    NASA Astrophysics Data System (ADS)

    Pirandola, Stefano; Lupo, Cosmo

    2017-03-01

    We consider the estimation of noise parameters in a quantum channel, assuming the most general strategy allowed by quantum mechanics. This is based on the exploitation of unlimited entanglement and arbitrary quantum operations, so that the channel inputs may be interactively updated. In this general scenario, we draw a novel connection between quantum metrology and teleportation. In fact, for any teleportation-covariant channel (e.g., Pauli, erasure, or Gaussian channel), we find that adaptive noise estimation cannot beat the standard quantum limit, with the quantum Fisher information being determined by the channel's Choi matrix. As an example, we establish the ultimate precision for estimating excess noise in a thermal-loss channel, which is crucial for quantum cryptography. Because our general methodology applies to any functional that is monotonic under trace-preserving maps, it can be applied to simplify other adaptive protocols, including those for quantum channel discrimination. Setting the ultimate limits for noise estimation and discrimination paves the way for exploring the boundaries of quantum sensing, imaging, and tomography.

  9. Ultimate Precision of Adaptive Noise Estimation.

    PubMed

    Pirandola, Stefano; Lupo, Cosmo

    2017-03-10

    We consider the estimation of noise parameters in a quantum channel, assuming the most general strategy allowed by quantum mechanics. This is based on the exploitation of unlimited entanglement and arbitrary quantum operations, so that the channel inputs may be interactively updated. In this general scenario, we draw a novel connection between quantum metrology and teleportation. In fact, for any teleportation-covariant channel (e.g., Pauli, erasure, or Gaussian channel), we find that adaptive noise estimation cannot beat the standard quantum limit, with the quantum Fisher information being determined by the channel's Choi matrix. As an example, we establish the ultimate precision for estimating excess noise in a thermal-loss channel, which is crucial for quantum cryptography. Because our general methodology applies to any functional that is monotonic under trace-preserving maps, it can be applied to simplify other adaptive protocols, including those for quantum channel discrimination. Setting the ultimate limits for noise estimation and discrimination paves the way for exploring the boundaries of quantum sensing, imaging, and tomography.

  10. Adaptation in chemoreceptor cells. II. The effects of cross-adapting backgrounds depend on spectral tuning.

    PubMed

    Borroni, P F; Atema, J

    1989-09-01

    1. The cross-adapting effects of chemical backgrounds on the response of primary chemoreceptor cells to superimposed stimuli were studied using NH(4) receptor cells, of known spectral tuning from the lobster (Homarus americanus). 2. Spectrum experiments: The spectral tuning of NH(4) receptor cells was investigated using NH(4)C1 and 7 other compounds selected as the most stimulatory non-best compounds for NH(4) cells from a longer list of compounds tested in previous studies. Based on their responses to the compounds tested, 3 spectral subpopulations of NH(4) Bet cells which responded second-best to Betaine (Bet; and 'pure' NH(4) cells, which responded to NH(4)C1 only (Fig.1). 3. Cross-adaptation experiments: Overall, cross-adaptation with Glu and Bet backgrounds caused suppression of response of NH(4) receptor cells to various concentrations of NH(4)C1. However, the different subpopulations of NH(4) cells were affected differently: (a) The stimulus-response functions of NH(4)-Glu cells were significantly suppressed by both a 3 micrometre (G3) and 300 micrometre (G300) Glu backgrounds. (b) The stimulus-response functions of NH(4)-Bet cells was not affected by a 3 micrometre (B3), but significantly suppressed by a 300 micrometre (B300) Bet background. (c) The stimulus-response functions of pure NH(4) cells were not affected by any of the Glu or Bet back grounds (Figs. 3, 4). 4. The stimulus-response functions of 5 cells from all different subpopulations were enhanced by cross-adaptation with the G300 and B300 back-grounds (Fig 4, Table 1). 5. Whereas self-adaptation caused parallel shifts in stimulus-response functions (Borroni and Atema 1988), cross-adaptation caused a decrease in slope of stimulus-response functions. Implications of the results from cross- and self-adaptation experiments on NH(4) receptor cells, for a receptor cell model are discussed.

  11. Image-based spectral transmission estimation using "sensitivity comparison".

    PubMed

    Nahavandi, Alireza Mahmoudi; Tehran, Mohammad Amani

    2017-01-20

    Although digital cameras have been used for spectral reflectance estimation, transmission measurement has rarely been considered in studies. This study presents a method named sensitivity comparison (SC) for spectral transmission estimation. The method needs neither a priori knowledge from the samples nor statistical information of a given reflectance dataset. As with spectrophotometers, the SC method needs one shot for calibration and another shot for measurement. The method exploits the sensitivity of the camera in the absence and presence of transparent colored objects for transmission estimation. 138 Kodak Wratten Gelatin filter transmissions were used for controlling the proposed method. Using modeling of the imaging system in different levels of noise, the performance of the proposed method was compared with a training-based Matrix R method. For checking the performance of the SC method in practice, 33 manmade colored transparent films were used in a conventional three-channel camera. The method generated promising results using different error metrics.

  12. Yield estimation of sugarcane based on agrometeorological-spectral models

    NASA Technical Reports Server (NTRS)

    Rudorff, Bernardo Friedrich Theodor; Batista, Getulio Teixeira

    1990-01-01

    This work has the objective to assess the performance of a yield estimation model for sugarcane (Succharum officinarum). The model uses orbital gathered spectral data along with yield estimated from an agrometeorological model. The test site includes the sugarcane plantations of the Barra Grande Plant located in Lencois Paulista municipality in Sao Paulo State. Production data of four crop years were analyzed. Yield data observed in the first crop year (1983/84) were regressed against spectral and agrometeorological data of that same year. This provided the model to predict the yield for the following crop year i.e., 1984/85. The model to predict the yield of subsequent years (up to 1987/88) were developed similarly, incorporating all previous years data. The yield estimations obtained from these models explained 69, 54, and 50 percent of the yield variation in the 1984/85, 1985/86, and 1986/87 crop years, respectively. The accuracy of yield estimations based on spectral data only (vegetation index model) and on agrometeorological data only (agrometeorological model) were also investigated.

  13. Nonlinear and adaptive estimation in reentry.

    NASA Technical Reports Server (NTRS)

    Jazwinski, A. H.

    1972-01-01

    The problem of real-time estimation of a lifting reentry vehicle trajectory of the shuttle orbiter type is considered. Simulations feature large position and velocity uncertainties at radar acquisition and realistic model errors in lift, drag and other model parameters. Radar tracking and accelerometer data are simulated. Significant nonlinearities are found to exist on spacecraft acquisition. An iterated nonlinear filter is shown to perform optimally during the radar acquisition phase. An adaptive filter is shown to track time-varying model errors, such as errors in the lift and drag coefficients, down to the noise level. Such real-time model tracking (identification) is frequently required for guidance and control implementation.

  14. Spectral estimation of green leaf area index of oats

    NASA Technical Reports Server (NTRS)

    Best, R. G.; Harlan, J. C.

    1985-01-01

    Green leaf area index (LAI) is a measure of vegetative growth and development and is frequently used as an input parameter in yield estimation and evapotranspiration models. Extensive destructive sampling is usually required to achieve accurate estimates of green LAI in natural situations. In this investigation, a statistical modeling approach was used to predict the green LAI of oats from bidirectional reflectance data collected with multiband radiometers. Stepwise multiple regression models based on two sets of spectral reflectance factors accounted for 73 percent and 65 percent of the variance in green LAI of oats. Exponential models of spectral data transformations of greenness, normalized difference, and near-infrared/red ratio accounted for more of the variance in green LAI than the multiple regression models.

  15. Constrained Spectral Conditioning for spatial sound level estimation

    NASA Astrophysics Data System (ADS)

    Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.

    2016-11-01

    Microphone arrays are utilized in aeroacoustic testing to spatially map the sound emitted from an article under study. Whereas a single microphone allows only the total sound level to be estimated at the measurement location, an array permits differentiation between the contributions of distinct components. The accuracy of these spatial sound estimates produced by post-processing the array outputs is continuously being improved. One way of increasing the estimation accuracy is to filter the array outputs before they become inputs to a post-processor. This work presents a constrained method of linear filtering for microphone arrays which minimizes the total signal present on the array channels while preserving the signal from a targeted spatial location. Thus, each single-channel, filtered output for a given targeted location estimates only the signal from that location, even when multiple and/or distributed sources have been measured simultaneously. The method is based on Conditioned Spectral Analysis and modifies the Wiener-Hopf equation in a manner similar to the Generalized Sidelobe Canceller. This modified form of Conditioned Spectral Analysis is embedded within an iterative loop and termed Constrained Spectral Conditioning. Linear constraints are derived which prevent the cancellation of targeted signal due to random statistical error as well as location error in the sensor and/or source positions. The increased spatial mapping accuracy of Constrained Spectral Conditioning is shown for a simulated dataset of point sources which vary in strength. An experimental point source is used to validate the efficacy of the constraints which yield preservation of the targeted signal at the expense of reduced filtering ability. The beamforming results of a cold, supersonic jet demonstrate the qualitative and quantitative improvement obtained when using this technique to map a spatially-distributed, complex, and possibly coherent sound source.

  16. Breast density estimation from high spectral and spatial resolution MRI.

    PubMed

    Li, Hui; Weiss, William A; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M; Karczmar, Gregory S; Giger, Maryellen L

    2016-10-01

    A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists' breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 ([Formula: see text]) was obtained between left and right breast density estimations. An interclass correlation coefficient of 0.99 ([Formula: see text]) indicated high reliability for the inter-user variability of the HiSS-based breast density estimations. A moderate correlation coefficient of 0.55 ([Formula: see text]) was observed between HiSS-based breast density estimations and radiologists' BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy.

  17. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1985-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a Landsat MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95 percent of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50 percent of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73 percent of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  18. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1984-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a LANDSAT MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95% of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50% of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73% of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  19. Least-squares spectral element solution of incompressible Navier-Stokes equations with adaptive refinement

    NASA Astrophysics Data System (ADS)

    Ozcelikkale, Altug; Sert, Cuneyt

    2012-05-01

    Least-squares spectral element solution of steady, two-dimensional, incompressible flows are obtained by approximating velocity, pressure and vorticity variable set on Gauss-Lobatto-Legendre nodes. Constrained Approximation Method is used for h- and p-type nonconforming interfaces of quadrilateral elements. Adaptive solutions are obtained using a posteriori error estimates based on least squares functional and spectral coefficient. Effective use of p-refinement to overcome poor mass conservation drawback of least-squares formulation and successful use of h- and p-refinement together to solve problems with geometric singularities are demonstrated. Capabilities and limitations of the developed code are presented using Kovasznay flow, flow past a circular cylinder in a channel and backward facing step flow.

  20. Model-based spectral estimation of Doppler signals using parallel genetic algorithms.

    PubMed

    Solano González, J; Rodríguez Vázquez, K; García Nocetti, D F

    2000-05-01

    Conventional spectral analysis methods use a fast Fourier transform (FFT) on consecutive or overlapping windowed data segments. For Doppler ultrasound signals, this approach suffers from an inadequate frequency resolution due to the time segment duration and the non-stationarity characteristics of the signals. Parametric or model-based estimators can give significant improvements in the time-frequency resolution at the expense of a higher computational complexity. This work describes an approach which implements in real-time a parametric spectral estimator method using genetic algorithms (GAs) in order to find the optimum set of parameters for the adaptive filter that minimises the error function. The aim is to reduce the computational complexity of the conventional algorithm by using the simplicity associated to GAs and exploiting its parallel characteristics. This will allow the implementation of higher order filters, increasing the spectrum resolution, and opening a greater scope for using more complex methods.

  1. Empirical performance of the spectral independent morphological adaptive classifier

    NASA Astrophysics Data System (ADS)

    Montgomery, Joel B.; Montgomery, Christine T.; Sanderson, Richard B.; McCalmont, John F.

    2008-04-01

    Effective missile warning and countermeasures continue to be an unfulfilled goal for the Air Force including the wider military and civilian aerospace community. To make the necessary detection and jamming timeframes dictated by today's proliferated missiles and near-term upgraded threats, sensors with required sensitivity, field of regard, and spatial resolution are being pursued in conjunction with advanced processing techniques allowing for detection and discrimination beyond 10 km. The greatest driver of any missile warning system is detection and correct declaration, in which all targets need to be detected with a high confidence and with very few false alarms. Generally, imaging sensors are limited in their detection capability by the presence of heavy background clutter, sun glints, and inherent sensor noise. Many threat environments include false alarm sources like burning fuels, flares, exploding ordinance, and industrial emitters. Spectral discrimination has been shown to be one of the most effective methods of improving the performance of typical missile warning sensors, particularly for heavy clutter situations. Its utility has been demonstrated in the field and on-board multiple aircraft. Utilization of the background and clutter spectral content, coupled with additional spatial and temporal filtering techniques, have yielded robust adaptive real-time algorithms to increase signal-to-clutter ratios against point targets, and thereby to increase detection range. The algorithm outlined is the result of continued work with reported results against visible missile tactical data. The results are summarized and compared in terms of computational cost expected to be implemented on a real-time field-programmable gate array (FPGA) processor.

  2. Convergence of oscillator spectral estimators for counted-frequency measurements.

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1972-01-01

    A common intermediary connecting frequency-noise calibration or testing of an oscillator to useful applications is the spectral density of the frequency-deviating process. In attempting to turn test data into predicts of performance characteristics, one is naturally led to estimation of statistical values by sample-mean and sample-variance techniques. However, sample means and sample variances themselves are statistical quantities that do not necessarily converge (in the mean-square sense) to actual ensemble-average means and variances, except perhaps for excessively large sample sizes. This is especially true for the flicker noise component of oscillators. This article shows, for the various types of noises found in oscillators, how sample averages converge (or do not converge) to their statistical counterparts. The convergence rate is shown to be the same for all oscillators of a given spectral type.

  3. Alternative techniques for high-resolution spectral estimation of spectrally encoded endoscopy

    NASA Astrophysics Data System (ADS)

    Mousavi, Mahta; Duan, Lian; Javidi, Tara; Ellerbee, Audrey K.

    2015-09-01

    Spectrally encoded endoscopy (SEE) is a minimally invasive optical imaging modality capable of fast confocal imaging of internal tissue structures. Modern SEE systems use coherent sources to image deep within the tissue and data are processed similar to optical coherence tomography (OCT); however, standard processing of SEE data via the Fast Fourier Transform (FFT) leads to degradation of the axial resolution as the bandwidth of the source shrinks, resulting in a well-known trade-off between speed and axial resolution. Recognizing the limitation of FFT as a general spectral estimation algorithm to only take into account samples collected by the detector, in this work we investigate alternative high-resolution spectral estimation algorithms that exploit information such as sparsity and the general region position of the bulk sample to improve the axial resolution of processed SEE data. We validate the performance of these algorithms using bothMATLAB simulations and analysis of experimental results generated from a home-built OCT system to simulate an SEE system with variable scan rates. Our results open a new door towards using non-FFT algorithms to generate higher quality (i.e., higher resolution) SEE images at correspondingly fast scan rates, resulting in systems that are more accurate and more comfortable for patients due to the reduced image time.

  4. Multichannel Speech Enhancement Based on Generalized Gamma Prior Distribution with Its Online Adaptive Estimation

    NASA Astrophysics Data System (ADS)

    Dat, Tran Huy; Takeda, Kazuya; Itakura, Fumitada

    We present a multichannel speech enhancement method based on MAP speech spectral magnitude estimation using a generalized gamma model of speech prior distribution, where the model parameters are adapted from actual noisy speech in a frame-by-frame manner. The utilization of a more general prior distribution with its online adaptive estimation is shown to be effective for speech spectral estimation in noisy environments. Furthermore, the multi-channel information in terms of cross-channel statistics are shown to be useful to better adapt the prior distribution parameters to the actual observation, resulting in better performance of speech enhancement algorithm. We tested the proposed algorithm in an in-car speech database and obtained significant improvements of the speech recognition performance, particularly under non-stationary noise conditions such as music, air-conditioner and open window.

  5. Unsupervised boundary delineation of spinal neural foramina using a multi-feature and adaptive spectral segmentation.

    PubMed

    He, Xiaoxu; Zhang, Heye; Landis, Mark; Sharma, Manas; Warrington, James; Li, Shuo

    2017-02-01

    As a common disease in the elderly, neural foramina stenosis (NFS) brings a significantly negative impact on the quality of life due to its symptoms including pain, disability, fall risk and depression. Accurate boundary delineation is essential to the clinical diagnosis and treatment of NFS. However, existing clinical routine is extremely tedious and inefficient due to the requirement of physicians' intensively manual delineation. Automated delineation is highly needed but faces big challenges from the complexity and variability in neural foramina images. In this paper, we propose a pure image-driven unsupervised boundary delineation framework for the automated neural foramina boundary delineation. This framework is based on a novel multi-feature and adaptive spectral segmentation (MFASS) algorithm. MFASS firstly utilizes the combination of region and edge features to generate reliable spectral features with a good separation between neural foramina and its surroundings, then estimates an optimal separation threshold for each individual image to separate neural foramina from its surroundings. This self-adjusted optimal separation threshold, estimated from spectral features, successfully overcome the diverse appearance and shape variations. With the robustness from the multi-feature fusion and the flexibility from the adaptively optimal separation threshold estimation, the proposed framework, based on MFASS, provides an automated and accurate boundary delineation. Validation was performed in 280 neural foramina MR images from 56 clinical subjects. Our method was benchmarked with manual boundary obtained by experienced physicians. Results demonstrate that the proposed method enjoys a high and stable consistency with experienced physicians (Dice: 90.58% ± 2.79%; SMAD: 0.5657 ± 0.1544 mm). Therefore, the proposed framework enables an efficient and accurate clinical tool in the diagnosis of neural foramina stenosis.

  6. Spectral estimates of net radiation and soil heat flux

    USGS Publications Warehouse

    Daughtry, C.S.T.; Kustas, W.P.; Moran, M.S.; Pinter, P. J.; Jackson, R. D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.

    1990-01-01

    Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under nonadvective conditions. ?? 1990.

  7. Optimizing spectral wave estimates with adjoint-based sensitivity maps

    NASA Astrophysics Data System (ADS)

    Orzech, Mark; Veeramony, Jay; Flampouris, Stylianos

    2014-04-01

    A discrete numerical adjoint has recently been developed for the stochastic wave model SWAN. In the present study, this adjoint code is used to construct spectral sensitivity maps for two nearshore domains. The maps display the correlations of spectral energy levels throughout the domain with the observed energy levels at a selected location or region of interest (LOI/ROI), providing a full spectrum of values at all locations in the domain. We investigate the effectiveness of sensitivity maps based on significant wave height ( H s ) in determining alternate offshore instrument deployment sites when a chosen nearshore location or region is inaccessible. Wave and bathymetry datasets are employed from one shallower, small-scale domain (Duck, NC) and one deeper, larger-scale domain (San Diego, CA). The effects of seasonal changes in wave climate, errors in bathymetry, and multiple assimilation points on sensitivity map shapes and model performance are investigated. Model accuracy is evaluated by comparing spectral statistics as well as with an RMS skill score, which estimates a mean model-data error across all spectral bins. Results indicate that data assimilation from identified high-sensitivity alternate locations consistently improves model performance at nearshore LOIs, while assimilation from low-sensitivity locations results in lesser or no improvement. Use of sub-sampled or alongshore-averaged bathymetry has a domain-specific effect on model performance when assimilating from a high-sensitivity alternate location. When multiple alternate assimilation locations are used from areas of lower sensitivity, model performance may be worse than with a single, high-sensitivity assimilation point.

  8. Adaptive uniform grayscale coded aperture design for high dynamic range compressive spectral imaging

    NASA Astrophysics Data System (ADS)

    Diaz, Nelson; Rueda, Hoover; Arguello, Henry

    2016-05-01

    Imaging spectroscopy is an important area with many applications in surveillance, agriculture and medicine. The disadvantage of conventional spectroscopy techniques is that they collect the whole datacube. In contrast, compressive spectral imaging systems capture snapshot compressive projections, which are the input of reconstruction algorithms to yield the underlying datacube. Common compressive spectral imagers use coded apertures to perform the coded projections. The coded apertures are the key elements in these imagers since they define the sensing matrix of the system. The proper design of the coded aperture entries leads to a good quality in the reconstruction. In addition, the compressive measurements are prone to saturation due to the limited dynamic range of the sensor, hence the design of coded apertures must consider saturation. The saturation errors in compressive measurements are unbounded and compressive sensing recovery algorithms only provide solutions for bounded noise or bounded with high probability. In this paper it is proposed the design of uniform adaptive grayscale coded apertures (UAGCA) to improve the dynamic range of the estimated spectral images by reducing the saturation levels. The saturation is attenuated between snapshots using an adaptive filter which updates the entries of the grayscale coded aperture based on the previous snapshots. The coded apertures are optimized in terms of transmittance and number of grayscale levels. The advantage of the proposed method is the efficient use of the dynamic range of the image sensor. Extensive simulations show improvements in the image reconstruction of the proposed method compared with grayscale coded apertures (UGCA) and adaptive block-unblock coded apertures (ABCA) in up to 10 dB.

  9. Power Spectral Analysis of Simultaneous VLBI and GPS Tropospheric Estimates

    NASA Astrophysics Data System (ADS)

    Ray, J.; Boehm, J.

    2004-12-01

    Observations by space geodetic techniques experience refraction and signal delay due to passage through the Earth's atmosphere. For high-accuracy positioning results, data analysts must account for these effects. Since independent path delay values of sufficient accuracy are not usually available, nuisance parameters are commonly added in the geodetic analysis. The general validity of such zenith path delay (ZPD) estimates as true atmospheric measures has been confirmed by comparison of results from independent radiometric and other techniques over many years. Biases and standard deviations in the sub-cm range are normally found, which is expected to be adequate as inputs to improve the forecast performance of numerical weather models. To better understand the noise characteristics of ZPD estimates from VLBI and GPS, we have examined the power spectra of simultaneous observations during a 15-day period in October 2002. The official combined ZPD products from the technique services have been used primarily, but series from individual analysis centers have also been included. For the seven sites studied, the power-law spectral indices over sub-daily intervals are close to -8/3, consistent with fully developed Kolmogorov turbulence, and flatten over longer periods. The VLBI series, sampled hourly, show white noise at levels of 0.7 to 1.5 mm for frequencies above 5 cycles per day. The simultaneous GPS series, sampled every 2 hours, display no indication of white noise except for one receiver with poor data analysis. The spectra of VLBI-GPS differences are generally flat but show possible signs of excess noise in some spectral bands. Based on these results, estimating VLBI ZPD values more often than every few hours should be reconsidered, especially if changes would strengthen other parameters. On the other hand, GPS-based ZPD estimates should be determined more frequently, at least hourly. Considering the greater reliability of the VLBI scale and the corresponding

  10. Informed spectral analysis: audio signal parameter estimation using side information

    NASA Astrophysics Data System (ADS)

    Fourer, Dominique; Marchand, Sylvain

    2013-12-01

    Parametric models are of great interest for representing and manipulating sounds. However, the quality of the resulting signals depends on the precision of the parameters. When the signals are available, these parameters can be estimated, but the presence of noise decreases the resulting precision of the estimation. Furthermore, the Cramér-Rao bound shows the minimal error reachable with the best estimator, which can be insufficient for demanding applications. These limitations can be overcome by using the coding approach which consists in directly transmitting the parameters with the best precision using the minimal bitrate. However, this approach does not take advantage of the information provided by the estimation from the signal and may require a larger bitrate and a loss of compatibility with existing file formats. The purpose of this article is to propose a compromised approach, called the 'informed approach,' which combines analysis with (coded) side information in order to increase the precision of parameter estimation using a lower bitrate than pure coding approaches, the audio signal being known. Thus, the analysis problem is presented in a coder/decoder configuration where the side information is computed and inaudibly embedded into the mixture signal at the coder. At the decoder, the extra information is extracted and is used to assist the analysis process. This study proposes applying this approach to audio spectral analysis using sinusoidal modeling which is a well-known model with practical applications and where theoretical bounds have been calculated. This work aims at uncovering new approaches for audio quality-based applications. It provides a solution for challenging problems like active listening of music, source separation, and realistic sound transformations.

  11. SPECTRAL data-based estimation of soil heat flux

    USGS Publications Warehouse

    Singh, R.K.; Irmak, A.; Walter-Shea, Elizabeth; Verma, S.B.; Suyker, A.E.

    2011-01-01

    Numerous existing spectral-based soil heat flux (G) models have shown wide variation in performance for maize and soybean cropping systems in Nebraska, indicating the need for localized calibration and model development. The objectives of this article are to develop a semi-empirical model to estimate G from a normalized difference vegetation index (NDVI) and net radiation (Rn) for maize (Zea mays L.) and soybean (Glycine max L.) fields in the Great Plains, and present the suitability of the developed model to estimate G under similar and different soil and management conditions. Soil heat fluxes measured in both irrigated and rainfed fields in eastern and south-central Nebraska were used for model development and validation. An exponential model that uses NDVI and Rn was found to be the best to estimate G based on r2 values. The effect of geographic location, crop, and water management practices were used to develop semi-empirical models under four case studies. Each case study has the same exponential model structure but a different set of coefficients and exponents to represent the crop, soil, and management practices. Results showed that the semi-empirical models can be used effectively for G estimation for nearby fields with similar soil properties for independent years, regardless of differences in crop type, crop rotation, and irrigation practices, provided that the crop residue from the previous year is more than 4000 kg ha-1. The coefficients calibrated from particular fields can be used at nearby fields in order to capture temporal variation in G. However, there is a need for further investigation of the models to account for the interaction effects of crop rotation and irrigation. Validation at an independent site having different soil and crop management practices showed the limitation of the semi-empirical model in estimating G under different soil and environment conditions.

  12. Application of Sequential Interval Estimation to Adaptive Mastery Testing

    ERIC Educational Resources Information Center

    Chang, Yuan-chin Ivan

    2005-01-01

    In this paper, we apply sequential one-sided confidence interval estimation procedures with beta-protection to adaptive mastery testing. The procedures of fixed-width and fixed proportional accuracy confidence interval estimation can be viewed as extensions of one-sided confidence interval procedures. It can be shown that the adaptive mastery…

  13. Artificial decoy spectral libraries for false discovery rate estimation in spectral library searching in proteomics.

    PubMed

    Lam, Henry; Deutsch, Eric W; Aebersold, Ruedi

    2010-01-01

    The challenge of estimating false discovery rates (FDR) in peptide identification from MS/MS spectra has received increased attention in proteomics. The simple approach of target-decoy searching has become popular with traditional sequence (database) searching methods, but has yet to be practiced in spectral (library) searching, an emerging alternative to sequence searching. We extended this target-decoy searching approach to spectral searching by developing and validating a robust method to generate realistic, but unnatural, decoy spectra. Our method involves randomly shuffling the peptide identification of each reference spectrum in the library, and repositioning each fragment ion peak along the m/z axis to match the fragment ions expected from the shuffled sequence. We show that this method produces decoy spectra that are sufficiently realistic, such that incorrect identifications are equally likely to match real and decoy spectra, a key assumption necessary for decoy counting. This approach has been implemented in the open-source library building software, SpectraST.

  14. A Parallel Implementation of Multilevel Recursive Spectral Bisection for Application to Adaptive Unstructured Meshes. Chapter 1

    NASA Technical Reports Server (NTRS)

    Barnard, Stephen T.; Simon, Horst; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    The design of a parallel implementation of multilevel recursive spectral bisection is described. The goal is to implement a code that is fast enough to enable dynamic repartitioning of adaptive meshes.

  15. Carrier Estimation Using Classic Spectral Estimation Techniques for the Proposed Demand Assignment Multiple Access Service

    NASA Technical Reports Server (NTRS)

    Scaife, Bradley James

    1999-01-01

    In any satellite communication, the Doppler shift associated with the satellite's position and velocity must be calculated in order to determine the carrier frequency. If the satellite state vector is unknown then some estimate must be formed of the Doppler-shifted carrier frequency. One elementary technique is to examine the signal spectrum and base the estimate on the dominant spectral component. If, however, the carrier is spread (as in most satellite communications) this technique may fail unless the chip rate-to-data rate ratio (processing gain) associated with the carrier is small. In this case, there may be enough spectral energy to allow peak detection against a noise background. In this thesis, we present a method to estimate the frequency (without knowledge of the Doppler shift) of a spread-spectrum carrier assuming a small processing gain and binary-phase shift keying (BPSK) modulation. Our method relies on an averaged discrete Fourier transform along with peak detection on spectral match filtered data. We provide theory and simulation results indicating the accuracy of this method. In addition, we will describe an all-digital hardware design based around a Motorola DSP56303 and high-speed A/D which implements this technique in real-time. The hardware design is to be used in NMSU's implementation of NASA's demand assignment, multiple access (DAMA) service.

  16. Adaptive optimal spectral range for dynamically changing scene

    NASA Astrophysics Data System (ADS)

    Pinsky, Ephi; Siman-tov, Avihay; Peles, David

    2012-06-01

    A novel multispectral video system that continuously optimizes both its spectral range channels and the exposure time of each channel autonomously, under dynamic scenes, varying from short range-clear scene to long range-poor visibility, is currently being developed. Transparency and contrast of high scattering medium of channels with spectral ranges in the near infrared is superior to the visible channels, particularly to the blue range. Longer wavelength spectral ranges that induce higher contrast are therefore favored. Images of 3 spectral channels are fused and displayed for (pseudo) color visualization, as an integrated high contrast video stream. In addition to the dynamic optimization of the spectral channels, optimal real-time exposure time is adjusted simultaneously and autonomously for each channel. A criterion of maximum average signal, derived dynamically from previous frames of the video stream is used (Patent Application - International Publication Number: WO2009/093110 A2, 30.07.2009). This configuration enables dynamic compatibility with the optimal exposure time of a dynamically changing scene. It also maximizes the signal to noise ratio and compensates each channel for the specified value of daylight reflections and sensors response for each spectral range. A possible implementation is a color video camera based on 4 synchronized, highly responsive, CCD imaging detectors, attached to a 4CCD dichroic prism and combined with a common, color corrected, lens. Principal Components Analysis (PCA) technique is then applied for real time "dimensional collapse" in color space, in order to select and fuse, for clear color visualization, the 3 most significant principal channels out of at least 4 characterized by high contrast and rich details in the image data.

  17. Smoothed aggregation adaptive spectral element-based algebraic multigrid

    SciTech Connect

    2015-01-20

    SAAMGE provides parallel methods for building multilevel hierarchies and solvers that can be used for elliptic equations with highly heterogeneous coefficients. Additionally, hierarchy adaptation is implemented allowing solving multiple problems with close coefficients without rebuilding the hierarchy.

  18. SAR image segmentation with entropy ranking based adaptive semi-supervised spectral clustering

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangrong; Yang, Jie; Hou, Biao; Jiao, Licheng

    2010-10-01

    Spectral clustering has become one of the most popular modern clustering algorithms in recent years. In this paper, a new algorithm named entropy ranking based adaptive semi-supervised spectral clustering for SAR image segmentation is proposed. We focus not only on finding a suitable scaling parameter but also determining automatically the cluster number with the entropy ranking theory. Also, two kinds of constrains must-link and cannot-link based semi-supervised spectral clustering is applied to gain better segmentation results. Experimental results on SAR images show that the proposed method outperforms other spectral clustering algorithms.

  19. Photoreceptor Processing Speed and Input Resistance Changes during Light Adaptation Correlate with Spectral Class in the Bumblebee, Bombus impatiens

    PubMed Central

    Skorupski, Peter; Chittka, Lars

    2011-01-01

    Colour vision depends on comparison of signals from photoreceptors with different spectral sensitivities. However, response properties of photoreceptor cells may differ in ways other than spectral tuning. In insects, for example, broadband photoreceptors, with a major sensitivity peak in the green region of the spectrum (>500 nm), drive fast visual processes, which are largely blind to chromatic signals from more narrowly-tuned photoreceptors with peak sensitivities in the blue and UV regions of the spectrum. In addition, electrophysiological properties of the photoreceptor membrane may result in differences in response dynamics of photoreceptors of similar spectral class between species, and different spectral classes within a species. We used intracellular electrophysiological techniques to investigate response dynamics of the three spectral classes of photoreceptor underlying trichromatic colour vision in the bumblebee, Bombus impatiens, and we compare these with previously published data from a related species, Bombus terrestris. In both species, we found significantly faster responses in green, compared with blue- or UV-sensitive photoreceptors, although all 3 photoreceptor types are slower in B. impatiens than in B. terrestris. Integration times for light-adapted B. impatiens photoreceptors (estimated from impulse response half-width) were 11.3±1.6 ms for green photoreceptors compared with 18.6±4.4 ms and 15.6±4.4 for blue and UV, respectively. We also measured photoreceptor input resistance in dark- and light-adapted conditions. All photoreceptors showed a decrease in input resistance during light adaptation, but this decrease was considerably larger (declining to about 22% of the dark value) in green photoreceptors, compared to blue and UV (41% and 49%, respectively). Our results suggest that the conductances associated with light adaptation are largest in green photoreceptors, contributing to their greater temporal processing speed. We suggest that the

  20. Stopping rules in Bayesian adaptive threshold estimation.

    PubMed

    Alcalá-Quintana, Rocío; García-Pérez, Miguel A

    2005-01-01

    Threshold estimation with sequential procedures is justifiable on the surmise that the index used in the so-called dynamic stopping rule has diagnostic value for identifying when an accurate estimate has been obtained. The performance of five types of Bayesian sequential procedure was compared here to that of an analogous fixed-length procedure. Indices for use in sequential procedures were: (1) the width of the Bayesian probability interval, (2) the posterior standard deviation, (3) the absolute change, (4) the average change, and (5) the number of sign fluctuations. A simulation study was carried out to evaluate which index renders estimates with less bias and smaller standard error at lower cost (i.e. lower average number of trials to completion), in both yes-no and two-alternative forced-choice (2AFC) tasks. We also considered the effect of the form and parameters of the psychometric function and its similarity with the model function assumed in the procedure. Our results show that sequential procedures do not outperform fixed-length procedures in yes-no tasks. However, in 2AFC tasks, sequential procedures not based on sign fluctuations all yield minimally better estimates than fixed-length procedures, although most of the improvement occurs with short runs that render undependable estimates and the differences vanish when the procedures run for a number of trials (around 70) that ensures dependability. Thus, none of the indices considered here (some of which are widespread) has the diagnostic value that would justify its use. In addition, difficulties of implementation make sequential procedures unfit as alternatives to fixed-length procedures.

  1. Stochastic Adaptive Control and Estimation Enhancement

    DTIC Science & Technology

    1989-09-01

    total Zu(N-J)’Gj’Q(N)FxIN-1)ou (N-I)I’[ R (N- 1) ’(N I Gil probability theorem to (4.3) yields J*(k.k 3 - min ( Ejx(kl 0(k)x(k) - u(k)’R(klu(k) trQ(N)VI m...Is Independent of Mil), I-k*2 .... N If Dec. 1988. [ Gil N.H. Gholson and R.L. Moose, "ManeuveringM(k.1J Is known, thus Target Tracking Using Adaptive...Control and A(t) =_ J1N X(i,t) is uniformly bounded. Quasi-Variational Inequalities, Gauthier- Villars , . (t9. tER4 , exits 0’ at most a countable

  2. Spectral Estimation Techniques for time series with Long Gaps: Applications to Paleomagnetism and Geomagnetic Depth Sounding

    NASA Astrophysics Data System (ADS)

    Smith-Boughner, Lindsay

    Many Earth systems cannot be studied directly. One cannot measure the velocities of convecting fluid in the Earth's core but can measure the magnetic field generated by these motions on the surface. Examining how the magnetic field changes over long periods of time, using power spectral density estimation provides insight into the dynamics driving the system. The changes in the magnetic field can also be used to study Earth properties - variations in magnetic fields outside of Earth like the ring-current induce currents to flow in the Earth, generating magnetic fields. Estimating the transfer function between the external changes and the induced response characterizes the electromagnetic response of the Earth. From this response inferences can be made about the electrical conductivity of the Earth. However, these types of time series, and many others have long breaks in the record with no samples available and limit the analysis. Standard methods require interpolation or section averaging, with associated problems of introducing bias or reducing the frequency resolution. Extending the methods of Fodor and Stark (2000), who adapt a set of orthogonal multi-tapers to compensate for breaks in sampling- an algorithm and software package for applying these techniques is developed. Methods of empirically estimating the average transfer function of a set of tapers and confidence intervals are also tested. These methods are extended for cross-spectral, coherence and transfer function estimation in the presence of noise. With these methods, new analysis of a highly interrupted ocean sediment core from the Oligocene (Hartl et al., 1993) reveals a quasi-periodic signal in the calibrated paleointensity time series at 2.5 cpMy. The power in the magnetic field during this period appears to be dominated by reversal rate processes with less overall power than the early Oligocene. Previous analysis of the early Oligocene by Constable et al. (1998) detected a signal near 8 cp

  3. Space-adaptive spectral analysis of hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Alparone, Luciano; Argenti, Fabrizio; Dionisio, Michele; Facheris, Luca

    2003-03-01

    The aim of this paper is investigating the use of overcomplete bases for the representation of hyperspectral image data. The idea is building an overcomplete basis starting from several orthogonal or non-orthogonal bases and picking up a set of vectors fitting pixel spectra to the largest extent. A common technique to select the most representative elements of a signal is Matching Pursuit (MP). This technique is analogous to the Mixed-Transform Analysis (MTA) and has been successfully used to represent speech and images. The main problems in using MTA for hyperspectral data analysis are: (1) choice of bases that potentially convey the maximum of spectral information; (2) calculation of projections in the non-orthogonal representation. A large variety of bases has been taken into consideration, including several types of wavelets with compact support. An iterative approach is used to find the coefficients of the linear combination of vectors, so that the residual function has minimum energy. The computational cost is extrmeely high when a large set of data is to be processed. To encompass computational constraints, a reduced data set (RDS) is produced by applying the projection pursuit technique to each of the square blocks in which the input hyperspectral iamge is partitioned based on a spatial homogeneity criterion. Then MTA is applied to the RDS to find out a non-orthogonal frame capable to represent such data through waveforms selected to best match spectral features. Experimental results carried out on the hyperspectral data AVIRIS Moffett Field '97 show the joint use of different bases, including wavelet bases, may be preferable to a unique orthogonal basis in terms of energy compaction, was well as of significance of the outcome components.

  4. Reducing the effect of respiration in baroreflex sensitivity estimation with adaptive filtering.

    PubMed

    Tiinanen, Suvi; Tulppo, Mikko; Seppänen, Tapio

    2008-01-01

    Cardiac baroreflex is described by baroreflex sensitivity (BRS) from blood pressure and heart rate interval (RRi) fluctuations. However, respiration affects both blood pressure and RRi via mechanisms that are not necessarily of baroreflex origin. To separate the effects of baroreflex and respiration, metronome-guided breathing in a high frequency band (HF, 0.25-0.4 Hz) and a low frequency spectral band (LF, 0.04-0.15 Hz) have therefore been commonly used for BRS estimation. The controlled breathing may, however, change the natural functioning of the autonomic system and interfere BRS estimates. To enable usage of spontaneous breathing, we propose an adaptive LMS-based filter for removing the respiration effect from the BRS estimates. ECG, continuous blood pressure and respiration were measured during 5 min spontaneous and 5 min controlled breathing at 0.25 Hz in healthy males (n = 24, 33+/-7 years). BRS was calculated with spectral methods from the LF band with and without filtering. In those subjects whose spontaneous breathing rate was <0.15 Hz, the BRS(LF) values were overestimated, whereas the adaptive filtering reduced the bias significantly. As a conclusion, the adaptive filter reduces the distorting effect of respiration on BRS values, which enables more accurate estimation of BRS and the usage of spontaneous breathing as a measurement protocol.

  5. Biomass estimator for NIR image with a few additional spectral band images taken from light UAS

    NASA Astrophysics Data System (ADS)

    Pölönen, Ilkka; Salo, Heikki; Saari, Heikki; Kaivosoja, Jere; Pesonen, Liisa; Honkavaara, Eija

    2012-05-01

    A novel way to produce biomass estimation will offer possibilities for precision farming. Fertilizer prediction maps can be made based on accurate biomass estimation generated by a novel biomass estimator. By using this knowledge, a variable rate amount of fertilizers can be applied during the growing season. The innovation consists of light UAS, a high spatial resolution camera, and VTT's novel spectral camera. A few properly selected spectral wavelengths with NIR images and point clouds extracted by automatic image matching have been used in the estimation. The spectral wavelengths were chosen from green, red, and NIR channels.

  6. Auroral spectral estimation with wide-band color mosaic CCDs

    NASA Astrophysics Data System (ADS)

    Jackel, B. J.; Unick, C.; Syrjäsuo, M. T.; Partamies, N.; Wild, J. A.; Woodfield, E. E.; McWhirter, I.; Kendall, E.; Spanswick, E.

    2014-06-01

    Optical aurora can be structured over a wide range of spatial and temporal scales with spectral features that depend on the energy of precipitating particles. Scientific studies typically combine data from multiple instruments that are individually optimized for spatial, spectral, or temporal resolution. One recent addition combines all-sky optics with color mosaic CCD (charge-coupled device) detectors that use a matrix of different wide-band micro-filters to produce an image with several (often three) color channels. These devices provide sequences of two dimensional multispectral luminosity with simultaneous exposure of all color channels allowing interchannel comparison even during periods with rapidly varying aurora. At present color auroral image data are primarily used for qualitative analysis. In this study a quantitative approach based on Backus-Gilbert linear inversion was used to better understand the effective spectral resolution of existing and proposed instruments. Two spectrally calibrated commercial detectors (Sony ICX285AQ and ICX429AKL) with very different color mosaics (RGB (red, green, blue) vs. CYGM (cyan, yellow, green, magenta)) were found to have very similar spectral resolution: three channels with FWHM (full-width half-maximum) ≈100 nm; a NIR (near infrared) blocking filter is important for stabilizing inversion of both three-channel configurations. Operating the ICX429AKL in a noninterlaced mode would improve spectral resolution and provide an additional near infrared channel. Transformations from arbitrary device channels to RGB are easily obtained through inversion. Simultaneous imaging of multiple auroral emissions may be achieved using a single-color camera with a triple-pass filter. Combinations of multiple cameras with simple filters should provide ~50 nm resolution across most of the visible spectrum. Performance of other instrument designs could be explored and compared using the same quantitative framework.

  7. The Marple algorithm for the autoregressive spectral estimates of the SMMW fourier transform spectroscopy data

    NASA Astrophysics Data System (ADS)

    Guangzhao, Zhang; Guangqun, Zhou

    1989-02-01

    The Marple algorthm for the autoregressive spectral estimates has been applied to the SMMW Fourier transform spectrum analysis. The experimental results have shown that this method yields AR spectra with three times higher resolution than the FFT method does. The improvements obtained from the Marple algorithm over the maximum entropy algorithm include higher resolution, less bias in the spectral peak frequency estimation and absence of observed spectral line splitting. The effects of the structure of the spectral lines and the noise on the resolution are discussed.

  8. Estimation of spectral distribution of sky radiance using a commercial digital camera.

    PubMed

    Saito, Masanori; Iwabuchi, Hironobu; Murata, Isao

    2016-01-10

    Methods for estimating spectral distribution of sky radiance from images captured by a digital camera and for accurately estimating spectral responses of the camera are proposed. Spectral distribution of sky radiance is represented as a polynomial of the wavelength, with coefficients obtained from digital RGB counts by linear transformation. The spectral distribution of radiance as measured is consistent with that obtained by spectrometer and radiative transfer simulation for wavelengths of 430-680 nm, with standard deviation below 1%. Preliminary applications suggest this method is useful for detecting clouds and studying the relation between irradiance at the ground and cloud distribution.

  9. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  10. Adaptive arrival cost update for improving Moving Horizon Estimation performance.

    PubMed

    Sánchez, G; Murillo, M; Giovanini, L

    2017-03-01

    Moving horizon estimation is an efficient technique to estimate states and parameters of constrained dynamical systems. It relies on the solution of a finite horizon optimization problem to compute the estimates, providing a natural framework to handle bounds and constraints on estimates, noises and parameters. However, the approximation of the arrival cost and its updating mechanism are an active research topic. The arrival cost is very important because it provides a mean to incorporate information from previous measurements to the current estimates and it is difficult to estimate its true value. In this work, we exploit the features of adaptive estimation methods to update the parameters of the arrival cost. We show that, having a better approximation of the arrival cost, the size of the optimization problem can be significantly reduced guaranteeing the stability and convergence of the estimates. These properties are illustrated through simulation studies.

  11. Assessment of spectral indicies for crop residue cover estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The quantification of surficial crop residue cover is important for assessing agricultural tillage practices, rangeland health, and brush fire hazards. The Cellulose Absorption Index (CAI) and the Shortwave Infrared Normalized Difference Residue Index (SINDRI) are two spectral indices that have show...

  12. Estimation of Canopy Foliar Biomass with Spectral Reflectance Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canopy foliar biomass, defined as the product of leaf dry matter content and leaf area index, is an important measurement for global biogeochemical cycles. This study explores the potential for retrieving foliar biomass in green canopies using a spectral index, the Normalized Dry Matter Index (NDMI)...

  13. Adaptive state estimation for control of flexible structures

    NASA Technical Reports Server (NTRS)

    Chen, Chung-Wen; Huang, Jen-Kuang

    1990-01-01

    This paper proposes a new approach of obtaining adaptive state estimation of a system in the presence of unknown system disturbances and measurement noise. In the beginning, a non-optimal Kalman filter with arbitrary initial guess for the process and measurement noises is implemented. At the same time, an adaptive transversal predictor (ATP) based on the recursive least-squares (RLS) algorithm is used to yield optimal one- to p- step-ahead output predictions using the previous input/output data. Referring to these optimal predictions the Kalman filter gain is updated and the performance of the state estimation is thus improved. If forgetting factor is implemented in the recursive least-squares algorithm, this method is also capable of dealing with the situation when the noise statistics are slowly time-varying. This feature makes this new approach especially suitable for the control of flexible structures. A numerical example demonstrates the feasibility of this real time adaptive state estimation method.

  14. The remarkable success of adaptive cosine estimator in hyperspectral target detection

    NASA Astrophysics Data System (ADS)

    Manolakis, D.; Pieper, M.; Truslow, E.; Cooley, T.; Brueggeman, M.; Lipson, S.

    2013-05-01

    A challenging problem of major importance in hyperspectral imaging applications is the detection of subpixel targets of military and civilian interest. The background clutter surrounding the target, acts as an interference source that simultaneously distorts the target spectrum and reduces its strength. Two additional limiting factors are the spectral variability of the background clutter and the spectral variability of the target. Since a result in applied statistics is only as reliable as the assumptions from which it is derived, it is important to investigate whether the basic assumptions used for the derivation of matched filter and adaptive cosine estimator algorithms are a reasonable description of the physical situation. Careful examination of the linear signal model used to derive these algorithms and the replacement signal model, which is a more realistic model for subpixel targets, reveals a serious discrepancy between modeling assumptions and the physical world. Despite this discrepancy and additional mismatches between assumed and actual signal and clutter models, the adaptive cosine estimator shows an amazing effectiveness in practical target detection applications. The objective of this paper is an attempt to explain this unbelievable effectiveness using a combination of classical statistical detection theory, geometrical interpretations, and a novel realistic performance prediction model for the adaptive cosine estimator.

  15. Programmable Adaptive Spectral Imagers for Mission-Specific Application in Chemical/Biological Sensing

    DTIC Science & Technology

    2006-01-01

    detection of chemical/biological agents. Extensive research into both passive remote chemical/biological sensors and active laser- based ( LIDAR ... photodetector (Fig. 1). Fig. 1. Adaptive spectrograph concept: light from a standoff spectral scene is dispersed, dynamically encoded with...the purpose. Data acquisition and processing software was developed for the control of the DMA, capturing data from the photodetectors , and for

  16. Auroral spectral estimation with wide-band color mosaic CCDs

    NASA Astrophysics Data System (ADS)

    Jackel, B. J.; Unick, C.; Syrjäsuo, M. T.; Partamies, N.; Wild, J. A.; Woodfield, E. E.; McWhirter, I.; Kendall, E.; Spanswick, E.

    2013-12-01

    Color mosaic CCDs use a matrix of different wide-band micro-filters in order to produce images with several (often three) color channels. These devices are increasingly employed in auroral studies to provide time sequences of two dimensional luminosity maps, but the color information is typically only used for qualitative analysis. In this study we use Backus-Gilbert linear inversion techniques to obtain quantitative measures of effective spectral resolution for multi-channel color mosaic CCDs. These techniques also allow us to explore the possibility of further improvements by modifying or combining multiple detectors. We consider two spectrally calibrated commercial color CCDs (Sony ICX285AQ and ICX429AKL) in order to determine effective wavelength resolution of each device individually, together, and with additional filters. From these results we develop methods to enhance the utility of existing data sets, and propose ways to improve the next generation of low-cost color auroral imaging systems.

  17. Signal Estimation from Short-Time Spectral Magnitude.

    DTIC Science & Technology

    1982-05-01

    reconstrutions when the short-time spectral magnitude is purposely modified for accomplishing signal processing tasks such as noise reduction and time-sale...complexity. It gen- erally requires sophisticated indexing and rather large memory space for its implementation. For example, Portnoff b. .,i to introduce...significant memory management to implement the teanique on a PDP 11150. On the other hand, Holtzman 115] aas developed an alternative implementation that

  18. Confidence estimates in simulation of phase noise or spectral density.

    PubMed

    Ashby, Neil

    2017-02-13

    In this paper we apply the method of discrete simulation of power law noise, developed in [1],[3],[4], to the problem of simulating phase noise for a combination of power law noises. We derive analytic expressions for the probability of observing a value of phase noise L(f) or of any of the onesided spectral densities S(f); Sy(f), or Sx(f), for arbitrary superpositions of power law noise.

  19. Adaptive Estimation of Intravascular Shear Rate Based on Parameter Optimization

    NASA Astrophysics Data System (ADS)

    Nitta, Naotaka; Takeda, Naoto

    2008-05-01

    The relationships between the intravascular wall shear stress, controlled by flow dynamics, and the progress of arteriosclerosis plaque have been clarified by various studies. Since the shear stress is determined by the viscosity coefficient and shear rate, both factors must be estimated accurately. In this paper, an adaptive method for improving the accuracy of quantitative shear rate estimation was investigated. First, the parameter dependence of the estimated shear rate was investigated in terms of the differential window width and the number of averaged velocity profiles based on simulation and experimental data, and then the shear rate calculation was optimized. The optimized result revealed that the proposed adaptive method of shear rate estimation was effective for improving the accuracy of shear rate calculation.

  20. Distributed estimation for adaptive sensor selection in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Hassan Hamid, Matasm M.

    2014-05-01

    Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.

  1. Spectral-element adaptive refinement magnetohydrodynamic simulations of the island coalescence instability

    NASA Astrophysics Data System (ADS)

    Rosenberg, D.; Pouquet, A.; Germaschewski, K.; Ng, C. S.; Bhattacharjee, A.

    2006-10-01

    A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate the problem of island coalescence instability (ICI) in 2D. The MHD solver is explicit, and uses the Elsasser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described in [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys., 215, 59-80 (2006)], allowing both statically refined and dynamically refined grids. ICI is a MHD process that can produce strong current sheets and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [cf., Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Thus, it is desirable to use adaptive refinement grids to increase resolution, and to maintain accuracy at the same time. Results are compared with simulations using finite difference method with the same refinement grid, as well as pesudo-spectral simulations using uniform grid.

  2. ESTIMATION OF RESPONSE-SPECTRAL VALUES AS FUNCTIONS OF MAGNITUDE, DISTANCE, AND SITE CONDITIONS.

    USGS Publications Warehouse

    Joyner, W.B.; Boore, D.M.; ,

    1983-01-01

    Horizontal pseudo-velocity response was analyzed for twelve shallow earthquakes in western North America. Estimation of response-spectral values was related to magnitude, distance and site conditions. Errors in the methods are analyzed.

  3. The Role of Parametric Assumptions in Adaptive Bayesian Estimation

    ERIC Educational Resources Information Center

    Alcala-Quintana, Rocio; Garcia-Perez, Miguel A.

    2004-01-01

    Variants of adaptive Bayesian procedures for estimating the 5% point on a psychometric function were studied by simulation. Bias and standard error were the criteria to evaluate performance. The results indicated a superiority of (a) uniform priors, (b) model likelihood functions that are odd symmetric about threshold and that have parameter…

  4. On Using Exponential Parameter Estimators with an Adaptive Controller

    NASA Technical Reports Server (NTRS)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Typical adaptive controllers are restricted to using a specific update law to generate parameter estimates. This paper investigates the possibility of using any exponential parameter estimator with an adaptive controller such that the system tracks a desired trajectory. The goal is to provide flexibility in choosing any update law suitable for a given application. The development relies on a previously developed concept of controller/update law modularity in the adaptive control literature, and the use of a converse Lyapunov-like theorem. Stability analysis is presented to derive gain conditions under which this is possible, and inferences are made about the tracking error performance. The development is based on a class of Euler-Lagrange systems that are used to model various engineering systems including space robots and manipulators.

  5. An investigation into robust spectral indices for leaf chlorophyll estimation

    NASA Astrophysics Data System (ADS)

    Main, Russell; Cho, Moses Azong; Mathieu, Renaud; O'Kennedy, Martha M.; Ramoelo, Abel; Koch, Susan

    2011-11-01

    Quantifying photosynthetic activity at the regional scale can provide important information to resource managers, planners and global ecosystem modelling efforts. With increasing availability of both hyperspectral and narrow band multispectral remote sensing data, new users are faced with a plethora of options when choosing an optical index to relate to their chosen or canopy parameter. The literature base regarding optical indices (particularly chlorophyll indices) is wide ranging and extensive, however it is without much consensus regarding robust indices. The wider spectral community could benefit from studies that apply a variety of published indices to differing sets of species data. The consistency and robustness of 73 published chlorophyll spectral indices have been assessed, using leaf level hyperspectral data collected from three crop species and a variety of savanna tree species. Linear regression between total leaf chlorophyll content and bootstrapping were used to determine the leafpredictive capabilities of the various indices. The indices were then ranked based on the prediction error (the average root mean square error (RMSE)) derived from the bootstrapping process involving 1000 iterative resampling with replacement. The results show two red-edge derivative based indices (red-edge position via linear extrapolation index and the modified red-edge inflection point index) as the most consistent and robust, and that the majority of the top performing indices (in spite of species variability) were simple ratio or normalised difference indices that are based on off-chlorophyll absorption centre wavebands (690-730 nm).

  6. Methodologies for Adaptive Flight Envelope Estimation and Protection

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Roemer, Michael; Ge, Jianhua; Crassidis, Agamemnon; Prasad, J. V. R.; Belcastro, Christine

    2009-01-01

    This paper reports the latest development of several techniques for adaptive flight envelope estimation and protection system for aircraft under damage upset conditions. Through the integration of advanced fault detection algorithms, real-time system identification of the damage/faulted aircraft and flight envelop estimation, real-time decision support can be executed autonomously for improving damage tolerance and flight recoverability. Particularly, a bank of adaptive nonlinear fault detection and isolation estimators were developed for flight control actuator faults; a real-time system identification method was developed for assessing the dynamics and performance limitation of impaired aircraft; online learning neural networks were used to approximate selected aircraft dynamics which were then inverted to estimate command margins. As off-line training of network weights is not required, the method has the advantage of adapting to varying flight conditions and different vehicle configurations. The key benefit of the envelope estimation and protection system is that it allows the aircraft to fly close to its limit boundary by constantly updating the controller command limits during flight. The developed techniques were demonstrated on NASA s Generic Transport Model (GTM) simulation environments with simulated actuator faults. Simulation results and remarks on future work are presented.

