Sample records for adaptive support ventilation

  1. Adaptive support ventilation may deliver unwanted respiratory rate-tidal volume combinations in patients with acute lung injury ventilated according to an open lung concept.

    PubMed

    Dongelmans, Dave A; Paulus, Frederique; Veelo, Denise P; Binnekade, Jan M; Vroom, Margreeth B; Schultz, Marcus J

    2011-05-01

    With adaptive support ventilation, respiratory rate and tidal volume (V(T)) are a function of the Otis least work of breathing formula. We hypothesized that adaptive support ventilation in an open lung ventilator strategy would deliver higher V(T)s to patients with acute lung injury. Patients with acute lung injury were ventilated according to a local guideline advising the use of lower V(T) (6-8 ml/kg predicted body weight), high concentrations of positive end-expiratory pressure, and recruitment maneuvers. Ventilation parameters were recorded when the ventilator was switched to adaptive support ventilation, and after recruitment maneuvers. If V(T) increased more than 8 ml/kg predicted body weight, airway pressure was limited to correct for the rise of V(T). Ten patients with a mean (±SD) Pao(2)/Fio(2) of 171 ± 86 mmHg were included. After a switch from pressure-controlled ventilation to adaptive support ventilation, respiratory rate declined (from 31 ± 5 to 21 ± 6 breaths/min; difference = 10 breaths/min, 95% CI 3-17 breaths/min, P = 0.008) and V(T) increased (from 6.5 ± 0.8 to 9.0 ± 1.6 ml/kg predicted body weight; difference = 2.5 ml, 95% CI 0.4-4.6 ml/kg predicted body weight, P = 0.02). Pressure limitation corrected for the rise of V(T), but minute ventilation declined, forcing the user to switch back to pressure-controlled ventilation. Adaptive support ventilation, compared with pressure-controlled ventilation in an open lung strategy setting, delivers a lower respiratory rate-higher V(T) combination. Pressure limitation does correct for the rise of V(T), but leads to a decline in minute ventilation.

  2. Adaptive support ventilation: State of the art review

    PubMed Central

    Fernández, Jaime; Miguelena, Dayra; Mulett, Hernando; Godoy, Javier; Martinón-Torres, Federico

    2013-01-01

    Mechanical ventilation is one of the most commonly applied interventions in intensive care units. Despite its life-saving role, it can be a risky procedure for the patient if not applied appropriately. To decrease risks, new ventilator modes continue to be developed in an attempt to improve patient outcomes. Advances in ventilator modes include closed-loop systems that facilitate ventilator manipulation of variables based on measured respiratory parameters. Adaptive support ventilation (ASV) is a positive pressure mode of mechanical ventilation that is closed-loop controlled, and automatically adjust based on the patient's requirements. In order to deliver safe and appropriate patient care, clinicians need to achieve a thorough understanding of this mode, including its effects on underlying respiratory mechanics. This article will discuss ASV while emphasizing appropriate ventilator settings, their advantages and disadvantages, their particular effects on oxygenation and ventilation, and the monitoring priorities for clinicians. PMID:23833471

  3. Weaning from mechanical ventilation: why are we still looking for alternative methods?

    PubMed

    Frutos-Vivar, F; Esteban, A

    2013-12-01

    Most patients who require mechanical ventilation for longer than 24 hours, and who improve the condition leading to the indication of ventilatory support, can be weaned after passing a first spontaneous breathing test. The challenge is to improve the weaning of patients who fail that first test. We have methods that can be referred to as traditional, such as the T-tube, pressure support or synchronized intermittent mandatory ventilation (SIMV). In recent years, however, new applications of usual techniques as noninvasive ventilation, new ventilation methods such as automatic tube compensation (ATC), mandatory minute ventilation (MMV), adaptive support ventilation or automatic weaning systems based on pressure support have been described. Their possible role in weaning from mechanical ventilation among patients with difficult or prolonged weaning remains to be established. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  4. Role adaptation of family caregivers for ventilator-dependent patients: transition from respiratory care ward to home.

    PubMed

    Huang, Tzu-Ting; Peng, Ji-Ming

    2010-06-01

    To explore the underlying theoretical framework for the role adaptation of family caregivers for ventilator-dependent patients after transferring from respiratory care ward to home. The number of ventilator-dependent patients has been increasing worldwide. Under Taiwan's National Health Insurance policy, if ventilator-dependent patients are stable, they should be transferred from an acute care hospital to a subacute unit or home. A qualitative design based on grounded theory was adopted for this study. One-on-one, in-depth interviews were conducted with a purposive sample of 15 family caregivers who were caretaking ventilator-dependent patients at their home two months after hospital discharge. Theoretical sampling was used until concepts emerging in data analysis were saturated. Analysis of audio-taped interview transcripts generated a process of role adaptation for family caregivers of a ventilator-dependent patient. The caregiver's transition to the care-giving role is a dynamic process with consequences that are impacted by level of support from the family, affective rewards from the patient, patient's health condition and a balanced life schedule for the caregiver. The results of this study can provide respiratory care professionals with skills to assess the needs of caregivers for ventilator-dependent patients and individualise interventions to caregivers' specific needs. The findings of this study contribute to nurses' understanding and promotion of role adaptation for family caregivers among ventilator-dependent patients.

  5. Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure.

    PubMed

    Cowie, Martin R; Woehrle, Holger; Wegscheider, Karl; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K; Somers, Virend K; Zannad, Faiez; Teschler, Helmut

    2015-09-17

    Central sleep apnea is associated with poor prognosis and death in patients with heart failure. Adaptive servo-ventilation is a therapy that uses a noninvasive ventilator to treat central sleep apnea by delivering servo-controlled inspiratory pressure support on top of expiratory positive airway pressure. We investigated the effects of adaptive servo-ventilation in patients who had heart failure with reduced ejection fraction and predominantly central sleep apnea. We randomly assigned 1325 patients with a left ventricular ejection fraction of 45% or less, an apnea-hypopnea index (AHI) of 15 or more events (occurrences of apnea or hypopnea) per hour, and a predominance of central events to receive guideline-based medical treatment with adaptive servo-ventilation or guideline-based medical treatment alone (control). The primary end point in the time-to-event analysis was the first event of death from any cause, lifesaving cardiovascular intervention (cardiac transplantation, implantation of a ventricular assist device, resuscitation after sudden cardiac arrest, or appropriate lifesaving shock), or unplanned hospitalization for worsening heart failure. In the adaptive servo-ventilation group, the mean AHI at 12 months was 6.6 events per hour. The incidence of the primary end point did not differ significantly between the adaptive servo-ventilation group and the control group (54.1% and 50.8%, respectively; hazard ratio, 1.13; 95% confidence interval [CI], 0.97 to 1.31; P=0.10). All-cause mortality and cardiovascular mortality were significantly higher in the adaptive servo-ventilation group than in the control group (hazard ratio for death from any cause, 1.28; 95% CI, 1.06 to 1.55; P=0.01; and hazard ratio for cardiovascular death, 1.34; 95% CI, 1.09 to 1.65; P=0.006). Adaptive servo-ventilation had no significant effect on the primary end point in patients who had heart failure with reduced ejection fraction and predominantly central sleep apnea, but all-cause and cardiovascular mortality were both increased with this therapy. (Funded by ResMed and others; SERVE-HF ClinicalTrials.gov number, NCT00733343.).

  6. Quality of life improves in patients with chronic heart failure and Cheyne-Stokes respiration treated with adaptive servo-ventilation in a nurse-led heart failure clinic.

    PubMed

    Olseng, Margareth W; Olsen, Brita F; Hetland, Arild; Fagermoen, May S; Jacobsen, Morten

    2017-05-01

    The aim of this study was to investigate if quality of life improved in chronic heart failure patients with Cheyne-Stokes respiration treated with adaptive servo-ventilation in nurse-led heart failure clinic. Cheyne-Stokes respiration is associated with decreased quality of life in patients with chronic heart failure. Adaptive servo-ventilation is introduced to treat this sleep-disordered breathing. Randomised, controlled design. Fifty-one patients (ranging from 53-84 years), New York Heart Association III-IV and/or left ventricular ejection fraction ≤40% and Cheyne-Stokes respiration were randomised to an intervention group who received adaptive servo-ventilation or a control group. Minnesota Living with Heart Failure Questionnaire was used to assess quality of life at randomisation and after three months. Both groups were followed in the nurse-led heart failure clinic. Adaptive servo ventilation improved quality of life-scores both in a per protocol analysis and in an intention to treat analysis. Twenty-one patients dropped out of the study, nine in the control and 12 in the intervention group. Use of adaptive servo-ventilation improved quality of life in chronic heart failure patients with Cheyne-Stokes respiration. However, the drop-out rate was high. Chronic heart failure patients come regularly to the nurse-led heart failure clinic. The heart failure nurses' competency has to include knowledge of equipment to provide support and continuity of care to the patients. © 2016 John Wiley & Sons Ltd.

  7. Ventilation Transport Trade Study for Future Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    Kempf, Robert; Vogel, Matthew; Paul, Heather L.

    2008-01-01

    A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.

  8. Adaptive servo ventilation for central sleep apnoea in heart failure: SERVE-HF on-treatment analysis.

    PubMed

    Woehrle, Holger; Cowie, Martin R; Eulenburg, Christine; Suling, Anna; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K; Somers, Virend K; Zannad, Faiez; Teschler, Helmut; Wegscheider, Karl

    2017-08-01

    This on-treatment analysis was conducted to facilitate understanding of mechanisms underlying the increased risk of all-cause and cardiovascular mortality in heart failure patients with reduced ejection fraction and predominant central sleep apnoea randomised to adaptive servo ventilation versus the control group in the SERVE-HF trial.Time-dependent on-treatment analyses were conducted (unadjusted and adjusted for predictive covariates). A comprehensive, time-dependent model was developed to correct for asymmetric selection effects (to minimise bias).The comprehensive model showed increased cardiovascular death hazard ratios during adaptive servo ventilation usage periods, slightly lower than those in the SERVE-HF intention-to-treat analysis. Self-selection bias was evident. Patients randomised to adaptive servo ventilation who crossed over to the control group were at higher risk of cardiovascular death than controls, while control patients with crossover to adaptive servo ventilation showed a trend towards lower risk of cardiovascular death than patients randomised to adaptive servo ventilation. Cardiovascular risk did not increase as nightly adaptive servo ventilation usage increased.On-treatment analysis showed similar results to the SERVE-HF intention-to-treat analysis, with an increased risk of cardiovascular death in heart failure with reduced ejection fraction patients with predominant central sleep apnoea treated with adaptive servo ventilation. Bias is inevitable and needs to be taken into account in any kind of on-treatment analysis in positive airway pressure studies. Copyright ©ERS 2017.

  9. Randomized prospective crossover study of biphasic intermittent positive airway pressure ventilation (BIPAP) versus pressure support ventilation (PSV) in surgical intensive care patients.

    PubMed

    Elrazek, E Abd

    2004-10-01

    The aim of this prospective, randomized and crossover study was to assess the role of a relatively new mode of mechanical ventilation, biphasic intermittent positive airway pressure (BIPAP) in comparison to another well established one, pressure-support ventilation (PSV) in surgical intensive care patients. 24 generally stable patients, breathing on their own after short-term (< 24 hours) postoperative controlled mechanical ventilation (CMV) were randomized to start on either PSV or BIPAP, and indirect calorimetry measurements were performed after 1 hour adaptation period at two time intervals; immediately after the investigated ventilatory mode was started and 1 hour later. Statistics included a two-tailed paired t-test to compare the two sets of different data, p < 0.5 was considered significant. Oxygen consumption (VO2), energy expenditure (EE), Carbon dioxide production (VCO2), and respiratory quotient (RQ) did not differ significantly between the two groups. There were also no significant differences regarding respiratory rate (RR), minute volume (MV) and arterial blood gas analysis (ABGs). Both modes of ventilation were well tolerated by all patients. PSV and BIPAP can be used for weaning patients comfortably in surgical intensive care after short-term postoperative ventilation. BIPAP may have the credit of being smoother than PSV where no patient effort is required.

  10. Measuring interfraction and intrafraction lung function changes during radiation therapy using four-dimensional cone beam CT ventilation imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J.; Hugo, Geoffrey

    Purpose: Adaptive ventilation guided radiation therapy could minimize the irradiation of healthy lung based on repeat lung ventilation imaging (VI) during treatment. However the efficacy of adaptive ventilation guidance requires that interfraction (e.g., week-to-week), ventilation changes are not washed out by intrafraction (e.g., pre- and postfraction) changes, for example, due to patient breathing variability. The authors hypothesize that patients undergoing lung cancer radiation therapy exhibit larger interfraction ventilation changes compared to intrafraction function changes. To test this, the authors perform the first comparison of interfraction and intrafraction lung VI pairs using four-dimensional cone beam CT ventilation imaging (4D-CBCT VI), amore » novel technique for functional lung imaging. Methods: The authors analyzed a total of 215 4D-CBCT scans acquired for 19 locally advanced non-small cell lung cancer (LA-NSCLC) patients over 4–6 weeks of radiation therapy. This set of 215 scans was sorted into 56 interfraction pairs (including first day scans and each of treatment weeks 2, 4, and 6) and 78 intrafraction pairs (including pre/postfraction scans on the same-day), with some scans appearing in both sets. VIs were obtained from the Jacobian determinant of the transform between the 4D-CBCT end-exhale and end-inhale images after deformable image registration. All VIs were deformably registered to their corresponding planning CT and normalized to account for differences in breathing effort, thus facilitating image comparison in terms of (i) voxelwise Spearman correlations, (ii) mean image differences, and (iii) gamma pass rates for all interfraction and intrafraction VI pairs. For the side of the lung ipsilateral to the tumor, we applied two-sided t-tests to determine whether interfraction VI pairs were more different than intrafraction VI pairs. Results: The (mean ± standard deviation) Spearman correlation for interfraction VI pairs was r{sup -}{sub Inter}=0.52±0.25, which was significantly lower than for intrafraction pairs (r{sup -}{sub Intra}=0.67±0.20, p = 0.0002). Conversely, mean absolute ventilation differences were larger for interfraction pairs than for intrafraction pairs, with |ΔV{sup -}{sub Inter}|=0.42±0.65 and |ΔV{sup -}{sub Intra}|=0.32±0.53, respectively (p < 10{sup −15}). Applying a gamma analysis with ventilation/distance tolerance of 25%/10 mm, we observed mean pass rate of (69% ± 20%) for interfraction VIs, which was significantly lower compared to intrafraction pairs (80% ± 15%, with p ∼ 0.0003). Compared to the first day scans, all patients experienced at least one subsequent change in median ipsilateral ventilation ≥10%. Patients experienced both positive and negative ventilation changes throughout treatment, with the maximum change occurring at different weeks for different patients. Conclusions: The authors’ data support the hypothesis that interfraction ventilation changes are larger than intrafraction ventilation changes for LA-NSCLC patients over a course of conventional lung cancer radiation therapy. Longitudinal ventilation changes are observed to be highly patient-dependent, supporting a possible role for adaptive ventilation guidance based on repeat 4D-CBCT VIs. We anticipate that future improvement of 4D-CBCT image reconstruction algorithms will improve the capability of 4D-CBCT VI to resolve interfraction ventilation changes.« less

  11. Measuring interfraction and intrafraction lung function changes during radiation therapy using four-dimensional cone beam CT ventilation imaging.

    PubMed

    Kipritidis, John; Hugo, Geoffrey; Weiss, Elisabeth; Williamson, Jeffrey; Keall, Paul J

    2015-03-01

    Adaptive ventilation guided radiation therapy could minimize the irradiation of healthy lung based on repeat lung ventilation imaging (VI) during treatment. However the efficacy of adaptive ventilation guidance requires that interfraction (e.g., week-to-week), ventilation changes are not washed out by intrafraction (e.g., pre- and postfraction) changes, for example, due to patient breathing variability. The authors hypothesize that patients undergoing lung cancer radiation therapy exhibit larger interfraction ventilation changes compared to intrafraction function changes. To test this, the authors perform the first comparison of interfraction and intrafraction lung VI pairs using four-dimensional cone beam CT ventilation imaging (4D-CBCT VI), a novel technique for functional lung imaging. The authors analyzed a total of 215 4D-CBCT scans acquired for 19 locally advanced non-small cell lung cancer (LA-NSCLC) patients over 4-6 weeks of radiation therapy. This set of 215 scans was sorted into 56 interfraction pairs (including first day scans and each of treatment weeks 2, 4, and 6) and 78 intrafraction pairs (including pre/postfraction scans on the same-day), with some scans appearing in both sets. VIs were obtained from the Jacobian determinant of the transform between the 4D-CBCT end-exhale and end-inhale images after deformable image registration. All VIs were deformably registered to their corresponding planning CT and normalized to account for differences in breathing effort, thus facilitating image comparison in terms of (i) voxelwise Spearman correlations, (ii) mean image differences, and (iii) gamma pass rates for all interfraction and intrafraction VI pairs. For the side of the lung ipsilateral to the tumor, we applied two-sided t-tests to determine whether interfraction VI pairs were more different than intrafraction VI pairs. The (mean ± standard deviation) Spearman correlation for interfraction VI pairs was r̄(Inter)=0.52±0.25, which was significantly lower than for intrafraction pairs (r̄(Intra)=0.67±0.20, p = 0.0002). Conversely, mean absolute ventilation differences were larger for interfraction pairs than for intrafraction pairs, with |ΔV̄(Inter)|=0.42±0.65 and |ΔV̄(Intra)|=0.32±0.53, respectively (p < 10(-15)). Applying a gamma analysis with ventilation/distance tolerance of 25%/10 mm, we observed mean pass rate of (69% ± 20%) for interfraction VIs, which was significantly lower compared to intrafraction pairs (80% ± 15%, with p ∼ 0.0003). Compared to the first day scans, all patients experienced at least one subsequent change in median ipsilateral ventilation ≥10%. Patients experienced both positive and negative ventilation changes throughout treatment, with the maximum change occurring at different weeks for different patients. The authors' data support the hypothesis that interfraction ventilation changes are larger than intrafraction ventilation changes for LA-NSCLC patients over a course of conventional lung cancer radiation therapy. Longitudinal ventilation changes are observed to be highly patient-dependent, supporting a possible role for adaptive ventilation guidance based on repeat 4D-CBCT VIs. We anticipate that future improvement of 4D-CBCT image reconstruction algorithms will improve the capability of 4D-CBCT VI to resolve interfraction ventilation changes.

  12. The effect of adaptive servo-ventilation on dyspnoea, haemodynamic parameters and plasma catecholamine concentrations in acute cardiogenic pulmonary oedema.

    PubMed

    Nakano, Shintaro; Kasai, Takatoshi; Tanno, Jun; Sugi, Keiki; Sekine, Yasumasa; Muramatsu, Toshihiro; Senbonmatsu, Takaaki; Nishimura, Shigeyuki

    2015-08-01

    Adaptive servo-ventilation has a potential sympathoinhibitory effect in acute cardiogenic pulmonary oedema (ACPO). To evaluate the acute effects of adaptive servo-ventilation in patients with ACPO. Fifty-eight consecutive patients with ACPO were divided into those who underwent adaptive servo-ventilation and those who received oxygen therapy alone as part of their immediate care. Visual analogue scale, vital signs, blood gas data and plasma catecholamine concentrations at baseline and 1 h during emergency care, and subsequent clinical events (death within 30 days, intubation within seven days or between seven and 30 days, and length of hospital stay) were assessed. Pre-matched and post-propensity score (PS)-matched datasets were analysed. During the first hour of adaptive servo-ventilation, plasma catecholamine concentrations fell significantly (baseline versus 1 h: epinephrine p = 0.003, norepinephrine p < 0.001, dopamine p < 0.001), with falls in blood pressure, heart rate, respiratory rate and pCO2, and rise in HCO3 and pH. In the PS-matched model, visual analogue scale (p = 0.036), systolic blood pressure (from 153.8 ± 30.7 to 133.1 ± 16.3 mmHg; p = 0.025) and plasma dopamine concentration (p = 0.034) fell significantly in the adaptive servo-ventilation group compared with the oxygen therapy alone group. The clinical outcomes between the groups were comparable. In patients with ACPO, emergency care using adaptive servo-ventilation attenuated plasma catecholamine concentrations and led to the improvement of dyspnoea, vital signs and acid-base balance, without adversely influencing clinical outcomes. Using adaptive servo-ventilation, rather than standard oxygen alone, may relieve dyspnoea and improve haemodynamic status, possibly by modulating sympathetic nerve activity. © The European Society of Cardiology 2014.

  13. New modes of assisted mechanical ventilation.

    PubMed

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  14. Inter-Module Ventilation Changes to the International Space Station Vehicle to Support Integration of the International Docking Adapter and Commercial Crew Vehicles

    NASA Technical Reports Server (NTRS)

    Link, Dwight E., Jr.; Balistreri, Steven F., Jr.

    2015-01-01

    The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) is continuing to evolve in the post-Space Shuttle era. The ISS vehicle configuration that is in operation was designed for docking of a Space Shuttle vehicle, and designs currently under development for commercial crew vehicles require different interfaces. The ECLSS Temperature and Humidity Control Subsystem (THC) Inter-Module Ventilation (IMV) must be modified in order to support two docking interfaces at the forward end of ISS, to provide the required air exchange. Development of a new higher-speed IMV fan and extensive ducting modifications are underway to support the new Commercial Crew Vehicle interfaces. This paper will review the new ECLSS IMV development requirements, component design and hardware status, subsystem analysis and testing performed to date, and implementation plan to support Commercial Crew Vehicle docking.

  15. Advanced positive airway pressure modes: adaptive servo ventilation and volume assured pressure support.

    PubMed

    Selim, Bernardo; Ramar, Kannan

    2016-09-01

    Volume assured pressure support (VAPS) and adaptive servo ventilation (ASV) are non-invasive positive airway pressure (PAP) modes with sophisticated negative feedback control systems (servomechanism), having the capability to self-adjust in real time its respiratory controlled variables to patient's respiratory fluctuations. However, the widespread use of VAPS and ASV is limited by scant clinical experience, high costs, and the incomplete understanding of propriety algorithmic differences in devices' response to patient's respiratory changes. Hence, we will review and highlight similarities and differences in technical aspects, control algorithms, and settings of each mode, focusing on the literature search published in this area. One hundred twenty relevant articles were identified by Scopus, PubMed, and Embase databases from January 2010 to 2016, using a combination of MeSH terms and keywords. Articles were further supplemented by pearling. Recommendations were based on the literature review and the authors' expertise in this area. Expert commentary: ASV and VAPS differ in their respiratory targets and response to a respiratory fluctuation. The VAPS mode targets a more consistent minute ventilation, being recommended in the treatment of sleep related hypoventilation disorders, while ASV mode attempts to provide a more steady breathing airflow pattern, treating successfully most central sleep apnea syndromes.

  16. Chronic hypoventilation syndromes and sleep-related hypoventilation

    PubMed Central

    Böing, Sebastian

    2015-01-01

    Chronic hypoventilation affects patients with disorders on any level of the respiratory system. The generation of respiratory impulses can be impaired in congenital disorders, such as central congenital alveolar hypoventilation, in alterations of the brain stem or complex diseases like obesity hypoventilation. The translation of the impulses via spinal cord and nerves to the respiratory muscles can be impaired in neurological diseases. Thoraco-skeletal or muscular diseases may inhibit the execution of the impulses. All hypoventilation disorders are characterized by a reduction of the minute ventilation with an increase of daytime hypercapnia. As sleep reduces minute ventilation substantially in healthy persons and much more pronounced in patients with underlying thoraco-pulmonary diseases, hypoventilation manifests firstly during sleep. Therefore, sleep related hypoventilation may be an early stage of chronic hypoventilation disorders. After treatment of any prevailing underlying disease, symptomatic therapy with non-invasive ventilation (NIV) is required. The adaptation of the treatment should be performed under close medical supervision. Pressure support algorithms have become most frequently used. The most recent devices automatically apply pressure support and vary inspiratory and expiratory pressures and breathing frequency in order to stabilize upper airways, normalize ventilation, achieve best synchronicity between patient and device and aim at optimizing patients’ adherence. PMID:26380756

  17. Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation.

    PubMed

    Schranz, C; Becher, T; Schädler, D; Weiler, N; Möller, K

    2014-03-01

    Mechanical ventilation carries the risk of ventilator-induced-lung-injury (VILI). To minimize the risk of VILI, ventilator settings should be adapted to the individual patient properties. Mathematical models of respiratory mechanics are able to capture the individual physiological condition and can be used to derive personalized ventilator settings. This paper presents model-based calculations of inspiration pressure (pI), inspiration and expiration time (tI, tE) in pressure-controlled ventilation (PCV) and a retrospective evaluation of its results in a group of mechanically ventilated patients. Incorporating the identified first order model of respiratory mechanics in the basic equation of alveolar ventilation yielded a nonlinear relation between ventilation parameters during PCV. Given this patient-specific relation, optimized settings in terms of minimal pI and adequate tE can be obtained. We then retrospectively analyzed data from 16 ICU patients with mixed pathologies, whose ventilation had been previously optimized by ICU physicians with the goal of minimization of inspiration pressure, and compared the algorithm's 'optimized' settings to the settings that had been chosen by the physicians. The presented algorithm visualizes the patient-specific relations between inspiration pressure and inspiration time. The algorithm's calculated results highly correlate to the physician's ventilation settings with r = 0.975 for the inspiration pressure, and r = 0.902 for the inspiration time. The nonlinear patient-specific relations of ventilation parameters become transparent and support the determination of individualized ventilator settings according to therapeutic goals. Thus, the algorithm is feasible for a variety of ventilated ICU patients and has the potential of improving lung-protective ventilation by minimizing inspiratory pressures and by helping to avoid the build-up of clinically significant intrinsic positive end-expiratory pressure.

  18. Stockpiling Ventilators for Influenza Pandemics.

    PubMed

    Huang, Hsin-Chan; Araz, Ozgur M; Morton, David P; Johnson, Gregory P; Damien, Paul; Clements, Bruce; Meyers, Lauren Ancel

    2017-06-01

    In preparing for influenza pandemics, public health agencies stockpile critical medical resources. Determining appropriate quantities and locations for such resources can be challenging, given the considerable uncertainty in the timing and severity of future pandemics. We introduce a method for optimizing stockpiles of mechanical ventilators, which are critical for treating hospitalized influenza patients in respiratory failure. As a case study, we consider the US state of Texas during mild, moderate, and severe pandemics. Optimal allocations prioritize local over central storage, even though the latter can be deployed adaptively, on the basis of real-time needs. This prioritization stems from high geographic correlations and the slightly lower treatment success assumed for centrally stockpiled ventilators. We developed our model and analysis in collaboration with academic researchers and a state public health agency and incorporated it into a Web-based decision-support tool for pandemic preparedness and response.

  19. Optimization of pressure settings during adaptive servo-ventilation support using real-time heart rate variability assessment: initial case report.

    PubMed

    Imamura, Teruhiko; Nitta, Daisuke; Kinugawa, Koichiro

    2017-01-05

    Adaptive servo-ventilation (ASV) therapy is a recent non-invasive positive pressure ventilation therapy that was developed for patients with heart failure (HF) refractory to optimal medical therapy. However, it is likely that ASV therapy at relatively higher pressure setting worsens some of the patients' prognosis compared with optimal medical therapy. Therefore, identification of optimal pressure settings of ASV therapy is warranted. We present the case of a 42-year-old male with HF, which was caused by dilated cardiomyopathy, who was admitted to our institution for evaluating his eligibility for heart transplantation. To identify the optimal pressure setting [peak end-expiratory pressure (PEEP) ramp test], we performed an ASV support test, during which the PEEP settings were set at levels ranging from 4 to 8 mmHg, and a heart rate variability (HRV) analysis using the MemCalc power spectral density method. Clinical parameters varied dramatically during the PEEP ramp test. Over incremental PEEP levels, pulmonary capillary wedge pressure, cardiac index and high-frequency level (reflecting parasympathetic activity) decreased; however, the low-frequency level increased along with increase in plasma noradrenaline concentrations. An inappropriately high PEEP setting may stimulate sympathetic nerve activity accompanied by decreased cardiac output. This was the first report on the PEEP ramp test during ASV therapy. Further research is warranted to determine whether use of optimal pressure settings using HRV analyses may improve the long-term prognosis of such patients.

  20. Effects of staff training and electronic event monitoring on long-term adherence to lung-protective ventilation recommendations.

    PubMed

    Castellanos, Ixchel; Martin, Marcus; Kraus, Stefan; Bürkle, Thomas; Prokosch, Hans-Ulrich; Schüttler, Jürgen; Toddenroth, Dennis

    2018-02-01

    To investigate long-term effects of staff training and electronic clinical decision support (CDS) on adherence to lung-protective ventilation recommendations. In 2012, group instructions and workshops at two surgical intensive care units (ICUs) started, focusing on standardized protocols for mechanical ventilation and volutrauma prevention. Subsequently implemented CDS functions continuously monitor ventilation parameters, and from 2015 triggered graphical notifications when tidal volume (V T ) violated individual thresholds. To estimate the effects of these educational and technical interventions, we retrospectively analyzed nine years of V T records from routine care. As outcome measures, we calculated relative frequencies of settings that conform to recommendations, case-specific mean excess V T , and total ICU survival. Assessing 571,478 V T records from 10,241 ICU cases indicated that adherence during pressure-controlled ventilation improved significantly after both interventions; the share of conforming V T records increased from 61.6% to 83.0% and then 86.0%. Despite increasing case severity, ICU survival remained nearly constant over time. Staff training effectively improves adherence to lung-protective ventilation strategies. The observed CDS effect seemed less pronounced, although it can easily be adapted to new recommendations. Both interventions, which futures studies could deploy in combination, promise to improve the precision of mechanical ventilation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Epidemiology of Noninvasive Ventilation in Pediatric Cardiac ICUs.

    PubMed

    Romans, Ryan A; Schwartz, Steven M; Costello, John M; Chanani, Nikhil K; Prodhan, Parthak; Gazit, Avihu Z; Smith, Andrew H; Cooper, David S; Alten, Jeffrey; Mistry, Kshitij P; Zhang, Wenying; Donohue, Janet E; Gaies, Michael

    2017-10-01

    To describe the epidemiology of noninvasive ventilation therapy for patients admitted to pediatric cardiac ICUs and to assess practice variation across hospitals. Retrospective cohort study using prospectively collected clinical registry data. Pediatric Cardiac Critical Care Consortium clinical registry. Patients admitted to cardiac ICUs at PC4 hospitals. None. We analyzed all cardiac ICU encounters that included any respiratory support from October 2013 to December 2015. Noninvasive ventilation therapy included high flow nasal cannula and positive airway pressure support. We compared patient and, when relevant, perioperative characteristics of those receiving noninvasive ventilation to all others. Subgroup analysis was performed on neonates and infants undergoing major cardiovascular surgery. To examine duration of respiratory support, we created a casemix-adjustment model and calculated adjusted mean durations of total respiratory support (mechanical ventilation + noninvasive ventilation), mechanical ventilation, and noninvasive ventilation. We compared adjusted duration of support across hospitals. The cohort included 8,940 encounters from 15 hospitals: 3,950 (44%) received noninvasive ventilation and 72% were neonates and infants. Medical encounters were more likely to include noninvasive ventilation than surgical. In surgical neonates and infants, 2,032 (55%) received postoperative noninvasive ventilation. Neonates, extracardiac anomalies, single ventricle, procedure complexity, preoperative respiratory support, mechanical ventilation duration, and postoperative disease severity were associated with noninvasive ventilation therapy (p < 0.001 for all). Across hospitals, noninvasive ventilation use ranged from 32% to 65%, and adjusted mean noninvasive ventilation duration ranged from 1 to 4 days (3-d observed mean). Duration of total adjusted respiratory support was more strongly correlated with duration of mechanical ventilation compared with noninvasive ventilation (Pearson r = 0.93 vs 0.71, respectively). Noninvasive ventilation use is common in cardiac ICUs, especially in patients admitted for medical conditions, infants, and those undergoing high complexity surgery. We observed wide variation in noninvasive ventilation use across hospitals, though the primary driver of total respiratory support time seems to be duration of mechanical ventilation.

  2. Stockpiling Ventilators for Influenza Pandemics

    PubMed Central

    Araz, Ozgur M.; Morton, David P.; Johnson, Gregory P.; Damien, Paul; Clements, Bruce; Meyers, Lauren Ancel

    2017-01-01

    In preparing for influenza pandemics, public health agencies stockpile critical medical resources. Determining appropriate quantities and locations for such resources can be challenging, given the considerable uncertainty in the timing and severity of future pandemics. We introduce a method for optimizing stockpiles of mechanical ventilators, which are critical for treating hospitalized influenza patients in respiratory failure. As a case study, we consider the US state of Texas during mild, moderate, and severe pandemics. Optimal allocations prioritize local over central storage, even though the latter can be deployed adaptively, on the basis of real-time needs. This prioritization stems from high geographic correlations and the slightly lower treatment success assumed for centrally stockpiled ventilators. We developed our model and analysis in collaboration with academic researchers and a state public health agency and incorporated it into a Web-based decision-support tool for pandemic preparedness and response. PMID:28518041

  3. Bi-level positive pressure ventilation and adaptive servo ventilation in patients with heart failure and Cheyne-Stokes respiration.