  7. Cardiorespiratory synchronism in estimation of regulatory and adaptive organism status.

    PubMed

    Pokrovskii, Vladimir M; Polischuk, Lily V

    2016-03-01

    The proposed method of quantitative estimation of regulatory and adaptive status (RAS) of human organism is based on complex responses of two major vegetative functions - breath and heart rates under organism exposure to a number of factors and diseases. It has been evidenced that during the follicular menstruation stage and during optimum readiness of female organism for childbirth RAS increases, however, stress impact can also cause RAS set off to decrease. Likewise, the possibility of quantitative organism stress resistance estimation is also presented. Under some pathological conditions (myocardial infarction, hypo-and hyperthyroidism, diabetes type 2), RAS goes down, and the degree of its restoration depends on the attained therapy effect. It is shown that RAS dynamics provides an innovative methodological approach to medication efficiency estimation based on its influence not only on the body organ or target function, but also on adaptive abilities of the organism.

  8. Stepwise method based on Wiener estimation for spectral reconstruction in spectroscopic Raman imaging.

    PubMed

    Chen, Shuo; Wang, Gang; Cui, Xiaoyu; Liu, Quan

    2017-01-23

    Raman spectroscopy has demonstrated great potential in biomedical applications. However, spectroscopic Raman imaging is limited in the investigation of fast changing phenomena because of slow data acquisition. Our previous studies have indicated that spectroscopic Raman imaging can be significantly sped up using the approach of narrow-band imaging followed by spectral reconstruction. A multi-channel system was built to demonstrate the feasibility of fast wide-field spectroscopic Raman imaging using the approach of simultaneous narrow-band image acquisition followed by spectral reconstruction based on Wiener estimation in phantoms. To further improve the accuracy of reconstructed Raman spectra, we propose a stepwise spectral reconstruction method in this study, which can be combined with the earlier developed sequential weighted Wiener estimation to improve spectral reconstruction accuracy. The stepwise spectral reconstruction method first reconstructs the fluorescence background spectrum from narrow-band measurements and then the pure Raman narrow-band measurements can be estimated by subtracting the estimated fluorescence background from the overall narrow-band measurements. Thereafter, the pure Raman spectrum can be reconstructed from the estimated pure Raman narrow-band measurements. The result indicates that the stepwise spectral reconstruction method can improve spectral reconstruction accuracy significantly when combined with sequential weighted Wiener estimation, compared with the traditional Wiener estimation. In addition, qualitatively accurate cell Raman spectra were successfully reconstructed using the stepwise spectral reconstruction method from the narrow-band measurements acquired by a four-channel wide-field Raman spectroscopic imaging system. This method can potentially facilitate the adoption of spectroscopic Raman imaging to the investigation of fast changing phenomena.

  9. Parameter Estimation Analysis for Hybrid Adaptive Fault Tolerant Control

    NASA Astrophysics Data System (ADS)

    Eshak, Peter B.

    Research efforts have increased in recent years toward the development of intelligent fault tolerant control laws, which are capable of helping the pilot to safely maintain aircraft control at post failure conditions. Researchers at West Virginia University (WVU) have been actively involved in the development of fault tolerant adaptive control laws in all three major categories: direct, indirect, and hybrid. The first implemented design to provide adaptation was a direct adaptive controller, which used artificial neural networks to generate augmentation commands in order to reduce the modeling error. Indirect adaptive laws were implemented in another controller, which utilized online PID to estimate and update the controller parameter. Finally, a new controller design was introduced, which integrated both direct and indirect control laws. This controller is known as hybrid adaptive controller. This last control design outperformed the two earlier designs in terms of less NNs effort and better tracking quality. The performance of online PID has an important role in the quality of the hybrid controller; therefore, the quality of the estimation will be of a great importance. Unfortunately, PID is not perfect and the online estimation process has some inherited issues; the online PID estimates are primarily affected by delays and biases. In order to ensure updating reliable estimates to the controller, the estimator consumes some time to converge. Moreover, the estimator will often converge to a biased value. This thesis conducts a sensitivity analysis for the estimation issues, delay and bias, and their effect on the tracking quality. In addition, the performance of the hybrid controller as compared to direct adaptive controller is explored. In order to serve this purpose, a simulation environment in MATLAB/SIMULINK has been created. The simulation environment is customized to provide the user with the flexibility to add different combinations of biases and delays to

  10. Spectral estimation of human skin color using the Kubelka-Munk theory

    NASA Astrophysics Data System (ADS)

    Doi, Motonori; Tominaga, Shoji

    2003-01-01

    The present paper describes a method for modeling human skin coloring and estimating the surface-spectral reflectance by using the Kubelka-Munk theory. First, human skin is modeled as two layers of turbid materials. Second, we describe the reflectance estimation problem as the Kubelka-Munk equations with unknown six parameters. These parameters are the regular reflectance at skin surface and the five weights for spectral absorption of such different pigments as melanin, carotene, oxy-hemoglobin, deoxy-hemoglobin, and bilirubin. Moreover, the optical coefficients of spectral absorption and scattering for the two skin layers and the thickness values of these layers are used for the solution. Finally, experiments are done for estimating the skin surface-spectral reflectance on some body parts, such as the cheeks of human face, the palm, the backs of hand, the inside of arm, and the outside of arm. It is confirmed that the proposed method is more reliable in all cases.

  11. Estimating meme fitness in adaptive memetic algorithms for combinatorial problems.

    PubMed

    Smith, J E

    2012-01-01

    Among the most promising and active research areas in heuristic optimisation is the field of adaptive memetic algorithms (AMAs). These gain much of their reported robustness by adapting the probability with which each of a set of local improvement operators is applied, according to an estimate of their current value to the search process. This paper addresses the issue of how the current value should be estimated. Assuming the estimate occurs over several applications of a meme, we consider whether the extreme or mean improvements should be used, and whether this aggregation should be global, or local to some part of the solution space. To investigate these issues, we use the well-established COMA framework that coevolves the specification of a population of memes (representing different local search algorithms) alongside a population of candidate solutions to the problem at hand. Two very different memetic algorithms are considered: the first using adaptive operator pursuit to adjust the probabilities of applying a fixed set of memes, and a second which applies genetic operators to dynamically adapt and create memes and their functional definitions. For the latter, especially on combinatorial problems, credit assignment mechanisms based on historical records, or on notions of landscape locality, will have limited application, and it is necessary to estimate the value of a meme via some form of sampling. The results on a set of binary encoded combinatorial problems show that both methods are very effective, and that for some problems it is necessary to use thousands of variables in order to tease apart the differences between different reward schemes. However, for both memetic algorithms, a significant pattern emerges that reward based on mean improvement is better than that based on extreme improvement. This contradicts recent findings from adapting the parameters of operators involved in global evolutionary search. The results also show that local reward schemes

  12. Estimated spectrum adaptive postfilter and the iterative prepost filtering algirighms

    NASA Technical Reports Server (NTRS)

    Linares, Irving (Inventor)

    2004-01-01

    The invention presents The Estimated Spectrum Adaptive Postfilter (ESAP) and the Iterative Prepost Filter (IPF) algorithms. These algorithms model a number of image-adaptive post-filtering and pre-post filtering methods. They are designed to minimize Discrete Cosine Transform (DCT) blocking distortion caused when images are highly compressed with the Joint Photographic Expert Group (JPEG) standard. The ESAP and the IPF techniques of the present invention minimize the mean square error (MSE) to improve the objective and subjective quality of low-bit-rate JPEG gray-scale images while simultaneously enhancing perceptual visual quality with respect to baseline JPEG images.

  13. Spectral estimation of global levels of atmospheric pollutants.

    PubMed

    Fernández-Macho, Javier

    2011-10-01

    Underlying levels of atmospheric pollutants, assumed to be governed by smoothing mechanisms due to atmospheric dispersion, can be estimated from global emissions source databases on greenhouse gases and ozone-depleting compounds. However, spatial data may be contaminated with noise or even missing or zero-valued at many locations. Therefore, a problem that arises is how to extract the underlying smooth levels. This paper sets out a structural spatial model that assumes data evolve across a global grid constrained by second-order smoothing restrictions. The frequency-domain approach is particularly suitable for global datasets, reduces the computational burden associated with two-dimensional models and avoids cumbersome zero-inflated skewed distributions. Confidence intervals of the underlying levels are also obtained. An application to the estimation of global levels of atmospheric pollutants from anthropogenic emissions illustrates the technique which may also be useful in the analysis of other environmental datasets of similar characteristics.

  14. Similarity law in spectral estimation of a time series. V.

    NASA Astrophysics Data System (ADS)

    Terebizh, V. Yu.

    1998-04-01

    A continuation of [V. Yu. Terebizh, Astrofizika, 40, 139, 273, 413 (1997); 41, 113 (1998)]. When following recommendations based on a similarity law, a least-squares estimate is justified. Ockham’s approach is free of assumptions, but more complicated; it leads to results close to those for the least-squares method in conjunction with a similarity law and the condition of nonnegativity of the solution. The theoretical conclusions are illustrated by calculations for an AR-1 process.

  15. Wavelet-Based Speech Enhancement Using Time-Adapted Noise Estimation

    NASA Astrophysics Data System (ADS)

    Lei, Sheau-Fang; Tung, Ying-Kai

    Spectral subtraction is commonly used for speech enhancement in a single channel system because of the simplicity of its implementation. However, this algorithm introduces perceptually musical noise while suppressing the background noise. We propose a wavelet-based approach in this paper for suppressing the background noise for speech enhancement in a single channel system. The wavelet packet transform, which emulates the human auditory system, is used to decompose the noisy signal into critical bands. Wavelet thresholding is then temporally adjusted with the noise power by time-adapted noise estimation. The proposed algorithm can efficiently suppress the noise while reducing speech distortion. Experimental results, including several objective measurements, show that the proposed wavelet-based algorithm outperforms spectral subtraction and other wavelet-based denoising approaches for speech enhancement for nonstationary noise environments.

  16. Influence of autoregressive model parameter uncertainty on spectral estimates of heart rate dynamics.

    PubMed

    Christini, D J; Kulkarni, A; Rao, S; Stutman, E R; Bennett, F M; Hausdorff, J M; Oriol, N; Lutchen, K R

    1995-01-01

    Linear autoregressive (AR) model-based heart rate (HR) spectral analysis has been widely used to study HR dynamics. Owing to system and measurement noise, the parameters of an AR model have intrinsic statistical uncertainty. In this study, we evaluate how this AR parameter uncertainty can translate to uncertainty in HR power spectra. HR time series, obtained from seven subjects in supine and standing positions, were fitted to AR models by least squares minimization via singular value decomposition. Spectral uncertainty due to inexact parameter estimation was assessed through a Monte Carlo study in which the AR model parameters were varied randomly according to their Gaussian distributions. Histogram techniques were used to evaluate the distribution of 50,000 AR spectral estimates of each HR time series. These Monte Carlo uncertainties were found to exceed those predicted by previous theoretical approximations. It was determined that the uncertainty of AR HR spectral estimates, particularly the locations and magnitudes of spectral peaks, can often be large. The same Monte Carlo analysis was applied to synthetic AR time series and found levels of spectral uncertainty similar to that of the HR data, thus suggesting that the results of this study are not specific to experimental HR data. Therefore, AR spectra may be unreliable, and one must be careful in assigning pathophysiological origins to specific spectral features of any one spectrum.

  17. Spectral Dark Subtraction: A MODTRAN-Based Algorithm for Estimating Ground Reflectance without Atmospheric Information

    NASA Technical Reports Server (NTRS)

    Freedman, Ellis; Ryan, Robert; Pagnutti, Mary; Holekamp, Kara; Gasser, Gerald; Carver, David; Greer, Randy

    2007-01-01

    Spectral Dark Subtraction (SDS) provides good ground reflectance estimates across a variety of atmospheric conditions with no knowledge of those conditions. The algorithm may be sensitive to errors from stray light, calibration, and excessive haze/water vapor. SDS seems to provide better estimates than traditional algorithms using on-site atmospheric measurements much of the time.

  18. Structured estimation - Sample size reduction for adaptive pattern classification

    NASA Technical Reports Server (NTRS)

    Morgera, S.; Cooper, D. B.

    1977-01-01

    The Gaussian two-category classification problem with known category mean value vectors and identical but unknown category covariance matrices is considered. The weight vector depends on the unknown common covariance matrix, so the procedure is to estimate the covariance matrix in order to obtain an estimate of the optimum weight vector. The measure of performance for the adapted classifier is the output signal-to-interference noise ratio (SIR). A simple approximation for the expected SIR is gained by using the general sample covariance matrix estimator; this performance is both signal and true covariance matrix independent. An approximation is also found for the expected SIR obtained by using a Toeplitz form covariance matrix estimator; this performance is found to be dependent on both the signal and the true covariance matrix.

  19. Noninvasive fetal ECG estimation using adaptive comb filter.

    PubMed

    Wei, Zheng; Xueyun, Wei; Jian jian, Zhong; Hongxing, Liu

    2013-10-01

    This paper describes a robust and simple algorithm for fetal electrocardiogram (FECG) estimation from abdominal signal using adaptive comb filter (ACF). The ACF can adjust itself to the temporal variations in fundamental frequency, which makes it qualified for the estimation of quasi-periodic component from physiologic signal, such as ECG. The validity and performance of the described method are confirmed through experiments on real fetal ECG data. A comparison with the well-known independent component analysis (ICA) method has also been presented.

  20. An adaptive reconstruction algorithm for spectral CT regularized by a reference image

    NASA Astrophysics Data System (ADS)

    Wang, Miaoshi; Zhang, Yanbo; Liu, Rui; Guo, Shuxu; Yu, Hengyong

    2016-12-01

    The photon counting detector based spectral CT system is attracting increasing attention in the CT field. However, the spectral CT is still premature in terms of both hardware and software. To reconstruct high quality spectral images from low-dose projections, an adaptive image reconstruction algorithm is proposed that assumes a known reference image (RI). The idea is motivated by the fact that the reconstructed images from different spectral channels are highly correlated. If a high quality image of the same object is known, it can be used to improve the low-dose reconstruction of each individual channel. This is implemented by maximizing the patch-wise correlation between the object image and the RI. Extensive numerical simulations and preclinical mouse study demonstrate the feasibility and merits of the proposed algorithm. It also performs well for truncated local projections, and the surrounding area of the region- of-interest (ROI) can be more accurately reconstructed. Furthermore, a method is introduced to adaptively choose the step length, making the algorithm more feasible and easier for applications.

  1. Efficient integration of spectral features for vehicle tracking utilizing an adaptive sensor

    NASA Astrophysics Data System (ADS)

    Uzkent, Burak; Hoffman, Matthew J.; Vodacek, Anthony

    2015-03-01

    Object tracking in urban environments is an important and challenging problem that is traditionally tackled using visible and near infrared wavelengths. By inserting extended data such as spectral features of the objects one can improve the reliability of the identification process. However, huge increase in data created by hyperspectral imaging is usually prohibitive. To overcome the complexity problem, we propose a persistent air-to-ground target tracking system inspired by a state-of-the-art, adaptive, multi-modal sensor. The adaptive sensor is capable of providing panchromatic images as well as the spectra of desired pixels. This addresses the data challenge of hyperspectral tracking by only recording spectral data as needed. Spectral likelihoods are integrated into a data association algorithm in a Bayesian fashion to minimize the likelihood of misidentification. A framework for controlling spectral data collection is developed by incorporating motion segmentation information and prior information from a Gaussian Sum filter (GSF) movement predictions from a multi-model forecasting set. An intersection mask of the surveillance area is extracted from OpenStreetMap source and incorporated into the tracking algorithm to perform online refinement of multiple model set. The proposed system is tested using challenging and realistic scenarios generated in an adverse environment.

  2. Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters.

    PubMed

    Mathew, B; Bauer, A M; Koistinen, P; Reetz, T C; Léon, J; Sillanpää, M J

    2012-10-01

    Accurate and fast estimation of genetic parameters that underlie quantitative traits using mixed linear models with additive and dominance effects is of great importance in both natural and breeding populations. Here, we propose a new fast adaptive Markov chain Monte Carlo (MCMC) sampling algorithm for the estimation of genetic parameters in the linear mixed model with several random effects. In the learning phase of our algorithm, we use the hybrid Gibbs sampler to learn the covariance structure of the variance components. In the second phase of the algorithm, we use this covariance structure to formulate an effective proposal distribution for a Metropolis-Hastings algorithm, which uses a likelihood function in which the random effects have been integrated out. Compared with the hybrid Gibbs sampler, the new algorithm had better mixing properties and was approximately twice as fast to run. Our new algorithm was able to detect different modes in the posterior distribution. In addition, the posterior mode estimates from the adaptive MCMC method were close to the REML (residual maximum likelihood) estimates. Moreover, our exponential prior for inverse variance components was vague and enabled the estimated mode of the posterior variance to be practically zero, which was in agreement with the support from the likelihood (in the case of no dominance). The method performance is illustrated using simulated data sets with replicates and field data in barley.

  3. Adaptive Detection and Parameter Estimation for Multidimensional Signal Models

    DTIC Science & Technology

    1989-04-19

    expected value of the non-adaptive parameter array estimator directly from Equation (5-1), using the fact that .zP = dppH = d We obtain EbI = (e-H E eI 1...depend only on the dimensional parameters of tlc problem. We will caerive these properties shcrLly, but first we wish to express the conditional pdf

  4. Spectral estimates of intercepted solar radiation by corn and soybean canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Brooks, C. C.; Daughtry, C. S. T.; Bauer, M. E.; Vanderbilt, V. C.

    1982-01-01

    Attention is given to the development of methods for combining spectral and meteorological data in crop yield models which are capable of providing accurate estimates of crop condition and yields throughout the growing season. The present investigation is concerned with initial tests of these concepts using spectral and agronomic data acquired in controlled experiments. The data were acquired at the Purdue University Agronomy Farm, 10 km northwest of West Lafayette, Indiana. Data were obtained throughout several growing seasons for corn and soybeans. Five methods or models for predicting yields were examined. On the basis of the obtained results, it is concluded that estimating intercepted solar radiation using spectral data is a viable approach for merging spectral and meteorological data in crop yield models.

  5. Reconstructing Spectral Scenes Using Statistical Estimation to Enhance Space Situational Awareness

    DTIC Science & Technology

    2006-12-01

    spectrally deblurring then the previously investigated methods. This algorithm expands on a method used for increasing the spectral resolution in gamma - ray ...ing system such as ASIS. A variation on the fourth technique used for gamma - ray spectroscopy and chromotomographic system shows much more promise to...statistical method based on a maximum like- lihood (ML) estimator has been used to improve the resolution of the spectra in gamma - ray spectroscopy and of

  6. Efficient, Non-Iterative Estimator for Imaging Contrast Agents With Spectral X-Ray Detectors.

    PubMed

    Alvarez, Robert E

    2016-04-01

    An estimator to image contrast agents and body materials with x-ray spectral measurements is described. The estimator is usable with the three or more basis functions that are required to represent the attenuation coefficient of high atomic number materials. The estimator variance is equal to the Cramèr-Rao lower bound (CRLB) and it is unbiased. Its parameters are computed from measurements of a calibration phantom with the clinical x-ray system and it is non-iterative. The estimator is compared with an iterative maximum likelihood estimator. The estimator first computes a linearized maximum likelihood estimate of the line integrals of the basis set coefficients. Corrections for errors in the initial estimates are computed by interpolation with calibration phantom data. The final estimate is the initial estimate plus the correction. The performance of the estimator is measured using a Monte Carlo simulation. Random photon counting with pulse height analysis data are generated. The mean squared errors of the estimates are compared to the CRLB. The random data are also processed with an iterative maximum likelihood estimator. Previous implementations of iterative estimators required advanced physics instruments not usually available in clinical institutions. The estimator mean squared error is essentially equal to the CRLB. The estimator outputs are close to those of the iterative estimator but the computation time is approximately 180 times shorter. The estimator is efficient and has advantages over alternate approaches such as iterative estimators.

  7. Non-destructive estimation of foliar chlorophyll and carotenoid contents: Focus on informative spectral bands

    NASA Astrophysics Data System (ADS)

    Kira, Oz; Linker, Raphael; Gitelson, Anatoly

    2015-06-01

    Leaf pigment content provides valuable insight into the productivity, physiological and phenological status of vegetation. Measurement of spectral reflectance offers a fast, nondestructive method for pigment estimation. A number of methods were used previously for estimation of leaf pigment content, however, spectral bands employed varied widely among the models and data used. Our objective was to find informative spectral bands in three types of models, vegetation indices (VI), neural network (NN) and partial least squares (PLS) regression, for estimating leaf chlorophyll (Chl) and carotenoids (Car) contents of three unrelated tree species and to assess the accuracy of the models using a minimal number of bands. The bands selected by PLS, NN and VIs were in close agreement and did not depend on the data used. The results of the uninformative variable elimination PLS approach, where the reliability parameter was used as an indicator of the information contained in the spectral bands, confirmed the bands selected by the VIs, NN, and PLS models. All three types of models were able to accurately estimate Chl content with coefficient of variation below 12% for all three species with VI showing the best performance. NN and PLS using reflectance in four spectral bands were able to estimate accurately Car content with coefficient of variation below 14%. The quantitative framework presented here offers a new way of estimating foliar pigment content not requiring model re-parameterization for different species. The approach was tested using the spectral bands of the future Sentinel-2 satellite and the results of these simulations showed that accurate pigment estimation from satellite would be possible.

  8. Source depth estimation of self-potential anomalies by spectral methods

    NASA Astrophysics Data System (ADS)

    Di Maio, Rosa; Piegari, Ester; Rani, Payal

    2017-01-01

    Spectral analysis of the self-potential (SP) field for geometrically simple anomalous bodies is studied. In particular, three spectral techniques, i.e. Periodogram (PM), Multi Taper (MTM) and Maximum Entropy (MEM) methods, are proposed to derive the depth of the anomalous bodies. An extensive numerical analysis at varying the source parameters outlines that MEM is successful in determining the source depth with a percent error less than 5%. The application of the proposed spectral approach to the interpretation of field datasets has provided depth estimations of the SP anomaly sources in very good agreement with those obtained by other numerical methods.

  9. Frequency-specific adaptation in human auditory cortex depends on the spectral variance in the acoustic stimulation.

    PubMed

    Herrmann, Björn; Henry, Molly J; Obleser, Jonas

    2013-04-01

    In auditory cortex, activation and subsequent adaptation is strongest for regions responding best to a stimulated tone frequency and less for regions responding best to other frequencies. Previous attempts to characterize the spread of neural adaptation in humans investigated the auditory cortex N1 component of the event-related potentials. Importantly, however, more recent studies in animals show that neural response properties are not independent of the stimulation context. To link these findings in animals to human scalp potentials, we investigated whether contextual factors of the acoustic stimulation, namely, spectral variance, affect the spread of neural adaptation. Electroencephalograms were recorded while human participants listened to random tone sequences varying in spectral variance (narrow vs. wide). Spread of adaptation was investigated by modeling single-trial neural adaptation and subsequent recovery based on the spectro-temporal stimulation history. Frequency-specific neural responses were largest on the N1 component, and the modeled neural adaptation indices were strongly predictive of trial-by-trial amplitude variations. Yet the spread of adaption varied depending on the spectral variance in the stimulation, such that adaptation spread was broadened for tone sequences with wide spectral variance. Thus the present findings reveal context-dependent auditory cortex adaptation and point toward a flexibly adjusting auditory system that changes its response properties with the spectral requirements of the acoustic environment.

  10. An Adaptive Motion Estimation Scheme for Video Coding

    PubMed Central

    Gao, Yuan; Jia, Kebin

    2014-01-01

    The unsymmetrical-cross multihexagon-grid search (UMHexagonS) is one of the best fast Motion Estimation (ME) algorithms in video encoding software. It achieves an excellent coding performance by using hybrid block matching search pattern and multiple initial search point predictors at the cost of the computational complexity of ME increased. Reducing time consuming of ME is one of the key factors to improve video coding efficiency. In this paper, we propose an adaptive motion estimation scheme to further reduce the calculation redundancy of UMHexagonS. Firstly, new motion estimation search patterns have been designed according to the statistical results of motion vector (MV) distribution information. Then, design a MV distribution prediction method, including prediction of the size of MV and the direction of MV. At last, according to the MV distribution prediction results, achieve self-adaptive subregional searching by the new estimation search patterns. Experimental results show that more than 50% of total search points are dramatically reduced compared to the UMHexagonS algorithm in JM 18.4 of H.264/AVC. As a result, the proposed algorithm scheme can save the ME time up to 20.86% while the rate-distortion performance is not compromised. PMID:24672313

  11. Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.

    PubMed

    Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent

    2015-12-01

    In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information.

  12. Adaptive Distributed Video Coding with Correlation Estimation using Expectation Propagation

    PubMed Central

    Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel

    2013-01-01

    Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method. PMID:23750314

  13. Adaptive Distributed Video Coding with Correlation Estimation using Expectation Propagation.

    PubMed

    Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel

    2012-10-15

    Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method.

  14. Preliminary evaluation of spectral, normal and meteorological crop stage estimation approaches

    NASA Technical Reports Server (NTRS)

    Cate, R. B.; Artley, J. A.; Doraiswamy, P. C.; Hodges, T.; Kinsler, M. C.; Phinney, D. E.; Sestak, M. L. (Principal Investigator)

    1980-01-01

    Several of the projects in the AgRISTARS program require crop phenology information, including classification, acreage and yield estimation, and detection of episodal events. This study evaluates several crop calendar estimation techniques for their potential use in the program. The techniques, although generic in approach, were developed and tested on spring wheat data collected in 1978. There are three basic approaches to crop stage estimation: historical averages for an area (normal crop calendars), agrometeorological modeling of known crop-weather relationships agrometeorological (agromet) crop calendars, and interpretation of spectral signatures (spectral crop calendars). In all, 10 combinations of planting and biostage estimation models were evaluated. Dates of stage occurrence are estimated with biases between -4 and +4 days while root mean square errors range from 10 to 15 days. Results are inconclusive as to the superiority of any of the models and further evaluation of the models with the 1979 data set is recommended.

  15. Estimating the Global Solar Magnetic Field Distribution Using ADAPT

    NASA Astrophysics Data System (ADS)

    Arge, C. N.; Henney, C. J.; Toussaint, W. A.; Godinez, H. C.; Hickmann, K. S.

    2014-12-01

    Estimation of the global solar photospheric magnetic field distribution is currently difficult, since only approximately half of the solar surface is magnetically observed at any given time. With the solar rotational period relative to Earth at approximately 27 days, these global maps include observed data that are more than 13 days old. Data assimilation between old and new observations can result in spatial polarity discontinuities that result in significant monopole signals. To help minimize these large discontinuities and to specify the global state of the photospheric magnetic flux distribution as accurately as possible, we have developed the ADAPT (Air Force Data Assimilative Photospheric flux Transport) model, which is comprised of a photospheric magnetic flux transport model that makes use of data assimilation methods. The ADAPT transport model evolves the solar magnetic flux for an ensemble of realizations using different model parameter values, e.g., for rotational, meridional, and super-granular diffusive transport processes. In this presentation, the ADAPT model and the data assimilative methods used within it will be reviewed. Coronal, solar wind, F10.7, and EUV model predictions based on ADAPT global photospheric magnetic field maps as input will be discussed.

  16. Estimating photoreceptor excitations from spectral outputs of a personal light exposure measurement device.

    PubMed

    Cao, Dingcai; Barrionuevo, Pablo A

    2015-03-01

    The intrinsic circadian clock requires photoentrainment to synchronize the 24-hour solar day. Therefore, light stimulation is an important component of chronobiological research. Currently, the chronobiological research field overwhelmingly uses photopic illuminance that is based on the luminous efficiency function, V(λ), to quantify light levels. However, recent discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs), which are activated by self-contained melanopsin photopigment and also by inputs from rods and cones, makes light specification using a one-dimensional unit inadequate. Since the current understanding of how different photoreceptor inputs contribute to the circadian system through ipRGCs is limited, it is recommended to specify light in terms of the excitations of five photoreceptors (S-, M-, L-cones, rods and ipRGCs; Lucas et al., 2014). In the current study, we assessed whether the spectral outputs from a commercially available spectral watch (i.e. Actiwatch Spectrum) could be used to estimate photoreceptor excitations. Based on the color sensor spectral sensitivity functions from a previously published work, as well as from our measurements, we computed spectral outputs in the long-wavelength range (R), middle-wavelength range (G), short-wavelength range (B) and broadband range (W) under 52 CIE illuminants (25 daylight illuminants, 27 fluorescent lights). We also computed the photoreceptor excitations for each illuminant using human photoreceptor spectral sensitivity functions. Linear regression analyses indicated that the Actiwatch spectral outputs could predict photoreceptor excitations reliably, under the assumption of linear responses of the Actiwatch color sensors. In addition, R, G, B outputs could classify illuminant types (fluorescent versus daylight illuminants) satisfactorily. However, the assessment of actual Actiwatch recording under several testing light sources showed that the spectral outputs were subject to

  17. Preservation of Mexican ancient Codices: color reproduction from spectral attributes estimation

    NASA Astrophysics Data System (ADS)

    Conde, Jorge; Uchiyama, Toshio; Yamaguchi, Masahiro; Haneishi, Hideaki; Ohyama, Nagaaki

    2003-11-01

    Mexican Codices are an ancient reading and writing system, part of this cultural legacy date from the 16th and 17th century. For preservation reasons, the collection known as "Collection of Original Mexican Codices" under the custody of the National Library of Anthropology and History in Mexico City is kept under limited access and controlled illumination conditions. It is presented an accurate color reproduction of Codices under simulated average daylight based on spectral reflectance estimation from statistical spectral data using the Wiener estimator, removing the original capture environment illumination. We compare the achieved results between both, a 16 bands multispectral camera and a RGB Nikon D1 camera.

  18. Adaptive Input Reconstruction with Application to Model Refinement, State Estimation, and Adaptive Control

    NASA Astrophysics Data System (ADS)

    D'Amato, Anthony M.

    Input reconstruction is the process of using the output of a system to estimate its input. In some cases, input reconstruction can be accomplished by determining the output of the inverse of a model of the system whose input is the output of the original system. Inversion, however, requires an exact and fully known analytical model, and is limited by instabilities arising from nonminimum-phase zeros. The main contribution of this work is a novel technique for input reconstruction that does not require model inversion. This technique is based on a retrospective cost, which requires a limited number of Markov parameters. Retrospective cost input reconstruction (RCIR) does not require knowledge of nonminimum-phase zero locations or an analytical model of the system. RCIR provides a technique that can be used for model refinement, state estimation, and adaptive control. In the model refinement application, data are used to refine or improve a model of a system. It is assumed that the difference between the model output and the data is due to an unmodeled subsystem whose interconnection with the modeled system is inaccessible, that is, the interconnection signals cannot be measured and thus standard system identification techniques cannot be used. Using input reconstruction, these inaccessible signals can be estimated, and the inaccessible subsystem can be fitted. We demonstrate input reconstruction in a model refinement framework by identifying unknown physics in a space weather model and by estimating an unknown film growth in a lithium ion battery. The same technique can be used to obtain estimates of states that cannot be directly measured. Adaptive control can be formulated as a model-refinement problem, where the unknown subsystem is the idealized controller that minimizes a measured performance variable. Minimal modeling input reconstruction for adaptive control is useful for applications where modeling information may be difficult to obtain. We demonstrate

  19. Digital control of high performance aircraft using adaptive estimation techniques

    NASA Technical Reports Server (NTRS)

    Van Landingham, H. F.; Moose, R. L.

    1977-01-01

    In this paper, an adaptive signal processing algorithm is joined with gain-scheduling for controlling the dynamics of high performance aircraft. A technique is presented for a reduced-order model (the longitudinal dynamics) of a high performance STOL aircraft. The actual controller views the nonlinear behavior of the aircraft as equivalent to a randomly switching sequence of linear models taken from a preliminary piecewise-linear fit of the system nonlinearities. The adaptive nature of the estimator is necessary to select the proper sequence of linear models along the flight trajectory. Nonlinear behavior is approximated by effective switching of the linear models at random times, with durations reflecting aircraft motion in response to pilot commands.

  20. On-line, adaptive state estimator for active noise control

    NASA Technical Reports Server (NTRS)

    Lim, Tae W.

    1994-01-01

    Dynamic characteristics of airframe structures are expected to vary as aircraft flight conditions change. Accurate knowledge of the changing dynamic characteristics is crucial to enhancing the performance of the active noise control system using feedback control. This research investigates the development of an adaptive, on-line state estimator using a neural network concept to conduct active noise control. In this research, an algorithm has been developed that can be used to estimate displacement and velocity responses at any locations on the structure from a limited number of acceleration measurements and input force information. The algorithm employs band-pass filters to extract from the measurement signal the frequency contents corresponding to a desired mode. The filtered signal is then used to train a neural network which consists of a linear neuron with three weights. The structure of the neural network is designed as simple as possible to increase the sampling frequency as much as possible. The weights obtained through neural network training are then used to construct the transfer function of a mode in z-domain and to identify modal properties of each mode. By using the identified transfer function and interpolating the mode shape obtained at sensor locations, the displacement and velocity responses are estimated with reasonable accuracy at any locations on the structure. The accuracy of the response estimates depends on the number of modes incorporated in the estimates and the number of sensors employed to conduct mode shape interpolation. Computer simulation demonstrates that the algorithm is capable of adapting to the varying dynamic characteristics of structural properties. Experimental implementation of the algorithm on a DSP (digital signal processing) board for a plate structure is underway. The algorithm is expected to reach the sampling frequency range of about 10 kHz to 20 kHz which needs to be maintained for a typical active noise control

  1. Adaptive Mesh Refinement With Spectral Accuracy for Magnetohydrodynamics in Two Space Dimensions

    NASA Astrophysics Data System (ADS)

    Rosenberg, D.; Pouquet, A.; Mininni, P.

    2006-12-01

    We examine the effect of accuracy of high-order adaptive mesh refinement (AMR) in the context of a classical configuration of magnetic reconnection in two space dimensions, the so-called Orszag-Tang vortex made up of a magnetic X-point centered on a stagnation point of the velocity. A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate this problem. The MHD solver is explicit, and uses the Elsasser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described elsewhere [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)] in the fluid context, allowing both statically refined and dynamically refined grids. Comparisons with pseudo-spectral computations are performed. Refinement and coarsening criteria are examined, and several tests are described. We show that low-order truncation--even with a comparable number of global degrees of freedom--fails to correctly model some strong (inf-norm) quantities in this problem, even though it satisfies adequately the weak (integrated) balance diagnostics.

  2. Adaptive regularization network based neural modeling paradigm for nonlinear adaptive estimation of cerebral evoked potentials.

    PubMed

    Zhang, Jian-Hua; Böhme, Johann F

    2007-11-01

    In this paper we report an adaptive regularization network (ARN) approach to realizing fast blind separation of cerebral evoked potentials (EPs) from background electroencephalogram (EEG) activity with no need to make any explicit assumption on the statistical (or deterministic) signal model. The ARNs are proposed to construct nonlinear EEG and EP signal models. A novel adaptive regularization training (ART) algorithm is proposed to improve the generalization performance of the ARN. Two adaptive neural modeling methods based on the ARN are developed and their implementation and performance analysis are also presented. The computer experiments using simulated and measured visual evoked potential (VEP) data have shown that the proposed ARN modeling paradigm yields computationally efficient and more accurate VEP signal estimation owing to its intrinsic model-free and nonlinear processing characteristics.

  3. A Novel Adaptive Frequency Estimation Algorithm Based on Interpolation FFT and Improved Adaptive Notch Filter

    NASA Astrophysics Data System (ADS)

    Shen, Ting-ao; Li, Hua-nan; Zhang, Qi-xin; Li, Ming

    2017-02-01

    The convergence rate and the continuous tracking precision are two main problems of the existing adaptive notch filter (ANF) for frequency tracking. To solve the problems, the frequency is detected by interpolation FFT at first, which aims to overcome the convergence rate of the ANF. Then, referring to the idea of negative feedback, an evaluation factor is designed to monitor the ANF parameters and realize continuously high frequency tracking accuracy. According to the principle, a novel adaptive frequency estimation algorithm based on interpolation FFT and improved ANF is put forward. Its basic idea, specific measures and implementation steps are described in detail. The proposed algorithm obtains a fast estimation of the signal frequency, higher accuracy and better universality qualities. Simulation results verified the superiority and validity of the proposed algorithm when compared with original algorithms.

  4. Spectral estimation of gapped data and SAR imaging with angular diversity

    NASA Astrophysics Data System (ADS)

    Larsson, Erik G.; Li, Jian; Stoica, Peter; Liu, Guoqing; Williams, Robert L.

    2001-08-01

    The Amplitude and Phase EStimation (APES) approach to amplitude spectrum estimation has been receiving considerably attention recently. We develop an extension of APES for the spectral estimation of gapped (incomplete) data and apply it to synthetic aperture radar (SAR) imaging with angular diversity. It has recently been shown that APES minimizes a certain least-squares criterion with respect to the estimate of the spectrum. Our new algorithm is called gapped-data APES and is based on minimizing this criterion with respect to the missing data as well. Numerical results are presented to demonstrate the effectiveness of the proposed algorithm and its applicability to SAR imaging with angular diversity.

  5. Efficient, non-iterative estimator for imaging contrast agents with spectral x-ray detectors.

    PubMed

    Alvarez, Robert E

    2015-12-22

    This paper describes an estimator to image contrast agents and body materials with x-ray spectral measurements. Previous implementations were limited to a two function basis set but the new implementation is usable with the three or more basis functions that are required with high atomic number contrast materials. The estimator variance is equal to the Cramèr-Rao lower bound (CRLB) and it is unbiased. Its parameters can be computed from measurements of a calibration phantom with the clinical x-ray system and it is non-iterative. The estimator is compared with an iterative maximum likelihood estimator.

  6. Comparison of spectral estimation methods in reconstruction of parametric ultrasound images

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Pawan; Insana, Michael F.; Hall, Timothy J.

    1996-04-01

    The application of inverse scattering methods to diagnostic ultrasound echo signals has provided us with detailed information about renal microstructure and function. In particular, the average scatterer size has been used to follow changes in microvascular perfusion that occur early in many renal disease processes. This paper shows that by introducing prior knowledge of the tissue state into the process, uncertainty in the spectral estimate is reduced for low SNR situations, and the contrast and range-resolution in scatterer size images can be improved without increasing the noise. Prior information used in the estimation technique is obtained from the histology of biological tissue. Maximum a posteriori and constrained least squares estimators are designed to obtain images for different levels of noise and for different gate-durations. Prior knowledge about the noise properties and the nature of the echo spectrum is used to obtain the order of an autoregressive model for estimating the power spectral density.

  7. p-adaption for compressible flow problems using a goal-based error estimator

    NASA Astrophysics Data System (ADS)

    Ekelschot, Dirk; Moxey, David; Peiro, Joaquim; Sherwin, Spencer

    2014-11-01

    We present an approach of applying p-adaption to compressible flow problems using a dual-weighted error estimator. This technique has been implemented in the high-order h/p spectral element library Nektar + + . The compressible solver uses a high-order discontinuous Galerkin (DG) discretization. This approach is generally considered to be expensive and that is why the introduced p-adaption technique aims for lowering the computational cost while preserving the high-order accuracy and the exponential convergence properties. The numerical fluxes between the elements are discontinuous which allows one to use a different polynomial order in each element. After identifying and localizing the sources of error, the order of approximation of the solution within the element is improved. The solution to the adjoint equations for the compressible Euler equations is used to weigh the local residual of the primal solution. This provides both the error in the target quantity, which is typically the lift or drag coefficient, and an indication on how sensitive the local solution is to the target quantity. The dual-weighted error within each element serves then as a local refinement indicator that drives the p-adaptive algorithm. The performance of this p-adaptive method is demonstrated using a test case of subsonic flow past a 3D wing geometry.

  8. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    PubMed Central

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  9. A two dimensional power spectral estimate for some nonstationary processes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Smith, Gregory L.

    1989-01-01

    A two dimensional estimate for the power spectral density of a nonstationary process is being developed. The estimate will be applied to helicopter noise data which is clearly nonstationary. The acoustic pressure from the isolated main rotor and isolated tail rotor is known to be periodically correlated (PC) and the combined noise from the main and tail rotors is assumed to be correlation autoregressive (CAR). The results of this nonstationary analysis will be compared with the current method of assuming that the data is stationary and analyzing it as such. Another method of analysis is to introduce a random phase shift into the data as shown by Papoulis to produce a time history which can then be accurately modeled as stationary. This method will also be investigated for the helicopter data. A method used to determine the period of a PC process when the period is not know is discussed. The period of a PC process must be known in order to produce an accurate spectral representation for the process. The spectral estimate is developed. The bias and variability of the estimate are also discussed. Finally, the current method for analyzing nonstationary data is compared to that of using a two dimensional spectral representation. In addition, the method of phase shifting the data is examined.

  10. Real-time system for robust spectral parameter estimation in Doppler signal analysis.

    PubMed

    Di Giuliomaria, C; Capponi, M; D'Alessio, T; Sacco, R; Zanette, E

    1990-01-01

    In assessing the level of stenosis in extracranial Doppler analysis, spectral analysis has until now been used qualitatively, for the most part. Owing to the many variables affecting the measurements (mainly noise level and instrument setting made subjectively by the operator), the reliability of the inferences on the degree of stenosis is not clearly definable. Under such conditions the need arises for algorithms and systems that can estimate spectral parameters with a higher degree of accuracy, to verify whether reliable inferences can indeed by made or if this technique is only a qualitative one. In the paper a real-time spectral analysis system is described. The system relies on a new spectral estimation algorithm which gives estimates with good robustness with respect to noise. Moreover, a clear measurement procedure which eliminates the many subjective factors affecting the estimates has also been proposed and used. The system has been evaluated with simulated signals and in clinical trials and has shown better performance than the commonly used commercial analysers.

  11. Study on Raman spectral imaging method for simultaneous estimation of ingredients concentration in food powder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the potential of point scan Raman spectral imaging method for estimation of different ingredients and chemical contaminant concentration in food powder. Food powder sample was prepared by mixing sugar, vanillin, melamine and non-dairy cream at 5 different concentrations in a ...

  12. Adaptive broadening to improve spectral resolution in the numerical renormalization group

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Sup B.; Weichselbaum, Andreas

    2016-12-01

    We propose an adaptive scheme of broadening the discrete spectral data from numerical renormalization group (NRG) calculations to improve the resolution of dynamical properties at finite energies. While the conventional scheme overbroadens narrow features at large frequency by broadening discrete weights with constant width in log-frequency, our scheme broadens each discrete contribution individually based on its sensitivity to a z -shift in the logarithmic discretization intervals. We demonstrate that the adaptive broadening better resolves various features in noninteracting and interacting models at comparable computational cost. The resolution enhancement is more significant for coarser discretization as typically required in multiband calculations. At low frequency below the energy scale of temperature, the discrete NRG data necessarily needs to be broadened on a linear scale. Here we provide a method that minimizes transition artifacts in between these broadening kernels.

  13. Estimating the potential for adaptation of corals to climate warming.

    PubMed

    Császár, Nikolaus B M; Ralph, Peter J; Frankham, Richard; Berkelmans, Ray; van Oppen, Madeleine J H

    2010-03-18

    The persistence of tropical coral reefs is threatened by rapidly increasing climate warming, causing a functional breakdown of the obligate symbiosis between corals and their algal photosymbionts (Symbiodinium) through a process known as coral bleaching. Yet the potential of the coral-algal symbiosis to genetically adapt in an evolutionary sense to warming oceans is unknown. Using a quantitative genetics approach, we estimated the proportion of the variance in thermal tolerance traits that has a genetic basis (i.e. heritability) as a proxy for their adaptive potential in the widespread Indo-Pacific reef-building coral Acropora millepora. We chose two physiologically different populations that associate respectively with one thermo-tolerant (Symbiodinium clade D) and one less tolerant symbiont type (Symbiodinium C2). In both symbiont types, pulse amplitude modulated (PAM) fluorometry and high performance liquid chromatography (HPLC) analysis revealed significant heritabilities for traits related to both photosynthesis and photoprotective pigment profile. However, quantitative real-time polymerase chain reaction (qRT-PCR) assays showed a lack of heritability in both coral host populations for their own expression of fundamental stress genes. Coral colony growth, contributed to by both symbiotic partners, displayed heritability. High heritabilities for functional key traits of algal symbionts, along with their short clonal generation time and high population sizes allow for their rapid thermal adaptation. However, the low overall heritability of coral host traits, along with the corals' long generation time, raise concern about the timely adaptation of the coral-algal symbiosis in the face of continued rapid climate warming.

  14. Spectral Estimation Model Construction of Heavy Metals in Mining Reclamation Areas

    PubMed Central

    Dong, Jihong; Dai, Wenting; Xu, Jiren; Li, Songnian

    2016-01-01

    The study reported here examined, as the research subject, surface soils in the Liuxin mining area of Xuzhou, and explored the heavy metal content and spectral data by establishing quantitative models with Multivariable Linear Regression (MLR), Generalized Regression Neural Network (GRNN) and Sequential Minimal Optimization for Support Vector Machine (SMO-SVM) methods. The study results are as follows: (1) the estimations of the spectral inversion models established based on MLR, GRNN and SMO-SVM are satisfactory, and the MLR model provides the worst estimation, with R2 of more than 0.46. This result suggests that the stress sensitive bands of heavy metal pollution contain enough effective spectral information; (2) the GRNN model can simulate the data from small samples more effectively than the MLR model, and the R2 between the contents of the five heavy metals estimated by the GRNN model and the measured values are approximately 0.7; (3) the stability and accuracy of the spectral estimation using the SMO-SVM model are obviously better than that of the GRNN and MLR models. Among all five types of heavy metals, the estimation for cadmium (Cd) is the best when using the SMO-SVM model, and its R2 value reaches 0.8628; (4) using the optimal model to invert the Cd content in wheat that are planted on mine reclamation soil, the R2 and RMSE between the measured and the estimated values are 0.6683 and 0.0489, respectively. This result suggests that the method using the SMO-SVM model to estimate the contents of heavy metals in wheat samples is feasible. PMID:27367708

  15. Spectral Estimation Model Construction of Heavy Metals in Mining Reclamation Areas.

    PubMed

    Dong, Jihong; Dai, Wenting; Xu, Jiren; Li, Songnian

    2016-06-28

    The study reported here examined, as the research subject, surface soils in the Liuxin mining area of Xuzhou, and explored the heavy metal content and spectral data by establishing quantitative models with Multivariable Linear Regression (MLR), Generalized Regression Neural Network (GRNN) and Sequential Minimal Optimization for Support Vector Machine (SMO-SVM) methods. The study results are as follows: (1) the estimations of the spectral inversion models established based on MLR, GRNN and SMO-SVM are satisfactory, and the MLR model provides the worst estimation, with R² of more than 0.46. This result suggests that the stress sensitive bands of heavy metal pollution contain enough effective spectral information; (2) the GRNN model can simulate the data from small samples more effectively than the MLR model, and the R² between the contents of the five heavy metals estimated by the GRNN model and the measured values are approximately 0.7; (3) the stability and accuracy of the spectral estimation using the SMO-SVM model are obviously better than that of the GRNN and MLR models. Among all five types of heavy metals, the estimation for cadmium (Cd) is the best when using the SMO-SVM model, and its R² value reaches 0.8628; (4) using the optimal model to invert the Cd content in wheat that are planted on mine reclamation soil, the R² and RMSE between the measured and the estimated values are 0.6683 and 0.0489, respectively. This result suggests that the method using the SMO-SVM model to estimate the contents of heavy metals in wheat samples is feasible.

  16. An Overdetermined System for Improved Autocorrelation Based Spectral Moment Estimator Performance

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1996-01-01

    Autocorrelation based spectral moment estimators are typically derived using the Fourier transform relationship between the power spectrum and the autocorrelation function along with using either an assumed form of the autocorrelation function, e.g., Gaussian, or a generic complex form and applying properties of the characteristic function. Passarelli has used a series expansion of the general complex autocorrelation function and has expressed the coefficients in terms of central moments of the power spectrum. A truncation of this series will produce a closed system of equations which can be solved for the central moments of interest. The autocorrelation function at various lags is estimated from samples of the random process under observation. These estimates themselves are random variables and exhibit a bias and variance that is a function of the number of samples used in the estimates and the operational signal-to-noise ratio. This contributes to a degradation in performance of the moment estimators. This dissertation investigates the use autocorrelation function estimates at higher order lags to reduce the bias and standard deviation in spectral moment estimates. In particular, Passarelli's series expansion is cast in terms of an overdetermined system to form a framework under which the application of additional autocorrelation function estimates at higher order lags can be defined and assessed. The solution of the overdetermined system is the least squares solution. Furthermore, an overdetermined system can be solved for any moment or moments of interest and is not tied to a particular form of the power spectrum or corresponding autocorrelation function. As an application of this approach, autocorrelation based variance estimators are defined by a truncation of Passarelli's series expansion and applied to simulated Doppler weather radar returns which are characterized by a Gaussian shaped power spectrum. The performance of the variance estimators determined

  17. Estimation of phytoplankton size fractions based on spectral features of remote sensing ocean color data

    NASA Astrophysics Data System (ADS)

    Li, Zuchuan; Li, Lin; Song, Kaishan; Cassar, Nicolas

    2013-03-01

    Through its influence on the structure of pelagic ecosystems, phytoplankton size distribution (pico-, nano-, and micro-plankton) is believed to play a key role in "the biological pump." In this paper, an algorithm is proposed to estimate phytoplankton size fractions (PSF) for micro-, nano-, and pico-plankton (fm, fn, and fp, respectively) from the spectral features of remote-sensing data. From remote-sensing reflectance spectrum (Rrs(λ)), the algorithm constructs four types of spectral features: a normalized Rrs(λ), band ratios, continuum-removed spectra, and spectral curvatures. Using support vector machine recursive feature elimination, the algorithm ranks the constructed spectral features and Rrs(λ) according to their sensitivities to PSF which is then regressed against the sensitive spectral features through support vector regression. The algorithm is validated with (1) simulated Rrs(λ) and PSF, and (2) Rrs(λ) obtained by Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and PSF determined from High-Performance Liquid Chromatography (HPLC) pigments. The validation results show the overall effectiveness of the algorithm in estimating PSF, with R2 of (1) 0.938 (fm) for the simulated SeaWiFS data set; and (2) 0.617 (fm), 0.475 (fn), and 0.587 (fp) for the SeaWiFS satellite data set. The validation results also indicate that continuum-removed spectra and spectral curvatures are the dominant spectral features sensitive to PSF with their wavelengths mainly centered on the pigment-absorption domain. Global spatial distributions of fm, fn, and fp were mapped with monthly SeaWiFS images. Overall, their biogeographical distributions are consistent with our current understanding that pico-plankton account for a large proportion of total phytoplankton biomass in oligotrophic regions, nano-plankton in transitional areas, and micro-plankton in high-productivity regions.

  18. Maximum Likelihood Estimation of the Broken Power Law Spectral Parameters with Detector Design Applications

    NASA Technical Reports Server (NTRS)

    Howell, Leonard W.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The maximum likelihood procedure is developed for estimating the three spectral parameters of an assumed broken power law energy spectrum from simulated detector responses and their statistical properties investigated. The estimation procedure is then generalized for application to real cosmic-ray data. To illustrate the procedure and its utility, analytical methods were developed in conjunction with a Monte Carlo simulation to explore the combination of the expected cosmic-ray environment with a generic space-based detector and its planned life cycle, allowing us to explore various detector features and their subsequent influence on estimating the spectral parameters. This study permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.

  19. Multivariate Granger causality: an estimation framework based on factorization of the spectral density matrix.

    PubMed

    Wen, Xiaotong; Rangarajan, Govindan; Ding, Mingzhou

    2013-08-28

    Granger causality is increasingly being applied to multi-electrode neurophysiological and functional imaging data to characterize directional interactions between neurons and brain regions. For a multivariate dataset, one might be interested in different subsets of the recorded neurons or brain regions. According to the current estimation framework, for each subset, one conducts a separate autoregressive model fitting process, introducing the potential for unwanted variability and uncertainty. In this paper, we propose a multivariate framework for estimating Granger causality. It is based on spectral density matrix factorization and offers the advantage that the estimation of such a matrix needs to be done only once for the entire multivariate dataset. For any subset of recorded data, Granger causality can be calculated through factorizing the appropriate submatrix of the overall spectral density matrix.

  20. The use of the spectral method within the fast adaptive composite grid method

    SciTech Connect

    McKay, S.M.

    1994-12-31

    The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.

  1. Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Cohen, Y.; Des Marais, D. J.

    1987-01-01

    We studied adaptation to spectral light distribution in undisturbed benthic communities of cyanobacterial mats growing in hypersaline ponds at Guerrero Negro, Baja California, Mexico. Microscale measurements of oxygen photosynthesis and action spectra were performed with microelectrodes; spectral radiance was measured with fiber-optic microprobes. The spatial resolution of all measurements was 0.1 mm, and the spectral resolution was 10 to 15 nm. Light attenuation spectra showed absorption predominantly by chlorophyll a (Chl a) (430 and 670 nm), phycocyanin (620 nm), and carotenoids (440 to 500 nm). Blue light (450 nm) was attenuated 10-fold more strongly than red light (600 nm). The action spectra of the surface film of diatoms accordingly showed activity over the whole spectrum, with maxima for Chl a and carotenoids. The underlying dense Microcoleus population showed almost exclusively activity dependent upon light harvesting by phycobilins at 550 to 660 nm. Maximum activity was at 580 and 650 nm, indicating absorption by phycoerythrin and phycocyanin as well as by allophycocyanin. Very little Chl a-dependent activity could be detected in the cyanobacterial action spectrum, even with additional 600-nm light to excite photosystem II. The depth distribution of photosynthesis showed detectable activity down to a depth of 0.8 to 2.5 mm, where the downwelling radiant flux at 600 nm was reduced to 0.2 to 0.6% of the surface flux.

  2. Estimation of soil water content in Mongolian grasslands using a spectral radiometer

    NASA Astrophysics Data System (ADS)

    Sekiyama, Ayako; Shimada, Sawahiko; Toyoda, Hiromichi; Yokohama, Michinari

    Harsh winter conditions, called dzud, experienced in Mongolia in recent years have caused significant damage to their livestock. Grassland deterioration resulting from soil water shortage coupled with the lack of precipitation during summer is one of the causative factors of this damage. Collecting grassland information over a wide area by satellite remote sensing is useful for spatial prediction of dzud. In this study, we conducted a fundamental experiment to estimate soil water content using a spectral radiometer (observed wavelength range, 302.9-1145.8 nm), which uses the same sensor as a satellite. Soil spectral reflectance was measured under open-air conditions using a spectral radiometer at the experiment station. The soil water content was controlled in several samples by adding water, and the spectral reflectance of the sample surface was measured. Four spectral bands were selected under the observed wavelength for application to the satellite data. The soil spectral reflectance was normalized by the sum of the reflectance values of each band. It was found that a normalized soil reflectance pattern changed to a flat pattern with a decrease in soil water content. Fujiwara et al. (1996) proposed a pattern decomposition method to decompose a mixed spectral reflectance pattern, e.g., land cover of soil and vegetation, into its respective parts. The decomposition coefficient for each pattern was calculated based on the mixed content of the reflectance patterns. In this study, a new spectral pattern, observed as a flat shape in the reflectance curve, was derived to extract the components of soil water content. Pattern decomposition was conducted using soil and flat model patterns, and their decomposition coefficients were calculated. The correlation between soil water content and the flat model pattern decomposition coefficient was calculated by regression analysis. To apply this method to field data, we conducted site investigations in Mongolian grasslands

  3. Improving Spectral Crop Coefficient Approach with Raw Image Digital Count Data to Estimate Crop Water Use

    NASA Astrophysics Data System (ADS)

    Shafian, S.; Maas, S. J.; Rajan, N.