    PubMed

    Fietze, Ingo; Blau, Alexander; Glos, Martin; Theres, Heinz; Baumann, Gert; Penzel, Thomas

    2008-08-01

    Nocturnal positive pressure ventilation (PPV) has been shown to be effective in patients with impaired left ventricular ejection fraction (LVEF) and Cheyne-Stokes respiration (CSR). We investigated the effect of a bi-level PPV and adaptive servo ventilation on LVEF, CSR, and quantitative sleep quality. Thirty-seven patients (New York heart association [NYHA] II-III) with LVEF<45% and CSR were investigated by electrocardiography (ECG), echocardiography and polysomnography. The CSR index (CSRI) was 32.3+/-16.2/h. Patients were randomly treated with bi-level PPV using the standard spontaneous/timed (S/T) mode or with adaptive servo ventilation mode (AutoSetCS). After 6 weeks, 30 patients underwent control investigations with ECG, echocardiography, and polysomnography. The CSRI decreased significantly to 13.6+/-13.4/h. LVEF increased significantly after 6 weeks of ventilation (from 25.1+/-8.5 to 28.8+/-9.8%, p<0.01). The number of respiratory-related arousals decreased significantly. Other quantitative sleep parameters did not change. The Epworth sleepiness score improved slightly. Daytime blood pressure and heart rate did not change. There were some differences between bi-level PPV and adaptive servo ventilation: the CSRI decreased more in the AutoSetCS group while the LVEF increased more in the bi-level PPV group. Administration of PPV can successfully attenuate CSA. Reduced CSA may be associated with improved LVEF; however, this may depend on the mode of PPV. Changed LVEF is evident even in the absence of significant changes in blood pressure.

  4. Use of a new generation of adaptive servo ventilation for sleep-disordered breathing in patients with multiple system atrophy.

    PubMed

    Hamada, Satoshi; Takahashi, Ryosuke; Mishima, Michiaki; Chin, Kazuo

    2015-11-06

    A 70-year-old man (case 1) and a 64-year-old woman (case 2) with multiple system atrophy (MSA) and snoring were admitted for polysomnography. Their awake PaCO2 indicated normocapnia. Apnoea-hypopnoea index (AHI), max transcutaneous carbon dioxide partial pressure (PtcCO2) and ΔPtcCO2 (max PtcCO2 (during sleep)-baseline PtcCO2 (while awake)) were 11.4/h, 63 mm Hg and 18 mm Hg, respectively, in case 1 and 53.1/h, 59 mm Hg and 13 mm Hg, respectively, in case 2. Their sleep-disordered breathing (SDB) was diagnosed as obstructive sleep apnoea with hypoventilation. We thought that variable expiratory positive airway pressure and pressure support ventilation (advanced-adaptive servo ventilation (ASV)) might be favourable for their SDB. Polysomnography after introducing advanced-ASV revealed that AHI, max PtcCO2 and ΔPtcCO2 were 0.2/h, 53 mm Hg and 5 mm Hg, respectively, in case 1 and 1.5/h, 56 mm Hg and 9 mm Hg, respectively, in case 2. Advanced-ASV for treating Cheyne-Stokes breathing may be helpful in SDB in patients with MSA. 2015 BMJ Publishing Group Ltd.

  5. Amyotrophic lateral sclerosis and assisted ventilation: how patients decide.

    PubMed

    Lemoignan, Josée; Ells, Carolyn

    2010-06-01

    Throughout the course of their illness, people with amyotrophic lateral sclerosis (ALS) must make many treatment decisions; however, none has such a significant impact on quality of life and survival as decisions about assisted ventilation. The purpose of this study was to better understand the experience of decision-making about assisted ventilation for ALS patients. Using qualitative phenomenology methodology, 10 semi-structured interviews were conducted with persons with ALS and their caregivers to elicit factors that are pertinent to their decision-making process about assisted ventilation. Six main themes emerged from the interviews. (1) the meaning of the intervention - participants made a sharp distinction between non-invasive ventilation, which they viewed as a means to relieve symptoms of respiratory failure, and invasive ventilation, which they viewed as taking over their breathing and thereby saving their life when they otherwise would die, (2) the importance of context - including functional status, available supports, and financial implications, (3) the importance of values - with respect to communication, relationships, autonomy, life, and quality of life, (4) the effect of fears - particularly respiratory distress, chocking, running out of air, and the process of death itself, (5) the need for information - how use of assisted ventilation would impact daily life, how death from respiratory failure would occur, how caregivers and persons with ALS differ in their information needs and common misconceptions, and (6) adaptation to or acceptance of the intervention - a lengthy process that involved gradual familiarization with the equipment and its benefits. People with ALS and caregivers value autonomy in decision-making about assisted ventilation. Their decision-making process is neither wholly rational nor self-interested, and includes factors that health professionals should anticipate and address. Discussions about assisted ventilation and timing should be tailored to each individual and undertaken periodically.

  6. On the Use of Windcatchers in Schools: Climate Change, Occupancy Patterns, and Adaptation Strategies

    PubMed Central

    Mumovic, D.

    2009-01-01

    Advanced naturally ventilated systems based on integration of basic natural ventilation strategies such as cross-ventilation and stack effect have been considered to be a key element of sustainable design. In this respect, there is a pressing need to explore the potential of such systems to achieve the recommended occupant comfort targets throughout their lifetime without relying on mechanical means. This study focuses on use of a windcatcher system in typical classrooms which are usually characterized by high and intermittent internal heat gains. The aims of this paper are 3-fold. First, to describe a series of field measurements that investigated the ventilation rates, indoor air quality, and thermal comfort in a newly constructed school located at an urban site in London. Secondly, to investigate the effect of changing climate and occupancy patterns on thermal comfort in selected classrooms, while taking into account adaptive potential of this specific ventilation strategy. Thirdly, to assess performance of the ventilation system using the newly introduced performance-based ventilation standards for school buildings. The results suggest that satisfactory occupant comfort levels could be achieved until the 2050s by a combination of advanced ventilation control settings and informed occupant behavior. PMID:27110216

  7. Variability in Usual Care Mechanical Ventilation for Pediatric Acute Respiratory Distress Syndrome: Time for a Decision Support Protocol?

    PubMed

    Newth, Christopher J L; Sward, Katherine A; Khemani, Robinder G; Page, Kent; Meert, Kathleen L; Carcillo, Joseph A; Shanley, Thomas P; Moler, Frank W; Pollack, Murray M; Dalton, Heidi J; Wessel, David L; Berger, John T; Berg, Robert A; Harrison, Rick E; Holubkov, Richard; Doctor, Allan; Dean, J Michael; Jenkins, Tammara L; Nicholson, Carol E

    2017-11-01

    Although pediatric intensivists philosophically embrace lung protective ventilation for acute lung injury and acute respiratory distress syndrome, we hypothesized that ventilator management varies. We assessed ventilator management by evaluating changes to ventilator settings in response to blood gases, pulse oximetry, or end-tidal CO2. We also assessed the potential impact that a pediatric mechanical ventilation protocol adapted from National Heart Lung and Blood Institute acute respiratory distress syndrome network protocols could have on reducing variability by comparing actual changes in ventilator settings to those recommended by the protocol. Prospective observational study. Eight tertiary care U.S. PICUs, October 2011 to April 2012. One hundred twenty patients (age range 17 d to 18 yr) with acute lung injury/acute respiratory distress syndrome. Two thousand hundred arterial and capillary blood gases, 3,964 oxygen saturation by pulse oximetry, and 2,757 end-tidal CO2 values were associated with 3,983 ventilator settings. Ventilation mode at study onset was pressure control 60%, volume control 19%, pressure-regulated volume control 18%, and high-frequency oscillatory ventilation 3%. Clinicians changed FIO2 by ±5 or ±10% increments every 8 hours. Positive end-expiratory pressure was limited at ~10 cm H2O as oxygenation worsened, lower than would have been recommended by the protocol. In the first 72 hours of mechanical ventilation, maximum tidal volume/kg using predicted versus actual body weight was 10.3 (8.5-12.9) (median [interquartile range]) versus 9.2 mL/kg (7.6-12.0) (p < 0.001). Intensivists made changes similar to protocol recommendations 29% of the time, opposite to the protocol's recommendation 12% of the time and no changes 56% of the time. Ventilator management varies substantially in children with acute respiratory distress syndrome. Opportunities exist to minimize variability and potentially injurious ventilator settings by using a pediatric mechanical ventilation protocol offering adequately explicit instructions for given clinical situations. An accepted protocol could also reduce confounding by mechanical ventilation management in a clinical trial.

  8. Aerosol delivery with two ventilation modes during mechanical ventilation: a randomized study.

    PubMed

    Dugernier, Jonathan; Reychler, Gregory; Wittebole, Xavier; Roeseler, Jean; Depoortere, Virginie; Sottiaux, Thierry; Michotte, Jean-Bernard; Vanbever, Rita; Dugernier, Thierry; Goffette, Pierre; Docquier, Marie-Agnes; Raftopoulos, Christian; Hantson, Philippe; Jamar, François; Laterre, Pierre-François

    2016-12-01

    Volume-controlled ventilation has been suggested to optimize lung deposition during nebulization although promoting spontaneous ventilation is targeted to avoid ventilator-induced diaphragmatic dysfunction. Comparing topographic aerosol lung deposition during volume-controlled ventilation and spontaneous ventilation in pressure support has never been performed. The aim of this study was to compare lung deposition of a radiolabeled aerosol generated with a vibrating-mesh nebulizer during invasive mechanical ventilation, with two modes: pressure support ventilation and volume-controlled ventilation. Seventeen postoperative neurosurgery patients without pulmonary disease were randomly ventilated in pressure support or volume-controlled ventilation. Diethylenetriaminepentaacetic acid labeled with technetium-99m (2 mCi/3 mL) was administrated using a vibrating-mesh nebulizer (Aerogen Solo(®), provided by Aerogen Ltd, Galway, Ireland) connected to the endotracheal tube. Pulmonary and extrapulmonary particles deposition was analyzed using planar scintigraphy. Lung deposition was 10.5 ± 3.0 and 15.1 ± 5.0 % of the nominal dose during pressure support and volume-controlled ventilation, respectively (p < 0.05). Higher endotracheal tube and tracheal deposition was observed during pressure support ventilation (27.4 ± 6.6 vs. 20.7 ± 6.0 %, p < 0.05). A similar penetration index was observed for the right (p = 0.210) and the left lung (p = 0.211) with both ventilation modes. A high intersubject variability of lung deposition was observed with both modes regarding lung doses, aerosol penetration and distribution between the right and the left lung. In the specific conditions of the study, volume-controlled ventilation was associated with higher lung deposition of nebulized particles as compared to pressure support ventilation. The clinical benefit of this effect warrants further studies. Clinical trial registration NCT01879488.

  9. Changes in Regional Ventilation During Treatment and Dosimetric Advantages of CT Ventilation Image Guided Radiation Therapy for Locally Advanced Lung Cancer.

    PubMed

    Yamamoto, Tokihiro; Kabus, Sven; Bal, Matthieu; Bzdusek, Karl; Keall, Paul J; Wright, Cari; Benedict, Stanley H; Daly, Megan E

    2018-05-04

    Lung functional image guided radiation therapy (RT) that avoids irradiating highly functional regions has potential to reduce pulmonary toxicity following RT. Tumor regression during RT is common, leading to recovery of lung function. We hypothesized that computed tomography (CT) ventilation image-guided treatment planning reduces the functional lung dose compared to standard anatomic image-guided planning in 2 different scenarios with or without plan adaptation. CT scans were acquired before RT and during RT at 2 time points (16-20 Gy and 30-34 Gy) for 14 patients with locally advanced lung cancer. Ventilation images were calculated by deformable image registration of four-dimensional CT image data sets and image analysis. We created 4 treatment plans at each time point for each patient: functional adapted, anatomic adapted, functional unadapted, and anatomic unadapted plans. Adaptation was performed at 2 time points. Deformable image registration was used for accumulating dose and calculating a composite of dose-weighted ventilation used to quantify the lung accumulated dose-function metrics. The functional plans were compared with the anatomic plans for each scenario separately to investigate the hypothesis at a significance level of 0.05. Tumor volume was significantly reduced by 20% after 16 to 20 Gy (P = .02) and by 32% after 30 to 34 Gy (P < .01) on average. In both scenarios, the lung accumulated dose-function metrics were significantly lower in the functional plans than in the anatomic plans without compromising target volume coverage and adherence to constraints to critical structures. For example, functional planning significantly reduced the functional mean lung dose by 5.0% (P < .01) compared to anatomic planning in the adapted scenario and by 3.6% (P = .03) in the unadapted scenario. This study demonstrated significant reductions in the accumulated dose to the functional lung with CT ventilation image-guided planning compared to anatomic image-guided planning for patients showing tumor regression and changes in regional ventilation during RT. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. An injection and mixing element for delivery and monitoring of inhaled nitric oxide.

    PubMed

    Martin, Andrew R; Jackson, Chris; Fromont, Samuel; Pont, Chloe; Katz, Ira M; Caillobotte, Georges

    2016-08-30

    Inhaled nitric oxide (NO) is a selective pulmonary vasodilator used primarily in the critical care setting for patients concurrently supported by invasive or noninvasive positive pressure ventilation. NO delivery devices interface with ventilator breathing circuits to inject NO in proportion with the flow of air/oxygen through the circuit, in order to maintain a constant, target concentration of inhaled NO. In the present article, a NO injection and mixing element is presented. The device borrows from the design of static elements to promote rapid mixing of injected NO-containing gas with breathing circuit gases. Bench experiments are reported to demonstrate the improved mixing afforded by the injection and mixing element, as compared with conventional breathing circuit adapters, for NO injection into breathing circuits. Computational fluid dynamics simulations are also presented to illustrate mixing patterns and nitrogen dioxide production within the element. Over the range of air flow rates and target NO concentrations investigated, mixing length, defined as the downstream distance required for NO concentration to reach within ±5 % of the target concentration, was as high as 47 cm for the conventional breathing circuit adapters, but did not exceed 7.8 cm for the injection and mixing element. The injection and mixing element has potential to improve ease of use, compatibility and safety of inhaled NO administration with mechanical ventilators and gas delivery devices.

  11. Respiratory comfort and breathing pattern during volume proportional assist ventilation and pressure support ventilation: a study on volunteers with artificially reduced compliance.

    PubMed

    Mols, G; von Ungern-Sternberg, B; Rohr, E; Haberthür, C; Geiger, K; Guttmann, J

    2000-06-01

    To assess respiratory comfort and associated breathing pattern during volume assist (VA) as a component of proportional assist ventilation and during pressure support ventilation (PSV). Prospective, double-blind, interventional study. Laboratory. A total of 15 healthy volunteers (11 females, 4 males) aged 21-31 yrs. Decreased respiratory system compliance was simulated by banding of the thorax and abdomen. Volunteers breathed via a mouthpiece with VA and PSV each applied at two levels (VA, 8 cm H2O/L and 12 cm H2O/L; PSV, 10 cm H2O and 15 cm H2O) using a positive end-expiratory pressure of 5 cm H2O throughout. The study was subdivided into two parts. In Part 1, volunteers breathed three times with each of the four settings for 2 mins in random order. In Part 2, the first breath effects of multiple, randomly applied mode, and level shifts were studied. In Part 1, the volunteers were asked to estimate respiratory comfort in comparison with normal breathing using a visual analog scale. In Part 2, they were asked to estimate the change of respiratory comfort as increased, decreased, or unchanged immediately after a mode shift. Concomitantly, the respiratory pattern (change) was characterized with continuously measured tidal volume, respiratory rate, pressure, and gas flow. Respiratory comfort during VA was higher than during PSV. The higher support level was less important during VA but had a major negative influence on comfort during PSV. Both modes differed with respect to the associated breathing pattern. Variability of breathing was higher during VA than during PSV (Part 1). Changes in respiratory variables were associated with changes in respiratory comfort (Part 2). For volunteers breathing with artificially reduced respiratory system compliance, respiratory comfort is higher with VA than with PSV. This is probably caused by a better adaptation of the ventilatory support to the volunteer's need with VA.

  12. The growing role of noninvasive ventilation in patients requiring prolonged mechanical ventilation.

    PubMed

    Hess, Dean R

    2012-06-01

    For many patients with chronic respiratory failure requiring ventilator support, noninvasive ventilation (NIV) is preferable to invasive support by tracheostomy. Currently available evidence does not support the use of nocturnal NIV in unselected patients with stable COPD. Several European studies have reported benefit for high intensity NIV, in which setting of inspiratory pressure and respiratory rate are selected to achieve normocapnia. There have also been studies reporting benefit for the use of NIV as an adjunct to exercise training. NIV may be useful as an adjunct to airway clearance techniques in patients with cystic fibrosis. Accumulating evidence supports the use of NIV in patients with obesity hypoventilation syndrome. There is considerable observational evidence supporting the use of NIV in patients with chronic respiratory failure related to neuromuscular disease, and one randomized controlled trial reported that the use of NIV was life-prolonging in patients with amyotrophic lateral sclerosis. A variety of interfaces can be used to provide NIV in patients with stable chronic respiratory failure. The mouthpiece is an interface that is unique in this patient population, and has been used with success in patients with neuromuscular disease. Bi-level pressure ventilators are commonly used for NIV, although there are now a new generation of intermediate ventilators that are portable, have a long battery life, and can be used for NIV and invasive applications. Pressure support ventilation, pressure controlled ventilation, and volume controlled ventilation have been used successfully for chronic applications of NIV. New modes have recently become available, but their benefits await evidence to support their widespread use. The success of NIV in a given patient population depends on selection of an appropriate patient, selection of an appropriate interface, selection of an appropriate ventilator and ventilator settings, the skills of the clinician, the motivation of the patient, and the support of the family. 2012 Daedalus Enterprises

  13. Echocardiographic evaluation during weaning from mechanical ventilation.

    PubMed

    Schifelbain, Luciele Medianeira; Vieira, Silvia Regina Rios; Brauner, Janete Salles; Pacheco, Deise Mota; Naujorks, Alexandre Antonio

    2011-01-01

    Echocardiographic, electrocardiographic and other cardiorespiratory variables can change during weaning from mechanical ventilation. To analyze changes in cardiac function, using Doppler echocardiogram, in critical patients during weaning from mechanical ventilation, using two different weaning methods: pressure support ventilation and T-tube; and comparing patient subgroups: success vs. failure in weaning. Randomized crossover clinical trial including patients under mechanical ventilation for more than 48 h and considered ready for weaning. Cardiorespiratory variables, oxygenation, electrocardiogram and Doppler echocardiogram findings were analyzed at baseline and after 30 min in pressure support ventilation and T-tube. Pressure support ventilation vs. T-tube and weaning success vs. failure were compared using ANOVA and Student's t-test. The level of significance was p<0.05. Twenty-four adult patients were evaluated. Seven patients failed at the first weaning attempt. No echocardiographic or electrocardiographic differences were observed between pressure support ventilation and T-tube. Weaning failure patients presented increases in left atrium, intraventricular septum thickness, posterior wall thickness and diameter of left ventricle and shorter isovolumetric relaxation time. Successfully weaned patients had higher levels of oxygenation. No differences were observed between Doppler echocardiographic variables and electrocardiographic and other cardiorespiratory variables during pressure support ventilation and T-tube. However cardiac structures were smaller, isovolumetric relaxation time was larger, and oxygenation level was greater in successfully weaned patients.

  14. [Analgesia, sedation and relaxation in the child with mechanical ventilation].

    PubMed

    Valdivielso-Serna, A

    2008-02-01

    The basic concepts of sedation and analgesia and the tools to asses the level of sedation and analgesia are review. The different methods of sedation and the non pharmacological interventions are described. Sedatives, analgesics and muscle relaxants, their pharmacodynamics and pharmacokinetics in children, their indications in specific situations (intubation, pain control, sedation and neuromuscular blocking) are reviewed. The etiology of patient-ventilator asynchrony in ventilated children and how to treat it are analyzed, giving guides of how to adapt sedation to the level of mechanical ventilation therapy. Finally, general recommendations are given for the analgesia and sedation in mechanically ventilated children.

  15. An experimental study of an adaptive-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Celik, Zeki; Roberts, Leonard

    1988-01-01

    A series of adaptive wall ventilated wind tunnel experiments was carried out to demonstrate the feasibility of using the side wall pressure distribution as the flow variable for the assessment of compatibility with free air conditions. Iterative and one step convergence methods were applied using the streamwise velocity component, the side wall pressure distribution and the normal velocity component in order to investigate their relative merits. The advantage of using the side wall pressure as the flow variable is to reduce the data taking time which is one the major contributors to the total testing time. In ventilated adaptive wall wind tunnel testing, side wall pressure measurements require simple instrumentation as opposed to the Laser Doppler Velocimetry used to measure the velocity components. In ventilated adaptive wall tunnel testing, influence coefficients are required to determine the pressure corrections in the plenum compartment. Experiments were carried out to evaluate the influence coefficients from side wall pressure distributions, and from streamwise and normal velocity distributions at two control levels. Velocity measurements were made using a two component Laser Doppler Velocimeter system.

  16. Echocardiographic evaluation during weaning from mechanical ventilation

    PubMed Central

    Schifelbain, Luciele Medianeira; Vieira, Silvia Regina Rios; Brauner, Janete Salles; Pacheco, Deise Mota; Naujorks, Alexandre Antonio

    2011-01-01

    INTRODUCTION: Echocardiographic, electrocardiographic and other cardiorespiratory variables can change during weaning from mechanical ventilation. OBJECTIVES: To analyze changes in cardiac function, using Doppler echocardiogram, in critical patients during weaning from mechanical ventilation, using two different weaning methods: pressure support ventilation and T‐tube; and comparing patient subgroups: success vs. failure in weaning. METHODS: Randomized crossover clinical trial including patients under mechanical ventilation for more than 48 h and considered ready for weaning. Cardiorespiratory variables, oxygenation, electrocardiogram and Doppler echocardiogram findings were analyzed at baseline and after 30 min in pressure support ventilation and T‐tube. Pressure support ventilation vs. T‐tube and weaning success vs. failure were compared using ANOVA and Student's t‐test. The level of significance was p<0.05. RESULTS: Twenty‐four adult patients were evaluated. Seven patients failed at the first weaning attempt. No echocardiographic or electrocardiographic differences were observed between pressure support ventilation and T‐tube. Weaning failure patients presented increases in left atrium, intraventricular septum thickness, posterior wall thickness and diameter of left ventricle and shorter isovolumetric relaxation time. Successfully weaned patients had higher levels of oxygenation. CONCLUSION: No differences were observed between Doppler echocardiographic variables and electrocardiographic and other cardiorespiratory variables during pressure support ventilation and T‐tube. However cardiac structures were smaller, isovolumetric relaxation time was larger, and oxygenation level was greater in successfully weaned patients. PMID:21437445

  17. Clinical challenges in mechanical ventilation.

    PubMed

    Goligher, Ewan C; Ferguson, Niall D; Brochard, Laurent J

    2016-04-30

    Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Chiari malformation and central sleep apnea syndrome: efficacy of treatment with adaptive servo-ventilation*

    PubMed Central

    do Vale, Jorge Marques; Silva, Eloísa; Pereira, Isabel Gil; Marques, Catarina; Sanchez-Serrano, Amparo; Torres, António Simões

    2014-01-01

    The Chiari malformation type I (CM-I) has been associated with sleep-disordered breathing, especially central sleep apnea syndrome. We report the case of a 44-year-old female with CM-I who was referred to our sleep laboratory for suspected sleep apnea. The patient had undergone decompressive surgery 3 years prior. An arterial blood gas analysis showed hypercapnia. Polysomnography showed a respiratory disturbance index of 108 events/h, and all were central apnea events. Treatment with adaptive servo-ventilation was initiated, and central apnea was resolved. This report demonstrates the efficacy of servo-ventilation in the treatment of central sleep apnea syndrome associated with alveolar hypoventilation in a CM-I patient with a history of decompressive surgery. PMID:25410846

  19. Automatic control of pressure support for ventilator weaning in surgical intensive care patients.

    PubMed

    Schädler, Dirk; Engel, Christoph; Elke, Gunnar; Pulletz, Sven; Haake, Nils; Frerichs, Inéz; Zick, Günther; Scholz, Jens; Weiler, Norbert

    2012-03-15

    Despite its ability to reduce overall ventilation time, protocol-guided weaning from mechanical ventilation is not routinely used in daily clinical practice. Clinical implementation of weaning protocols could be facilitated by integration of knowledge-based, closed-loop controlled protocols into respirators. To determine whether automated weaning decreases overall ventilation time compared with weaning based on a standardized written protocol in an unselected surgical patient population. In this prospective controlled trial patients ventilated for longer than 9 hours were randomly allocated to receive either weaning with automatic control of pressure support ventilation (automated-weaning group) or weaning based on a standardized written protocol (control group) using the same ventilation mode. The primary end point of the study was overall ventilation time. Overall ventilation time (median [25th and 75th percentile]) did not significantly differ between the automated-weaning (31 [19-101] h; n = 150) and control groups (39 [20-118] h; n = 150; P = 0.178). Patients who underwent cardiac surgery (n = 132) exhibited significantly shorter overall ventilation times in the automated-weaning (24 [18-57] h) than in the control group (35 [20-93] h; P = 0.035). The automated-weaning group exhibited shorter ventilation times until the first spontaneous breathing trial (1 [0-15] vs. 9 [1-51] h; P = 0.001) and a trend toward fewer tracheostomies (17 vs. 28; P = 0.075). Overall ventilation times did not significantly differ between weaning using automatic control of pressure support ventilation and weaning based on a standardized written protocol. Patients after cardiac surgery may benefit from automated weaning. Implementation of additional control variables besides the level of pressure support may further improve automated-weaning systems. Clinical trial registered with www.clinicaltrials.gov (NCT 00445289).

  20. Mechanical Ventilation

    MedlinePlus

    ... to stay in as long as needed. At times a person can talk with a trach tube in place by using a special adapter called a speaking valve . (For more information on having a tracheostomy see ATS patient information series at www. thoracic. org/ patients) . The ventilator blows ...

  1. Low-Flow Extracorporeal Carbon Dioxide Removal Using the Hemolung Respiratory Dialysis System® to Facilitate Lung-Protective Mechanical Ventilation in Acute Respiratory Distress Syndrome.

    PubMed

    Akkanti, Bindu; Rajagopal, Keshava; Patel, Kirti P; Aravind, Sangeeta; Nunez-Centanu, Emmanuel; Hussain, Rahat; Shabari, Farshad Raissi; Hofstetter, Wayne L; Vaporciyan, Ara A; Banjac, Igor S; Kar, Biswajit; Gregoric, Igor D; Loyalka, Pranav

    2017-06-01

    Extracorporeal carbon dioxide removal (ECCO 2 R) permits reductions in alveolar ventilation requirements that the lungs would otherwise have to provide. This concept was applied to a case of hypercapnia refractory to high-level invasive mechanical ventilator support. We present a case of an 18-year-old man who developed post-pneumonectomy acute respiratory distress syndrome (ARDS) after resection of a mediastinal germ cell tumor involving the left lung hilum. Hypercapnia and hypoxemia persisted despite ventilator support even at traumatic levels. ECCO 2 R using a miniaturized system was instituted and provided effective carbon dioxide elimination. This facilitated establishment of lung-protective ventilator settings and lung function recovery. Extracorporeal lung support increasingly is being applied to treat ARDS. However, conventional extracorporeal membrane oxygenation (ECMO) generally involves using large cannulae capable of carrying high flow rates. A subset of patients with ARDS has mixed hypercapnia and hypoxemia despite high-level ventilator support. In the absence of profound hypoxemia, ECCO 2 R may be used to reduce ventilator support requirements to lung-protective levels, while avoiding risks associated with conventional ECMO.

  2. Benefits of Manometer in Non-Invasive Ventilatory Support.

    PubMed

    Lacerda, Rodrigo Silva; de Lima, Fernando Cesar Anastácio; Bastos, Leonardo Pereira; Fardin Vinco, Anderson; Schneider, Felipe Britto Azevedo; Luduvico Coelho, Yves; Fernandes, Heitor Gomes Costa; Bacalhau, João Marcus Ramos; Bermudes, Igor Matheus Simonelli; da Silva, Claudinei Ferreira; da Silva, Luiza Paterlini; Pezato, Rogério

    2017-12-01

    Introduction Effective ventilation during cardiopulmonary resuscitation (CPR) is essential to reduce morbidity and mortality rates in cardiac arrest. Hyperventilation during CPR reduces the efficiency of compressions and coronary perfusion. Problem How could ventilation in CPR be optimized? The objective of this study was to evaluate non-invasive ventilator support using different devices. The study compares the regularity and intensity of non-invasive ventilation during simulated, conventional CPR and ventilatory support using three distinct ventilation devices: a standard manual resuscitator, with and without airway pressure manometer, and an automatic transport ventilator. Student's t-test was used to evaluate statistical differences between groups. P values <.05 were regarded as significant. Peak inspiratory pressure during ventilatory support and CPR was significantly increased in the group with manual resuscitator without manometer when compared with the manual resuscitator with manometer support (MS) group or automatic ventilator (AV) group. The study recommends for ventilatory support the use of a manual resuscitator equipped with MS or AVs, due to the risk of reduction in coronary perfusion pressure and iatrogenic thoracic injury during hyperventilation found using manual resuscitator without manometer. Lacerda RS , de Lima FCA , Bastos LP , Vinco AF , Schneider FBA , Coelho YL , Fernandes HGC , Bacalhau JMR , Bermudes IMS , da Silva CF , da Silva LP , Pezato R . Benefits of manometer in non-invasive ventilatory support. Prehosp Disaster Med. 2017;32(6):615-620.

  3. Low haemoglobin concentration in Tibetan males is associated with greater high-altitude exercise capacity.

    PubMed

    Simonson, T S; Wei, G; Wagner, H E; Wuren, T; Qin, G; Yan, M; Wagner, P D; Ge, R L

    2015-07-15

    Tibetans living at high altitude have adapted genetically such that many display a low erythropoietic response, resulting in near sea-level haemoglobin (Hb) concentration. We hypothesized that absence of the erythropoietic response would be associated with greater exercise capacity compared to those with high [Hb] as a result of beneficial changes in oxygen transport. We measured, in 21 Tibetan males with [Hb] ranging from 15.2 g dl(-1) to 22.9 g dl(-1) (9.4 mmol l(-1) to 14.2 mmol l(-1) ), [Hb], ventilation, volumes of O2 and CO2 utilized at peak exercise (V̇O2 and V̇CO2), heart rate, cardiac output and arterial blood gas variables at peak exercise on a cycle ergometer at ∼4200 m. Lung and muscle O2 diffusional conductances were computed from these measurements. [Hb] was related (negatively) to V̇O2 kg(-1) (r = -0.45, P< 0.05), cardiac output kg(-1) (QT kg(-1) , r = -0.54, P < 0.02), and O2 diffusion capacity in muscle (DM kg(-1) , r = -0.44, P<0.05), but was unrelated to ventilation, arterial partial pressure of O2 (PaO2) or pulmonary diffusing capacity. Using multiple linear regression, variance in peak V̇O2 kg(-1) was primarily attributed to QT, DM, and PCO2 (R(2) = 0.88). However, variance in pulmonary gas exchange played essentially no role in determining peak V̇O2. These results (1) show higher exercise capacity in Tibetans without the erythropoietic response, supported mostly by cardiac and muscle O2 transport capacity and ventilation rather than pulmonary adaptations, and (2) support the emerging hypothesis that the polycythaemia of altitude, normally a beneficial response to low cellular PO2, may become maladaptive if excessively elevated under chronic hypoxia. The cause and effect relationships among [Hb], QT, DM, and PCO2 remain to be elucidated. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  4. Investigating the adaptive model of thermal comfort for naturally ventilated school buildings in Taiwan.

    PubMed

    Hwang, Ruey-Lung; Lin, Tzu-Ping; Chen, Chen-Peng; Kuo, Nai-Jung

    2009-03-01

    Divergence in the acceptability to people in different regions of naturally ventilated thermal environments raises a concern over the extent to which the ASHRAE Standard 55 may be applied as a universal criterion of thermal comfort. In this study, the ASHRAE 55 adaptive model of thermal comfort was investigated for its applicability to a hot and humid climate through a long-term field survey performed in central Taiwan among local students attending 14 elementary and high schools during September to January. Adaptive behaviors, thermal neutrality, and thermal comfort zones are explored. A probit analysis of thermal acceptability responses from students was performed in place of the conventional linear regression of thermal sensation votes against operative temperature to investigate the limits of comfort zones for 90% and 80% acceptability; the corresponding comfort zones were found to occur at 20.1-28.4 degrees C and 17.6-30.0 degrees C, respectively. In comparison with the yearly comfort zones recommended by the adaptive model for naturally ventilated spaces in the ASHRAE Standard 55, those observed in this study differ in the lower limit for 80% acceptability, with the observed level being 1.7 degrees C lower than the ASHRAE-recommended value. These findings can be generalized to the population of school children, thus providing information that can supplement ASHRAE Standard 55 in evaluating the thermal performance of naturally ventilated school buildings, particularly in hot-humid areas such as Taiwan.

  5. Investigating the adaptive model of thermal comfort for naturally ventilated school buildings in Taiwan

    NASA Astrophysics Data System (ADS)

    Hwang, Ruey-Lung; Lin, Tzu-Ping; Chen, Chen-Peng; Kuo, Nai-Jung

    2009-03-01

    Divergence in the acceptability to people in different regions of naturally ventilated thermal environments raises a concern over the extent to which the ASHRAE Standard 55 may be applied as a universal criterion of thermal comfort. In this study, the ASHRAE 55 adaptive model of thermal comfort was investigated for its applicability to a hot and humid climate through a long-term field survey performed in central Taiwan among local students attending 14 elementary and high schools during September to January. Adaptive behaviors, thermal neutrality, and thermal comfort zones are explored. A probit analysis of thermal acceptability responses from students was performed in place of the conventional linear regression of thermal sensation votes against operative temperature to investigate the limits of comfort zones for 90% and 80% acceptability; the corresponding comfort zones were found to occur at 20.1-28.4°C and 17.6-30.0°C, respectively. In comparison with the yearly comfort zones recommended by the adaptive model for naturally ventilated spaces in the ASHRAE Standard 55, those observed in this study differ in the lower limit for 80% acceptability, with the observed level being 1.7°C lower than the ASHRAE-recommended value. These findings can be generalized to the population of school children, thus providing information that can supplement ASHRAE Standard 55 in evaluating the thermal performance of naturally ventilated school buildings, particularly in hot-humid areas such as Taiwan.

  6. Extracorporeal respiratory support in adult patients

    PubMed Central

    Romano, Thiago Gomes; Mendes, Pedro Vitale; Park, Marcelo; Costa, Eduardo Leite Vieira

    2017-01-01

    ABSTRACT In patients with severe respiratory failure, either hypoxemic or hypercapnic, life support with mechanical ventilation alone can be insufficient to meet their needs, especially if one tries to avoid ventilator settings that can cause injury to the lungs. In those patients, extracorporeal membrane oxygenation (ECMO), which is also very effective in removing carbon dioxide from the blood, can provide life support, allowing the application of protective lung ventilation. In this review article, we aim to explore some of the most relevant aspects of using ECMO for respiratory support. We discuss the history of respiratory support using ECMO in adults, as well as the clinical evidence; costs; indications; installation of the equipment; ventilator settings; daily care of the patient and the system; common troubleshooting; weaning; and discontinuation. PMID:28380189

  7. High-Frequency Percussive Ventilation: Pneumotachograph Validation and Tidal Volume Analysis

    DTIC Science & Technology

    2010-06-01

    protocol, preliminary experience has shown that the flow sensor is amenable to near-automated “plug-and- play ” adaptability, permitting clinicians the...400. 6. Velmahos GC, Chan LS, Tatevossian R, Cornwell EE 3rd, Dough - erty WR, Escudero J, Demetriades D. High-frequency percussive ventilation

  8. Mechanical ventilation during extracorporeal membrane oxygenation.

    PubMed

    Schmidt, Matthieu; Pellegrino, Vincent; Combes, Alain; Scheinkestel, Carlos; Cooper, D Jamie; Hodgson, Carol

    2014-01-21

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes.

  9. Mechanical ventilation during extracorporeal membrane oxygenation

    PubMed Central

    2014-01-01

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes. PMID:24447458

  10. Translation and cultural adaptation of the Brazilian Portuguese version of the Behavioral Pain Scale.

    PubMed

    Morete, Márcia Carla; Mofatto, Sarah Camargo; Pereira, Camila Alves; Silva, Ana Paula; Odierna, Maria Tereza

    2014-01-01

    The objective of this study was to translate and culturally adapt the Behavioral Pain Scale to Brazilian Portuguese and to evaluate the psychometric properties of this scale. This study was conducted in two phases: the Behavioral Pain Scale was translated and culturally adapted to Brazilian Portuguese and the psychometric properties of this scale were subsequently assessed (reliability and clinical utility). The study sample consisted of 100 patients who were older than 18 years of age, admitted to an intensive care unit, intubated, mechanically ventilated, and subjected or not to sedation and analgesia from July 2012 to December 2012. Pediatric and non-intubated patients were excluded. The study was conducted at a large private hospital that was situated in the city of São Paulo (SP). Regarding reproducibility, the results revealed that the observed agreement between the two evaluators was 92.08% for the pain descriptor "adaptation to mechanical ventilation", 88.1% for "upper limbs", and 90.1% for "facial expression". The kappa coefficient of agreement for "adaptation to mechanical ventilation" assumed a value of 0.740. Good agreement was observed between the evaluators with an intraclass correlation coefficient of 0.807 (95% confidence interval: 0.727-0.866). The Behavioral Pain Scale was easy to administer and reproduce. Additionally, this scale had adequate internal consistency. The Behavioral Pain Scale was satisfactorily adapted to Brazilian Portuguese for the assessment of pain in critically ill patients.

  11. SU-G-BRA-16: Target Dose Comparison for Dynamic MLC Tracking and Mid- Ventilation Planning in Lung Radiotherapy Subject to Intrafractional Baseline Drifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menten, MJ; Fast, MF; Nill, S

    Purpose: Lung tumor motion during radiotherapy can be accounted for by expanded treatment margins, for example using a mid-ventilation planning approach, or by localizing the tumor in real-time and adapting the treatment beam with multileaf collimator (MLC) tracking. This study evaluates the effect of intrafractional changes in the average tumor position (baseline drifts) on these two treatment techniques. Methods: Lung stereotactic treatment plans (9-beam IMRT, 54Gy/3 fractions, mean treatment time: 9.63min) were generated for three patients: either for delivery with MLC tracking (isotropic GTV-to-PTV margin: 2.6mm) or planned with a mid-ventilation approach and delivered without online motion compensation (GTV-to-PTV margin:more » 4.4-6.3mm). Delivery to a breathing patient was simulated using DynaTrack, our in-house tracking and delivery software. Baseline drifts in cranial and posterior direction were simulated at a rate of 0.5, 1.0 or 1.5mm/min. For dose reconstruction, the corresponding 4DCT phase was selected for each time point of the delivery. Baseline drifts were accounted for by rigidly shifting the CT to ensure correct relative beam-to-target positioning. Afterwards, the doses delivered to each 4DCT phase were accumulated deformably on the mid-ventilation phase using research RayStation v4.6 and dose coverage of the GTV was evaluated. Results: When using the mid-ventilation planning approach, dose coverage of the tumor deteriorated substantially in the presence of baseline drifts. The reduction in D98% coverage of the GTV in a single fraction ranged from 0.4-1.2, 0.6-3.3 and 4.5-6.2Gy, respectively, for the different drift rates. With MLC tracking the GTV D98% coverage remained unchanged (+/− 0.1Gy) regardless of drift. Conclusion: Intrafractional baseline drifts reduce the tumor dose in treatments based on mid-ventilation planning. In rare, large target baseline drifts tumor dose coverage may drop below the prescription, potentially affecting clinical outcome in hypofractionated treatment protocols. Dynamic MLC tracking preserves tumor dose coverage even in the presence of extreme baseline drifts. We acknowledge financial and technical support of the MLC tracking research from Elekta AB. Research at ICR is supported by CRUK under Programme C33589/A19727 and NHS funding to the NIHR Biomedical Research Centre at RMH and ICR. MFF is supported by CRUK under Programme C33589/A19908.« less

  12. Effect of Ventilation Support on Oxidative Stress and Ischemia-Modified Albumin in Neonates.

    PubMed

    Dursun, Arzu; Okumuş, Nurullah; Erol, Sara; Bayrak, Tülin; Zenciroğlu, Ayşegül

    2016-01-01

    Mechanical ventilation (MV) can induce oxidative stress, which plays a critical role in pulmonary injury in intubated neonates. Ischemia-modified albumin (IMA)-a variant of human serum albumin-is a novel biomarker of myocardial ischemia that occurs due to reactive oxygen species during ischemic insult. This study aimed to investigate IMA production due to oxidative stress induced during MV in neonates. This study included 17 neonates that were ventilated using synchronized intermittent mechanical ventilation (SIMV; SIMV group) and 20 neonates ventilated using continuous positive airway pressure (CPAP; CPAP group). Blood samples were collected from each neonate during ventilation support and following cessation of ventilation support. Total antioxidant capacity (TAC) and total oxidant status (TOS) were measured using the Erel method. IMA was measured via an enzyme-linked immunosorbent assay kit (Cusabio Biotech Co., Ltd., Wuhan, China). The oxidant stress index (OSI) was calculated as OSI = TOS/TAC. Statistical analysis was performed using SPSS v.18.0 (SPSS Inc., Chicago, IL) for Windows. Among the neonates included in the study, mean gestational age was 34.7 ± 3.8 weeks, mean birth weight was 2,553 ± 904 g, and 54% were premature. There were not any significant differences in mean gestational age or birth weight between the SIMV and CPAP groups. Among the neonates in both the groups, mean IMA, TOS, and OSI levels were significantly higher during ventilation support (102.2 ± 9.3 IU mL(-1), 15.5 ± 1.3 µmol H2O2 equivalent L(-1), and 0.85 ± 0.22 arbitrary units [ABU], respectively), as compared with following cessation of ventilation support (82.9 ± 11.9 IU mL(-1), 13.4 ± 1.3 µmol H2O2 equivalent L(-1), and 0.64 ± 0.14 ABU, respectively) (p = 0.001). Among all the neonates in the study, mean TAC was significantly lower during ventilation support than the postventilation support (1.82 ± 0.28 mmol 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid [Trolox] equivalent L(-1) vs. 2.16 ± 0.31 mmol Trolox equivalent L(-1)) (p = 0.001). There were no significant differences in mean TAC, OSI, or IMA levels between the SIMV and CPAP groups. The mean TOS level during ventilation support and the mean difference in TOS between during and postventilation support was significantly greater in the CPAP group than in the SIMV group. There were no significant relationships between the mean TOS, TAC, OSI, or IMA levels, and gestational age of the neonates. SIMV and CPAP activated the oxidative stress and increased the IMA level in neonates; therefore, measurement of IMA and oxidant markers may be useful in the follow-up of lung injury in neonates due to ventilation support. Additional prospective studies are needed to compare the effects of various ventilation methods on oxidative stress and the IMA level in neonates. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Technology for noninvasive mechanical ventilation: looking into the black box

    PubMed Central

    Navajas, Daniel; Montserrat, Josep M.

    2016-01-01

    Current devices for providing noninvasive respiratory support contain sensors and built-in intelligence for automatically modifying ventilation according to the patient's needs. These devices, including automatic continuous positive airway pressure devices and noninvasive ventilators, are technologically complex and offer a considerable number of different modes of ventilation and setting options, the details of which are sometimes difficult to capture by the user. Therefore, better predicting and interpreting the actual performance of these ventilation devices in clinical application requires understanding their functioning principles and assessing their performance under well controlled bench test conditions with simulated patients. This concise review presents an updated perspective of the theoretical basis of intelligent continuous positive airway pressure and noninvasive ventilation devices, and of the tools available for assessing how these devices respond under specific ventilation phenotypes in patients requiring breathing support. PMID:27730162

  14. Conservative fluid management prevents age-associated ventilator induced mortality.

    PubMed

    Herbert, Joseph A; Valentine, Michael S; Saravanan, Nivi; Schneck, Matthew B; Pidaparti, Ramana; Fowler, Alpha A; Reynolds, Angela M; Heise, Rebecca L

    2016-08-01

    Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hospital mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. 2month old and 20month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4h with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. At 4h, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1h in advanced age HVT subjects. In 4h ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in older subjects. Our study demonstrates that conservative fluid alone can attenuate the age associated increase in ventilator associated mortality. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Conservative Fluid Management Prevents Age-Associated Ventilator Induced Mortality

    PubMed Central

    Herbert, Joseph A.; Valentine, Michael S.; Saravanan, Nivi; Schneck, Matthew B.; Pidaparti, Ramana; Fowler, Alpha A.; Reynolds, Angela M.; Heise, Rebecca L.

    2017-01-01

    Background Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hosptial mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. Methods 2 month old and 20 month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4 hours with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. Results At 4hrs, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1hr in advanced age HVT subjects. In 4hr ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in older subjects. Conclusion Our study demonstrates that conservative fluid alone can attenuate the age associated increase in ventilator associated mortality. PMID:27188767

  16. Variability of Tidal Volume in Patient-Triggered Mechanical Ventilation in ARDS.

    PubMed

    Perinel-Ragey, Sophie; Baboi, Loredana; Guérin, Claude

    2017-11-01

    Limiting tidal volume (V T ) in patients with ARDS may not be achieved once patient-triggered breaths occur. Furthermore, ICU ventilators offer numerous patient-triggered modes that work differently across brands. We systematically investigated, using a bench model, the effect of patient-triggered modes on the size and variability of V T at different breathing frequencies (f), patient effort, and ARDS severity. We used a V500 Infinity ICU ventilator connected to an ASL 5000 lung model whose compliance was mimicking mild, moderate, and severe ARDS. Thirteen patient-triggered modes were tested, falling into 3 categories, namely volume control ventilation with mandatory minute ventilation; pressure control ventilation, including airway pressure release ventilation (APRV); and pressure support ventilation. Two levels of f and effort were tested for each ARDS severity in each mode. Median (first-third quartiles) V T was compared across modes using non-parametric tests. The probability of V T > 6 mL/kg ideal body weight was assessed by binomial regression and expressed as the odds ratio (OR) with 95% CI. V T variability was measured from the coefficient of variation. V T distribution over all f, effort, and ARDS categories significantly differed across modes ( P < .001, Kruskal-Wallis test). V T was significantly greater with pressure support (OR 420 mL, 95% CI 332-527 mL) than with any other mode except for variable pressure support level. Risk for V T to be > 6 mL/kg was significantly increased with spontaneous breaths patient-triggered by pressure support (OR 19.36, 95% CI 12.37-30.65) and significantly reduced in APRV (OR 0.44, 95% CI 0.26-0.72) and pressure support with guaranteed volume mode. The risk increased with increasing effort and decreasing f. Coefficient of variation of V T was greater for low f and volume control-mandatory minute ventilation and pressure control modes. APRV had the greatest within-mode variability. Risk of V T > 6 mL/kg was significantly reduced in APRV and pressure support with guaranteed volume mode. APRV had the highest variability. Pressure support with guaranteed volume could be tested in patients with ARDS. Copyright © 2017 by Daedalus Enterprises.

  17. Treatment of Highly Virulent Extraintestinal Pathogenic Escherichia coli Pneumonia With Bacteriophages.

    PubMed

    Dufour, Nicolas; Debarbieux, Laurent; Fromentin, Mélanie; Ricard, Jean-Damien

    2015-06-01

    To study the effect of bacteriophage treatment on highly virulent extraintestinal Escherichia coli pneumonia in mice and compare it with conventional antimicrobial treatment. Animal investigation. University research laboratory. Pathogen-free 8-week-old Balb/cJRj male mice. Two bacteriophages (536_P1 and 536_P7) were isolated from sewage using strain 536, a highly virulent extraintestinal E. coli. Their in vitro and in vivo efficacy against strain 536 and a ventilator-associated pneumonia E. coli were tested. The first group of mice were infected by intranasal instillation of bioluminescent strain 536 and received 536_P1 intranasally, ceftriaxone, or control. The second group of mice was infected with the ventilator-associated pneumonia strain and received 536_P7. Adaptation of 536_P7 to this clinical isolate was also evaluated in vitro and in vivo. In vivo efficacy of bacteriophage and antibiotic treatment were assessed by recording bioluminescence for short-time periods and by recording body weight and survival of mice for longer periods. Both treatments improved survival compared with control (100% vs 0%), and in vivo bioluminescence recordings showed a similar rapid decrease of emitted light, suggesting prompt bacterial clearance. The majority of mice infected by the ventilator-associated pneumonia strain were not rescued by treatment with 536_P7; however, in vitro adaptation of this bacteriophage toward the ventilator-associated pneumonia strain led to isolate a variant which significantly improved in vivo treatment efficacy (animal survival increased from 20% to 75%). Bacteriophage treatment was as effective as antibiotherapy to provide 100% survival rate in a lethal model of highly virulent E. coli pneumonia. Adaptation of a bacteriophage is a rapid solution to improve its efficacy toward specific strains. These results suggest that phage therapy could be a promising therapeutic strategy for ventilator-associated pneumonia.

  18. 21 CFR 868.5935 - External negative pressure ventilator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ventilator. (a) Identification. An external negative pressure ventilator (e.g., iron lung, cuirass) is a device chamber that is intended to support a patient's ventilation by alternately applying and releasing external negative pressure over the diaphragm and upper trunk of the patient. (b) Classification. Class II...

  19. A historical perspective on ventilator management.

    PubMed

    Shapiro, B A

    1994-02-01

    Paralysis via neuromuscular blockade in ICU patients requires mechanical ventilation. This review historically addresses the technological advances and scientific information upon which ventilatory management concepts are based, with special emphasis on the influence such concepts have had on the use of neuromuscular blocking agents. Specific reference is made to the scientific information and technological advances leading to the newer concepts of ventilatory management. Information from > 100 major studies in the peer-reviewed medical literature, along with the author's 25 yrs of clinical experience and academic involvement in acute respiratory care is presented. Nomenclature related to ventilatory management is specifically defined and consistently utilized to present and interpret the data. Pre-1970 ventilatory management is traced from the clinically unacceptable pressure-limited devices to the reliable performance of volume-limited ventilators. The scientific data and rationale that led to the concept of relatively large tidal volume delivery are reviewed in the light of today's concerns regarding alveolar overdistention, control-mode dyssynchrony, and auto-positive end-expiratory pressure. Also presented are the post-1970 scientific rationales for continuous positive airway pressure/positive end-expiratory pressure therapy, avoidance of alveolar hyperxia, and partial ventilatory support techniques (intermittent mandatory ventilation/synchronized intermittent mandatory ventilation). The development of pressure-support devices is discussed and the capability of pressure-control techniques is presented. The rationale for more recent concepts of total ventilatory support to avoid ventilator-induced lung injury is presented. The traditional techniques utilizing volume-preset ventilators with relatively large tidal volumes remain valid and desirable for the vast majority of patients requiring mechanical ventilation. Neuromuscular blockade is best avoided in these patients. However, adequate analgesia, amnesia, and sedation are required. For patients with severe lung disease, alveolar overdistention and hyperoxia should be avoided and may be best accomplished by total ventilatory support techniques, such as pressure control. Total ventilatory support requires neuromuscular blockade and may not provide eucapnic ventilation.

  20. Bacterial burden in the operating room: impact of airflow systems.

    PubMed

    Hirsch, Tobias; Hubert, Helmine; Fischer, Sebastian; Lahmer, Armin; Lehnhardt, Marcus; Steinau, Hans-Ulrich; Steinstraesser, Lars; Seipp, Hans-Martin

    2012-09-01

    Wound infections present one of the most prevalent and frequent complications associated with surgical procedures. This study analyzes the impact of currently used ventilation systems in the operating room to reduce bacterial contamination during surgical procedures. Four ventilation systems (window-based ventilation, supported air nozzle canopy, low-turbulence displacement airflow, and low-turbulence displacement airflow with flow stabilizer) were analyzed. Two hundred seventy-seven surgical procedures in 6 operating rooms of 5 different hospitals were analyzed for this study. Window-based ventilation showed the highest intraoperative contamination (13.3 colony-forming units [CFU]/h) followed by supported air nozzle canopy (6.4 CFU/h; P = .001 vs window-based ventilation) and low-turbulence displacement airflow (3.4 and 0.8 CFU/h; P < .001 vs window-based ventilation and supported air nozzle canopy). The highest protection was provided by the low-turbulence displacement airflow with flow stabilizer (0.7 CFU/h), which showed a highly significant difference compared with the best supported air nozzle canopy theatre (3.9 CFU/h; P < .001). Furthermore, this system showed no increase of contamination in prolonged durations of surgical procedures. This study shows that intraoperative contamination can be significantly reduced by the use of adequate ventilation systems. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  1. Effects of heat and moisture exchangers on minute ventilation, ventilatory drive, and work of breathing during pressure-support ventilation in acute respiratory failure.

    PubMed

    Pelosi, P; Solca, M; Ravagnan, I; Tubiolo, D; Ferrario, L; Gattinoni, L

    1996-07-01

    To evaluate the effect of two commonly used heat and moisture exchangers on respiratory function and gas exchange in patients with acute respiratory failure during pressure-support ventilation. Prospective, randomized trial. Intensive care unit of a university hospital. Fourteen patients with moderate acute respiratory failure, receiving pressure-support ventilation. Patients were assigned randomly to two treatment groups, in which two different heat and moisture exchangers were used: Hygroster (DAR S.p.A., Mirandola, Italy) with higher deadspace and lower resistance (group 1, n = 7), and Hygrobac-S (DAR S.p.A.) with lower deadspace and higher resistance (group 2, n = 7). Patients were assessed at three pressure-support levels: a) baseline (10.3 +/- 2.4 cm H2O for group 1, 9.3 +/- 1.3 cm H2O for group 2); b) 5 cm H2O above baseline; and c) 5 cm H2O below baseline. Measurements obtained with the heat and moisture exchangers were compared with those values obtained using the standard heated hot water humidifier. At baseline pressure-support ventilation, the insertion of both heat and moisture exchangers induced in all patients a significant increase in the following parameters: minute ventilation (12.4 +/- 3.2 to 15.0 +/- 2.6 L/min for group 1, and 11.8 +/- 3.6 to 14.2 +/- 3.5 L/min for group 2); static intrinsic positive end-expiratory pressure (2.9 +/- 2.0 to 5.1 +/- 3.2 cm H2O for group 1, and 2.9 +/- 1.7 to 5.5 +/- 3.0 cm H2O for group 2); ventilatory drive, expressed as P41 (2.7 +/- 2.0 to 5.2 +/- 4.0 cm H2O for group 1, and 3.3 +/- 2.0 to 5.3 +/- 3.0 cm H2O for group 2); and work of breathing, expressed as either power (8.8 +/- 9.4 to 14.5 +/- 10.3 joule/ min for group 1, and 10.5 +/- 7.4 to 16.6 +/- 11.0 joule/min for group 2) or work per liter of ventilation (0.6 +/- 0.6 to 1.0 +/- 0.7 joule/L for group 1, and 0.8 +/- 0.4 to 1.1 +/- 0.5 joule/L. for group 2). These increases also occurred when pressure-support ventilation was both above and below the baseline level, although at high pressure support the increase in work of breathing with heat and moisture exchangers was less evident. Gas exchange was unaffected by heat and moisture exchangers, as minute ventilation increased to compensate for the higher deadspace produced in the circuit by the insertion of heat and moisture exchangers. The tested heat and moisture exchangers should be used carefully in patients with acute respiratory failure during pressure-support ventilation, since these devices substantially increase minute ventilation, ventilatory drive, and work of breathing. However, an increase in pressure-support ventilation (5 to 10 cm H2O) may compensate for the increased work of breathing.

  2. Mechanical Ventilation: State of the Art.

    PubMed

    Pham, Tài; Brochard, Laurent J; Slutsky, Arthur S

    2017-09-01

    Mechanical ventilation is the most used short-term life support technique worldwide and is applied daily for a diverse spectrum of indications, from scheduled surgical procedures to acute organ failure. This state-of-the-art review provides an update on the basic physiology of respiratory mechanics, the working principles, and the main ventilatory settings, as well as the potential complications of mechanical ventilation. Specific ventilatory approaches in particular situations such as acute respiratory distress syndrome and chronic obstructive pulmonary disease are detailed along with protective ventilation in patients with normal lungs. We also highlight recent data on patient-ventilator dyssynchrony, humidified high-flow oxygen through nasal cannula, extracorporeal life support, and the weaning phase. Finally, we discuss the future of mechanical ventilation, addressing avenues for improvement. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  3. [Implementation of modern trends in the methods of the ventilation support in the new apparatus for artificial lung ventilation Avenir-221 P].

    PubMed

    Gal'perin, Iu Sh; Alkhimova, L R; Dmitriev, N D; Kozlova, I A; Nemirovskiĭ, S B; Makarov, M V; Safronov, A Iu

    2005-01-01

    In the new ventilator Avenir-221 P modern lines of development of ventilation support in intensive therapy of adults and children are implemented. The capacities of the ventilator are successfully combined with its technical decisions which include microprocessor parametrical controlling, programming-controlled electric drive, an information saturation, intuitively clear control system, protection against interruption of power supply sources and oxygen feeding falls. A set of functional characteristics (modes VCV, PCV, Ass/Contr, PSV, SIMV, PEEP, Sigh, etc.) in combination with an original design make the device the most accessible and promising for application in intensive care and resuscitation units of a wide network of Russian hospitals and clinics. The ventilator Avenir-221 P has passed all required tests and is presently commercially available.

  4. Heating and Ventilating II, 11-3. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Army Engineer School, Fort Belvoir, VA.

    This second course in a four-course series on heating and ventilating for the secondary/postsecondary level is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The five lessons in the course cover these topics: (1) Principles of Heating,…

  5. Heating and Ventilating IV, 11-5. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Army Engineer School, Fort Belvoir, VA.

    This fourth course in a four-course series on heating and ventilating for the secondary/postsecondary level is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The four lessons in the course cover these topics: (1) Feed-Water, Condensate,…

  6. Heating and Ventilating III, 11-4. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Army Engineer School, Fort Belvoir, VA.

    This third course in a four-course series on heating and ventilating for the secondary/postsecondary level is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The three lessons in the course cover these topics: (1) Warm-Air Heating, (2)…

  7. Parametric instabilities of rotor-support systems with application to industrial ventilators

    NASA Technical Reports Server (NTRS)

    Parszewski, Z.; Krodkiemski, T.; Marynowski, K.

    1980-01-01

    Rotor support systems interaction with parametric excitation is considered for both unequal principal shaft stiffness (generators) and offset disc rotors (ventilators). Instability regions and types of instability are computed in the first case, and parametric resonances in the second case. Computed and experimental results are compared for laboratory machine models. A field case study of parametric vibrations in industrial ventilators is reported. Computed parametric resonances are confirmed in field measurements, and some industrial failures are explained. Also the dynamic influence and gyroscopic effect of supporting structures are shown and computed.

  8. Convexity, Jensen's inequality, and benefits of noisy or biologically variable life support (Keynote Address)

    NASA Astrophysics Data System (ADS)

    Mutch, W. Alan C.

    2005-05-01

    Life support with a mechanical ventilator is used to manage patients with a variety of lung diseases including acute respiratory distress syndrome (ARDS). Recently, management of ARDS has concentrated on ventilating at lower airway pressure using lower tidal volume. A large international study demonstrated a 22% reduction in mortality with the low tidal volume approach. The potential advantages of adding physiologic noise with fractal characteristics to the respiratory rate and tidal volume as delivered by a mechanical ventilator are discussed. A so-called biologically variable ventilator (BVV), incorporating such noise, has been developed. Here we show that the benefits of noisy ventilation - at lower tidal volumes - can be deduced from a simple probabilistic result known as Jensen"s Inequality. Using the local convexity of the pressure-volume relationship in the lung we demonstrate that the addition of noise results in higher mean tidal volume or lower mean airway pressure. The consequence is enhanced gas exchange or less stress on the lungs, both clinically desirable. Jensen"s Inequality has important considerations in engineering, information theory and thermodynamics. Here is an example of the concept applied to medicine that may have important considerations for the clinical management of critically ill patients. Life support devices, such as mechanical ventilators, are of vital use in critical care units and operating rooms. These devices usually have monotonous output. Improving mechanical ventilators and other life support devices may be as simple as adding noise to their output signals.

  9. State of the Art: Neonatal Non-invasive Respiratory Support: Physiological Implications

    PubMed Central

    Shaffer, Thomas H.; Alapati, Deepthi; Greenspan, Jay S.; Wolfson, Marla R.

    2013-01-01

    Summary The introduction of assisted ventilation for neonatal pulmonary insufficiency has resulted in the successful treatment of many previously fatal diseases. During the past three decades, refinement of invasive mechanical ventilation techniques has dramatically improved survival of many high-risk neonates. However, as with many advances in medicine, while mortality has been reduced, morbidity has increased in the surviving high-risk neonate. In this regard, introduction of assisted ventilation has been associated with chronic lung injury, also known as bronchopulmonary dysplasia. This disease, unknown prior to the appearance of mechanical ventilation, has produced a population of patients characterized by ventilator or oxygen dependence with serious accompanying pulmonary and neurodevelopmental morbidity. The purpose of this article is to review non-invasive respiratory support methodologies to address the physiologic mechanisms by which these methods may prevent the pathophysiologic effects of invasive mechanical ventilation. PMID:22777738

  10. Tracheostomy and mechanical ventilation weaning in children affected by respiratory virus according to a weaning protocol in a pediatric intensive care unit in Argentina: an observational restrospective trial

    PubMed Central

    2011-01-01

    We describe difficult weaning after prolonged mechanical ventilation in three tracheostomized children affected by respiratory virus infection. Although the spontaneous breathing trials were successful, the patients failed all extubations. Therefore a tracheostomy was performed and the weaning plan was begun. The strategy for weaning was the decrease of ventilation support combining pressure control ventilation (PCV) with increasing periods of continuous positive airway pressure + pressure support ventilation (CPAP + PSV) and then CPAP + PSV with increasing intervals of T-piece. They presented acute respiratory distress syndrome on admission with high requirements of mechanical ventilation (MV). Intervening factors in the capabilities and loads of the respiratory system were considered and optimized. The average MV time was 69 days and weaning time 31 days. We report satisfactory results within the context of a directed weaning protocol. PMID:21244710

  11. The comfort of breathing: a study with volunteers assessing the influence of various modes of assisted ventilation.

    PubMed

    Russell, W C; Greer, J R

    2000-11-01

    To assess the subjective feeling of comfort of healthy volunteers breathing on various modes of ventilation used in intensive care. A randomized, prospective, double-blinded, crossover trial using volunteers. An intensive care unit (ICU) in a teaching hospital. We compared, by using healthy volunteers, the subjective feeling of comfort of three modes of ventilation used during the weaning phase of critical illness. We used healthy volunteers to avoid other distracting influences of intensive care that may confound the primary feeling of comfort. The modes we compared were synchronized intermittent mandatory ventilation, assisted spontaneous breathing, and biphasic positive airway pressure. The imposed ventilation was comparable with 50% of the volunteers' normal respiratory effort. The volunteers breathed via a mouthpiece through a ventilator circuit, and the modes of ventilation were introduced in a randomized manner. We measured visual analog scores for comfort for the three modes of ventilation and collected a ranking order and open-ended comments. We demonstrated that at the level of support we imposed, assisted spontaneous breathing was the most comfortable mode of ventilation and that synchronized intermittent mandatory ventilation was the most uncomfortable. These results were strongly supported by both the ranking scale and comments of the volunteers. Assisted spontaneous breathing was the most comfortable mode of ventilation because the pattern was primarily determined by the volunteer. Synchronized intermittent mandatory ventilation was the most uncomfortable because the ventilatory pattern was imposed on the volunteers, leading to ventilator-volunteer dyssynchrony. We also conclude there is wide individual variation in the subjective feeling of comfort. Whereas the mode of ventilation in ICUs is based primarily on the physiologic needs of the patient, the feeling of comfort may be considered when choosing an appropriate mode of ventilation during the weaning phase of critical illness.

  12. Mechanical ventilation during extracorporeal membrane oxygenation. An international survey.

    PubMed

    Marhong, Jonathan D; Telesnicki, Teagan; Munshi, Laveena; Del Sorbo, Lorenzo; Detsky, Michael; Fan, Eddy

    2014-07-01

    In patients with severe, acute respiratory failure undergoing venovenous extracorporeal membrane oxygenation (VV-ECMO), the optimal strategy for mechanical ventilation is unclear. Our objective was to describe ventilation practices used in centers registered with the Extracorporeal Life Support Organization (ELSO). We conducted an international cross-sectional survey of medical directors and ECMO program coordinators from all ELSO-registered centers. The survey was distributed using a commercial website that collected information on center characteristics, the presence of a mechanical ventilator protocol, ventilator settings, and weaning practices. E-mails were sent out to medical directors or coordinators at each ELSO center and their responses were pooled for analysis. We analyzed 141 (50%) individual responses from the 283 centers contacted across 28 countries. Only 27% of centers reported having an explicit mechanical ventilation protocol for ECMO patients. The majority of these centers (77%) reported "lung rest" to be the primary goal of mechanical ventilation, whereas 9% reported "lung recruitment" to be their ventilation strategy. A tidal volume of 6 ml/kg or less was targeted by 76% of respondents, and 58% targeted a positive end-expiratory pressure of 6-10 cm H2O while ventilating patients on VV-ECMO. Centers prioritized weaning VV-ECMO before mechanical ventilation. Although ventilation practices in patients supported by VV-ECMO vary across ELSO centers internationally, the majority of centers used a strategy that targeted lung-protective thresholds and prioritized weaning VV-ECMO over mechanical ventilation.

  13. Daytime Mouthpiece for Continuous Noninvasive Ventilation in Individuals With Amyotrophic Lateral Sclerosis.

    PubMed

    Bédard, Marie-Eve; McKim, Douglas A

    2016-10-01

    Noninvasive ventilation (NIV) is commonly used to provide ventilatory support for individuals with amyotrophic lateral sclerosis (ALS). Once 24-h ventilation is required, the decision between invasive tracheostomy ventilation and palliation is often faced. This study describes the use and outcomes of daytime mouthpiece ventilation added to nighttime mask ventilation for continuous NIV in subjects with ALS as an effective alternative. This was a retrospective study of 39 subjects with ALS using daytime mouthpiece ventilation over a 17-y period. Thirty-one subjects were successful with mouthpiece ventilation, 2 were excluded, 2 stopped because of lack of motivation, and 4 with bulbar subscores of the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (b-ALSFRS-R) between 0 and 3 physically failed to use it consistently. No subject in the successful group had a b-ALSFRS-R score of <6. Thirty of the successful subjects were able to generate a maximum insufflation capacity - vital capacity difference with lung volume recruitment. The median (range) survival to tracheostomy or death from initiation of nocturnal NIV and mouthpiece ventilation were 648 (176-2,188) and 286 (41-1,769) d, respectively. Peak cough flow with lung-volume recruitment >180 L/min at initiation of mouthpiece ventilation was associated with a longer survival (637 ± 468 vs 240 ± 158 d (P = .01). Mouthpiece ventilation provides effective ventilation and prolonged survival for individuals with ALS requiring full-time ventilatory support and maintaining adequate bulbar function. Copyright © 2016 by Daedalus Enterprises.