    2014-12-01

    Water resources and agricultural applications require knowledge of crop water use (CWU) over a range of spatial and temporal scales. Due to the spatial density of meteorological stations, the resolution of CWU estimates based on these data is fairly coarse and not particularly suitable or reliable for water resources planning, irrigation scheduling and decision making. Various methods have been developed for quantifying CWU of agricultural crops. In this study, an improved version of the spectral crop coefficient which includes the effects of stomatal closure is applied. Raw digital count (DC) data in the red, near-infrared, and thermal infrared (TIR) spectral bands of Landsat-7 and Landsat-8 imaging sensors are used to construct the TIR-ground cover (GC) pixel data distribution and estimate the effects of stomatal closure. CWU is then estimated by combining results of the spectral crop coefficient approach and the stomatal closer effect. To test this approach, evapotranspiration was measured in 5 agricultural fields in the semi-arid Texas High Plains during the 2013 and 2014 growing seasons and compared to corresponding estimated values of CWU determined using this approach. The results showed that the estimated CWU from this approach was strongly correlated (R2 = 0.79) with observed evapotranspiration. In addition, the results showed that considering the stomatal closer effect in the proposed approach can improve the accuracy of the spectral crop coefficient method. These results suggest that the proposed approach is suitable for operational estimation of evapotranspiration and irrigation scheduling where irrigation is used to replace the daily CWU of a crop.

  4. High spectral and spatial resolution spectroscopy of YSOs with a silicon grism and adaptive optics

    NASA Astrophysics Data System (ADS)

    Ge, J.; Lloyd, J. P.; Gavel, D.; Macintosh, B.; Max, C. E.; Ciarlo, D.; Kuzmenko, P.; Graham, J. R.

    2000-12-01

    We have obtained complete K band spectra of a total of 6 T Tauri and Ae/Be stars and their close companions at a spectral resolution of R ≈ 5000 using a silicon grism at the Lick 3m telescope. These results represent our first scientific observations conducted by the high resolution silicon grisms. Coupled with the LLNL adaptive optics system, a spatial resolution of 0.2 arcsec was achieved to allow observations of the companions with separations between 0.3-1.3 arcsec. The complete wavelength coverage was achieved by placing 16 cross-dispersed echelle orders on a 256x256 HgCdTe array with the silicon grism operating on high diffraction orders and a low dispersing CaF2 grism as a cross-disperser. High spectral resolution observations allow us to characterize each of the companions. Analysis of the spectra of these YSOs will be reported. The observations also allow us to measure the optical performance of the second generation of silicon grisms made with the techniques developed in early 2000. The new silicon grism has a peak efficiency of 45% and scattered light of ~ 8% in the K band. New techniques have been developed at Penn State to further reduce scattered light in the K band (Bernecker et al. this meeting) and are being applied in fabricating the third generation of silicon grisms for scientific observations. Fabrication of the silicon grisms and work on the Lick adaptive optics system was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48. Graham and Lloyd were also supported by the Center for Adaptive Optics under the STC Program of the National Science Foundation, Agreement No. AST-9876783

  5. Estimation of Soil Moisture Content from the Spectral Reflectance of Bare Soils in the 0.4–2.5 μm Domain

    PubMed Central

    Fabre, Sophie; Briottet, Xavier; Lesaignoux, Audrey

    2015-01-01

    analyse the sensitivity of these methods to the sensor spectral resolution and the water vapour content knowledge. The spectral signatures of the database are then used to simulate the signal at the top of atmosphere with a radiative transfer model and to compute the integrated incident signal representing the spectral radiance measurements of the HYMAP airborne hyperspectral instrument. The sensor radiances are then corrected from the atmosphere by an atmospheric compensation tool to retrieve the surface reflectances. The SMC estimation methods are then applied on the retrieve spectral reflectances. The adaptation of the spectral index wavelengths to the HyMap sensor spectral bands and the application of the convex envelope and ISER models to boarder spectral bands lead to an error on the SMC estimation. The best performance is then obtained with the ISER model (RMSE of 2.9% and R2 of 0.96) while the four other methods lead to quite similar RMSE (from 6.4% to 7.8%) and R2 (between 0.79 and 0.83) values. In the atmosphere compensation processing, an error on the water vapour content is introduced. The most robust methods to water vapour content variations are WISOIL, NINSON, NINSOL and ISER model. The convex envelope model and NSMI index require an accurate estimation of the water vapour content in the atmosphere. PMID:25648710

  6. Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4-2.5 µm domain.

    PubMed

    Fabre, Sophie; Briottet, Xavier; Lesaignoux, Audrey

    2015-02-02

    the sensitivity of these methods to the sensor spectral resolution and the water vapour content knowledge. The spectral signatures of the database are then used to simulate the signal at the top of atmosphere with a radiative transfer model and to compute the integrated incident signal representing the spectral radiance measurements of the HYMAP airborne hyperspectral instrument. The sensor radiances are then corrected from the atmosphere by an atmospheric compensation tool to retrieve the surface reflectances. The SMC estimation methods are then applied on the retrieve spectral reflectances. The adaptation of the spectral index wavelengths to the HyMap sensor spectral bands and the application of the convex envelope and ISER models to boarder spectral bands lead to an error on the SMC estimation. The best performance is then obtained with the ISER model (RMSE of 2.9% and R2 of 0.96) while the four other methods lead to quite similar RMSE (from 6.4% to 7.8%) and R² (between 0.79 and 0.83) values. In the atmosphere compensation processing, an error on the water vapour content is introduced. The most robust methods to water vapour content variations are WISOIL, NINSON, NINSOL and ISER model. The convex envelope model and NSMI index require an accurate estimation of the water vapour content in the atmosphere.

  7. On the use of the noncentral chi-square density function for the distribution of helicopter spectral estimates

    NASA Technical Reports Server (NTRS)

    Garber, Donald P.

    1993-01-01

    A probability density function for the variability of ensemble averaged spectral estimates from helicopter acoustic signals in Gaussian background noise was evaluated. Numerical methods for calculating the density function and for determining confidence limits were explored. Density functions were predicted for both synthesized and experimental data and compared with observed spectral estimate variability.

  8. Estimation of Chlorophyll-a Concentration in Turbid Lake Using Spectral Smoothing and Derivative Analysis

    PubMed Central

    Cheng, Chunmei; Wei, Yuchun; Sun, Xiaopeng; Zhou, Yu

    2013-01-01

    As a major indicator of lake eutrophication that is harmful to human health, the chlorophyll-a concentration (Chl-a) is often estimated using remote sensing, and one method often used is the spectral derivative algorithm. Direct derivative processing may magnify the noise, thus making spectral smoothing necessary. This study aims to use spectral smoothing as a pretreatment and to test the applicability of the spectral derivative algorithm for Chl-a estimation in Taihu Lake, China, based on the in situ hyperspectral reflectance. Data from July–August of 2004 were used to build the model, and data from July–August of 2005 and March of 2011 were used to validate the model, with Chl-a ranges of 5.0–156.0 mg/m3, 4.0–98.0 mg/m3 and 11.4–35.8 mg/m3, respectively. The derivative model was first used and then compared with the band ratio, three-band and four-band models. The results show that the first-order derivative model at 699 nm had satisfactory accuracy (R2 = 0.75) after kernel regression smoothing and had smaller validation root mean square errors of 15.21 mg/m3 in 2005 and 5.85 mg/m3 in 2011. The distribution map of Chl-a in Taihu Lake based on the HJ1/HSI image showed the actualdistribution trend, indicating that the first-order derivative model after spectral smoothing can be used for Chl-a estimation in turbid lake. PMID:23880727

  9. Estimation of chlorophyll-a concentration in Turbid Lake using spectral smoothing and derivative analysis.

    PubMed

    Cheng, Chunmei; Wei, Yuchun; Sun, Xiaopeng; Zhou, Yu

    2013-07-16

    As a major indicator of lake eutrophication that is harmful to human health, the chlorophyll-a concentration (Chl-a) is often estimated using remote sensing, and one method often used is the spectral derivative algorithm. Direct derivative processing may magnify the noise, thus making spectral smoothing necessary. This study aims to use spectral smoothing as a pretreatment and to test the applicability of the spectral derivative algorithm for Chl-a estimation in Taihu Lake, China, based on the in situ hyperspectral reflectance. Data from July-August of 2004 were used to build the model, and data from July-August of 2005 and March of 2011 were used to validate the model, with Chl-a ranges of 5.0-156.0 mg/m3, 4.0-98.0 mg/m3 and 11.4-35.8 mg/m3, respectively. The derivative model was first used and then compared with the band ratio, three-band and four-band models. The results show that the first-order derivative model at 699 nm had satisfactory accuracy (R2 = 0.75) after kernel regression smoothing and had smaller validation root mean square errors of 15.21 mg/m3 in 2005 and 5.85 mg/m3 in 2011. The distribution map of Chl-a in Taihu Lake based on the HJ1/HSI image showed the actual distribution trend, indicating that the first-order derivative model after spectral smoothing can be used for Chl-a estimation in turbid lake.

  10. A Fundamental Study on Spectrum Center Estimation of Solar Spectral Irradiation by the Statistical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Iijima, Aya; Suzuki, Kazumi; Wakao, Shinji; Kawasaki, Norihiro; Usami, Akira

    With a background of environmental problems and energy issues, it is expected that PV systems will be introduced rapidly and connected with power grids on a large scale in the future. For this reason, the concern to which PV power generation will affect supply and demand adjustment in electric power in the future arises and the technique of correctly grasping the PV power generation becomes increasingly important. The PV power generation depends on solar irradiance, temperature of a module and solar spectral irradiance. Solar spectral irradiance is distribution of the strength of the light for every wavelength. As the spectrum sensitivity of solar cell depends on kind of solar cell, it becomes important for exact grasp of PV power generation. Especially the preparation of solar spectral irradiance is, however, not easy because the observational instrument of solar spectral irradiance is expensive. With this background, in this paper, we propose a new method based on statistical pattern recognition for estimating the spectrum center which is representative index of solar spectral irradiance. Some numerical examples obtained by the proposed method are also presented.

  11. Adaptive Error Estimation in Linearized Ocean General Circulation Models

    NASA Technical Reports Server (NTRS)

    Chechelnitsky, Michael Y.

    1999-01-01

    Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large

  12. Performance bounds on micro-Doppler estimation and adaptive waveform design using OFDM signals

    NASA Astrophysics Data System (ADS)

    Sen, Satyabrata; Barhen, Jacob; Glover, Charles W.

    2014-05-01

    We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Craḿer-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.

  13. Performance Bounds on Micro-Doppler Estimation and Adaptive Waveform Design Using OFDM Signals

    SciTech Connect

    Sen, Satyabrata; Barhen, Jacob; Glover, Charles Wayne

    2014-01-01

    We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Cram er-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.

  14. Fractional vegetation cover estimation based on an improved selective endmember spectral mixture model.

    PubMed

    Li, Ying; Wang, Hong; Li, Xiao Bing

    2015-01-01

    Vegetation is an important part of ecosystem and estimation of fractional vegetation cover is of significant meaning to monitoring of vegetation growth in a certain region. With Landsat TM images and HJ-1B images as data source, an improved selective endmember linear spectral mixture model (SELSMM) was put forward in this research to estimate the fractional vegetation cover in Huangfuchuan watershed in China. We compared the result with the vegetation coverage estimated with linear spectral mixture model (LSMM) and conducted accuracy test on the two results with field survey data to study the effectiveness of different models in estimation of vegetation coverage. Results indicated that: (1) the RMSE of the estimation result of SELSMM based on TM images is the lowest, which is 0.044. The RMSEs of the estimation results of LSMM based on TM images, SELSMM based on HJ-1B images and LSMM based on HJ-1B images are respectively 0.052, 0.077 and 0.082, which are all higher than that of SELSMM based on TM images; (2) the R2 of SELSMM based on TM images, LSMM based on TM images, SELSMM based on HJ-1B images and LSMM based on HJ-1B images are respectively 0.668, 0.531, 0.342 and 0.336. Among these models, SELSMM based on TM images has the highest estimation accuracy and also the highest correlation with measured vegetation coverage. Of the two methods tested, SELSMM is superior to LSMM in estimation of vegetation coverage and it is also better at unmixing mixed pixels of TM images than pixels of HJ-1B images. So, the SELSMM based on TM images is comparatively accurate and reliable in the research of regional fractional vegetation cover estimation.

  15. A Steady-State Kalman Predictor-Based Filtering Strategy for Non-Overlapping Sub-Band Spectral Estimation

    PubMed Central

    Li, Zenghui; Xu, Bin; Yang, Jian; Song, Jianshe

    2015-01-01

    This paper focuses on suppressing spectral overlap for sub-band spectral estimation, with which we can greatly decrease the computational complexity of existing spectral estimation algorithms, such as nonlinear least squares spectral analysis and non-quadratic regularized sparse representation. Firstly, our study shows that the nominal ability of the high-order analysis filter to suppress spectral overlap is greatly weakened when filtering a finite-length sequence, because many meaningless zeros are used as samples in convolution operations. Next, an extrapolation-based filtering strategy is proposed to produce a series of estimates as the substitutions of the zeros and to recover the suppression ability. Meanwhile, a steady-state Kalman predictor is applied to perform a linearly-optimal extrapolation. Finally, several typical methods for spectral analysis are applied to demonstrate the effectiveness of the proposed strategy. PMID:25609038

  16. A steady-state Kalman predictor-based filtering strategy for non-overlapping sub-band spectral estimation.

    PubMed

    Li, Zenghui; Xu, Bin; Yang, Jian; Song, Jianshe

    2014-12-24

    This paper focuses on suppressing spectral overlap for sub-band spectral estimation, with which we can greatly decrease the computational complexity of existing spectral estimation algorithms, such as nonlinear least squares spectral analysis and non-quadratic regularized sparse representation. Firstly, our study shows that the nominal ability of the high-order analysis filter to suppress spectral overlap is greatly weakened when filtering a finite-length sequence, because many meaningless zeros are used as samples in convolution operations. Next, an extrapolation-based filtering strategy is proposed to produce a series of estimates as the substitutions of the zeros and to recover the suppression ability. Meanwhile, a steady-state Kalman predictor is applied to perform a linearly-optimal extrapolation. Finally, several typical methods for spectral analysis are applied to demonstrate the effectiveness of the proposed strategy.

  17. Aortic endothelium detection using spectral estimation optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Xinyu; Chen, Si; Luo, Yuemei; Bo, En; Wang, Nanshuo; Yu, Xiaojun; Liu, Linbo

    2016-02-01

    The evaluation of the endothelium coverage on the vessel wall is most wanted by cardiologists. Arterial endothelial cells play a crucial role in keeping low-density lipoprotein and leukocytes from entering into the intima. The damage of endothelial cells is considered as the first step of atherosclerosis development and the presence of endothelial cells is an indicator of arterial healing after stent implantation. Intravascular OCT (IVOCT) is the highest-resolution coronary imaging modality, but it is still limited by an axial resolution of 10-15 µm. This limitation in axial resolution hinders our ability to visualize cellular level details associated with coronary atherosclerosis. Spectral estimation optical coherence tomography (SE-OCT) uses modern spectral estimation techniques and may help reveal the microstructures underlying the resolution limit. In this presentation, we conduct an ex vivo study using SE-OCT to image the endothelium cells on the fresh swine aorta. We find that in OCT images with an axial resolution of 10 µm, we may gain the visibility of individual endothelium cells by applying the autoregressive spectral estimation techniques to enhance the axial resolution. We believe the SE-OCT can provide a potential to evaluate the coverage of endothelium cells using current IVOCT with a 10-µm axial resolution.

  18. Error estimate of Taylor's frozen-in flow hypothesis in the spectral domain

    NASA Astrophysics Data System (ADS)

    Narita, Yasuhito

    2017-03-01

    The quality of Taylor's frozen-in flow hypothesis can be measured by estimating the amount of the fluctuation energy mapped from the streamwise wavenumbers onto the Doppler-shifted frequencies in the spectral domain. For a random sweeping case with a Gaussian variation of the large-scale flow, the mapping quality is expressed by the error function which depends on the mean flow speed, the sweeping velocity, the frequency bin, and the frequency of interest. Both hydrodynamic and magnetohydrodynamic treatments are presented on the error estimate of Taylor's hypothesis with examples from the solar wind measurements.

  19. Spectral estimation from laser scanner data for accurate color rendering of objects

    NASA Astrophysics Data System (ADS)

    Baribeau, Rejean

    2002-06-01

    Estimation methods are studied for the recovery of the spectral reflectance across the visible range from the sensing at just three discrete laser wavelengths. Methods based on principal component analysis and on spline interpolation are judged based on the CIE94 color differences for some reference data sets. These include the Macbeth color checker, the OSA-UCS color charts, some artist pigments, and a collection of miscellaneous surface colors. The optimal three sampling wavelengths are also investigated. It is found that color can be estimated with average accuracy ΔE94 = 2.3 when optimal wavelengths 455 nm, 540 n, and 610 nm are used.

  20. Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments

    SciTech Connect

    Vencels, Juris; Delzanno, Gian Luca; Johnson, Alec; Peng, Ivy Bo; Laure, Erwin; Markidis, Stefano

    2015-06-01

    A spectral method for kinetic plasma simulations based on the expansion of the velocity distribution function in a variable number of Hermite polynomials is presented. The method is based on a set of non-linear equations that is solved to determine the coefficients of the Hermite expansion satisfying the Vlasov and Poisson equations. In this paper, we first show that this technique combines the fluid and kinetic approaches into one framework. Second, we present an adaptive strategy to increase and decrease the number of Hermite functions dynamically during the simulation. The technique is applied to the Landau damping and two-stream instability test problems. Performance results show 21% and 47% saving of total simulation time in the Landau and two-stream instability test cases, respectively.

  1. Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments

    DOE PAGES

    Vencels, Juris; Delzanno, Gian Luca; Johnson, Alec; ...

    2015-06-01

    A spectral method for kinetic plasma simulations based on the expansion of the velocity distribution function in a variable number of Hermite polynomials is presented. The method is based on a set of non-linear equations that is solved to determine the coefficients of the Hermite expansion satisfying the Vlasov and Poisson equations. In this paper, we first show that this technique combines the fluid and kinetic approaches into one framework. Second, we present an adaptive strategy to increase and decrease the number of Hermite functions dynamically during the simulation. The technique is applied to the Landau damping and two-stream instabilitymore » test problems. Performance results show 21% and 47% saving of total simulation time in the Landau and two-stream instability test cases, respectively.« less

  2. Senegalese land surface change analysis and biophysical parameter estimation using NOAA AVHRR spectral data

    NASA Technical Reports Server (NTRS)

    Vukovich, Fred M.; Toll, David L.; Kennard, Ruth L.

    1989-01-01

    Surface biophysical estimates were derived from analysis of NOAA Advanced Very High Spectral Resolution (AVHRR) spectral data of the Senegalese area of west Africa. The parameters derived were of solar albedo, spectral visible and near-infrared band reflectance, spectral vegetative index, and ground temperature. Wet and dry linked AVHRR scenes from 1981 through 1985 in Senegal were analyzed for a semi-wet southerly site near Tambacounda and a predominantly dry northerly site near Podor. Related problems were studied to convert satellite derived radiance to biophysical estimates of the land surface. Problems studied were associated with sensor miscalibration, atmospheric and aerosol spatial variability, surface anisotropy of reflected radiation, narrow satellite band reflectance to broad solar band conversion, and ground emissivity correction. The middle-infrared reflectance was approximated with a visible AVHRR reflectance for improving solar albedo estimates. In addition, the spectral composition of solar irradiance (direct and diffuse radiation) between major spectral regions (i.e., ultraviolet, visible, near-infrared, and middle-infrared) was found to be insensitive to changes in the clear sky atmospheric optical depth in the narrow band to solar band conversion procedure. Solar albedo derived estimates for both sites were not found to change markedly with significant antecedent precipitation events or correspondingly from increases in green leaf vegetation density. The bright soil/substrate contributed to a high albedo for the dry related scenes, whereas the high internal leaf reflectance in green vegetation canopies in the near-infrared contributed to high solar albedo for the wet related scenes. The relationship between solar albedo and ground temperature was poor, indicating the solar albedo has little control of the ground temperature. The normalized difference vegetation index (NDVI) and the derived visible reflectance were more sensitive to antecedent

  3. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    PubMed

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.

  4. Navigating sensory conflict in dynamic environments using adaptive state estimation.

    PubMed

    Klein, Theresa J; Jeka, John; Kiemel, Tim; Lewis, M Anthony

    2011-12-01

    Most conventional robots rely on controlling the location of the center of pressure to maintain balance, relying mainly on foot pressure sensors for information. By contrast,humans rely on sensory data from multiple sources, including proprioceptive, visual, and vestibular sources. Several models have been developed to explain how humans reconcile information from disparate sources to form a stable sense of balance. These models may be useful for developing robots that are able to maintain dynamic balance more readily using multiple sensory sources. Since these information sources may conflict, reliance by the nervous system on any one channel can lead to ambiguity in the system state. In humans, experiments that create conflicts between different sensory channels by moving the visual field or the support surface indicate that sensory information is adaptively reweighted. Unreliable information is rapidly down-weighted,then gradually up-weighted when it becomes valid again.Human balance can also be studied by building robots that model features of human bodies and testing them under similar experimental conditions. We implement a sensory reweighting model based on an adaptive Kalman filter in abipedal robot, and subject it to sensory tests similar to those used on human subjects. Unlike other implementations of sensory reweighting in robots, our implementation includes vision, by using optic flow to calculate forward rotation using a camera (visual modality), as well as a three-axis gyro to represent the vestibular system (non-visual modality), and foot pressure sensors (proprioceptive modality). Our model estimates measurement noise in real time, which is then used to recompute the Kalman gain on each iteration, improving the ability of the robot to dynamically balance. We observe that we can duplicate many important features of postural sw ay in humans, including automatic sensory reweighting,effects, constant phase with respect to amplitude, and a temporal

  5. Improved global high resolution precipitation estimation using multi-satellite multi-spectral information

    NASA Astrophysics Data System (ADS)

    Behrangi, Ali

    In respond to the community demands, combining microwave (MW) and infrared (IR) estimates of precipitation has been an active area of research since past two decades. The anticipated launching of NASA's Global Precipitation Measurement (GPM) mission and the increasing number of spectral bands in recently launched geostationary platforms will provide greater opportunities for investigating new approaches to combine multi-source information towards improved global high resolution precipitation retrievals. After years of the communities' efforts the limitations of the existing techniques are: (1) Drawbacks of IR-only techniques to capture warm rainfall and screen out no-rain thin cirrus clouds; (2) Grid-box- only dependency of many algorithms with not much effort to capture the cloud textures whether in local or cloud patch scale; (3) Assumption of indirect relationship between rain rate and cloud-top temperature that force high intensity precipitation to any cold cloud; (4) Neglecting the dynamics and evolution of cloud in time; (5) Inconsistent combination of MW and IR-based precipitation estimations due to the combination strategies and as a result of above described shortcomings. This PhD dissertation attempts to improve the combination of data from Geostationary Earth Orbit (GEO) and Low-Earth Orbit (LEO) satellites in manners that will allow consistent high resolution integration of the more accurate precipitation estimates, directly observed through LEO's PMW sensors, into the short-term cloud evolution process, which can be inferred from GEO images. A set of novel approaches are introduced to cope with the listed limitations and is consist of the following four consecutive components: (1) starting with the GEO part and by using an artificial-neural network based method it is demonstrated that inclusion of multi-spectral data can ameliorate existing problems associated with IR-only precipitating retrievals; (2) through development of Precipitation Estimation

  6. An investigation of spectral change as influenced by irrigation and evapotranspiration volume estimation in western Nebraska

    USGS Publications Warehouse

    Seevers, P.M.; Sadowski, F.C.; Lauer, D.T.

    1990-01-01

    Retrospective satellite image data were evaluated for their ability to demonstrate the influence of center-pivot irrigation development in western Nebraska on spectral change and climate-related factors for the region. Periodic images of an albedo index and a normalized difference vegetation index (NDVI) were generated from calibrated Landsat multispectral scanner (MSS) data and used to monitor spectral changes associated with irrigation development from 1972 through 1986. The albedo index was not useful for monitoring irrigation development. For the NDVI, it was found that proportions of counties in irrigated agriculture, as discriminated by a threshold, were more highly correlated with reported ground estimates of irrigated agriculture than were county mean greenness values. A similar result was achieved when using coarse resolution Advanced Very High Resolution Radiometer (AVHRR) image data for estimating irrigated agriculture. The NDVI images were used to evaluate a procedure for making areal estimates of actual evapotranspiration (ET) volumes. Estimates of ET volumes for test counties, using reported ground acreages and corresponding standard crop coefficients, were correlated with the estimates of ET volume using crop coefficients scaled to NDVI values and pixel counts of crop areas. These county estimates were made under the assumption that soil water availability was unlimited. For nonirrigated vegetation, this may result in over-estimation of ET volumes. Ground information regarding crop types and acreages are required to derive the NDVI scaling factor. Potential ET, estimated with the Jensen-Haise model, is common to both methods. These results, achieved with both MSS and AVHRR data, show promise for providing climatologically important land surface information for regional and global climate models. ?? 1990 Kluwer Academic Publishers.

  7. Adaptive-feedback spectral-phase control for interactions with transform-limited ultrashort high-power laser pulses.

    PubMed

    Liu, Cheng; Zhang, Jun; Chen, Shouyuan; Golovin, Gregory; Banerjee, Sudeep; Zhao, Baozhen; Powers, Nathan; Ghebregziabher, Isaac; Umstadter, Donald

    2014-01-01

    Fourier-transform-limited light pulses were obtained at the laser-plasma interaction point of a 100-TW peak-power laser in vacuum. The spectral-phase distortion induced by the dispersion mismatching between the stretcher, compressor, and dispersive materials was fully compensated for by means of an adaptive closed-loop. The coherent temporal contrast on the sub-picosecond time scale was two orders of magnitude higher than that without adaptive control. This novel phase control capability enabled the experimental study of the dependence of laser wakefield acceleration on the spectral phase of intense laser light.

  8. Spectral estimation optical coherence tomography for axial super-resolution (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Xinyu; Yu, Xiaojun; Wang, Nanshuo; Bo, En; Luo, Yuemei; Chen, Si; Cui, Dongyao; Liu, Linbo

    2016-03-01

    The sample depth reflectivity profile of Fourier domain optical coherence tomography (FD-OCT) is estimated from the inverse Fourier transform of the spectral interference signals (interferograms). As a result, the axial resolution is fundamentally limited by the coherence length of the light source. We demonstrate an axial resolution improvement method by using the autoregressive spectral estimation technique to instead of the inverse Fourier transform to analyze the spectral interferograms, which is named as spectral estimation OCT (SE-OCT). SE-OCT improves the axial resolution by a factor of up to 4.7 compared with the corresponding FD-OCT. Furthermore, SE-OCT provides a complete sidelobe suppression in the point-spread function. Using phantoms such as an air wedge and micro particles, we prove the ability of resolution improvement. To test SE-OCT for real biological tissue, we image the rat cornea and demonstrate that SE-OCT enables clear identification of corneal endothelium anatomical details ex vivo. We also find that the performance of SE-OCT is depended on SNR of the feature object. To evaluate the potential usage and define the application scope of SE-OCT, we further investigate the property of SNR dependence and the artifacts that may be caused. We find SE-OCT may be uniquely suited for viewing high SNR layer structures, such as the epithelium and endothelium in cornea, retina and aorta. Given that SE-OCT can be implemented in the FD-OCT devices easily, the new capabilities provided by SE-OCT are likely to offer immediate improvements to the diagnosis and management of diseases based on OCT imaging.

  9. Moisture estimation in power transformer oil using acoustic signals and spectral kurtosis

    NASA Astrophysics Data System (ADS)

    Leite, Valéria C. M. N.; Veloso, Giscard F. C.; Borges da Silva, Luiz Eduardo; Lambert-Torres, Germano; Borges da Silva, Jonas G.; Onofre Pereira Pinto, João

    2016-03-01

    The aim of this paper is to present a new technique for estimating the contamination by moisture in power transformer insulating oil based on the spectral kurtosis analysis of the acoustic signals of partial discharges (PDs). Basically, in this approach, the spectral kurtosis of the PD acoustic signal is calculated and the correlation between its maximum value and the moisture percentage is explored to find a function that calculates the moisture percentage. The function can be easily implemented in DSP, FPGA, or any other type of embedded system for online moisture monitoring. To evaluate the proposed approach, an experiment is assembled with a piezoelectric sensor attached to a tank, which is filled with insulating oil samples contaminated by different levels of moisture. A device generating electrical discharges is submerged into the oil to simulate the occurrence of PDs. Detected acoustic signals are processed using fast kurtogram algorithm to extract spectral kurtosis values. The obtained data are used to find the fitting function that relates the water contamination to the maximum value of the spectral kurtosis. Experimental results show that the proposed method is suitable for online monitoring system of power transformers.

  10. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (A par)

    NASA Technical Reports Server (NTRS)

    Kim, Moon S.; Daughtry, C. S. T.; Chappelle, E. W.; Mcmurtrey, J. E.; Walthall, C. L.

    1994-01-01

    Most remote sensing estimations of vegetation variables such as Leaf Area Index (LAI), Absorbed Photosynthetically Active Radiation (APAR), and phytomass are made using broad band sensors with a bandwidth of approximately 100 nm. However, high resolution spectrometers are available and have not been fully exploited for the purpose of improving estimates of vegetation variables. A study directed to investigate the use of high spectral resolution spectroscopy for remote sensing estimates of APAR in vegetation canopies in the presence of nonphotosynthetic background materials such as soil and leaf litter is presented. A high spectral resolution method defined as the Chlorophyll Absorption Ratio Index (CARI) was developed for minimizing the effects of nonphotosynthetic materials in the remote estimates of APAR. CARI utilizes three bands at 550, 670, and 700 nm with bandwidth of 10 nm. Simulated canopy reflectance of a range of LAI were generated with the SAIL model using measurements of 42 different soil types as canopy background. CARI obtained from the simulated canopy reflectance was compared with the broad band vegetation indices (Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Simple Ratio (SR)). CARI reduced the effect of nonphotosynthetic background materials in the assessment of vegetation canopy APAR more effectively than broad band vegetation indices.

  11. Maximum orthogonal subspace projection approach to estimating the number of spectral signal sources in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Tsai, Ching Tsorng; Yang, Ching Wen; Chang, Chein-I.

    2010-08-01

    Estimating the number of spectral signal sources, denoted by p, in hyperspectral imagery is very challenging due to the fact that many unknown material substances can be uncovered by very high spectral resolution hyperspectral sensors. This paper investigates a recent approach, called maximum orthogonal complement algorithm (MOCA), for this purpose. The MOCA was originally developed by Kuybeda et al. for estimating the rank of a rare vector space in a highdimensional noisy data space. Interestingly, the idea of the MOCA is essentially derived from the automatic target generation process (ATGP) developed by Ren and Chang. By appropriately interpreting the MOCA in context of the ATGP a potentially useful technique, called maximum orthogonal subspace projection (MOSP) can be further developed where determining a stopping rule for the ATGP turns out to be equivalent to estimating the rank of a rare vector space by the MOCA and the number of targets determined by the stopping rule for the ATGP to generate is the desired value of the parameter p. Furthermore, a Neyman-Pearson detector version of MOCA, NPD-MOCA can be also derived by the MOSP as opposed to the MOCA considered as a Bayes detector. Surprisingly, the MOCA-NPD has very similar design rationale to that of a technique referred to as Harsanyi-Farrand-Chang method that was developed to estimate the virtual dimensionality (VD) which is defined as the p.

  12. Neural network payload estimation for adaptive robot control.

    PubMed

    Leahy, M R; Johnson, M A; Rogers, S K

    1991-01-01

    A concept is proposed for utilizing artificial neural networks to enhance the high-speed tracking accuracy of robotic manipulators. Tracking accuracy is a function of the controller's ability to compensate for disturbances produced by dynamical interactions between the links. A model-based control algorithm uses a nominal model of those dynamical interactions to reduce the disturbances. The problem is how to provide accurate dynamics information to the controller in the presence of payload uncertainty and modeling error. Neural network payload estimation uses a series of artificial neural networks to recognize the payload variation associated with a degradation in tracking performance. The network outputs are combined with a knowledge of nominal dynamics to produce a computationally efficient direct form of adaptive control. The concept is validated through experimentation and analysis on the first three links of a PUMA-560 manipulator. A multilayer perceptron architecture with two hidden layers is used. Integration of the principles of neural network pattern recognition and model-based control produces a tracking algorithm with enhanced robustness to incomplete dynamic information. Tracking efficacy and applicability to robust control algorithms are discussed.

  13. Using dark current data to estimate AVIRIS noise covariance and improve spectral analyses

    NASA Technical Reports Server (NTRS)

    Boardman, Joseph W.

    1995-01-01

    Starting in 1994, all AVIRIS data distributions include a new product useful for quantification and modeling of the noise in the reported radiance data. The 'postcal' file contains approximately 100 lines of dark current data collected at the end of each data acquisition run. In essence this is a regular spectral-image cube, with 614 samples, 100 lines and 224 channels, collected with a closed shutter. Since there is no incident radiance signal, the recorded DN measure only the DC signal level and the noise in the system. Similar dark current measurements, made at the end of each line are used, with a 100 line moving average, to remove the DC signal offset. Therefore, the pixel-by-pixel fluctuations about the mean of this dark current image provide an excellent model for the additive noise that is present in AVIRIS reported radiance data. The 61,400 dark current spectra can be used to calculate the noise levels in each channel and the noise covariance matrix. Both of these noise parameters should be used to improve spectral processing techniques. Some processing techniques, such as spectral curve fitting, will benefit from a robust estimate of the channel-dependent noise levels. Other techniques, such as automated unmixing and classification, will be improved by the stable and scene-independence noise covariance estimate. Future imaging spectrometry systems should have a similar ability to record dark current data, permitting this noise characterization and modeling.

  14. Techniques for estimating the unknown functions of incomplete experimental spectral and correlation response matrices

    NASA Astrophysics Data System (ADS)

    Antunes, Jose; Borsoi, Laurent; Delaune, Xavier; Piteau, Philippe

    2016-02-01

    In this paper, we propose analytical and numerical straightforward approximate methods to estimate the unknown terms of incomplete spectral or correlation matrices, when the cross-spectra or cross-correlations available from multiple measurements do not cover all pairs of transducer locations. The proposed techniques may be applied whenever the available data includes the auto-spectra at all measurement locations, as well as selected cross-spectra which implicates all measurement locations. The suggested methods can also be used for checking the consistency between the spectral or correlation functions pertaining to measurement matrices, in cases of suspicious data. After presenting the proposed spectral estimation formulations, we discuss their merits and limitations. Then we illustrate their use on a realistic simulation of a multi-supported tube subjected to turbulence excitation from cross-flow. Finally, we show the effectiveness of the proposed techniques by extracting the modal responses of the simulated flow-excited tube, using the SOBI (Second Order Blind Identification) method, from an incomplete response matrix 1

  15. Estimating Cosmic-Ray Spectral Parameters from Simulated Detector Responses with Detector Design Implications

    NASA Technical Reports Server (NTRS)

    Howell, L. W.

    2001-01-01

    A simple power law model consisting of a single spectral index (alpha-1) is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy (E(sub k)) to a steeper spectral index alpha-2 > alpha-1 above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.

  16. [Estimation of rice LAI by using NDVI at different spectral bandwidths].

    PubMed

    Wang, Fu-min; Huang, Jing-feng; Tang, Yan-lin; Wang, Xiu-zhen

    2007-11-01

    The canopy hyperspectral reflectance data of rice at its different development stages were collected from field measurement, and the corresponding NDVIs as well as the correlation coefficients of NDVIs and LAI were computed at extending bandwidth of TM red and near-infrared (NIR) spectra. According to the variation characteristics of best fitted R2 with spectral bandwidth, the optimal bandwidth was determined. The results showed that the correlation coefficients of LAI and ND-VI and the maximum R2 of the best fitted functions at different spectral bandwidths had the same variation trend, i.e., decreased with increasing bandwidth when the bandwidth was less than 60 nm. However, when the bandwidth was beyond 60 nm, the maximum R2 somewhat fluctuated due to the effect of NIR. The analysis of R2 variation with bandwidth indicated that 15 nm was the optimal bandwidth for the estimation of rice LAI by using NDVI.

  17. Colorimetric Analysis and Spectral Transformation of Soil-Vegetation Mixture Reflectance for Canopy Coverage Estimation

    NASA Astrophysics Data System (ADS)

    Kancheva, R.; Borisova, D.; Mishev, D.

    Vegetation monitoring is one of the essential applications of remote sensing techniques in practice. Concerning agricultural plants an important task is crop state assessment during the growing period. Vegetation status and physiological development are defined by a set of bioparameters such as biomass amount, leaf area index, chlorophyll content, etc. Various methods of spectral data processing are used for their stimulation aiming mainly at the establishment of quantitative relationships between crop biophysical and reflectance properties. Canopy coverage is of a particular interest here because it is an important indicator of plant growth and is closely related with other bioparameters being at the same time a factor of soil-vegetation mixtures reflectance. This paper has the following objectives: - to study the colorimetric characteristics (color coordinates, trichromatic coefficients, excitation purity, dominant wavelength) of different soil types and species as well as their potential for canopy coverage estimation; - to compare and test the correspondence between coverage values evaluated through colorimetric analysis and by using various spectral data transformations (ratio indices, contrasts, normalized differences, linear combinations); - to demonstrate the joint application of both methods for increasing the accuracy and the reliability of canopy coverage assessment. Ground-based reflectance data from peas, spring barley and winter wheat grown on chernozem, alluvial-medow and grey forest soils were gathered. The measurements were performed with a multichannel radiometer in the 400-820 nm spectral band with a 10 nm step. Correlation and regression analysis of plot coverage, color features and spectral indices was carried out. Statistical relationships were derived and used later for canopy coverage estimation on independent data sets. The colorimetric analysis of the reflectance characteristics permited reliable and quite satisfactory coverage evaluations

  18. Cloud discrimination and spectral radiance estimation from a digital sky images

    NASA Astrophysics Data System (ADS)

    Saito, M.; Iwabuchi, H.; Murata, I.

    2015-12-01

    Clouds cover more than 60% of the globe with high impacts on incoming solar irradiance on the ground as well as the radiative energy transfer in the Earth-atmosphere system. Several method for detecting clouds from sky images have been developed, and digital signals available from the JPEG image have nonlinear relationship with the corresponding spectral radiances, which may lead to cloud misclassifications. In this work, a method for cloud discrimination from sky images in RAW format taken from a commercial digital camera is developed. The method uses the clear sky index (CSI). In order to take into account the spectral response in red-green-blue (RGB) channels of the camera as well as lens characteristics, these characteristics are first inferred very accurately with a laboratory experiment. Spectral radiance is represented in a simple form with spectra of incoming solar radiation at the top of atmosphere and ozone transmittance and a polynominal with three coefficients that include the intensity index, the molecular index (MI) and the small particle index (SPI). These coefficients can be obtained from the digital RGB RAW counts by linear transformation. The MI and the SPI can be converted to the CSI, which takes different value from that at clear sky and cloudy pixels. Simultaneous observations with the lidar and the digital camera at Tohoku University show that the CSI can discriminate cloud and clear sky at every pixel with correct discrimination rate more than 90%. Furthermore, spectral distribution of sky radiance can also be estimated at every pixel, and estimated ones are consistent with those from spectrometer and those from radiative transfer simulations under various sky conditions in a wavelength range of 430-680 nm with mean biases lower than 3% and bias standard deviations smaller than 1%.

  19. Aboveground Biomass Estimation in a Tidal Brackish Marsh Using Simulated Thematic Mapper Spectral Data

    NASA Technical Reports Server (NTRS)

    Hardisky, M.; Klemas, V.

    1984-01-01

    Spectral radiance data were collected from the ground and from a low altitude aircraft in an attempt to gain some insight into the potential utility of actual Thematic Mapper data for biomass estimation in wetland plant communities. No attempt was made to distinguish individual plant species within brackish marsh plant associations. Rather, it was decided to lump plant species with similar canopy morphologies and then estimate from spectral radiance data the biomass of the group. The rationale for such an approach is that plants with a similar morphology will produce a similar reflecting or absorping surface (i.e., canopy) for incoming electromagnetic radiation. Variations in observed reflectance from different plant communities with a similar canopy morphology are more likely to be a result of biomass differences than a result of differences in canopy architecture. If the hypothesis that plants with a similar morphology exhibit similar reflectance characteristics is true, then biomass can be estimated based on a model for the dominant plant morphology within a plant association and the need for species discrimination has effectively been eliminated.

  20. Nonlinear Bayesian Algorithms for Gas Plume Detection and Estimation from Hyper-spectral Thermal Image Data

    SciTech Connect

    Heasler, Patrick G.; Posse, Christian; Hylden, Jeff L.; Anderson, Kevin K.

    2007-06-13

    This paper presents a nonlinear Bayesian regression algorithm for the purpose of detecting and estimating gas plume content from hyper-spectral data. Remote sensing data, by its very nature, is collected under less controlled conditions than laboratory data. As a result, the physics-based model that is used to describe the relationship between the observed remotesensing spectra, and the terrestrial (or atmospheric) parameters that we desire to estimate, is typically littered with many unknown "nuisance" parameters (parameters that we are not interested in estimating, but also appear in the model). Bayesian methods are well-suited for this context as they automatically incorporate the uncertainties associated with all nuisance parameters into the error estimates of the parameters of interest. The nonlinear Bayesian regression methodology is illustrated on realistic simulated data from a three-layer model for longwave infrared (LWIR) measurements from a passive instrument. This shows that this approach should permit more accurate estimation as well as a more reasonable description of estimate uncertainty.

  1. A comparative study of the performance of different spectral estimation methods for classification of mental tasks.

    PubMed

    Diez, Pablo F; Laciar, Eric; Mut, Vicente; Avila, Enrique; Torres, Abel

    2008-01-01

    In this paper we compare three different spectral estimation techniques for the classification of mental tasks. These techniques are the standard periodogram, the Welch periodogram and the Burg method, applied to electroencephalographic (EEG) signals. For each one of these methods we compute two parameters: the mean power and the root mean square (RMS), in various frequency bands. The classification of the mental tasks was conducted with a linear discriminate analysis. The Welch periodogram and the Burg method performed better than the standard periodogram. The use of the RMS allows better classification accuracy than the obtained with the power of EEG signals.

  2. Modeling Speed-Accuracy Tradeoff in Adaptive System for Practicing Estimation

    ERIC Educational Resources Information Center

    Nižnan, Juraj

    2015-01-01

    Estimation is useful in situations where an exact answer is not as important as a quick answer that is good enough. A web-based adaptive system for practicing estimates is currently being developed. We propose a simple model for estimating student's latent skill of estimation. This model combines a continuous measure of correctness and response…

  3. Bayesian Estimations of Peak Ground Acceleration and 5% Damped Spectral Acceleration from Modified Mercalli Intensity Data

    USGS Publications Warehouse

    Ebel, J.E.; Wald, D.J.

    2003-01-01

    We describe a new probabilistic method that uses observations of modified Mercalli intensity (MMI) from past earthquakes to make quantitative estimates of ground shaking parameters (i.e., peak ground acceleration, peak ground velocity, 5% damped spectral acceleration values, etc.). The method uses a Bayesian approach to make quantitative estimates of the probabilities of different levels of ground motions from intensity data given an earthquake of known location and magnitude. The method utilizes probability distributions from an intensity/ground motion data set along with a ground motion attenuation relation to estimate the ground motion from intensity. The ground motions with the highest probabilities are the ones most likely experienced at the site of the MMI observation. We test the method using MMI/ground motion data from California and published ground motion attenuation relations to estimate the ground motions for several earthquakes: 1999 Hector Mine, California (M7.1); 1988 Saguenay, Quebec (M5.9); and 1982 Gaza, New Hampshire (M4.4). In an example where the method is applied to a historic earthquake, we estimate that the peak ground accelerations associated with the 1727 (M???5.2) earthquake at Newbury, Massachusetts, ranged from 0.23 g at Newbury to 0.06 g at Boston.

  4. Stochastic spectral projection of electrochemical thermal model for lithium-ion cell state estimation

    NASA Astrophysics Data System (ADS)

    Tagade, Piyush; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin

    2017-03-01

    A novel approach for integrating a pseudo-two dimensional electrochemical thermal (P2D-ECT) model and data assimilation algorithm is presented for lithium-ion cell state estimation. This approach refrains from making any simplifications in the P2D-ECT model while making it amenable for online state estimation. Though deterministic, uncertainty in the initial states induces stochasticity in the P2D-ECT model. This stochasticity is resolved by spectrally projecting the stochastic P2D-ECT model on a set of orthogonal multivariate Hermite polynomials. Volume averaging in the stochastic dimensions is proposed for efficient numerical solution of the resultant model. A state estimation framework is developed using a transformation of the orthogonal basis to assimilate the measurables with this system of equations. Effectiveness of the proposed method is first demonstrated by assimilating the cell voltage and temperature data generated using a synthetic test bed. This validated method is used with the experimentally observed cell voltage and temperature data for state estimation at different operating conditions and drive cycle protocols. The results show increased prediction accuracy when the data is assimilated every 30s. High accuracy of the estimated states is exploited to infer temperature dependent behavior of the lithium-ion cell.

  5. Adaptation and spectral tuning in divergent marine proteorhodopsins from the eastern Mediterranean and the Sargasso Seas.

    PubMed

    Sabehi, Gazalah; Kirkup, Benjamin C; Rozenberg, Mira; Stambler, Noga; Polz, Martin F; Béjà, Oded

    2007-05-01

    Proteorhodopsins (PRs) phototrophy was recently discovered in oceanic surface waters. PRs have been observed in different marine environments and in diverse taxa, including the ubiquitous marine alphaproteobacterial SAR11 group and the uncultured gammaproteobacterial SAR86 group. Previously, two SAR86 PR subgroups, discovered in the Pacific Ocean, were shown to absorb light with different maxima, lambda max 527 nm (green) and lambda max 490 nm (blue) and their distribution was explained by prevailing light conditions - green pigments at the surface and blue in deeper waters. Here, we show that PRs display high diversity in geographically distinct patterns despite similar physical water column properties such as mixing and light penetration. We compared summer and winter samples representing stratified and mixed conditions from both the Mediterranean and Sargasso Sea. As expected, in the Mediterranean Sea, green pigments were mainly confined to the surface and the percentage of blue pigments increased toward deeper samples; in the Sargasso Sea, unexpectedly, all PRs were of the blue type. As an additional result, both locations show seasonal dependence in the distribution of different PR families. Finally, spectral tuning was not restricted to a single PR family as previously reported but occurs across the sampled PR families from various microbial taxa. The distribution of tunable PRs across the PR tree suggests that ready adaptability has been distributed widely among microorganisms, and may be a reason that PRs are abundant and taxonomically widely dispersed.

  6. High resolution retinal imaging with a compact adaptive optics spectral domain optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Iftimia, Nicusor V.; Bigelow, Chad E.; Ustun, Teoman E.; Bloom, Benjamin; Ferguson, R. Daniel; Burns, Stephen A.

    2007-02-01

    Adaptive optics (AO) is used to correct ocular aberrations primarily in the cornea, lens, and tear film of every eye. Among other applications, AO allows high lateral resolution images to be acquired with scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT). Spectral domain optical coherence tomography (SDOCT) is a high-speed imaging technique that can acquire cross-sectional scans with micron-scale axial resolution at tens to hundreds of kHz line rates. We present a compact clinical AO-SDOCT system that achieves micron-scale axial and lateral resolution of retinal structures. The system includes a line scanning laser ophthalmscope (LSLO) for simultaneous wide-field retinal viewing and selection of regions-of-interest. OCT and LSLO imaging and AO correction performance are characterized. We present a case study of a single subject with hyper-reflective lesions associated with stable, resolved central serous retinopathy to compare and contrast AO as applied to scanning laser ophthalmoscopy and optical coherence tomography. The two imaging modes are found to be complementary in terms of information on structure morphology. Both provide additional information lacking in the other. This preliminary finding points to the power of combining SLO and SDOCT in a single research instrument for exploration of disease mechanisms, retinal cellular architecture, and visual psychophysics.

  7. Solution-verified reliability analysis and design of bistable MEMS using error estimation and adaptivity.

    SciTech Connect

    Eldred, Michael Scott; Subia, Samuel Ramirez; Neckels, David; Hopkins, Matthew Morgan; Notz, Patrick K.; Adams, Brian M.; Carnes, Brian; Wittwer, Jonathan W.; Bichon, Barron J.; Copps, Kevin D.

    2006-10-01

    This report documents the results for an FY06 ASC Algorithms Level 2 milestone combining error estimation and adaptivity, uncertainty quantification, and probabilistic design capabilities applied to the analysis and design of bistable MEMS. Through the use of error estimation and adaptive mesh refinement, solution verification can be performed in an automated and parameter-adaptive manner. The resulting uncertainty analysis and probabilistic design studies are shown to be more accurate, efficient, reliable, and convenient.

  8. Estimating the limits of adaptation from historical behaviour: Insights from the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Jina, A.; Hsiang, S. M.; Kopp, R. E., III; Rasmussen, D.; Rising, J.

    2014-12-01

    The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assessed the climate risks posed to the United States' economy in a number of economic sectors [1]. The main analysis presents projections of climate impacts with an assumption of "no adaptation". Yet, historically, when the climate imposed an economic cost upon society, adaptive responses were taken to minimise these costs. These adaptive behaviours, both autonomous and planned, can be expected to occur as climate impacts increase in the future. To understand the extent to which adaptation might decrease some of the worst impacts of climate change, we empirically estimate adaptive responses. We do this in three sectors considered in the analysis - crop yield, crime, and mortality - and estimate adaptive capacity in two steps. First, looking at changes in climate impacts through time, we identify a historical rate of adaptation. Second, spatial differences in climate impacts are then used to stratify regions into more adapted or less adapted based on climate averages. As these averages change across counties in the US, we allow each to become more adapted at the rate identified in step one. We are then able to estimate the residual damages, assuming that only the historical adaptive behaviours have taken place (fig 1). Importantly, we are unable to estimate any costs associated with these adaptations, nor are we able to estimate more novel (for example, new technological discoveries) or more disruptive (for example, migration) adaptive behaviours. However, an important insight is that historical adaptive behaviours may not be capable of reducing the worst impacts of climate change. The persistence of impacts in even the most exposed areas indicates that there are non-trivial costs associated with adaptation that will need to be met from other sources or through novel behavioural changes. References: [1] T. Houser et al. (2014), American Climate

  9. Spectral reflectance of Kelantan Estuary with ALOS data to estimate transparency

    NASA Astrophysics Data System (ADS)

    Syahreza, S.; MatJafri, M. Z.; Lim, H. S.

    2012-09-01

    The Kelantan estuary, located in the northeastern part of Peninsular Malaysia, is characterized by high levels of suspended sediments. Kuala Besar is the estuary of the river directly opposite South China Sea. Spectral reflectance (Rr) and transparency measurements were carried out in the Kelantan estuary. The objective in this study is to establish empirical relationships between spectral remote sensing reflectance in ALOS satellite imagery and water column transparency, i.e. nephelometric turbidity unit (NTU) and Secchi disc depth (SDD) through these numerous in situ measurements. We detected that remote sensing reflectance are linear and power regression functions against NTU and SDD. The results of this sampling show that the wavelengths range from 500-620 nm is the most suitable band for measuring water column transparency. The calibrated reflectance of ALOS AVNIR-2 bands was also regressed against NTU and SDD field data to derive two empirical equations for water transparency estimation. These equations were calculated using ALOS images data on June 12, 2010. The result obtained indicated that reliable estimates of turbidity and transparency values for the Kelantan Estuary, Malaysia, could be retrieved using this method.

  10. Maximum Likelihood Estimation of the Broken Power Law Spectral Parameters with Detector Design Applications

    NASA Technical Reports Server (NTRS)

    Howell, Leonard W.

    2002-01-01

    The method of Maximum Likelihood (ML) is used to estimate the spectral parameters of an assumed broken power law energy spectrum from simulated detector responses. This methodology, which requires the complete specificity of all cosmic-ray detector design parameters, is shown to provide approximately unbiased, minimum variance, and normally distributed spectra information for events detected by an instrument having a wide range of commonly used detector response functions. The ML procedure, coupled with the simulated performance of a proposed space-based detector and its planned life cycle, has proved to be of significant value in the design phase of a new science instrument. The procedure helped make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope. This ML methodology is then generalized to estimate broken power law spectral parameters from real cosmic-ray data sets.

  11. Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices

    USGS Publications Warehouse

    Ji, Lei; Zhang, Li; Rover, Jennifer R.; Wylie, Bruce K.; Chen, Xuexia

    2014-01-01

    In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.

  12. Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices

    NASA Astrophysics Data System (ADS)

    Ji, Lei; Zhang, Li; Rover, Jennifer; Wylie, Bruce K.; Chen, Xuexia

    2014-10-01

    In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.

  13. An Evaluation of Total Solar Reflectance and Spectral Band Ratioing Techniques for Estimating Soil Water Content

    NASA Technical Reports Server (NTRS)

    Reginato, R. J.; Vedder, J. F.; Idso, S. B.; Jackson, R. D.; Blanchard, M. B.; Goettelman, R.

    1977-01-01

    For several days in March of 1975, reflected solar radiation measurements were obtained from smooth and rough surfaces of wet, drying, and continually dry Avondale loam at Phoenix, Arizona, with pyranometers located 50 cm above the ground surface and a multispectral scanner flown at a 300-m height. The simple summation of the different band radiances measured by the multispectral scanner proved equally as good as the pyranometer data for estimating surface soil water content if the multispectral scanner data were standardized with respect to the intensity of incoming solar radiation or the reflected radiance from a reference surface, such as the continually dry soil. Without this means of standardization, multispectral scanner data are most useful in a spectral band ratioing context. Our results indicated that, for the bands used, no significant information on soil water content could be obtained by band ratioing. Thus the variability in soil water content should insignificantly affect soil-type discrimination based on identification of type-specific spectral signatures. Therefore remote sensing, conducted in the 0.4- to 1.0-micron wavelength region of the solar spectrum, would seem to be much More suited to identifying crop and soil types than to estimating of soil water content.

  14. Scaling multiconjugate adaptive optics performance estimates to extremely large telescopes

    NASA Astrophysics Data System (ADS)

    Ellerbroek, Brent L.; Rigaut, Francois J.

    2000-07-01

    Multi-conjugate adaptive optics (MCAO) is a key technology for extremely large, ground-based telescopes (ELT's) because it enables near-uniform atmospheric turbulence compensation over fields-of-view considerably larger than can be corrected with more conventional AO systems. Quantitative performance evaluation using detailed analytical or simulation models is difficult, however, due to the very large number of deformable mirror (DM) actuators, wave front sensors (WFS) subapertures, and guide stars which might comprise an MCAO system for an ELT. This paper employs more restricted minimal variance estimation methods to evaluate the fundamental performance limits imposed by anisoplanatism alone upon MCAO performance for a range of sample cases. Each case is defined by a atmospheric turbulence profile, telescope aperture diameter, field-of-view, guide star constellation, and set of DM conjugate ranges. For a Kolmogorov turbulence spectrum with an infinite outer scale, MCAO performance for a whole range of aperture diameters and proportional fields-of-view can be computed at once using a scaling law analogous to the (D/dO)5/3 formula for the cone effect. For 30 meter telescopes, useful levels of performance are possible across a 1.0 - 2.0 arc minute square field-of-view using 5 laser guide stars (LGS's) and 3 DM's, and somewhat larger fields can be corrected using 9 guide stars and 4 mirrors. 3 or more tip/tilt natural guide stars (NGS's) are necessary to detect modes of tilt anisoplanatism which cannot be detected using LGS's, however. LGS MCAO performance is a quite weak function of aperture diameter for a fixed field-of-view, and it is tempting to scale these results to larger apertures. NGS MCAO performance is moderately superior to LGS MCAO if the NGS constellation is within the compensated field-of-view, but degrades rapidly as the guide stars move away from the field. The penalty relaxes slowly with increasing aperture diameter, but how to extrapolate this trend

  15. Influence of aerosols on surface reaching spectral irradiance and introduction to a new technique for estimating aerosol radiative forcing from spectral flux measurements

    NASA Astrophysics Data System (ADS)

    Rao, R. R.