  14. Household ventilation and tuberculosis transmission in Kampala, Uganda.

    PubMed

    Chamie, G; Wandera, B; Luetkemeyer, A; Bogere, J; Mugerwa, R D; Havlir, D V; Charlebois, E D

    2013-06-01

    To test the feasibility of measuring household ventilation and evaluate whether ventilation is associated with tuberculosis (TB) in household contacts in Kampala, Uganda. Adults with pulmonary TB and their household contacts received home visits to ascertain social and structural household characteristics. Ventilation was measured in air changes per hour (ACH) in each room by raising carbon dioxide (CO₂) levels using dry ice, removing the dry ice, and measuring changes in the natural log of CO₂ (lnCO2) over time. Ventilation was compared in homes with and without co-prevalent TB. Members of 61 of 66 (92%) households approached were enrolled. Households averaged 5.4 residents/home, with a median of one room/home. Twelve homes (20%) reported co-prevalent TB in household contacts. Median ventilation for all rooms was 14 ACH (interquartile range [IQR] 10-18). Median ventilation was 12 vs. 15 ACH in index cases' sleeping rooms in households with vs. those without co-prevalent TB (P = 0.12). Among smear-positive indexes not infected by the human immunodeficiency virus (HIV), median ventilation was 11 vs. 17 ACH in index cases' sleeping rooms in homes with vs. those without co-prevalent TB (P = 0.1). Our findings provide evidence that a simple CO₂ decay method used to measure ventilation in clinical settings can be adapted to homes, adding a novel tool and a neglected variable, ventilation, to the study of household TB transmission.

  15. Mechanical ventilation strategies.

    PubMed

    Keszler, Martin

    2017-08-01

    Although only a small proportion of full term and late preterm infants require invasive respiratory support, they are not immune from ventilator-associated lung injury. The process of lung damage from mechanical ventilation is multifactorial and cannot be linked to any single variable. Atelectrauma and volutrauma have been identified as the most important and potentially preventable elements of lung injury. Respiratory support strategies for full term and late preterm infants have not been as thoroughly studied as those for preterm infants; consequently, a strong evidence base on which to make recommendations is lacking. The choice of modalities of support and ventilation strategies should be guided by the specific underlying pathophysiologic considerations and the ventilatory approach must be individualized for each patient based on the predominant pathophysiology at the time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mental health of mothers caring for ventilator-assisted children at home.

    PubMed

    Kuster, Patricia A; Badr, Lina K

    2006-10-01

    The complex management of ventilator-assisted children cared for in the home can place emotional and mental strain on parents, in particular, mothers. The purpose of this study was to explore the relationships among functional status of the child, impact of ventilator-assistance on the family, coping, social support, and depression in mothers caring for ventilator-assisted children at home. Thirty-eight mothers participated in the study. Almost half of the mothers experienced depressive mood symptoms. Impact on family was positively related to depression and social support was inversely related to depression. In addition, social support was a significant predictor of depression. The findings show that the high demands related to the care of ventilator-assisted children can be a significant risk factor for poor mental health outcomes of those mothers providing care at home. Interventions by mental health and pediatric nurses should focus on enhancing mothers' coping skills and assisting mothers in accessing a positive social network to help mediate the stress related to caring for their child.

  17. Mechanical Ventilation in Acute Hypoxemic Respiratory Failure: A Review of New Strategies for the Practicing Hospitalist

    PubMed Central

    Wilson, Jennifer G.; Matthay, Michael A.

    2014-01-01

    BACKGROUND The goal of mechanical ventilation in acute hypoxemic respiratory failure is to support adequate gas exchange without harming the lungs. How patients are mechanically ventilated can significantly impact their ultimate outcomes. METHODS This review focuses on emerging evidence regarding strategies for mechanical ventilation in patients with acute hypoxemic respiratory failure including: low tidal volume ventilation in the acute respiratory distress syndrome (ARDS), novel ventilator modes as alternatives to low tidal volume ventilation, adjunctive strategies that may enhance recovery in ARDS, the use of lung-protective strategies in patients without ARDS, rescue therapies in refractory hypoxemia, and an evidence-based approach to weaning from mechanical ventilation. RESULTS Once a patient is intubated and mechanically ventilated, low tidal volume ventilation remains the best strategy in ARDS. Adjunctive therapies in ARDS include a conservative fluid management strategy, as well as neuromuscular blockade and prone positioning in moderate-to-severe disease. There is also emerging evidence that a lung-protective strategy may benefit non-ARDS patients. For patients with refractory hypoxemia, extracorporeal membrane oxygenation should be considered. Once the patient demonstrates signs of recovery, the best approach to liberation from mechanical ventilation involves daily spontaneous breathing trials and protocolized assessment of readiness for extubation. CONCLUSIONS Prompt recognition of ARDS and use of lung-protective ventilation, as well as evidence-based adjunctive therapies, remain the cornerstones of caring for patients with acute hypoxemic respiratory failure. In the absence of contraindications, it is reasonable to consider lung-protective ventilation in non-ARDS patients as well, though the evidence supporting this practice is less conclusive. PMID:24733692

  18. The effect of closed system suction on airway pressures when using the Servo 300 ventilator.

    PubMed

    Frengley, R W; Closey, D N; Sleigh, J W; Torrance, J M

    2001-12-01

    To measure airway pressures during closed system suctioning with the ventilator set to three differing modes of ventilation. Closed system suctioning was conducted in 16 patients following cardiac surgery. Suctioning was performed using a 14 French catheter with a vacuum level of -500 cmH2O through an 8.0 mm internal diameter endotracheal tube. The lungs were mechanically ventilated with a Servo 300 ventilator set to one of three ventilation modes: volume-control, pressure-control or CPAP/pressure support. Airway pressures were measured via a 4 French electronic pressure transducer in both proximal and distal airways. Following insertion of the suction catheter, end-expiratory pressure increased significantly (p < 0.001) in both pressure-control and volume-control ventilation. This increase was greatest (p = 0.018) in volume-control mode (2.7 +/- 1.7 cmH2O). On performing a five second suction, airway pressure decreased in all modes, however the lowest airway pressure in volume-control mode (-4.9 +/- 4.0 cmH2O) was significantly (p = 0.001) less than the lowest airway pressure recorded in either pressure-control (0.8 +/- 1.9 cmH2O) or CPAP/pressure support (0.4 +/- 2.8 cmH2O) modes. In CPAP/pressure support mode, 13 of the 16 patients experienced a positive pressure 'breath' at the end of suctioning with airway pressures rising to 21 +/- 1.6 cmH2O. Closed system suctioning in volume control ventilation may result in elevations of end-expiratory pressure following catheter insertion and subatmospheric airway pressures during suctioning. Pressure control ventilation produces less elevation of end-expiratory pressure following catheter insertion and is less likely to be associated with subatmospheric airway pressures during suctioning. CPAP/pressure support has no effect on end-expiratory pressure following catheter insertion and subatmospheric airway pressures are largely avoided during suctioning.

  19. Basic life support trained nurses ventilate more efficiently with laryngeal mask supreme than with facemask or laryngeal tube suction-disposable--a prospective, randomized clinical trial.

    PubMed

    Gruber, Elisabeth; Oberhammer, Rosmarie; Balkenhol, Karla; Strapazzon, Giacomo; Procter, Emily; Brugger, Hermann; Falk, Markus; Paal, Peter

    2014-04-01

    In some emergency situations resuscitation and ventilation may have to be performed by basic life support trained personnel, especially in rural areas where arrival of advanced life support teams can be delayed. The use of advanced airway devices such as endotracheal intubation has been deemphasized for basically-trained personnel, but it is unclear whether supraglottic airway devices are advisable over traditional mask-ventilation. In this prospective, randomized clinical single-centre trial we compared airway management and ventilation performed by nurses using facemask, laryngeal mask Supreme (LMA-S) and laryngeal tube suction-disposable (LTS-D). Basic life support trained nurses (n=20) received one-hour practical training with each device. ASA 1-2 patients scheduled for elective surgery were included (n=150). After induction of anaesthesia and neuromuscular block nurses had two 90-second attempts to manage the airway and ventilate the patient with volume-controlled ventilation. Ventilation failed in 34% of patients with facemask, 2% with LMA-S and 22% with LTS-D (P<0.001). In patients who could be ventilated successfully mean tidal volume was 240±210 ml with facemask, 470±120 ml with LMA-S and 470±140 ml with LTS-D (P<0.001). Leak pressure was lower with LMA-S (23.3±10.8 cm H2O, 95% CI 20.2-26.4) than with LTS-D (28.9±13.9 cm·H2O, 95% CI 24.4-33.4; P=0.047). After one hour of introductory training, nurses were able to use LMA-S more effectively than facemask and LTS-D. High ventilation failure rates with facemask and LTS-D may indicate that additional training is required to perform airway management adequately with these devices. High-level trials are needed to confirm these results in cardiac arrest patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. A Turbine-Driven Ventilator Improves Adherence to Advanced Cardiac Life Support Guidelines During a Cardiopulmonary Resuscitation Simulation.

    PubMed

    Allen, Scott G; Brewer, Lara; Gillis, Erik S; Pace, Nathan L; Sakata, Derek J; Orr, Joseph A

    2017-09-01

    Research has shown that increased breathing frequency during cardiopulmonary resuscitation is inversely correlated with systolic blood pressure. Rescuers often hyperventilate during cardiopulmonary resuscitation (CPR). Current American Heart Association advanced cardiac life support recommends a ventilation rate of 8-10 breaths/min. We hypothesized that a small, turbine-driven ventilator would allow rescuers to adhere more closely to advanced cardiac life support (ACLS) guidelines. Twenty-four ACLS-certified health-care professionals were paired into groups of 2. Each team performed 4 randomized rounds of 2-min cycles of CPR on an intubated mannikin, with individuals altering between compressions and breaths. Two rounds of CPR were performed with a self-inflating bag, and 2 rounds were with the ventilator. The ventilator was set to deliver 8 breaths/min, pressure limit 22 cm H 2 O. Frequency, tidal volume (V T ), peak inspiratory pressure, and compression interruptions (hands-off time) were recorded. Data were analyzed with a linear mixed model and Welch 2-sample t test. The median (interquartile range [IQR]) frequency with the ventilator was 7.98 (7.98-7.99) breaths/min. Median (IQR) frequency with the self-inflating bag was 9.5 (8.2-10.7) breaths/min. Median (IQR) ventilator V T was 0.5 (0.5-0.5) L. Median (IQR) self-inflating bag V T was 0.6 (0.5-0.7) L. Median (IQR) ventilator peak inspiratory pressure was 22 (22-22) cm H 2 O. Median (IQR) self-inflating bag peak inspiratory pressure was 30 (27-35) cm H 2 O. Mean ± SD hands-off times for ventilator and self-inflating bag were 5.25 ± 2.11 and 6.41 ± 1.45 s, respectively. When compared with a ventilator, volunteers ventilated with a self-inflating bag within ACLS guidelines. However, volunteers ventilated with increased variation, at higher V T levels, and at higher peak pressures with the self-inflating bag. Hands-off time was also significantly lower with the ventilator. (ClinicalTrials.gov registration NCT02743299.). Copyright © 2017 by Daedalus Enterprises.

  1. What is the Optimal Strategy for Adaptive Servo-Ventilation Therapy?

    PubMed

    Imamura, Teruhiko; Kinugawa, Koichiro

    2018-05-23

    Clinical advantages in the adaptive servo-ventilation (ASV) therapy have been reported in selected heart failure patients with/without sleep-disorder breathing, whereas multicenter randomized control trials could not demonstrate such advantages. Considering this discrepancy, optimal patient selection and device setting may be a key for the successful ASV therapy. Hemodynamic and echocardiographic parameters indicating pulmonary congestion such as elevated pulmonary capillary wedge pressure were reported as predictors of good response to ASV therapy. Recently, parameters indicating right ventricular dysfunction also have been reported as good predictors. Optimal device setting with appropriate pressure setting during appropriate time may also be a key. Large-scale prospective trial with optimal patient selection and optimal device setting is warranted.

  2. [Management of acute and severe complications in adults with cystic fibrosis].

    PubMed

    Chapron, J; Zuber, B; Kanaan, R; Hubert, D; Desmazes-Dufeu, N; Mira, J-P; Dusser, D; Burgel, P-R

    2011-04-01

    The natural history of cystic fibrosis (CF) may be associated both with acute respiratory complications (respiratory exacerbations, haemoptysis, pneumothorax) and with non-respiratory complications (distal intestinal obstruction syndrome, dehydration) that may result in hospitalizations. The aim of this article is to describe the main therapeutic approaches that are adopted in the management of acute complications occurring in CF adults, and to discuss indications for admission of these patients to intensive care units. Adult CF patients admitted to intensive care unit often benefit from antibiotic courses adapted to their chronic bronchial infection, especially when the hospitalization is related to respiratory disease (including haemoptysis and pneumothorax). Nutritional support, including hypercaloric diet, control of hyperglycemia and pancreatic enzyme supplementation is warranted. The recommended therapy for major haemoptysis is bronchial artery embolization. Patient with significant pneumothorax should have a chest tube inserted, while the treatment of distal intestinal obstruction syndrome will most often be medical. In case of respiratory failure, non-invasive ventilation is the preferred mode of ventilatory support because invasive ventilation is associated with poor outcomes. Therapeutic options should always have been discussed between the patient, family members and the CF medical team to allow for informed decision making. Copyright © 2011 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  3. Effect of varying the pressurisation rate during noninvasive pressure support ventilation.

    PubMed

    Prinianakis, G; Delmastro, M; Carlucci, A; Ceriana, P; Nava, S

    2004-02-01

    The aim of the study was to assess the effects of varying the pressurisation rate during noninvasive pressure support ventilation on patients' breathing pattern, inspiratory effort, arterial blood gases, tolerance to ventilation and amount of air leakage. A total of 15 chronic obstructive pulmonary disease patients recovering from an acute episode of hypercapnic acute respiratory failure were studied during four randomised trials with different levels of pressurisation rate. No significant changes were observed in breathing pattern and arterial blood gases between the different runs. The pressure time product of the diaphragm, an estimate of its metabolic consumption, was significantly lower with all pressurisation rates than with spontaneous breathing, but was significantly lowest with the fastest rate. However, air leak, assessed by the ratio between expired and inspired tidal volumes, increased and the patients' tolerance of ventilation, measured using a standardised scale, was significantly poorer with the fastest pressurisation rate. In chronic obstructive pulmonary disease patients recovering from an episode of acute hypercapnic respiratory failure and ventilated with noninvasive pressure support ventilation, different pressurisation rates resulted in different reductions in the pressure time product of the diaphragm; this reduction was greater with the fastest rate, but was accompanied by significant air leaks and poor tolerance.

  4. "Living with dying": the evolution of family members' experience of mechanical ventilation.

    PubMed

    Sinuff, Tasnim; Giacomini, Mita; Shaw, Rhona; Swinton, Marilyn; Cook, Deborah J

    2009-01-01

    Communication with families about mechanical ventilation may be more effective once we gain a better understanding of what families experience and understand about this life support technology when their loved ones are admitted to the intensive care unit (ICU). We conducted in-depth interviews with family members of 27 critically ill patients who required mechanical ventilation for > or = 7 days and had an estimated ICU mortality of > or = 50%. Team members reviewed transcripts independently and used grounded theory analysis. The central theme of family members' experience with mechanical ventilation was "living with dying." Initial reactions to the ventilator were of shock and surprise. Family members perceived no option except mechanical ventilation. Although the ventilator kept the patient alive, it also symbolized proximity to death. In time, families became accustomed to images of the ICU as ventilation became more familiar and routine. Their shock and horror were replaced by hope that the ventilator would allow the body to rest, heal, and recover. However, ongoing exposure to their loved one's critical illness and the new role as family spokesperson were traumatizing. Family members' experiences and their understanding of mechanical ventilation change over time, influenced by their habituation to the ICU environment and its routines. They face uncertainty about death, but maintain hope. Understanding these experiences may engender more respectful, meaningful communication about life support with families.

  5. History of Mechanical Ventilation. From Vesalius to Ventilator-induced Lung Injury.

    PubMed

    Slutsky, Arthur S

    2015-05-15

    Mechanical ventilation is a life-saving therapy that catalyzed the development of modern intensive care units. The origins of modern mechanical ventilation can be traced back about five centuries to the seminal work of Andreas Vesalius. This article is a short history of mechanical ventilation, tracing its origins over the centuries to the present day. One of the great advances in ventilatory support over the past few decades has been the development of lung-protective ventilatory strategies, based on our understanding of the iatrogenic consequences of mechanical ventilation such as ventilator-induced lung injury. These strategies have markedly improved clinical outcomes in patients with respiratory failure.

  6. Adaptive servo ventilation improves cardiac dysfunction and prognosis in chronic heart failure patients with Cheyne-Stokes respiration.

    PubMed

    Yoshihisa, Akiomi; Shimizu, Takeshi; Owada, Takashi; Nakamura, Yuichi; Iwaya, Shoji; Yamauchi, Hiroyuki; Miyata, Makiko; Hoshino, Yasuto; Sato, Takamasa; Suzuki, Satoshi; Sugimoto, Koichi; Yamaki, Takayoshi; Kunii, Hiroyuki; Nakazato, Kazuhiko; Suzuki, Hitoshi; Saitoh, Shu-ichi; Takeishi, Yasuchika

    2011-01-01

    Cheyne-Stokes respiration (CSR) is often observed in patients with chronic heart failure (CHF). Although adaptive servo ventilation (ASV) is effective for CSR, it remains unclear whether ASV improves the cardiac function and prognosis of patients with CHF and CSR.Sixty patients with CHF and CSR (mean left ventricular ejection fraction 38.7%, mean apnea hypopnea index 36.8 times/hour, mean central apnea index 19.1 times/hour) were enrolled in this study. Patients were divided into two groups: 23 patients treated with ASV (ASV group) and 37 patients treated without ASV (Non-ASV group). Measurement of plasma B-type natriuretic peptide (BNP) levels and echocardiography were performed before, 3 and 6 months after treatments in each group. Patients were followed-up for cardiac events (cardiac death and re-hospitalization) after discharge. In the ASV group, NYHA functional class, BNP levels, cardiac systolic and diastolic function were significantly improved with ASV treatment for 6 months. In contrast, none of these parameters changed in the Non-ASV group. Importantly, Kaplan-Meier analysis clearly demonstrated that the event-free rate was significantly higher in the ASV group than in the Non-ASV group.Adaptive servo ventilation improves cardiac function and prognosis in patients with chronic heart failure and Cheyne-Stokes respiration.

  7. Functional analysis of the musculo-skeletal system of the gill apparatus in Heptranchias perlo (Chondrichthyes: Hexanchidae).

    PubMed

    Kryukova, Nadezhda V

    2017-08-01

    Musculo-skeletal morphology is an indispensable source for understanding functional adaptations. Analysis of morphology of the branchial apparatus of Hexanchiform sharks can provide insight into aspects of their respiration that are difficult to observe directly. In this study, I compare the structure of the musculo-skeletal system of the gill apparatus of Heptranchias perlo and Squalus acanthias in respect to their adaptation for one of two respiratory mechanisms known in sharks, namely, the active two-pump (oropharyngeal and parabranchial) ventilation and the ram-jet ventilation. In both species, the oropharyngeal pump possesses two sets of muscles, one for compression and the other for expansion. The parabranchial pump only has constrictors. Expansion of this pump occurs only due to passive elastic recoil of the extrabranchial cartilages. In Squalus acanthias the parabranchial chambers are large and equipped by powerful superficial constrictors. These muscles and the outer walls of the parabranchial chambers are much reduced in Heptranchias perlo, and thus it likely cannot use this pump. However, this reduction allows for vertical elongation of outer gill slits which, along with greater number of gill pouches, likely decreases branchial resistance and, at the same time, increases the gill surface area, and can be regarded as an adaptation for ram ventilation at lower speeds. © 2017 Wiley Periodicals, Inc.

  8. [Verticalization as a factor of early rehabilitation in the patients with a spinal cord injury].

    PubMed

    Makarova, M R; Romashin, O V

    2013-01-01

    The number of days from the spinal cord injury to rehabilitation of the victim has significantly decreased. It means that the rehabilitative treatment begins when the risk of secondary trophic lesions, cardiovascular and respiratory complications is especially high. Training with the use of a tilt-table equipped with the dynamic foot support is considered to be the highly effective method for the prevention or reduction of orthostatic hypotension, impaired ventilation, and pressure sores. This approach makes it possible to influence the patient's motivation for further recovery, decrease the duration of hospitalization in the intensive therapy ward, accelerate adaptation of the patients to the vertical posture, decrease hypotension and hypoxia, reduce to a minimum the occurrence of secondary neurologic disorders. Dynamic tilt-table training is considered to be a more effective modality for the adaptation of the patient to the vertical position than standing with the assistance of a simple table.

  9. Variability in usual care mechanical ventilation for pediatric acute lung injury: the potential benefit of a lung protective computer protocol.

    PubMed

    Khemani, Robinder G; Sward, Katherine; Morris, Alan; Dean, J Michael; Newth, Christopher J L

    2011-11-01

    Although pediatric intensivists claim to embrace lung protective ventilation for acute lung injury (ALI), ventilator management is variable. We describe ventilator changes clinicians made for children with hypoxemic respiratory failure, and evaluate the potential acceptability of a pediatric ventilation protocol. This was a retrospective cohort study performed in a tertiary care pediatric intensive care unit (PICU). The study period was from January 2000 to July 2007. We included mechanically ventilated children with PaO(2)/FiO(2) (P/F) ratio less than 300. We assessed variability in ventilator management by evaluating actual changes to ventilator settings after an arterial blood gas (ABG). We evaluated the potential acceptability of a pediatric mechanical ventilation protocol we adapted from National Institutes of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI) Acute Respiratory Distress Syndrome (ARDS) Network protocols by comparing actual practice changes in ventilator settings to changes that would have been recommended by the protocol. A total of 2,719 ABGs from 402 patients were associated with 6,017 ventilator settings. Clinicians infrequently decreased FiO(2), even when the PaO(2) was high (>68 mmHg). The protocol would have recommended more positive end expiratory pressure (PEEP) than was used in actual practice 42% of the time in the mid PaO(2) range (55-68 mmHg) and 67% of the time in the low PaO(2) range (<55 mmHg). Clinicians often made no change to either peak inspiratory pressure (PIP) or ventilator rate (VR) when the protocol would have recommended a change, even when the pH was greater than 7.45 with PIP at least 35 cmH(2)O. There may be lost opportunities to minimize potentially injurious ventilator settings for children with ALI. A reproducible pediatric mechanical ventilation protocol could prompt clinicians to make ventilator changes that are consistent with lung protective ventilation.

  10. Cost containment and mechanical ventilation in the United States.

    PubMed

    Cohen, I L; Booth, F V

    1994-08-01

    In many ICUs, admission and discharge hinge on the need for intubation and ventilatory support. As few as 5% to 10% of ICU patients require prolonged mechanical ventilation, and this patient group consumes > or = 50% of ICU patient days and ICU resources. Prolonged ventilatory support and chronic ventilator dependency, both in the ICU and non-ICU settings, have a significant and growing impact on healthcare economics. In the United States, the need for prolonged mechanical ventilation is increasingly recognized as separate and distinct from the initial diagnosis and/or procedure that leads to hospitalization. This distinction has led to improved reimbursement under the prospective diagnosis-related group (DRG) system, and demands more precise accounting from healthcare providers responsible for these patients. Using both published and theoretical examples, mechanical ventilation in the United States is discussed, with a focus on cost containment. Included in the discussion are ventilator teams, standards of care, management protocols, stepdown units, rehabilitation units, and home care. The expanding role of total quality management (TQM) is also presented.

  11. Non-invasive ventilation for cancer patients with life-support techniques limitation.

    PubMed

    Meert, Anne-Pascale; Berghmans, Thierry; Hardy, Michel; Markiewicz, Eveline; Sculier, Jean-Paul

    2006-02-01

    The study was conducted to determine the usefulness and efficacy of non-invasive ventilation (NIV) in cancer patients with "life-support techniques limitation" admitted for an acute respiratory distress, in terms of intensive care unit (ICU) and hospital discharges. A total of 18 consecutive cancer patients (17 with solid tumours and one with haematological malignancy) with "life-support techniques limitation" in acute respiratory failure and who benefited from NIV were included. NIV was provided with a standard face mask by the BiPAP Vision ventilator (Respironics Inc.). Variables related to the demographic parameters, SAPS II score, cancer characteristics, intensive care data and hospital discharge were recorded. Complications leading to NIV were hypoxemic respiratory failure in 11 patients and hypercapnic respiratory failure in seven. Total median duration of NIV was 29 h. NIV was applied during a median of 2.5 days with a median of 16 h per day. Total median ICU stay was 7 days (range 1-21). Fourteen and ten patients were discharged from ICU and from hospital, respectively. NIV appears to be an effective ventilation support for cancer patients with "life-support techniques limitation".

  12. [Cardiac efficiency in patients with Cheyne-Stokes respiration as a result of heart insufficiency during long-term nasal respiratory treatment with adaptive servo ventilation (AutoSet CS)].

    PubMed

    Schädlich, S; Königs, I; Kalbitz, F; Blankenburg, T; Busse, H-J; Schütte, W

    2004-06-01

    Cheyne-Stokes respiration (CSR) is known to be an important negative predictor of outcome in patients with congestive heart failure. The goal of this study was to investigate whether the use of adaptive servo ventilation (AutoSet CS) would permit sufficient suppression of this pathological breathing pattern and improve cardiac function in longterm use over 1 year. Inclusion criteria for the study were congestive heart failure (left ventricular ejection fraction 20-50%), proven CSR with a central apnea-hypopnea index (AHI) > 15/h and stable clinical status with standard medical therapy. Patients with obstructive sleep apnea and COPD were excluded. Twenty consecutive patients (16 male) age 65.5 years (range 48-77) were followed with full blood counts, blood gas analysis, lung function tests and questionnaires for cardiopulmonary capacities (Minnesota, MRC Scale) and sleepiness (Epworth Sleepiness Scale). In addition, we performed 6-min walk distance (6MWD), echocardiography and polysomnography just before and after adjusting to adaptive servo ventilation and 3 and 12 months later. Mean usage of adaptive servo ventilation was sufficient (4.3 +/- 2.1 h/day at 12 months). No significant changes in blood gas analysis, blood counts and pulmonary function were detectable. CSR disappeared almost completely in all patients (AHI pre-study 44.3 +/- 13.4/h vs 3.4 +/- 8.0/h at 12 months; p < 0.0001). Saturation normalized steadily over the course of the study. The desaturation index decreased from 45.3 +/- 17.8/h to 5.2 +/- 11.5/h at 12 months (p < 0.0001). Mean saturation increased with the first night of sleep with adaptive servo ventilation from 92.0 +/- 2.5% to 93.0 +/- 1.6% (p < 0.05) and then to 94.1 +/- 1.9% at 3, and 94.2 +/- 1.9% at 12 months (p < 0.001). Quality of sleep was significantly improved with an increase of slow-wave sleep from 4.5 +/- 4.6% to 13.7 +/- 6.9% at 12 months (p < 0.0001). The arousal index concomitantly decreased from 29.8 +/- 17.9/h pre-study to 12.0 +/- 10.3/h at 12 months (p < 0.01). REM-sleep and sleep efficiency remained unchanged. The Epworth Sleepiness Scale showed only a trend to improvement. Cardiac function improved significantly during the course of the study. The ejection fraction increased from mean 37.1 +/- 12.5% pre-study to 41.7 +/- 8.8% at 12 months (p < 0.05). The 6-min walk distance increased from 192 +/- 110 m to 277 +/- 130 m at 12 months (p < 0.01). The MRC and Minnesota score were not significantly different pre- and post-study. We conclude that long-term respirator therapy with adaptive servo ventilation has sufficiently suppressed CSR and improved cardiac function in patients with congestive heart failure. Thus, safety and feasibility of this respirator therapy could be demonstrated. However, due to methodological reasons (no control group, no randomization) a direct effect on cardiac function could not be confirmed.

  13. Regenerative Blower for EVA Suit Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Paul, Heather L.

    2010-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.

  14. [Lung protective ventilation. Ventilatory modes and ventilator parameters].

    PubMed

    Schädler, Dirk; Weiler, Norbert

    2008-06-01

    Mechanical ventilation has a considerable potential for injuring the lung tissue. Therefore, attention has to be paid to the proper choice of ventilatory mode and settings to secure lung-protective ventilation whenever possible. Such ventilator strategy should account for low tidal volume ventilation (6 ml/kg PBW), limited plateau pressure (30 to 35 cm H2O) and positive end-expiratory pressure (PEEP). It is unclear whether pressure controlled or volume controlled ventilation with square flow profile is beneficial. The adjustment of inspiration and expiration time should consider the actual breathing mechanics and anticipate the generation of intrinsic PEEP. Ventilatory modes with the possibility of supporting spontaneous breathing should be used as soon as possible.

  15. Adaptation of exercise ventilation during an actively-induced hyperthermia following passive heat acclimation.

    PubMed

    Beaudin, Andrew E; Clegg, Miriam E; Walsh, Michael L; White, Matthew D

    2009-09-01

    Hyperthermia-induced hyperventilation has been proposed to be a human thermolytic thermoregulatory response and to contribute to the disproportionate increase in exercise ventilation (VE) relative to metabolic needs during high-intensity exercise. In this study it was hypothesized that VE would adapt similar to human eccrine sweating (E(SW)) following a passive heat acclimation (HA). All participants performed an incremental exercise test on a cycle ergometer from rest to exhaustion before and after a 10-day passive exposure for 2 h/day to either 50 degrees C and 20% relative humidity (RH) (n = 8, Acclimation group) or 24 degrees C and 32% RH (n = 4, Control group). Attainment of HA was confirmed by a significant decrease (P = 0.025) of the esophageal temperature (T(es)) threshold for the onset of E(SW) and a significantly elevated E(SW) (P < or = 0.040) during the post-HA exercise tests. HA also gave a significant decrease in resting T(es) (P = 0.006) and a significant increase in plasma volume (P = 0.005). Ventilatory adaptations during exercise tests following HA included significantly decreased T(es) thresholds (P < or = 0.005) for the onset of increases in the ventilatory equivalents for O(2) (VE/VO(2)) and CO(2) (VE/VCO(2)) and a significantly increased VE (P < or = 0.017) at all levels of T(es). Elevated VE was a function of a significantly greater tidal volume (P = 0.003) at lower T(es) and of breathing frequency (P < or = 0.005) at higher T(es). Following HA, the ventilatory threshold was uninfluenced and the relationships between VO(2) and either VE/VO(2) or VE/VCO(2) did not explain the resulting hyperventilation. In conclusion, the results support that exercise VE following passive HA responds similarly to E(SW), and the mechanism accounting for this adaptation is independent of changes of the ventilatory threshold or relationships between VO(2) with each of VE/VO(2) and VE/VCO(2).

  16. Metabolic Requirement of Septic Shock Patients Before and After Liberation From Mechanical Ventilation.

    PubMed

    Lee, Peggy Siu-Pik; Lee, Kar Lung; Betts, James A; Law, Kin Ip

    2017-08-01

    This study identified the difference in energy expenditure and substrate utilization of patients during and upon liberation from mechanical ventilation. Patients under intensive care who were diagnosed with septic shock and dependent on mechanical ventilation were recruited. Indirect calorimetry measurements were performed during and upon liberation from mechanical ventilation. Thirty-five patients were recruited (20 men and 15 women; mean age, 69 ± 10 years). Measured energy expenditures during ventilation and upon liberation were 2090 ± 489 kcal·d -1 and 1910 ± 579 kcal·d -1 , respectively ( P < .05). Energy intake was provided at 1148 ± 495 kcal·d -1 and differed significantly from all measured energy expenditures ( P < .05). Mean carbohydrate utilization was 0.19 ± 0.1 g·min -1 when patients were on mechanical ventilation compared with 0.15 ± 0.09 g·min -1 upon liberation ( P < .05). Mean lipid oxidation was 0.08 ± 0.05 g·min -1 during and 0.09 ± 0.07 g·min -1 upon liberation from mechanical ventilation ( P > .05). Measured energy expenditure was higher during than upon liberation from mechanical ventilation. This could be the increase in work of breathing from the continuous positive pressure support, repeated weaning cycles from mechanical ventilation, and/or the asynchronization between patients' respiration and ventilator support. Future studies should examine whether more appropriately matching energy expenditure with energy intake would promote positive health outcomes.

  17. Withdrawal of ventilation at the patient's request in MND: a retrospective exploration of the ethical and legal issues that have arisen for doctors in the UK.

    PubMed

    Phelps, Kay; Regen, Emma; Oliver, David; McDermott, Chris; Faull, Christina

    2017-06-01

    Ventilatory support has benefits including prolonging survival for respiratory failure in motor neurone disease (MND). At some point some patients may wish to stop the intervention. The National Institute of Health and Care Excellence (NICE) guidance recommends research is needed on ventilation withdrawal. There is little literature focusing on the issues doctors encounter when withdrawing ventilation at the request of a patient. To identify and explore with doctors the ethical and legal issues that they had encountered in the withdrawal of ventilation at the request of a patient with MND. A retrospective thematic analysis of interviews of 24 doctors (including palliative care, respiratory, neurology and general practice) regarding their experiences with withdrawal of ventilation support from patients with MND. Respondents found withdrawal of ventilation at the request of patients with MND to pose legal, ethical and moral challenges in five themes: ethical and legal rights to withdrawal from treatment; discussions with family; discussions with colleagues; experiences of legal advice; issues contributing to ethical complexity. Though clear about the legality of withdrawal of treatment in theory, the practice led to ethical and moral uncertainty and mixed feelings. Many respondents had experienced negative reactions from other healthcare professionals when these colleagues were unclear of the distinction between palliation of symptoms, withdrawal of treatment and assisted death. Legal, ethical and practical guidance is needed for professionals who support a patient with MND who wishes to withdraw from ventilation. Open discussion of the ethical challenges is needed as well as education and support for professionals. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Withdrawal of ventilation at the patient's request in MND: a retrospective exploration of the ethical and legal issues that have arisen for doctors in the UK

    PubMed Central

    Phelps, Kay; Regen, Emma; Oliver, David; McDermott, Chris; Faull, Christina

    2017-01-01

    Background Ventilatory support has benefits including prolonging survival for respiratory failure in motor neurone disease (MND). At some point some patients may wish to stop the intervention. The National Institute of Health and Care Excellence (NICE) guidance recommends research is needed on ventilation withdrawal. There is little literature focusing on the issues doctors encounter when withdrawing ventilation at the request of a patient. Aim To identify and explore with doctors the ethical and legal issues that they had encountered in the withdrawal of ventilation at the request of a patient with MND. Method A retrospective thematic analysis of interviews of 24 doctors (including palliative care, respiratory, neurology and general practice) regarding their experiences with withdrawal of ventilation support from patients with MND. Results Respondents found withdrawal of ventilation at the request of patients with MND to pose legal, ethical and moral challenges in five themes: ethical and legal rights to withdrawal from treatment; discussions with family; discussions with colleagues; experiences of legal advice; issues contributing to ethical complexity. Though clear about the legality of withdrawal of treatment in theory, the practice led to ethical and moral uncertainty and mixed feelings. Many respondents had experienced negative reactions from other healthcare professionals when these colleagues were unclear of the distinction between palliation of symptoms, withdrawal of treatment and assisted death. Conclusions Legal, ethical and practical guidance is needed for professionals who support a patient with MND who wishes to withdraw from ventilation. Open discussion of the ethical challenges is needed as well as education and support for professionals. PMID:26362794

  19. Feasibility of the capnogram to monitor ventilation rate during cardiopulmonary resuscitation.

    PubMed

    Aramendi, Elisabete; Elola, Andoni; Alonso, Erik; Irusta, Unai; Daya, Mohamud; Russell, James K; Hubner, Pia; Sterz, Fritz

    2017-01-01

    The rates of chest compressions (CCs) and ventilations are both important metrics to monitor the quality of cardiopulmonary resuscitation (CPR). Capnography permits monitoring ventilation, but the CCs provided during CPR corrupt the capnogram and compromise the accuracy of automatic ventilation detectors. The aim of this study was to evaluate the feasibility of an automatic algorithm based on the capnogram to detect ventilations and provide feedback on ventilation rate during CPR, specifically addressing intervals where CCs are delivered. The dataset used to develop and test the algorithm contained in-hospital and out-of-hospital cardiac arrest episodes. The method relies on adaptive thresholding to detect ventilations in the first derivative of the capnogram. The performance of the detector was reported in terms of sensitivity (SE) and Positive Predictive Value (PPV). The overall performance was reported in terms of the rate error and errors in the hyperventilation alarms. Results were given separately for the intervals with CCs. A total of 83 episodes were considered, resulting in 4880min and 46,740 ventilations (8741 during CCs). The method showed an overall SE/PPV above 99% and 97% respectively, even in intervals with CCs. The error for the ventilation rate was below 1.8min -1 in any group, and >99% of the ventilation alarms were correctly detected. A method to provide accurate feedback on ventilation rate using only the capnogram is proposed. Its accuracy was proven even in intervals where canpography signal was severely corrupted by CCs. This algorithm could be integrated into monitor/defibrillators to provide reliable feedback on ventilation rate during CPR. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Mechanical Ventilation and Bronchopulmonary Dysplasia.

    PubMed

    Keszler, Martin; Sant'Anna, Guilherme

    2015-12-01

    Mechanical ventilation is an important potentially modifiable risk factor for the development of bronchopulmonary dysplasia. Effective use of noninvasive respiratory support reduces the risk of lung injury. Lung volume recruitment and avoidance of excessive tidal volume are key elements of lung-protective ventilation strategies. Avoidance of oxidative stress, less invasive methods of surfactant administration, and high-frequency ventilation are also important factors in lung injury prevention. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Communication of mechanically ventilated patients in intensive care units

    PubMed Central

    Martinho, Carina Isabel Ferreira; Rodrigues, Inês Tello Rato Milheiras

    2016-01-01

    Objective The aim of this study was to translate and culturally and linguistically adapt the Ease of Communication Scale and to assess the level of communication difficulties for patients undergoing mechanical ventilation with orotracheal intubation, relating these difficulties to clinical and sociodemographic variables. Methods This study had three stages: (1) cultural and linguistic adaptation of the Ease of Communication Scale; (2) preliminary assessment of its psychometric properties; and (3) observational, descriptive-correlational and cross-sectional study, conducted from March to August 2015, based on the Ease of Communication Scale - after extubation answers and clinical and sociodemographic variables of 31 adult patients who were extubated, clinically stable and admitted to five Portuguese intensive care units. Results Expert analysis showed high agreement on content (100%) and relevance (75%). The pretest scores showed a high acceptability regarding the completion of the instrument and its usefulness. The Ease of Communication Scale showed excellent internal consistency (0.951 Cronbach's alpha). The factor analysis explained approximately 81% of the total variance with two scale components. On average, the patients considered the communication experiences during intubation to be "quite hard" (2.99). No significant correlation was observed between the communication difficulties reported and the studied sociodemographic and clinical variables, except for the clinical variable "number of hours after extubation" (p < 0.05). Conclusion This study translated and adapted the first assessment instrument of communication difficulties for mechanically ventilated patients in intensive care units into European Portuguese. The preliminary scale validation suggested high reliability. Patients undergoing mechanical ventilation reported that communication during intubation was "quite hard", and these communication difficulties apparently existed regardless of the presence of other clinical and/or sociodemographic variables. PMID:27410408

  2. Influences of Duration of Inspiratory Effort, Respiratory Mechanics, and Ventilator Type on Asynchrony With Pressure Support and Proportional Assist Ventilation.

    PubMed

    Vasconcelos, Renata S; Sales, Raquel P; Melo, Luíz H de P; Marinho, Liégina S; Bastos, Vasco Pd; Nogueira, Andréa da Nc; Ferreira, Juliana C; Holanda, Marcelo A

    2017-05-01

    Pressure support ventilation (PSV) is often associated with patient-ventilator asynchrony. Proportional assist ventilation (PAV) offers inspiratory assistance proportional to patient effort, minimizing patient-ventilator asynchrony. The objective of this study was to evaluate the influence of respiratory mechanics and patient effort on patient-ventilator asynchrony during PSV and PAV plus (PAV+). We used a mechanical lung simulator and studied 3 respiratory mechanics profiles (normal, obstructive, and restrictive), with variations in the duration of inspiratory effort: 0.5, 1.0, 1.5, and 2.0 s. The Auto-Trak system was studied in ventilators when available. Outcome measures included inspiratory trigger delay, expiratory trigger asynchrony, and tidal volume (V T ). Inspiratory trigger delay was greater in the obstructive respiratory mechanics profile and greatest with a effort of 2.0 s (160 ms); cycling asynchrony, particularly delayed cycling, was common in the obstructive profile, whereas the restrictive profile was associated with premature cycling. In comparison with PSV, PAV+ improved patient-ventilator synchrony, with a shorter triggering delay (28 ms vs 116 ms) and no cycling asynchrony in the restrictive profile. V T was lower with PAV+ than with PSV (630 mL vs 837 mL), as it was with the single-limb circuit ventilator (570 mL vs 837 mL). PAV+ mode was associated with longer cycling delays than were the other ventilation modes, especially for the obstructive profile and higher effort values. Auto-Trak eliminated automatic triggering. Mechanical ventilation asynchrony was influenced by effort, respiratory mechanics, ventilator type, and ventilation mode. In PSV mode, delayed cycling was associated with shorter effort in obstructive respiratory mechanics profiles, whereas premature cycling was more common with longer effort and a restrictive profile. PAV+ prevented premature cycling but not delayed cycling, especially in obstructive respiratory mechanics profiles, and it was associated with a lower V T . Copyright © 2017 by Daedalus Enterprises.

  3. Anaesthesia ventilators.

    PubMed

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-09-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.

  4. Should lung transplantation be performed for patients on mechanical respiratory support? The US experience.

    PubMed

    Mason, David P; Thuita, Lucy; Nowicki, Edward R; Murthy, Sudish C; Pettersson, Gösta B; Blackstone, Eugene H

    2010-03-01

    The study objectives were to (1) compare survival after lung transplantation in patients requiring pretransplant mechanical ventilation or extracorporeal membrane oxygenation with that of patients not requiring mechanical support and (2) identify risk factors for mortality. Data were obtained from the United Network for Organ Sharing for lung transplantation from October 1987 to January 2008. A total of 15,934 primary transplants were performed: 586 in patients on mechanical ventilation and 51 in patients on extracorporeal membrane oxygenation. Differences between nonsupport patients and those on mechanical ventilation or extracorporeal membrane oxygenation support were expressed as 2 propensity scores for use in comparing risk-adjusted survival. Unadjusted survival at 1, 6, 12, and 24 months was 83%, 67%, 62%, and 57% for mechanical ventilation, respectively; 72%, 53%, 50%, and 45% for extracorporeal membrane oxygenation, respectively; and 93%, 85%, 79%, and 70% for unsupported patients, respectively (P < .0001). Recipients on mechanical ventilation were younger, had lower forced vital capacity, and had diagnoses other than emphysema. Recipients on extracorporeal membrane oxygenation were also younger, had higher body mass index, and had diagnoses other than cystic fibrosis/bronchiectasis. Once these variables, transplant year, and propensity for mechanical support were accounted for, survival remained worse after lung transplantation for patients on mechanical ventilation and extracorporeal membrane oxygenation. Although survival after lung transplantation is markedly worse when preoperative mechanical support is necessary, it is not dismal. Thus, additional risk factors for mortality should be considered when selecting patients for lung transplantation to maximize survival. Reduced survival for this high-risk population raises the important issue of balancing maximal individual patient survival against benefit to the maximum number of patients. Copyright 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  5. Application of mid-frequency ventilation in an animal model of lung injury: a pilot study.

    PubMed

    Mireles-Cabodevila, Eduardo; Chatburn, Robert L; Thurman, Tracy L; Zabala, Luis M; Holt, Shirley J; Swearingen, Christopher J; Heulitt, Mark J

    2014-11-01

    Mid-frequency ventilation (MFV) is a mode of pressure control ventilation based on an optimal targeting scheme that maximizes alveolar ventilation and minimizes tidal volume (VT). This study was designed to compare the effects of conventional mechanical ventilation using a lung-protective strategy with MFV in a porcine model of lung injury. Our hypothesis was that MFV can maximize ventilation at higher frequencies without adverse consequences. We compared ventilation and hemodynamic outcomes between conventional ventilation and MFV. This was a prospective study of 6 live Yorkshire pigs (10 ± 0.5 kg). The animals were subjected to lung injury induced by saline lavage and injurious conventional mechanical ventilation. Baseline conventional pressure control continuous mandatory ventilation was applied with V(T) = 6 mL/kg and PEEP determined using a decremental PEEP trial. A manual decision support algorithm was used to implement MFV using the same conventional ventilator. We measured P(aCO2), P(aO2), end-tidal carbon dioxide, cardiac output, arterial and venous blood oxygen saturation, pulmonary and systemic vascular pressures, and lactic acid. The MFV algorithm produced the same minute ventilation as conventional ventilation but with lower V(T) (-1 ± 0.7 mL/kg) and higher frequency (32.1 ± 6.8 vs 55.7 ± 15.8 breaths/min, P < .002). There were no differences between conventional ventilation and MFV for mean airway pressures (16.1 ± 1.3 vs 16.4 ± 2 cm H2O, P = .75) even when auto-PEEP was higher (0.6 ± 0.9 vs 2.4 ± 1.1 cm H2O, P = .02). There were no significant differences in any hemodynamic measurements, although heart rate was higher during MFV. In this pilot study, we demonstrate that MFV allows the use of higher breathing frequencies and lower V(T) than conventional ventilation to maximize alveolar ventilation. We describe the ventilatory or hemodynamic effects of MFV. We also demonstrate that the application of a decision support algorithm to manage MFV is feasible. Copyright © 2014 by Daedalus Enterprises.

  6. Atelectasis is inversely proportional to transpulmonary pressure during weaning from ventilator support in a large animal model.

    PubMed

    Gudmundsson, M; Perchiazzi, G; Pellegrini, M; Vena, A; Hedenstierna, G; Rylander, C

    2018-01-01

    In mechanically ventilated, lung injured, patients without spontaneous breathing effort, atelectasis with shunt and desaturation may appear suddenly when ventilator pressures are decreased. It is not known how such a formation of atelectasis is related to transpulmonary pressure (P L ) during weaning from mechanical ventilation when the spontaneous breathing effort is increased. If the relation between P L and atelectasis were known, monitoring of P L might help to avoid formation of atelectasis and cyclic collapse during weaning. The main purpose of this study was to determine the relation between P L and atelectasis in an experimental model representing weaning from mechanical ventilation. Dynamic transverse computed tomography scans were acquired in ten anaesthetized, surfactant-depleted pigs with preserved spontaneous breathing, as ventilator support was lowered by sequentially reducing inspiratory pressure and positive end expiratory pressure in steps. The volumes of gas and atelectasis in the lungs were correlated with P L obtained using oesophageal pressure recordings. Work of breathing (WOB) was assessed from Campbell diagrams. Gradual decrease in P L in both end-expiration and end-inspiration caused a proportional increase in atelectasis and decrease in the gas content (linear mixed model with an autoregressive correlation matrix; P < 0.001) as the WOB increased. However, cyclic alveolar collapse during tidal ventilation did not increase significantly. We found a proportional correlation between atelectasis and P L during the 'weaning process' in experimental mild lung injury. If confirmed in the clinical setting, a gradual tapering of ventilator support can be recommended for weaning without risk of sudden formation of atelectasis. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  7. Effect of nature-based sounds' intervention on agitation, anxiety, and stress in patients under mechanical ventilator support: a randomised controlled trial.

    PubMed

    Saadatmand, Vahid; Rejeh, Nahid; Heravi-Karimooi, Majideh; Tadrisi, Sayed Davood; Zayeri, Farid; Vaismoradi, Mojtaba; Jasper, Melanie

    2013-07-01

    Few studies have been conducted to investigate the effect of nature-based sounds (N-BS) on agitation, anxiety level and physiological signs of stress in patients under mechanical ventilator support. Non-pharmacological nursing interventions such as N-BS can be less expensive and efficient ways to alleviate anxiety and adverse effects of sedative medications in patients under mechanical ventilator support. This study was conducted to identify the effect of the nature-based sounds' intervention on agitation, anxiety level and physiological stress responses in patients under mechanical ventilation support. A randomized placebo-controlled trial design was used to conduct this study. A total of 60 patients aged 18-65 years under mechanical ventilation support in an intensive care unit were randomly assigned to the control and experimental groups. The patients in the intervention group received 90 min of N-BS. Pleasant nature sounds were played to the patients using media players and headphones. Patients' physiological signs were taken immediately before the intervention and at the 30th, 60th, 90th minutes and 30 min after the procedure had finished. The physiological signs of stress assessed were heart rate, respiratory rate, and blood pressure. Data were collected over eight months from Oct 2011 to June 2012. Anxiety levels and agitation were assessed using the Faces Anxiety Scale and Richmond Agitation Sedation Scale, respectively. The experimental group had significantly lower systolic blood pressure, diastolic blood pressure, anxiety and agitation levels than the control group. These reductions increased progressively in the 30th, 60th, 90th minutes, and 30 min after the procedure had finished indicating a cumulative dose effect. N-BS can provide an effective method of decreasing potentially harmful physiological responses arising from anxiety in mechanically ventilated patients. Nurses can incorporate N-BS intervention as a non-pharmacologic intervention into the daily care of patients under mechanical ventilation support in order to reduce their stress and anxiety. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Patient-ventilator asynchrony affects pulse pressure variation prediction of fluid responsiveness.

    PubMed

    Messina, Antonio; Colombo, Davide; Cammarota, Gianmaria; De Lucia, Marta; Cecconi, Maurizio; Antonelli, Massimo; Corte, Francesco Della; Navalesi, Paolo

    2015-10-01

    During partial ventilatory support, pulse pressure variation (PPV) fails to adequately predict fluid responsiveness. This prospective study aims to investigate whether patient-ventilator asynchrony affects PPV prediction of fluid responsiveness during pressure support ventilation (PSV). This is an observational physiological study evaluating the response to a 500-mL fluid challenge in 54 patients receiving PSV, 27 without (Synch) and 27 with asynchronies (Asynch), as assessed by visual inspection of ventilator waveforms by 2 skilled blinded physicians. The area under the curve was 0.71 (confidence interval, 0.57-0.83) for the overall population, 0.86 (confidence interval, 0.68-0.96) in the Synch group, and 0.53 (confidence interval, 0.33-0.73) in the Asynch group (P = .018). Sensitivity and specificity of PPV were 78% and 89% in the Synch group and 36% and 46% in the Asynch group. Logistic regression showed that the PPV prediction was influenced by patient-ventilator asynchrony (odds ratio, 8.8 [2.0-38.0]; P < .003). Of the 27 patients without asynchronies, 12 had a tidal volume greater than or equal to 8 mL/kg; in this subgroup, the rate of correct classification was 100%. Patient-ventilator asynchrony affects PPV performance during partial ventilatory support influencing its efficacy in predicting fluid responsiveness. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. An Extracorporeal Artificial Placenta Supports Extremely Premature Lambs for One Week

    PubMed Central

    Bryner, Benjamin; Gray, Brian; Perkins, Elena; Davis, Ryan; Hoffman, Hayley; Barks, John; Owens, Gabe; Bocks, Martin; Rojas-Peña, Alvaro; Hirschl, Ronald; Bartlett, Robert; Mychaliska, George

    2015-01-01

    Purpose The treatment of extreme prematurity remains an unsolved problem. We developed an artificial placenta (AP) based on extracorporeal life support (ECLS) that simulates the intrauterine environment and provides gas exchange without mechanical ventilation (MV), and compared it to the current standard of neonatal care. Methods Extremely premature lambs (110-120d; term=145d) were used. AP lambs (n=9) were cannulated (jugular drainage, umbilical vein reinfusion) for ECLS .Control lambs (n=7) were intubated, ventilated, given surfactant, and transitioned to high-frequency oscillatory ventilation. All lambs received parenteral nutrition, antibiotics, and steroids. Hemodynamics, blood gases, hemoglobin, and circuit flows were measured. Results Four premature lambs survived for 1 week on the AP; one survived 6 days. Adequate oxygenation and ventilation were provided by the AP. The MV lambs survived 2-8 hours. Each of these lambs experienced a transient improvement with surfactant, but developed progressive hypercapnea and hypoxia despite high airway pressures and HFOV. Conclusions Extremely premature lambs were supported for 1 week with the AP with hemodynamic stability and adequate gas exchange; mechanically ventilated lambs succumbed within 8 hours. Further studies will assess control of fetal circulation and organ maturation on the AP. PMID:25598091

  10. Risk of Unsuccessful Noninvasive Ventilation for Acute Respiratory Failure in Heterogeneous Neuromuscular Diseases: A Retrospective Study.

    PubMed

    Kataoka, Hiroshi; Nanaura, Hitoki; Kinugawa, Kaoru; Uchihara, Yuto; Ohara, Hiroya; Eura, Nobuyuki; Syobatake, Ryogo; Sawa, Nobuhiro; Takao, Kiriyama; Sugie, Kazuma; Ueno, Satoshi

    2017-02-20

    If invasive ventilation can be avoided by performing noninvasive mechanical ventilation (NIV) in patients with acute respiratory failure (ARF), the disease can be effectively managed. It is important to clarify the characteristics of patients with neuromuscular diseases in whom initial NIV is likely to be unsuccessful. We studied 27 patients in stable neuromuscular condition who initially received NIV to manage fatal ARF to identify differences in factors immediately before the onset of ARF among patients who receive continuous NIV support, patients who are switched from NIV to invasive ventilation, and patients in whom NIV is discontinued. Endpoints were evaluated 24 and 72 hours after the initiation of NIV. After 24 hours, all but 1 patient with amyotrophic lateral sclerosis (ALS) received continuous NIV support. 72 hours later, 5 patients were switched from NIV to invasive ventilation, and 5 patients continued to receive NIV support. 72 hours after the initiation of NIV, the proportion of patients with a diagnosis of ALS differed significantly among the three groups (P=0.039). NIV may be attempted to manage acute fatal respiratory failure associated with neuromuscular diseases, but clinicians should carefully manage the clinical course in patients with ALS.

  11. [Pressure support ventilation and proportional assist ventilation during weaning from mechanical ventilation].

    PubMed

    Aguirre-Bermeo, H; Bottiroli, M; Italiano, S; Roche-Campo, F; Santos, J A; Alonso, M; Mancebo, J

    2014-01-01

    To compare tolerance, duration of mechanical ventilation (MV) and clinical outcomes during weaning from MV in patients subjected to either pressure support ventilation (PSV) or proportional assist ventilation (PAV). A prospective, observational study was carried out. Intensive Care Unit. A total of 40 consecutive subjects were allocated to either the PSV or the PAV group until each group contained 20 patients. Patients were included in the study when they met the criteria to begin weaning and the attending physician decided to initiate the weaning process. The physician selected the modality and set the ventilatory parameters. None. Demographic data, respiratory mechanics, ventilatory parameters, duration of MV, and clinical outcomes (reintubation, tracheostomy, mortality). Baseline characteristics were similar in both groups. No significant differences were observed between the PSV and PAV groups in terms of the total duration of MV (10 [5-18] vs. 9 [7-19] days; P=.85), reintubation (5 [31%] vs. 3 [19%]; P=.69), or mortality (4 [20%] vs. 5 [25%] deaths; P=1). Eight patients (40%) in the PSV group and 6 patients (30%) in the PAV group (P=.74) required a return to volume assist-control ventilation due to clinical deterioration. Tolerance, duration of MV and clinical outcomes during weaning from mechanical ventilation were similar in PSV and PAV. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  12. Adaptive Servo-Ventilation in "Real Life" Conditions : the OTRLASV Study

    ClinicalTrials.gov

    2017-03-27

    Chronic Heart Failure and; Complex Sleep Apnea Syndrome; Obstructive Sleep Apnea Syndrome and; Idiopathic Central Sleep Apnea Syndrome; Idiopathic Induced Periodic Breathing; Central Sleep Apnea Syndrome

  13. Ventilation practices in the neonatal intensive care unit: a cross-sectional study.

    PubMed

    van Kaam, Anton H; Rimensberger, Peter C; Borensztajn, Dorine; De Jaegere, Anne P

    2010-11-01

    To assess current ventilation practices in newborn infants. We conducted a 2-point cross-sectional study in 173 European neonatal intensive care units, including 535 infants (mean gestational age 28 weeks and birth weight 1024 g). Patient characteristics, ventilator settings, and measurements were collected bedside from endotracheally ventilated infants. A total of 457 (85%) patients were conventionally ventilated. Time cycled pressure-limited ventilation was used in 59% of these patients, most often combined with synchronized intermittent mandatory ventilation (51%). Newer conventional ventilation modes like volume targeted and pressure support ventilation were used in, respectively, 9% and 7% of the patients. The mean tidal volume, measured in 84% of the conventionally ventilated patients, was 5.7 ± 2.3 ml/kg. The mean positive end-expiratory pressure was 4.5 ± 1.1 cmH(2)O and rarely exceeded 7 cmH(2)O. Time cycled pressure-limited ventilation is the most commonly used mode in neonatal ventilation. Tidal volumes are usually targeted between 4 to 7 mL/kg and positive end-expiratory pressure between 4 to 6 cmH(2)O. Newer ventilation modes are only used in a minority of patients. Copyright © 2010 Mosby, Inc. All rights reserved.

  14. [Possibilities of bi-level positive pressure ventilation in chronic hypoventilation].

    PubMed

    Saaresranta, Tarja; Anttalainen, Ulla; Polo, Olli

    2011-01-01

    During the last decade, noninvasive bi-level positive pressure ventilation has enabled respiratory support in inpatient wards and at home. In many cases, a bi-level airway pressure ventilator can be used to avoid artificial airway and respirator therapy, and may shorten hospital stay and save costs. The treatment alleviates the patient's dyspnea and fatigue, whereby the quality of life improves, and in certain situations also the life span increases. The implementation of bi-level positive pressure ventilation by the physician requires knowledge of the basics of respiratory physiology and familiarization with the bi-level airway pressure ventilator.

  15. Cardiovascular Outcomes With Minute Ventilation-Targeted Adaptive Servo-Ventilation Therapy in Heart Failure: The CAT-HF Trial.

    PubMed

    O'Connor, Christopher M; Whellan, David J; Fiuzat, Mona; Punjabi, Naresh M; Tasissa, Gudaye; Anstrom, Kevin J; Benjafield, Adam V; Woehrle, Holger; Blase, Amy B; Lindenfeld, JoAnn; Oldenberg, Olaf

    2017-03-28

    Sleep apnea is common in hospitalized heart failure (HF) patients and is associated with increased morbidity and mortality. The CAT-HF (Cardiovascular Improvements With MV-ASV Therapy in Heart Failure) trial investigated whether minute ventilation (MV) adaptive servo-ventilation (ASV) improved cardiovascular outcomes in hospitalized HF patients with moderate-to-severe sleep apnea. Eligible patients hospitalized with HF and moderate-to-severe sleep apnea were randomized to ASV plus optimized medical therapy (OMT) or OMT alone (control). The primary endpoint was a composite global rank score (hierarchy of death, cardiovascular hospitalizations, and percent changes in 6-min walk distance) at 6 months. 126 of 215 planned patients were randomized; enrollment was stopped early following release of the SERVE-HF (Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure) trial results. Average device usage was 2.7 h/night. Mean number of events measured by the apnea-hypopnea index decreased from 35.7/h to 2.1/h at 6 months in the ASV group versus 35.1/h to 19.0/h in the control group (p < 0.0001). The primary endpoint did not differ significantly between the ASV and control groups (p = 0.92 Wilcoxon). Changes in composite endpoint components were not significantly different between ASV and control. There was no significant interaction between treatment and ejection fraction (p = 0.10 Cox model); however, pre-specified subgroup analysis suggested a positive effect of ASV in patients with HF with preserved ejection fraction (p = 0.036). In hospitalized HF patients with moderate-to-severe sleep apnea, adding ASV to OMT did not improve 6-month cardiovascular outcomes. Study power was limited for detection of safety signals and identifying differential effects of ASV in patients with HF with preserved ejection fraction, but additional studies are warranted in this population. (Cardiovascular Improvements With MV ASV Therapy in Heart Failure [CAT-HF]; NCT01953874). Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Ventilation for an enclosure of a gas turbine and related method

    DOEpatents

    Schroeder, Troy Joseph; Leach, David; O'Toole, Michael Anthony

    2002-01-01

    A ventilation scheme for a rotary machine supported on pedestals within an enclosure having a roof, end walls and side walls with the machine arranged parallel to the side walls, includes ventilation air inlets located in a first end wall of the enclosure; a barrier wall located within the enclosure, proximate the first end wall to thereby create a plenum chamber. The barrier wall is constructed to provide a substantially annular gap between the barrier wall and a casing of the turbine to thereby direct ventilation air axially along the turbine; one or more ventilation air outlets located proximate a second, opposite end wall on the roof of the enclosure. In addition, one or more fans are provided for pulling ventilating air into said plenum chamber via the ventilation air inlets.

  17. What Is Acute Respiratory Distress Syndrome?

    MedlinePlus

    ... used for ARDS include: ■■ Breathing support from a mechanical ventilator combined with oxygen therapy (See ATS fact sheets on Mechanical Ventilation and Oxygen Therapy at www. thoracic.org/ ...

  18. Multicenter review of diaphragm pacing in spinal cord injury: successful not only in weaning from ventilators but also in bridging to independent respiration.

    PubMed

    Posluszny, Joseph A; Onders, Raymond; Kerwin, Andrew J; Weinstein, Michael S; Stein, Deborah M; Knight, Jennifer; Lottenberg, Lawrence; Cheatham, Michael L; Khansarinia, Saeid; Dayal, Saraswati; Byers, Patricia M; Diebel, Lawrence

    2014-02-01

    Ventilator-dependent spinal cord-injured (SCI) patients require significant resources related to ventilator dependence. Diaphragm pacing (DP) has been shown to successfully replace mechanical ventilators for chronic ventilator-dependent tetraplegics. Early use of DP following SCI has not been described. Here, we report our multicenter review experience with the use of DP in the initial hospitalization after SCI. Under institutional review board approval for humanitarian use device, we retrospectively reviewed our multicenter nonrandomized interventional protocol of laparoscopic diaphragm motor point mapping with electrode implantation and subsequent diaphragm conditioning and ventilator weaning. Twenty-nine patients with an average age of 31 years (range, 17-65 years) with only two females were identified. Mechanism of injury included motor vehicle collision (7), diving (6), gunshot wounds (4), falls (4), athletic injuries (3), bicycle collision (2), heavy object falling on spine (2), and motorcycle collision (1). Elapsed time from injury to surgery was 40 days (range, 3-112 days). Seven (24%) of the 29 patients who were evaluated for the DP placement had nonstimulatable diaphragms from either phrenic nerve damage or infarction of the involved phrenic motor neurons and were not implanted. Of the stimulatable patients undergoing DP, 72% (16 of 22) were completely free of ventilator support in an average of 10.2 days. For the remaining six DP patients, two had delayed weans of 180 days, three had partial weans using DP at times during the day, and one patient successfully implanted went to a long-term acute care hospital and subsequently had life-prolonging measures withdrawn. Eight patients (36%) had complete recovery of respiration, and DP wires were removed. Early laparoscopic diaphragm mapping and DP implantation can successfully wean traumatic cervical SCI patients from ventilator support. Early laparoscopic mapping is also diagnostic in that a nonstimulatable diaphragm is a convincing evidence of an inability to wean from ventilator support, and long-term ventilator management can be immediately instituted. Therapeutic study, level V.

  19. Numerical simulation of volume-controlled mechanical ventilated respiratory system with 2 different lungs.

    PubMed

    Shi, Yan; Zhang, Bolun; Cai, Maolin; Zhang, Xiaohua Douglas

    2017-09-01

    Mechanical ventilation is a key therapy for patients who cannot breathe adequately by themselves, and dynamics of mechanical ventilation system is of great significance for life support of patients. Recently, models of mechanical ventilated respiratory system with 1 lung are used to simulate the respiratory system of patients. However, humans have 2 lungs. When the respiratory characteristics of 2 lungs are different, a single-lung model cannot reflect real respiratory system. In this paper, to illustrate dynamic characteristics of mechanical ventilated respiratory system with 2 different lungs, we propose a mathematical model of mechanical ventilated respiratory system with 2 different lungs and conduct experiments to verify the model. Furthermore, we study the dynamics of mechanical ventilated respiratory system with 2 different lungs. This research study can be used for improving the efficiency and safety of volume-controlled mechanical ventilation system. Copyright © 2016 John Wiley & Sons, Ltd.

  20. The influence of music during mechanical ventilation and weaning from mechanical ventilation: A review

    PubMed Central

    Hetland, Breanna; Lindquist, Ruth; Chlan, Linda L.

    2015-01-01

    Background Mechanical ventilation (MV) causes many distressing symptoms. Weaning, the gradual decrease in ventilator assistance leading to termination of MV, increases respiratory effort, which may exacerbate symptoms and prolong MV. Music, a non-pharmacological intervention without side effects may benefit patients during weaning from mechanical ventilatory support. Methods A narrative review of OVID Medline, PsychINFO, and CINAHL databases was conducted to examine the evidence for the use of music intervention in MV and MV weaning. Results Music intervention had a positive impact on ventilated patients; 16 quantitative and 2 qualitative studies were identified. Quantitative studies included randomized clinical trials (10), case controls (3), pilot studies (2) and a feasibility study. Conclusions Evidence supports music as an effective intervention that can lesson symptoms related to MV and promote effective weaning. It has potential to reduce costs and increase patient satisfaction. However, more studies are needed to establish its use during MV weaning. PMID:26227333

  1. Monitoring of noninvasive ventilation by built-in software of home bilevel ventilators: a bench study.

    PubMed

    Contal, Olivier; Vignaux, Laurence; Combescure, Christophe; Pepin, Jean-Louis; Jolliet, Philippe; Janssens, Jean-Paul

    2012-02-01

    Current bilevel positive-pressure ventilators for home noninvasive ventilation (NIV) provide physicians with software that records items important for patient monitoring, such as compliance, tidal volume (Vt), and leaks. However, to our knowledge, the validity of this information has not yet been independently assessed. Testing was done for seven home ventilators on a bench model adapted to simulate NIV and generate unintentional leaks (ie, other than of the mask exhalation valve). Five levels of leaks were simulated using a computer-driven solenoid valve (0-60 L/min) at different levels of inspiratory pressure (15 and 25 cm H(2)O) and at a fixed expiratory pressure (5 cm H(2)O), for a total of 10 conditions. Bench data were compared with results retrieved from ventilator software for leaks and Vt. For assessing leaks, three of the devices tested were highly reliable, with a small bias (0.3-0.9 L/min), narrow limits of agreement (LA), and high correlations (R(2), 0.993-0.997) when comparing ventilator software and bench results; conversely, for four ventilators, bias ranged from -6.0 L/min to -25.9 L/min, exceeding -10 L/min for two devices, with wide LA and lower correlations (R(2), 0.70-0.98). Bias for leaks increased markedly with the importance of leaks in three devices. Vt was underestimated by all devices, and bias (range, 66-236 mL) increased with higher insufflation pressures. Only two devices had a bias < 100 mL, with all testing conditions considered. Physicians monitoring patients who use home ventilation must be aware of differences in the estimation of leaks and Vt by ventilator software. Also, leaks are reported in different ways according to the device used.