    2015-12-01

    Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. In this study we look into the approach where ground based spectral radiation flux measurements along with an RT model is used to estimate radiative forcing. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and 3nm resolution for around 54 clear-sky days during which AOD range was around 0.1 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. All the measurements were made in the campus of Indian Institute of Science which is in the heart of Bangalore city. The primary study involved in understanding the sensitivity of spectral flux to change in the mass concentration of individual aerosol species (Optical properties of Aerosols and Clouds -OPAC classified aerosol species) using the SBDART RT model. This made us clearly distinguish the region of influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves an iterative process where the mixture of aerosol species are changed in OPAC model and RT model is run as long as the mixture which mimics the measured spectral flux within 2-3% deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model aerosol radiative forcing is estimated. The new method is limited to clear sky scenes and its accuracy to derive an optically equivalent aerosol mixture reduces when diffuse component of flux increases. Our analysis also showed that direct component of spectral flux is

  16. Parameter Estimation for a Hybrid Adaptive Flight Controller

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Nguyen, Nhan T.; Kaneshige, John; Krishnakumar, Kalmanje

    2009-01-01

    This paper expands on the hybrid control architecture developed at the NASA Ames Research Center by addressing issues related to indirect adaptation using the recursive least squares (RLS) algorithm. Specifically, the hybrid control architecture is an adaptive flight controller that features both direct and indirect adaptation techniques. This paper will focus almost exclusively on the modifications necessary to achieve quality indirect adaptive control. Additionally this paper will present results that, using a full non -linear aircraft model, demonstrate the effectiveness of the hybrid control architecture given drastic changes in an aircraft s dynamics. Throughout the development of this topic, a thorough discussion of the RLS algorithm as a system identification technique will be provided along with results from seven well-known modifications to the popular RLS algorithm.

  17. Estimating workload using EEG spectral power and ERPs in the n-back task

    NASA Astrophysics Data System (ADS)

    Brouwer, Anne-Marie; Hogervorst, Maarten A.; van Erp, Jan B. F.; Heffelaar, Tobias; Zimmerman, Patrick H.; Oostenveld, Robert

    2012-08-01

    Previous studies indicate that both electroencephalogram (EEG) spectral power (in particular the alpha and theta band) and event-related potentials (ERPs) (in particular the P300) can be used as a measure of mental work or memory load. We compare their ability to estimate workload level in a well-controlled task. In addition, we combine both types of measures in a single classification model to examine whether this results in higher classification accuracy than either one alone. Participants watched a sequence of visually presented letters and indicated whether or not the current letter was the same as the one (n instances) before. Workload was varied by varying n. We developed different classification models using ERP features, frequency power features or a combination (fusion). Training and testing of the models simulated an online workload estimation situation. All our ERP, power and fusion models provide classification accuracies between 80% and 90% when distinguishing between the highest and the lowest workload condition after 2 min. For 32 out of 35 participants, classification was significantly higher than chance level after 2.5 s (or one letter) as estimated by the fusion model. Differences between the models are rather small, though the fusion model performs better than the other models when only short data segments are available for estimating workload.

  18. Estimating workload using EEG spectral power and ERPs in the n-back task.

    PubMed

    Brouwer, Anne-Marie; Hogervorst, Maarten A; van Erp, Jan B F; Heffelaar, Tobias; Zimmerman, Patrick H; Oostenveld, Robert

    2012-08-01

    Previous studies indicate that both electroencephalogram (EEG) spectral power (in particular the alpha and theta band) and event-related potentials (ERPs) (in particular the P300) can be used as a measure of mental work or memory load. We compare their ability to estimate workload level in a well-controlled task. In addition, we combine both types of measures in a single classification model to examine whether this results in higher classification accuracy than either one alone. Participants watched a sequence of visually presented letters and indicated whether or not the current letter was the same as the one (n instances) before. Workload was varied by varying n. We developed different classification models using ERP features, frequency power features or a combination (fusion). Training and testing of the models simulated an online workload estimation situation. All our ERP, power and fusion models provide classification accuracies between 80% and 90% when distinguishing between the highest and the lowest workload condition after 2 min. For 32 out of 35 participants, classification was significantly higher than chance level after 2.5 s (or one letter) as estimated by the fusion model. Differences between the models are rather small, though the fusion model performs better than the other models when only short data segments are available for estimating workload.

  19. Estimation of glottal source features from the spectral envelope of the acoustic speech signal

    NASA Astrophysics Data System (ADS)

    Torres, Juan Felix

    Speech communication encompasses diverse types of information, including phonetics, affective state, voice quality, and speaker identity. From a speech production standpoint, the acoustic speech signal can be mainly divided into glottal source and vocal tract components, which play distinct roles in rendering the various types of information it contains. Most deployed speech analysis systems, however, do not explicitly represent these two components as distinct entities, as their joint estimation from the acoustic speech signal becomes an ill-defined blind deconvolution problem. Nevertheless, because of the desire to understand glottal behavior and how it relates to perceived voice quality, there has been continued interest in explicitly estimating the glottal component of the speech signal. To this end, several inverse filtering (IF) algorithms have been proposed, but they are unreliable in practice because of the blind formulation of the separation problem. In an effort to develop a method that can bypass the challenging IF process, this thesis proposes a new glottal source information extraction method that relies on supervised machine learning to transform smoothed spectral representations of speech, which are already used in some of the most widely deployed and successful speech analysis applications, into a set of glottal source features. A transformation method based on Gaussian mixture regression (GMR) is presented and compared to current IF methods in terms of feature similarity, reliability, and speaker discrimination capability on a large speech corpus, and potential representations of the spectral envelope of speech are investigated for their ability represent glottal source variation in a predictable manner. The proposed system was found to produce glottal source features that reasonably matched their IF counterparts in many cases, while being less susceptible to spurious errors. The development of the proposed method entailed a study into the aspects

  20. Adaptive estimation of hand movement trajectory in an EEG based brain-computer interface system

    NASA Astrophysics Data System (ADS)

    Robinson, Neethu; Guan, Cuntai; Vinod, A. P.

    2015-12-01

    Objective. The various parameters that define a hand movement such as its trajectory, speed, etc, are encoded in distinct brain activities. Decoding this information from neurophysiological recordings is a less explored area of brain-computer interface (BCI) research. Applying non-invasive recordings such as electroencephalography (EEG) for decoding makes the problem more challenging, as the encoding is assumed to be deep within the brain and not easily accessible by scalp recordings. Approach. EEG based BCI systems can be developed to identify the neural features underlying movement parameters that can be further utilized to provide a detailed and well defined control command set to a BCI output device. A real-time continuous control is better suited for practical BCI systems, and can be achieved by continuous adaptive reconstruction of movement trajectory than discrete brain activity classifications. In this work, we adaptively reconstruct/estimate the parameters of two-dimensional hand movement trajectory, namely movement speed and position, from multi-channel EEG recordings. The data for analysis is collected by performing an experiment that involved center-out right-hand movement tasks in four different directions at two different speeds in random order. We estimate movement trajectory using a Kalman filter that models the relation between brain activity and recorded parameters based on a set of defined predictors. We propose a method to define these predictor variables that includes spatial, spectral and temporally localized neural information and to select optimally informative variables. Main results. The proposed method yielded correlation of (0.60 ± 0.07) between recorded and estimated data. Further, incorporating the proposed predictor subset selection, the correlation achieved is (0.57 ± 0.07, p {\\lt }0.004) with significant gain in stability of the system, as well as dramatic reduction in number of predictors (76%) for the savings of computational

  1. Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian approach to RTM inversion

    DOE PAGES

    Shiklomanov, Alexey N.; Dietze, Michael C.; Viskari, Toni; ...

    2016-06-09

    The remote monitoring of plant canopies is critically needed for understanding of terrestrial ecosystem mechanics and biodiversity as well as capturing the short- to long-term responses of vegetation to disturbance and climate change. A variety of orbital, sub-orbital, and field instruments have been used to retrieve optical spectral signals and to study different vegetation properties such as plant biochemistry, nutrient cycling, physiology, water status, and stress. Radiative transfer models (RTMs) provide a mechanistic link between vegetation properties and observed spectral features, and RTM spectral inversion is a useful framework for estimating these properties from spectral data. However, existing approaches tomore » RTM spectral inversion are typically limited by the inability to characterize uncertainty in parameter estimates. Here, we introduce a Bayesian algorithm for the spectral inversion of the PROSPECT 5 leaf RTM that is distinct from past approaches in two important ways: First, the algorithm only uses reflectance and does not require transmittance observations, which have been plagued by a variety of measurement and equipment challenges. Second, the output is not a point estimate for each parameter but rather the joint probability distribution that includes estimates of parameter uncertainties and covariance structure. We validated our inversion approach using a database of leaf spectra together with measurements of equivalent water thickness (EWT) and leaf dry mass per unit area (LMA). The parameters estimated by our inversion were able to accurately reproduce the observed reflectance (RMSEVIS = 0.0063, RMSENIR-SWIR = 0.0098) and transmittance (RMSEVIS = 0.0404, RMSENIR-SWIR = 0.0551) for both broadleaved and conifer species. Inversion estimates of EWT and LMA for broadleaved species agreed well with direct measurements (CVEWT = 18.8%, CVLMA = 24.5%), while estimates for conifer species were less accurate (CVEWT = 53.2%, CVLMA = 63.3%). To

  2. Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian approach to RTM inversion

    SciTech Connect

    Shiklomanov, Alexey N.; Dietze, Michael C.; Viskari, Toni; Townsend, Philip A.; Serbin, Shawn P.

    2016-06-09

    The remote monitoring of plant canopies is critically needed for understanding of terrestrial ecosystem mechanics and biodiversity as well as capturing the short- to long-term responses of vegetation to disturbance and climate change. A variety of orbital, sub-orbital, and field instruments have been used to retrieve optical spectral signals and to study different vegetation properties such as plant biochemistry, nutrient cycling, physiology, water status, and stress. Radiative transfer models (RTMs) provide a mechanistic link between vegetation properties and observed spectral features, and RTM spectral inversion is a useful framework for estimating these properties from spectral data. However, existing approaches to RTM spectral inversion are typically limited by the inability to characterize uncertainty in parameter estimates. Here, we introduce a Bayesian algorithm for the spectral inversion of the PROSPECT 5 leaf RTM that is distinct from past approaches in two important ways: First, the algorithm only uses reflectance and does not require transmittance observations, which have been plagued by a variety of measurement and equipment challenges. Second, the output is not a point estimate for each parameter but rather the joint probability distribution that includes estimates of parameter uncertainties and covariance structure. We validated our inversion approach using a database of leaf spectra together with measurements of equivalent water thickness (EWT) and leaf dry mass per unit area (LMA). The parameters estimated by our inversion were able to accurately reproduce the observed reflectance (RMSEVIS = 0.0063, RMSENIR-SWIR = 0.0098) and transmittance (RMSEVIS = 0.0404, RMSENIR-SWIR = 0.0551) for both broadleaved and conifer species. Inversion estimates of EWT and LMA for broadleaved species agreed well with direct measurements (CVEWT = 18.8%, CVLMA = 24.5%), while estimates for conifer species

  3. A Linear Spatial Spectral Mixture Model for the Improved Estimation of Subpixel Saltcedar Cover along the Forgotten River

    NASA Astrophysics Data System (ADS)

    Shi, C.; Wang, L.

    2015-12-01

    Spectral unmixing is the process of decomposing the measured spectrum of a mixed pixel into a set of pure spectral signatures called endmembers and their corresponding abundances indicating the fractional area coverage of each endmember present in the pixel. A substantial number of spectral unmixing studies rely on a spectral mixture model which assumes that spectral mixing only occurs within the extent of a pixel. However, due to adjacency effect, the spectral measurement of the pixel may be contaminated by spatial interactions from materials that are present in its spatial neighborhood. In this paper, a linear spatial spectral mixture model is developed to improve the accuracy of the estimated abundance of invasive saltcedar along the Forgotten River reach of the Rio Grande. A spatial weights matrix which specifies for each pixel the locations and the weights of its neighborhood set is used to summarize the spatial relationships among pixels in the Landsat data. A spatial lag operator, defined as a weighted average of the values at neighboring locations, is adopted as an expression of spectral contribution from nearby pixels and added to the classic linear mixture model. The fractional abundances are iteratively estimated using the alternating direction method of multipliers (ADMM) algorithm. With the incorporation of adjacency effect, RMSEs of the fractional cover of ground classes were reduced. The derived sub-pixel abundances of saltcedar are beneficial for ecological management.

  4. Estimation of the spectral parameter kappa in the region of the Gulf of California, Mexico

    NASA Astrophysics Data System (ADS)

    Castro, Raúl R.; Ávila-Barrientos, Lenin

    2015-10-01

    We analyzed records from the Broadband Seismological Network of the Gulf of California (RESBAN) and from stations of the NARS-Baja array, operated by CICESE, Ensenada, Baja California, Mexico, to make estimates of the spectral decay parameter kappa ( κ). This attenuation parameter is important for evaluating the seismic risk and hazard of this region. Thirteen shallow earthquakes with focal depths less than 20 km and magnitudes between 5.1 and 6.6 were selected to calculate κ and the near-site attenuation κ 0. We used three different approaches to estimate κ 0: (a) with individual measurements of κ from vector modulus of three-component spectral amplitudes at different epicentral distances and extrapolating to zero distance to estimate κ 0, (b) with individual measurements using vertical component spectra, and (c) measuring from the high-frequency part of the site transfer function determined calculating the horizontal-to-vertical spectral ratio (HVSR) method. For most stations, the three methods give similar results. At short distances (50-60 km), κ takes values close to 0.04 s at NE76, the station located in the middle of the array. κ increases with distance taking an average value of up to 0.18 s for distances close to 500 km. κ 0 at most sites is close to 0.03 s, except for GUYB (Guaymas) that has a κ 0 = 0.05 s and NE83 (Navolato) with κ 0 = 0.065 s, both stations located in the continent, on the eastern side of the gulf, where the soils are less consolidated. Finally, we analyze if κ 0 correlates with magnitude and back azimuth, and we found that for most stations, κ 0 does not correlate with either one. However, station TOPB, located on basalt, shows a moderate correlation with magnitude, with κ 0 increasing with increasing M W in a short back-azimuth range. We also found that for station NE74, located on soft soil, κ 0 correlates with back azimuth, having lower values for azimuths near 120°.

  5. Autoregressive moving average modeling for spectral parameter estimation from a multigradient echo chemical shift acquisition.

    PubMed

    Taylor, Brian A; Hwang, Ken-Pin; Hazle, John D; Stafford, R Jason

    2009-03-01

    The authors investigated the performance of the iterative Steiglitz-McBride (SM) algorithm on an autoregressive moving average (ARMA) model of signals from a fast, sparsely sampled, multiecho, chemical shift imaging (CSI) acquisition using simulation, phantom, ex vivo, and in vivo experiments with a focus on its potential usage in magnetic resonance (MR)-guided interventions. The ARMA signal model facilitated a rapid calculation of the chemical shift, apparent spin-spin relaxation time (T2*), and complex amplitudes of a multipeak system from a limited number of echoes (< or equal 16). Numerical simulations of one- and two-peak systems were used to assess the accuracy and uncertainty in the calculated spectral parameters as a function of acquisition and tissue parameters. The measured uncertainties from simulation were compared to the theoretical Cramer-Rao lower bound (CRLB) for the acquisition. Measurements made in phantoms were used to validate the T2* estimates and to validate uncertainty estimates made from the CRLB. We demonstrated application to real-time MR-guided interventions ex vivo by using the technique to monitor a percutaneous ethanol injection into a bovine liver and in vivo to monitor a laser-induced thermal therapy treatment in a canine brain. Simulation results showed that the chemical shift and amplitude uncertainties reached their respective CRLB at a signal-to-noise ratio (SNR) > or =5 for echo train lengths (ETLs) > or =4 using a fixed echo spacing of 3.3 ms. T2* estimates from the signal model possessed higher uncertainties but reached the CRLB at larger SNRs and/or ETLs. Highly accurate estimates for the chemical shift (<0.01 ppm) and amplitude (<1.0%) were obtained with > or =4 echoes and for T2*(<1.0%) with > or =7 echoes. We conclude that, over a reasonable range of SNR, the SM algorithm is a robust estimator of spectral parameters from fast CSI acquisitions that acquire < or =16 echoes for one- and two-peak systems. Preliminary ex vivo

  6. Multispectral Photoacoustic Imaging Artifact Removal and Denoising Using Time Series Model-Based Spectral Noise Estimation.

    PubMed

    Kazakeviciute, Agne; Ho, Chris Jun Hui; Olivo, Malini

    2016-09-01

    The aim of this study is to solve a problem of denoising and artifact removal from in vivo multispectral photoacoustic imaging when the level of noise is not known a priori. The study analyzes Wiener filtering in Fourier domain when a family of anisotropic shape filters is considered. The unknown noise and signal power spectral densities are estimated using spectral information of images and the autoregressive of the power 1 ( AR(1)) model. Edge preservation is achieved by detecting image edges in the original and the denoised image and superimposing a weighted contribution of the two edge images to the resulting denoised image. The method is tested on multispectral photoacoustic images from simulations, a tissue-mimicking phantom, as well as in vivo imaging of the mouse, with its performance compared against that of the standard Wiener filtering in Fourier domain. The results reveal better denoising and fine details preservation capabilities of the proposed method when compared to that of the standard Wiener filtering in Fourier domain, suggesting that this could be a useful denoising technique for other multispectral photoacoustic studies.

  7. A Recommended Procedure for Estimating the Cosmic Ray Spectral Parameter of a Simple Power Law

    NASA Technical Reports Server (NTRS)

    Howell, Leonard W.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    A simple power law model consisting of a single spectral index a(f(sub i)) is believed to be an adequate description of the galactic cosmic ray (GQ proton flux at energies below 1013 eV. Two procedures for estimating a(f(sub i)), referred as (1) the method of moments, and (2) maximum likelihood, are developed and their statistical performance compared. I concluded that the maximum likelihood procedure attains the most desirable statistical properties and is hence the recommended statistic estimation procedure for estimating a1. The maximum likelihood procedure is then generalized for application to a set of real cosmic ray data and thereby makes this approach applicable to existing cosmic ray data sets. Several other important results, such as the relationship between collecting power and detector energy resolution, as well as inclusion of a non-Gaussian detector response function, are presented. These results have many practical benefits in the design phase of a cosmic ray detector because they permit instrument developers to make important trade studies in design parameters as a function of one of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose practical limits to the design envelope.

  8. Spectral parameter estimation of CAT radar echoes in the presence of fading clutter

    NASA Technical Reports Server (NTRS)

    Sato, T.; Woodman, R. F.

    1980-01-01

    The analysis technique and a part of the results obtained from CAT radar echoes from higher troposphere and lower stratosphere are presented. First, the effect of processing distortion caused by the periodogram method using FFT algorithm on the slowly fading ground clutter echo is discussed. It is shown that an extremely narrow clutter spectrum can spill over the entire frequency range if the data are truncated at a tie sorter than their correlation time affecting largely the estimation of the CAT spectrum contribution, especially when the latter is a few tens of dB weaker than the former. A nonlinear least squares fitting procedure is used to parameterize the observed power spectrum in terms of CAT echo power, Doppler shift, spectral width, and the parameters which specify the shape of the clutter component.

  9. Spectral analysis of GEOS-3 altimeter data and frequency domain collocation. [to estimate gravity anomalies

    NASA Technical Reports Server (NTRS)

    Eren, K.

    1980-01-01

    The mathematical background in spectral analysis as applied to geodetic applications is summarized. The resolution (cut-off frequency) of the GEOS 3 altimeter data is examined by determining the shortest wavelength (corresponding to the cut-off frequency) recoverable. The data from some 18 profiles are used. The total power (variance) in the sea surface topography with respect to the reference ellipsoid as well as with respect to the GEM-9 surface is computed. A fast inversion algorithm for matrices of simple and block Toeplitz matrices and its application to least squares collocation is explained. This algorithm yields a considerable gain in computer time and storage in comparison with conventional least squares collocation. Frequency domain least squares collocation techniques are also introduced and applied to estimating gravity anomalies from GEOS 3 altimeter data. These techniques substantially reduce the computer time and requirements in storage associated with the conventional least squares collocation. Numerical examples given demonstrate the efficiency and speed of these techniques.

  10. Super-resolution spectral estimation in short-time non-contact vital sign measurement

    NASA Astrophysics Data System (ADS)

    Sun, Li; Li, Yusheng; Hong, Hong; Xi, Feng; Cai, Weidong; Zhu, Xiaohua

    2015-04-01

    Non-contact techniques for measuring vital signs attract great interest due to the benefits shown in medical monitoring, military application, etc. However, the presence of respiration harmonics caused by nonlinear phase modulation will result in performance degradation. Suffering from smearing and leakage problems, conventional discrete Fourier transform (DFT) based methods cannot distinguish the heartbeat component from closely located respiration harmonics in frequency domain, especially in short-time processing. In this paper, the theory of sparse reconstruction is merged with an extended harmonic model of vital signals, aiming at achieving a super-resolution spectral estimation of vital signals by additionally exploiting the inherent sparse prior information. Both simulated and experimental results show that the proposed algorithm has superior performance to DFT-based methods and the recently applied multiple signal classification algorithm, and the required processing window length has been shortened to 5.12 s.

  11. Estimation of sub-pixel water area on Tibet plateau using multiple endmembers spectral mixture spectral analysis from MODIS data

    NASA Astrophysics Data System (ADS)

    Cui, Qian; Shi, Jiancheng; Xu, Yuanliu

    2011-12-01

    Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.

  12. Signal Processing of Ground Penetrating Radar Using Spectral Estimation Techniques to Estimate the Position of Buried Targets

    NASA Astrophysics Data System (ADS)

    Shrestha, Shanker Man; Arai, Ikuo

    2003-12-01

    Super-resolution is very important for the signal processing of GPR (ground penetration radar) to resolve closely buried targets. However, it is not easy to get high resolution as GPR signals are very weak and enveloped by the noise. The MUSIC (multiple signal classification) algorithm, which is well known for its super-resolution capacity, has been implemented for signal and image processing of GPR. In addition, conventional spectral estimation technique, FFT (fast Fourier transform), has also been implemented for high-precision receiving signal level. In this paper, we propose CPM (combined processing method), which combines time domain response of MUSIC algorithm and conventional IFFT (inverse fast Fourier transform) to obtain a super-resolution and high-precision signal level. In order to support the proposal, detailed simulation was performed analyzing SNR (signal-to-noise ratio). Moreover, a field experiment at a research field and a laboratory experiment at the University of Electro-Communications, Tokyo, were also performed for thorough investigation and supported the proposed method. All the simulation and experimental results are presented.

  13. Use of a Remote Sensing Method to Estimate the Influence of Anthropogenic Factors on the Spectral Reflectance of Plant Species

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora D.; Yanev, Tony K.

    2007-04-01

    Results from a remote sensing study of the influence of stress factors on the leaf spectral reflectance of wheat and tomato plants contaminated by viruses and pea plants treated with herbicides are presented and discussed. The changes arising in the spectral reflectance characteristics of control and treated plants are estimated through statistical methods as well as through derivative analysis to determine specific reflectance features in the red edge region.

  14. Design of a Monocular Multi-Spectral Skin Detection, Melanin Estimation, and False-Alarm Suppression System

    DTIC Science & Technology

    2010-03-01

    Design of a Monocular Multi-Spectral Skin Detection, Melanin Estimation, and False-Alarm Suppression System THESIS Keith R. Peskosky, Second...Skin Detection, Melanin Estimation, and False-Alarm Suppression System THESIS Presented to the Faculty Department of Electrical and Computer Engineering...alarm reduction, and melanin estimation system is designed targeting search and rescue (SAR) with application to special operations for manhunting and

  15. A Kalman filter approach to adaptive estimation of multispectral signatures

    NASA Technical Reports Server (NTRS)

    Crane, R. B.

    1973-01-01

    The signatures of remote sensing data from agricultural crops exhibit significant non-stationarity, so that the performance of fixed parameter classifiers degenerates with time and distance from the initial training data. A class of adaptive decision-directed classifiers are being developed, based on Kalman filter theory. Limited results to date on two data sets indicate approximately a 25 to 40% reduction in rates of misclassification.

  16. Spectral Feature Analysis for Quantitative Estimation of Cyanobacteria Chlorophyll-A

    NASA Astrophysics Data System (ADS)

    Lin, Yi; Ye, Zhanglin; Zhang, Yugan; Yu, Jie

    2016-06-01

    In recent years, lake eutrophication caused a large of Cyanobacteria bloom which not only brought serious ecological disaster but also restricted the sustainable development of regional economy in our country. Chlorophyll-a is a very important environmental factor to monitor water quality, especially for lake eutrophication. Remote sensed technique has been widely utilized in estimating the concentration of chlorophyll-a by different kind of vegetation indices and monitoring its distribution in lakes, rivers or along coastline. For each vegetation index, its quantitative estimation accuracy for different satellite data might change since there might be a discrepancy of spectral resolution and channel center between different satellites. The purpose this paper is to analyze the spectral feature of chlorophyll-a with hyperspectral data (totally 651 bands) and use the result to choose the optimal band combination for different satellites. The analysis method developed here in this study could be useful to recognize and monitor cyanobacteria bloom automatically and accrately. In our experiment, the reflectance (from 350nm to 1000nm) of wild cyanobacteria in different consistency (from 0 to 1362.11ug/L) and the corresponding chlorophyll-a concentration were measured simultaneously. Two kinds of hyperspectral vegetation indices were applied in this study: simple ratio (SR) and narrow band normalized difference vegetation index (NDVI), both of which consists of any two bands in the entire 651 narrow bands. Then multivariate statistical analysis was used to construct the linear, power and exponential models. After analyzing the correlation between chlorophyll-a and single band reflectance, SR, NDVI respetively, the optimal spectral index for quantitative estimation of cyanobacteria chlorophyll-a, as well corresponding central wavelength and band width were extracted. Results show that: Under the condition of water disturbance, SR and NDVI are both suitable for quantitative

  17. Magnitude Estimation with Noisy Integrators Linked by an Adaptive Reference.

    PubMed

    Thurley, Kay

    2016-01-01

    Judgments of physical stimuli show characteristic biases; relatively small stimuli are overestimated whereas relatively large stimuli are underestimated (regression effect). Such biases likely result from a strategy that seeks to minimize errors given noisy estimates about stimuli that itself are drawn from a distribution, i.e., the statistics of the environment. While being conceptually well described, it is unclear how such a strategy could be implemented neurally. The present paper aims toward answering this question. A theoretical approach is introduced that describes magnitude estimation as two successive stages of noisy (neural) integration. Both stages are linked by a reference memory that is updated with every new stimulus. The model reproduces the behavioral characteristics of magnitude estimation and makes several experimentally testable predictions. Moreover, the model identifies the regression effect as a means of minimizing estimation errors and explains how this optimality strategy depends on the subject's discrimination abilities and on the stimulus statistics. The latter influence predicts another property of magnitude estimation, the so-called range effect. Beyond being successful in describing decision-making, the present work suggests that noisy integration may also be important in processing magnitudes.

  18. Combined spectral estimator for phase velocities of multimode Lamb waves in multilayer plates.

    PubMed

    Ta, De-an; Liu, Zhen-qing; Liu, Xiao

    2006-12-22

    A novel combined spectral estimate (CSE) method for differentiation and estimation the phase velocities of multimode Lamb waves whose wave numbers are much close or overlap one another in multiplayer plates is presented in this paper, which based on auto-regressive (AR) model and 2-D FFT. Simulated signals in brass plate were processed by 2-D FFT and CSE. And experiments are performed by using two conventional angle probes as emitter and receiver on the same surface of three-layered aluminum/xpoxy/aluminum plates, which include symmetrical and unsymmetrical plates. The multimode Lamb waves are excited in these laminates, and the received signal is processed by 2-D FFT and CSE, respectively. The results showed that the phase velocities of multimode signals whose wave numbers are much closed cannot be differentiated by 2-D FFT, but CSE has strong spatial resolution. Compared the measured phase velocities with the theoretical values, the error is smaller than 2% on the whole. It promises to be a useful method in experimental signals processing of multimode Lamb waves.

  19. Genetic and least squares algorithms for estimating spectral EIS parameters of prostatic tissues.

    PubMed

    Halter, Ryan J; Hartov, Alex; Paulsen, Keith D; Schned, Alan; Heaney, John

    2008-06-01

    We employed electrical impedance spectroscopy (EIS) to evaluate the electrical properties of prostatic tissues. We collected freshly excised prostates from 23 men immediately following radical prostatectomy. The prostates were sectioned into 3 mm slices and electrical property measurements of complex resistivity were recorded from each of the slices using an impedance probe over the frequency range of 100 Hz to 100 kHz. The area probed was marked so that following tissue fixation and slide preparation, histological assessment could be correlated directly with the recorded EIS spectra. Prostate cancer (CaP), benign prostatic hyperplasia (BPH), non-hyperplastic glandular tissue and stroma were the primary prostatic tissue types probed. Genetic and least squares parameter estimation algorithms were implemented for fitting a Cole-type resistivity model to the measured data. The four multi-frequency-based spectral parameters defining the recorded spectrum (rho(infinity), Deltarho, f(c) and alpha) were determined using these algorithms and statistically analyzed with respect to the tissue type. Both algorithms fit the measured data well, with the least squares algorithm having a better average goodness of fit (95.2 mOmega m versus 109.8 mOmega m) and a faster execution time (80.9 ms versus 13 637 ms) than the genetic algorithm. The mean parameters, from all tissue samples, estimated using the genetic algorithm ranged from 4.44 to 5.55 Omega m, 2.42 to 7.14 Omega m, 3.26 to 6.07 kHz and 0.565 to 0.654 for rho(infinity), Deltarho, f(c) and alpha, respectively. These same parameters estimated using the least squares algorithm ranged from 4.58 to 5.79 Omega m, 2.18 to 6.98 Omega m, 2.97 to 5.06 kHz and 0.621 to 0.742 for rho(infinity), Deltarho, f(c) and alpha, respectively. The ranges of these parameters were similar to those reported in the literature. Further, significant differences (p < 0.01) were observed between CaP and BPH for the spectral parameters Deltarho and f

  20. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.

    PubMed

    Dungan, Sarah Z; Kosyakov, Alexander; Chang, Belinda S W

    2016-02-01

    Cetaceans have undergone a remarkable evolutionary transition that was accompanied by many sensory adaptations, including modification of the visual system for underwater environments. Recent sequencing of cetacean genomes has made it possible to begin exploring the molecular basis of these adaptations. In this study we use in vitro expression methods to experimentally characterize the first step of the visual transduction cascade, the light activation of rhodopsin, for the killer whale. To investigate the spectral effects of amino acid substitutions thought to correspond with absorbance shifts relative to terrestrial mammals, we used the orca gene as a background for the first site-directed mutagenesis experiments in a cetacean rhodopsin. The S292A mutation had the largest effect, and was responsible for the majority of the spectral difference between killer whale and bovine (terrestrial) rhodopsin. Using codon-based likelihood models, we also found significant evidence for positive selection in cetacean rhodopsin sequences, including on spectral tuning sites we experimentally mutated. We then investigated patterns of ecological divergence that may be correlated with rhodopsin functional variation by using a series of clade models that partitioned the data set according to phylogeny, habitat, and foraging depth zone. Only the model partitioning according to depth was significant. This suggests that foraging dives might be a selective regime influencing cetacean rhodopsin divergence, and our experimental results indicate that spectral tuning may be playing an adaptive role in this process. Our study demonstrates that combining computational and experimental methods is crucial for gaining insight into the selection pressures underlying molecular evolution.

  1. A posteriori error estimation for hp -adaptivity for fourth-order equations

    NASA Astrophysics Data System (ADS)

    Moore, Peter K.; Rangelova, Marina

    2010-04-01

    A posteriori error estimates developed to drive hp-adaptivity for second-order reaction-diffusion equations are extended to fourth-order equations. A C^1 hierarchical finite element basis is constructed from Hermite-Lobatto polynomials. A priori estimates of the error in several norms for both the interpolant and finite element solution are derived. In the latter case this requires a generalization of the well-known Aubin-Nitsche technique to time-dependent fourth-order equations. We show that the finite element solution and corresponding Hermite-Lobatto interpolant are asymptotically equivalent. A posteriori error estimators based on this equivalence for solutions at two orders are presented. Both are shown to be asymptotically exact on grids of uniform order. These estimators can be used to control various adaptive strategies. Computational results for linear steady-state and time-dependent equations corroborate the theory and demonstrate the effectiveness of the estimators in adaptive settings.

  2. Parametric adaptive estimation and backstepping control of electro-hydraulic actuator with decayed memory filter.

    PubMed

    Guo, Qing; Sun, Ping; Yin, Jing-Min; Yu, Tian; Jiang, Dan

    2016-05-01

    Some unknown parameter estimation of electro-hydraulic system (EHS) should be considered in hydraulic controller design due to many parameter uncertainties in practice. In this study, a parametric adaptive backstepping control method is proposed to improve the dynamic behavior of EHS under parametric uncertainties and unknown disturbance (i.e., hydraulic parameters and external load). The unknown parameters of EHS model are estimated by the parametric adaptive estimation law. Then the recursive backstepping controller is designed by Lyapunov technique to realize the displacement control of EHS. To avoid explosion of virtual control in traditional backstepping, a decayed memory filter is presented to re-estimate the virtual control and the dynamic external load. The effectiveness of the proposed controller has been demonstrated by comparison with the controller without adaptive and filter estimation. The comparative experimental results in critical working conditions indicate the proposed approach can achieve better dynamic performance on the motion control of Two-DOF robotic arm.

  3. An hp-adaptivity and error estimation for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.

    1995-01-01

    This paper presents an hp-adaptive discontinuous Galerkin method for linear hyperbolic conservation laws. A priori and a posteriori error estimates are derived in mesh-dependent norms which reflect the dependence of the approximate solution on the element size (h) and the degree (p) of the local polynomial approximation. The a posteriori error estimate, based on the element residual method, provides bounds on the actual global error in the approximate solution. The adaptive strategy is designed to deliver an approximate solution with the specified level of error in three steps. The a posteriori estimate is used to assess the accuracy of a given approximate solution and the a priori estimate is used to predict the mesh refinements and polynomial enrichment needed to deliver the desired solution. Numerical examples demonstrate the reliability of the a posteriori error estimates and the effectiveness of the hp-adaptive strategy.

  4. Estimation and prediction of noise power based on variational Bayesian and adaptive ARMA time series

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyi; Li, Yonggui; Zhu, Yonggang; Li, Binwu

    2014-04-01

    Estimation and prediction of noise power are very important for communication anti-jamming and efficient allocation of spectrum resources in adaptive wireless communication and cognitive radio. In order to estimate and predict the time-varying noise power caused by natural factors and jamming in the high frequency channel, Variational Bayesian algorithm and adaptive ARMA time series are proposed. Through establishing the time-varying noise power model, which controlled by the noise variance rate, the noise power can be estimated with Variational Bayesian algorithm, and the results show that the estimation error is related to observation interval. What's more, through the analysis of the correlation characteristics of the estimation power, noise power can be predicted based on adaptive ARMA time series, and the results show that it will be available to predict the noise power in next 5 intervals with the proportional error less than 0.2.

  5. Surface estimation methods with phased-arrays for adaptive ultrasonic imaging in complex components

    NASA Astrophysics Data System (ADS)

    Robert, S.; Calmon, P.; Calvo, M.; Le Jeune, L.; Iakovleva, E.

    2015-03-01

    Immersion ultrasonic testing of structures with complex geometries may be significantly improved by using phased-arrays and specific adaptive algorithms that allow to image flaws under a complex and unknown interface. In this context, this paper presents a comparative study of different Surface Estimation Methods (SEM) available in the CIVA software and used for adaptive imaging. These methods are based either on time-of-flight measurements or on image processing. We also introduce a generalized adaptive method where flaws may be fully imaged with half-skip modes. In this method, both the surface and the back-wall of a complex structure are estimated before imaging flaws.

  6. ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve☆

    PubMed Central

    Feischl, Michael; Führer, Thomas; Karkulik, Michael; Praetorius, Dirk

    2014-01-01

    In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments. PMID:24748725

  7. Adapting Autonomous Behavior Using an Inverse Trust Estimation

    DTIC Science & Technology

    2014-07-01

    to achieve team goals. Trustworthy behavior is not something that can be programmed into an agent in advance since how humans measure trust may be task...Inverse Trust Estimation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...wheeled unmanned ground vehicle (UGV) and uses eBotwork’s built-in natural language processing (for interpreting user commands), locomotion, and path

  8. Spectral modelling near the 1.6 μm window for satellite based estimation of CO2.

    PubMed

    Prasad, Prabhunath; Rastogi, Shantanu; Singh, R P; Panigrahy, S

    2014-01-03

    Measurements of inter annual CO2 variability are important inputs for modelling global carbon cycle. Satellite observations play important role in quantification and modelling of CO2 fluxes in the atmosphere, where observed radiances in narrow spectral channels are used to estimate the trace gas concentration using spectroscopic principles. The 1.6 μm spectral window is important for CO2 detection and study of the two CO2 bands in this region is performed at different spectral resolutions. In order to select the optimum spectral resolution and wavelength positions, suitable for CO2 estimation from satellite platform, sensitivities of different spectral lines to changes in CO2 concentration are studied. Analysis is carried out using a line by line FASCOD radiative transfer model in tropical atmospheric and rural aerosol conditions. The CO2 concentration is varied from 200 to 1000 ppmv and spectral resolution is varied from 0.025 nm to 10 nm. It is observed that atmospheric transmittances reduce sharply with increase in CO2 concentration. With decrease in resolution initially the sensitivity steeply reduces but at resolutions lower than 0.15 nm the sensitivity remains nearly constant. The Continuum Interpolated Band Ratio method is used for inverse concentration retrieval. Based on the study it is evaluated that 0.2 nm is the optimum limit for resolution.

  9. On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2011-01-01

    This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.

  10. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  11. Basis material decomposition in spectral CT using a semi-empirical, polychromatic adaption of the Beer-Lambert model

    NASA Astrophysics Data System (ADS)

    Ehn, S.; Sellerer, T.; Mechlem, K.; Fehringer, A.; Epple, M.; Herzen, J.; Pfeiffer, F.; Noël, P. B.

    2017-01-01

    Following the development of energy-sensitive photon-counting detectors using high-Z sensor materials, application of spectral x-ray imaging methods to clinical practice comes into reach. However, these detectors require extensive calibration efforts in order to perform spectral imaging tasks like basis material decomposition. In this paper, we report a novel approach to basis material decomposition that utilizes a semi-empirical estimator for the number of photons registered in distinct energy bins in the presence of beam-hardening effects which can be termed as a polychromatic Beer-Lambert model. A maximum-likelihood estimator is applied to the model in order to obtain estimates of the underlying sample composition. Using a Monte-Carlo simulation of a typical clinical CT acquisition, the performance of the proposed estimator was evaluated. The estimator is shown to be unbiased and efficient according to the Cramér-Rao lower bound. In particular, the estimator is capable of operating with a minimum number of calibration measurements. Good results were obtained after calibration using less than 10 samples of known composition in a two-material attenuation basis. This opens up the possibility for fast re-calibration in the clinical routine which is considered an advantage of the proposed method over other implementations reported in the literature.

  12. The Problem of Bias in Person Parameter Estimation in Adaptive Testing

    ERIC Educational Resources Information Center

    Doebler, Anna

    2012-01-01

    It is shown that deviations of estimated from true values of item difficulty parameters, caused for example by item calibration errors, the neglect of randomness of item difficulty parameters, testlet effects, or rule-based item generation, can lead to systematic bias in point estimation of person parameters in the context of adaptive testing.…

  13. New Algorithms for Moving-Bank Multiple Model Adaptive Estimation

    DTIC Science & Technology

    2007-11-02

    Detection 12 2.1.1 Voting Method 12 2.1.2 Chi-Square Test and the Kaiman Filter 13 2.1.3 Sequential Probability Ratio Test (SPRT) 16 2.1.4 Generalized...Numerical Integration 120 3.2.3 Discretization Method , 122 3.2.3.1 Parameter Value Search Routine 126 3.2.3.2 Implementation Issues 132 3.2.4...Measure exRMS - State 3 297 xvin Abstract The focus of this research is to provide methods for generating precise parameter estimates in the face

  14. Accurate Attitude Estimation Using ARS under Conditions of Vehicle Movement Based on Disturbance Acceleration Adaptive Estimation and Correction

    PubMed Central

    Xing, Li; Hang, Yijun; Xiong, Zhi; Liu, Jianye; Wan, Zhong

    2016-01-01

    This paper describes a disturbance acceleration adaptive estimate and correction approach for an attitude reference system (ARS) so as to improve the attitude estimate precision under vehicle movement conditions. The proposed approach depends on a Kalman filter, where the attitude error, the gyroscope zero offset error and the disturbance acceleration error are estimated. By switching the filter decay coefficient of the disturbance acceleration model in different acceleration modes, the disturbance acceleration is adaptively estimated and corrected, and then the attitude estimate precision is improved. The filter was tested in three different disturbance acceleration modes (non-acceleration, vibration-acceleration and sustained-acceleration mode, respectively) by digital simulation. Moreover, the proposed approach was tested in a kinematic vehicle experiment as well. Using the designed simulations and kinematic vehicle experiments, it has been shown that the disturbance acceleration of each mode can be accurately estimated and corrected. Moreover, compared with the complementary filter, the experimental results have explicitly demonstrated the proposed approach further improves the attitude estimate precision under vehicle movement conditions. PMID:27754469

  15. Adaptive error covariances estimation methods for ensemble Kalman filters

    SciTech Connect

    Zhen, Yicun; Harlim, John

    2015-08-01

    This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.

  16. [Adaptive moving averaging based estimation of single event-related potentials].

    PubMed

    Qi, C; Liang, D; Jiang, X

    2001-03-01

    Event-related potentials (ERP) is pertinent to medical research and clinical diagnosis. Estimation of single event-related potentials (sERP) is the objective of ERP processing. A new technique, adaptive moving averaging based method for estimation of sERP, is presented. After analysis of the properties of background noise by crossing zero, the window length of moving averaging is adaptively set according to the maximum width of the impulse noise for each recorded raw data. The experiments are made with real recorded data and the results demonstrate that the performance of sERP estimation is excellent. So the method proposed is suitable to sERP processing.

  17. Applications methods of spectral ratios in the estimation of site effects: Case Damien (Haiti)

    NASA Astrophysics Data System (ADS)

    Jean, B. J.; ST Fleur, S.

    2014-12-01

    Measurements of H/V type were carried out on the Damien site with Tromino hardware an « all in one » station which includes both the sensor and the integrated digitizer. A total of 32 measurements of seismic noise have been completed on this site in order to see if lithological site effects are detectable with this H/V method. After checking the H/V curve reliability criteria (length of the window to be analyzed, the number of windows analyzed, standard deviation) and the criteria for clear peaks in H/V (conditions for the amplitude, conditions for stability) found in the SESAME project in 2004, the results of the H/V spectra obtained are generally very consistent and clearly indicate site effects with peak resonance frequencies between 3 and 14 Hz. The presence of these well defined frequency peaks in the H/V spectral ratio indicates that the ground motion can be amplified by geomorphological site effects. Comparative analyzes of these H/V measurements with Grilla and Geopsy software were made in this paper to estimate the amplification magnitude of these effects. Graphical comparisons between the Grilla and Geopsy H/V maps were completed in this study and allow us to identify typical areas and their associated fundamental resonance frequencies.

  18. Adaptive estimation of the log fluctuating conductivity from tracer data at the Cape Cod Site

    USGS Publications Warehouse

    Deng, F.W.; Cushman, J.H.; Delleur, J.W.

    1993-01-01

    An adaptive estimation scheme is used to obtain the integral scale and variance of the log-fluctuating conductivity at the Cape Cod site based on the fast Fourier transform/stochastic model of Deng et al. (1993) and a Kalmanlike filter. The filter incorporates prior estimates of the unknown parameters with tracer moment data to adaptively obtain improved estimates as the tracer evolves. The results show that significant improvement in the prior estimates of the conductivity can lead to substantial improvement in the ability to predict plume movement. The structure of the covariance function of the log-fluctuating conductivity can be identified from the robustness of the estimation. Both the longitudinal and transverse spatial moment data are important to the estimation.

  19. Weighted adaptive threshold estimating method and its application to Satellite-to-Ground optical communications

    NASA Astrophysics Data System (ADS)

    Ran, Qiwen; Yang, Zhonghua; Ma, Jing; Tan, Liying; Liao, Huixi; Liu, Qingfeng

    2013-02-01

    In this paper, a weighted adaptive threshold estimating method is proposed to deal with long and deep channel fades in Satellite-to-Ground optical communications. During the channel correlation interval where there are sufficient correlations in adjacent signal samples, the correlations in its change rates are described by weighted equations in the form of Toeplitz matrix. As vital inputs to the proposed adaptive threshold estimator, the optimal values of the change rates can be obtained by solving the weighted equation systems. The effect of channel fades and aberrant samples can be mitigated by joint use of weighted equation systems and Kalman estimation. Based on the channel information data from star observation trails, simulations are made and the numerical results show that the proposed method have better anti-fade performances than the D-value adaptive threshold estimating method in both weak and strong turbulence conditions.

  20. A comparison study between Wiener and adaptive state estimation (STAP-ASE) algorithms for space time adaptive radar processing

    NASA Astrophysics Data System (ADS)

    Malek, Obaidul; Venetsanopoulos, Anastasios; Anpalagan, Alagan

    2010-08-01

    Space Time Adaptive Processing (STAP) is a multi-dimensional adaptive signal processing technique, which processes the signal in spatial and Doppler domains for which a target detection hypothesis is to be formed. It is a sample based technique and based on the assumption of adequate number of Independent and Identically Distributed (i.i.d.) training data set in the surrounding environment. The principal challenge of the radar processing lies when it violates these underlying assumptions due to severe dynamic heterogeneous clutter (hot clutter) and jammer effects. This in turn degrades the Signal to Interference-plus-Noise Ratio (SINR), hence signal detection performance. Classical Wiener filtering theory is inadequate to deal with nonlinear and nonstationary interferences, however Wiener filtering approach is optimal for stationary and linear systems. But, these challenges can be overcome by Adaptive Sequential State Estimation (ASSE) filtering technique.

  1. Gravitational self-organizing map-based seismic image classification with an adaptive spectral-textural descriptor

    NASA Astrophysics Data System (ADS)

    Hao, Yanling; Sun, Genyun

    2016-10-01

    Seismic image classification is of vital importance for extracting damage information and evaluating disaster losses. With the increasing availability of high resolution remote sensing images, automatic image classification offers a unique opportunity to accommodate the rapid damage mapping requirements. However, the diversity of disaster types and the lack of uniform statistical characteristics in seismic images increase the complexity of automated image classification. This paper presents a novel automatic seismic image classification approach by integrating an adaptive spectral-textural descriptor into gravitational self-organizing map (gSOM). In this approach, seismic image is first segmented into several objects based on mean shift (MS) method. These objects are then characterized explicitly by spectral and textural feature quantization histograms. To objectify the image object delineation adapt to various disaster types, an adaptive spectral-textural descriptor is developed by integrating the histograms automatically. Subsequently, these objects as classification units are represented by neurons in a self-organizing map and clustered by adjacency gravitation. By moving the neurons around the gravitational space and merging them according to the gravitation, the object-based gSOM is able to find arbitrary shape and determine the class number automatically. Taking advantage of the diversity of gSOM results, consensus function is then conducted to discover the most suitable classification result. To confirm the validity of the presented approach, three aerial seismic images in Wenchuan covering several disaster types are utilized. The obtained quantitative and qualitative experimental results demonstrated the feasibility and accuracy of the proposed seismic image classification method.

  2. Noise-Robust Spectral Signature Classification in Non-resolved Object Detection using Feedback Controlled Adaptive Learning

    NASA Astrophysics Data System (ADS)

    Schmalz, M.; Key, G.

    2012-09-01

    Accurate spectral signature classification is key to reliable nonresolved detection and recognition of spaceborne objects. In classical signature-based recognition applications, classification accuracy has been shown to depend on accurate spectral endmember discrimination. Unfortunately, signatures are corrupted by noise and clutter that can be nonergodic in astronomical imaging practice. In previous work, we have shown that object class separation and classifier refinement results can be severely corrupted by input noise, leading to suboptimal classification. We have also shown that computed pattern recognition, like its human counterpart, can benefit from processes such as learning or forgetting, which in spectral signature classification can support adaptive tracking of input nonergodicities. In this paper, we model learning as the acquisition or insertion of a new pattern into a classifier's knowledge base. For example, in neural nets (NNs), this insertion process could correspond to the superposition of a new pattern onto the NN weight matrix. Similarly, we model forgetting as the deletion of a pattern currently stored in the classifier knowledge base, for example, as a pattern deletion operation on the NN weight matrix, which is a difficult goal with classical neural nets (CNNs). In particular, this paper discusses the implementation of feedback control for pattern insertion and deletion in lattice associative memories (LAMs) and dynamically adaptive statistical data fusion (DASDAF) paradigms, in support of signature classification. It is shown that adaptive classifiers based on LNN or DASDAF technology can achieve accurate signature classification in the presence of nonergodic Gaussian and non-Gaussian noise, at low signal-to-noise ratio (SNR). Demonstration involves classification of multiple closely spaced, noise corrupted signatures from a NASA database of space material signatures at SNR > 0.1:1.

  3. An adaptive technique for estimating the atmospheric density profile during the AE mission

    NASA Technical Reports Server (NTRS)

    Argentiero, P.

    1973-01-01

    A technique is presented for processing accelerometer data obtained during the AE missions in order to estimate the atmospheric density profile. A minimum variance, adaptive filter is utilized. The trajectory of the probe and probe parameters are in a consider mode where their estimates are unimproved but their associated uncertainties are permitted an impact on filter behavior. Simulations indicate that the technique is effective in estimating a density profile to within a few percentage points.

  4. Adapting Spectral Co-clustering to Documents and Terms Using Latent Semantic Analysis

    NASA Astrophysics Data System (ADS)

    Park, Laurence A. F.; Leckie, Christopher A.; Ramamohanarao, Kotagiri; Bezdek, James C.

    Spectral co-clustering is a generic method of computing co-clusters of relational data, such as sets of documents and their terms. Latent semantic analysis is a method of document and term smoothing that can assist in the information retrieval process. In this article we examine the process behind spectral clustering for documents and terms, and compare it to Latent Semantic Analysis. We show that both spectral co-clustering and LSA follow the same process, using different normalisation schemes and metrics. By combining the properties of the two co-clustering methods, we obtain an improved co-clustering method for document-term relational data that provides an increase in the cluster quality of 33.0%.

  5. Adaptive super-twisting observer for estimation of random road excitation profile in automotive suspension systems.

    PubMed

    Rath, J J; Veluvolu, K C; Defoort, M

    2014-01-01

    The estimation of road excitation profile is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation profile are considered for modeling. To address the issue of estimation of road profile, we develop an adaptive supertwisting observer for state and unknown road profile estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed observer for state and unknown input estimation for nonlinear active suspension system.

  6. Adaptive Super-Twisting Observer for Estimation of Random Road Excitation Profile in Automotive Suspension Systems

    PubMed Central

    Rath, J. J.; Veluvolu, K. C.; Defoort, M.

    2014-01-01

    The estimation of road excitation profile is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation profile are considered for modeling. To address the issue of estimation of road profile, we develop an adaptive supertwisting observer for state and unknown road profile estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed observer for state and unknown input estimation for nonlinear active suspension system. PMID:24683321

  7. Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO

    NASA Astrophysics Data System (ADS)

    Gao, Zhen; Dai, Linglong; Wang, Zhaocheng; Chen, Sheng

    2015-12-01

    This paper proposes a spatially common sparsity based adaptive channel estimation and feedback scheme for frequency division duplex based massive multi-input multi-output (MIMO) systems, which adapts training overhead and pilot design to reliably estimate and feed back the downlink channel state information (CSI) with significantly reduced overhead. Specifically, a non-orthogonal downlink pilot design is first proposed, which is very different from standard orthogonal pilots. By exploiting the spatially common sparsity of massive MIMO channels, a compressive sensing (CS) based adaptive CSI acquisition scheme is proposed, where the consumed time slot overhead only adaptively depends on the sparsity level of the channels. Additionally, a distributed sparsity adaptive matching pursuit algorithm is proposed to jointly estimate the channels of multiple subcarriers. Furthermore, by exploiting the temporal channel correlation, a closed-loop channel tracking scheme is provided, which adaptively designs the non-orthogonal pilot according to the previous channel estimation to achieve an enhanced CSI acquisition. Finally, we generalize the results of the multiple-measurement-vectors case in CS and derive the Cramer-Rao lower bound of the proposed scheme, which enlightens us to design the non-orthogonal pilot signals for the improved performance. Simulation results demonstrate that the proposed scheme outperforms its counterparts, and it is capable of approaching the performance bound.

  8. Pursuing atmospheric water vapor retrieval through NDSA measurements between two LEO satellites: evaluation of estimation errors in spectral sensitivity measurements

    NASA Astrophysics Data System (ADS)

    Facheris, L.; Cuccoli, F.; Argenti, F.

    2008-10-01

    NDSA (Normalized Differential Spectral Absorption) is a novel differential measurement method to estimate the total content of water vapor (IWV, Integrated Water Vapor) along a tropospheric propagation path between two Low Earth Orbit (LEO) satellites. A transmitter onboard the first LEO satellite and a receiver onboard the second one are required. The NDSA approach is based on the simultaneous estimate of the total attenuations at two relatively close frequencies in the Ku/K bands and of a "spectral sensitivity parameter" that can be directly converted into IWV. The spectral sensitivity has the potential to emphasize the water vapor contribution, to cancel out all spectrally flat unwanted contributions and to limit the impairments due to tropospheric scintillation. Based on a previous Monte Carlo simulation approach, through which we analyzed the measurement accuracy of the spectral sensitivity parameter at three different and complementary frequencies, in this work we examine such accuracy for a particularly critical atmospheric status as simulated through the pressure, temperature and water vapor profiles measured by a high resolution radiosonde. We confirm the validity of an approximate expression of the accuracy and discuss the problems that may arise when tropospheric water vapor concentration is lower than expected.

  9. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds

    PubMed Central

    Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard; Curley, Robert W; Riedl, Ken M; Wilby, David; Schwartz, Steven J; Witt, Christopher C; Harrison, Earl H; Roberts, Nicholas W; Vorobyev, Misha; McGraw, Kevin J; Cornwall, M Carter; Kelber, Almut; Corbo, Joseph C

    2016-01-01

    Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination. DOI: http://dx.doi.org/10.7554/eLife.15675.001 PMID:27402384

  10. Performance of an adaptive phase estimator for coherent free-space optical communications over Gamma-Gamma turbulence

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Gao, Chao; Liang, Haodong; Miao, Maoke; Li, Xiaofeng

    2017-04-01

    This paper investigates an adaptive phase estimator for coherent free-space optical (FSO) communication systems. Closed-form solutions for variance of phase errors are derived when the optical beam is subjected to Gamma-Gamma distributed turbulence. The adaptive phase estimator has improved upon the phase error performance in comparison to conventional phase estimators. We also demonstrate notable improvement in BER performance when applying our adaptive phase estimator to coherent FSO communication systems.

  11. Airborne in-situ spectral characterization and concentration estimates of fluorescent organics as a function of depth

    NASA Technical Reports Server (NTRS)

    Tittle, R. A.

    1988-01-01

    The primary purpose of many in-situ airborne light scattering experiments in natural waters is to spectrally characterize the subsurface fluorescent organics and estimate their relative concentrations. This is often done by shining a laser beam into the water and monitoring its subsurface return signal. To do this with the proper interpretation, depth must be taken into account. If one disregards depth dependence when taking such estimates, both their spectral characteristics and their concentrations estimates can be rather ambiguous. A simple airborne lidar configuration is used to detect the subsurface return signal from a particular depth and wavelength. Underwater scatterometer were employed to show that in-situ subsurface organics are very sensitive to depth, but they also require the use of slow moving boats to cover large sample areas. Also, their very entry into the water disturbs the sample it is measuring. The method described is superior and simplest to any employed thus far.