  2. Intraoperative mechanical ventilation for the pediatric patient.

    PubMed

    Kneyber, Martin C J

    2015-09-01

    Invasive mechanical ventilation is required when children undergo general anesthesia for any procedure. It is remarkable that one of the most practiced interventions such as pediatric mechanical ventilation is hardly supported by any scientific evidence but rather based on personal experience and data from adults, especially as ventilation itself is increasingly recognized as a harmful intervention that causes ventilator-induced lung injury. The use of low tidal volume and higher levels of positive end-expiratory pressure became an integral part of lung-protective ventilation following the outcomes of clinical trials in critically ill adults. This approach has been readily adopted in pediatric ventilation. However, a clear association between tidal volume and mortality has not been ascertained in pediatrics. In fact, experimental studies have suggested that young children might be less susceptible to ventilator-induced lung injury. As such, no recommendations on optimal lung-protective ventilation strategy in children with or without lung injury can be made. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Influence of Applying Additional Forcing Fans for the Air Distribution in Ventilation Network

    NASA Astrophysics Data System (ADS)

    Szlązak, Nikodem; Obracaj, Dariusz; Korzec, Marek

    2016-09-01

    Mining progress in underground mines cause the ongoing movement of working areas. Consequently, it becomes necessary to adapt the ventilation network of a mine to direct airflow into newly-opened districts. For economic reasons, opening new fields is often achieved via underground workings. Length of primary intake and return routes increases and also increases the total resistance of a complex ventilation network. The development of a subsurface structure can make it necessary to change the air distribution in a ventilation network. Increasing airflow into newly-opened districts is necessary. In mines where extraction does not entail gas-related hazards, there is possibility of implementing a push-pull ventilation system in order to supplement airflows to newly developed mining fields. This is achieved by installing subsurface fan stations with forcing fans at the bottom of downcast shaft. In push-pull systems with multiple main fans, it is vital to select forcing fans with characteristic curves matching those of the existing exhaust fans to prevent undesirable mutual interaction. In complex ventilation networks it is necessary to calculate distribution of airflow (especially in networks with a large number of installed fans). In the article the influence of applying additional forcing fans for the air distribution in ventilation network for underground mine were considered. There are also analysed the extent of overpressure caused by the additional forcing fan in branches of the ventilation network (the operating range of additional forcing fan). Possibilities of increasing airflow rate in working areas were conducted.

  4. [Hemoglobin and testosterone: importance on high altitude acclimatization and adaptation].

    PubMed

    Gonzales, Gustavo F

    2011-03-01

    The different types of response mechanisms that the organism uses when exposed to hypoxia include accommodation, acclimatization and adaptation. Accommodation is the initial response to acute exposure to high altitude hypoxia and is characterized by an increase in ventilation and heart rate. Acclimatization is observed in individuals temporarily exposed to high altitude, and to some extent, it enables them to tolerate the high altitudes. In this phase, erythropoiesis is increased, resulting in higher hemoglobin and hematocrit levels to improve oxygen delivery capacity. Adaptation is the process of natural acclimatization where genetical variations and acclimatization play a role in allowing subjects to live without any difficulties at high altitudes. Testosterone is a hormone that regulates erythropoiesis and ventilation and could be associated to the processes of acclimatization and adaptation to high altitude. Excessive erythrocytosis, which leads to chronic mountain sickness, is caused by low arterial oxygen saturation, ventilatory inefficiency and reduced ventilatory response to hypoxia. Testosterone increases during acute exposure to high altitude and also in natives at high altitude with excessive erythrocytosis. Results of current research allow us to conclude that increase in serum testosterone and hemoglobin is adequate for acclimatization, as they improve oxygen transport, but not for high altitude adaptation, since high serum testosterone levels are associated to excessive erythrocytosis.

  5. Pulmonary ventilation/perfusion scan

    MedlinePlus

    ... take a ventilation and perfusion scan and then evaluate it with a chest x-ray. All parts ... ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow ...

  6. Clinical assessment of auto-positive end-expiratory pressure by diaphragmatic electrical activity during pressure support and neurally adjusted ventilatory assist.

    PubMed

    Bellani, Giacomo; Coppadoro, Andrea; Patroniti, Nicolò; Turella, Marta; Arrigoni Marocco, Stefano; Grasselli, Giacomo; Mauri, Tommaso; Pesenti, Antonio

    2014-09-01

    Auto-positive end-expiratory pressure (auto-PEEP) may substantially increase the inspiratory effort during assisted mechanical ventilation. Purpose of this study was to assess whether the electrical activity of the diaphragm (EAdi) signal can be reliably used to estimate auto-PEEP in patients undergoing pressure support ventilation and neurally adjusted ventilatory assist (NAVA) and whether NAVA was beneficial in comparison with pressure support ventilation in patients affected by auto-PEEP. In 10 patients with a clinical suspicion of auto-PEEP, the authors simultaneously recorded EAdi, airway, esophageal pressure, and flow during pressure support and NAVA, whereas external PEEP was increased from 2 to 14 cm H2O. Tracings were analyzed to measure apparent "dynamic" auto-PEEP (decrease in esophageal pressure to generate inspiratory flow), auto-EAdi (EAdi value at the onset of inspiratory flow), and IDEAdi (inspiratory delay between the onset of EAdi and the inspiratory flow). The pressure necessary to overcome auto-PEEP, auto-EAdi, and IDEAdi was significantly lower in NAVA as compared with pressure support ventilation, decreased with increase in external PEEP, although the effect of external PEEP was less pronounced in NAVA. Both auto-EAdi and IDEAdi were tightly correlated with auto-PEEP (r = 0.94 and r = 0.75, respectively). In the presence of auto-PEEP at lower external PEEP levels, NAVA was characterized by a characteristic shape of the airway pressure. In patients with auto-PEEP, NAVA, compared with pressure support ventilation, led to a decrease in the pressure necessary to overcome auto-PEEP, which could be reliably monitored by the electrical activity of the diaphragm before inspiratory flow onset (auto-EAdi).

  7. Noninvasive ventilation.

    PubMed

    Rabatin, J T; Gay, P C

    1999-08-01

    Noninvasive ventilation refers to the delivery of assisted ventilatory support without the use of an endotracheal tube. Noninvasive positive pressure ventilation (NPPV) can be delivered by using a volume-controlled ventilator, a pressure-controlled ventilator, a bilevel positive airway pressure ventilator, or a continuous positive airway pressure device. During the past decade, there has been a resurgence in the use of noninvasive ventilation, fueled by advances in technology and clinical trials evaluating its use. Several manufacturers produce portable devices that are simple to operate. This review describes the equipment, techniques, and complications associated with NPPV and also the indications for both short-term and long-term applications. NPPV clearly represents an important addition to the techniques available to manage patients with respiratory failure. Future clinical trials evaluating its many clinical applications will help to define populations of patients most apt to benefit from this type of treatment.

  8. Pressure Dynamic Characteristics of Pressure Controlled Ventilation System of a Lung Simulator

    PubMed Central

    Shi, Yan; Ren, Shuai; Cai, Maolin; Xu, Weiqing; Deng, Qiyou

    2014-01-01

    Mechanical ventilation is an important life support treatment of critically ill patients, and air pressure dynamics of human lung affect ventilation treatment effects. In this paper, in order to obtain the influences of seven key parameters of mechanical ventilation system on the pressure dynamics of human lung, firstly, mechanical ventilation system was considered as a pure pneumatic system, and then its mathematical model was set up. Furthermore, to verify the mathematical model, a prototype mechanical ventilation system of a lung simulator was proposed for experimental study. Last, simulation and experimental studies on the air flow dynamic of the mechanical ventilation system were done, and then the pressure dynamic characteristics of the mechanical system were obtained. The study can be referred to in the pulmonary diagnostics, treatment, and design of various medical devices or diagnostic systems. PMID:25197318

  9. Tracheostomy and invasive mechanical ventilation in amyotrophic lateral sclerosis: decision-making factors and survival analysis.

    PubMed

    Kimura, Fumiharu

    2016-04-28

    Invasive and/or non-invasive mechanical ventilation are most important options of respiratory management in amyotrophic lateral sclerosis. We evaluated the frequency, clinical characteristics, decision-making factors about ventilation and survival analysis of 190 people with amyotrophic lateral sclerosis patients from 1990 until 2013. Thirty-one percentage of patients underwent tracheostomy invasive ventilation with the rate increasing more than the past 20 years. The ratio of tracheostomy invasive ventilation in patients >65 years old was significantly increased after 2000 (25%) as compared to before (10%). After 2010, the standard use of non-invasive ventilation showed a tendency to reduce the frequency of tracheostomy invasive ventilation. Mechanical ventilation prolonged median survival (75 months in tracheostomy invasive ventilation, 43 months in non-invasive ventilation vs natural course, 32 months). The life-extending effects by tracheostomy invasive ventilation were longer in younger patients ≤65 years old at the time of ventilation support than in older patients. Presence of partners and care at home were associated with better survival. Following factors related to the decision to perform tracheostomy invasive ventilation: patients ≤65 years old: greater use of non-invasive ventilation: presence of a spouse: faster tracheostomy: higher progression rate; and preserved motor functions. No patients who underwent tracheostomy invasive ventilation died from a decision to withdraw mechanical ventilation. The present study provides factors related to decision-making process and survival after tracheostomy and help clinicians and family members to expand the knowledge about ventilation.

  10. Effects of Natural Sounds on Pain: A Randomized Controlled Trial with Patients Receiving Mechanical Ventilation Support.

    PubMed

    Saadatmand, Vahid; Rejeh, Nahid; Heravi-Karimooi, Majideh; Tadrisi, Sayed Davood; Vaismoradi, Mojtaba; Jordan, Sue

    2015-08-01

    Nonpharmacologic pain management in patients receiving mechanical ventilation support in critical care units is under investigated. Natural sounds may help reduce the potentially harmful effects of anxiety and pain in hospitalized patients. The aim of this study was to examine the effect of pleasant, natural sounds on self-reported pain in patients receiving mechanical ventilation support, using a pragmatic parallel-arm, randomized controlled trial. The study was conducted in a general adult intensive care unit of a high-turnover teaching hospital, in Tehran, Iran. Between October 2011 and June 2012, we recruited 60 patients receiving mechanical ventilation support to the intervention (n = 30) and control arms (n = 30) of a pragmatic parallel-group, randomized controlled trial. Participants in both arms wore headphones for 90 minutes. Those in the intervention arm heard pleasant, natural sounds, whereas those in the control arm heard nothing. Outcome measures included the self-reported visual analog scale for pain at baseline; 30, 60, and 90 minutes into the intervention; and 30 minutes post-intervention. All patients approached agreed to participate. The trial arms were similar at baseline. Pain scores in the intervention arm fell and were significantly lower than in the control arm at each time point (p < .05). Administration of pleasant, natural sounds via headphones is a simple, safe, nonpharmacologic nursing intervention that may be used to allay pain for up to 120 minutes in patients receiving mechanical ventilation support. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  11. Lung Volume Reduction Surgery for Respiratory Failure in Infants With Bronchopulmonary Dysplasia.

    PubMed

    Sohn, Bongyeon; Park, Samina; Park, In Kyu; Kim, Young Tae; Park, June Dong; Park, Sung-Hye; Kang, Chang Hyun

    2018-04-01

    Lung volume reduction surgery (LVRS) can be performed in patients with severe emphysematous disease. However, LVRS in pediatric patients has not yet been reported. Here, we report our experience with 2 cases of pediatric LVRS. The first patient was a preterm infant girl with severe bronchopulmonary dysplasia, pulmonary hypertension, and hypothyroidism. The emphysematous portion of the right lung was removed via sternotomy and right hemiclamshell incision. The patient was discharged on full-time home ventilator support for 3 months after the surgery. Since then, her respiratory function has improved continuously. She no longer needs oxygen supplementation or ventilator care. Her T-cannula was removed recently. The second patient was also a preterm infant girl with bronchopulmonary dysplasia. She was born with pulmonary hypertension and multiple congenital anomalies, including an atrial septal defect. Despite receiving the best supportive care, she could not be taken off the mechanical ventilator because of severe hypercapnia. We performed LVRS on the right lung via thoracotomy. She was successfully weaned off the mechanical ventilator 1 month after the surgery. She was discharged without severe complications at 3 months after the operation. At present, she is growing well with the help of intermittent home ventilator support. She can now tolerate an oral diet. Our experience shows that LVRS can be considered as a treatment option for pediatric patients with severe emphysematous lung. It is especially helpful for discontinuing prolonged mechanical ventilator care for patients with respiratory failure. Copyright © 2018 by the American Academy of Pediatrics.

  12. Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B.

    PubMed

    Malik, Mohammad T; Peng, Ying-Jie; Kline, David D; Adhikary, Gautam; Prabhakar, Nanduri R

    2005-01-15

    Earlier studies on cell culture models suggested that immediate early genes (IEGs) play an important role in cellular adaptations to hypoxia. Whether IEGs are also necessary for hypoxic adaptations in intact animals is not known. In the present study we examined the potential importance of fos B, an IEG in ventilatory acclimatization to hypoxia. Experiments were performed on wild type and mutant mice lacking the fos B gene. Ventilation was monitored by whole body plethysmography in awake animals. Baseline ventilation under normoxia, and ventilatory response to acute hypoxia and hypercapnia were comparable between wild type and mutant mice. Hypobaric hypoxia (0.4 atm; 3 days) resulted in a significant elevation of baseline ventilation in wild type but not in mutant mice. Wild type mice exposed to hypobaric hypoxia manifested an enhanced hypoxic ventilatory response compared to pre-hypobaric hypoxia. In contrast, hypobaric hypoxia had no effect on the hypoxic ventilatory response in mutant mice. Hypercapnic ventilatory responses, however, were unaffected by hypobaric hypoxia in both groups of mice. These results suggest that the fos B, an immediate early gene, plays an important role in ventilatory acclimatization to hypoxia in mice.

  13. New approaches in the rehabilitation of the traumatic high level quadriplegic.

    PubMed

    Bach, J R

    1991-02-01

    The use of noninvasive alternatives to tracheostomy for ventilatory support have been described in the patient management of various neuromuscular disorders. The use of these techniques for patients with traumatic high level quadriplegia, however, is hampered by the resort to tracheostomy in the acute hospital setting. Twenty traumatic high level quadriplegic patients on intermittent positive pressure ventilation (IPPV) via tracheostomy with little or no ability for unassisted breathing were converted to noninvasive ventilatory support methods and had their tracheostomy sites closed. Four additional patients were ventilated by noninvasive methods without tracheostomy. These methods included the use of body ventilators and the noninvasive intermittent positive airway pressure alternatives of IPPV via the mouth, nose, or custom acrylic strapless oral-nasal interface (SONI). Overnight end-tidal pCO2 studies and monitoring of oxyhemoglobin saturation (SaO2) were used to adjust ventilator volumes and to document effective ventilation during sleep. No significant complications have resulted from the use of these methods over a period of 45 patient-years. Elimination of the tracheostomy permitted significant free time by glossopharyngeal breathing for four patients, two of whom had no measurable vital capacity. We conclude that noninvasive ventilatory support alternatives can be effective and deserve further study in this patient population.

  14. Influence of different interfaces on synchrony during pressure support ventilation in a pediatric setting: a bench study.

    PubMed

    Conti, Giorgio; Gregoretti, Cesare; Spinazzola, Giorgia; Festa, Olimpia; Ferrone, Giuliano; Cipriani, Flora; Rossi, Marco; Piastra, Marco; Costa, Roberta

    2015-04-01

    In adults and children, patient-ventilator synchrony is strongly dependent on both the ventilator settings and interface used in applying positive pressure to the airway. The aim of this bench study was to determine whether different interfaces and ventilator settings may influence patient-ventilator interaction in pediatric models of normal and mixed obstructive and restrictive respiratory conditions. A test lung, connected to a pediatric mannequin using different interfaces (endotracheal tube [ETT], face mask, and helmet), was ventilated in pressure support ventilation mode testing 2 ventilator settings (pressurization time [Timepress]50%/cycling-off flow threshold [Trexp]25%, Timepress80%/Trexp60%), randomly applied. The test lung was set to simulate one pediatric patient with a healthy respiratory system and another with a mixed obstructive and restricted respiratory condition, at different breathing frequencies (f) (30, 40, and 50 breaths/min). We measured inspiratory trigger delay, pressurization time, expiratory trigger delay, and time of synchrony. At each breathing frequency, the helmet showed the longest inspiratory trigger delay compared with the ETT and face mask. At f30, the ETT had a reduced Tpress. The helmet had the shortest Tpress in the simulated child with a mixed obstructive and restricted respiratory condition, at f40 during Timepress50%/Trexp25% and at f50 during Timepress80%/Trexp60%. In the simulated child with a normal respiratory condition, the ETT presented the shortest Tpress value at f50 during Timepress80%/Trexp60%. Concerning the expiratory trigger delay, the helmet showed the best interaction at f30, but the worst at f40 and at f50. The helmet showed the shortest time of synchrony during all ventilator settings. The choice of the interface can influence patient-ventilator synchrony in a pediatric model breathing at increased f, thus making it more difficult to set the ventilator, particularly during noninvasive ventilation. The helmet demonstrated the worst interaction, suggesting that the face mask should be considered as the first choice for delivering noninvasive ventilation in a pediatric model. Copyright © 2015 by Daedalus Enterprises.

  15. Development and application of a double-piston configured, total-liquid ventilatory support device.

    PubMed

    Meinhardt, J P; Quintel, M; Hirschl, R B

    2000-05-01

    Perfluorocarbon liquid ventilation has been shown to enhance pulmonary mechanics and gas exchange in the setting of respiratory failure. To optimize the total liquid ventilation process, we developed a volume-limited, time-cycled liquid ventilatory support, consisting of an electrically actuated, microprocessor-controlled, double-cylinder, piston pump with two separate limbs for active inspiration and expiration. Prospective, controlled, animal laboratory study, involving sequential application of conventional gas ventilation, partial ventilation (PLV), and total liquid ventilation (TLV). Research facility at a university medical center. A total of 12 normal adult New Zealand rabbits weighing 3.25+/-0.1 kg. Anesthestized rabbits were supported with gas ventilation for 30 mins (respiratory rate, 20 cycles/min; peak inspiratory pressure, 15 cm H2O; end-expiratory pressure, 5 cm H2O), then PLV was established with perflubron (12 mL/kg). After 15 mins, TLV was instituted (tidal volume, 18 mL/kg; respiratory rate, 7 cycles/min; inspiratory/expiratory ratio, 1:2 cycles/min). After 4 hrs of TLV, PLV was re-established. Of 12 animals, nine survived the 4-hr TLV period. During TLV, mean values +/- SEM were as follows: PaO2, 363+/-30 torr; PaCO2, 39+/-1.5 torr; pH, 7.39+/-0.01; static peak inspiratory pressure, 13.2+/-0.2 cm H2O; static endexpiratory pressure, 5.5+/-0.1 cm H2O. No significant changes were observed. When compared with gas ventilation and PLV, significant increases occurred in mean arterial pressure (62.4+/-3.5 torr vs. 74.0+/-1.2 torr) and central venous pressure (5.6+/-0.7 cm H2O vs. 7.8+/-0.2 cm H2O) (p < .05). Total liquid ventilation can be performed successfully utilizing piston pumps with active expiration. Considering the enhanced flow profiles, this device configuration provides advantages over others.

  16. Decrease in delivery room intubation rates after use of nasal intermittent positive pressure ventilation in the delivery room for resuscitation of very low birth weight infants.

    PubMed

    Biniwale, Manoj; Wertheimer, Fiona

    2017-07-01

    The literature supports minimizing duration of invasive ventilation to decrease lung injury in premature infants. Neonatal Resuscitation Program recommended use of non-invasive ventilation (NIV) in delivery room for infants requiring prolonged respiratory support. To evaluate the impact of implementation of non-invasive ventilation (NIV) using nasal intermittent positive pressure ventilation (NIPPV) for resuscitation in very low birth infants. Retrospective study was performed after NIPPV was introduced in the delivery room and compared with infants receiving face mask to provide positive pressure ventilation for resuscitation of very low birth weight infants prior to its use. Data collected from 119 infants resuscitated using NIPPV and 102 infants resuscitated with a face mask in a single institution. The primary outcome was the need for endotracheal intubation in the delivery room. Data was analyzed using IBM SPSS Statistics software version 24. A total of 31% of infants were intubated in the delivery room in the NIPPV group compared to 85% in the Face mask group (p=<0.001). Chest compression rates were 11% in the NIPPV group and 31% in the Face mask group (p<0.001). Epinephrine administration was also lower in NIPPV group (2% vs. 8%; P=0.03). Only 38% infants remained intubated at 24hours of age in the NIPPV group compared to 66% in the Face mask group (p<0.001). Median duration of invasive ventilation in the NIPPV group was shorter (2days) compared to the Face mask group (11days) (p=0.01). The incidence of air-leaks was not significant between the two groups. NIPPV was safely and effectively used in the delivery room settings to provide respiratory support for VLBW infants with less need for intubation, chest compressions, epinephrine administration and subsequent invasive ventilation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Non-invasive ventilation with intelligent volume-assured pressure support versus pressure-controlled ventilation: effects on the respiratory event rate and sleep quality in COPD with chronic hypercapnia.

    PubMed

    Nilius, Georg; Katamadze, Nato; Domanski, Ulrike; Schroeder, Maik; Franke, Karl-Josef

    2017-01-01

    COPD patients who develop chronic hypercapnic respiratory failure have a poor prognosis. Treatment of choice, especially the best form of ventilation, is not well known. This study compared the effects of pressure-controlled (spontaneous timed [ST]) non-invasive ventilation (NIV) and NIV with intelligent volume-assured pressure support (IVAPS) in chronic hypercapnic COPD patients regarding the effects on alveolar ventilation, adverse patient/ventilator interactions and sleep quality. This prospective, single-center, crossover study randomized patients to one night of NIV using ST then one night with the IVAPS function activated, or vice versa. Patients were monitored using polysomnography (PSG) and transcutaneous carbon dioxide pressure (PtcCO 2 ) measurement. Patients rated their subjective experience (total score, 0-45; lower scores indicate better acceptability). Fourteen patients were included (4 females, age 59.4±8.9 years). The total number of respiratory events was low, and similar under pressure-controlled (5.4±6.7) and IVAPS (8.3±10.2) conditions ( P =0.064). There were also no clinically relevant differences in PtcCO 2 between pressure-controlled and IVAPS NIV (52.9±6.2 versus 49.1±6.4 mmHg). Respiratory rate was lower under IVAPS overall; between-group differences reached statistical significance during wakefulness and non-rapid eye movement sleep. Ventilation pressures were 2.6 cmH 2 O higher under IVAPS versus pressure-controlled ventilation, resulting in a 20.1 mL increase in breathing volume. Sleep efficiency was slightly higher under pressure-controlled ventilation versus IVAPS. Respiratory arousals were uncommon (24.4/h [pressure-controlled] versus 25.4/h [IVAPS]). Overall patient assessment scores were similar, although there was a trend toward less discomfort during IVAPS. Our results show that IVAPS NIV allows application of higher nocturnal ventilation pressures versus ST without affecting sleep quality or inducing ventilation- associated events.

  18. Ventilation/odor study, field study. Final report, Volume I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffee, R.A.; Jann, P.

    1981-04-01

    The results are presented of field investigations in schools, hospitals, and an office building on the relation between ventilation rate and odor within the buildings. The primary objective of the study was to determine: the reduction in ventilation rates that could be achieved in public buildings without causing adverse effects on odor; the sources of odor in public buildings; and the identity of the odorants. The variables of particular interest include: type of odor, occupant density, odorant identity and concentration, differences in impressions between occupants adapted to prevailing conditions and visitors, and the influence of temperature and humidity on bothmore » the generation and perception of common contaminants. Sensory odor measurements, chemical measurements, fresh air ventilation measurements, and acceptability evaluations via questionnaires were made. Sensory odor levels were found to be quite low in most buildings tested. A three-to-five-fold reduction in the fresh air ventilation in schools, hospitals, and office buildings can be achieved without significantly affecting perceived odor intensities or detectability. Tobacco smoking was found to be the most significant, pervasive contributor to interior odor level. Total hydrocarbon content of indoor air varies directly with ventilation rates; odor, however, does not. The complete set of reduced data are contained in Volume II. (LEW)« less

  19. Space Suit Portable Life Support System Rapid Cycle Amine Repackaging and Sub-Scale Test Results

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Rivera, Fatonia L.

    2010-01-01

    NASA is developing technologies to meet requirements for an extravehicular activity (EVA) Portable Life Support System (PLSS) for exploration. The PLSS Ventilation Subsystem transports clean, conditioned oxygen to the pressure garment for space suit pressurization and human consumption, and recycles the ventilation gas, removing carbon dioxide, humidity, and trace contaminants. This paper provides an overview of the development efforts conducted at the NASA Johnson Space Center to redesign the Rapid Cycle Amine (RCA) canister and valve assembly into a radial flow, cylindrical package for carbon dioxide and humidity control of the PLSS ventilation loop. Future work is also discussed.

  20. Response of Preterm Infants to 2 Noninvasive Ventilatory Support Systems: Nasal CPAP and Nasal Intermittent Positive-Pressure Ventilation.

    PubMed

    Silveira, Carmen Salum Thomé; Leonardi, Kamila Maia; Melo, Ana Paula Carvalho Freire; Zaia, José Eduardo; Brunherotti, Marisa Afonso Andrade

    2015-12-01

    Noninvasive ventilation (NIV) in preterm infants is currently applied using intermittent positive pressure (2 positive-pressure levels) or in a conventional manner (one pressure level). However, there are no studies in the literature comparing the chances of failure of these NIV methods. The aim of this study was to evaluate the occurrence of failure of 2 noninvasive ventilatory support systems in preterm neonates over a period of 48 h. A randomized, prospective, clinical study was conducted on 80 newborns (gestational age < 37 weeks, birthweight < 2,500 g). The infants were randomized into 2 groups: 40 infants were treated with nasal CPAP and 40 infants with nasal intermittent positive-pressure ventilation (NIPPV). The occurrence of apnea, progression of respiratory distress, nose bleeding, and agitation was defined as ventilation failure. The need for intubation and re-intubation after failure was also observed. There were no significant differences in birth characteristics between groups. Ventilatory support failure was observed in 25 (62.5%) newborns treated with nasal CPAP and in 12 (30%) newborns treated with NIPPV, indicating an association between NIV failure and the absence of intermittent positive pressure (odds ratio [OR] 1.22, P < .05). Apnea (32.5%) was the main reason for nasal CPAP failure. After failure, 25% (OR 0.33) of the newborns receiving nasal CPAP and 12.5% (OR 0.14) receiving NIPPV required invasive mechanical ventilation. Ventilatory support failure was significantly more frequent when nasal CPAP was used. Copyright © 2015 by Daedalus Enterprises.

  1. Special Considerations in Neonatal Mechanical Ventilation.

    PubMed

    Dalgleish, Stacey; Kostecky, Linda; Charania, Irina

    2016-12-01

    Care of infants supported with mechanical ventilation is complex, time intensive, and requires constant vigilance by an expertly prepared health care team. Current evidence must guide nursing practice regarding ventilated neonates. This article highlights the importance of common language to establish a shared mental model and enhance clear communication among the interprofessional team. Knowledge regarding the underpinnings of an open lung strategy and the interplay between the pathophysiology and individual infant's response to a specific ventilator strategy is most likely to result in a positive clinical outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    PubMed

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-06

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  3. Impact of ventilation systems and energy savings in a building on the mechanisms governing the indoor radon activity concentration.

    PubMed

    Collignan, Bernard; Powaga, Emilie

    2017-11-23

    For a given radon potential in the ground and a given building, the parameters affecting the indoor radon activity concentration (IRnAC) are indoor depressurization of a building and its air change rate. These parameters depend mainly on the building characteristics, such as airtightness, and on the nature and performances of the ventilation system. This study involves a numerical sensitivity assessment of the indoor environmental conditions on the IRnAC in buildings. A numerical ventilation model has been adapted to take into account the effects of variations in the indoor environmental conditions (depressurization and air change rate) on the radon entry rate and on the IRnAC. In the context of the development of a policy to reduce energy consumption in a building, the results obtained showed that IRnAC could be strongly affected by variations in the air permeability of the building associated with the ventilation regime. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ventilatory changes during the use of heat and moisture exchangers in patients submitted to mechanical ventilation with support pressure and adjustments in ventilation parameters to compensate for these possible changes: a self-controlled intervention study in humans.

    PubMed

    Lucato, Jeanette Janaina Jaber; Cunha, Thiago Marraccini Nogueira da; Reis, Aline Mela Dos; Picanço, Patricia Salerno de Almeida; Barbosa, Renata Cléia Claudino; Liberali, Joyce; Righetti, Renato Fraga

    2017-01-01

    To evaluate the possible changes in tidal volume, minute volume and respiratory rate caused by the use of a heat and moisture exchanger in patients receiving pressure support mechanical ventilation and to quantify the variation in pressure support required to compensate for the effect caused by the heat and moisture exchanger. Patients under invasive mechanical ventilation in pressure support mode were evaluated using heated humidifiers and heat and moisture exchangers. If the volume found using the heat and moisture exchangers was lower than that found with the heated humidifier, an increase in pressure support was initiated during the use of the heat and moisture exchanger until a pressure support value was obtained that enabled the patient to generate a value close to the initial tidal volume obtained with the heated humidifier. The analysis was performed by means of the paired t test, and incremental values were expressed as percentages of increase required. A total of 26 patients were evaluated. The use of heat and moisture exchangers increased the respiratory rate and reduced the tidal and minute volumes compared with the use of the heated humidifier. Patients required a 38.13% increase in pressure support to maintain previous volumes when using the heat and moisture exchanger. The heat and moisture exchanger changed the tidal and minute volumes and respiratory rate parameters. Pressure support was increased to compensate for these changes.

  5. Risk factors for respiratory failure of motor neuron disease in a multiracial Asian population.

    PubMed

    Deng, Xiao; Hao, Ying; Xiao, Bin; Tan, Eng-King; Lo, Yew-Long

    2017-05-01

    Motor neuron disease (MND) is a devastating degenerative disorder. Amyotrophic Lateral Sclerosis (ALS) is the most common and severe form of MND. Respiratory failure arising from ventilator musculature atrophy is the most common cause of death for ALS patients. Exploring the factors correlated with respiratory failure can contribute to disease management. To characterize the clinical features of MND and determine the factors that may affect respiratory failure of MND patients. The case records of all MND patients seen in Singapore General Hospital (SGH) between January 2004 and December 2014 were examined. Demographic, clinical information were collected by reviewing case records. Mortality data, if not available from records, were obtained via phone call interview of family members. Demographic data and clinical treatments were compared between Respiratory support group and Non-respiratory support group. There were 73 patients included in our study. 49 (67.1%) patients died during follow-up. The mean age of onset was 58±11.1years. With regard to treatment, 63% needed feeding support, and 42.5% required ventilation aid. The median overall survival was 36months from symptom onset. Chi-square tests showed there was significantly higher percentage of respiratory support needed in Chinese than in other races (P=0.016). Compared with non-feeding support patients, patients with feeding support were more likely to require assisted ventilation (P=0.001). We report for the first time that the need of feeding support is significantly associated with assisted ventilation. Chinese MND patients may be more inclined to require respiratory support. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Ventilatory changes during the use of heat and moisture exchangers in patients submitted to mechanical ventilation with support pressure and adjustments in ventilation parameters to compensate for these possible changes: a self-controlled intervention study in humans

    PubMed Central

    Lucato, Jeanette Janaina Jaber; da Cunha, Thiago Marraccini Nogueira; dos Reis, Aline Mela; Picanço, Patricia Salerno de Almeida; Barbosa, Renata Cléia Claudino; Liberali, Joyce; Righetti, Renato Fraga

    2017-01-01

    Objective To evaluate the possible changes in tidal volume, minute volume and respiratory rate caused by the use of a heat and moisture exchanger in patients receiving pressure support mechanical ventilation and to quantify the variation in pressure support required to compensate for the effect caused by the heat and moisture exchanger. Methods Patients under invasive mechanical ventilation in pressure support mode were evaluated using heated humidifiers and heat and moisture exchangers. If the volume found using the heat and moisture exchangers was lower than that found with the heated humidifier, an increase in pressure support was initiated during the use of the heat and moisture exchanger until a pressure support value was obtained that enabled the patient to generate a value close to the initial tidal volume obtained with the heated humidifier. The analysis was performed by means of the paired t test, and incremental values were expressed as percentages of increase required. Results A total of 26 patients were evaluated. The use of heat and moisture exchangers increased the respiratory rate and reduced the tidal and minute volumes compared with the use of the heated humidifier. Patients required a 38.13% increase in pressure support to maintain previous volumes when using the heat and moisture exchanger. Conclusion The heat and moisture exchanger changed the tidal and minute volumes and respiratory rate parameters. Pressure support was increased to compensate for these changes. PMID:28977257

  7. Transition from in-hospital ventilation to home ventilation: process description and quality indicators

    PubMed Central

    Kastrup, Marc; Tittmann, Benjamin; Sawatzki, Tanja; Gersch, Martin; Vogt, Charlotte; Rosenthal, Max; Rosseau, Simone; Spies, Claudia

    2017-01-01

    The current demographic development of our society results in an increasing number of elderly patients with chronic diseases being treated in the intensive care unit. A possible long-term consequence of such a treatment is that patients remain dependent on certain invasive organ support systems, such as long-term ventilator dependency. The main goal of this project is to define the transition process between in-hospital and out of hospital (ambulatory) ventilator support. A further goal is to identify evidence-based quality indicators to help define and describe this process. This project describes an ideal sequence of processes (process chain), based on the current evidence from the literature. Besides the process chain, key data and quality indicators were described in detail. Due to the limited project timeline, these indicators were not extensively tested in the clinical environment. The results of this project may serve as a solid basis for proof of feasibility and proof of concept investigations, optimize the transition process of ventilator-dependent patients from a clinical to an ambulatory setting, as well as reduce the rate of emergency re-admissions. PMID:29308061

  8. Adaptation to different noninvasive ventilation masks in critically ill patients*

    PubMed Central

    da Silva, Renata Matos; Timenetsky, Karina Tavares; Neves, Renata Cristina Miranda; Shigemichi, Liane Hirano; Kanda, Sandra Sayuri; Maekawa, Carla; Silva, Eliezer; Eid, Raquel Afonso Caserta

    2013-01-01

    OBJECTIVE: To identify which noninvasive ventilation (NIV) masks are most commonly used and the problems related to the adaptation to such masks in critically ill patients admitted to a hospital in the city of São Paulo, Brazil. METHODS: An observational study involving patients ≥ 18 years of age admitted to intensive care units and submitted to NIV. The reason for NIV use, type of mask, NIV regimen, adaptation to the mask, and reasons for non-adaptation to the mask were investigated. RESULTS: We evaluated 245 patients, with a median age of 82 years. Acute respiratory failure was the most common reason for NIV use (in 71.3%). Total face masks were the most commonly used (in 74.7%), followed by full face masks and near-total face masks (in 24.5% and 0.8%, respectively). Intermittent NIV was used in 82.4% of the patients. Adequate adaptation to the mask was found in 76% of the patients. Masks had to be replaced by another type of mask in 24% of the patients. Adequate adaptation to total face masks and full face masks was found in 75.5% and 80.0% of the patients, respectively. Non-adaptation occurred in the 2 patients using near-total facial masks. The most common reason for non-adaptation was the shape of the face, in 30.5% of the patients. CONCLUSIONS: In our sample, acute respiratory failure was the most common reason for NIV use, and total face masks were the most commonly used. The most common reason for non-adaptation to the mask was the shape of the face, which was resolved by changing the type of mask employed. PMID:24068269

  9. Adaptation to different noninvasive ventilation masks in critically ill patients.

    PubMed

    Silva, Renata Matos da; Timenetsky, Karina Tavares; Neves, Renata Cristina Miranda; Shigemichi, Liane Hirano; Kanda, Sandra Sayuri; Maekawa, Carla; Silva, Eliezer; Eid, Raquel Afonso Caserta

    2013-01-01

    To identify which noninvasive ventilation (NIV) masks are most commonly used and the problems related to the adaptation to such masks in critically ill patients admitted to a hospital in the city of São Paulo, Brazil. An observational study involving patients ≥ 18 years of age admitted to intensive care units and submitted to NIV. The reason for NIV use, type of mask, NIV regimen, adaptation to the mask, and reasons for non-adaptation to the mask were investigated. We evaluated 245 patients, with a median age of 82 years. Acute respiratory failure was the most common reason for NIV use (in 71.3%). Total face masks were the most commonly used (in 74.7%), followed by full face masks and near-total face masks (in 24.5% and 0.8%, respectively). Intermittent NIV was used in 82.4% of the patients. Adequate adaptation to the mask was found in 76% of the patients. Masks had to be replaced by another type of mask in 24% of the patients. Adequate adaptation to total face masks and full face masks was found in 75.5% and 80.0% of the patients, respectively. Non-adaptation occurred in the 2 patients using near-total facial masks. The most common reason for non-adaptation was the shape of the face, in 30.5% of the patients. In our sample, acute respiratory failure was the most common reason for NIV use, and total face masks were the most commonly used. The most common reason for non-adaptation to the mask was the shape of the face, which was resolved by changing the type of mask employed.

  10. Evaluation of ventilators used during transport of critically ill patients: a bench study.

    PubMed

    Boussen, Salah; Gainnier, Marc; Michelet, Pierre

    2013-11-01

    To evaluate the most recent transport ventilators' operational performance regarding volume delivery in controlled mode, trigger function, and the quality of pressurization in pressure support mode. Eight recent transport ventilators were included in a bench study in order to evaluate their accuracy to deliver a set tidal volume under normal resistance and compliance conditions, ARDS conditions, and obstructive conditions. The performance of the triggering system was assessed by the measure of the decrease in pressure and the time delay required to open the inspiratory valve. The quality of pressurization was obtained by computing the integral of the pressure-time curve for the first 300 ms and 500 ms after the onset of inspiration. For the targeted tidal volumes of 300, 500, and 800 mL the errors ranged from -3% to 48%, -7% to 18%, and -5% to 25% in the normal conditions, -4% to 27%, -2% to 35%, and -3% to 35% in the ARDS conditions, and -4% to 53%, -6% to 30%, and -30% to 28% in the obstructive conditions. In pressure support mode the pressure drop range was 0.4-1.7 cm H2O, the trigger delay range was 68-198 ms, and the pressurization performance (percent of ideal pressurization, as measured by pressure-time product at 300 ms and 500 ms) ranges were -9% to 44% at 300 ms and 6%-66% at 500 ms (P < .01). There were important differences in the performance of the tested ventilators. The most recent turbine ventilators outperformed the pneumatic ventilators. The best performers among the turbine ventilators proved comparable to modern ICU ventilators.

  11. Ultrasonographic Evaluation of Diaphragm Thickness During Mechanical Ventilation in Intensive Care Patients.

    PubMed

    Francis, Colin Anthony; Hoffer, Joaquín Andrés; Reynolds, Steven

    2016-01-01

    Mechanical ventilation is associated with atrophy and weakness of the diaphragm. Ultrasound is an easy noninvasive way to track changes in thickness of the diaphragm. To validate ultrasound as a means of tracking thickness of the diaphragm in patients undergoing mechanical ventilation by evaluating interobserver and interoperator reliability and to collect initial data on the relationship of mode of ventilation to changes in the diaphragm. Daily ultrasound images of the quadriceps and the right side of the diaphragm were acquired in 8 critically ill patients receiving various modes of mechanical ventilation. Thickness of the diaphragm and the quadriceps was measured, and changes with time were noted. Interoperator and interobserver reliability were measured. Intraclass correlation coefficients between operators and between observers for thickness of the diaphragm and quadriceps were greater than 0.95, indicating excellent interoperator and interobserver reliability. Patients receiving assist-control ventilation (n = 4) showed a mean decline in diaphragm thickness of 4.7% per day. Patients receiving pressure support ventilation (n = 8) showed a mean increase in diaphragm thickness of 1.5% per day. Quadriceps thickness declined in all participants (n = 8) at a mean rate of 2.0% per day. Use of ultrasound to measure thickness of the diaphragm in 8 intensive care patients undergoing various modes of mechanical ventilation was feasible and yielded reproducible results. Ultrasound tracking of changes in thickness of the diaphragm in this small sample indicated that the thickness decreased during assist-control mode and increased during pressure support mode. ©2016 American Association of Critical-Care Nurses.

  12. Interactive simulation system for artificial ventilation on the internet: virtual ventilator.

    PubMed

    Takeuchi, Akihiro; Abe, Tadashi; Hirose, Minoru; Kamioka, Koichi; Hamada, Atsushi; Ikeda, Noriaki

    2004-12-01

    To develop an interactive simulation system "virtual ventilator" that demonstrates the dynamics of pressure and flow in the respiratory system under the combination of spontaneous breathing, ventilation modes, and ventilator options. The simulation system was designed to be used by unexperienced health care professionals as a self-training tool. The system consists of a simulation controller and three modules: respiratory, spontaneous breath, and ventilator. The respiratory module models the respiratory system by three resistances representing the main airway, the right and left lungs, and two compliances also representing the right and left lungs. The spontaneous breath module generates inspiratory negative pressure produced by a patient. The ventilator module generates driving force of pressure or flow according to the combination of the ventilation mode and options. These forces are given to the respiratory module through the simulation controller. The simulation system was developed using HTML, VBScript (3000 lines, 100 kB) and ActiveX control (120 kB), and runs on Internet Explorer (5.5 or higher). The spontaneous breath is defined by a frequency, amplitude and inspiratory patterns in the spontaneous breath module. The user can construct a ventilation mode by setting a control variable, phase variables (trigger, limit, and cycle), and options. Available ventilation modes are: controlled mechanical ventilation (CMV), continuous positive airway pressure, synchronized intermittent mandatory ventilation (SIMV), pressure support ventilation (PSV), SIMV + PSV, pressure-controlled ventilation (PCV), pressure-regulated volume control (PRVC), proportional assisted ventilation, mandatory minute ventilation (MMV), bilevel positive airway pressure (BiPAP). The simulation system demonstrates in a graph and animation the airway pressure, flow, and volume of the respiratory system during mechanical ventilation both with and without spontaneous breathing. We developed a web application that demonstrated the respiratory mechanics and the basic theory of ventilation mode.

  13. Cost-Effectiveness Analysis of Nasal Continuous Positive Airway Pressure Versus Nasal High Flow Therapy as Primary Support for Infants Born Preterm.

    PubMed

    Huang, Li; Roberts, Calum T; Manley, Brett J; Owen, Louise S; Davis, Peter G; Dalziel, Kim M

    2018-05-01

    To compare the cost-effectiveness of 2 common "noninvasive" modes of respiratory support for infants born preterm. An economic evaluation was conducted as a component of a multicenter, randomized control trial from 2013 to 2015 enrolling infants born preterm at ≥28 weeks of gestation with respiratory distress, <24 hours old, who had not previously received endotracheal intubation and mechanical ventilation or surfactant. The economic evaluation was conducted from a healthcare sector perspective and the time horizon was from birth until death or first discharge. The cost-effectiveness of continuous positive airway pressure (CPAP) vs high-flow with "rescue" CPAP backup and high-flow without rescue CPAP backup (as sole primary support) were analyzed by using the hospital cost of inpatient stay in a tertiary center and the rates of endotracheal intubation and mechanical ventilation during admission. Hospital inpatient cost records for 435 infants enrolled in all Australian centers were obtained. With "rescue" CPAP backup, an incremental cost-effectiveness ratio was estimated of A$179 000 (US$123 000) per ventilation avoided if CPAP was used compared with high flow. Without rescue CPAP backup, cost per ventilation avoided was A$7000 (US$4800) if CPAP was used compared with high flow. As sole primary support, CPAP is highly likely to be cost-effective compared with high flow. Neonatal units choosing to use only one device should apply CPAP as primary respiratory support. Compared with high-flow with rescue CPAP backup, CPAP is unlikely to be cost-effective if willingness to pay per ventilation avoided is less than A$179 000 (US$123 000). Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Performance of ICU ventilators during noninvasive ventilation with large leaks in a total face mask: a bench study.

    PubMed

    Nakamura, Maria Aparecida Miyuki; Costa, Eduardo Leite Vieira; Carvalho, Carlos Roberto Ribeiro; Tucci, Mauro Roberto

    2014-01-01

    Discomfort and noncompliance with noninvasive ventilation (NIV) interfaces are obstacles to NIV success. Total face masks (TFMs) are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP) levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection); three worked with some problems (low PEEP or high cycling delay); and one worked properly. The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM.

  15. Hyperbaric intensive care technology and equipment.

    PubMed

    Millar, Ian L

    2015-03-01

    In an emergency, life support can be provided during recompression or hyperbaric oxygen therapy using very basic equipment, provided the equipment is hyperbaric-compatible and the clinicians have appropriate experience. For hyperbaric critical care to be provided safely on a routine basis, however, a great deal of preparation and specific equipment is needed, and relatively few facilities have optimal capabilities at present. The type, size and location of the chamber are very influential factors. Although monoplace chamber critical care is possible, it involves special adaptations and inherent limitations that make it inappropriate for all but specifically experienced teams. A large, purpose-designed chamber co-located with an intensive care unit is ideal. Keeping the critically ill patient on their normal bed significantly improves quality of care where this is possible. The latest hyperbaric ventilators have resolved many of the issues normally associated with hyperbaric ventilation, but at significant cost. Multi-parameter monitoring is relatively simple with advanced portable monitors, or preferably installed units that are of the same type as used elsewhere in the hospital. Whilst end-tidal CO₂ readings are changed by pressure and require interpretation, most other parameters display normally. All normal infusions can be continued, with several examples of syringe drivers and infusion pumps shown to function essentially normally at pressure. Techniques exist for continuous suction drainage and most other aspects of standard critical care. At present, the most complex life support technologies such as haemofiltration, cardiac assist devices and extra-corporeal membrane oxygenation remain incompatible with the hyperbaric environment.

  16. Impact of endotracheal tube shortening on work of breathing in neonatal and pediatric in vitro lung models.

    PubMed

    Mohr, Rebecca; Thomas, Jörg; Cannizzaro, Vincenzo; Weiss, Markus; Schmidt, Alexander R

    2017-09-01

    Work of breathing accounts for a significant proportion of total oxygen consumption in neonates and infants. Endotracheal tube inner diameter and length significantly affect airflow resistance and thus work of breathing. While endotracheal tube shortening reduces endotracheal tube resistance, the impact on work of breathing in mechanically ventilated neonates and infants remains unknown. The objective of this in vitro study was to quantify the effect of endotracheal tube shortening on work of breathing in simulated pediatric lung settings. We hypothesized that endotracheal tube shortening significantly reduces work of breathing. We used the Active-Servo-Lung 5000 to simulate different clinical scenarios in mechanically ventilated infants and neonates under spontaneous breathing with and without pressure support. Endotracheal tube size, lung resistance, and compliance, as well as respiratory settings such as respiratory rate and tidal volume were weight and age adapted for each lung model. Work of breathing was measured before and after maximal endotracheal tube shortening and the reduction of the daily energy demand calculated. Tube shortening with and without pressure support decreased work of breathing to a maximum of 10.1% and 8.1%, respectively. As a result, the calculated reduction of total daily energy demand by endotracheal tube shortening was between 0.002% and 0.02%. In this in vitro lung model, endotracheal tube shortening had minimal effects on work of breathing. Moreover, the calculated percentage reduction of the total daily energy demand after endotracheal tube shortening was minimal. © 2017 John Wiley & Sons Ltd.

  17. Thermoregulation and ventilation of termite mounds.

    PubMed

    Korb, Judith

    2003-05-01

    Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO(2) concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.

  18. Thermoregulation and ventilation of termite mounds

    NASA Astrophysics Data System (ADS)

    Korb, Judith

    2003-05-01

    Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO2 concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.

  19. The comparison of manual and LabVIEW-based fuzzy control on mechanical ventilation.

    PubMed

    Guler, Hasan; Ata, Fikret

    2014-09-01

    The aim of this article is to develop a knowledge-based therapy for management of rats with respiratory distress. A mechanical ventilator was designed to achieve this aim. The designed ventilator is called an intelligent mechanical ventilator since fuzzy logic was used to control the pneumatic equipment according to the rat's status. LabVIEW software was used to control all equipments in the ventilator prototype and to monitor respiratory variables in the experiment. The designed ventilator can be controlled both manually and by fuzzy logic. Eight female Wistar-Albino rats were used to test the designed ventilator and to show the effectiveness of fuzzy control over manual control on pressure control ventilation mode. The anesthetized rats were first ventilated for 20 min manually. After that time, they were ventilated for 20 min by fuzzy logic. Student's t-test for p < 0.05 was applied to the measured minimum, maximum and mean peak inspiration pressures to analyze the obtained results. The results show that there is no statistical difference in the rat's lung parameters before and after the experiments. It can be said that the designed ventilator and developed knowledge-based therapy support artificial respiration of living things successfully. © IMechE 2014.

  20. Evaluation of three automatic oxygen therapy control algorithms on ventilated low birth weight neonates.

    PubMed

    Morozoff, Edmund P; Smyth, John A

    2009-01-01

    Neonates with under developed lungs often require oxygen therapy. During the course of oxygen therapy, elevated levels of blood oxygenation, hyperoxemia, must be avoided or the risk of chronic lung disease or retinal damage is increased. Low levels of blood oxygen, hypoxemia, may lead to permanent brain tissue damage and, in some cases, mortality. A closed loop controller that automatically administers oxygen therapy using 3 algorithms - state machine, adaptive model, and proportional integral derivative (PID) - is applied to 7 ventilated low birth weight neonates and compared to manual oxygen therapy. All 3 automatic control algorithms demonstrated their ability to improve manual oxygen therapy by increasing periods of normoxemia and reducing the need for manual FiO(2) adjustments. Of the three control algorithms, the adaptive model showed the best performance with 0.25 manual adjustments per hour and 73% time spent within target +/- 3% SpO(2).

  1. Facilitated sensemaking: a feasibility study for the provision of a family support program in the intensive care unit.

    PubMed

    Davidson, Judy E; Daly, Barbara J; Agan, Donna; Brady, Noreen R; Higgins, Patricia A

    2010-01-01

    Family members of intensive care unit patients may develop anxiety, depression, and/or posttraumatic stress syndrome. Approaches to prevention are not well defined. Before testing preventive measures, it is important to evaluate which interventions the family will accept, use, and value. The purpose of this study was to evaluate the feasibility of an intervention for support for families of mechanically ventilated adults, grounded in a new midrange nursing theory titled "Facilitated Sensemaking." Families were provided a kit of supplies and the primary investigator coached families on how to obtain information, interpret surroundings, and participate in care. Participants were asked to complete an adapted Critical Care Family Needs Inventory and Family Support Program evaluation. Family members of 30 patients consented to participate; 22 participants completed the surveys. Internal consistency reliability of the adapted Critical Care Family Needs Inventory was high (alpha = .96). Results validated the importance of informational needs and provided a score indicating the family member's perception of how well each need was met, weighted by importance, which identified performance improvement opportunities for use by clinical managers. The program evaluation confirmed that families will use this format of support and find it helpful. Personal care supplies (eg, lotion, lip balm) were universally well received. Forty-two referrals to ancillary service were made. Operational issues to improve services were identified. As proposed in the Facilitated Sensemaking model, family members welcomed interventions targeted to help make sense of the new situation and make sense of their new role as caregiver. Planned supportive interventions were perceived as helpful.

  2. ARDS: challenges in patient care and frontiers in research.

    PubMed

    Bos, Lieuwe D; Martin-Loeches, Ignacio; Schultz, Marcus J

    2018-03-31

    This review discusses the clinical challenges associated with ventilatory support and pharmacological interventions in patients with acute respiratory distress syndrome (ARDS). In addition, it discusses current scientific challenges facing researchers when planning and performing trials of ventilatory support or pharmacological interventions in these patients.Noninvasive mechanical ventilation is used in some patients with ARDS. When intubated and mechanically ventilated, ARDS patients should be ventilated with low tidal volumes. A plateau pressure <30 cmH 2 O is recommended in all patients. It is suggested that a plateau pressure <15 cmH 2 O should be considered safe. Patient with moderate and severe ARDS should receive higher levels of positive end-expiratory pressure (PEEP). Rescue therapies include prone position and neuromuscular blocking agents. Extracorporeal support for decapneisation and oxygenation should only be considered when lung-protective ventilation is no longer possible, or in cases of refractory hypoxaemia, respectively. Tracheotomy is only recommended when prolonged mechanical ventilation is expected.Of all tested pharmacological interventions for ARDS, only treatment with steroids is considered to have benefit.Proper identification of phenotypes, known to respond differently to specific interventions, is increasingly considered important for clinical trials of interventions for ARDS. Such phenotypes could be defined based on clinical parameters, such as the arterial oxygen tension/inspiratory oxygen fraction ratio, but biological marker profiles could be more promising. Copyright ©ERS 2018.

  3. Trauma patients meeting both Centers for Disease Control and Prevention's definitions for ventilator-associated pneumonia had worse outcomes than those meeting only one.

    PubMed

    Younan, Duraid; Griffin, Russell; Swain, Thomas; Pittet, Jean-Francois; Camins, Bernard

    2017-08-01

    The Centers for Disease Control and Prevention's National Healthcare Safety Network (NHSN) replaced its old definition for ventilator-associated pneumonia (VAP) with the ventilator-associated events algorithm in 2013. We sought to compare the outcome of trauma patients meeting the definitions for VAP in the two modules. Trauma patients with blunt or penetrating injuries and with at least 2 d of ventilator support were identified from the trauma registry from 2013 to 2014. VAP was determined using two methods: (1) VAP as defined by the "old," clinically based NHSN definition and (2) possible VAP as defined by the updated "new" NHSN definition. Cohen's kappa statistic was determined to compare the two definitions for VAP. To compare demographic and clinical outcomes, the chi-square and Student's t-tests were used for categorical and continuous variables, respectively. From 2013 to 2014, there were 1165 trauma patients admitted who had at least 2 d of ventilator support. Seventy-eight patients (6.6%) met the "new" NHSN definition for possible VAP, 361 patients (30.9%) met the "old" definition of VAP, and 68 patients (5.8%) met both definitions. The kappa statistic between VAP as defined by the "new" and "old" definitions was 0.22 (95% confidence interval, 0.17-0.27). There were no differences in age, gender, race, or injury severity score when comparing patients who met the different definitions. Those satisfying both definitions had longer ventilator support days (P = 0.0009), intensive care unit length of stay (LOS; P = 0.0003), and hospital LOS (P = 0.0344) when compared with those meeting only one definition. There was no difference in mortality for those meeting both and those meeting the old definition for VAP; patients meeting both definitions had higher respiratory rate at arrival (P = 0.0178). There was no difference in mortality between patients meeting the "old" and "new" NHSN definitions for VAP; those who met "both" definitions had longer ventilator support days, intensive care unit, and hospital LOS. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effective ventilation: The most critical intervention for successful delivery room resuscitation.

    PubMed

    Foglia, Elizabeth E; Te Pas, Arjan B

    2018-04-17

    Lung aeration is the critical first step that triggers the transition from fetal to postnatal cardiopulmonary physiology after birth. When an infant is apneic or does not breathe sufficiently, intervention is needed to support this transition. Effective ventilation is therefore the cornerstone of neonatal resuscitation. In this article, we review the physiology of cardiopulmonary transition at birth, with particular attention to factors the caregiver should consider when providing ventilation. We then summarize the available clinical evidence for strategies to monitor and perform positive pressure ventilation in the delivery room setting. © 2018 Published by Elsevier Ltd.

  5. Technical aspects and clinical implications of high frequency jet ventilation with a solenoid valve.

    PubMed

    Carlon, G C; Miodownik, S; Ray, C; Kahn, R C

    1981-01-01

    High frequency jet ventilation (HFJV) is an incompletely studied technique of mechanical respiratory support. The authors have built a ventilator based on a solenoid valve, that allows independent selection of respiratory rate and inspiratory/expiratory ratio. The ventilator can be synchronized to the heart rate. Humidification is provided by warm saline dripped in front of the injector nozzle, so that the jet stream itself acts as a nebulizer. Tube diameter, length, and deformability are fundamental determinants of inspiratory flow rate and wave form. Cannula kinking and inadequate humidification were the most significant sources of complications.

  6. Ventilation in the patient with unilateral lung disease.

    PubMed

    Thomas, A R; Bryce, T L

    1998-10-01

    Severe ULD presents a challenge in ventilator management because of the marked asymmetry in the mechanics of the two lungs. The asymmetry may result from significant decreases or increases in the compliance of the involved lung. Traditional ventilator support may fail to produce adequate gas exchange in these situations and has the potential to cause further deterioration. Fortunately, conventional techniques can be safely and effectively applied in the majority of cases without having to resort to less familiar and potentially hazardous forms of support. In those circumstances when conventional ventilation is unsuccessful in restoring adequate gas exchange, lateral positioning and ILV have proved effective at improving and maintaining gas exchange. Controlled trials to guide clinical decision making are lacking. In patients who have processes associated with decreased compliance in the involved lung, lateral positioning may be a simple method of improving gas exchange but is associated with many practical limitations. ILV in these patients is frequently successful when differential PEEP is applied with the higher pressure to the involved lung. In patients in whom the pathology results in distribution of ventilation favoring the involved lung, particularly BPF, ILV can be used to supply adequate support while minimizing flow through the fistula and allowing it to close. The application of these techniques should be undertaken with an understanding of the pathophysiology of the underlying process; the reported experience with these techniques, including indications and successfully applied methods; and the potential problems encountered with their use. Fortunately, these modalities are infrequently required, but they provide a critical means of support when conventional techniques fail.

  7. Inhaled Epoprostenol Through Noninvasive Routes of Ventilator Support Systems.

    PubMed

    Ammar, Mahmoud A; Sasidhar, Madhu; Lam, Simon W

    2018-06-01

    The administration of inhaled epoprostenol (iEPO) through noninvasive routes of ventilator support systems has never been previously evaluated. Describe the use of iEPO when administered through noninvasive routes of ventilator support systems. Critically ill patients admitted to the intensive care unit who received iEPO through noninvasive routes were analyzed. Improvements in respiratory status and hemodynamic parameters were evaluated. Safety end points assessed included hypotension, rebound hypoxemia, significant bleeding, and thrombocytopenia. A total of 36 patients received iEPO through noninvasive routes: high-flow oxygen therapy through nasal cannula, n = 29 (81%) and noninvasive positive-pressure ventilation, n = 7 (19%). Sixteen patients had improvement in their respiratory status: mean decrease in fraction of inspired oxygen (FiO 2 ), 20% ± 13%; mean increase in partial pressure of arterial oxygen to FiO 2 (PaO 2 /FiO 2 ) ratio, 60 ± 50 mm Hg; and mean decrease in HFNC oxygen flow rate, 6 ± 3 liters per minute (LPM). Eight patients had declines in their respiratory status (mean increase in FiO 2 , 30% ± 20%; mean decrease in PaO 2 /FiO 2 ratio, 38 ± 20 mm Hg; and mean increase in HFNC oxygen flow rate, 15 ± 10 LPM), and 12 patients had no change in their respiratory status. Conclusion and Relevance: This represents the first evaluation of the administration of iEPO through noninvasive routes of ventilator support systems and demonstrates that in critically ill patients, iEPO could be administered through a noninvasive route. Further evaluation is needed to determine the extent of benefit with this route of administration.

  8. The respiratory system during resuscitation: a review of the history, risk of infection during assisted ventilation, respiratory mechanics, and ventilation strategies for patients with an unprotected airway.

    PubMed

    Wenzel, V; Idris, A H; Dörges, V; Nolan, J P; Parr, M J; Gabrielli, A; Stallinger, A; Lindner, K H; Baskett, P J

    2001-05-01

    The fear of acquiring infectious diseases has resulted in reluctance among healthcare professionals and the lay public to perform mouth-to-mouth ventilation. However, the benefit of basic life support for a patient in cardiopulmonary or respiratory arrest greatly outweighs the risk for secondary infection in the rescuer or the patient. The distribution of ventilation volume between lungs and stomach in the unprotected airway depends on patient variables such as lower oesophageal sphincter pressure, airway resistance and respiratory system compliance, and the technique applied while performing basic or advanced airway support, such as head position, inflation flow rate and time, which determine upper airway pressure. The combination of these variables determines gas distribution between the lungs and the oesophagus and subsequently, the stomach. During bag-valve-mask ventilation of patients in respiratory or cardiac arrest with oxygen supplementation (> or = 40% oxygen), a tidal volume of 6-7 ml kg(-1) ( approximately 500 ml) given over 1-2 s until the chest rises is recommended. For bag-valve-mask ventilation with room-air, a tidal volume of 10 ml kg(-1) (700-1000 ml) in an adult given over 2 s until the chest rises clearly is recommended. During mouth-to-mouth ventilation, a breath over 2 s sufficient to make the chest rise clearly (a tidal volume of approximately 10 ml kg(-1) approximately 700-1000 ml in an adult) is recommended.

  9. TU-G-BRA-02: Can We Extract Lung Function Directly From 4D-CT Without Deformable Image Registration?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipritidis, J; Woodruff, H; Counter, W

    Purpose: Dynamic CT ventilation imaging (CT-VI) visualizes air volume changes in the lung by evaluating breathing-induced lung motion using deformable image registration (DIR). Dynamic CT-VI could enable functionally adaptive lung cancer radiation therapy, but its sensitivity to DIR parameters poses challenges for validation. We hypothesize that a direct metric using CT parameters derived from Hounsfield units (HU) alone can provide similar ventilation images without DIR. We compare the accuracy of Direct and Dynamic CT-VIs versus positron emission tomography (PET) images of inhaled {sup 68}Ga-labelled nanoparticles (‘Galligas’). Methods: 25 patients with lung cancer underwent Galligas 4D-PET/CT scans prior to radiation therapy.more » For each patient we produced three CT- VIs. (i) Our novel method, Direct CT-VI, models blood-gas exchange as the product of air and tissue density at each lung voxel based on time-averaged 4D-CT HU values. Dynamic CT-VIs were produced by evaluating: (ii) regional HU changes, and (iii) regional volume changes between the exhale and inhale 4D-CT phase images using a validated B-spline DIR method. We assessed the accuracy of each CT-VI by computing the voxel-wise Spearman correlation with free-breathing Galligas PET, and also performed a visual analysis. Results: Surprisingly, Direct CT-VIs exhibited better global correlation with Galligas PET than either of the dynamic CT-VIs. The (mean ± SD) correlations were (0.55 ± 0.16), (0.41 ± 0.22) and (0.29 ± 0.27) for Direct, Dynamic HU-based and Dynamic volume-based CT-VIs respectively. Visual comparison of Direct CT-VI to PET demonstrated similarity for emphysema defects and ventral-to-dorsal gradients, but inability to identify decreased ventilation distal to tumor-obstruction. Conclusion: Our data supports the hypothesis that Direct CT-VIs are as accurate as Dynamic CT-VIs in terms of global correlation with Galligas PET. Visual analysis, however, demonstrated that different CT-VI algorithms might have varying accuracy depending on the underlying cause of ventilation abnormality. This research was supported by a National Health and Medical Research Council (NHMRC) Australia Fellowship, an Cancer Institute New South Wales Early Career Fellowship 13-ECF-1/15 and NHMRC scholarship APP1038399. No commercial funding was received for this work.« less

  10. Football Equipment Removal Improves Chest Compression and Ventilation Efficacy.

    PubMed

    Mihalik, Jason P; Lynall, Robert C; Fraser, Melissa A; Decoster, Laura C; De Maio, Valerie J; Patel, Amar P; Swartz, Erik E

    2016-01-01

    Airway access recommendations in potential catastrophic spine injury scenarios advocate for facemask removal, while keeping the helmet and shoulder pads in place for ensuing emergency transport. The anecdotal evidence to support these recommendations assumes that maintaining the helmet and shoulder pads assists inline cervical stabilization and that facial access guarantees adequate airway access. Our objective was to determine the effect of football equipment interference on performing chest compressions and delivering adequate ventilations on patient simulators. We hypothesized that conditions with more football equipment would decrease chest compression and ventilation efficacy. Thirty-two certified athletic trainers were block randomized to participate in six different compression conditions and six different ventilation conditions using human patient simulators. Data for chest compression (mean compression depth, compression rate, percentage of correctly released compressions, and percentage of adequate compressions) and ventilation (total ventilations, mean ventilation volume, and percentage of ventilations delivering adequate volume) conditions were analyzed across all conditions. The fully equipped athlete resulted in the lowest mean compression depth (F5,154 = 22.82; P < 0.001; Effect Size = 0.98) and delivery of adequate compressions (F5,154 = 15.06; P < 0.001; Effect Size = 1.09) compared to all other conditions. Bag-valve mask conditions resulted in delivery of significantly higher mean ventilation volumes compared to all 1- or 2-person pocketmask conditions (F5,150 = 40.05; P < 0.001; Effect Size = 1.47). Two-responder ventilation scenarios resulted in delivery of a greater number of total ventilations (F5,153 = 3.99; P = 0.002; Effect Size = 0.26) and percentage of adequate ventilations (F5,150 = 5.44; P < 0.001; Effect Size = 0.89) compared to one-responder scenarios. Non-chinstrap conditions permitted greater ventilation volumes (F3,28 = 35.17; P < 0.001; Effect Size = 1.78) and a greater percentage of adequate volume (F3,28 = 4.85; P = 0.008; Effect Size = 1.12) compared to conditions with the chinstrap buckled or with the chinstrap in place but not buckled. Chest compression and ventilation delivery are compromised in equipment-intense conditions when compared to conditions whereby equipment was mostly or entirely removed. Emergency medical personnel should remove the helmet and shoulder pads from all football athletes who require cardiopulmonary resuscitation, while maintaining appropriate cervical spine stabilization when injury is suspected. Further research is needed to confirm our findings supporting full equipment removal for chest compression and ventilation delivery.

  11. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage.

    PubMed

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-11-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.

  12. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SEDERBURG, J.P.

    1999-09-30

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

  13. A psychological intervention to promote acceptance and adherence to non-invasive ventilation in people with chronic obstructive pulmonary disease: study protocol of a randomised controlled trial.

    PubMed

    Volpato, Eleonora; Banfi, Paolo; Pagnini, Francesco

    2017-02-06

    People with chronic obstructive pulmonary disease (COPD) sometimes experience anxiety, depression and comorbid cognitive deficits. Rather than being merely a consequence of symptom-related physical impairments these additional problems may be part of the clinical course of the condition. The relationship between the physical and psychological aspects of the condition is illustrated by the patterns of use of non-invasive ventilation (NIV); NIV is often rejected or used inappropriately, resulting in clinical deterioration and an increase in health care costs. The study aims to analyse the effects of psychological support on the acceptance of, and adherence to, NIV. The primary outcome will be a latent variable related to indices of use of NIV equipment and adherence to treatment regime; while survival rates and psychological variables will constitute the secondary outcomes. A two-arm randomised controlled trial will be conducted. We aim to recruit 150 COPD patients for whom NIV is indicated. The experimental group will receive a brief course of psychological support that will include counselling, relaxation and mindfulness-based exercises. In some cases, it will also include neuropsychological rehabilitation exercises. Support will be delivered via four to eight meetings at the HD Respiratory Rehabilitation Unit, at home or via telemedicine. Controls will receive standard care and watch educational videos related to the management of their disease. This investigation will gain insight about the role of a psychological intervention as part of a treatment plan during the process of adaptation to NIV in COPD patients. ClinicalTrials.gov, ID: NCT02499653 . Registered on 14 July 2015.