  12. Nonlocal transform-domain denoising of volumetric data with groupwise adaptive variance estimation

    NASA Astrophysics Data System (ADS)

    Maggioni, Matteo; Foi, Alessandro

    2012-03-01

    We propose an extension of the BM4D volumetric filter to the denoising of data corrupted by spatially nonuniform noise. BM4D implements the grouping and collaborative filtering paradigm, where similar cubes of voxels are stacked into a four-dimensional "group". Each group undergoes a sparsifying four-dimensional transform, that exploits the local correlation among voxels in each cube and the nonlocal correlation between corresponding voxels of different cubes. Thus, signal and noise are effectively separated in transform domain. In this work we take advantage of the sparsity induced by the four-dimensional transform to provide a spatially adaptive estimation of the local noise variance by applying a robust median estimator of the absolute deviation to the spectrum of each filtered group. The adaptive variance estimates are then used during coefficients shrinkage. Finally, the inverse four-dimensional transform is applied to the filtered group, and each individual cube estimate is adaptively aggregated at its original location. Experiments on medical data corrupted by spatially varying Gaussian and Rician noise demonstrate the efficacy of the proposed approach in volumetric data denoising. In case of magnetic resonance signals, the adaptive variance estimate can be also used to compensate the estimation bias due to the non-zero-mean errors of the Rician-distributed data.

  13. Adapting Autonomous Behavior Based on an Estimate of an Operator’s Trust

    DTIC Science & Technology

    2014-11-01

    teammate’s trust and adapt to it, and also pro- vide directions for this work. 2 Inverse Trust and Behavior Adaptation Traditional trust metrics measure how...looking at an inverse trust metric where an agent (the robot) estimates how much trust another agent has in it. One option would be to get direct feedback...trustworthy behaviors from previous adap- tations (Floyd, Drinkwater, and Aha 2014b). 3 Discussion Our work has focused on an approach for inverse trust

  14. A robust adaptive nonlinear fault-tolerant controller via norm estimation for reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Hu, Chaofang; Gao, Zhifei; Ren, Yanli; Liu, Yunbing

    2016-11-01

    In this paper, a reusable launch vehicle (RLV) attitude control problem with actuator faults is addressed via the robust adaptive nonlinear fault-tolerant control (FTC) with norm estimation. Firstly, the accurate tracking task of attitude angles in the presence of parameter uncertainties and external disturbances is considered. A fault-free controller is proposed using dynamic surface control (DSC) combined with fuzzy adaptive approach. Furthermore, the minimal learning parameter strategy via norm estimation technique is introduced to reduce the multi-parameter adaptive computation burden of fuzzy approximation of the lump uncertainties. Secondly, a compensation controller is designed to handle the partial loss fault of actuator effectiveness. The unknown maximum eigenvalue of actuator efficiency loss factors is estimated online. Moreover, stability analysis guarantees that all signals of the closed-loop control system are semi-global uniformly ultimately bounded. Finally, illustrative simulations show the effectiveness of the proposed method.

  15. Adaptive Particle Filter for Nonparametric Estimation with Measurement Uncertainty in Wireless Sensor Networks.

    PubMed

    Li, Xiaofan; Zhao, Yubin; Zhang, Sha; Fan, Xiaopeng

    2016-05-30

    Particle filters (PFs) are widely used for nonlinear signal processing in wireless sensor networks (WSNs). However, the measurement uncertainty makes the WSN observations unreliable to the actual case and also degrades the estimation accuracy of the PFs. In addition to the algorithm design, few works focus on improving the likelihood calculation method, since it can be pre-assumed by a given distribution model. In this paper, we propose a novel PF method, which is based on a new likelihood fusion method for WSNs and can further improve the estimation performance. We firstly use a dynamic Gaussian model to describe the nonparametric features of the measurement uncertainty. Then, we propose a likelihood adaptation method that employs the prior information and a belief factor to reduce the measurement noise. The optimal belief factor is attained by deriving the minimum Kullback-Leibler divergence. The likelihood adaptation method can be integrated into any PFs, and we use our method to develop three versions of adaptive PFs for a target tracking system using wireless sensor network. The simulation and experimental results demonstrate that our likelihood adaptation method has greatly improved the estimation performance of PFs in a high noise environment. In addition, the adaptive PFs are highly adaptable to the environment without imposing computational complexity.

  16. Composition of the lunar upper crust estimated from Kaguya spectral data

    NASA Astrophysics Data System (ADS)

    Ohtake, M.; Matsunaga, T.; Takeda, H.; Yokota, Y.; Yamamoto, S.; Moroda, T.; Ogawa, Y.; Hiroi, T.; Nakamura, R.; Haruyama, J.

    2010-12-01

    The magma ocean hypothesis has been the most widely accepted mechanism explaining the generation of the lunar highland crust. This hypothesis is based on analyses of returned samples [1] and an assumption that Fe-bearing, plagioclase-rich rocks exist globally as the major component of the lunar crust. However, no crystalline plagioclase had been detected by remote sensing before SELENE [2], except for some ambiguous or indirect indications of the existence of plagioclase. Subsequently, a global distribution of rocks of extremely high plagioclase abundance (approaching 100 vol%; called purest anorthosite (PAN)) was reported using an unambiguous plagioclase absorption band around 1250 nm found by the SELENE Multiband Imager (MI) [3]. The estimated plagioclase abundance is significantly higher than previous estimates of 82 to 92 vol% [1], providing a valuable constraint on models for lunar magma ocean evolution. Further study using continuous reflectance spectra derived by the SELENE Spectral Profiler (SP) [4] revealed a global and common distribution of the PAN over the entire lunar surface, supporting the high abundance of PAN rocks within the upper crust. In this study, we investigated a vertical compositional (modal abundance and/or mineral composition) trend of the PAN rocks within the crust using their reflectance spectra derived from SP and MI. Knowing the compositional trend of the lunar upper crust may enable us to understand the mechanism of the lunar crustal growth. All of the SP data observed throughout SELENE mission periods were used in this study (about 7,000 orbits and roughly 10,000 spectra for each orbit). The absorption depth at each wavelength was calculated after a linear continuum was removed. Spectra with the deepest absorption depth, around 1250 nm, which is caused by a minor amount of Fe2+ (in the order of 0.1 wt% FeO) contained in the plagioclase, were selected to detect the PAN rocks. The original burial depth of each PAN rock outcrop was

  17. Adaptive time-domain filtering for real-time spectral discrimination in a Michelson interferometer.

    PubMed

    Bhalotra, Sameer R; Kung, Helen L; Jiao, Yang; Miller, David A B

    2002-07-01

    We present a method of spectral discrimination that employs time-domain processing instead of the typical frequency-domain analysis and implement the method in a Michelson interferometer with a nonlinear mirror scan. The technique yields one analog output value per scan instead of a complete interferogram by directly filtering a measured scan with a reference function in the time domain. Such a procedure drastically reduces data-processing requirements downstream. Additionally, using prerecorded interferograms as references eliminates the need to compensate for scan nonlinearities, which broadens the field of usable components for implementation in miniaturized sensing systems. With our efficient use of known spectral signatures, we demonstrate real-time discrimination of 633- and 663-nm laser sources with a mirror scan length of 1 microm , compared with the Rayleigh criterion of 7 microm.

  18. Estimating Interstellar Medium Dust Temperature And Spectral Index In The Far-infrared And Submillimeter

    NASA Astrophysics Data System (ADS)

    Veneziani, Marcella; Noriega-Crespo, A.; Piacentini, F.; Paladini, R.

    2012-01-01

    Dust temperature and spectral index are evidenced to be anti-correlated from observations in the far-infrared and millimeter wavelengths and from laboratory experiments. However, uncertainties in flux measurements combined with calibration errors and other source of systematic errors, affect the results of the spectral energy distribution (SED) fit. An inverse correlation between dust temperature and spectral index naturally arises from the spectral model assumed for the fit combined with data noise and systematic uncertainties. When the spectral coverage do not sample the whole SED but only a limited range of it, it is even more difficult to get reliable results on dust physical properties. We developed a method to fit the inverse relationship between the temperature and spectral index with Bayesian statistics taking properly into account both the statistics and the systematic errors. We simulate observations of one-component Interstellar Medium (15 K < T < 25 K), and of two-components sources both warm (HII regions) and cold (cold cores) in the Herschel PACS and SPIRE spectral bands (70-500 um). We also include some ancillary simulated data from Planck-HFI, IRAS and MIPS to better sample the SEDs.

  19. Adaptive Mesh Refinement in the Context of Spectral Numerical Evolutions of Binary Black Hole Space-Times

    NASA Astrophysics Data System (ADS)

    Szilagyi, Bela

    2011-04-01

    Spectral numerical methods are known for giving faster convergence than finite difference methods, when evolving smooth quantities. In binary black hole simulations of the SpEC code this exponential convergence is clearly visible. However, the same exponential dependence of the numerical error on the grid-resolution will also mean that a linear order mismatch between the grid-structure and the actual data will lead to exponential loss of accuracy. In my talk I will show the way the Caltech-Cornell-CITA code deals with this, by use of what we call Spectral AMR. In our algorithm we monitor truncation error estimates in various regions of the grid as the simulation proceeds, and adjust the grid as necessary. Supported by Sherman Fairchild Foundation and NSF grants PHY-061459 and PHY-0652995 to Caltech.

  20. Evaluation of techniques for estimating the power spectral density of RR-intervals under paced respiration conditions.

    PubMed

    Schaffer, Thorsten; Hensel, Bernhard; Weigand, Christian; Schüttler, Jürgen; Jeleazcov, Christian

    2014-10-01

    Heart rate variability (HRV) analysis is increasingly used in anaesthesia and intensive care monitoring of spontaneous breathing and mechanical ventilated patients. In the frequency domain, different estimation methods of the power spectral density (PSD) of RR-intervals lead to different results. Therefore, we investigated the PSD estimates of fast Fourier transform (FFT), autoregressive modeling (AR) and Lomb-Scargle periodogram (LSP) for 25 young healthy subjects subjected to metronomic breathing. The optimum method for determination of HRV spectral parameters under paced respiration was identified by evaluating the relative error (RE) and the root mean square relative error (RMSRE) for each breathing frequency (BF) and spectral estimation method. Additionally, the sympathovagal balance was investigated by calculating the low frequency/high frequency (LF/HF) ratio. Above 7 breaths per minute, all methods showed a significant increase in LF/HF ratio with increasing BF. On average, the RMSRE of FFT was lower than for LSP and AR. Therefore, under paced respiration conditions, estimating RR-interval PSD using FFT is recommend.

  1. Potential of the Sentinel-2 Red Edge Spectral Bands for Estimation of Eco-Physiological Plant Parameters

    NASA Astrophysics Data System (ADS)

    Malenovsky, Zbynek; Homolova, Lucie; Janoutova, Ruzena; Landier, Lucas; Gastellu-Etchegorry, Jean-Philippe; Berthelot, Beatrice; Huck, Alexis

    2016-08-01

    In this study we investigated importance of the space- borne instrument Sentinel-2 red edge spectral bands and reconstructed red edge position (REP) for retrieval of the three eco-physiological plant parameters, leaf and canopy chlorophyll content and leaf area index (LAI), in case of maize agricultural fields and beech and spruce forest stands. Sentinel-2 spectral bands and REP of the investigated vegetation canopies were simulated in the Discrete Anisotropic Radiative Transfer (DART) model. Their potential for estimation of the plant parameters was assessed through training support vector regressions (SVR) and examining their P-vector matrices indicating significance of each input. The trained SVR were then applied on Sentinel-2 simulated images and the acquired estimates were cross-compared with results from high spatial resolution airborne retrievals. Results showed that contribution of REP was significant for canopy chlorophyll content, but less significant for leaf chlorophyll content and insignificant for leaf area index estimations. However, the red edge spectral bands contributed strongly to the retrievals of all parameters, especially canopy and leaf chlorophyll content. Application of SVR on Sentinel-2 simulated images demonstrated, in general, an overestimation of leaf chlorophyll content and an underestimation of LAI when compared to the reciprocal airborne estimates. In the follow-up investigation, we will apply the trained SVR algorithms on real Sentinel-2 multispectral images acquired during vegetation seasons 2015 and 2016.

  2. Evaluating logarithmic kernel for spectral reflectance estimation-effects on model parametrization, training set size, and number of sensor spectral channels.

    PubMed

    Eckhard, Timo; Valero, Eva M; Hernández-Andrés, Javier; Heikkinen, Ville

    2014-03-01

    In this work, we evaluate the conditionally positive definite logarithmic kernel in kernel-based estimation of reflectance spectra. Reflectance spectra are estimated from responses of a 12-channel multispectral imaging system. We demonstrate the performance of the logarithmic kernel in comparison with the linear and Gaussian kernel using simulated and measured camera responses for the Pantone and HKS color charts. Especially, we focus on the estimation model evaluations in case the selection of model parameters is optimized using a cross-validation technique. In experiments, it was found that the Gaussian and logarithmic kernel outperformed the linear kernel in almost all evaluation cases (training set size, response channel number) for both sets. Furthermore, the spectral and color estimation accuracies of the Gaussian and logarithmic kernel were found to be similar in several evaluation cases for real and simulated responses. However, results suggest that for a relatively small training set size, the accuracy of the logarithmic kernel can be markedly lower when compared to the Gaussian kernel. Further it was found from our data that the parameter of the logarithmic kernel could be fixed, which simplified the use of this kernel when compared with the Gaussian kernel.

  3. Validation of a Bayesian Adaptive Estimation Technique in the Stop-Signal Task

    PubMed Central

    Livesey, Evan J.; Livesey, David J.

    2016-01-01

    The Stop Signal Task (SST), a commonly used measure of response inhibition, uses standard psychophysical methods to gain an estimate of the time needed to withhold a prepotent response. Under some circumstances, conventional forms of the SST are impractical to use because of the large number of trials necessary to gain a reliable estimate of the speed of inhibition. Here we applied to the SST an adaptive method for estimating psychometric parameters that can find reliable threshold estimates over a relatively small number of trials. The Ψ adaptive staircase, which uses a Bayesian algorithm to find the most likely parameters of a psychophysical function, was used to estimate the critical stop signal delay at which the probability of successful response inhibition equals 0.5. Using computational modeling and adult participants, estimates of stop signal reaction time (SSRT) based on the Ψ staircase were compared to estimates using the method of constant stimuli and a standard staircase method of adjustment. Results demonstrate that a reliable estimate of SSRT can be gained very quickly (20–30 stop trials), making the method very useful for testing populations that cannot maintain concentration for long periods or for rapidly obtaining multiple SSRT estimates from healthy adult participants. PMID:27880815

  4. Estimating the abundance of clustered animal population by using adaptive cluster sampling and negative binomial distribution

    NASA Astrophysics Data System (ADS)

    Bo, Yizhou; Shifa, Naima

    2013-09-01

    An estimator for finding the abundance of a rare, clustered and mobile population has been introduced. This model is based on adaptive cluster sampling (ACS) to identify the location of the population and negative binomial distribution to estimate the total in each site. To identify the location of the population we consider both sampling with replacement (WR) and sampling without replacement (WOR). Some mathematical properties of the model are also developed.

  5. Optimal-adaptive filters for modelling spectral shape, site amplification, and source scaling

    USGS Publications Warehouse

    Safak, Erdal

    1989-01-01

    This paper introduces some applications of optimal filtering techniques to earthquake engineering by using the so-called ARMAX models. Three applications are presented: (a) spectral modelling of ground accelerations, (b) site amplification (i.e., the relationship between two records obtained at different sites during an earthquake), and (c) source scaling (i.e., the relationship between two records obtained at a site during two different earthquakes). A numerical example for each application is presented by using recorded ground motions. The results show that the optimal filtering techniques provide elegant solutions to above problems, and can be a useful tool in earthquake engineering.

  6. Estimation of Model's Marginal likelihood Using Adaptive Sparse Grid Surrogates in Bayesian Model Averaging

    NASA Astrophysics Data System (ADS)

    Zeng, X.

    2015-12-01

    A large number of model executions are required to obtain alternative conceptual models' predictions and their posterior probabilities in Bayesian model averaging (BMA). The posterior model probability is estimated through models' marginal likelihood and prior probability. The heavy computation burden hinders the implementation of BMA prediction, especially for the elaborated marginal likelihood estimator. For overcoming the computation burden of BMA, an adaptive sparse grid (SG) stochastic collocation method is used to build surrogates for alternative conceptual models through the numerical experiment of a synthetical groundwater model. BMA predictions depend on model posterior weights (or marginal likelihoods), and this study also evaluated four marginal likelihood estimators, including arithmetic mean estimator (AME), harmonic mean estimator (HME), stabilized harmonic mean estimator (SHME), and thermodynamic integration estimator (TIE). The results demonstrate that TIE is accurate in estimating conceptual models' marginal likelihoods. The BMA-TIE has better predictive performance than other BMA predictions. TIE has high stability for estimating conceptual model's marginal likelihood. The repeated estimated conceptual model's marginal likelihoods by TIE have significant less variability than that estimated by other estimators. In addition, the SG surrogates are efficient to facilitate BMA predictions, especially for BMA-TIE. The number of model executions needed for building surrogates is 4.13%, 6.89%, 3.44%, and 0.43% of the required model executions of BMA-AME, BMA-HME, BMA-SHME, and BMA-TIE, respectively.

  7. Estimation of site-dependent spectral decay parameter from seismic array data

    NASA Astrophysics Data System (ADS)

    Park, Seon Jeong; Lee, Jung Mo; Baag, Chang-Eob; Choi, Hoseon; Noh, Myunghyun

    2016-04-01

    The kappa (κ), attenuation of acceleration amplitude at high frequencies, is one of the most important parameters in ground motion evaluation and seismic hazard analysis at sites. κ simply indicates the high frequency decay of the acceleration spectrum in log-linear space. The decay trend can be considered as linear for frequencies higher than a specific frequency, fe which is starting point of the linear regression at the acceleration spectrum. The κ has been investigated using the data from seismic arrays in the south-eastern part of Korea in which nuclear facilities such as power plant and radiological waste depository are located. The seismic array consists of 20 seismic stations and it was operated from October in 2010 through March in 2013. A classical method by Anderson and Hough (1984) and a standard procedure recently suggested by Ktenidou et al. (2013) were applied for computation of κ. There have been just a few studies on spectral attenuation characteristics for Korean Peninsula so far and even those studies utilized small amount of earthquake events whose frequency range was lower than 25 Hz. In this study, the available frequency range is up to 60 Hz based on the sampling rate of 200 and instrument response. This allows us to use a large range of frequencies for κ computations. It is outstanding advantage that we couldn't obtain from earlier κ studies in Korea. In addition, we investigate the regional κ characteristics through calculating the κ using data of 20 seismic stations which are highly extensive seismic array. It allows us to find the more specific attenuation characteristics of high frequencies in study area. Distance and magnitude dependence of κ has also been investigated. Before calculating the κ, the corner frequency (f_c) has been checked so that the fe can lie to the right of fc to exclude source effects in the computation. Manually picked fe is generally in the range of 10 to 25 Hz. The resulting κR is 9.2e-06 and κ0 is 0

  8. Improving the Curie depth estimation through optimizing the spectral block dimensions of the aeromagnetic data in the Sabalan geothermal field

    NASA Astrophysics Data System (ADS)

    Akbar, Somaieh; Fathianpour, Nader

    2016-12-01

    The Curie point depth is of great importance in characterizing geothermal resources. In this study, the Curie iso-depth map was provided using the well-known method of dividing the aeromagnetic dataset into overlapping blocks and analyzing the power spectral density of each block separately. Determining the optimum block dimension is vital in improving the resolution and accuracy of estimating Curie point depth. To investigate the relation between the optimal block size and power spectral density, a forward magnetic modeling was implemented on an artificial prismatic body with specified characteristics. The top, centroid, and bottom depths of the body were estimated by the spectral analysis method for different block dimensions. The result showed that the optimal block size could be considered as the smallest possible block size whose corresponding power spectrum represents an absolute maximum in small wavenumbers. The Curie depth map of the Sabalan geothermal field and its surrounding areas, in the northwestern Iran, was produced using a grid of 37 blocks with different dimensions from 10 × 10 to 50 × 50 km2, which showed at least 50% overlapping with adjacent blocks. The Curie point depth was estimated in the range of 5 to 21 km. The promising areas with the Curie point depths less than 8.5 km are located around Mountain Sabalan encompassing more than 90% of known geothermal resources in the study area. Moreover, the Curie point depth estimated by the improved spectral analysis is in good agreement with the depth calculated from the thermal gradient data measured in one of the exploratory wells in the region.

  9. Optimization of spectral sensitivities of mosaic five-band camera for estimating chromophore densities from skin images including shading and surface reflections

    NASA Astrophysics Data System (ADS)

    Hirose, Misa; Akaho, Rina; Maita, Chikashi; Sugawara, Mai; Tsumura, Norimichi

    2016-06-01

    In this paper, the spectral sensitivities of a mosaic five-band camera were optimized using a numerical skin phantom to perform the separation of chromophore densities, shading and surface reflection. To simulate the numerical skin phantom, the spectral reflectance of skin was first calculated by Monte Carlo simulation of photon migration for different concentrations of melanin, blood and oxygen saturation levels. The melanin and hemoglobin concentration distributions used in the numerical skin phantom were obtained from actual skin images by independent component analysis. The calculated components were assigned as concentration distributions. The spectral sensitivities of the camera were then optimized using a nonlinear technique to estimate the spectral reflectance for skin separation. In this optimization, the spectral sensitivities were assumed to be normally distributed, and the sensor arrangement was identical to that of a conventional mosaic five-band camera. Our findings demonstrated that spectral estimation could be significantly improved by optimizing the spectral sensitivities.

  10. A spectral element method with adaptive segmentation for accurately simulating extracellular electrical stimulation of neurons.

    PubMed

    Eiber, Calvin D; Dokos, Socrates; Lovell, Nigel H; Suaning, Gregg J

    2016-08-19

    The capacity to quickly and accurately simulate extracellular stimulation of neurons is essential to the design of next-generation neural prostheses. Existing platforms for simulating neurons are largely based on finite-difference techniques; due to the complex geometries involved, the more powerful spectral or differential quadrature techniques cannot be applied directly. This paper presents a mathematical basis for the application of a spectral element method to the problem of simulating the extracellular stimulation of retinal neurons, which is readily extensible to neural fibers of any kind. The activating function formalism is extended to arbitrary neuron geometries, and a segmentation method to guarantee an appropriate choice of collocation points is presented. Differential quadrature may then be applied to efficiently solve the resulting cable equations. The capacity for this model to simulate action potentials propagating through branching structures and to predict minimum extracellular stimulation thresholds for individual neurons is demonstrated. The presented model is validated against published values for extracellular stimulation threshold and conduction velocity for realistic physiological parameter values. This model suggests that convoluted axon geometries are more readily activated by extracellular stimulation than linear axon geometries, which may have ramifications for the design of neural prostheses.

  11. Spectral indices of cardiovascular adaptations to short-term simulated microgravity exposure

    NASA Technical Reports Server (NTRS)

    Patwardhan, A. R.; Evans, J. M.; Berk, M.; Grande, K. J.; Charles, J. B.; Knapp, C. F.

    1995-01-01

    We investigated the effects of exposure to microgravity on the baseline autonomic balance in cardiovascular regulation using spectral analysis of cardiovascular variables measured during supine rest. Heart rate, arterial pressure, radial flow, thoracic fluid impedance and central venous pressure were recorded from nine volunteers before and after simulated microgravity, produced by 20 hours of 6 degrees head down bedrest plus furosemide. Spectral powers increased after simulated microgravity in the low frequency region (centered at about 0.03 Hz) in arterial pressure, heart rate and radial flow, and decreased in the respiratory frequency region (centered at about 0.25 Hz) in heart rate. Reduced heart rate power in the respiratory frequency region indicates reduced parasympathetic influence on the heart. A concurrent increase in the low frequency power in arterial pressure, heart rate, and radial flow indicates increased sympathetic influence. These results suggest that the baseline autonomic balance in cardiovascular regulation is shifted towards increased sympathetic and decreased parasympathetic influence after exposure to short-term simulated microgravity.

  12. The Novel Nonlinear Adaptive Doppler Shift Estimation Technique and the Coherent Doppler Lidar System Validation Lidar

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.

    2006-01-01

    The signal processing aspect of a 2-m wavelength coherent Doppler lidar system under development at NASA Langley Research Center in Virginia is investigated in this paper. The lidar system is named VALIDAR (validation lidar) and its signal processing program estimates and displays various wind parameters in real-time as data acquisition occurs. The goal is to improve the quality of the current estimates such as power, Doppler shift, wind speed, and wind direction, especially in low signal-to-noise-ratio (SNR) regime. A novel Nonlinear Adaptive Doppler Shift Estimation Technique (NADSET) is developed on such behalf and its performance is analyzed using the wind data acquired over a long period of time by VALIDAR. The quality of Doppler shift and power estimations by conventional Fourier-transform-based spectrum estimation methods deteriorates rapidly as SNR decreases. NADSET compensates such deterioration in the quality of wind parameter estimates by adaptively utilizing the statistics of Doppler shift estimate in a strong SNR range and identifying sporadic range bins where good Doppler shift estimates are found. The authenticity of NADSET is established by comparing the trend of wind parameters with and without NADSET applied to the long-period lidar return data.

  13. Fault estimation of satellite reaction wheels using covariance based adaptive unscented Kalman filter

    NASA Astrophysics Data System (ADS)

    Rahimi, Afshin; Kumar, Krishna Dev; Alighanbari, Hekmat

    2017-05-01

    Reaction wheels, as one of the most commonly used actuators in satellite attitude control systems, are prone to malfunction which could lead to catastrophic failures. Such malfunctions can be detected and addressed in time if proper analytical redundancy algorithms such as parameter estimation and control reconfiguration are employed. Major challenges in parameter estimation include speed and accuracy of the employed algorithm. This paper presents a new approach for improving parameter estimation with adaptive unscented Kalman filter. The enhancement in tracking speed of unscented Kalman filter is achieved by systematically adapting the covariance matrix to the faulty estimates using innovation and residual sequences combined with an adaptive fault annunciation scheme. The proposed approach provides the filter with the advantage of tracking sudden changes in the system non-measurable parameters accurately. Results showed successful detection of reaction wheel malfunctions without requiring a priori knowledge about system performance in the presence of abrupt, transient, intermittent, and incipient faults. Furthermore, the proposed approach resulted in superior filter performance with less mean squared errors for residuals compared to generic and adaptive unscented Kalman filters, and thus, it can be a promising method for the development of fail-safe satellites.

  14. Contributions to Adaptive Educational Hypermedia Systems via On-Line Learning Style Estimation

    ERIC Educational Resources Information Center

    Botsios, Sotiris; Georgiou, Demetrius; Safouris, Nikolaos

    2008-01-01

    In order to establish an online diagnostic system for Learning Style Estimation that contributes to the adaptation of learning objects, we propose an easily applicable expert system founded on Bayesian Networks. The proposed system makes use of Learning Style theories and associated diagnostic techniques, simultaneously avoiding certain error…

  15. The Use of Unidimensional Item Parameter Estimates of Multidimensional Items in Adaptive Testing.

    ERIC Educational Resources Information Center

    Ackerman, Terry A.

    The purpose of this study was to investigate the effect of using multidimensional items in a computer adaptive test (CAT) setting which assumes a unidimensional item response theory (IRT) framework. Previous research has suggested that the composite of multidimensional abilities being estimated by a unidimensional IRT model is not constant…

  16. Adaptive chirp-Fourier transform for chirp estimation with applications in ISAR imaging of maneuvering targets

    NASA Astrophysics Data System (ADS)

    Xia, Xiang-Gen; Wang, Genyuan; Chen, Victor C.

    2001-03-01

    This paper first reviews some basic properties of the discrete chirp-Fourier transform and then present an adaptive chirp- Fourier transform, a generalization of the amplitude and phase estimation of sinusoids (APES) algorithm proposed by Li and Stoica for sinusoidal signals. We finally applied it to the ISAR imaging of maneuvering targets.

  17. Effect of Rasch Calibration on Ability and DIF Estimation in Computer-Adaptive Tests.

    ERIC Educational Resources Information Center

    Zwick, Rebecca; And Others

    1995-01-01

    In a simulation study of ability and estimation of differential item functioning (DIF) in computerized adaptive tests, Rasch-based DIF statistics were highly correlated with generating DIF, but DIF statistics tended to be slightly smaller than in the three-parameter logistic model analyses. (SLD)

  18. Effects of Calibration Sample Size and Item Bank Size on Ability Estimation in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Sahin, Alper; Weiss, David J.

    2015-01-01

    This study aimed to investigate the effects of calibration sample size and item bank size on examinee ability estimation in computerized adaptive testing (CAT). For this purpose, a 500-item bank pre-calibrated using the three-parameter logistic model with 10,000 examinees was simulated. Calibration samples of varying sizes (150, 250, 350, 500,…

  19. Synergistic angular and spectral estimation of aerosol properties using CHRIS/PROBA-1 and simulated Sentinel-3 data

    NASA Astrophysics Data System (ADS)

    Davies, W. H.; North, P. R. J.

    2015-04-01

    We develop a method to derive aerosol properties over land surfaces using combined spectral and angular information, such as available from ESA Sentinel-3 mission, to be launched in 2015. A method of estimating aerosol optical depth (AOD) using only angular retrieval has previously been demonstrated on data from the ENVISAT and PROBA-1 satellite instruments, and is extended here to the synergistic spectral and angular sampling of Sentinel-3. The method aims to improve the estimation of AOD, and to explore the estimation of fine mode fraction (FMF) and single scattering albedo (SSA) over land surfaces by inversion of a coupled surface/atmosphere radiative transfer model. The surface model includes a general physical model of angular and spectral surface reflectance. An iterative process is used to determine the optimum value of the aerosol properties providing the best fit of the corrected reflectance values to the physical model. The method is tested using hyperspectral, multi-angle Compact High Resolution Imaging Spectrometer (CHRIS) images. The values obtained from these CHRIS observations are validated using ground-based sun photometer measurements. Results from 22 image sets using the synergistic retrieval and improved aerosol models show an RMSE of 0.06 in AOD, reduced to 0.03 over vegetated targets.

  20. F-8C adaptive flight control extensions. [for maximum likelihood estimation

    NASA Technical Reports Server (NTRS)

    Stein, G.; Hartmann, G. L.

    1977-01-01

    An adaptive concept which combines gain-scheduled control laws with explicit maximum likelihood estimation (MLE) identification to provide the scheduling values is described. The MLE algorithm was improved by incorporating attitude data, estimating gust statistics for setting filter gains, and improving parameter tracking during changing flight conditions. A lateral MLE algorithm was designed to improve true air speed and angle of attack estimates during lateral maneuvers. Relationships between the pitch axis sensors inherent in the MLE design were examined and used for sensor failure detection. Design details and simulation performance are presented for each of the three areas investigated.

  1. Adaptation of the University of Wisconsin High Spectral Resolution Lidar for Polarization and Multiple Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.; Piironen, P. K.

    1996-01-01

    Quantitative lidar measurements of aerosol scattering are hampered by the need for calibrations and the problem of correcting observed backscatter profiles for the effects of attenuation. The University of Wisconsin High Spectral Resolution Lidar (HSRL) addresses these problems by separating molecular scattering contributions from the aerosol scattering; the molecular scattering is then used as a calibration target that is available at each point in the observed profiles. While the HSRl approach has intrinsic advantages over competing techniques, realization of these advantages requires implementation of a technically demanding system which is potentially very sensitive to changes in temperature and mechanical alignments. This paper describes a new implementation of the HSRL in an instrumented van which allows measurements during field experiments. The HSRL was modified to measure depolarization. In addition, both the signal amplitude and depolarization variations with receiver field of view are simultaneously measured. This allows for discrimination of ice clouds from water clouds and observation of multiple scattering contributions to the lidar return.

  2. Estimating Model Parameters of Adaptive Software Systems in Real-Time

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Tantawi, Asser; Zhang, Li

    Adaptive software systems have the ability to adapt to changes in workload and execution environment. In order to perform resource management through model based control in such systems, an accurate mechanism for estimating the software system's model parameters is required. This paper deals with real-time estimation of a performance model for adaptive software systems that process multiple classes of transactional workload. First, insights in to the static performance model estimation problem are provided. Then an Extended Kalman Filter (EKF) design is combined with an open queueing network model to dynamically estimate the model parameters in real-time. Specific problems that are encountered in the case of multiple classes of workload are analyzed. These problems arise mainly due to the under-deterministic nature of the estimation problem. This motivates us to propose a modified design of the filter. Insights for choosing tuning parameters of the modified design, i.e., number of constraints and sampling intervals are provided. The modified filter design is shown to effectively tackle problems with multiple classes of workload through experiments.

  3. Evaluation of Various Spectral Inputs for Estimation of Forest Biochemical and Structural Properties from Airborne Imaging Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Homolová, L.; Janoutová, R.; Malenovský, Z.

    2016-06-01

    In this study we evaluated various spectral inputs for retrieval of forest chlorophyll content (Cab) and leaf area index (LAI) from high spectral and spatial resolution airborne imaging spectroscopy data collected for two forest study sites in the Czech Republic (beech forest at Štítná nad Vláří and spruce forest at Bílý Kříž). The retrieval algorithm was based on a machine learning method - support vector regression (SVR). Performance of the four spectral inputs used to train SVR was evaluated: a) all available hyperspectral bands, b) continuum removal (CR) 645 - 710 nm, c) CR 705 - 780 nm, and d) CR 680 - 800 nm. Spectral inputs and corresponding SVR models were first assessed at the level of spectral databases simulated by combined leaf-canopy radiative transfer models PROSPECT and DART. At this stage, SVR models using all spectral inputs provided good performance (RMSE for Cab < 10 μg cm-2 and for LAI < 1.5), with consistently better performance for beech over spruce site. Since application of trained SVRs on airborne hyperspectral images of the spruce site produced unacceptably overestimated values, only the beech site results were analysed. The best performance for the Cab estimation was found for CR bands in range of 645 - 710 nm, whereas CR bands in range of 680 - 800 nm were the most suitable for LAI retrieval. The CR transformation reduced the across-track bidirectional reflectance effect present in airborne images due to large sensor field of view.

  4. Adaptive estimation and control with application to vision-based autonomous formation flight

    NASA Astrophysics Data System (ADS)

    Sattigeri, Ramachandra

    2007-05-01

    Modern Unmanned Aerial Vehicles (UAVs) are equipped with vision sensors because of their light-weight, low-cost characteristics and also their ability to provide a rich variety of information of the environment in which the UAVs are navigating in. The problem of vision based autonomous flight is very difficult and challenging since it requires bringing together concepts from image processing and computer vision, target tracking and state estimation, and flight guidance and control. This thesis focuses on the adaptive state estimation, guidance and control problems involved in vision-based formation flight. Specifically, the thesis presents a composite adaptation approach to the partial state estimation of a class of nonlinear systems with unmodeled dynamics. In this approach, a linear time-varying Kalman filter is the nominal state estimator which is augmented by the output of an adaptive neural network (NN) that is trained with two error signals. The benefit of the proposed approach is in its faster and more accurate adaptation to the modeling errors over a conventional approach. The thesis also presents two approaches to the design of adaptive guidance and control (G&C) laws for line-of-sight formation flight. In the first approach, the guidance and autopilot systems are designed separately and then combined together by assuming time-scale separation. The second approach is based on integrating the guidance and autopilot design process. The developed G&C laws using both approaches are adaptive to unmodeled leader aircraft acceleration and to own aircraft aerodynamic uncertainties. The thesis also presents theoretical justification based on Lyapunov-like stability analysis for integrating the adaptive state estimation and adaptive G&C designs. All the developed designs are validated in nonlinear, 6DOF fixed-wing aircraft simulations. Finally, the thesis presents a decentralized coordination strategy for vision-based multiple-aircraft formation control. In this

  5. Adaptive technique for matching the spectral response in skin lesions' images

    NASA Astrophysics Data System (ADS)

    Pavlova, P.; Borisova, E.; Pavlova, E.; Avramov, L.

    2015-03-01

    The suggested technique is a subsequent stage for data obtaining from diffuse reflectance spectra and images of diseased tissue with a final aim of skin cancer diagnostics. Our previous work allows us to extract patterns for some types of skin cancer, as a ratio between spectra, obtained from healthy and diseased tissue in the range of 380 - 780 nm region. The authenticity of the patterns depends on the tested point into the area of lesion, and the resulting diagnose could also be fixed with some probability. In this work, two adaptations are implemented to localize pixels of the image lesion, where the reflectance spectrum corresponds to pattern. First adapts the standard to the personal patient and second - translates the spectrum white point basis to the relative white point of the image. Since the reflectance spectra and the image pixels are regarding to different white points, a correction of the compared colours is needed. The latest is done using a standard method for chromatic adaptation. The technique follows the steps below: -Calculation the colorimetric XYZ parameters for the initial white point, fixed by reflectance spectrum from healthy tissue; -Calculation the XYZ parameters for the distant white point on the base of image of nondiseased tissue; -Transformation the XYZ parameters for the test-spectrum by obtained matrix; -Finding the RGB values of the XYZ parameters for the test-spectrum according sRGB; Finally, the pixels of the lesion's image, corresponding to colour from the test-spectrum and particular diagnostic pattern are marked with a specific colour.

  6. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation

    PubMed Central

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-01-01

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix ‘R’ and the system noise V-C matrix ‘Q’. Then, the global filter uses R to calculate the information allocation factor ‘β’ for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835

  7. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.

    PubMed

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-07-16

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively.

  8. Representation Method for Spectrally Overlapping Signals in Flow Cytometry Based on Fluorescence Pulse Time-Delay Estimation.

    PubMed

    Zhang, Wenchang; Lou, Xiaoping; Meng, Xiaochen; Zhu, Lianqing

    2016-11-23

    Flow cytometry is being applied more extensively because of the outstanding advantages of multicolor fluorescence analysis. However, the intensity measurement is susceptible to the nonlinearity of the detection method. Moreover, in multicolor analysis, it is impossible to discriminate between fluorophores that spectrally overlap; this influences the accuracy of the fluorescence pulse signal representation. Here, we focus on spectral overlap in two-color analysis, and assume that the fluorescence follows the single exponential decay model. We overcome these problems by analyzing the influence of the spectral overlap quantitatively, which enables us to propose a method of fluorescence pulse signal representation based on time-delay estimation (between fluorescence and scattered pulse signals). First, the time delays are estimated using a modified chirp Z-transform (MCZT) algorithm and a fine interpolation of the correlation peak (FICP) algorithm. Second, the influence of hardware is removed via calibration, in order to acquire the original fluorescence lifetimes. Finally, modulated signals containing phase shifts associated with these lifetimes are created artificially, using a digital signal processing method, and reference signals are introduced in order to eliminate the influence of spectral overlap. Time-delay estimation simulation and fluorescence signal representation experiments are conducted on fluorescently labeled cells. With taking the potentially overlap of autofluorescence as part of the observed fluorescence spectrum, rather than distinguishing the individual influence, the results show that the calculated lifetimes with spectral overlap can be rectified from 8.28 and 4.86 ns to 8.51 and 4.63 ns, respectively, using the comprehensive approach presented in this work. These values agree well with the lifetimes (8.48 and 4.67 ns) acquired for cells stained with single-color fluorochrome. Further, these results indicate that the influence of spectral

  9. Representation Method for Spectrally Overlapping Signals in Flow Cytometry Based on Fluorescence Pulse Time-Delay Estimation

    PubMed Central

    Zhang, Wenchang; Lou, Xiaoping; Meng, Xiaochen; Zhu, Lianqing

    2016-01-01

    Flow cytometry is being applied more extensively because of the outstanding advantages of multicolor fluorescence analysis. However, the intensity measurement is susceptible to the nonlinearity of the detection method. Moreover, in multicolor analysis, it is impossible to discriminate between fluorophores that spectrally overlap; this influences the accuracy of the fluorescence pulse signal representation. Here, we focus on spectral overlap in two-color analysis, and assume that the fluorescence follows the single exponential decay model. We overcome these problems by analyzing the influence of the spectral overlap quantitatively, which enables us to propose a method of fluorescence pulse signal representation based on time-delay estimation (between fluorescence and scattered pulse signals). First, the time delays are estimated using a modified chirp Z-transform (MCZT) algorithm and a fine interpolation of the correlation peak (FICP) algorithm. Second, the influence of hardware is removed via calibration, in order to acquire the original fluorescence lifetimes. Finally, modulated signals containing phase shifts associated with these lifetimes are created artificially, using a digital signal processing method, and reference signals are introduced in order to eliminate the influence of spectral overlap. Time-delay estimation simulation and fluorescence signal representation experiments are conducted on fluorescently labeled cells. With taking the potentially overlap of autofluorescence as part of the observed fluorescence spectrum, rather than distinguishing the individual influence, the results show that the calculated lifetimes with spectral overlap can be rectified from 8.28 and 4.86 ns to 8.51 and 4.63 ns, respectively, using the comprehensive approach presented in this work. These values agree well with the lifetimes (8.48 and 4.67 ns) acquired for cells stained with single-color fluorochrome. Further, these results indicate that the influence of spectral

  10. Adaptive urn designs for estimating several percentiles of a dose--response curve.

    PubMed

    Mugno, Raymond; Zhus, Wei; Rosenberger, William F

    2004-07-15

    Dose--response experiments are crucial in biomedical studies. There are usually multiple objectives in such experiments and among the goals is the estimation of several percentiles on the dose--response curve. Here we present the first non-parametric adaptive design approach to estimate several percentiles simultaneously via generalized Pólya urns. Theoretical properties of these designs are investigated and their performance is gaged by the locally compound optimal designs. As an example, we re-investigated a psychophysical experiment where one of the goals was to estimate the three quartiles. We show that these multiple-objective adaptive designs are more efficient than the original single-objective adaptive design targeting the median only. We also show that urn designs which target the optimal designs are slightly more efficient than those which target the desired percentiles directly. Guidelines are given as to when to use which type of design. Overall we are pleased with the efficiency results and hope compound adaptive designs proposed in this work or their variants may prove to be a viable non-parametric alternative in multiple-objective dose--response studies.

  11. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-03-01

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in

  12. Seasonal Patterns and Remote Spectral Estimation of Canopy Chemistry Across the Oregon Transect

    NASA Technical Reports Server (NTRS)

    Matson, Pamela; Johnson, Lee; Billow, Christine; Miller, John; Pu, Ruiliang

    1994-01-01

    We examined seasonal changes in canopy chemical concentrations and content in conifer forests growing along a climate gradient in western Oregon, as part of the Oregon Transect Ecosystem Research (OTTER) study. The chemical variables were related to seasonal patterns of growth and production. Statistical comparisons of chemical variables with data collected from two different airborne remote-sensing platforms were also carried out. Total nitrogen (N) concentrations in foliage varied significantly both seasonally and among sites; when expressed as content in the forest canopy, nitrogen varied to a much greater extent and was significantly related to aboveground net primary production (r = 0.99). Chlorophyll and free amino acid concentrations varied more strongly than did total N and may have reflected changes in physiological demands for N. Large variations in starch concentrations were measured from pre- to post-budbreak in all conifer sites. Examination of remote-sensing data from two different airborne instruments suggests the potential for remote measurement of some canopy chemicals. Multivariate analysis of high-resolution spectral data in the near infrared region indicated significant correlations between spectral signals and N concentration and canopy N content; the correlation with canopy N content was stronger and was probably associated in part with water absorption features of the forest canopy. The spectral bands that were significantly correlated with lignin concentration and content were similar to bands selected in the other laboratory and airborne studies; starch concentrations were not significantly related to spectral reflectance data. Strong relationships between the spectral position of specific reflectance features in the visible region and chlorophyll were also found.

  13. Adaptive on-line estimation and control of overlay tool bias

    NASA Astrophysics Data System (ADS)

    Martinez, Victor M.; Finn, Karen; Edgar, Thomas F.

    2003-06-01

    Modern lithographic manufacturing processes rely on various types of exposure tools, used in a mix-and-match fashion. The motivation to use older tools alongside state-of-the-art tools is lower cost and one of the tradeoffs is a degradation in overlay performance. While average prices of semiconductor products continue to fall, the cost of manufacturing equipment rises with every product generation. Lithography processing, including the cost of ownership for tools, accounts for roughly 30% of the wafer processing costs, thus the importance of mix-and-match strategies. Exponentially Weighted Moving Average (EWMA) run-by-run controllers are widely used in the semiconductor manufacturing industry. This type of controller has been implemented successfully in volume manufacturing, improving Cpk values dramatically in processes like photolithography and chemical mechanical planarization. This simple, but powerful control scheme is well suited for adding corrections to compensate for Overlay Tool Bias (OTB). We have developed an adaptive estimation technique to compensate for overlay variability due to differences in the processing tools. The OTB can be dynamically calculated for each tool, based on the most recent measurements available, and used to correct the control variables. One approach to tracking the effect of different tools is adaptive modeling and control. The basic premise of an adaptive system is to change or adapt the controller as the operating conditions of the system change. Using closed-loop data, the adaptive control algorithm estimates the controller parameters using a recursive estimation technique. Once an updated model of the system is available, modelbased control becomes feasible. In the simplest scenario, the control law can be reformulated to include the current state of the tool (or its estimate) to compensate dynamically for OTB. We have performed simulation studies to predict the impact of deploying this strategy in production. The results

  14. On the appropriateness of applying chi-square distribution based confidence intervals to spectral estimates of helicopter flyover data

    NASA Technical Reports Server (NTRS)

    Rutledge, Charles K.

    1988-01-01

    The validity of applying chi-square based confidence intervals to far-field acoustic flyover spectral estimates was investigated. Simulated data, using a Kendall series and experimental acoustic data from the NASA/McDonnell Douglas 500E acoustics test, were analyzed. Statistical significance tests to determine the equality of distributions of the simulated and experimental data relative to theoretical chi-square distributions were performed. Bias and uncertainty errors associated with the spectral estimates were easily identified from the data sets. A model relating the uncertainty and bias errors to the estimates resulted, which aided in determining the appropriateness of the chi-square distribution based confidence intervals. Such confidence intervals were appropriate for nontonally associated frequencies of the experimental data but were inappropriate for tonally associated estimate distributions. The appropriateness at the tonally associated frequencies was indicated by the presence of bias error and noncomformity of the distributions to the theoretical chi-square distribution. A technique for determining appropriate confidence intervals at the tonally associated frequencies was suggested.

  15. Doppler Velocity Estimation Based on Spectral Characteristics of M-Sequence-Modulated Signals in Ultrasonic Measurement for Moving Objects

    NASA Astrophysics Data System (ADS)

    Hirata, Shinnosuke; Hachiya, Hiroyuki

    2013-07-01

    Pulse compression using maximum-length sequence (M-sequence) can improve the signal-to-noise ratio (SNR) of the reflected echo and distance resolution in the pulse-echo method. In the case of a moving object, however, the echo is modulated due to the Doppler effect. The Doppler-shifted M-sequence-modulated signal cannot be correlated with the reference signal, which corresponds to the transmitted M-sequence-modulated signal. Therefore, Doppler velocity estimation before the correlation and cross correlation of the received signal with Doppler-shifted reference signals has been proposed. In this paper, the proposed Doppler velocity estimation based on spectral characteristics of cyclic M-sequence-modulated signals is described. Then, the Doppler velocity estimation is evaluated based on computer simulations. The Doppler velocity can be estimated from the Fourier-transformed spectral density of cycles of the M-sequence-modulated signal with high resolution even in noisy environments. According to the evaluation, furthermore, the cycle number and the number of carrier waves in 1 digit of the M-sequence-modulated signal should be decreased to improve the resolution and accuracy when the length of the transmitted signal is determined.

  16. Shear wave attenuation estimated from the spectral decay rate in the vicinity of the Petropavlovsk station, Kamchatka

    NASA Astrophysics Data System (ADS)

    Gusev, A. A.; Guseva, E. M.

    2016-07-01

    The parameters of S-wave attenuation (the total effect of absorption and scattering) near the Petropavlovsk (PET) station in Kamchatka were estimated by means of the spectral method through an original procedure. The spectral method typically analyzes the changes with distance of the shape of spectra of the acceleration records assuming that the acceleration spectrum at the earthquake source is flat. In reality, this assumption is violated: the source acceleration spectra often have a high-frequency cutoff (the source-controlled f max) which limits the spectral working bandwidth. Ignoring this phenomenon not only leads to a broad scatter of the individual estimates but also causes systematic errors in the form of overestimation of losses. In the approach applied in the present study, we primarily estimated the frequency of the mentioned high-frequency cutoff and then constructed the loss estimates only within the frequency range where the source spectrum is approximately flat. The shape of the source spectrum was preliminarily assessed by the approximate loss compensation technique. For this purpose, we used the tentative attenuation estimates which are close to the final ones. The difference in the logarithms of the spectral amplitudes at the edges of the working bandwidth is the input for calculating the attenuation. We used the digital accelerograms from the PET station, with 80 samples per second digitization rate, and based on them, we calculated the averaged spectrum of the S-waves as the root mean square along two horizontal components. Our analysis incorporates 384 spectra from the local earthquakes with M = 4-6.5 at the hypocentral distances ranging from 80 to 220 km. By applying the nonlinear least-square method, we found the following parameters of the loss model: the Q-factor Q 0 = 156 ± 33 at frequency f = 1 Hz for the distance interval r = 0-100 km; the exponent in the power-law relationship describing the growth of the Q-factor with frequency,

  17. Efficient global wave propagation adapted to 3-D structural complexity: a pseudospectral/spectral-element approach

    NASA Astrophysics Data System (ADS)

    Leng, Kuangdai; Nissen-Meyer, Tarje; van Driel, Martin

    2016-12-01

    We present a new, computationally efficient numerical method to simulate global seismic wave propagation in realistic 3-D Earth models. We characterize the azimuthal dependence of 3-D wavefields in terms of Fourier series, such that the 3-D equations of motion reduce to an algebraic system of coupled 2-D meridian equations, which is then solved by a 2-D spectral element method (SEM). Computational efficiency of such a hybrid method stems from lateral smoothness of 3-D Earth models and axial singularity of seismic point sources, which jointly confine the Fourier modes of wavefields to a few lower orders. We show novel benchmarks for global wave solutions in 3-D structures between our method and an independent, fully discretized 3-D SEM with remarkable agreement. Performance comparisons are carried out on three state-of-the-art tomography models, with seismic period ranging from 34 s down to 11 s. It turns out that our method has run up to two orders of magnitude faster than the 3-D SEM, featured by a computational advantage expanding with seismic frequency.

  18. Aberration estimation from single point image in a simulated adaptive optics system.

    PubMed

    Grisan, Enrico; Frassetto, Fabio; Da Deppo, Vania; Naletto, Giampiero; Ruggeri, Alfredo

    2005-01-01

    Adaptive optics has been recently applied for the development of ophthalmic devices, with the main objective of obtaining higher resolution images for diagnostic purposes or ideally correcting high-order eye aberrations. The core of every adaptive optics systems is an optical device that is able to modify the wavefront shape of the light entering a system: once the shape of the incoming wavefront has been estimated, by means of this device it is possible to correct the aberrations introduced along the optical path. The aim of this paper is to demonstrate the feasibility, although in a simulated system, of estimating and correcting the wavefront shape simply by means of an iterative software analysis of a single point source image, thus avoiding expensive wavefront sensors or the burdensome computation of the PSF of the optical system. To test the proposed algorithm, a simple optical system has been simulated with a ray-tracing software and a program to estimate the Zernike coefficients of the simulated aberration from the analysis of the source image has been developed. Numerical indexes were used to evaluate the capability of the software of correctly estimating the Zernike coefficients. Even if only defocus, astigmatism and coma were considered, the very satisfactory results obtained confirm the soundness of this new approach and encourage further work in this direction, in order to develop a system able to estimate also spherical aberration, tilt and field curvature. An implementation of this aberration estimation in a real AO system is also currently in progress.

  19. Estimates of leaf area index from spectral reflectance of wheat under different cultural practices and solar angle

    NASA Technical Reports Server (NTRS)

    Asrar, G.; Kanemasu, E. T.; Yoshida, M.

    1985-01-01

    The influence of management practices and solar illumination angle on the leaf area index (LAI) was estimated from measurements of wheat canopy reflectance evaluated by two methods, a regression formula and an indirect technique. The date of planting and the time of irrigation in relation to the stage of plant growth were found to have significant effects on the development of leaves in spring wheat. A reduction in soil moisture adversely affected both the duration and magnitude of the maximum LAI for late planting dates. In general, water stress during vegetative stages resulted in a reduction in maximum LAI, while water stress during the reproductive period shortened the duration of green LAI in spring wheat. Canopy geometry and solar angle also affected the spectral properties of the canopies, and hence the estimated LAI. Increase in solar zenith angles resulted in a general increase in estimated LAI obtained from both methods.

  20. Effects of Estimation Bias on Multiple-Category Classification with an IRT-Based Adaptive Classification Procedure

    ERIC Educational Resources Information Center

    Yang, Xiangdong; Poggio, John C.; Glasnapp, Douglas R.

    2006-01-01

    The effects of five ability estimators, that is, maximum likelihood estimator, weighted likelihood estimator, maximum a posteriori, expected a posteriori, and Owen's sequential estimator, on the performances of the item response theory-based adaptive classification procedure on multiple categories were studied via simulations. The following…

  1. Experimental Estimation of CLASP Spatial and Spectral Resolutions: Results of the Instrument's Optical Alignment

    NASA Technical Reports Server (NTRS)

    Giono, G.; Katsukawa, Y.; Ishikawa, R.; Narukage, N.; Bando, T.; Kano, R.; Suematsu, Y.; Winebarger, A.; Kobayashi, K.; Auchere, F.

    2015-01-01

    The Chromospheric Lyman-Alpha SpectroPolarimeter is a sounding rocket experiment design to measure for the first time the polarization signal of the Lyman-Alpha line (121.6nm), emitted in the solar upper-chromosphere and transition region. This instrument aims to detect the Hanle effect's signature hidden in the Ly-alpha polarization, as a tool to probe the chromospheric magnetic field. Hence, an unprecedented polarization accuracy is needed ((is) less than 10 (exp -3). Nevertheless, spatial and spectral resolutions are also crucial to observe chhromospheric feature such as spicules, and to have precise measurement of the Ly-alpha line core and wings. Hence, this poster will present how the telescope and the spectrograph were separately aligned, and their combined spatial and spectral resolutions.

  2. Numerical estimation of the total phase shift in complex spectral OCT in vivo imaging

    NASA Astrophysics Data System (ADS)

    Cyganek, Marta; Wojtkowski, Maciej; Targowski, Piotr; Kowalczyk, Andrzej

    2004-07-01

    Complex Spectral Optical Tomography (CSOCT) in comparison to ordinary SOCT produces images free of parasitic mirror terms which results in double extension of the measurement range. This technique, however, requires the exact knowledge about the values of the introduced phase shifts in consecutive measurements. Involuntary object movements, which shift the phase from one measurement to another are always present in in vivo experiments. This introduces residual ghosts in cross-sectional images. Here we present a new method of data analysis, which allows determining the real phase shifts introduced during the measurement, and which helps to reduce the ghost effect. Two-dimensional cross-sectional in vivo images of human eye and skin obtained with the aid of this improved complex spectral OCT technique are shown. The method is free of polychromatic phase error originating from the wavelength dependence of the phase shift introduced by the reference mirror translation.

  3. Estimation of the effective elastic thickness of the lithosphere using inverse spectral methods: The state of the art

    NASA Astrophysics Data System (ADS)

    Kirby, Jon F.

    2014-09-01

    The effective elastic thickness (Te) is a geometric measure of the flexural rigidity of the lithosphere, which describes the resistance to bending under the application of applied, vertical loads. As such, it is likely that its magnitude has a major role in governing the tectonic evolution of both continental and oceanic plates. Of the several ways to estimate Te, one has gained popularity in the 40 years since its development because it only requires gravity and topography data, both of which are now readily available and provide excellent coverage over the Earth and even the rocky planets and moons of the solar system. This method, the ‘inverse spectral method’, develops measures of the relationship between observed gravity and topography data in the spatial frequency (wavenumber) domain, namely the admittance and coherence. The observed measures are subsequently inverted against the predictions of thin, elastic plate models, giving estimates of Te and other lithospheric parameters. This article provides a review of inverse spectral methodology and the studies that have used it. It is not, however, concerned with the geological or geodynamic significance or interpretation of Te, nor does it discuss and compare Te results from different methods in different provinces. Since the three main aspects of the subject are thin elastic plate flexure, spectral analysis, and inversion methods, the article broadly follows developments in these. The review also covers synthetic plate modelling, and concludes with a summary of the controversy currently surrounding inverse spectral methods, whether or not the large Te values returned in cratonic regions are artefacts of the method, or genuine observations.

  4. Practical Implementation of Multiple Model Adaptive Estimation Using Neyman-Pearson Based Hypothesis Testing and Spectral Estimation Tools

    DTIC Science & Technology

    1996-09-01

    Algorithm ..................................... 18 5 . Alternative Method of Computing a Second Kalman Filter Residual ..................... 39 6. Alternative...Aileron Failure ......... 115 4. Kalman Filter Residual Statistical Comparison for the Case of a Rudder Failure .......... 115 5 . Kalman Filter Residual...3 U vdodty 170 ..................................................... 160 -- go .................. .......... ....................... 194 2001 208 4 5

  5. Estimation of Biomass and Canopy Height in Bermudagrass, Alfalfa, and Wheat Using Ultrasonic, Laser, and Spectral Sensors

    PubMed Central

    Pittman, Jeremy Joshua; Arnall, Daryl Brian; Interrante, Sindy M.; Moffet, Corey A.; Butler, Twain J.

    2015-01-01

    Non-destructive biomass estimation of vegetation has been performed via remote sensing as well as physical measurements. An effective method for estimating biomass must have accuracy comparable to the accepted standard of destructive removal. Estimation or measurement of height is commonly employed to create a relationship between height and mass. This study examined several types of ground-based mobile sensing strategies for forage biomass estimation. Forage production experiments consisting of alfalfa (Medicago sativa L.), bermudagrass [Cynodon dactylon (L.) Pers.], and wheat (Triticum aestivum L.) were employed to examine sensor biomass estimation (laser, ultrasonic, and spectral) as compared to physical measurements (plate meter and meter stick) and the traditional harvest method (clipping). Predictive models were constructed via partial least squares regression and modeled estimates were compared to the physically measured biomass. Least significant difference separated mean estimates were examined to evaluate differences in the physical measurements and sensor estimates for canopy height and biomass. Differences between methods were minimal (average percent error of 11.2% for difference between predicted values versus machine and quadrat harvested biomass values (1.64 and 4.91 t·ha−1, respectively), except at the lowest measured biomass (average percent error of 89% for harvester and quad harvested biomass < 0.79 t·ha−1) and greatest measured biomass (average percent error of 18% for harvester and quad harvested biomass >6.4 t·ha−1). These data suggest that using mobile sensor-based biomass estimation models could be an effective alternative to the traditional clipping method for rapid, accurate in-field biomass estimation. PMID:25635415

  6. Adaptive stiffness estimation for compliant robotic manipulation using stochastic disturbance models

    NASA Astrophysics Data System (ADS)

    Coutinho, Fernanda; Cortesão, Rui

    2011-08-01

    To achieve haptic telepresence and proper contact behaviour, the control action of a robotic manipulator must be designed with respect to contact parameters. Unfortunately, it is hard to know these parameters exactly in unknown or partly known environments. In this case, contact instability and poor dynamic accuracy can arise due to the presence of modelling errors in the control design. To overcome these problems, online estimation of the relevant contact parameters can be performed, with corresponding adaptation of control laws. This article presents an algorithm for online stiffness estimation for compliant robotic manipulation based on the extended state-space representation of the system and force signals. No position or velocity measurements are required. The algorithm, supported by theoretical analysis, uses offline data concerning several stiffness mismatch scenarios and, through a least square error analysis, computes an estimate of the stiffness value. Simulation results are presented, with fast and accurate estimation even in the presence of noise, highlighting the merits of the method.

  7. Gait Phase Estimation Based on Noncontact Capacitive Sensing and Adaptive Oscillators.

    PubMed

    Zheng, Enhao; Manca, Silvia; Yan, Tingfang; Parri, Andrea; Vitiello, Nicola; Wang, Qining

    2017-02-23

    This paper presents a novel strategy aiming to acquire an accurate and walking-speed-adaptive estimation of the gait phase through noncontact capacitive sensing and adaptive oscillators (AOs). The capacitive sensing system is designed with two sensing cuffs that can measure the leg muscle shape changes during walking. The system can be dressed above the clothes and free human skin from contacting to electrodes. In order to track the capacitance signals, the gait phase estimator is designed based on the AOs dynamic system due to its ability of synchronizing with quasi-periodic signals. After the implementation of the whole system, we firstly evaluated the off-line estimation performance by experiments with twelve healthy subjects walking on treadmill with changing speeds. The strategy achieved an accurate and consistent gait phase estimation with only one channel of capacitance signal. The average root mean square errors in one stride were 0.19 rad (3.0% of one gait cycle) for constant walking speeds and 0.31 rad (4.9% of one gait cycle) for speed transitions even after the subjects re-wore the sensing cuffs. We then validated our strategy in a real-time gait phase estimation task with three subjects walking with changing speeds. Our study indicates that the strategy based on capacitive sensing and AOs is a promising alternative for the control of exoskeleton/orthosis.

  8. In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain OCT and an efficient delay estimator

    NASA Astrophysics Data System (ADS)

    Aranha dos Santos, Valentin; Schmetterer, Leopold; Gröschl, Martin; Garhofer, Gerhard; Werkmeister, René M.

    2016-03-01

    Dry eye syndrome is a highly prevalent disease of the ocular surface characterized by an instability of the tear film. Traditional methods used for the evaluation of tear film stability are invasive or show limited repeatability. Here we propose a new noninvasive approach to measure tear film thickness using an efficient delay estimator and ultrahigh resolution spectral domain OCT. Silicon wafer phantoms with layers of known thickness and group index were used to validate the estimator-based thickness measurement. A theoretical analysis of the fundamental limit of the precision of the estimator is presented and the analytical expression of the Cramér-Rao lower bound (CRLB), which is the minimum variance that may be achieved by any unbiased estimator, is derived. The performance of the estimator against noise was investigated using simulations. We found that the proposed estimator reaches the CRLB associated with the OCT amplitude signal. The technique was applied in vivo in healthy subjects and dry eye patients. Series of tear film thickness maps were generated, allowing for the visualization of tear film dynamics. Our results show that the central tear film thickness precisely measured in vivo with a coefficient of variation of about 0.65% and that repeatable tear film dynamics can be observed. The presented method has the potential of being an alternative to breakup time measurements (BUT) and could be used in clinical setting to study patients with dry eye disease and monitor their treatments.

  9. Towards Real-Time Maneuver Detection: Automatic State and Dynamics Estimation with the Adaptive Optimal Control Based Estimator

    NASA Astrophysics Data System (ADS)

    Lubey, D.; Scheeres, D.

    Tracking objects in Earth orbit is fraught with complications. This is due to the large population of orbiting spacecraft and debris that continues to grow, passive (i.e. no direct communication) and data-sparse observations, and the presence of maneuvers and dynamics mismodeling. Accurate orbit determination in this environment requires an algorithm to capture both a system's state and its state dynamics in order to account for mismodelings. Previous studies by the authors yielded an algorithm called the Optimal Control Based Estimator (OCBE) - an algorithm that simultaneously estimates a system's state and optimal control policies that represent dynamic mismodeling in the system for an arbitrary orbit-observer setup. The stochastic properties of these estimated controls are then used to determine the presence of mismodelings (maneuver detection), as well as characterize and reconstruct the mismodelings. The purpose of this paper is to develop the OCBE into an accurate real-time orbit tracking and maneuver detection algorithm by automating the algorithm and removing its linear assumptions. This results in a nonlinear adaptive estimator. In its original form the OCBE had a parameter called the assumed dynamic uncertainty, which is selected by the user with each new measurement to reflect the level of dynamic mismodeling in the system. This human-in-the-loop approach precludes real-time application to orbit tracking problems due to their complexity. This paper focuses on the Adaptive OCBE, a version of the estimator where the assumed dynamic uncertainty is chosen automatically with each new measurement using maneuver detection results to ensure that state uncertainties are properly adjusted to account for all dynamic mismodelings. The paper also focuses on a nonlinear implementation of the estimator. Originally, the OCBE was derived from a nonlinear cost function then linearized about a nominal trajectory, which is assumed to be ballistic (i.e. the nominal optimal

  10. Adaptive Estimation of Active Contour Parameters Using Convolutional Neural Networks and Texture Analysis.

    PubMed

    Hoogi, Assaf; Subramaniam, Arjun; Veerapaneni, Rishi; Rubin, Daniel

    2016-11-11

    In this paper, we propose a generalization of the level set segmentation approach by supplying a novel method for adaptive estimation of active contour parameters. The presented segmentation method is fully automatic once the lesion has been detected. First, the location of the level set contour relative to the lesion is estimated using a convolutional neural network (CNN). The CNN has two convolutional layers for feature extraction, which lead into dense layers for classification. Second, the output CNN probabilities are then used to adaptively calculate the parameters of the active contour functional during the segmentation process. Finally, the adaptive window size surrounding each contour point is re-estimated by an iterative process that considers lesion size and spatial texture. We demonstrate the capabilities of our method on a dataset of 164 MRI and 112 CT images of liver lesions that includes low contrast and heterogeneous lesions as well as noisy images. To illustrate the strength of our method, we evaluated it against state of the art CNNbased and active contour techniques. For all cases, our method, as assessed by Dice similarity coefficients, performed significantly better than currently available methods. An average Dice improvement of 0.27 was found across the entire dataset over all comparisons. We also analyzed two challenging subsets of lesions and obtained a significant Dice improvement of ����.�������� with our method (p < 0.001, Wilcoxon).

  11. Adaptive Estimation of Active Contour Parameters Using Convolutional Neural Networks and Texture Analysis.

    PubMed

    Hoogi, Assaf; Subramaniam, Arjun; Veerapaneni, Rishi; Rubin, Daniel

    2016-11-11

    In this paper, we propose a generalization of the level set segmentation approach by supplying a novel method for adaptive estimation of active contour parameters. The presented segmentation method is fully automatic once the lesion has been detected. First, the location of the level set contour relative to the lesion is estimated using a convolutional neural network (CNN). The CNN has two convolutional layers for feature extraction, which lead into dense layers for classification. Second, the output CNN probabilities are then used to adaptively calculate the parameters of the active contour functional during the segmentation process. Finally, the adaptive window size surrounding each contour point is re-estimated by an iterative process that considers lesion size and spatial texture. We demonstrate the capabilities of our method on a dataset of 164 MRI and 112 CT images of liver lesions that includes low contrast and heterogeneous lesions as well as noisy images. To illustrate the strength of our method, we evaluated it against state of the art CNNbased and active contour techniques. For all cases, our method, as assessed by Dice similarity coefficients, performed significantly better than currently available methods. An average Dice improvement of 0.27 was found across the entire dataset over all comparisons. We also analyzed two challenging subsets of lesions and obtained a significant Dice improvement of 0.24 with our method (p < 0.001, Wilcoxon).

  12. Multilevel Error Estimation and Adaptive h-Refinement for Cartesian Meshes with Embedded Boundaries

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Berger, M. J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    This paper presents the development of a mesh adaptation module for a multilevel Cartesian solver. While the module allows mesh refinement to be driven by a variety of different refinement parameters, a central feature in its design is the incorporation of a multilevel error estimator based upon direct estimates of the local truncation error using tau-extrapolation. This error indicator exploits the fact that in regions of uniform Cartesian mesh, the spatial operator is exactly the same on the fine and coarse grids, and local truncation error estimates can be constructed by evaluating the residual on the coarse grid of the restricted solution from the fine grid. A new strategy for adaptive h-refinement is also developed to prevent errors in smooth regions of the flow from being masked by shocks and other discontinuous features. For certain classes of error histograms, this strategy is optimal for achieving equidistribution of the refinement parameters on hierarchical meshes, and therefore ensures grid converged solutions will be achieved for appropriately chosen refinement parameters. The robustness and accuracy of the adaptation module is demonstrated using both simple model problems and complex three dimensional examples using meshes with from 10(exp 6), to 10(exp 7) cells.

  13. Application of maximum-entropy spectral estimation to deconvolution of XPS data. [X-ray Photoelectron Spectroscopy

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Klein, J. D.; Barton, J. J.; Grunthaner, F. J.

    1981-01-01

    A comparison is made between maximum-entropy spectral estimation and traditional methods of deconvolution used in electron spectroscopy. The maximum-entropy method is found to have higher resolution-enhancement capabilities and, if the broadening function is known, can be used with no adjustable parameters with a high degree of reliability. The method and its use in practice are briefly described, and a criterion is given for choosing the optimal order for the prediction filter based on the prediction-error power sequence. The method is demonstrated on a test case and applied to X-ray photoelectron spectra.

  14. Linear Spectral Mixture Analysis of SPOT-7 for Tea Yield Estimation in Pagilaran Estate, Batang Central Java

    NASA Astrophysics Data System (ADS)

    Fauziana, F.; Danoedoro, P.; Heru Murti, S.

    2016-11-01

    Remote sensing has been utilized especially for agriculture yield estimation. Tea yield is effected by biology characteristic including crown density. The challenge of tea yield estimation uses multispectral remote sensing data is the presence of object beside tea. This mixed pixel problem can disturb spectrally to recognize tea tree, so it is necessary to use pixel approach. The aims of this research are (1) to determine fraction of tea and non-tea; (2) to estimate crown density percentage based on tea Normalized Difference Vegetation Index (NDVI); (3) to estimate tea yield based on crown density. SPOT-7 was utilized for this application. Linear Spectral Mixture Analysis (LSMA) has applied to determination fraction percentage each pixel. Each pure endmember was read the NDVI value. NDVI of tea tree has sensitivity with crown density. Counting tea NDVI was applied for NDVI mixed pixel. Linear regression analysis has applied for estimating crown density and tea yield. The results of this research are SPOT -7 which can recognize tea, tree shade, impervious and soil each pixel with accuracy 99,84%. Although it produced high accuracy, it has overestimate at certain tea estate because of the attendance of impervious. Regression analysis of crown density and NDVI showed coeffisien determination 52%. This model result 4-100% crown density percentage, where crown density 4-55% were located beside tea tree or pruned-tea block. Regression analysis of crown density and tea yield relation showed coeffisien determination 45%. This model produced 161,34-1296,8 kg/ha. Each this model resulted Root Mean Square Error (RMSE) 14,27% and 551,52 kg/ha.

  15. Estimation of Tissue Optical Parameters with Hyperspectral Imaging and Spectral Unmixing.

    PubMed

    Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2015-03-17

    Early detection of oral cancer and its curable precursors can improve patient survival and quality of life. Hyperspectral imaging (HSI) holds the potential for noninvasive early detection of oral cancer. The quantification of tissue chromophores by spectral unmixing of hyperspectral images could provide insights for evaluating cancer progression. In this study, non-negative matrix factorization has been applied for decomposing hyperspectral images into physiologically meaningful chromophore concentration maps. The approach has been validated by computer-simulated hyperspectral images and in vivo tumor hyperspectral images from a head and neck cancer animal model.

  16. Estimation of tissue optical parameters with hyperspectral imaging and spectral unmixing

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Chen, Zhuo G.; Fei, Baowei

    2015-03-01

    Early detection of oral cancer and its curable precursors can improve patient survival and quality of life. Hyperspectral imaging (HSI) holds the potential for noninvasive early detection of oral cancer. The quantification of tissue chromophores by spectral unmixing of hyperspectral images could provide insights for evaluating cancer progression. In this study, non-negative matrix factorization has been applied for decomposing hyperspectral images into physiologically meaningful chromophore concentration maps. The approach has been validated by computer-simulated hyperspectral images and in vivo tumor hyperspectral images from a head and neck cancer animal model.

  17. Estimation of Tissue Optical Parameters with Hyperspectral Imaging and Spectral Unmixing

    PubMed Central

    Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2015-01-01

    Early detection of oral cancer and its curable precursors can improve patient survival and quality of life. Hyperspectral imaging (HSI) holds the potential for noninvasive early detection of oral cancer. The quantification of tissue chromophores by spectral unmixing of hyperspectral images could provide insights for evaluating cancer progression. In this study, non-negative matrix factorization has been applied for decomposing hyperspectral images into physiologically meaningful chromophore concentration maps. The approach has been validated by computer-simulated hyperspectral images and in vivo tumor hyperspectral images from a head and neck cancer animal model. PMID:26855467

  18. Acclimation of Haslea ostrearia to light of different spectral qualities - confirmation of 'chromatic adaptation' in diatoms.

    PubMed

    Mouget, Jean-Luc; Rosa, Philippe; Tremblin, Gérard

    2004-07-19

    The marine diatom Haslea ostrearia was cultured under light of different qualities, white (WL), blue (BL), green (GL), yellow (YL), red (RL), and far-red (FRL) and at two irradiance levels, low and high (20 and 100 micromolphotonsm(-2)s(-1), respectively). The effects of the different light regimes were studied on growth, pigment content, and photosynthesis, estimated by the modulated fluorescence of chlorophyll, as relative electron transport rate (rETR). For all the light qualities studied, growth rates were higher at high irradiance. Compared to the corresponding WL controls, growth was higher in BL and lower in YL at low irradiance, and lower in YL and GL at high irradiance. Except for YL, almost all the pigment contents of the cells were lower at high irradiance. At low irradiance, cell pigment contents (chlorophyll a and c, fucoxanthin) and pigment ratios (in function of chlorophyll a) were lower in YL, RL, and FRL. Whatever the irradiance level, the maximum PSII quantum efficiency (F(v)/F(m) remained almost constant for WL, BL, and GL. Other fluorescence parameters (photochemical quenching, rETR(max), and alpha, the maximum light utilization coefficient) were lower in GL, YL, RL, and FRL, at low irradiance. Although not statistically significant, BL caused an increase in these fluorescence parameters. These findings are interpreted as evidence that inverse chromatic acclimation occurs in diatoms.

  19. Adaptive sampling of CT data for myocardial blood flow estimation from dose-reduced dynamic CT

    NASA Astrophysics Data System (ADS)

    Modgil, Dimple; Bindschadler, Michael D.; Alessio, Adam M.; La Rivière, Patrick J.

    2015-03-01

    Quantification of myocardial blood flow (MBF) can aid in the diagnosis and treatment of coronary artery disease (CAD). However, there are no widely accepted clinical methods for estimating MBF. Dynamic CT holds the promise of providing a quick and easy method to measure MBF quantitatively, however the need for repeated scans has raised concerns about the potential for high radiation dose. In our previous work, we explored techniques to reduce the patient dose by either uniformly reducing the tube current or by uniformly reducing the number of temporal frames in the dynamic CT sequence. These dose reduction techniques result in very noisy data, which can give rise to large errors in MBF estimation. In this work, we seek to investigate whether nonuniformly varying the tube current or sampling intervals can yield more accurate MBF estimates. Specifically, we try to minimize the dose and obtain the most accurate MBF estimate through addressing the following questions: when in the time attenuation curve (TAC) should the CT data be collected and at what tube current(s). We hypothesize that increasing the sampling rate and/or tube current during the time frames when the myocardial CT number is most sensitive to the flow rate, while reducing them elsewhere, can achieve better estimation accuracy for the same dose. We perform simulations of contrast agent kinetics and CT acquisitions to evaluate the relative MBF estimation performance of several clinically viable adaptive acquisition methods. We found that adaptive temporal and tube current sequences can be performed that impart an effective dose of about 5 mSv and allow for reductions in MBF estimation RMSE on the order of 11% compared to uniform acquisition sequences with comparable or higher radiation doses.

  20. Millimeter Wave MIMO Channel Estimation Using Overlapped Beam Patterns and Rate Adaptation

    NASA Astrophysics Data System (ADS)

    Kokshoorn, Matthew; Chen, He; Wang, Peng; Li, Yonghui; Vucetic, Branka

    2017-02-01

    This paper is concerned with the channel estimation problem in Millimeter wave (mmWave) wireless systems with large antenna arrays. By exploiting the inherent sparse nature of the mmWave channel, we first propose a fast channel estimation (FCE) algorithm based on a novel overlapped beam pattern design, which can increase the amount of information carried by each channel measurement and thus reduce the required channel estimation time compared to the existing non-overlapped designs. We develop a maximum likelihood (ML) estimator to optimally extract the path information from the channel measurements. Then, we propose a novel rate-adaptive channel estimation (RACE) algorithm, which can dynamically adjust the number of channel measurements based on the expected probability of estimation error (PEE). The performance of both proposed algorithms is analyzed. For the FCE algorithm, an approximate closed-form expression for the PEE is derived. For the RACE algorithm, a lower bound for the minimum signal energy-to-noise ratio required for a given number of channel measurements is developed based on the Shannon-Hartley theorem. Simulation results show that the FCE algorithm significantly reduces the number of channel estimation measurements compared to the existing algorithms using non-overlapped beam patterns. By adopting the RACE algorithm, we can achieve up to a 6dB gain in signal energy-to-noise ratio for the same PEE compared to the existing algorithms.

  1. Estimation of dimensions and orientation of multiple riverine dune generations using spectral moments

    NASA Astrophysics Data System (ADS)

    Lisimenka, Aliaksandr; Kubicki, Adam

    2017-02-01

    A new spectral analysis technique is proposed for rhythmic bedform quantification, based on the 2D Fourier transform involving the calculation of a set of low-order spectral moments. The approach provides a tool for efficient quantification of bedform length and height as well as spatial crest-line alignment. Contrary to the conventional method, it not only describes the most energetic component of an undulating seabed surface but also retrieves information on its secondary structure without application of any band-pass filter of which the upper and lower cut-off frequencies are a priori unknown. Validation is based on bathymetric data collected in the main Vistula River mouth area (Przekop Wisły), Poland. This revealed two generations (distinct groups) of dunes which are migrating seawards along distinct paths, probably related to the hydrological regime of the river. The data enable the identification of dune divergence and convergence zones. The approach proved successful in the parameterisation of topographic roughness, an essential aspect in numerical modelling studies.

  2. Calibrating spectral estimation for the LISA Technology Package with multichannel synthetic noise generation

    NASA Astrophysics Data System (ADS)

    Ferraioli, Luigi; Hueller, Mauro; Vitale, Stefano; Heinzel, Gerhard; Hewitson, Martin; Monsky, Anneke; Nofrarias, Miquel

    2010-08-01

    The scientific objectives of the LISA Technology Package experiment on board of the LISA Pathfinder mission demand accurate calibration and validation of the data analysis tools in advance of the mission launch. The level of confidence required in the mission outcomes can be reached only by intensively testing the tools on synthetically generated data. A flexible procedure allowing the generation of a cross-correlated stationary noise time series was set up. A multichannel time series with the desired cross-correlation behavior can be generated once a model for a multichannel cross-spectral matrix is provided. The core of the procedure comprises a noise coloring, multichannel filter designed via a frequency-by-frequency eigendecomposition of the model cross-spectral matrix and a subsequent fit in the Z domain. The common problem of initial transients in a filtered time series is solved with a proper initialization of the filter recursion equations. The noise generator performance was tested in a two-dimensional case study of the closed-loop LISA Technology Package dynamics along the two principal degrees of freedom.

  3. Spectral analysis of aeromagnetic profiles for depth estimation principles, software, and practical application

    USGS Publications Warehouse

    Sadek, H.S.; Rashad, S.M.; Blank, H.R.

    1984-01-01

    If proper account is taken of the constraints of the method, it is capable of providing depth estimates to within an accuracy of about 10 percent under suitable circumstances. The estimates are unaffected by source magnetization and are relatively insensitive to assumptions as to source shape or distribution. The validity of the method is demonstrated by analyses of synthetic profiles and profiles recorded over Harrat Rahat, Saudi Arabia, and Diyur, Egypt, where source depths have been proved by drilling.

  4. An adaptive Bayesian inference algorithm to estimate the parameters of a hazardous atmospheric release

    NASA Astrophysics Data System (ADS)

    Rajaona, Harizo; Septier, François; Armand, Patrick; Delignon, Yves; Olry, Christophe; Albergel, Armand; Moussafir, Jacques

    2015-12-01

    In the eventuality of an accidental or intentional atmospheric release, the reconstruction of the source term using measurements from a set of sensors is an important and challenging inverse problem. A rapid and accurate estimation of the source allows faster and more efficient action for first-response teams, in addition to providing better damage assessment. This paper presents a Bayesian probabilistic approach to estimate the location and the temporal emission profile of a pointwise source. The release rate is evaluated analytically by using a Gaussian assumption on its prior distribution, and is enhanced with a positivity constraint to improve the estimation. The source location is obtained by the means of an advanced iterative Monte-Carlo technique called Adaptive Multiple Importance Sampling (AMIS), which uses a recycling process at each iteration to accelerate its convergence. The proposed methodology is tested using synthetic and real concentration data in the framework of the Fusion Field Trials 2007 (FFT-07) experiment. The quality of the obtained results is comparable to those coming from the Markov Chain Monte Carlo (MCMC) algorithm, a popular Bayesian method used for source estimation. Moreover, the adaptive processing of the AMIS provides a better sampling efficiency by reusing all the generated samples.

  5. Event synchronous adaptive filter based atrial activity estimation in single-lead atrial fibrillation electrocardiograms.

    PubMed

    Lee, Jeon; Song, Mi-hye; Shin, Dong-gu; Lee, Kyoung-joung

    2012-08-01

    In this paper, an event synchronous adaptive filter (ESAF) is proposed to estimate atrial activity (AA) from a single-lead AF ECG in real time. The proposed ESAF is a kind of adaptive filter designed to have the reference fed with the impulse train synchronized with the R peak in a raw atrial fibrillation (AF) ECG and to input the timely delayed AF ECG into the primary input. To assess the performance, for ten simulated AF ECGs, the cross-correlation coefficient (ρ) and the normalized mean square error (NMSE) between estimated AAs and ten original simulated AAs were calculated and, for ten real AF ECGs, the ventricular residue (VR) in QRS interval and similarity (S) in non-QRS interval were computed. As a result, these four parameters were revealed as ρ = 0.938 ± 0.016 and NMSE = 0.243 ± 0.051 for simulated AF ECGs and VR = 1.190 ± 0.476 and S = 0.967 ± 0.041 for real AF ECGs. These results were found to be better than those of the averaged beat subtraction (ABS) method, which had been previously considered the only way to estimate AA automatically in real time. In conclusion, even with single-lead AF ECGs, the proposed method estimated AAs accurately and calculated the atrial fibrillatory frequencies, the most valuable index in AF maintenance and therapy evaluation, with a remarkably low computational cost.

  6. Modeling and Automatic Feedback Control of Tremor: Adaptive Estimation of Deep Brain Stimulation

    PubMed Central

    Rehan, Muhammad; Hong, Keum-Shik

    2013-01-01

    This paper discusses modeling and automatic feedback control of (postural and rest) tremor for adaptive-control-methodology-based estimation of deep brain stimulation (DBS) parameters. The simplest linear oscillator-based tremor model, between stimulation amplitude and tremor, is investigated by utilizing input-output knowledge. Further, a nonlinear generalization of the oscillator-based tremor model, useful for derivation of a control strategy involving incorporation of parametric-bound knowledge, is provided. Using the Lyapunov method, a robust adaptive output feedback control law, based on measurement of the tremor signal from the fingers of a patient, is formulated to estimate the stimulation amplitude required to control the tremor. By means of the proposed control strategy, an algorithm is developed for estimation of DBS parameters such as amplitude, frequency and pulse width, which provides a framework for development of an automatic clinical device for control of motor symptoms. The DBS parameter estimation results for the proposed control scheme are verified through numerical simulations. PMID:23638163

  7. An automatic locally-adaptive method to estimate heavily-tailed breakthrough curves from particle distributions

    NASA Astrophysics Data System (ADS)

    Pedretti, Daniele; Fernàndez-Garcia, Daniel

    2013-09-01

    Particle tracking methods to simulate solute transport deal with the issue of having to reconstruct smooth concentrations from a limited number of particles. This is an error-prone process that typically leads to large fluctuations in the determined late-time behavior of breakthrough curves (BTCs). Kernel density estimators (KDE) can be used to automatically reconstruct smooth BTCs from a small number of particles. The kernel approach incorporates the uncertainty associated with subsampling a large population by equipping each particle with a probability density function. Two broad classes of KDE methods can be distinguished depending on the parametrization of this function: global and adaptive methods. This paper shows that each method is likely to estimate a specific portion of the BTCs. Although global methods offer a valid approach to estimate early-time behavior and peak of BTCs, they exhibit important fluctuations at the tails where fewer particles exist. In contrast, locally adaptive methods improve tail estimation while oversmoothing both early-time and peak concentrations. Therefore a new method is proposed combining the strength of both KDE approaches. The proposed approach is universal and only needs one parameter (α) which slightly depends on the shape of the BTCs. Results show that, for the tested cases, heavily-tailed BTCs are properly reconstructed with α ≈ 0.5 .

  8. Adaptive search range adjustment and multiframe selection algorithm for motion estimation in H.264/AVC

    NASA Astrophysics Data System (ADS)

    Liu, Yingzhe; Wang, Jinxiang; Fu, Fangfa

    2013-04-01

    The H.264/AVC video standard adopts a fixed search range (SR) and fixed reference frame (RF) for motion estimation. These fixed settings result in a heavy computational load in the video encoder. We propose a dynamic SR and multiframe selection algorithm to improve the computational efficiency of motion estimation. By exploiting the relationship between the predicted motion vector and the SR size, we develop an adaptive SR adjustment algorithm. We also design a RF selection scheme based on the correlation between the different block sizes of the macroblock. Experimental results show that our algorithm can significantly reduce the computational complexity of motion estimation compared with the JM15.1 reference software, with a negligible decrease in peak signal-to-noise ratio and a slight increase in bit rate. Our algorithm also outperforms existing methods in terms of its low complexity and high coding quality.

  9. The sensitivity based estimation of leaf area index from spectral vegetation indices

    NASA Astrophysics Data System (ADS)

    Gonsamo, Alemu; Pellikka, Petri

    2012-06-01

    The performances of seven spectral vegetation indices (SVIs) were investigated for their sensitivity to a varying range of LAI. The evaluation was carried out for a dataset collected using SPOT 5 HRG 10 m imagery and simulated spectra using PROSPECT + SAIL reflectance models with varying soil reflectance backgrounds. The aim was to evaluate the applicability of multiple SVIs for LAI mapping based on the sensitivity analysis. The main sensitivity function was the first derivative of the regression function divided by the standard errors of the SVIs. In addition, the sensitivity of individual band and SVI with LAI was carried out using the ordinary least squares regressions. A new SVI, reduced infrared simple ratio (RISR) was developed based on an empirical red modification to infrared simple ratio (ISR) SVI. The new SVI was demonstrated which has significantly reduced the effect of soil background reflectance while maintaining high sensitivity to a wide range of LAI.

  10. HIGH-REDSHIFT DUST OBSCURED GALAXIES: A MORPHOLOGY-SPECTRAL ENERGY DISTRIBUTION CONNECTION REVEALED BY KECK ADAPTIVE OPTICS

    SciTech Connect

    Melbourne, J.; Matthews, K.; Soifer, B. T. E-mail: bts@submm.caltech.edu

    2009-06-15

    A simple optical to mid-IR color selection, R - [24]>14, i.e., f {sub {nu}}(24 {mu}m)/f {sub {nu}}(R) {approx}> 1000, identifies highly dust obscured galaxies (DOGs) with typical redshifts of z {approx} 2 {+-} 0.5. Extreme mid-IR luminosities (L {sub IR} > 10{sup 12-14}) suggest that DOGs are powered by a combination of active galactic nuclei (AGNs) and star formation, possibly driven by mergers. In an effort to compare their photometric properties with their rest-frame optical morphologies, we obtained high-spatial resolution (0.''05-0.''1) Keck Adaptive Optics K'-band images of 15 DOGs. The images reveal a wide range of morphologies, including small exponential disks (eight of 15), small ellipticals (four of 15), and unresolved sources (two of 15). One particularly diffuse source could not be classified because of low signal-to-noise ratio. We find a statistically significant correlation between galaxy concentration and mid-IR luminosity, with the most luminous DOGs exhibiting higher concentration and smaller physical size. DOGs with high concentration also tend to have spectral energy distributions (SEDs) suggestive of AGN activity. Thus, central AGN light may be biasing the morphologies of the more luminous DOGs to higher concentration. Conversely, more diffuse DOGs tend to show an SED shape suggestive of star formation. Two of 15 in the sample show multiple resolved components with separations of {approx}1 kpc, circumstantial evidence for ongoing mergers.

  11. Local error estimates for adaptive simulation of the Reaction-Diffusion Master Equation via operator splitting.

    PubMed

    Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda

    2014-06-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity.

  12. Combined Spectral Index to Improve Ground-Based Estimates of Nitrogen Status in Dryland Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have demonstrated the usefulness of the single ratio Normalized Difference Vegetation Index (NDVI) and ground-based remote sensing for estimating crop yield potential and basing in-season nitrogen (N) fertilizer application. The NDVI is positively related to crop N status and leaf ar...

  13. Fusion of spectral and electrochemical sensor data for estimating soil macronutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid and efficient quantification of plant-available soil phosphorus (P) and potassium (K) is needed to support variable-rate fertilization strategies. Two methods that have been used for estimating these soil macronutrients are diffuse reflectance spectroscopy in visible and near-infrared (VNIR) w...

  14. Estimation of higher chlorophylla concentrations using field spectral measurement and HJ-1A hyperspectral satellite data in Dianshan Lake, China

    NASA Astrophysics Data System (ADS)

    Zhou, Liguo; Roberts, Dar A.; Ma, Weichun; Zhang, Hao; Tang, Lin

    2014-02-01

    Based on in situ water sampling and field spectral measurements in Dianshan Lake, a semi-analytical three-band algorithm was used to estimate Chlorophylla (Chla) content in case II waters. The three bands selected to estimate Chla for high concentrations included 653, 691 and 748 nm. An equation, based on the difference in reciprocal reflectance between 653 and 691 nm, multiplied by reflectance at 748 nm as [Rrs-1(653) - Rrs-1 (691)] Rrs(748), explained 85.57% of variance in Chla concentration with a root mean square error (RMSE) of <6.56 mg/m3. In order to test the utility of this model with satellite data, HJ-1A Hyperspectral Imager (HSI) data were analyzed using comparable wavelengths selected from the in situ data [B67-1(656) - B80-1(716)] B87(753). This model accounted for 84.3% of Chla variation, estimating Chla concentrations with an RMSE of <4.23 mg/m3. The results illustrate that, based on the determined wavelengths, the spectrum-based model can achieve a high estimation accuracy and can be applied to hyperspectral satellite imagery especially for higher Chla concentration waters.

  15. Equilibrating errors: reliable estimation of information transmission rates in biological systems with spectral analysis-based methods.

    PubMed

    Ignatova, Irina; French, Andrew S; Immonen, Esa-Ville; Frolov, Roman; Weckström, Matti

    2014-06-01

    Shannon's seminal approach to estimating information capacity is widely used to quantify information processing by biological systems. However, the Shannon information theory, which is based on power spectrum estimation, necessarily contains two sources of error: time delay bias error and random error. These errors are particularly important for systems with relatively large time delay values and for responses of limited duration, as is often the case in experimental work. The window function type and size chosen, as well as the values of inherent delays cause changes in both the delay bias and random errors, with possibly strong effect on the estimates of system properties. Here, we investigated the properties of these errors using white-noise simulations and analysis of experimental photoreceptor responses to naturalistic and white-noise light contrasts. Photoreceptors were used from several insect species, each characterized by different visual performance, behavior, and ecology. We show that the effect of random error on the spectral estimates of photoreceptor performance (gain, coherence, signal-to-noise ratio, Shannon information rate) is opposite to that of the time delay bias error: the former overestimates information rate, while the latter underestimates it. We propose a new algorithm for reducing the impact of time delay bias error and random error, based on discovering, and then using that size of window, at which the absolute values of these errors are equal and opposite, thus cancelling each other, allowing minimally biased measurement of neural coding.

  16. Spatially and spectrally resolved particle swarm optimization for precise optical property estimation using diffuse-reflectance spectroscopy.

    PubMed

    Kholodtsova, Maria N; Daul, Christian; Loschenov, Victor B; Blondel, Walter C P M

    2016-06-13

    This paper presents a new approach to estimate optical properties (absorption and scattering coefficients µa and µs) of biological tissues from spatially-resolved spectroscopy measurements. A Particle Swarm Optimization (PSO)-based algorithm was implemented and firstly modified to deal with spatial and spectral resolutions of the data, and to solve the corresponding inverse problem. Secondly, the optimization was improved by fitting exponential decays to the two best points among all clusters of the "particles" randomly distributed all over the parameter space (µs, µa) of possible solutions. The consequent acceleration of all the groups of particles to the "best" curve leads to significant error decrease in the optical property estimation. The study analyzes the estimated optical property error as a function of the various PSO parameter combinations, and several performance criteria such as the cost-function error and the number of iterations in the algorithms proposed. The final one led to error values between ground truth and estimated values of µs and µa less than 6%.

  17. SDSS/SEGUE spectral feature analysis for stellar atmospheric parameter estimation

    SciTech Connect

    Li, Xiangru; Lu, Yu; Yang, Tan; Wang, Yongjun; Wu, Q. M. Jonathan; Luo, Ali; Zhao, Yongheng; Zuo, Fang

    2014-08-01

    Large-scale and deep sky survey missions are rapidly collecting a large amount of stellar spectra, which necessitate the estimation of atmospheric parameters directly from spectra and make it feasible to statistically investigate latent principles in a large data set. We present a technique for estimating parameters T{sub eff}, log g, and [Fe/H] from stellar spectra. With this technique, we first extract features from stellar spectra using the LASSO algorithm; then, the parameters are estimated from the extracted features using the support vector regression. On a subsample of 20,000 stellar spectra from the Sloan Digital Sky Survey (SDSS) with reference parameters provided by the SDSS/SEGUE Spectroscopic Parameter Pipeline, estimation consistency are 0.007458 dex for log T{sub eff} (101.609921 K for T{sub eff}), 0.189557 dex for log g, and 0.182060 for [Fe/H], where the consistency is evaluated by mean absolute error. Prominent characteristics of the proposed scheme are sparseness, locality, and physical interpretability. In this work, each spectrum consists of 3821 fluxes, and 10, 19, and 14 typical wavelength positions are detected, respectively, for estimating T{sub eff}, log g, and [Fe/H]. It is shown that the positions are related to typical lines of stellar spectra. This characteristic is important in investigating physical indications from analysis results. Then, stellar spectra can be described by the individual fluxes on the detected positions (PD) or local integration of fluxes near them (LI). The aforementioned consistency is the result based on features described by LI. If features are described by PD, consistency is 0.009092 dex for log T{sub eff} (124.545075 K for T{sub eff}), 0.198928 dex for log g, and 0.206814 dex for [Fe/H].

  18. Adaptive System Identification for Estimating Future Glucose Concentrations and Hypoglycemia Alarms.

    PubMed

    Eren-Oruklu, Meriyan; Cinar, Ali; Rollins, Derrick K; Quinn, Lauretta

    2012-08-01

    Many patients with diabetes experience high variability in glucose concentrations that includes prolonged hyperglycemia or hypoglycemia. Models predicting a subject's future glucose concentrations can be used for preventing such conditions by providing early alarms. This paper presents a time-series model that captures dynamical changes in the glucose metabolism. Adaptive system identification is proposed to estimate model parameters which enable the adaptation of the model to inter-/intra-subject variation and glycemic disturbances. It consists of online parameter identification using the weighted recursive least squares method and a change detection strategy that monitors variation in model parameters. Univariate models developed from a subject's continuous glucose measurements are compared to multivariate models that are enhanced with continuous metabolic, physical activity and lifestyle information from a multi-sensor body monitor. A real life application for the proposed algorithm is demonstrated on early (30 min in advance) hypoglycemia detection.

  19. Robust respiration rate estimation using adaptive Kalman filtering with textile ECG sensor and accelerometer.

    PubMed

    Lepine, Nicholas N; Tajima, Takuro; Ogasawara, Takayuki; Kasahara, Ryoichi; Koizumi, Hiroshi; Lepine, Nicholas N; Tajima, Takuro; Ogasawara, Takayuki; Kasahara, Ryoichi; Koizumi, Hiroshi; Koizumi, Hiroshi; Ogasawara, Takayuki; Tajima, Takuro; Kasahara, Ryoichi; Lepine, Nicholas N

    2016-08-01

    An adaptive Kalman filter-based fusion algorithm capable of estimating respiration rate for unobtrusive respiratory monitoring is proposed. Using both signal characteristics and a priori information, the Kalman filter is adaptively optimized to improve accuracy. Furthermore, the system is able to combine the respiration-related signals extracted from a textile ECG sensor and an accelerometer to create a single robust measurement. We measured derived respiratory rates and, when compared to a reference, found root-mean-square error of 2.11 breaths-per-minute (BrPM) while lying down, 2.30 BrPM while sitting, 5.97 BrPM while walking, and 5.98 BrPM while running. These results demonstrate that the proposed system is applicable to unobtrusive monitoring for various applications.

  20. Adaptive robust maximum power point tracking control for perturbed photovoltaic systems with output voltage estimation.

    PubMed

    Koofigar, Hamid Reza

    2016-01-01

    The problem of maximum power point tracking (MPPT) in photovoltaic (PV) systems, despite the model uncertainties and the variations in environmental circumstances, is addressed. Introducing a mathematical description, an adaptive sliding mode control (ASMC) algorithm is first developed. Unlike many previous investigations, the output voltage is not required to be sensed and the upper bound of system uncertainties and the variations of irradiance and temperature are not required to be known. Estimating the output voltage by an update law, an adaptive-based H∞ tracking algorithm is then developed for the case the perturbations are energy-bounded. The stability analysis is presented for the proposed tracking control schemes, based on the Lyapunov stability theorem. From a comparison viewpoint, some numerical and experimental studies are also presented and discussed.

  1. Real-time Adaptive Kinematic Model Estimation of Concentric Tube Robots

    PubMed Central

    Kim, Chunwoo; Ryu, Seok Chang; Dupont, Pierre E.

    2016-01-01

    Kinematic models of concentric tube robots have matured from considering only tube bending to considering tube twisting as well as external loading. While these models have been demonstrated to approximate actual behavior, modeling error can be significant for medical applications that often call for positioning accuracy of 1–2mm. As an alternative to moving to more complex models, this paper proposes using sensing to adaptively update model parameters during robot operation. Advantages of this method are that the model is constantly tuning itself to provide high accuracy in the region of the workspace where it is currently operating. It also adapts automatically to changes in robot shape and compliance associated with the insertion and removal of tools through its lumen. As an initial exploration of this approach, a recursive on-line estimator is proposed and evaluated experimentally. PMID:27175307

  2. Real-time Adaptive Kinematic Model Estimation of Concentric Tube Robots.

    PubMed

    Kim, Chunwoo; Ryu, Seok Chang; Dupont, Pierre E

    2015-01-01

    Kinematic models of concentric tube robots have matured from considering only tube bending to considering tube twisting as well as external loading. While these models have been demonstrated to approximate actual behavior, modeling error can be significant for medical applications that often call for positioning accuracy of 1-2mm. As an alternative to moving to more complex models, this paper proposes using sensing to adaptively update model parameters during robot operation. Advantages of this method are that the model is constantly tuning itself to provide high accuracy in the region of the workspace where it is currently operating. It also adapts automatically to changes in robot shape and compliance associated with the insertion and removal of tools through its lumen. As an initial exploration of this approach, a recursive on-line estimator is proposed and evaluated experimentally.

  3. Low-Rank Decomposition Based Restoration of Compressed Images via Adaptive Noise Estimation.

    PubMed

    Zhang, Xinfeng; Lin, Weisi; Xiong, Ruiqin; Liu, Xianming; Ma, Siwei; Gao, Wen

    2016-07-07

    Images coded at low bit rates in real-world applications usually suffer from significant compression noise, which significantly degrades the visual quality. Traditional denoising methods are not suitable for the content-dependent compression noise, which usually assume that noise is independent and with identical distribution. In this paper, we propose a unified framework of content-adaptive estimation and reduction for compression noise via low-rank decomposition of similar image patches. We first formulate the framework of compression noise reduction based upon low-rank decomposition. Compression noises are removed by soft-thresholding the singular values in singular value decomposition (SVD) of every group of similar image patches. For each group of similar patches, the thresholds are adaptively determined according to compression noise levels and singular values. We analyze the relationship of image statistical characteristics in spatial and transform domains, and estimate compression noise level for every group of similar patches from statistics in both domains jointly with quantization steps. Finally, quantization constraint is applied to estimated images to avoid over-smoothing. Extensive experimental results show that the proposed method not only improves the quality of compressed images obviously for post-processing, but are also helpful for computer vision tasks as a pre-processing method.

  4. An adaptive model for vanadium redox flow battery and its application for online peak power estimation

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Meng, Shujuan; Tseng, King Jet; Lim, Tuti Mariana; Soong, Boon Hee; Skyllas-Kazacos, Maria

    2017-03-01

    An accurate battery model is the prerequisite for reliable state estimate of vanadium redox battery (VRB). As the battery model parameters are time varying with operating condition variation and battery aging, the common methods where model parameters are empirical or prescribed offline lacks accuracy and robustness. To address this issue, this paper proposes to use an online adaptive battery model to reproduce the VRB dynamics accurately. The model parameters are online identified with both the recursive least squares (RLS) and the extended Kalman filter (EKF). Performance comparison shows that the RLS is superior with respect to the modeling accuracy, convergence property, and computational complexity. Based on the online identified battery model, an adaptive peak power estimator which incorporates the constraints of voltage limit, SOC limit and design limit of current is proposed to fully exploit the potential of the VRB. Experiments are conducted on a lab-scale VRB system and the proposed peak power estimator is verified with a specifically designed "two-step verification" method. It is shown that different constraints dominate the allowable peak power at different stages of cycling. The influence of prediction time horizon selection on the peak power is also analyzed.

  5. An adaptive filter-based method for robust, automatic detection and frequency estimation of whistles.

    PubMed

    Johansson, A Torbjorn; White, Paul R

    2011-08-01

    This paper proposes an adaptive filter-based method for detection and frequency estimation of whistle calls, such as the calls of birds and marine mammals, which are typically analyzed in the time-frequency domain using a spectrogram. The approach taken here is based on adaptive notch filtering, which is an established technique for frequency tracking. For application to automatic whistle processing, methods for detection and improved frequency tracking through frequency crossings as well as interfering transients are developed and coupled to the frequency tracker. Background noise estimation and compensation is accomplished using order statistics and pre-whitening. Using simulated signals as well as recorded calls of marine mammals and a human whistled speech utterance, it is shown that the proposed method can detect more simultaneous whistles than two competing spectrogram-based methods while not reporting any false alarms on the example datasets. In one example, it extracts complete 1.4 and 1.8 s bottlenose dolphin whistles successfully through frequency crossings. The method performs detection and estimates frequency tracks even at high sweep rates. The algorithm is also shown to be effective on human whistled utterances.

  6. Optimization of an adaptive SPECT system with the scanning linear estimator

    NASA Astrophysics Data System (ADS)

    Ghanbari, Nasrin; Clarkson, Eric; Kupinski, Matthew A.; Li, Xin

    2015-08-01

    The adaptive single-photon emission computed tomography (SPECT) system studied here acquires an initial scout image to obtain preliminary information about the object. Then the configuration is adjusted by selecting the size of the pinhole and the magnification that optimize system performance on an ensemble of virtual objects generated to be consistent with the scout data. In this study the object is a lumpy background that contains a Gaussian signal with a variable width and amplitude. The virtual objects in the ensemble are imaged by all of the available configurations and the subsequent images are evaluated with the scanning linear estimator to obtain an estimate of the signal width and amplitude. The ensemble mean squared error (EMSE) on the virtual ensemble between the estimated and the true parameters serves as the performance figure of merit for selecting the optimum configuration. The results indicate that variability in the original object background, noise and signal parameters leads to a specific optimum configuration in each case. A statistical study carried out for a number of objects show that the adaptive system on average performs better than its nonadaptive counterpart.

  7. The rejection of vibrations in adaptive optics systems using a DFT-based estimation method

    NASA Astrophysics Data System (ADS)

    Kania, Dariusz; Borkowski, Józef

    2016-04-01

    Adaptive optics systems are commonly used in many optical structures to reduce perturbations and to increase the system performance. The problem in such systems is undesirable vibrations due to some effects as shaking of the whole structure or the tracking process. This paper presents a frequency, amplitude and phase estimation method of a multifrequency signal that can be used to reject these vibrations in an adaptive method. The estimation method is based on using the FFT procedure. The undesirable signals are usually exponentially damped harmonic oscillations. The estimation error depends on several parameters and consists of a systematic component and a random component. The systematic error depends on the signal phase, the number of samples N in a measurement window, the value of CiR (number of signal periods in a measurement window), the THD value and the time window order H. The random error depends mainly on the variance of noise and the SNR value. This paper shows research on the sinusoidal signal phase and the estimation of exponentially damped sinusoids parameters. The shape of errors signals is periodical and it is associated with the signal period and with the sliding measurement window. For CiR=1.6 and the damping ratio 0.1% the error was in the order of 10-5 Hz/Hz, 10-4 V/V and 10-4 rad for the frequency, the amplitude and the phase estimation respectively. The information provided in this paper can be used to determine the approximate level of the efficiency of the vibrations elimination process before starting it.

  8. Estimating high mosquito-producing rice fields using spectral and spatial data

    NASA Technical Reports Server (NTRS)

    Wood, B. L.; Beck, L. R.; Washino, R. K.; Hibbard, K. A.; Salute, J. S.

    1992-01-01

    The cultivation of irrigated rice provides ideal larval habitat for a number of anopheline vectors of malaria throughout the world. Anopheles freeborni, a potential vector of human malaria, is associated with the nearly 240,000 hectares of irrigated rice grown annually in Northern and Central California; therefore, this species can serve as a model for the study of rice field anopheline population dynamics. Analysis of field data revealed that rice fields with early season canopy development, that are located near bloodmeal sources (i.e., pastures with livestock) were more likely to produce anopheline larvae than fields with less developed canopies located further from pastures. Remote sensing reflectance measurements of early-season canopy development and geographic information system (GIS) measurements of distanes between rice fields and pastures with livestock were combined to distinguish between high and low mosquito-producing rice fields. Using spectral and distance measures in either a discriminant or Bayesian analysis, the identification of high mosquito-producing fields was made with 85 percent accuracy nearly two months before anopheline larval populations peaked. Since omission errors were also minimized by these approaches, they could provide a new basis for directing abatement techniques for the control of malaria vectors.

  9. Beyond histograms: Efficiently estimating radial distribution functions via spectral Monte Carlo

    NASA Astrophysics Data System (ADS)

    Patrone, Paul N.; Rosch, Thomas W.

    2017-03-01

    Despite more than 40 years of research in condensed-matter physics, state-of-the-art approaches for simulating the radial distribution function (RDF) g(r) still rely on binning pair-separations into a histogram. Such methods suffer from undesirable properties, including subjectivity, high uncertainty, and slow rates of convergence. Moreover, such problems go undetected by the metrics often used to assess RDFs. To address these issues, we propose (I) a spectral Monte Carlo (SMC) quadrature method that yields g(r) as an analytical series expansion and (II) a Sobolev norm that assesses the quality of RDFs by quantifying their fluctuations. Using the latter, we show that, relative to histogram-based approaches, SMC reduces by orders of magnitude both the noise in g(r) and the number of pair separations needed for acceptable convergence. Moreover, SMC reduces subjectivity and yields simple, differentiable formulas for the RDF, which are useful for tasks such as coarse-grained force-field calibration via iterative Boltzmann inversion.

  10. Spectral and parameter estimation problems arising in the metrology of high performance mirror surfaces

    SciTech Connect

    Church, E.L.; Takacs, P.Z.

    1986-04-01

    The accurate characterization of mirror surfaces requires the estimation of two-dimensional distribution functions and power spectra from trend-contaminated profile measurements. The rationale behind this, and our measurement and processing procedures, are described. The distinction between profile and area spectra is indicated, and since measurements often suggest inverse-power-law forms, a discussion of classical and fractal models of processes leading to these forms is included. 9 refs.

  11. An adaptive ARX model to estimate the RUL of aluminum plates based on its crack growth

    NASA Astrophysics Data System (ADS)

    Barraza-Barraza, Diana; Tercero-Gómez, Víctor G.; Beruvides, Mario G.; Limón-Robles, Jorge

    2017-01-01

    A wide variety of Condition-Based Maintenance (CBM) techniques deal with the problem of predicting the time for an asset fault. Most statistical approaches rely on historical failure data that might not be available in several practical situations. To address this issue, practitioners might require the use of self-starting approaches that consider only the available knowledge about the current degradation process and the asset operating context to update the prognostic model. Some authors use Autoregressive (AR) models for this purpose that are adequate when the asset operating context is constant, however, if it is variable, the accuracy of the models can be affected. In this paper, three autoregressive models with exogenous variables (ARX) were constructed, and their capability to estimate the remaining useful life (RUL) of a process was evaluated following the case of the aluminum crack growth problem. An existing stochastic model of aluminum crack growth was implemented and used to assess RUL estimation performance of the proposed ARX models through extensive Monte Carlo simulations. Point and interval estimations were made based only on individual history, behavior, operating conditions and failure thresholds. Both analytic and bootstrapping techniques were used in the estimation process. Finally, by including recursive parameter estimation and a forgetting factor, the ARX methodology adapts to changing operating conditions and maintain the focus on the current degradation level of an asset.

  12. Comparing adaptive procedures for estimating the psychometric function for an auditory gap detection task.

    PubMed

    Shen, Yi

    2013-05-01

    A subject's sensitivity to a stimulus variation can be studied by estimating the psychometric function. Generally speaking, three parameters of the psychometric function are of interest: the performance threshold, the slope of the function, and the rate at which attention lapses occur. In the present study, three psychophysical procedures were used to estimate the three-parameter psychometric function for an auditory gap detection task. These were an up-down staircase (up-down) procedure, an entropy-based Bayesian (entropy) procedure, and an updated maximum-likelihood (UML) procedure. Data collected from four young, normal-hearing listeners showed that while all three procedures provided similar estimates of the threshold parameter, the up-down procedure performed slightly better in estimating the slope and lapse rate for 200 trials of data collection. When the lapse rate was increased by mixing in random responses for the three adaptive procedures, the larger lapse rate was especially detrimental to the efficiency of the up-down procedure, and the UML procedure provided better estimates of the threshold and slope than did the other two procedures.

  13. Speaker height estimation from speech: Fusing spectral regression and statistical acoustic models.

    PubMed

    Hansen, John H L; Williams, Keri; Bořil, Hynek

    2015-08-01

    Estimating speaker height can assist in voice forensic analysis and provide additional side knowledge to benefit automatic speaker identification or acoustic model selection for automatic speech recognition. In this study, a statistical approach to height estimation that incorporates acoustic models within a non-uniform height bin width Gaussian mixture model structure as well as a formant analysis approach that employs linear regression on selected phones are presented. The accuracy and trade-offs of these systems are explored by examining the consistency of the results, location, and causes of error as well a combined fusion of the two systems using data from the TIMIT corpus. Open set testing is also presented using the Multi-session Audio Research Project corpus and publicly available YouTube audio to examine the effect of channel mismatch between training and testing data and provide a realistic open domain testing scenario. The proposed algorithms achieve a highly competitive performance to previously published literature. Although the different data partitioning in the literature and this study may prevent performance comparisons in absolute terms, the mean average error of 4.89 cm for males and 4.55 cm for females provided by the proposed algorithm on TIMIT utterances containing selected phones suggest a considerable estimation error decrease compared to past efforts.

  14. [Estimation of Winter Wheat Biomass Using Visible Spectral and BP Based Artificial Neural Networks].

    PubMed

    Cui, Ri-xian; Liu, Ya-dong; Fu, Jin-dong

    2015-09-01

    The objective of this study was to evaluate the feasibility of using color digital image analysis and back propagation (BP) based artificial neural networks (ANN) method to estimate above ground biomass at the canopy level of winter wheat field. Digital color images of winter wheat canopies grown under six levels of nitrogen treatments were taken with a digital camera for four times during the elongation stage and at the same time wheat plants were sampled to measure above ground biomass. Canopy cover (CC) and 10 color indices were calculated from winter wheat canopy images by using image analysis program (developed in Microsoft Visual Basic). Correlation analysis was carried out to identify the relationship between CC, 10 color indices and winter wheat above ground biomass. Stepwise multiple linear regression and BP based ANN methods were used to establish the models to estimate winter wheat above ground biomass. The results showed that CC, and two color indices had a significant cor- relation with above ground biomass. CC revealed the highest correlation with winter wheat above ground biomass. Stepwise multiple linear regression model constituting CC and color indices of NDI and b, and BP based ANN model with four variables (CC, g, b and NDI) for input was constructed to estimate winter wheat above ground biomass. The validation results indicate that the model using BP based ANN method has a better performance with higher R2 (0.903) and lower RMSE (61.706) and RRMSE (18.876) in comparation with the stepwise regression model.

  15. Simultaneous Estimation of Noise Variance and Number of Peaks in Bayesian Spectral Deconvolution

    NASA Astrophysics Data System (ADS)

    Tokuda, Satoru; Nagata, Kenji; Okada, Masato

    2017-02-01

    The heuristic identification of peaks from noisy complex spectra often leads to misunderstanding of the physical and chemical properties of matter. In this paper, we propose a framework based on Bayesian inference, which enables us to separate multipeak spectra into single peaks statistically and consists of two steps. The first step is estimating both the noise variance and the number of peaks as hyperparameters based on Bayes free energy, which generally is not analytically tractable. The second step is fitting the parameters of each peak function to the given spectrum by calculating the posterior density, which has a problem of local minima and saddles since multipeak models are nonlinear and hierarchical. Our framework enables the escape from local minima or saddles by using the exchange Monte Carlo method and calculates Bayes free energy via the multiple histogram method. We discuss a simulation demonstrating how efficient our framework is and show that estimating both the noise variance and the number of peaks prevents overfitting, overpenalizing, and misunderstanding the precision of parameter estimation.

  16. Comparing Satellite Rainfall Estimates with Rain-Gauge Data: Optimal Strategies Suggested by a Spectral Model

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Kundu, Prasun K.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Validation of satellite remote-sensing methods for estimating rainfall against rain-gauge data is attractive because of the direct nature of the rain-gauge measurements. Comparisons of satellite estimates to rain-gauge data are difficult, however, because of the extreme variability of rain and the fact that satellites view large areas over a short time while rain gauges monitor small areas continuously. In this paper, a statistical model of rainfall variability developed for studies of sampling error in averages of satellite data is used to examine the impact of spatial and temporal averaging of satellite and gauge data on intercomparison results. The model parameters were derived from radar observations of rain, but the model appears to capture many of the characteristics of rain-gauge data as well. The model predicts that many months of data from areas containing a few gauges are required to validate satellite estimates over the areas, and that the areas should be of the order of several hundred km in diameter. Over gauge arrays of sufficiently high density, the optimal areas and averaging times are reduced. The possibility of using time-weighted averages of gauge data is explored.

  17. An Adaptive Nonlinear Aircraft Maneuvering Envelope Estimation Approach for Online Applications

    NASA Technical Reports Server (NTRS)

    Schuet, Stefan R.; Lombaerts, Thomas Jan; Acosta, Diana; Wheeler, Kevin; Kaneshige, John

    2014-01-01

    A nonlinear aircraft model is presented and used to develop an overall unified robust and adaptive approach to passive trim and maneuverability envelope estimation with uncertainty quantification. The concept of time scale separation makes this method suitable for the online characterization of altered safe maneuvering limitations after impairment. The results can be used to provide pilot feedback and/or be combined with flight planning, trajectory generation, and guidance algorithms to help maintain safe aircraft operations in both nominal and off-nominal scenarios.

  18. Low-power metabolic equivalents estimation algorithm using adaptive acceleration sampling.

    PubMed

    Tsukahara, Mio; Nakanishi, Motofumi; Izumi, Shintaro; Nakai, Yozaburo; Kawaguchi, Hiroshi; Yoshimoto, Masahiko; Tsukahara, Mio; Nakanishi, Motofumi; Izumi, Shintaro; Nakai, Yozaburo; Kawaguchi, Hiroshi; Yoshimoto, Masahiko; Izumi, Shintaro; Nakai, Yozaburo; Kawaguchi, Hiroshi; Yoshimoto, Masahiko; Tsukahara, Mio; Nakanishi, Motofumi

    2016-08-01

    This paper describes a proposed low-power metabolic equivalent estimation algorithm that can calculate the value of metabolic equivalents (METs) from triaxial acceleration at an adaptively changeable sampling rate. This algorithm uses four rates of 32, 16, 8 and 4 Hz. The mode of switching them is decided from synthetic acceleration. Applying this proposed algorithm to acceleration measured for 1 day, we achieved the low root mean squared error (RMSE) of calculated METs, with current consumption that was 41.5 % of the value at 32 Hz, and 75.4 % of the value at 16 Hz.

  19. Estimating leaf chlorophyll of barley at different growth stages using spectral indices to reduce soil background and canopy structure effects

    NASA Astrophysics Data System (ADS)

    Yu, Kang; Lenz-Wiedemann, Victoria; Chen, Xinping; Bareth, Georg

    2014-11-01

    Monitoring in situ chlorophyll (Chl) content in agricultural crop leaves is of great importance for stress detection, nutritional state diagnosis, yield prediction and studying the mechanisms of plant and environment interaction. Numerous spectral indices have been developed for chlorophyll estimation from leaf- and canopy-level reflectance. However, in most cases, these indices are negatively affected by variations in canopy structure and soil background. The objective of this study was to develop spectral indices that can reduce the effects of varied canopy structure and growth stages for the estimation of leaf Chl. Hyperspectral reflectance data was obtained through simulation by a radiative transfer model, PROSAIL, and measurements from canopies of barley comprising different cultivars across growth stages using spectroradiometers. We applied a comprehensive band-optimization algorithm to explore five types of spectral indices: reflectance difference (RD), reflectance ratio (RR), normalized reflectance difference (NRD), difference of reflectance ratio (DRR) and ratio of reflectance difference (RRD). Indirectly using the multiple scatter correction (MSC) theory, we hypothesized that RRD can eliminate adverse effects of soil background, canopy structure and multiple scattering. Published indices and multivariate models such as optimum multiple band regression (OMBR), partial least squares regression (PLSR) and support vector machines for regression (SVR) were also employed. Results showed that the ratio of reflectance difference index (RRDI) optimized for simulated data significantly improved the correlation with Chl (R2 = 0.98, p < 0.0001) and was insensitive to LAI variations (1-8), compared to widely used indices such as MCARI/OSAVI (R2 = 0.64, p < 0.0001) and TCARI/OSAVI (R2 = 0.74, p < 0.0001). The RRDI optimized for barley explained 76% of the variation in Chl and outperformed multivariate models. However, the accuracy decreased when employing the indices

  20. Satellite Estimation of Spectral Surface UV Irradiance. 2; Effect of Horizontally Homogeneous Clouds

    NASA Technical Reports Server (NTRS)

    Krothov, N.; Herman, J. R.; Bhartia, P. K.; Ahmad, Z.a; Fioletov, V.

    1998-01-01

    The local variability of UV irradiance at the Earth's surface is mostly caused by clouds in addition to the seasonal variability. Parametric representations of radiative transfer RT calculations are presented for the convenient solution of the transmission T of ultraviolet radiation through plane parallel clouds over a surface with reflectivity R(sub s). The calculations are intended for use with the Total Ozone Mapping Spectrometer (TOMS) measured radiances to obtain the calculated Lambert equivalent scene reflectivity R for scenes with and without clouds. The purpose is to extend the theoretical analysis of the estimation of UV irradiance from satellite data for a cloudy atmosphere. Results are presented for a range of cloud optical depths and solar zenith angles for the cases of clouds over a low reflectivity surface R(sub s) less than 0.1, over a snow or ice surface R(sub s) greater than 0.3, and for transmission through a non-conservative scattering cloud with single scattering albedo omega(sub 0) = 0.999. The key finding for conservative scattering is that the cloud-transmission function C(sub T), the ratio of cloudy-to clear-sky transmission, is roughly C(sub T) = 1 - R(sub c) with an error of less than 20% for nearly overhead sun and snow-free surfaces. For TOMS estimates of UV irradiance in the presence of both snow and clouds, independent information about snow albedo is needed for conservative cloud scattering. For non-conservative scattering with R(sub s) greater than 0.5 (snow) the satellite measured scene reflectance cannot be used to estimate surface irradiance. The cloud transmission function has been applied to the calculation of UV irradiance at the Earth's surface and compared with ground-based measurements.

  1. Adaptive λ estimation in Lagrangian rate-distortion optimization for video coding

    NASA Astrophysics Data System (ADS)

    Chen, Lulin; Garbacea, Ilie

    2006-01-01

    In this paper, adaptive Lagrangian multiplier λ estimation in Larangian R-D optimization for video coding is presented that is based on the ρ-domain linear rate model and distortion model. It yields that λ is a function of rate, distortion and coding input statistics and can be written as λ(R, D, σ2) = β(ln(σ2/D) + δ)D/R + k 0, with β, δ and k 0 as coding constants, σ2 is variance of prediction error input. λ(R, D, σ2) describes its ubiquitous relationship with coding statistics and coding input in hybrid video coding such as H.263, MPEG-2/4 and H.264/AVC. The lambda evaluation is de-coupled with quantization parameters. The proposed lambda estimation enables a fine encoder design and encoder control.

  2. Sample-adaptive-prediction for HEVC SCC intra coding with ridge estimation from spatially neighboring samples

    NASA Astrophysics Data System (ADS)

    Kang, Je-Won; Ryu, Soo-Kyung

    2017-02-01

    In this paper a sample-adaptive prediction technique is proposed to yield efficient coding performance in an intracoding for screen content video coding. The sample-based prediction is to reduce spatial redundancies in neighboring samples. To this aim, the proposed technique uses a weighted linear combination of neighboring samples and applies the robust optimization technique, namely, ridge estimation to derive the weights in a decoder side. The ridge estimation uses L2 norm based regularization term, and, thus the solution is more robust to high variance samples such as in sharp edges and high color contrasts exhibited in screen content videos. It is demonstrated with the experimental results that the proposed technique provides an improved coding gain as compared to the HEVC screen content video coding reference software.

  3. Adaptive UAV Attitude Estimation Employing Unscented Kalman Filter, FOAM and Low-Cost MEMS Sensors

    PubMed Central

    de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos

    2012-01-01

    Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance. PMID:23012559

  4. Adaptive UAV attitude estimation employing unscented Kalman Filter, FOAM and low-cost MEMS sensors.

    PubMed

    de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos

    2012-01-01

    Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance.

  5. Adaptive external torque estimation by means of tracking a Lyapunov function

    SciTech Connect

    Schaub, H.; Junkins, J.L.; Robinett, R.D.

    1996-03-01

    A real-time method is presented to adoptively estimate three-dimensional unmodeled external torques acting on a spacecraft. This is accomplished by forcing the tracking error dynamics to follow the Lyapunov function underlying the feedback control law. For the case where the external torque is constant, the tracking error dynamics are shown to converge asypmtotically. The methodology applies not only to the control law used in this paper, but can also be applied to most Lyapunov derived feedback control laws. The adaptive external torque estimation is very robust in the presence of measurement noise, since a numerical integration is used instead of a numerical differentiation. Spacecraft modeling errors, such as in the inertia matrix, are also compensated for by this method. Several examples illustrate the practical significance of these ideas.

  6. An Analysis of a Finite Element Method for Convection-Diffusion Problems. Part II. A Posteriori Error Estimates and Adaptivity.

    DTIC Science & Technology

    1983-03-01

    AN ANALYSIS OF A FINITE ELEMENT METHOD FOR CONVECTION- DIFFUSION PROBLEMS PART II: A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY by W. G. Szymczak Y 6a...PERIOD COVERED AN ANALYSIS OF A FINITE ELEMENT METHOD FOR final life of the contract CONVECTION- DIFFUSION PROBLEM S. Part II: A POSTERIORI ERROR ...Element Method for Convection- Diffusion Problems. Part II: A Posteriori Error Estimates and Adaptivity W. G. Szvmczak and I. Babu~ka# Laboratory for

  7. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    PubMed Central

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-01-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the “non-progressing” and “progressing” glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection. PMID:25606299

  8. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    NASA Astrophysics Data System (ADS)

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-03-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the "non-progressing" and "progressing" glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.

  9. Development and calibration of an automatic spectral albedometer to estimate near-surface snow SSA time series

    NASA Astrophysics Data System (ADS)

    Picard, Ghislain; Libois, Quentin; Arnaud, Laurent; Verin, Gauthier; Dumont, Marie

    2016-06-01

    Spectral albedo of the snow surface in the visible/near-infrared range has been measured for 3 years by an automatic spectral radiometer installed at Dome C (75° S, 123° E) in Antarctica in order to retrieve the specific surface area (SSA) of superficial snow. This study focuses on the uncertainties of the SSA retrieval due to instrumental and data processing limitations. We find that when the solar zenith angle is high, the main source of uncertainties is the imperfect angular response of the light collectors. This imperfection introduces a small spurious wavelength-dependent trend in the albedo spectra which greatly affects the SSA retrieval. By modeling this effect, we show that for typical snow and illumination conditions encountered at Dome C, retrieving SSA with an accuracy better than 15 % (our target) requires the difference of response between 400 and 1100 nm to not exceed 2 %. Such a small difference can be achieved only by (i) a careful design of the collectors, (ii) an ad hoc correction of the spectra using the actual measured angular response of the collectors, and (iii) for solar zenith angles less than 75°. The 3-year time series of retrieved SSA features a 3-fold decrease every summer which is significantly larger than the estimated uncertainties. This highlights the high dynamics of near-surface SSA at Dome C.

  10. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, P. I.; Fountos, G. P.; Martini, N. D.; Koukou, V. N.; Michail, C. M.; Valais, I. G.; Kandarakis, I. S.; Nikiforidis, G. C.

    2015-09-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant.

  11. New adaptive clutter rejection based on spectral analysis for ultrasound color Doppler imaging: phantom and in vivo abdominal study.

    PubMed

    Geunyong Park; Sunmi Yeo; Jae Jin Lee; Changhan Yoon; Hyun-Woo Koh; Hyungjoon Lim; Youngtae Kim; Hwan Shim; Yangmo Yoo

    2014-01-01

    Effective rejection of time-varying clutter originating from slowly moving vessels and surrounding tissues is important for depicting hemodynamics in ultrasound color Doppler imaging (CDI). In this paper, a new adaptive clutter rejection method based on spectral analysis (ACR-SA) is presented for suppressing nonstationary clutter. In ACR-SA, tissue and flow characteristics are analyzed by singular value decomposition and tissue acceleration of backscattered Doppler signals to determine an appropriate clutter filter from a set of clutter filters. To evaluate the ACR-SA method, 20 frames of complex baseband data were acquired by a commercial ultrasound system equipped with a research package (Accuvix V10, Samsung Medison, Seoul, Korea) using a 3.5-MHz convex array probe by introducing tissue movements to the flow phantom (Gammex 1425 A LE, Gammex, Middleton, WI, USA). In addition, 20 frames of in vivo abdominal data from five volunteers were captured. From the phantom experiment, the ACR-SA method provided 2.43 dB (p <; 0.001) and 1.09 dB ( ) improvements in flow signal-to-clutter ratio (SCR) compared to static (STA) and down-mixing (ACR-DM) methods. Similarly, it showed smaller values in fractional residual clutter area (FRCA) compared to the STA and ACR-DM methods (i.e., 2.3% versus 5.4% and 3.7%, respectively, ). The consistent improvements in SCR from the proposed ACR-SA method were obtained with the in vivo abdominal data (i.e., 4.97 dB and 3.39 dB over STA and ACR-DM, respectively). The ACR-SA method showed less than 1% FRCA values for all in vivo abdominal data. These results indicate that the proposed ACR-SA method can improve image quality in CDI by providing enhanced rejection of nonstationary clutter.

  12. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm.

    PubMed

    Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua

    2014-03-01

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.

  13. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua

    2014-03-01

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.

  14. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    SciTech Connect

    Sheng, Zheng; Wang, Jun; Zhou, Bihua; Zhou, Shudao

    2014-03-15

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.

  15. Energy dependent mesh adaptivity of discontinuous isogeometric discrete ordinate methods with dual weighted residual error estimators

    NASA Astrophysics Data System (ADS)

    Owens, A. R.; Kópházi, J.; Welch, J. A.; Eaton, M. D.

    2017-04-01

    In this paper a hanging-node, discontinuous Galerkin, isogeometric discretisation of the multigroup, discrete ordinates (SN) equations is presented in which each energy group has its own mesh. The equations are discretised using Non-Uniform Rational B-Splines (NURBS), which allows the coarsest mesh to exactly represent the geometry for a wide range of engineering problems of interest; this would not be the case using straight-sided finite elements. Information is transferred between meshes via the construction of a supermesh. This is a non-trivial task for two arbitrary meshes, but is significantly simplified here by deriving every mesh from a common coarsest initial mesh. In order to take full advantage of this flexible discretisation, goal-based error estimators are derived for the multigroup, discrete ordinates equations with both fixed (extraneous) and fission sources, and these estimators are used to drive an adaptive mesh refinement (AMR) procedure. The method is applied to a variety of test cases for both fixed and fission source problems. The error estimators are found to be extremely accurate for linear NURBS discretisations, with degraded performance for quadratic discretisations owing to a reduction in relative accuracy of the ;exact; adjoint solution required to calculate the estimators. Nevertheless, the method seems to produce optimal meshes in the AMR process for both linear and quadratic discretisations, and is ≈×100 more accurate than uniform refinement for the same amount of computational effort for a 67 group deep penetration shielding problem.

  16. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics.

    PubMed

    Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan

    2017-04-06

    An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.

  17. Error estimation and adaptive mesh refinement for parallel analysis of shell structures

    NASA Technical Reports Server (NTRS)

    Keating, Scott C.; Felippa, Carlos A.; Park, K. C.

    1994-01-01

    The formulation and application of element-level, element-independent error indicators is investigated. This research culminates in the development of an error indicator formulation which is derived based on the projection of element deformation onto the intrinsic element displacement modes. The qualifier 'element-level' means that no information from adjacent elements is used for error estimation. This property is ideally suited for obtaining error values and driving adaptive mesh refinements on parallel computers where access to neighboring elements residing on different processors may incur significant overhead. In addition such estimators are insensitive to the presence of physical interfaces and junctures. An error indicator qualifies as 'element-independent' when only visible quantities such as element stiffness and nodal displacements are used to quantify error. Error evaluation at the element level and element independence for the error indicator are highly desired properties for computing error in production-level finite element codes. Four element-level error indicators have been constructed. Two of the indicators are based on variational formulation of the element stiffness and are element-dependent. Their derivations are retained for developmental purposes. The second two indicators mimic and exceed the first two in performance but require no special formulation of the element stiffness mesh refinement which we demonstrate for two dimensional plane stress problems. The parallelizing of substructures and adaptive mesh refinement is discussed and the final error indicator using two-dimensional plane-stress and three-dimensional shell problems is demonstrated.

  18. Intercepted photosynthetically active radiation in wheat canopies estimated by spectral reflectance. [Phoenix, Arizona

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Asrar, G.; Kanemasu, E. T.

    1982-01-01

    The interception of photosynthetically active radiation (PAR) was evaluated relative to greenness and normalized difference (MSS 7-5/7+5) for five planting dates of wheat for 1978-79 and 1979-80 in Phoenix. Intercepted PAR was calculated from a model driven by leaf area index and stage of growth. Linear relationships were found between greenness and normalized difference with a separate model representing growth and senescence of the crop. Normalized difference was a significantly better model and would be easier to apply than the empirically derived greenness parameter. For the leaf area growth portion of the season the model between PAR interception and normalized difference was the same over years, however, for the leaf senescence the models showed more variability due to the lack of data on measured interception in sparse canopies. Normalized difference could be used to estimate PAR interception directly for crop growth models.

  19. Photoprotective Response in Plants Impacts Estimation of Biophysical Parameters Using Spectral Reflectance

    NASA Astrophysics Data System (ADS)

    Zygielbaum, A. I.; Arkebauer, T. J.; Walter-Shea, E.

    2014-12-01

    Previously, we reported that reflectance increased across the whole PAR spectrum when plants were subjected to water stress. This effect was shown to exist in maize grown under greenhouse conditions and under field conditions. Greenhouse experiments showed that, in addition to leaf water content, the effect was strongly correlated with incident light intensity. Further, through the use of an integrating sphere, we demonstrated that the change in reflectance was due to a change in absorption rather than in a change scattering or other optical path effect. Time lapse microscopy showed lightening between leaf veins analogous to effects measured by researchers observing cross sections of stressed C4 plants. To further refine our study, additional leaf level and canopy level studies were undertaken. Excised leaf sections were separately exposed to red and white light in the laboratory as the leaf dried. Increasing reflectance and transmittance were observed for the section exposed to white light, while little change was observed under red light. Each of these observations can be explained by chloroplast avoidance movement, a photoprotective response causing chloroplasts to aggregate along cell walls effectively hiding chlorophyll from observation. Chloroplast movement, for example, is driven by blue light; explaining the lack of observed change under red light. Estimation of biophysical parameters, such as chlorophyll content and greenness, are affected by the difference between the "apparent" chlorophyll content and the actual chlorophyll content of leaves and canopies. Up to 30% changes in the VARI remote sensing index have been observed morning to afternoon in field-grown maize. Ten percent changes in chlorophyll estimates have been observed in greenhouse maize. We will report on further research and on the extension of our work to include the impact of chloroplast avoidance on remote sensing of C3 plants, specifically soybean, at leaf and canopy levels.

  20. Empirically Estimating the Existing Irrigation Adaptation to Future Drought Impacts in Kansas Agriculture

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Lin, X.; Yang, X.

    2014-12-01

    More serious drought has been projected due to the climate change in the Kansas State of the U.S., which might threaten the local agriculture and thus require effective adaptation responses to drought, e.g. better irrigation. But the irrigation adaptation on drought at the current technology-level is poorly quantified, therefore challenges to figure out how much additional efforts are required under more aridity of climate. Here, we collect the irrigation application data for maize, soybean, sorghum and wheat in Kansas, and establish a two-stage model to quantify the crop-specific irrigation application responses to changes in climatic drivers, and further estimate the existing effectiveness of the irrigation to adapt future drought based on the IPCC AR5 ensemble PDSI prediction under RCP4.5 scenario. We find that the three summer season crops (maize, soybean and sorghum) would experience 0 - 20% yield losses depending on county due to more serious drought since 2030s, even though increased irrigation application as the response of drought had saved 0 - 10% yields. At the state level, maize receives most benefits from irrigation, whereas the beneficial effects are least for sorghum among the three crops. To wheat, irrigation adaptation is very weak since irrigation water applied is much less than the above three crops. But wheat yields were projected to have a slight increase in central and eastern regions because climate would become more moisture over the growing season of winter wheat in future. Our results highlight that the existing beneficial effects from irrigation would be surpassed by the negative impact of drought in future, which would cause overall yield reduction in Kansas especially for those summer season crops.

  1. Assessment of estimated retinal atrophy progression in Stargardt macular dystrophy using spectral-domain optical coherence tomography

    PubMed Central

    Strauss, Rupert W; Muñoz, Beatriz; Wolfson, Yulia; Sophie, Raafay; Fletcher, Emily; Bittencourt, Millena G; Scholl, Hendrik P N

    2016-01-01

    Aims To estimate disease progression based on analysis of macular volume measured by spectral-domain optical coherence tomography (SD-OCT) in patients affected by Stargardt macular dystrophy (STGD1) and to evaluate the influence of software errors on these measurements. Methods 58 eyes of 29 STGD1 patients were included. Numbers and types of algorithm errors were recorded and manually corrected. In a subgroup of 36 eyes of 18 patients with at least two examinations over time, total macular volume (TMV) and volumes of all nine Early Treatment of Diabetic Retinopathy Study (ETDRS) subfields were obtained. Random effects models were used to estimate the rate of change per year for the population, and empirical Bayes slopes were used to estimate yearly decline in TMV for individual eyes. Results 6958 single B-scans from 190 macular cube scans were analysed. 2360 (33.9%) showed algorithm errors. Mean observation period for follow-up data was 15 months (range 3–40). The median (IQR) change in TMV using the empirical Bayes estimates for the individual eyes was −0.103 (−0.145, −0.059) mm3 per year. The mean (±SD) TMV was 6.321±1.000 mm3 at baseline, and rate of decline was −0.118 mm3 per year (p=0.003). Yearly mean volume change was −0.004 mm3 in the central subfield (mean baseline=0.128 mm3), −0.032 mm3 in the inner (mean baseline=1.484 mm3) and −0.079 mm3 in the outer ETDRS subfields (mean baseline=5.206 mm3). Conclusions SD-OCT measurements allow monitoring the decline in retinal volume in STGD1; however, they require significant manual correction of software errors. PMID:26568636

  2. Effectiveness of Item Response Theory (IRT) Proficiency Estimation Methods under Adaptive Multistage Testing. Research Report. ETS RR-15-11

    ERIC Educational Resources Information Center

    Kim, Sooyeon; Moses, Tim; Yoo, Hanwook Henry

    2015-01-01

    The purpose of this inquiry was to investigate the effectiveness of item response theory (IRT) proficiency estimators in terms of estimation bias and error under multistage testing (MST). We chose a 2-stage MST design in which 1 adaptation to the examinees' ability levels takes place. It includes 4 modules (1 at Stage 1, 3 at Stage 2) and 3 paths…

  3. Some Features of the Sampling Distribution of the Ability Estimate in Computerized Adaptive Testing According to Two Stopping Rules.

    ERIC Educational Resources Information Center

    Blais, Jean-Guy; Raiche, Gilles

    This paper examines some characteristics of the statistics associated with the sampling distribution of the proficiency level estimate when the Rasch model is used. These characteristics allow the judgment of the meaning to be given to the proficiency level estimate obtained in adaptive testing, and as a consequence, they can illustrate the…

  4. Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner-outer interaction model

    NASA Astrophysics Data System (ADS)

    Baars, Woutijn J.; Hutchins, Nicholas; Marusic, Ivan

    2016-11-01

    For wall-bounded flows, the model of Marusic, Mathis and Hutchins (2010) allows one to predict the statistics of the streamwise fluctuating velocity in the inner-region, from a measured input signal in the logarithmic region. Normally, a user-defined portion of the input forms the large-scale content in the prediction. Incoherent smaller scales are then fused to the prediction via universally expressed fluctuations that are subject to an amplitude modulation. Here we present a refined version of the model using spectral linear stochastic estimation, which eliminates a user-defined scale-separation of the input. An empirically-derived transfer kernel comprises an implicit filtering via a scale-dependent gain and phase-this kernel captures the coherent portion in the prediction. An additional refinement of the model embodies a relative shift between the stochastically estimated scales in the prediction and the modulation envelope of the universal small-scales. Predictions over a three-decade span of Reynolds numbers, Reτ O (103) to O (106) , highlight promising applications of the refined model to high-Reynolds-number flows, in which coherent scales become the primary contributor to the fluctuating energy.

  5. Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner-outer interaction model

    NASA Astrophysics Data System (ADS)

    Baars, Woutijn J.; Hutchins, Nicholas; Marusic, Ivan

    2016-09-01

    For wall-bounded flows, the model of Marusic et al. [Science 329, 193 (2010), 10.1126/science.1188765] allows one to predict the statistics of the streamwise fluctuating velocity in the inner region, from a measured input signal in the logarithmic region. Normally, a user-defined large-scale portion of the input forms the large-scale content in the prediction by scaling its amplitude, as well as temporally shifting the signal to account for the physical inclination of these scales. Incoherent smaller scales are then fused to the prediction via universally expressed fluctuations that are subject to an amplitude modulation. Here we present a refined version of the model using spectral linear stochastic estimation, which eliminates a user-defined scale separation of the input. Now, an empirically derived transfer kernel comprises an implicit filtering via a scale-dependent gain and phase; this kernel captures the coherent portion in the prediction. An additional refinement of the model embodies a relative shift between the stochastically estimated scales in the prediction and the modulation envelope of the universal small scales. Predictions over a three-decade span of Reynolds numbers, Reτ˜O (103) to O (106) , highlight promising applications of the refined model to high-Reynolds-number flows, in which coherent scales become the primary contributor to the fluctuating energy.

  6. Synergistic angular and spectral estimation of aerosol properties using CHRIS/PROBA-1 and simulated Sentinel-3~data

    NASA Astrophysics Data System (ADS)

    Davies, W. H.; North, P. R. J.

    2014-06-01

    A method has been developed to estimate Aerosol Optical Depth (AOD), Fine Mode Fraction (FMF) and Single Scattering Albedo (SSA) over land surfaces using simulated Sentinel-3 data. The method uses inversion of a coupled surface/atmosphere radiative transfer model, and includes a general physical model of angular surface reflectance. An iterative process is used to determine the optimum value of the aerosol properties providing the best fit of the corrected reflectance values for a number of view angles and wavelengths with those provided by the physical model. A method of estimating AOD using only angular retrieval has previously been demonstrated on data from the ENVISAT and PROBA-1 satellite instruments, and is extended here to the synergistic spectral and angular sampling of Sentinel-3 and the additional aerosol properties. The method is tested using hyperspectral, multi-angle Compact High Resolution Imaging Spectrometer (CHRIS) images. The values obtained from these CHRIS observations are validated using ground based sun-photometer measurements. Results from 22 image sets using the synergistic retrieval and improved aerosol models show an RMSE of 0.06 in AOD, reduced to 0.03 over vegetated targets.

  7. Efficient estimation of abundance for patchily distributed populations via two-phase, adaptive sampling.

    USGS Publications Warehouse

    Conroy, M.J.; Runge, J.P.; Barker, R.J.; Schofield, M.R.; Fonnesbeck, C.J.

    2008-01-01

    Many organisms are patchily distributed, with some patches occupied at high density, others at lower densities, and others not occupied. Estimation of overall abundance can be difficult and is inefficient via intensive approaches such as capture-mark-recapture (CMR) or distance sampling. We propose a two-phase sampling scheme and model in a Bayesian framework to estimate abundance for patchily distributed populations. In the first phase, occupancy is estimated by binomial detection samples taken on all selected sites, where selection may be of all sites available, or a random sample of sites. Detection can be by visual surveys, detection of sign, physical captures, or other approach. At the second phase, if a detection threshold is achieved, CMR or other intensive sampling is conducted via standard procedures (grids or webs) to estimate abundance. Detection and CMR data are then used in a joint likelihood to model probability of detection in the occupancy sample via an abundance-detection model. CMR modeling is used to estimate abundance for the abundance-detection relationship, which in turn is used to predict abundance at the remaining sites, where only detection data are collected. We present a full Bayesian modeling treatment of this problem, in which posterior inference on abundance and other parameters (detection, capture probability) is obtained under a variety of assumptions about spatial and individual sources of heterogeneity. We apply the approach to abundance estimation for two species of voles (Microtus spp.) in Montana, USA. We also use a simulation study to evaluate the frequentist properties of our procedure given known patterns in abundance and detection among sites as well as design criteria. For most population characteristics and designs considered, bias and mean-square error (MSE) were low, and coverage of true parameter values by Bayesian credibility intervals was near nominal. Our two-phase, adaptive approach allows efficient estimation of

  8. Enzymatic Synthesis of Ampicillin: Nonlinear Modeling, Kinetics Estimation, and Adaptive Control

    PubMed Central

    Roman, Monica; Selişteanu, Dan

    2012-01-01

    Nowadays, the use of advanced control strategies in biotechnology is quite low. A main reason is the lack of quality of the data, and the fact that more sophisticated control strategies must be based on a model of the dynamics of bioprocesses. The nonlinearity of the bioprocesses and the absence of cheap and reliable instrumentation require an enhanced modeling effort and identification strategies for the kinetics. The present work approaches modeling and control strategies for the enzymatic synthesis of ampicillin that is carried out inside a fed-batch bioreactor. First, a nonlinear dynamical model of this bioprocess is obtained by using a novel modeling procedure for biotechnology: the bond graph methodology. Second, a high gain observer is designed for the estimation of the imprecisely known kinetics of the synthesis process. Third, by combining an exact linearizing control law with the on-line estimation kinetics algorithm, a nonlinear adaptive control law is designed. The case study discussed shows that a nonlinear feedback control strategy applied to the ampicillin synthesis bioprocess can cope with disturbances, noisy measurements, and parametric uncertainties. Numerical simulations performed with MATLAB environment are included in order to test the behavior and the performances of the proposed estimation and control strategies. PMID:22523470

  9. Pilot-Assisted Adaptive Channel Estimation for Coded MC-CDMA with ICI Cancellation

    NASA Astrophysics Data System (ADS)

    Yui, Tatsunori; Tomeba, Hiromichi; Adachi, Fumiyuki

    One of the promising wireless access techniques for the next generation mobile communications systems is multi-carrier code division multiple access (MC-CDMA). MC-CDMA can provide good transmission performance owing to the frequency diversity effect in a severe frequency-selective fading channel. However, the bit error rate (BER) performance of coded MC-CDMA is inferior to that of orthogonal frequency division multiplexing (OFDM) due to the residual inter-code interference (ICI) after frequency-domain equalization (FDE). Recently, we proposed a frequency-domain soft interference cancellation (FDSIC) to reduce the residual ICI and confirmed by computer simulation that the MC-CDMA with FDSIC provides better BER performance than OFDM. However, ideal channel estimation was assumed. In this paper, we propose adaptive decision-feedback channel estimation (ADFCE) and evaluate by computer simulation the average BER and throughput performances of turbo-coded MC-CDMA with FDSIC. We show that even if a practical channel estimation is used, MC-CDMA with FDSIC can still provide better performance than OFDM.

  10. Enzymatic synthesis of ampicillin: nonlinear modeling, kinetics estimation, and adaptive control.

    PubMed

    Roman, Monica; Selişteanu, Dan

    2012-01-01

    Nowadays, the use of advanced control strategies in biotechnology is quite low. A main reason is the lack of quality of the data, and the fact that more sophisticated control strategies must be based on a model of the dynamics of bioprocesses. The nonlinearity of the bioprocesses and the absence of cheap and reliable instrumentation require an enhanced modeling effort and identification strategies for the kinetics. The present work approaches modeling and control strategies for the enzymatic synthesis of ampicillin that is carried out inside a fed-batch bioreactor. First, a nonlinear dynamical model of this bioprocess is obtained by using a novel modeling procedure for biotechnology: the bond graph methodology. Second, a high gain observer is designed for the estimation of the imprecisely known kinetics of the synthesis process. Third, by combining an exact linearizing control law with the on-line estimation kinetics algorithm, a nonlinear adaptive control law is designed. The case study discussed shows that a nonlinear feedback control strategy applied to the ampicillin synthesis bioprocess can cope with disturbances, noisy measurements, and parametric uncertainties. Numerical simulations performed with MATLAB environment are included in order to test the behavior and the performances of the proposed estimation and control strategies.

  11. Adaptive nonlinear observer for state and unknown parameter estimation in noisy systems

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Krishna; Valibeygi, Amir

    2016-01-01

    This paper proposes a novel adaptive observer for Lipschitz nonlinear systems and dissipative nonlinear systems in the presence of disturbances and sensor noise. The observer is based on an H∞ observer that can estimate both the system states and unknown parameters by minimising a cost function consisting of the sum of the square integrals of the estimation errors in the states and unknown parameters. The paper presents necessary and sufficient conditions for the existence of the observer, and the equations for determining observer gains are formulated as linear matrix inequalities (LMIs) that can be solved offline using commercially available LMI solvers. The observer design has also been extended to the case of time-varying unknown parameters. The use of the observer is demonstrated through illustrative examples and the performance is compared with extended Kalman filtering. Compared to previous results on nonlinear observers, the proposed observer is more computationally efficient, and guarantees state and parameter estimation for two very broad classes of nonlinear systems (Lipschitz and dissipative nonlinear systems) in the presence of input disturbances and sensor noise. In addition, the proposed observer does not require online computation of the observer gain.

  12. Chloroplast Avoidance Movement Causes Increasing PAR Reflectance in Water Stressed Plants and May Distort Biophysical Estimates Based On Spectral Indices

    NASA Astrophysics Data System (ADS)

    Zygielbaum, A. I.; Arkebauer, T. J.; Walter-Shea, E.

    2013-12-01

    Vegetation photoprotective responses impact the reflected spectra in the visible or photosynthetically active (PAR) spectral region. Earlier, we presented a case that the increasing PAR reflectance which accompanies increasing water stress was due to one such response, chloroplast avoidance movement. This increasing reflectance has been reported in published papers for several decades and dismissed as operator error or a result of changes in leaf turgor or optical pathway. We showed, however, that such changes in the PAR region, which occurred with no significant change in chlorophyll content, were caused by decreasing absorption, not changes in light scatter. Further, we demonstrated that the changes in reflectance were correlated with changes in ambient light (downwelling radiance). To further refine the case that chloroplast movement is the basis of these observations, excised leaves were exposed separately to either red light or white light illumination of equal photon flux densities. The transmittance observed as these leaves dried increased in the leaves exposed to white light and remained constant in the leaves exposed to red light. Since chloroplast movement is driven by blue light, our conjecture is strengthened. We have also observed distinct morning vs. afternoon differences in reflectance spectra of greenhouse-grown plants; indices derived from these spectra also vary diurnally--leading us to coin the phase 'apparent chlorophyll'. All observations previously reported were the result of greenhouse experiments. We report herein on observations of leaf and canopy reflectances under field conditions and on the impact the increasing reflectance has on estimation of chlorophyll content using spectral indices. We also present evidence that increasing reflectance which is concomitant with increasing plant stress may not correlate with stress indications using the photochemical reflectance index (PRI) and discuss the implications of that observation.

  13. Signal Quality Estimation With Multichannel Adaptive Filtering in Intensive Care Settings

    PubMed Central

    Lee, Joon; Mark, Roger G.

    2013-01-01

    A signal quality estimate of a physiological waveform can be an important initial step for automated processing of real-world data. This paper presents a new generic point-by-point signal quality index (SQI) based on adaptive multichannel prediction that does not rely on ad hoc morphological feature extraction from the target waveform. An application of this new SQI to photoplethysmograms (PPG), arterial blood pressure (ABP) measurements, and ECG showed that the SQI is monotonically related to signal-to-noise ratio (simulated by adding white Gaussian noise) and to subjective human quality assessment of 1361 multichannel waveform epochs. A receiver-operating-characteristic (ROC) curve analysis, with the human “bad” quality label as positive and the “good” quality label as negative, yielded areas under the ROC curve of 0.86 (PPG), 0.82 (ABP), and 0.68 (ECG). PMID:22717504

  14. Use of spectral channels and vegetation indices from satellite VEGETATION time series for the Post-Fire vegetation recovery estimation

    NASA Astrophysics Data System (ADS)

    Coluzzi, Rosa; Lasaponara, Rosa; Montesano, Tiziana; Lanorte, Antonio; de Santis, Fortunato

    2010-05-01

    Satellite data can help monitoring the dynamics of vegetation in burned and unburned areas. Several methods can be used to perform such kind of analysis. This paper is focused on the use of different satellite-based parameters for fire recovery monitoring. In particular, time series of single spectral channels and vegetation indices from SPOT-VEGETATION have investigated. The test areas is the Mediterranean ecosystems of Southern Italy. For this study we considered: 1) the most widely used index to follow the process of recovery after fire: normalized difference vegetation index (NDVI) obtained from the visible (Red) and near infrared (NIR) by using the following formula NDVI = (NIR_Red)/(NIR + Red), 2) moisture index MSI obtained from the near infrared and Mir for characterization of leaf and canopy water content. 3) NDWI obtained from the near infrared and Mir as in the case of MSI, but with the normalization (as the NDVI) to reduce the atmospheric effects. All analysis for this work was performed on ten-daily normalized difference vegetation index (NDVI) image composites (S10) from the SPOT- VEGETATION (VGT) sensor. The final data set consisted of 279 ten-daily, 1 km resolution NDVI S1O composites for the period 1 April 1998 to 31 December 2005 with additional surface reflectance values in the blue (B; 0.43-0.47,um), red (R; 0.61-0.68,um), near-infrared (NIR; 0.78-0.89,um) and shortwave-infrared (SWIR; 1.58-1.75,um) spectral bands, and information on the viewing geometry and pixel status. Preprocessing of the data was performed by the Vlaamse Instelling voor Technologisch Onderzoek (VITO) in the framework of the Global Vegetation Monitoring (GLOVEG) preprocessing chain. It consisted of the Simplified Method for Atmospheric Correction (SMAC) and compositing at ten-day intervals based on the Maximum Value Compositing (MVC) criterion. All the satellite time series were analysed using the Detrended Fluctuation Analysis (DFA) to estimate post fire vegetation recovery

  15. Developing a new software package for PSF estimation and fitting of adaptive optics images

    NASA Astrophysics Data System (ADS)

    Schreiber, Laura; Diolaiti, Emiliano; Sollima, Antonio; Arcidiacono, Carmelo; Bellazzini, Michele; Ciliegi, Paolo; Falomo, Renato; Foppiani, Italo; Greggio, Laura; Lanzoni, Barbara; Lombini, Matteo; Montegriffo, Paolo; Dalessandro, Emanuele; Massari, Davide

    2012-07-01

    Adaptive Optics (AO) images are characterized by structured Point Spread Function (PSF), with sharp core and extended halo, and by significant variations across the field of view. In order to enable the extraction of high-precision quantitative information and improve the scientific exploitation of AO data, efforts in the PSF modeling and in the integration of suitable models in a code for image analysis are needed. We present the current status of a study on the modeling of AO PSFs based on observational data taken with present telescopes (VLT and LBT). The methods under development include parametric models and hybrid (i.e. analytical / numerical) models adapted to various types of PSFs that can show up in AO images. The specific features of AO data, such as the mainly radial variation of the PSF with respect to the guide star position in single-reference AO, are taken into account as much as possible. The final objective of this project is the development of a flexible software package, based on the Starfinder code (Diolaiati et Al 2000), specifically dedicated to the PSF estimation and to the astrometric and photometric analysis of AO images with complex and spatially variable PSF.

  16. Adaptive circle-ellipse fitting method for estimating tree diameter based on single terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Bu, Guochao; Wang, Pei

    2016-04-01

    Terrestrial laser scanning (TLS) has been used to extract accurate forest biophysical parameters for inventory purposes. The diameter at breast height (DBH) is a key parameter for individual trees because it has the potential for modeling the height, volume, biomass, and carbon sequestration potential of the tree based on empirical allometric scaling equations. In order to extract the DBH from the single-scan data of TLS automatically and accurately within a certain range, we proposed an adaptive circle-ellipse fitting method based on the point cloud transect. This proposed method can correct the error caused by the simple circle fitting method when a tree is slanted. A slanted tree was detected by the circle-ellipse fitting analysis, then the corresponding slant angle was found based on the ellipse fitting result. With this information, the DBH of the trees could be recalculated based on reslicing the point cloud data at breast height. Artificial stem data simulated by a cylindrical model of leaning trees and the scanning data acquired with the RIEGL VZ-400 were used to test the proposed adaptive fitting method. The results shown that the proposed method can detect the trees and accurately estimate the DBH for leaning trees.

  17. Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains

    USGS Publications Warehouse

    Wylie, B.K.; Fosnight, E.A.; Gilmanov, T.G.; Frank, A.B.; Morgan, J.A.; Haferkamp, Marshall R.; Meyers, T.P.

    2007-01-01

    Rangeland carbon fluxes are highly variable in both space and time. Given the expansive areas of rangelands, how rangelands respond to climatic variation, management, and soil potential is important to understanding carbon dynamics. Rangeland carbon fluxes associated with Net Ecosystem Exchange (NEE) were measured from multiple year data sets at five flux tower locations in the Northern Great Plains. These flux tower measurements were combined with 1-km2 spatial data sets of Photosynthetically Active Radiation (PAR), Normalized Difference Vegetation Index (NDVI), temperature, precipitation, seasonal NDVI metrics, and soil characteristics. Flux tower measurements were used to train and select variables for a rule-based piece-wise regression model. The accuracy and stability of the model were assessed through random cross-validation and cross-validation by site and year. Estimates of NEE were produced for each 10-day period during each growing season from 1998 to 2001. Growing season carbon flux estimates were combined with winter flux estimates to derive and map annual estimates of NEE. The rule-based piece-wise regression model is a dynamic, adaptive model that captures the relationships of the spatial data to NEE as conditions evolve throughout the growing season. The carbon dynamics in the Northern Great Plains proved to be in near equilibrium, serving as a small carbon sink in 1999 and as a small carbon source in 1998, 2000, and 2001. Patterns of carbon sinks and sources are very complex, with the carbon dynamics tilting toward sources in the drier west and toward sinks in the east and near the mountains in the extreme west. Significant local variability exists, which initial investigations suggest are likely related to local climate variability, soil properties, and management.

  18. Online estimation of the wavefront outer scale profile from adaptive optics telemetry

    NASA Astrophysics Data System (ADS)

    Guesalaga, A.; Neichel, B.; Correia, C. M.; Butterley, T.; Osborn, J.; Masciadri, E.; Fusco, T.; Sauvage, J.-F.

    2017-02-01

    We describe an online method to estimate the wavefront outer scale profile, L0(h), for very large and future extremely large telescopes. The stratified information on this parameter impacts the estimation of the main turbulence parameters [turbulence strength, Cn2(h); Fried's parameter, r0; isoplanatic angle, θ0; and coherence time, τ0) and determines the performance of wide-field adaptive optics (AO) systems. This technique estimates L0(h) using data from the AO loop available at the facility instruments by constructing the cross-correlation functions of the slopes between two or more wavefront sensors, which are later fitted to a linear combination of the simulated theoretical layers having different altitudes and outer scale values. We analyse some limitations found in the estimation process: (i) its insensitivity to large values of L0(h) as the telescope becomes blind to outer scales larger than its diameter; (ii) the maximum number of observable layers given the limited number of independent inputs that the cross-correlation functions provide and (iii) the minimum length of data required for a satisfactory convergence of the turbulence parameters without breaking the assumption of statistical stationarity of the turbulence. The method is applied to the Gemini South multiconjugate AO system that comprises five wavefront sensors and two deformable mirrors. Statistics of L0(h) at Cerro Pachón from data acquired during 3 yr of campaigns show interesting resemblance to other independent results in the literature. A final analysis suggests that the impact of error sources will be substantially reduced in instruments of the next generation of giant telescopes.

  19. In situ spectral measurements improve the efficiency of light use efficiency models to estimate gross primary productivity in Mediterranean cork oak woodland

    NASA Astrophysics Data System (ADS)

    Cerasoli, S.; Silva, J. M.; Carvalhais, N.; Correia, A.; Costa e Silva, F.; Pereira, J. S.

    2013-12-01

    The Light Use Efficiency (LUE) concept is usually applied to retrieve Gross Primary Productivity (GPP) estimates in models integrating spectral indexes, namely Normalized Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI), considered proxies of biophysical properties of vegetation. The integration of spectral measurements into LUE models can increase the robustness of GPP estimates by optimizing particular parameters of the model. NDVI and PRI are frequently obtained by broad band sensors on remote platforms at low spatial resolution (e.g. MODIS). In highly heterogeneous ecosystems such spectral information may not be representative of the dynamic response of the ecosystem to climate variables. In Mediterranean oak woodlands different plant functional types (PFT): trees canopy, shrubs and herbaceous layer, contribute to the overall Gross Primary Productivity (GPP). In situ spectral measurements can provide useful information on each PFT and its temporal variability. The objectives of this study were: i) to analyze the temporal variability of NDVI, PRI and others spectral indices for the three PFT, their response to climate variables and their relationship with biophysical properties of vegetation; ii) to optimize a LUE model integrating selected spectral indexes in which the contribution of each PFT to the overall GPP is estimated individually; iii) to compare the performance of disaggregated GPP estimates and lumped GPP estimates, evaluated against eddy covariance measurements. Ground measurements of vegetation reflectance were performed in a cork oak woodland located in Coruche, Portugal (39°8'N, 8°19'W) where carbon and water fluxes are continuously measured by eddy covariance. Between April 2011 and June 2013 reflectance measurements of the herbaceous layer, shrubs and trees canopy were acquired with a FieldSpec3 spectroradiometer (ASD Inc.) which provided data in the range of 350-2500nm. Measurements were repeated approximately on

  20. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  1. Application of Parallel Adjoint-Based Error Estimation and Anisotropic Grid Adaptation for Three-Dimensional Aerospace Configurations

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, E. M.; Park, M. A.; Jones, W. T.; Hammond, D. P.; Nielsen, E. J.

    2005-01-01

    This paper demonstrates the extension of error estimation and adaptation methods to parallel computations enabling larger, more realistic aerospace applications and the quantification of discretization errors for complex 3-D solutions. Results were shown for an inviscid sonic-boom prediction about a double-cone configuration and a wing/body segmented leading edge (SLE) configuration where the output function of the adjoint was pressure integrated over a part of the cylinder in the near field. After multiple cycles of error estimation and surface/field adaptation, a significant improvement in the inviscid solution for the sonic boom signature of the double cone was observed. Although the double-cone adaptation was initiated from a very coarse mesh, the near-field pressure signature from the final adapted mesh compared very well with the wind-tunnel data which illustrates that the adjoint-based error estimation and adaptation process requires no a priori refinement of the mesh. Similarly, the near-field pressure signature for the SLE wing/body sonic boom configuration showed a significant improvement from the initial coarse mesh to the final adapted mesh in comparison with the wind tunnel results. Error estimation and field adaptation results were also presented for the viscous transonic drag prediction of the DLR-F6 wing/body configuration, and results were compared to a series of globally refined meshes. Two of these globally refined meshes were used as a starting point for the error estimation and field-adaptation process where the output function for the adjoint was the total drag. The field-adapted results showed an improvement in the prediction of the drag in comparison with the finest globally refined mesh and a reduction in the estimate of the remaining drag error. The adjoint-based adaptation parameter showed a need for increased resolution in the surface of the wing/body as well as a need for wake resolution downstream of the fuselage and wing trailing edge

  2. Point estimation and p-values in phase II adaptive two-stage designs with a binary endpoint.

    PubMed

    Kunzmann, K; Kieser, M

    2017-03-15

    Clinical trials in phase II of drug development are frequently conducted as single-arm two-stage studies with a binary endpoint. Recently, adaptive designs have been proposed for this setting that enable a midcourse modification of the sample size. While these designs are elaborated with respect to hypothesis testing by assuring control of the type I error rate, the topic of point estimation has up to now not been addressed. For adaptive designs with a prespecified sample size recalculation rule, we propose a new point estimator that both assures compatibility of estimation and test decision and minimizes average mean squared error. This estimator can be interpreted as a constrained posterior mean estimate based on the non-informative Jeffreys prior. A comparative investigation of the operating characteristics demonstrates the favorable properties of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Heart Motion Prediction Based on Adaptive Estimation Algorithms for Robotic Assisted Beating Heart Surgery

    PubMed Central

    Tuna, E. Erdem; Franke, Timothy J.; Bebek, Özkan; Shiose, Akira; Fukamachi, Kiyotaka; Çavuşoğlu, M. Cenk

    2013-01-01

    Robotic assisted beating heart surgery aims to allow surgeons to operate on a beating heart without stabilizers as if the heart is stationary. The robot actively cancels heart motion by closely following a point of interest (POI) on the heart surface—a process called Active Relative Motion Canceling (ARMC). Due to the high bandwidth of the POI motion, it is necessary to supply the controller with an estimate of the immediate future of the POI motion over a prediction horizon in order to achieve sufficient tracking accuracy. In this paper, two least-square based prediction algorithms, using an adaptive filter to generate future position estimates, are implemented and studied. The first method assumes a linear system relation between the consecutive samples in the prediction horizon. On the contrary, the second method performs this parametrization independently for each point over the whole the horizon. The effects of predictor parameters and variations in heart rate on tracking performance are studied with constant and varying heart rate data. The predictors are evaluated using a 3 degrees of freedom test-bed and prerecorded in-vivo motion data. Then, the one-step prediction and tracking performances of the presented approaches are compared with an Extended Kalman Filter predictor. Finally, the essential features of the proposed prediction algorithms are summarized. PMID:23976889

  4. Complex lung motion estimation via adaptive bilateral filtering of the deformation field.

    PubMed

    Papiez, Bartlomiej W; Heinrich, Mattias Paul; Risser, Laurent; Schnabel, Julia A

    2013-01-01

    Estimation of physiologically plausible deformations is critical for several medical applications. For example, lung cancer diagnosis and treatment requires accurate image registration which preserves sliding motion in the pleural cavity, and the rigidity of chest bones. This paper addresses these challenges by introducing a novel approach for regularisation of non-linear transformations derived from a bilateral filter. For this purpose, the classic Gaussian kernel is replaced by a new kernel that smoothes the estimated deformation field with respect to the spatial position, intensity and deformation dissimilarity. The proposed regularisation is a spatially adaptive filter that is able to preserve discontinuity between the lungs and the pleura and reduces any rigid structures deformations in volumes. Moreover, the presented framework is fully automatic and no prior knowledge of the underlying anatomy is required. The performance of our novel regularisation technique is demonstrated on phantom data for a proof of concept as well as 3D inhale and exhale pairs of clinical CT lung volumes. The results of the quantitative evaluation exhibit a significant improvement when compared to the corresponding state-of-the-art method using classic Gaussian smoothing.

  5. Effects of water depth and spectral bandwidth on Stokes drift estimation based on short-term variation of wave conditions

    NASA Astrophysics Data System (ADS)

    Myrhaug, Dag; Wang, Hong; Holmedal, Lars Erik

    2016-04-01

    The Stokes drift represents an important transport component of ocean circulation models. Locally it is responsible for transport of e.g. contaminated ballast water from ships, oil spills, plankton and larvae. It also plays an important role in mixing processes across the interphase between the atmosphere and the ocean. The Stokes drift is the mean Lagrangian velocity obtained from the water particle trajectory in the wave propagation direction; it is maximum at the surface, decreasing rapidly with the depth below the surface. The total mean mass transport is obtained by integrating the Stokes drift over the water depth; this is also referred to as the volume Stokes transport. The paper provides a simple analytical method which can be used to give estimates of the Stokes drift in moderate intermediate water depth based on short-term variation of wave conditions. This is achieved by using a joint distribution of individual wave heights and wave periods together with an explicit solution of the wave dispersion equation. The mean values of the surface Stokes drift and the volume Stokes transport for individual random waves within a sea state are presented, and the effects of water depth and spectral bandwidth parameter are discussed. Furthermore, example of results corresponding to typical field conditions are presented to demonstrate the application of the method, including the Stokes drift profile in the water column beneath the surface. Thus, the present analytical method can be used to estimate the Stokes drift in moderate intermediate water depth for random waves within a sea state based on available wave statistics.

  6. Estimation of Signal Coherence Threshold and Concealed Spectral Lines Applied to Detection of Turbofan Engine Combustion Noise

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2010-01-01

    Combustion noise from turbofan engines has become important, as the noise from sources like the fan and jet are reduced. An aligned and un-aligned coherence technique has been developed to determine a threshold level for the coherence and thereby help to separate the coherent combustion noise source from other noise sources measured with far-field microphones. This method is compared with a statistics based coherence threshold estimation method. In addition, the un-aligned coherence procedure at the same time also reveals periodicities, spectral lines, and undamped sinusoids hidden by broadband turbofan engine noise. In calculating the coherence threshold using a statistical method, one may use either the number of independent records or a larger number corresponding to the number of overlapped records used to create the average. Using data from a turbofan engine and a simulation this paper shows that applying the Fisher z-transform to the un-aligned coherence can aid in making the proper selection of samples and produce a reasonable statistics based coherence threshold. Examples are presented showing that the underlying tonal and coherent broad band structure which is buried under random broadband noise and jet noise can be determined. The method also shows the possible presence of indirect combustion noise. Copyright 2011 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America.

  7. Estimation of signal coherence threshold and concealed spectral lines applied to detection of turbofan engine combustion noise.

    PubMed

    Miles, Jeffrey Hilton

    2011-05-01

    Combustion noise from turbofan engines has become important, as the noise from sources like the fan and jet are reduced. An aligned and un-aligned coherence technique has been developed to determine a threshold level for the coherence and thereby help to separate the coherent combustion noise source from other noise sources measured with far-field microphones. This method is compared with a statistics based coherence threshold estimation method. In addition, the un-aligned coherence procedure at the same time also reveals periodicities, spectral lines, and undamped sinusoids hidden by broadband turbofan engine noise. In calculating the coherence threshold using a statistical method, one may use either the number of independent records or a larger number corresponding to the number of overlapped records used to create the average. Using data from a turbofan engine and a simulation this paper shows that applying the Fisher z-transform to the un-aligned coherence can aid in making the proper selection of samples and produce a reasonable statistics based coherence threshold. Examples are presented showing that the underlying tonal and coherent broad band structure which is buried under random broadband noise and jet noise can be determined. The method also shows the possible presence of indirect combustion noise.

  8. A simplified 96-well method for the estimation of phenolic acids and antioxidant activity from eggplant pulp extracts using UV spectral scan data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eggplant fruit is ranked amongst the top ten vegetables in terms of oxygen radical absorbance capacity due to its high phenolic acid content. The main objective of this study was to determine if a simple UV spectral analysis method can be used as a screening tool to estimate the amount of phenolic ...

  9. Goodness-of-Fit Tests and Nonparametric Adaptive Estimation for Spike Train Analysis

    PubMed Central

    2014-01-01

    When dealing with classical spike train analysis, the practitioner often performs goodness-of-fit tests to test whether the observed process is a Poisson process, for instance, or if it obeys another type of probabilistic model (Yana et al. in Biophys. J. 46(3):323–330, 1984; Brown et al. in Neural Comput. 14(2):325–346, 2002; Pouzat and Chaffiol in Technical report, http://arxiv.org/abs/arXiv:0909.2785, 2009). In doing so, there is a fundamental plug-in step, where the parameters of the supposed underlying model are estimated. The aim of this article is to show that plug-in has sometimes very undesirable effects. We propose a new method based on subsampling to deal with those plug-in issues in the case of the Kolmogorov–Smirnov test of uniformity. The method relies on the plug-in of good estimates of the underlying model that have to be consistent with a controlled rate of convergence. Some nonparametric estimates satisfying those constraints in the Poisson or in the Hawkes framework are highlighted. Moreover, they share adaptive properties that are useful from a practical point of view. We show the performance of those methods on simulated data. We also provide a complete analysis with these tools on single unit activity recorded on a monkey during a sensory-motor task. Electronic Supplementary Material The online version of this article (doi:10.1186/2190-8567-4-3) contains supplementary material. PMID:24742008

  10. Goodness-of-Fit Tests and Nonparametric Adaptive Estimation for Spike Train Analysis.

    PubMed

    Reynaud-Bouret, Patricia; Rivoirard, Vincent; Grammont, Franck; Tuleau-Malot, Christine

    2014-04-17

    When dealing with classical spike train analysis, the practitioner often performs goodness-of-fit tests to test whether the observed process is a Poisson process, for instance, or if it obeys another type of probabilistic model (Yana et al. in Biophys. J. 46(3):323-330, 1984; Brown et al. in Neural Comput. 14(2):325-346, 2002; Pouzat and Chaffiol in Technical report, http://arxiv.org/abs/arXiv:0909.2785, 2009). In doing so, there is a fundamental plug-in step, where the parameters of the supposed underlying model are estimated. The aim of this article is to show that plug-in has sometimes very undesirable effects. We propose a new method based on subsampling to deal with those plug-in issues in the case of the Kolmogorov-Smirnov test of uniformity. The method relies on the plug-in of good estimates of the underlying model that have to be consistent with a controlled rate of convergence. Some nonparametric estimates satisfying those constraints in the Poisson or in the Hawkes framework are highlighted. Moreover, they share adaptive properties that are useful from a practical point of view. We show the performance of those methods on simulated data. We also provide a complete analysis with these tools on single unit activity recorded on a monkey during a sensory-motor task.Electronic Supplementary MaterialThe online version of this article (doi:10.1186/2190-8567-4-3) contains supplementary material.

  11. Adaptive Disturbance Tracking Theory with State Estimation and State Feedback for Region II Control of Large Wind Turbines

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Thapa Magar, Kaman S.; Frost, Susan A.

    2013-01-01

    A theory called Adaptive Disturbance Tracking Control (ADTC) is introduced and used to track the Tip Speed Ratio (TSR) of 5 MW Horizontal Axis Wind Turbine (HAWT). Since ADTC theory requires wind speed information, a wind disturbance generator model is combined with lower order plant model to estimate the wind speed as well as partial states of the wind turbine. In this paper, we present a proof of stability and convergence of ADTC theory with lower order estimator and show that the state feedback can be adaptive.

  12. Global error estimation based on the tolerance proportionality for some adaptive Runge-Kutta codes

    NASA Astrophysics Data System (ADS)

    Calvo, M.; González-Pinto, S.; Montijano, J. I.

    2008-09-01

    Modern codes for the numerical solution of Initial Value Problems (IVPs) in ODEs are based in adaptive methods that, for a user supplied tolerance [delta], attempt to advance the integration selecting the size of each step so that some measure of the local error is [similar, equals][delta]. Although this policy does not ensure that the global errors are under the prescribed tolerance, after the early studies of Stetter [Considerations concerning a theory for ODE-solvers, in: R. Burlisch, R.D. Grigorieff, J. Schröder (Eds.), Numerical Treatment of Differential Equations, Proceedings of Oberwolfach, 1976, Lecture Notes in Mathematics, vol. 631, Springer, Berlin, 1978, pp. 188-200; Tolerance proportionality in ODE codes, in: R. März (Ed.), Proceedings of the Second Conference on Numerical Treatment of Ordinary Differential Equations, Humbold University, Berlin, 1980, pp. 109-123] and the extensions of Higham [Global error versus tolerance for explicit Runge-Kutta methods, IMA J. Numer. Anal. 11 (1991) 457-480; The tolerance proportionality of adaptive ODE solvers, J. Comput. Appl. Math. 45 (1993) 227-236; The reliability of standard local error control algorithms for initial value ordinary differential equations, in: Proceedings: The Quality of Numerical Software: Assessment and Enhancement, IFIP Series, Springer, Berlin, 1997], it has been proved that in many existing explicit Runge-Kutta codes the global errors behave asymptotically as some rational power of [delta]. This step-size policy, for a given IVP, determines at each grid point tn a new step-size hn+1=h(tn;[delta]) so that h(t;[delta]) is a continuous function of t. In this paper a study of the tolerance proportionality property under a discontinuous step-size policy that does not allow to change the size of the step if the step-size ratio between two consecutive steps is close to unity is carried out. This theory is applied to obtain global error estimations in a few problems that have been solved with

  13. Robust fundamental frequency estimation in sustained vowels: detailed algorithmic comparisons and information fusion with adaptive Kalman filtering.

    PubMed

    Tsanas, Athanasios; Zañartu, Matías; Little, Max A; Fox, Cynthia; Ramig, Lorraine O; Clifford, Gari D

    2014-05-01

    There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F(0)) of speech signals. This study examines ten F(0) estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F(0) in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F(0) estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F(0) estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F(0) estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F(0) estimation is required.

  14. Robust fundamental frequency estimation in sustained vowels: Detailed algorithmic comparisons and information fusion with adaptive Kalman filtering

    PubMed Central

    Tsanas, Athanasios; Zañartu, Matías; Little, Max A.; Fox, Cynthia; Ramig, Lorraine O.; Clifford, Gari D.

    2014-01-01

    There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F0) of speech signals. This study examines ten F0 estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F0 in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F0 estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F0 estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F0 estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F0 estimation is required. PMID:24815269

  15. Tracking the Turn Maneuvering Target Using the Multi-Target Bayes Filter with an Adaptive Estimation of Turn Rate.

    PubMed

    Liu, Zong-Xiang; Wu, De-Hui; Xie, Wei-Xin; Li, Liang-Qun

    2017-02-15

    Tracking the target that maneuvers at a variable turn rate is a challenging problem. The traditional solution for this problem is the use of the switching multiple models technique, which includes several dynamic models with different turn rates for matching the motion mode of the target at each point in time. However, the actual motion mode of a target at any time may be different from all of the dynamic models, because these models are usually limited. To address this problem, we establish a formula for estimating the turn rate of a maneuvering target. By applying the estimation method of the turn rate to the multi-target Bayes (MB) filter, we develop a MB filter with an adaptive estimation of the turn rate, in order to track multiple maneuvering targets. Simulation results indicate that the MB filter with an adaptive estimation of the turn rate, is better than the existing filter at tracking the target that maneuvers at a variable turn rate.

  16. Estimation of basis line-integrals in a spectral distortion-modeled photon counting detector using low-order polynomial approximation of x-ray transmittance.

    PubMed

    Lee, Okkyun; Kappler, Steffen; Polster, Christoph; Taguchi, Katsuyuki

    2016-10-26

    Photon counting detector (PCD)-based computed tomography exploits spectral information from a transmitted x-ray spectrum to estimate basis line-integrals. The recorded spectrum, however, is distorted and deviates from the transmitted spectrum due to spectral response effect (SRE). Therefore, the SRE needs to be compensated for when estimating basis lineintegrals. One approach is to incorporate the SRE model with an incident spectrum into the PCD measurement model and the other approach is to perform a calibration process that inherently includes both the SRE and the incident spectrum. A maximum likelihood estimator can be used to the former approach, which guarantees asymptotic optimality; however, a heavy computational burden is a concern. Calibration-based estimators are a form of the latter approach. They can be very efficient; however, a heuristic calibration process needs to be addressed. In this paper, we propose a computationally efficient three-step estimator for the former approach using a low-order polynomial approximation of x-ray transmittance. The low-order polynomial approximation can change the original non-linear estimation method to a two-step linearized approach followed by an iterative bias correction step. We show that the calibration process is required only for the bias correction step and prove that it converges to the unbiased solution under practical assumptions. Extensive simulation studies validate the proposed method and show that the estimation results are comparable to those of the ML estimator while the computational time is reduced substantially.

  17. Developing Bayesian adaptive methods for estimating sensitivity thresholds (d') in Yes-No and forced-choice tasks.

    PubMed

    Lesmes, Luis A; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A; Albright, Thomas D

    2015-01-01

    Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold-the signal intensity corresponding to a pre-defined sensitivity level (d' = 1)-in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks-(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection-the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10-0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods.

  18. Developing Bayesian adaptive methods for estimating sensitivity thresholds (d′) in Yes-No and forced-choice tasks

    PubMed Central

    Lesmes, Luis A.; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A.; Albright, Thomas D.

    2015-01-01

    Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold—the signal intensity corresponding to a pre-defined sensitivity level (d′ = 1)—in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks—(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection—the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10–0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods. PMID:26300798

  19. Adaptive truncation of matrix decompositions and efficient estimation of NMR relaxation distributions

    NASA Astrophysics Data System (ADS)

    Teal, Paul D.; Eccles, Craig

    2015-04-01

    The two most successful methods of estimating the distribution of nuclear magnetic resonance relaxation times from two dimensional data are data compression followed by application of the Butler-Reeds-Dawson algorithm, and a primal-dual interior point method using preconditioned conjugate gradient. Both of these methods have previously been presented using a truncated singular value decomposition of matrices representing the exponential kernel. In this paper it is shown that other matrix factorizations are applicable to each of these algorithms, and that these illustrate the different fundamental principles behind the operation of the algorithms. These are the rank-revealing QR (RRQR) factorization and the LDL factorization with diagonal pivoting, also known as the Bunch-Kaufman-Parlett factorization. It is shown that both algorithms can be improved by adaptation of the truncation as the optimization process progresses, improving the accuracy as the optimal value is approached. A variation on the interior method viz, the use of barrier function instead of the primal-dual approach, is found to offer considerable improvement in terms of speed and reliability. A third type of algorithm, related to the algorithm known as Fast iterative shrinkage-thresholding algorithm, is applied to the problem. This method can be efficiently formulated without the use of a matrix decomposition.

  20. Adaptive search range adjustment scheme for fast motion estimation in AVC/H.264

    NASA Astrophysics Data System (ADS)

    Lee, Sunyoung; Choi, Kiho; Jang, Euee S.

    2011-06-01

    AVC/H.264 supports the use of multiple reference frames (e.g., 5 frames in AVC/H.264) for motion estimation (ME), which demands a huge computational complexity in ME. We propose an adaptive search range adjustment scheme to reduce the computational complexity of ME by reducing the search range of each reference frame--from the (t-1)'th frame to the (t-5)'th frame--for each macroblock. Based on the statistical analysis that the 16×16 mode type is dominantly selected rather than the other block partition mode types, the proposed method reduces the search range of the remaining ME process in the given reference frame according to the motion vector (MV) position of the 16×16 block ME. In the case of the (t-1)'th frame, the MV position of the 8×8 block ME--in addition to that of 16×16 block ME--is also used for the search range reduction to sub-block partition mode types of the 8×8 block. The experimental results show that the proposed method reduces about 50% and 65% of the total encoding time over CIF/SIF and full HD test sequences, respectively, without any noticeable visual degradation, compared to the full search method of the AVC/H.264 encoder.

  1. Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Zhang, Weige; Shi, Wei; Ma, Zeyu

    2015-09-01

    Accurate estimations of battery energy and available power capability are of great of importance for realizing an efficient and reliable operation of electric vehicles. To improve the estimation accuracy and reliability for battery state of energy and power capability, a novel model-based joint estimation approach has been proposed against uncertain external operating conditions and internal degradation status of battery cells. Firstly, it proposes a three-dimensional response surface open circuit voltage model to calibrate the estimation inaccuracies of battery state of energy. Secondly, the adaptive unscented Kalman filter (AUKF) is employed to develop a novel model-based joint state estimator for battery state of energy and power capability. The AUKF algorithm utilizes the well-known features of the Kalman filter but employs the method of unscented transform (UT) and adaptive error covariance matching technology to improve the state estimation accuracy. Thirdly, the proposed joint estimator has been verified by a LiFePO4 lithium-ion battery cell under different operating temperatures and aging levels. The result indicates that the estimation errors of battery voltage and state-of-energy are less than 2% even if given a large erroneous initial value, which makes the state of available power capability predict more accurate and reliable for the electric vehicles application.

  2. Simulated adaptations to an adult dietary self-report tool to accommodate children: Impact on nutrient estimates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective was to simulate the effect of child-friendly (CF) adaptations of the National Cancer Institute’s Automated Self-Administered 24-Hour Dietary Recall (ASA24) on estimates of nutrient intake. One hundred twenty children, 8–13 years old, entered their previous day’s intake using the ASA24 ...

  3. Computer Adaptive Practice of Maths Ability Using a New Item Response Model for on the Fly Ability and Difficulty Estimation

    ERIC Educational Resources Information Center

    Klinkenberg, S.; Straatemeier, M.; van der Maas, H. L. J.

    2011-01-01

    In this paper we present a model for computerized adaptive practice and monitoring. This model is used in the Maths Garden, a web-based monitoring system, which includes a challenging web environment for children to practice arithmetic. Using a new item response model based on the Elo (1978) rating system and an explicit scoring rule, estimates of…

  4. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  5. An adaptive line enhancement method for UWB proximity fuze signal processing based on correlation matrix estimation with time delay factor

    NASA Astrophysics Data System (ADS)

    Li, Meng; Huang, Zhonghua

    2016-10-01

    Signal processing for an ultra-wideband radio fuze receiver involves some challenges: it requires high real-time performance; the output signal is mixed with broadband noise; and the signal-to-noise ratio (SNR) decreases with increased detection range. The adaptive line enhancement method is used to filter the output signal of the ultra-wideband radio fuze receiver, and thus suppress the wideband noise from the output signal of the receiver and extract the target characteristic signal. The filter input correlation matrix estimation algorithm is based on the delay factor of an adaptive line enhancer. The proposed adaptive algorithm was used to filter and reduce noise in the output signal from the fuze receiver. Simulation results showed that the SNR of the output signal after adaptive noise reduction was improved by 20 dB, which was higher than the SNR of the output signal after finite impulse response (FIR) filtering of around 10 dB.

  6. An adaptive spectral/DG method for a reduced phase-space based level set approach to geometrical optics on curved elements

    NASA Astrophysics Data System (ADS)

    Cockburn, Bernardo; Kao, Chiu-Yen; Reitich, Fernando

    2014-02-01

    We present an adaptive spectral/discontinuous Galerkin (DG) method on curved elements to simulate high-frequency wavefronts within a reduced phase-space formulation of geometrical optics. Following recent work, the approach is based on the use of level sets defined by functions satisfying the Liouville equations in reduced phase-space and, in particular, it relies on the smoothness of these functions to represent them by rapidly convergent spectral expansions in the phase variables. The resulting (hyperbolic) system of equations for the coefficients in these expansions are then amenable to a high-order accurate treatment via DG approximations. In the present work, we significantly expand on the applicability and efficiency of the approach by incorporating mechanisms that allow for its use in scattering simulations and for a reduced overall computational cost. With regards to the former we demonstrate that the incorporation of curved elements is necessary to attain any kind of accuracy in calculations that involve scattering off non-flat interfaces. With regards to efficiency, on the other hand, we also show that the level-set formulation allows for a space p-adaptive scheme that under-resolves the level-set functions away from the wavefront without incurring in a loss of accuracy in the approximation of its location. As we show, these improvements enable simulations that are beyond the capabilities of previous implementations of these numerical procedures.

  7. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE PAGES

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  8. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    SciTech Connect

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.

  9. Adapting FAO-56 Spreadsheet Program to estimate olive orchard transpiration fluxes under soil water stress condition

    NASA Astrophysics Data System (ADS)

    Rallo, G.; Provenzano, G.; Manzano-Juárez, J.

    2012-04-01

    In the Mediterranean environment, where the period of crops growth does not coincide with the rainy season, the crop is subject to water stress periods that may be amplified with improper irrigation management. Agro-hydrological models can be considered an economic and simple tool to optimize irrigation water use, mainly when water represents a limiting factor for crop production. In the last two decades, agro-hydrological physically based models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere system (Feddes et al., 1978; Bastiaanssen et al., 2007). Unfortunately these models, although very reliable, as a consequence of the high number of required variables and the complex computational analysis, cannot often be used. Therefore, simplified agro-hydrological models may represent an useful and simple tool for practical irrigation scheduling. The main objective of the work is to assess, for an olive orchard, the suitability of FAO-56 spreadsheet agro-hydrological model to estimate a long time series of field transpiration, soil water content and crop water stress dynamic. A modification of the spreadsheet is suggested in order to adapt the simulations to a crop tolerant to water stress. In particular, by implementing a new crop water stress function, actual transpiration fluxes and an ecophysiological stress indicator, i. e. the relative transpiration, are computed in order to evaluate a plant-based irrigation scheduling parameter. Validation of the proposed amendment is carried out by means of measured sap fluxes, measured on different plants and up-scaled to plot level. Spatial and temporal variability of soil water contents in the plot was measured, at several depths, using the Diviner 2000 capacitance probe (Sentek Environmental Technologies, 2000) and TDR-100 (Campbell scientific, Inc.) system. The detailed measurements of soil water content, allowed to explore the high spatial variability of soil water content due

  10. A Reweighted ℓ1-Minimization Based Compressed Sensing for the Spectral Estimation of Heart Rate Variability Using the Unevenly Sampled Data

    PubMed Central

    Chen, Szi-Wen; Chao, Shih-Chieh

    2014-01-01

    In this paper, a reweighted ℓ1-minimization based Compressed Sensing (CS) algorithm incorporating the Integral Pulse Frequency Modulation (IPFM) model for spectral estimation of HRV is introduced. Knowing as a novel sensing/sampling paradigm, the theory of CS asserts certain signals that are considered sparse or compressible can be possibly reconstructed from substantially fewer measurements than those required by traditional methods. Our study aims to employ a novel reweighted ℓ1-minimization CS method for deriving the spectrum of the modulating signal of IPFM model from incomplete RR measurements for HRV assessments. To evaluate the performance of HRV spectral estimation, a quantitative measure, referred to as the Percent Error Power (PEP) that measures the percentage of difference between the true spectrum and the spectrum derived from the incomplete RR dataset, was used. We studied the performance of spectral reconstruction from incomplete simulated and real HRV signals by experimentally truncating a number of RR data accordingly in the top portion, in the bottom portion, and in a random order from the original RR column vector. As a result, for up to 20% data truncation/loss the proposed reweighted ℓ1-minimization CS method produced, on average, 2.34%, 2.27%, and 4.55% PEP in the top, bottom, and random data-truncation cases, respectively, on Autoregressive (AR) model derived simulated HRV signals. Similarly, for up to 20% data loss the proposed method produced 5.15%, 4.33%, and 0.39% PEP in the top, bottom, and random data-truncation cases, respectively, on a real HRV database drawn from PhysioNet. Moreover, results generated by a number of intensive numerical experiments all indicated that the reweighted ℓ1-minimization CS method always achieved the most accurate and high-fidelity HRV spectral estimates in every aspect, compared with the ℓ1-minimization based method and Lomb's method used for estimating the spectrum of HRV from unevenly sampled RR

  11. Assessing plant water relations based on hidden in formation in the hyper-spectral signatures: Parameterization of olive leaf P-V curve and estimation of water potential components

    NASA Astrophysics Data System (ADS)

    Rallo, Giovanni; Provenzano, Giuseppe; Jones, Hamlyn G.

    2015-04-01

    The Soil Plant Atmosphere Continuum (SPAC) is characterized by complex structures and biophysical processes acting over a wide range of temporal and spatial scales. Additionally, in olive grove systems, the plant adaptive strategies to respond to soil water-limited conditions make the system even more complex. One of the greatest challenges in hydrological research is to quantify changing plant water relations. A promising new technology is provided by the advent of new field spectroscopy detectors, characterized by very high resolution over the spectral range between 300 and 2500 nm, allowing the detection of narrow reflectance or absorptance peaks, to separate close lying peaks and to discover new information, hidden at lower resolutions. The general objective of the present research was to investigate a range of plant state function parameters in a non-destructive and repeatable manner and to improve methodologies aimed to parameterize hydrological models describing the entire SPAC, or each single compartment (soil or plant). We have investigated the use of hyperspectral sensing for the parameterization of the hydraulic pressure-volume curve (P-V) for olive leaf and for the indirect estimation of the two principal leaf water potential components, i.e. turgor and osmotic potentials. Experiments were carried out on an olive grove in Sicily, during the mature phase of the first vegetative flush. Leaf spectral signatures and associated P-V measurements were acquired on olive leaves collected from well-irrigated plants and from plants maintained under moderate or severe water stress. Leaf spectral reflectance was monitored with a FieldSpec 4 spectro-radiometer (Analytical Spectral Device, Inc.), in a range of wavelengths from VIS to SWIR (350-2500 nm), with sampling intervals of 1.4 nm and 2.0 nm, respectively in the regions from 350 to 1000 nm and from 1000 to 2500 nm. Measurements required the use of contact probe and leaf clip (Analytical Spectral Device, Inc

  12. Adaptation of a Hyperspectral Atmospheric Correction Algorithm for Multi-spectral Ocean Color Data in Coastal Waters. Chapter 3

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Montes, Marcos J.; Davis, Curtiss O.

    2003-01-01

    This SIMBIOS contract supports several activities over its three-year time-span. These include certain computational aspects of atmospheric correction, including the modification of our hyperspectral atmospheric correction algorithm Tafkaa for various multi-spectral instruments, such as SeaWiFS, MODIS, and GLI. Additionally, since absorbing aerosols are becoming common in many coastal areas, we are making the model calculations to incorporate various absorbing aerosol models into tables used by our Tafkaa atmospheric correction algorithm. Finally, we have developed the algorithms to use MODIS data to characterize thin cirrus effects on aerosol retrieval.

  13. A New Sparse Adaptive Channel Estimation Method Based on Compressive Sensing for FBMC/OQAM Transmission Network.

    PubMed

    Wang, Han; Du, Wencai; Xu, Lingwei

    2016-06-24

    The conventional channel estimation methods based on a preamble for filter bank multicarrier with offset quadrature amplitude modulation (FBMC/OQAM) systems in mobile-to-mobile sensor networks are inefficient. By utilizing the intrinsicsparsity of wireless channels, channel estimation is researched as a compressive sensing (CS) problem to improve the estimation performance. In this paper, an AdaptiveRegularized Compressive Sampling Matching Pursuit (ARCoSaMP) algorithm is proposed. Unlike anterior greedy algorithms, the new algorithm can achieve the accuracy of reconstruction by choosing the support set adaptively, and exploiting the regularization process, which realizes the second selecting of atoms in the support set although the sparsity of the channel is unknown. Simulation results show that CS-based methods obtain significant channel estimation performance improvement compared to that of conventional preamble-based methods. The proposed ARCoSaMP algorithm outperforms the conventional sparse adaptive matching pursuit (SAMP) algorithm. ARCoSaMP provides even more interesting results than the mostadvanced greedy compressive sampling matching pursuit (CoSaMP) algorithm without a prior sparse knowledge of the channel.

  14. A New Sparse Adaptive Channel Estimation Method Based on Compressive Sensing for FBMC/OQAM Transmission Network

    PubMed Central

    Wang, Han; Du, Wencai; Xu, Lingwei

    2016-01-01

    The conventional channel estimation methods based on a preamble for filter bank multicarrier with offset quadrature amplitude modulation (FBMC/OQAM) systems in mobile-to-mobile sensor networks are inefficient. By utilizing the intrinsicsparsity of wireless channels, channel estimation is researched as a compressive sensing (CS) problem to improve the estimation performance. In this paper, an AdaptiveRegularized Compressive Sampling Matching Pursuit (ARCoSaMP) algorithm is proposed. Unlike anterior greedy algorithms, the new algorithm can achieve the accuracy of reconstruction by choosing the support set adaptively, and exploiting the regularization process, which realizes the second selecting of atoms in the support set although the sparsity of the channel is unknown. Simulation results show that CS-based methods obtain significant channel estimation performance improvement compared to that of conventional preamble-based methods. The proposed ARCoSaMP algorithm outperforms the conventional sparse adaptive matching pursuit (SAMP) algorithm. ARCoSaMP provides even more interesting results than the mostadvanced greedy compressive sampling matching pursuit (CoSaMP) algorithm without a prior sparse knowledge of the channel. PMID:27347967

  15. Some Considerations for Eliminating Biases in Ability Estimation in Computerized Adaptive Testing.

    ERIC Educational Resources Information Center

    Samejima, Fumiko

    Item response theory (IRT) has been adapted as the theoretical foundation of computerized adaptive testing (CAT) for several decades. In applying IRT to CAT, there are certain considerations that are essential, and yet tend to be neglected. These essential issues are addressed in this paper, and then several ways of eliminating noise and bias in…

  16. Adaptive Control of Linear Modal Systems Using Residual Mode Filters and a Simple Disturbance Estimator

    NASA Technical Reports Server (NTRS)

    Balas, Mark; Frost, Susan

    2012-01-01

    Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter.

  17. Statistical comparison of methods for estimating sediment thickness from Horizontal-to-Vertical Spectral Ratio (HVSR) seismic methods: An example from Tylerville, Connecticut, USA

    USGS Publications Warehouse

    Johnson, Carole D.; Lane, John

    2016-01-01

    Determining sediment thickness and delineating bedrock topography are important for assessing groundwater availability and characterizing contamination sites. In recent years, the horizontal-to-vertical spectral ratio (HVSR) seismic method has emerged as a non-invasive, cost-effective approach for estimating the thickness of unconsolidated sediments above bedrock. Using a three-component seismometer, this method uses the ratio of the average horizontal- and vertical-component amplitude spectrums to produce a spectral ratio curve with a peak at the fundamental resonance frequency. The HVSR method produces clear and repeatable resonance frequency peaks when there is a sharp contrast (>2:1) in acoustic impedance at the sediment/bedrock boundary. Given the resonant frequency, sediment thickness can be determined either by (1) using an estimate of average local sediment shear-wave velocity or by (2) application of a power-law regression equation developed from resonance frequency observations at sites with a range of known depths to bedrock. Two frequently asked questions about the HVSR method are (1) how accurate are the sediment thickness estimates? and (2) how much do sediment thickness/bedrock depth estimates change when using different published regression equations? This paper compares and contrasts different approaches for generating HVSR depth estimates, through analysis of HVSR data acquired in the vicinity of Tylerville, Connecticut, USA.

  18. Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations

    NASA Astrophysics Data System (ADS)

    Feischl, Michael; Gantner, Gregor; Praetorius, Dirk

    2015-06-01

    We consider the Galerkin boundary element method (BEM) for weakly-singular integral equations of the first-kind in 2D. We analyze some residual-type a posteriori error estimator which provides a lower as well as an upper bound for the unknown Galerkin BEM error. The required assumptions are weak and allow for piecewise smooth parametrizations of the boundary, local mesh-refinement, and related standard piecewise polynomials as well as NURBS. In particular, our analysis gives a first contribution to adaptive BEM in the frame of isogeometric analysis (IGABEM), for which we formulate an adaptive algorithm which steers the local mesh-refinement and the multiplicity of the knots. Numerical experiments underline the theoretical findings and show that the proposed adaptive strategy leads to optimal convergence.

  19. Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations

    PubMed Central

    Feischl, Michael; Gantner, Gregor; Praetorius, Dirk

    2015-01-01

    We consider the Galerkin boundary element method (BEM) for weakly-singular integral equations of the first-kind in 2D. We analyze some residual-type a posteriori error estimator which provides a lower as well as an upper bound for the unknown Galerkin BEM error. The required assumptions are weak and allow for piecewise smooth parametrizations of the boundary, local mesh-refinement, and related standard piecewise polynomials as well as NURBS. In particular, our analysis gives a first contribution to adaptive BEM in the frame of isogeometric analysis (IGABEM), for which we formulate an adaptive algorithm which steers the local mesh-refinement and the multiplicity of the knots. Numerical experiments underline the theoretical findings and show that the proposed adaptive strategy leads to optimal convergence. PMID:26085698

  20. Estimating Soil Carbon Pools in the Northern Permafrost Region: Challenges in Adapting Datasets to Models

    NASA Astrophysics Data System (ADS)

    Hugelius, G.

    2014-12-01

    Current global scale estimates of soil organic carbon (SOC) stocks do not account for pedogenic processes unique to permafrost environments. The Northern Circumpolar Soil Carbon Database (NCSCD) was compiled to address this lack of knowledge of permafrost affected soils. The NCSCD links pedon data in the 0-3 m depth range from the northern permafrost regions to several digitized regional soil classification maps to produce a combined circumpolar coverage. While these different soil classification maps have been harmonized to a common soil classification system, the maps are of different origin and age and they were produced at a range of different scales (fig. 1). The spatial distribution of soil pedon data is also highly uneven with notable data-gaps in central Siberia, the High Arctic and Alpine regions. The NCSCD is thus a dataset with its roots in traditional soil survey and soil map data and with substantial uncertainties and data-gaps. The original maps are subdivided into polygons where soil specialists have mapped different coverages of soil orders. The NCSCD has been gridded and is currently in use for many different model-based studies. This conversion of polygon-based data to the gridded world of spatial or process-based models can affect accuracy, precision and usability of a dataset. There are also inherent difficulties in assessing the uncertainty of stock or process quantifications based on polygon soil maps such as the NCSCD. Soil science is moving into a fully digital world where new maps of soil order distribution or soil properties are based on gridded remote sensing products. Such data can more easily be scaled and adapted for use in grid-based soil models. However, it is argued that the traditional soil maps are still extremely valuable data-sets that contain information that may be lost in fully digital soil mapping approaches. This presentation discusses these issues and gives some examples of how existing pedon databases and soil maps can be

  1. Quantitative measurement of speech sound distortions with the aid of minimum variance spectral estimation method for dentistry use.

    PubMed

    Bereteu, L; Drăgănescu, G E; Stănescu, D; Sinescu, C

    2011-12-01

    In this paper, we search an adequate quantitative method based on minimum variance spectral analysis in order to reflect the dependence of the speech quality on the correct positioning of the dental prostheses. We also search some quantitative parameters, which reflect the correct position of dental prostheses in a sensitive manner.

  2. Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas

    NASA Astrophysics Data System (ADS)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2016-11-01

    In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.

  3. An adaptive detector and channel estimator for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Mukai, R.; Arabshahi, P.; Yan, T. Y.

    2001-01-01

    This paper will discuss the design and testing of both the channel parameter identification system, and the adaptive threshold system, and illustrate their advantages and performance under simulated channel degradation conditions.

  4. A Rapid Model Adaptation Technique for Emotional Speech Recognition with Style Estimation Based on Multiple-Regression HMM

    NASA Astrophysics Data System (ADS)

    Ijima, Yusuke; Nose, Takashi; Tachibana, Makoto; Kobayashi, Takao

    In this paper, we propose a rapid model adaptation technique for emotional speech recognition which enables us to extract paralinguistic information as well as linguistic information contained in speech signals. This technique is based on style estimation and style adaptation using a multiple-regression HMM (MRHMM). In the MRHMM, the mean parameters of the output probability density function are controlled by a low-dimensional parameter vector, called a style vector, which corresponds to a set of the explanatory variables of the multiple regression. The recognition process consists of two stages. In the first stage, the style vector that represents the emotional expression category and the intensity of its expressiveness for the input speech is estimated on a sentence-by-sentence basis. Next, the acoustic models are adapted using the estimated style vector, and then standard HMM-based speech recognition is performed in the second stage. We assess the performance of the proposed technique in the recognition of simulated emotional speech uttered by both professional narrators and non-professional speakers.

  5. Application of maximum likelihood estimator in nano-scale optical path length measurement using spectral-domain optical coherence phase microscopy

    PubMed Central

    Motaghian Nezam, S. M. R.; Joo, C; Tearney, G. J.; de Boer, J. F.

    2009-01-01

    Spectral-domain optical coherence phase microscopy (SD-OCPM) measures minute phase changes in transparent biological specimens using a common path interferometer and a spectrometer based optical coherence tomography system. The Fourier transform of the acquired interference spectrum in spectral-domain optical coherence tomography (SD-OCT) is complex and the phase is affected by contributions from inherent random noise. To reduce this phase noise, knowledge of the probability density function (PDF) of data becomes essential. In the present work, the intensity and phase PDFs of the complex interference signal are theoretically derived and the optical path length (OPL) PDF is experimentally validated. The full knowledge of the PDFs is exploited for optimal estimation (Maximum Likelihood estimation) of the intensity, phase, and signal-to-noise ratio (SNR) in SD-OCPM. Maximum likelihood (ML) estimates of the intensity, SNR, and OPL images are presented for two different scan modes using Bovine Pulmonary Artery Endothelial (BPAE) cells. To investigate the phase accuracy of SD-OCPM, we experimentally calculate and compare the cumulative distribution functions (CDFs) of the OPL standard deviation and the square root of the Cramér-Rao lower bound (1/2SNR) over 100 BPAE images for two different scan modes. The correction to the OPL measurement by applying ML estimation to SD-OCPM for BPAE cells is demonstrated. PMID:18957999

  6. Adaptive autoregressive identification with spectral power decomposition for studying movement-related activity in scalp EEG signals and basal ganglia local field potentials

    NASA Astrophysics Data System (ADS)

    Foffani, Guglielmo; Bianchi, Anna M.; Priori, Alberto; Baselli, Giuseppe

    2004-09-01

    We propose a method that combines adaptive autoregressive (AAR) identification and spectral power decomposition for the study of movement-related spectral changes in scalp EEG signals and basal ganglia local field potentials (LFPs). This approach introduces the concept of movement-related poles, allowing one to study not only the classical event-related desynchronizations (ERD) and synchronizations (ERS), which correspond to modulations of power, but also event-related modulations of frequency. We applied the method to analyze movement-related EEG signals and LFPs contemporarily recorded from the sensorimotor cortex, the globus pallidus internus (GPi) and the subthalamic nucleus (STN) in a patient with Parkinson's disease who underwent stereotactic neurosurgery for the implant of deep brain stimulation (DBS) electrodes. In the AAR identification we compared the whale and the exponential forgetting factors, showing that the whale forgetting provides a better disturbance rejection and it is therefore more suitable to investigate movement-related brain activity. Movement-related power modulations were consistent with previous studies. In addition, movement-related frequency modulations were observed from both scalp EEG signals and basal ganglia LFPs. The method therefore represents an effective approach to the study of movement-related brain activity.

  7. Variable Is Better Than Invariable: Sparse VSS-NLMS Algorithms with Application to Adaptive MIMO Channel Estimation

    PubMed Central

    Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki

    2014-01-01

    Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics. PMID:25089286

  8. Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Tseng, King Jet; Wai, Nyunt; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2016-11-01

    Reliable state estimate depends largely on an accurate battery model. However, the parameters of battery model are time varying with operating condition variation and battery aging. The existing co-estimation methods address the model uncertainty by integrating the online model identification with state estimate and have shown improved accuracy. However, the cross interference may arise from the integrated framework to compromise numerical stability and accuracy. Thus this paper proposes the decoupling of model identification and state estimate to eliminate the possibility of cross interference. The model parameters are online adapted with the recursive least squares (RLS) method, based on which a novel joint estimator based on extended Kalman Filter (EKF) is formulated to estimate the state of charge (SOC) and capacity concurrently. The proposed joint estimator effectively compresses the filter order which leads to substantial improvement in the computational efficiency and numerical stability. Lab scale experiment on vanadium redox flow battery shows that the proposed method is highly authentic with good robustness to varying operating conditions and battery aging. The proposed method is further compared with some existing methods and shown to be superior in terms of accuracy, convergence speed, and computational cost.

  9. Estimation of the sinusoidal oscillation parameters in the adaptive optics system based on the example of the photovoltaic system

    NASA Astrophysics Data System (ADS)

    Kania, Dariusz

    2015-05-01

    In adaptive optics systems, there is a problem of a sinusoidal oscillations rejection. This paper presents the estimation method that can be used to reject these oscillations on the example of the photovoltaic system. In such a system, photovoltaic panels generate the DC signal converted by the inverter to the AC signal with specified parameters. This paper focuses on the fast and accurate estimation of these parameters taking into account the presence of harmonics in the sinusoidal signal. The estimation method is based on using maximum decay sidelobes windows and the Fast Fourier Transform procedure. In reality, the AC signal is not a pure sinusoid and it is often distorted in a deterministic manner by harmonics, and in a random manner by white, "colored" or quantization noise. The estimation error depends on the systematic error, i.e. the error caused by the quantization noise and the error caused by harmonic components. Several parameters determine which error component is dominant in the estimation results. The value of the error caused by harmonic components depends mainly on the distance between the harmonic component and the fundamental component in a frequency domain and the THD (Total Harmonic Distortion) ratio of the signal. The level of this maximum relative error is approximately 10-3 for the tested signal with THD=50%. It is important to use a filter that reduces unwanted harmonics before the data processing. The information provided in this paper can be used to determine the approximate level of estimation error before starting the estimation process.

  10. Adaptive statistical pattern classifiers for remotely sensed data

    NASA Technical Reports Server (NTRS)

    Gonzalez, R. C.; Pace, M. O.; Raulston, H. S.

    1975-01-01

    A technique for the adaptive estimation of nonstationary statistics necessary for Bayesian classification is developed. The basic approach to the adaptive estimation procedure consists of two steps: (1) an optimal stochastic approximation of the parameters of interest and (2) a projection of the parameters in time or position. A divergence criterion is developed to monitor algorithm performance. Comparative results of adaptive and nonadaptive classifier tests are presented for simulated four dimensional spectral scan data.

  11. Simulation of underresolved turbulent flows by adaptive filtering using the high order discontinuous Galerkin spectral element method

    NASA Astrophysics Data System (ADS)

    Flad, David; Beck, Andrea; Munz, Claus-Dieter

    2016-05-01

    Scale-resolving simulations of turbulent flows in complex domains demand accurate and efficient numerical schemes, as well as geometrical flexibility. For underresolved situations, the avoidance of aliasing errors is a strong demand for stability. For continuous and discontinuous Galerkin schemes, an effective way to prevent aliasing errors is to increase the quadrature precision of the projection operator to account for the non-linearity of the operands (polynomial dealiasing, overintegration). But this increases the computational costs extensively. In this work, we present a novel spatially and temporally adaptive dealiasing strategy by projection filtering. We show this to be more efficient for underresolved turbulence than the classical overintegration strategy. For this novel approach, we discuss the implementation strategy and the indicator details, show its accuracy and efficiency for a decaying homogeneous isotropic turbulence and the transitional Taylor-Green vortex and compare it to the original overintegration approach and a state of the art variational multi-scale eddy viscosity formulation.

  12. Tracking the Turn Maneuvering Target Using the Multi-Target Bayes Filter with an Adaptive Estimation of Turn Rate

    PubMed Central

    Liu, Zong-xiang; Wu, De-hui; Xie, Wei-xin; Li, Liang-qun

    2017-01-01

    Tracking the target that maneuvers at a variable turn rate is a challenging problem. The traditional solution for this problem is the use of the switching multiple models technique, which includes several dynamic models with different turn rates for matching the motion mode of the target at each point in time. However, the actual motion mode of a target at any time may be different from all of the dynamic models, because these models are usually limited. To address this problem, we establish a formula for estimating the turn rate of a maneuvering target. By applying the estimation method of the turn rate to the multi-target Bayes (MB) filter, we develop a MB filter with an adaptive estimation of the turn rate, in order to track multiple maneuvering targets. Simulation results indicate that the MB filter with an adaptive estimation of the turn rate, is better than the existing filter at tracking the target that maneuvers at a variable turn rate. PMID:28212291

  13. Mass estimation of MAXI J1659-152 during spectral and temporal analsyis with TCAF and POS models

    NASA Astrophysics Data System (ADS)

    Molla, Aslam Ali; Debnath, Dipak; Chakrabarti, Sandip Kumar; Mondal, Santanu; Jana, Arghajit; Chatterjee, Debjit

    2016-07-01

    The Galactic transient black hole candidate (BHC) MAXI J1659-152 showed its first X-ray outburst on 25th Spet. 2010. We make a detailed spectral and temporal study of this outburst with RXTE/PCA data. The spectral analysis was made with Two Component Advective Flow (TCAF) model fits file as an additive table model in XSPEC. While fitting spectra with TCAF, we note that model fitted normalization (N) remains almost constant (129.7 - 146.3) which lead us to calculate mass of the black hole (BH). We then refitted all the spectra with fixed normalization value of 139 (calculated from weighted averaging of the N values), and found that mass of the BH comes in the range of 4.69-7.75 M_Sun. It is to be noted that in TCAF model fits file, mass is an input parameter. We also calculted mass of the BH, with our study of the QPO frequency evolution during declining phase of the outburst with the Propagating Oscillatory Shock (POS) model. We observe that in the declining phase of the outburst the shock moves away from the black hole as the QPO frequency decreases. We obtain our best fit of QPO evolution by using mass of the BH at 6 M_Sun and acceptable fit (reduced chisq value < 1.5) for the mass range of 5.08-7.38 M_Sun, which lie within the range of mass obtained from our spectral fit. So, from the study of spectral and temporal variability of this source we conclude the probable mass range of the black hole to be 4.69 - 7.75 M_Sun.

  14. Rocket experiments for spectral estimation of electron density fine structure in the auroral and equatorial ionosphere and preliminary results

    NASA Technical Reports Server (NTRS)

    Tomei, B. A.; Smith, L. G.

    1986-01-01

    Sounding rockets equipped to monitor electron density and its fine structure were launched into the auroral and equatorial ionosphere in 1980 and 1983, respectively. The measurement electronics are based on the Langmuir probe and are described in detail. An approach to the spectral analysis of the density irregularities is addressed and a software algorithm implementing the approach is given. Preliminary results of the analysis are presented.

  15. Spectral vegetation indices for estimating shrub cover, green phytomass and leaf turnover in a sedge-shrub tundra

    NASA Astrophysics Data System (ADS)

    Kushida, K.; Kim, Y.; Tsuyuzaki, S.; Fukuda, M.

    2008-12-01

    Using field observations, we determined the relationships between spectral indices and the shrub ratio, green phytomass and leaf turnover of a sedge-shrub tundra community in the Arctic National Wildlife Refuge, Alaska, USA. We established a 50-m ~ 50-m plot (69.73°N 143.62°W) located on a floodplain of the refuge. The willow shrub (Salix lanata) and sedge (Carex bigelowii) dominated the plot vegetation. In July to August 2007, we established ten 0.5-m ~ 0.5-m quadrats on both shrub- covered ground (shrub quadrats) and on ground with no shrubs (sedge quadrats). All the shrubs within the shrub quadrats were harvested, and the photosynthetic and non-photosynthetic parts were weighed. Subsequently, the remaining green phytomass was also harvested and weighed. The shrub quadrats were measured spectrally before and after harvesting the shrubs. The sedge quadrats were also measured spectrally. The shrub ratio was more strongly correlated with the normalized difference vegetation index (NDVI, R2 of 0.57) than the normalized difference infrared index (NDII), the soil-adjusted vegetation index (SAVI) or the enhanced vegetation index (EVI). On the other hand, for both green phytomass and leaf turnover, the strongest correlation was with NDII (R2 of 0.63 and 0.79, respectively).

  16. Estimating the Importance of Private Adaptation to Climate Change in Agriculture: A Review of Empirical Methods

    NASA Astrophysics Data System (ADS)

    Moore, F.; Burke, M.

    2015-12-01

    A wide range of studies using a variety of methods strongly suggest that climate change will have a negative impact on agricultural production in many areas. Farmers though should be able to learn about a changing climate and to adjust what they grow and how they grow it in order to reduce these negative impacts. However, it remains unclear how effective these private (autonomous) adaptations will be, or how quickly they will be adopted. Constraining the uncertainty on this adaptation is important for understanding the impacts of climate change on agriculture. Here we review a number of empirical methods that have been proposed for understanding the rate and effectiveness of private adaptation to climate change. We compare these methods using data on agricultural yields in the United States and western Europe.

  17. General adaptive-neighborhood technique for improving synthetic aperture radar interferometric coherence estimation.

    PubMed

    Vasile, Gabriel; Trouvé, Emmanuel; Ciuc, Mihai; Buzuloiu, Vasile

    2004-08-01

    A new method for filtering the coherence map issued from synthetic aperture radar (SAR) interferometric data is presented. For each pixel of the interferogram, an adaptive neighborhood is determined by a region-growing technique driven by the information provided by the amplitude images. Then pixels in the derived adaptive neighborhood are complex averaged to yield the filtered value of the coherence, after a phase-compensation step is performed. An extension of the algorithm is proposed for polarimetric interferometric SAR images. The proposed method has been applied to both European Remote Sensing (ERS) satellite SAR images and airborne high-resolution polarimetric interferometric SAR images. Both subjective and objective performance analysis, including coherence edge detection, shows that the proposed method provides better results than the standard phase-compensated fixed multilook filter and the Lee adaptive coherence filter.

  18. Phase-Based Adaptive Estimation of Magnitude-Squared Coherence Between Turbofan Internal Sensors and Far-Field Microphone Signals

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2015-01-01

    A cross-power spectrum phase based adaptive technique is discussed which iteratively determines the time delay between two digitized signals that are coherent. The adaptive delay algorithm belongs to a class of algorithms that identifies a minimum of a pattern matching function. The algorithm uses a gradient technique to find the value of the adaptive delay that minimizes a cost function based in part on the slope of a linear function that fits the measured cross power spectrum phase and in part on the standard error of the curve fit. This procedure is applied to data from a Honeywell TECH977 static-engine test. Data was obtained using a combustor probe, two turbine exit probes, and far-field microphones. Signals from this instrumentation are used estimate the post-combustion residence time in the combustor. Comparison with previous studies of the post-combustion residence time validates this approach. In addition, the procedure removes the bias due to misalignment of signals in the calculation of coherence which is a first step in applying array processing methods to the magnitude squared coherence data. The procedure also provides an estimate of the cross-spectrum phase-offset.

  19. Estimated performance of an adaptive trailing-edge device aimed at reducing fuel consumption on a medium-size aircraft

    NASA Astrophysics Data System (ADS)

    Diodati, Gianluca; Concilio, Antonio; Ricci, Sergio; De Gaspari, Alessandro; Huvelin, Fabien; Dumont, Antoine; Godard, Jean-Luc

    2013-03-01

    This paper deals with the estimation of the performance of a medium-size aircraft (3-hour flight range) equipped with an adaptive trailing edge device (ATED) that runs span-wise from the wing root in the flap zone and extends chord-wise for a limited percentage of the MAC. Computations are calculated referring to the full wing and do not refer to the complete aircraft configuration. Aerodynamic computations, taking into account ideal shapes, have been performed by using both Euler and Navier- Stokes method in order to extract the wing polars for the reference and the optimal wing, implementing an ATED, deflected upwards and downwards. A comparison of the achieved results is discussed. Considering the shape domain, a suitable interpolation procedure has been set up to obtain the wing polar envelop of the adaptive wing, intended as the set of "best" values, picked by each different polar. At the end, the performances of the complete reference and adaptive wing are computed and compared for a symmetric, centered, leveled and steady cruise flight for a medium size aircraft. A significant fuel burn reduction estimate or, alternatively, an increased range capability is demonstrated, with margins of further improvements. The research leading to these results has gratefully received funding from the European Union Seventh Framework Programme (FP7/2007- 2013) under Grant Agreement n° 284562.

  20. Spectral Modulation Effect in Teleseismic P-waves from North Korean Nuclear Tests Recorded in Broad Azimuthal Range and Possible Source Depth Estimation

    NASA Astrophysics Data System (ADS)

    Gitterman, Y.; Kim, S. G.; Hofstetter, R.

    2016-04-01

    Three underground nuclear explosions, conducted by North Korea in 2006, 2009 and 2013, are analyzed. The last two tests were recorded by the Israel Seismic Network. Pronounced coherent minima (spectral nulls) at 1.2-1.3 Hz were revealed in the spectra of teleseismic P -waves. For a ground-truth explosion with a shallow source depth, this phenomenon can be interpreted in terms of the interference between the down-going P-wave and the pP phase reflected from the Earth's surface. This effect was also observed at ISN stations for a Pakistan nuclear explosion at a different frequency 1.7 Hz and the PNE Rubin-2 in West Siberia at 1 Hz, indicating a source-effect and not a site-effect. Similar spectral minima having essentially the same frequency, as at ISN, were observed in teleseismic P-waves for all the three North Korean explosions recorded at networks and arrays in Kazakhstan (KURK), Norway (NNSN), Australia (ASAR, WRA) and Canada (YKA), covering a broad azimuthal range. Data of 2009 and 2013 tests at WRA and KURK arrays showed harmonic spectral modulation with three multiple minima frequencies, evidencing the clear interference effect. These observations support the above-mentioned interpretation. Based on the null frequency dependency on the near-surface acoustic velocity and the source depth, the depth of the North Korean tests was estimated about 2.0-2.1 km. It was shown that the observed null frequencies and the obtained source depth estimates correspond to P- pP interference phenomena in both cases of a vertical shaft or a horizontal drift in a mountain. This unusual depth estimation needs additional validation based on more stations and verification by other methods.

  1. Split-belt walking adaptation recalibrates sensorimotor estimates of leg speed but not position or force

    PubMed Central

    Vazquez, Alejandro; Statton, Matthew A.; Busgang, Stefanie A.

    2015-01-01

    Motor learning during reaching not only recalibrates movement but can also lead to small but consistent changes in the sense of arm position. Studies have suggested that this sensory effect may be the result of recalibration of a forward model that associates motor commands with their sensory consequences. Here we investigated whether similar perceptual changes occur in the lower limbs after learning a new walking pattern on a split-belt treadmill—a task that critically involves proprioception. Specifically, we studied how this motor learning task affects perception of leg speed during walking, perception of leg position during standing or walking, and perception of contact force during stepping. Our results show that split-belt adaptation leads to robust motor aftereffects and alters the perception of leg speed during walking. This is specific to the direction of walking that was trained during adaptation (i.e., backward or forward). The change in leg speed perception accounts for roughly half of the observed motor aftereffect. In contrast, split-belt adaptation does not alter the perception of leg position during standing or walking and does not change the perception of stepping force. Our results demonstrate that there is a recalibration of a sensory percept specific to the domain of the perturbation that was applied during walking (i.e., speed but not position or force). Furthermore, the motor and sensory consequences of locomotor adaptation may be linked, suggesting overlapping mechanisms driving changes in the motor and sensory domains. PMID:26424576

  2. Appraisal of adaptive neuro-fuzzy computing technique for estimating anti-obesity properties of a medicinal plant.

    PubMed

    Kazemipoor, Mahnaz; Hajifaraji, Majid; Radzi, Che Wan Jasimah Bt Wan Mohamed; Shamshirband, Shahaboddin; Petković, Dalibor; Mat Kiah, Miss Laiha

    2015-01-01

    This research examines the precision of an adaptive neuro-fuzzy computing technique in estimating the anti-obesity property of a potent medicinal plant in a clinical dietary intervention. Even though a number of mathematical functions such as SPSS analysis have been proposed for modeling the anti-obesity properties estimation in terms of reduction in body mass index (BMI), body fat percentage, and body weight loss, there are still disadvantages of the models like very demanding in terms of calculation time. Since it is a very crucial problem, in this paper a process was constructed which simulates the anti-obesity activities of caraway (Carum carvi) a traditional medicine on obese women with adaptive neuro-fuzzy inference (ANFIS) method. The ANFIS results are compared with the support vector regression (SVR) results using root-mean-square error (RMSE) and coefficient of determination (R(2)). The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the ANFIS approach. The following statistical characteristics are obtained for BMI loss estimation: RMSE=0.032118 and R(2)=0.9964 in ANFIS testing and RMSE=0.47287 and R(2)=0.361 in SVR testing. For fat loss estimation: RMSE=0.23787 and R(2)=0.8599 in ANFIS testing and RMSE=0.32822 and R(2)=0.7814 in SVR testing. For weight loss estimation: RMSE=0.00000035601 and R(2)=1 in ANFIS testing and RMSE=0.17192 and R(2)=0.6607 in SVR testing. Because of that, it can be applied for practical purposes.

  3. Error Estimation and h-Adaptivity for Optimal Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Lou, John

    1997-01-01

    The objective of adaptive meshing and automatic error control in finite element analysis is to eliminate the need for the application engineer from re-meshing and re-running design simulations to verify numerical accuracy. The user should only need to enter the component geometry and a coarse finite element mesh. The software will then autonomously and adaptively refine this mesh where needed, reducing the error in the fields to a user prescribed value. The ideal end result of the simulation is a measurable quantity (e.g. scattered field, input impedance), calculated to a prescribed error, in less time and less machine memory than if the user applied typical uniform mesh refinement by hand. It would also allow for the simulation of larger objects since an optimal mesh is created.

  4. Groundwater flow parameter estimation using refinement and coarsening indicators for adaptive downscaling parameterization

    NASA Astrophysics Data System (ADS)

    Hassane, Mamadou Maina F. Z.; Ackerer, P.

    2017-02-01

    In the context of parameter identification by inverse methods, an optimized adaptive downscaling parameterization is described in this work. The adaptive downscaling parameterization consists of (i) defining a parameter mesh for each parameter, independent of the flow model mesh, (ii) optimizing the parameters set related to the parameter mesh, and (iii) if the match between observed and computed heads is not accurate enough, creating a new parameter mesh via refinement (downscaling) and performing a new optimiz