  14. Understanding nurses' decision-making when managing weaning from mechanical ventilation: a study of novice and experienced critical care nurses in Scotland and Greece.

    PubMed

    Kydonaki, Kalliopi; Huby, Guro; Tocher, Jennifer; Aitken, Leanne M

    2016-02-01

    To examine how nurses collect and use cues from respiratory assessment to inform their decisions as they wean patients from ventilatory support. Prompt and accurate identification of the patient's ability to sustain reduction of ventilatory support has the potential to increase the likelihood of successful weaning. Nurses' information processing during the weaning from mechanical ventilation has not been well-described. A descriptive ethnographic study exploring critical care nurses' decision-making processes when weaning mechanically ventilated patients from ventilatory support in the real setting. Novice and expert Scottish and Greek nurses from two tertiary intensive care units were observed in real practice of weaning mechanical ventilation and were invited to participate in reflective interviews near the end of their shift. Data were analysed thematically using concept maps based on information processing theory. Ethics approval and informed consent were obtained. Scottish and Greek critical care nurses acquired patient-centred objective physiological and subjective information from respiratory assessment and previous knowledge of the patient, which they clustered around seven concepts descriptive of the patient's ability to wean. Less experienced nurses required more encounters of cues to attain the concepts with certainty. Subjective criteria were intuitively derived from previous knowledge of patients' responses to changes of ventilatory support. All nurses used focusing decision-making strategies to select and group cues in order to categorise information with certainty and reduce the mental strain of the decision task. Nurses used patient-centred information to make a judgment about the patients' ability to wean. Decision-making strategies that involve categorisation of patient-centred information can be taught in bespoke educational programmes for mechanical ventilation and weaning. Advanced clinical reasoning skills and accurate detection of cues in respiratory assessment by critical care nurses will ensure optimum patient management in weaning mechanical ventilation. © 2016 John Wiley & Sons Ltd.

  15. Use of a single ventilator to support 4 patients: laboratory evaluation of a limited concept.

    PubMed

    Branson, Richard D; Blakeman, Thomas C; Robinson, Bryce Rh; Johannigman, Jay A

    2012-03-01

    A mass-casualty respiratory failure event where patients exceed available ventilators has spurred several proposed solutions. One proposal is use of a single ventilator to support 4 patients. A ventilator was modified to allow attachment of 4 circuits. Each circuit was connected to one chamber of 2 dual-chambered, test lungs. The ventilator was set at a tidal volume (V(T)) of 2.0 L, respiratory frequency of 10 breaths/min, and PEEP of 5 cm H(2)O. Tests were repeated with pressure targeted breaths at 15 cm H(2)O. Airway pressure, volume, and flow were measured at each chamber. The test lungs were set to simulate 4 patients using combinations of resistance (R) and compliance (C). These included equivalent C and R, constant R and variable C, constant C and variable R, and variable C and variable R. When R and C were equivalent the V(T) distributed to each chamber of the test lung was similar during both volume (range 428-442 mL) and pressure (range 528-544 mL) breaths. Changing C while R was constant resulted in large variations in delivered V(T) (volume range 257-621 mL, pressure range 320-762 mL). Changing R while C was constant resulted in a smaller variation in V(T) (volume range 418-460 mL, pressure range 502-554 mL) compared to only C changes. When R and C were both varied, the range of delivered V(T) in both volume (336-517 mL) and pressure (417-676 mL) breaths was greater, compared to only R changes. Using a single ventilator to support 4 patients is an attractive concept; however, the V(T) cannot be controlled for each subject and V(T) disparity is proportional to the variability in compliance. Along with other practical limitations, these findings cannot support the use of this concept for mass-casualty respiratory failure.

  16. Lung-protective Ventilation in Patients with Brain Injury: A Multicenter Cross-sectional Study and Questionnaire Survey in China

    PubMed Central

    Luo, Xu-Ying; Hu, Ying-Hong; Cao, Xiang-Yuan; Kang, Yan; Liu, Li-Ping; Wang, Shou-Hong; Yu, Rong-Guo; Yu, Xiang-You; Zhang, Xia; Li, Bao-Shan; Ma, Zeng-Xiang; Weng, Yi-Bing; Zhang, Heng; Chen, De-Chang; Chen, Wei; Chen, Wen-Jin; Chen, Xiu-Mei; Du, Bin; Duan, Mei-Li; Hu, Jin; Huang, Yun-Feng; Jia, Gui-Jun; Li, Li-Hong; Liang, Yu-Min; Qin, Bing-Yu; Wang, Xian-Dong; Xiong, Jian; Yan, Li-Mei; Yang, Zheng-Ping; Dong, Chen-Ming; Wang, Dong-Xin; Zhan, Qing-Yuan; Fu, Shuang-Lin; Zhao, Lin; Huang, Qi-Bing; Xie, Ying-Guang; Huang, Xiao-Bo; Zhang, Guo-Bin; Xu, Wang-Bin; Xu, Yuan; Liu, Ya-Ling; Zhao, He-Ling; Sun, Rong-Qing; Sun, Ming; Cheng, Qing-Hong; Qu, Xin; Yang, Xiao-Feng; Xu, Ming; Shi, Zhong-Hua; Chen, Han; He, Xuan; Yang, Yan-Lin; Chen, Guang-Qiang; Sun, Xiu-Mei; Zhou, Jian-Xin

    2016-01-01

    Background: Over the years, the mechanical ventilation (MV) strategy has changed worldwide. The aim of the present study was to describe the ventilation practices, particularly lung-protective ventilation (LPV), among brain-injured patients in China. Methods: This study was a multicenter, 1-day, cross-sectional study in 47 Intensive Care Units (ICUs) across China. Mechanically ventilated patients (18 years and older) with brain injury in a participating ICU during the time of the study, including traumatic brain injury, stroke, postoperation with intracranial tumor, hypoxic-ischemic encephalopathy, intracranial infection, and idiopathic epilepsy, were enrolled. Demographic data, primary diagnoses, indications for MV, MV modes and settings, and prognoses on the 60th day were collected. Multivariable logistic analysis was used to assess factors that might affect the use of LPV. Results: A total of 104 patients were enrolled in the present study, 87 (83.7%) of whom were identified with severe brain injury based on a Glasgow Coma Scale ≤8 points. Synchronized intermittent mandatory ventilation (SIMV) was the most frequent ventilator mode, accounting for 46.2% of the entire cohort. The median tidal volume was set to 8.0 ml/kg (interquartile range [IQR], 7.0–8.9 ml/kg) of the predicted body weight; 50 (48.1%) patients received LPV. The median positive end-expiratory pressure (PEEP) was set to 5 cmH2O (IQR, 5–6 cmH2O). No PEEP values were higher than 10 cmH2O. Compared with partially mandatory ventilation, supportive and spontaneous ventilation practices were associated with LPV. There were no significant differences in mortality and MV duration between patients subjected to LPV and those were not. Conclusions: Among brain-injured patients in China, SIMV was the most frequent ventilation mode. Nearly one-half of the brain-injured patients received LPV. Patients under supportive and spontaneous ventilation were more likely to receive LPV. Trial Registration: ClinicalTrials.org NCT02517073 https://clinicaltrials.gov/ct2/show/NCT02517073. PMID:27411450

  17. Effects of ventilation on hearing loss in preterm neonates: Nasal continuous positive pressure does not increase the risk of hearing loss in ventilated neonates.

    PubMed

    Rastogi, Shantanu; Mikhael, Michel; Filipov, Panayot; Rastogi, Deepa

    2013-03-01

    There is increased risk of hearing loss in preterm neonates. This risk is further increased by environmental noise exposure especially from life support equipment such as ventilation. Nasal continuous positive airway pressure (NCPAP) used for respiratory support of preterm neonates is known to be associated with prolonged exposure to high levels of noise. However, there is paucity of information on the effect of NCPAP as compared to mechanical ventilation on hearing loss among preterm neonates. A retrospective chart review was performed on neonates with birth weight (BW) <1500g. Association of clinical factors including the use of NCPAP and mechanical ventilation with failure of hearing screen were studied. Those who failed hearing screen were followed for 2 years to observe long term effects of NCPAP on the hearing loss. Of 344 neonates included in the study, 61 failed hearing screen. Gestational age (p=0.008), BW (p=0.03), ventilation (p=0.02), intrauterine growth retardation (p=0.02), necrotizing enterocolitis (NEC) (p=0.02), apnea (p<0.001), use of vancomycin (p=0.01) and furosemide (p=0.01) were associated with failure of hearing screen. On multivariate analysis, ventilation (OR 4.56, p=0.02), apnea (OR 2.2, p<0.001) and NEC (OR 2.4, p=0.02) were predictors of failed hearing screen. As compared to those not ventilated, the odds of failing hearing screen was 4.53 (p<0.01) and 4.59 (p<0.01) for those treated with NCPAP and mechanical ventilation respectively, with there being no difference between these two ventilatory modalities. Of the 61 neonates, 42 were followed for 2 years, of which 19 had confirmed hearing loss. Among these 19 neonates, there was no difference (p=0.12) between those who were treated with NCPAP or with mechanical ventilation. There is no increase in the hearing loss in preterm neonates treated with NCPAP as compared to mechanical ventilation despite being exposed to higher environmental noise generated by the NCPAP. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Mechanical ventilation in patients subjected to extracorporeal membrane oxygenation (ECMO).

    PubMed

    López Sanchez, M

    2017-11-01

    Mechanical ventilation (MV) is a crucial element in the management of acute respiratory distress syndrome (ARDS), because there is high level evidence that a low tidal volume of 6ml/kg (protective ventilation) improves survival. In these patients with refractory respiratory insufficiency, venovenous extracorporeal membrane oxygenation (ECMO) can be used. This salvage technique improves oxygenation, promotes CO 2 clearance, and facilitates protective and ultraprotective MV, potentially minimizing ventilation-induced lung injury. Although numerous trials have investigated different ventilation strategies in patients with ARDS, consensus is lacking on the optimal MV settings during venovenous ECMO. Although the concept of "lung rest" was introduced years ago, there are no evidence-based guidelines on its use in application to MV in patients supported by ECMO. How MV in ECMO patients can promote lung recovery and weaning from ventilation is not clear. The purpose of this review is to describe the ventilation strategies used during venovenous ECMO in clinical practice. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  19. Mechanically ventilated children with 2009 pandemic influenza A/H1N1: results from the National Pediatric Intensive Care Registry in Japan.

    PubMed

    Tokuhira, Natsuko; Shime, Nobuaki; Inoue, Miho; Kawasaki, Tatsuya; Sakurai, Yoshio; Kurosaka, Norimasa; Ueta, Ikuya; Nakagawa, Satoshi

    2012-09-01

    To outline the characteristics, clinical course, and outcome of pediatric patients requiring mechanical ventilation with influenza A/H1N1 infection in Japan. Prospective case registry analysis. Eleven pediatric or general intensive care units in Japan. Consecutive patients infected with A/H1N1, aged from 1 month to 16 yrs old admitted to the intensive care unit for mechanical ventilation between July 2009 and March 2010. None. Eighty-one children, aged 6.3 [0.8-13.6] (median [interquartile range]) years, were enrolled. Seventy-four (91%) had mechanical ventilation with tracheal intubation. Median duration of mechanical ventilation was 4 days (range 0.04-87) and 18 patients (23%) required mechanical ventilation >7 days. Two patients (2%) required extracorporeal membrane oxygenation. The in-hospital mortality was 1%. Forty-one patients (50%) had at least one underlying chronic condition, including 31 with asthma. Associated clinical symptoms and diagnosis were as follows: acute respiratory distress syndrome (9%), asthma or bronchitis (37%), pneumonia (68%) with 8 (14%) having bacterial pneumonia, neurological symptoms (32%), myocarditis (2%), and rhabdomyolysis (1%). Therapeutic interventions include inotropic support (21%), methylprednisolone therapy (33%), and antimicrobial therapy (88%). Multivariate analysis revealed that inotropic support was the only statistically significant factor associated with mechanical ventilation for more than a week (odds ratio 5.5, 95% confidence interval 1.5-20.5, p = .005). The clinical presentations of pediatric patients requiring mechanical ventilation for A/H1N1 in Japan were diverse. In-hospital mortality of this population was remarkably low. Rapid access to medical facilities in combination with early administration of antiviral agents may have contributed to the low mortality in this population.

  20. Enhancing rehabilitation of mechanically ventilated patients in the intensive care unit: a quality improvement project.

    PubMed

    McWilliams, David; Weblin, Jonathan; Atkins, Gemma; Bion, Julian; Williams, Jenny; Elliott, Catherine; Whitehouse, Tony; Snelson, Catherine

    2015-02-01

    Prolonged periods of mechanical ventilation are associated with significant physical and psychosocial adverse effects. Despite increasing evidence supporting early rehabilitation strategies, uptake and delivery of such interventions in Europe have been variable. The objective of this study was to evaluate the impact of an early and enhanced rehabilitation program for mechanically ventilated patients in a large tertiary referral, mixed-population intensive care unit (ICU). A new supportive rehabilitation team was created within the ICU in April 2012, with a focus on promoting early and enhanced rehabilitation for patients at high risk for prolonged ICU and hospital stays. Baseline data on all patients invasively ventilated for at least 5 days in the previous 12 months (n = 290) were compared with all patients ventilated for at least 5 days in the 12 months after the introduction of the rehabilitation team (n = 292). The main outcome measures were mobility level at ICU discharge (assessed via the Manchester Mobility Score), mean ICU, and post-ICU length of stay (LOS), ventilator days, and in-hospital mortality. The introduction of the ICU rehabilitation team was associated with a significant increase in mobility at ICU discharge, and this was associated with a significant reduction in ICU LOS (16.9 vs 14.4 days, P = .007), ventilator days (11.7 vs 9.3 days, P < .05), total hospital LOS (35.3 vs 30.1 days, P < .001), and in-hospital mortality (39% vs 28%, P < .05). A quality improvement strategy to promote early and enhanced rehabilitation within this European ICU improved levels of mobility at critical care discharge, and this was associated with reduced ICU and hospital LOS and reduced days of mechanical ventilation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Performance of ICU ventilators during noninvasive ventilation with large leaks in a total face mask: a bench study* **

    PubMed Central

    Nakamura, Maria Aparecida Miyuki; Costa, Eduardo Leite Vieira; Carvalho, Carlos Roberto Ribeiro; Tucci, Mauro Roberto

    2014-01-01

    Objective: Discomfort and noncompliance with noninvasive ventilation (NIV) interfaces are obstacles to NIV success. Total face masks (TFMs) are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. Methods: This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP) levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Results: Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection); three worked with some problems (low PEEP or high cycling delay); and one worked properly. Conclusions: The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM. PMID:25029653

  2. Accuracy of tidal volume delivered by home mechanical ventilation during mouthpiece ventilation

    PubMed Central

    Prigent, Helene; Falaize, Line; Leroux, Karl; Santos, Dante; Vaugier, Isabelle; Orlikowski, David; Lofaso, Frederic

    2016-01-01

    The aim of our study was to evaluate efficacy and reliability of currently available ventilators for mouthpiece ventilation (MPV). Five life-support home ventilators were assessed in a bench test using different settings simulating the specificities of MPV, such as intermittent circuit disconnection and presence of continuous leaks. The intermittent disconnection of the circuit caused relevant swings in the delivered tidal volume (VT), showing a VT overshoot during the disconnection periods and a VT decrease when the interface was reconnected to the test lung. The five ventilators showed substantial differences in the number of respiratory cycles necessary to reach a stable VT in the volume-controlled setting, ranging from 1.3 ± 0.6 to 7.3 ± 1.2 cycles. These differences were less accentuated in the volume-assisted setting (MPV-dedicated mode, when available). Our data show large differences in the capacity of the different ventilators to deal with the rapidly changing respiratory load features that characterize MPV, which can be further accentuated according to the used ventilator setting. The dedicated MPV modes allow improvement in the performance of ventilators only in some defined situations. This has practical consequences for the choice of the ventilator to be used for MPV in a specific patient. PMID:27146811

  3. A miniature mechanical ventilator for newborn mice.

    PubMed

    Kolandaivelu, K; Poon, C S

    1998-02-01

    Transgenic/knockout mice with pre-defined mutations have become increasingly popular in biomedical research as models of human diseases. In some instances, the resulting mutation may cause cardiorespiratory distress in the neonatal or adult animals and may necessitate resuscitation. Here we describe the design and testing of a miniature and versatile ventilator that can deliver varying ventilatory support modes, including conventional mechanical ventilation and high-frequency ventilation, to animals as small as the newborn mouse. With a double-piston body chamber design, the device circumvents the problem of air leakage and obviates the need for invasive procedures such as endotracheal intubation, which are particularly important in ventilating small animals. Preliminary tests on newborn mice as early as postnatal day O demonstrated satisfactory restoration of pulmonary ventilation and the prevention of respiratory failure in mutant mice that are prone to respiratory depression. This device may prove useful in the postnatal management of transgenic/knockout mice with genetically inflicted respiratory disorders.

  4. Inhalation therapy in mechanical ventilation

    PubMed Central

    Maccari, Juçara Gasparetto; Teixeira, Cassiano; Gazzana, Marcelo Basso; Savi, Augusto; Dexheimer-Neto, Felippe Leopoldo; Knorst, Marli Maria

    2015-01-01

    Patients with obstructive lung disease often require ventilatory support via invasive or noninvasive mechanical ventilation, depending on the severity of the exacerbation. The use of inhaled bronchodilators can significantly reduce airway resistance, contributing to the improvement of respiratory mechanics and patient-ventilator synchrony. Although various studies have been published on this topic, little is known about the effectiveness of the bronchodilators routinely prescribed for patients on mechanical ventilation or about the deposition of those drugs throughout the lungs. The inhaled bronchodilators most commonly used in ICUs are beta adrenergic agonists and anticholinergics. Various factors might influence the effect of bronchodilators, including ventilation mode, position of the spacer in the circuit, tube size, formulation, drug dose, severity of the disease, and patient-ventilator synchrony. Knowledge of the pharmacological properties of bronchodilators and the appropriate techniques for their administration is fundamental to optimizing the treatment of these patients. PMID:26578139

  5. A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators

    PubMed Central

    Thille, Arnaud W.; Lyazidi, Aissam; Richard, Jean-Christophe M.; Galia, Fabrice; Brochard, Laurent

    2009-01-01

    Objective To compare 13 commercially available, new-generation, intensive-care-unit (ICU) ventilators regarding trigger function, pressurization capacity during pressure-support ventilation (PSV), accuracy of pressure measurements and expiratory resistance. Design and Setting Bench study at a research laboratory in a university hospital. Material Four turbine-based ventilators and nine conventional servo-valve compressed-gas ventilators were tested using a two-compartment lung model. Results Three levels of effort were simulated. Each ventilator was evaluated at four PSV levels (5, 10, 15, and 20 cm H2O), with and without positive end-expiratory pressure (5 cm H2O, Trigger function was assessed as the time from effort onset to detectable pressurization. Pressurization capacity was evaluated using the airway pressure-time product computed as the net area under the pressure-time curve over the first 0.3 s after inspiratory effort onset. Expiratory resistance was evaluated by measuring trapped volume in controlled ventilation. Significant differences were found across the ventilators, with a range of triggering-delay from 42 ms to 88 ms for all conditions averaged (P<.001). Under difficult conditions, the triggering delay was longer than 100 ms and the pressurization was poor with five ventilators at PSV5 and three at PSV10, suggesting an inability to unload patient’s effort. On average, turbine-based ventilators performed better than conventional ventilators, which showed no improvement compared to a 2000 bench comparison. Conclusion Technical performances of trigger function, pressurization capacity and expiratory resistance vary considerably across new-generation ICU ventilators. ICU ventilators seem to have reached a technical ceiling in recent years, and some ventilators still perform inadequately. PMID:19352622

  6. A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators.

    PubMed

    Thille, Arnaud W; Lyazidi, Aissam; Richard, Jean-Christophe M; Galia, Fabrice; Brochard, Laurent

    2009-08-01

    To compare 13 commercially available, new-generation, intensive-care-unit (ICU) ventilators in terms of trigger function, pressurization capacity during pressure-support ventilation (PSV), accuracy of pressure measurements, and expiratory resistance. Bench study at a research laboratory in a university hospital. Four turbine-based ventilators and nine conventional servo-valve compressed-gas ventilators were tested using a two-compartment lung model. Three levels of effort were simulated. Each ventilator was evaluated at four PSV levels (5, 10, 15, and 20 cm H2O), with and without positive end-expiratory pressure (5 cm H2O). Trigger function was assessed as the time from effort onset to detectable pressurization. Pressurization capacity was evaluated using the airway pressure-time product computed as the net area under the pressure-time curve over the first 0.3 s after inspiratory effort onset. Expiratory resistance was evaluated by measuring trapped volume in controlled ventilation. Significant differences were found across the ventilators, with a range of triggering delays from 42 to 88 ms for all conditions averaged (P < 0.001). Under difficult conditions, the triggering delay was longer than 100 ms and the pressurization was poor for five ventilators at PSV5 and three at PSV10, suggesting an inability to unload patient's effort. On average, turbine-based ventilators performed better than conventional ventilators, which showed no improvement compared to a bench comparison in 2000. Technical performance of trigger function, pressurization capacity, and expiratory resistance differs considerably across new-generation ICU ventilators. ICU ventilators seem to have reached a technical ceiling in recent years, and some ventilators still perform inadequately.

  7. Ventilation Inception and Washout, Scaling, and Effects on Hydrodynamic Performance of a Surface Piercing Strut

    NASA Astrophysics Data System (ADS)

    Harwood, Casey; Young, Yin Lu; Ceccio, Steven

    2014-11-01

    High-lift devices that operate at or near a fluid free surface (such as surface-piercing or shallowly-submerged propellers and hydrofoils) are prone to a multiphase flow phenomenon called ventilation, wherein non-condensable gas is entrained in the low-pressure flow, forming a cavity around the body and dramatically altering the global hydrodynamic forces. Experiments are being conducted at the University of Michigan's towing tank using a canonical surface-piercing strut to investigate atmospheric ventilation. The goals of the work are (i) to gain an understanding of the dominant physics in fully wetted, partially ventilated, and fully ventilated flow regimes, (ii) to quantify the effects of governing dimensionless parameters on the transition between flow regimes, and (iii) to develop scaling relations for the transition between flow regimes. Using theoretical arguments and flow visualization techniques, new criteria are developed for classifying flow regimes and transition mechanisms. Unsteady transition mechanisms are described and mapped as functions of the governing non-dimensional parameters. A theoretical scaling relationship is developed for ventilation washout, which is shown to adequately capture the experimentally-observed washout boundary. This material is based upon work supported by the National Science Foundation Graduate Student Research Fellowship under Grant No. DGE 1256260. Support also comes from the Naval Engineering Education Center (Award No. N65540-10-C-003).

  8. Analysis of Advanced Respiratory Support Onboard ISS and CCV

    NASA Technical Reports Server (NTRS)

    Shah, Ronak V.; Kertsman, Eric L.; Alexander, David J.; Duchesne, Ted; Law, Jennifer; Roden, Sean K.

    2014-01-01

    NASA is collaborating with private entities for the development of commercial space vehicles. The Space and Clinical Operations Division was tasked to review the oxygen and respiratory support system and recommend what capabilities, if any, the vehicle should have to support the return of an ill or injured crewmember. The Integrated Medical Model (IMM) was utilized as a data source for the development of these recommendations. The Integrated Medical Model (IMM) was used to simulate a six month, six crew, International Space Station (ISS) mission. Three medical system scenarios were considered based on the availability of (1) oxygen only, (2) oxygen and a ventilator, or (3) neither oxygen nor ventilator. The IMM analysis provided probability estimates of medical events that would require either oxygen or ventilator support. It also provided estimates of crew health, the probability of evacuation, and the probability of loss of crew life secondary to medical events for each of the three medical system scenarios. These IMM outputs were used as objective data to enable evidence-based decisions regarding oxygen and respiratory support system requirements for commercial crew vehicles. The IMM provides data that may be utilized to support informed decisions regarding the development of medical systems for commercial crew vehicles.

  9. Mechanical ventilation and sepsis impair protein metabolism in the diaphragm of neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Mechanical ventilation (MV) impairs diaphragmatic function and diminishes the ability to wean from ventilatory support in adult humans. In normal neonatal pigs, animals that are highly anabolic, endotoxin (LPS) infusion induces sepsis, reduces peripheral skeletal muscle protein synthesis rates, but ...

  10. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.

    PubMed

    Fot, Evgenia V; Izotova, Natalia N; Yudina, Angelika S; Smetkin, Aleksei A; Kuzkov, Vsevolod V; Kirov, Mikhail Y

    2017-01-01

    The discontinuation of mechanical ventilation after coronary surgery may prolong and significantly increase the load on intensive care unit personnel. We hypothesized that automated mode using INTELLiVENT-ASV can decrease duration of postoperative mechanical ventilation, reduce workload on medical staff, and provide safe ventilation after off-pump coronary artery bypass grafting (OPCAB). The primary endpoint of our study was to assess the duration of postoperative mechanical ventilation during different modes of weaning from respiratory support (RS) after OPCAB. The secondary endpoint was to assess safety of the automated weaning mode and the number of manual interventions to the ventilator settings during the weaning process in comparison with the protocolized weaning mode. Forty adult patients undergoing elective OPCAB were enrolled into a prospective single-center study. Patients were randomized into two groups: automated weaning ( n  = 20) using INTELLiVENT-ASV mode with quick-wean option; and protocolized weaning ( n  = 20), using conventional synchronized intermittent mandatory ventilation (SIMV) + pressure support (PS) mode. We assessed the duration of postoperative ventilation, incidence and duration of unacceptable RS, and the load on medical staff. We also performed the retrospective analysis of 102 patients (standard weaning) who were weaned from ventilator with SIMV + PS mode based on physician's experience without prearranged algorithm. Realization of the automated weaning protocol required change in respiratory settings in 2 patients vs. 7 (5-9) adjustments per patient in the protocolized weaning group. Both incidence and duration of unacceptable RS were reduced significantly by means of the automated weaning approach. The FiO 2 during spontaneous breathing trials was significantly lower in the automated weaning group: 30 (30-35) vs. 40 (40-45) % in the protocolized weaning group ( p  < 0.01). The average time until tracheal extubation did not differ in the automated weaning and the protocolized weaning groups: 193 (115-309) and 197 (158-253) min, respectively, but increased to 290 (210-411) min in the standard weaning group. The automated weaning system after off-pump coronary surgery might provide postoperative ventilation in a more protective way, reduces the workload on medical staff, and does not prolong the duration of weaning from ventilator. The use of automated or protocolized weaning can reduce the duration of postoperative mechanical ventilation in comparison with non-protocolized weaning based on the physician's decision.

  11. ADAPTING FTIR MEASUREMENT TECHNOLOGY TO HOMELAND SECURITY APPLICATIONS

    EPA Science Inventory

    Open-path Fourier transform infrared (OP-FTIR) sensors have numerous advantages for measuring chemical plumes over wide areas compared to point detection sensors. Extractive FTIR sensors have been used for industrial stack monitoring and are attractive for building ventilation sy...

  12. Reflexology: its effects on physiological anxiety signs and sedation needs.

    PubMed

    Akin Korhan, Esra; Khorshid, Leyla; Uyar, Mehmet

    2014-01-01

    To investigate whether reflexology has an effect on the physiological signs of anxiety and level of sedation in patients receiving mechanically ventilated support, a single blinded, randomized controlled design with repeated measures was used in the intensive care unit of a university hospital in Turkey. Patients (n = 60) aged between 18 and 70 years and were hospitalized in the intensive care unit and receiving mechanically ventilated support. Participants were randomized to a control group or an intervention group. The latter received 30 minutes of reflexology therapy on their feet, hands, and ears for 5 days. Subjects had vital signs taken immediately before the intervention and at the 10th, 20th, and 30th minutes of the intervention. In the collection of the data, "American Association of Critical-Care Nurses Sedation Assessment Scale" was used. The reflexology therapy group had a significantly lower heart rate, systolic blood pressure, diastolic blood pressure, and respiratory rate than the control group. A statistically significant difference was found between the averages of the scores that the patients included in the experimental and control groups received from the agitation, anxiety, sleep, and patient-ventilator synchrony subscales of the American Association of Critical-Care Nurses Sedation Assessment Scale. Reflexology can serve as an effective method of decreasing the physiological signs of anxiety and the required level of sedation in patients receiving mechanically ventilated support. Nurses who have appropriate training and certification may include reflexology in routine care to reduce the physiological signs of anxiety of patients receiving mechanical ventilation.

  13. Ventilation distribution measured with EIT at varying levels of pressure support and Neurally Adjusted Ventilatory Assist in patients with ALI.

    PubMed

    Blankman, Paul; Hasan, Djo; van Mourik, Martijn S; Gommers, Diederik

    2013-06-01

    The purpose of this study was to compare the effect of varying levels of assist during pressure support (PSV) and Neurally Adjusted Ventilatory Assist (NAVA) on the aeration of the dependent and non-dependent lung regions by means of Electrical Impedance Tomography (EIT). We studied ten mechanically ventilated patients with Acute Lung Injury (ALI). Positive-End Expiratory Pressure (PEEP) and PSV levels were both 10 cm H₂O during the initial PSV step. Thereafter, we changed the inspiratory pressure to 15 and 5 cm H₂O during PSV. The electrical activity of the diaphragm (EAdi) during pressure support ten was used to define the initial NAVA gain (100 %). Thereafter, we changed NAVA gain to 150 and 50 %, respectively. After each step the assist level was switched back to PSV 10 cm H₂O or NAVA 100 % to get a new baseline. The EIT registration was performed continuously. Tidal impedance variation significantly decreased during descending PSV levels within patients, whereas not during NAVA. The dorsal-to-ventral impedance distribution, expressed according to the center of gravity index, was lower during PSV compared to NAVA. Ventilation contribution of the dependent lung region was equally in balance with the non-dependent lung region during PSV 5 cm H₂O, NAVA 50 and 100 %. Neurally Adjusted Ventilatory Assist ventilation had a beneficial effect on the ventilation of the dependent lung region and showed less over-assistance compared to PSV in patients with ALI.

  14. Acute exacerbations of chronic obstructive pulmonary disease: diagnosis, management, and prevention in critically ill patients.

    PubMed

    Dixit, Deepali; Bridgeman, Mary Barna; Andrews, Liza Barbarello; Narayanan, Navaneeth; Radbel, Jared; Parikh, Amay; Sunderram, Jag

    2015-06-01

    Chronic obstructive pulmonary disease (COPD) is the third leading cause of death and is a substantial source of disability in the United States. Moderate-to-severe acute exacerbations of COPD (AECOPD) can progress to respiratory failure, necessitating ventilator assistance in patients in the intensive care unit (ICU). Patients in the ICU with AECOPD requiring ventilator support have higher morbidity and mortality rates as well as costs compared with hospitalized patients not in the ICU. The mainstay of management for patients with AECOPD in the ICU includes ventilator support (noninvasive or invasive), rapid-acting inhaled bronchodilators, systemic corticosteroids, and antibiotics. However, evidence supporting these interventions for the treatment of AECOPD in critically ill patients admitted to the ICU is scant. Corticosteroids have gained widespread acceptance in the management of patients with AECOPD necessitating ventilator assistance, despite their lack of evaluation in clinical trials as well as controversies surrounding optimal dosage regimens and duration of treatment. Recent studies evaluating the safety and efficacy of corticosteroids have found that higher doses are associated with increased adverse effects, which therefore support lower dosing strategies, particularly for patients admitted to the ICU for COPD exacerbations. This review highlights recent findings from the current body of evidence on nonpharmacologic and pharmacologic treatment and prevention of AECOPD in critically ill patients. In addition, the administration of bronchodilators using novel delivery devices in the ventilated patient and the conflicting evidence surrounding antibiotic use in AECOPD in the critically ill is explored. Further clinical trials, however, are warranted to clarify the optimal pharmacotherapy management for AECOPD, particularly in critically ill patients admitted to the ICU. © 2015 Pharmacotherapy Publications, Inc.

  15. Effect of using a laryngeal tube on the no-flow time in a simulated, single-rescuer, basic life support setting with inexperienced users.

    PubMed

    Meyer, O; Bucher, M; Schröder, J

    2016-03-01

    The laryngeal tube (LT) is a recommended alternative to endotracheal intubation during advanced life support (ALS). Its insertion is relatively simple; therefore, it may also serve as an alternative to bag mask ventilation (BMV) for untrained personnel performing basic life support (BLS). Data support the influence of LT on the no-flow time (NFT) compared with BMV during ALS in manikin studies. We performed a manikin study to investigate the effect of using the LT for ventilation instead of BMV on the NFT during BLS in a prospective, randomized, single-rescuer study. All 209 participants were trained in BMV, but were inexperienced in using LT; each participant performed BLS during a 4-min time period. No significant difference in total NFT (LT: mean 81.1 ± 22.7 s; BMV: mean 83.2 ± 13.1 s, p = 0.414) was found; however, significant differences in the later periods of the scenario were identified. While ventilating with the LT, the proportion of chest compressions increased significantly from 67.2 to 73.2%, whereas the proportion of chest compressions increased only marginally when performing BMV. The quality of the chest compressions and the associated ventilation rate did not differ significantly. The mean tidal volume and mean minute volume were significantly lower when performing BMV. The NFT was significantly shorter in the later periods in a single-rescuer, cardiac arrest scenario when using an LT without previous training compared with BMV with previous training. A possible explanation for this result may be the complexity and workload of alternating tasks (e.g., time loss when reclining the head and positioning the mask for each ventilation during BMV).

  16. Development of a decision aid for cardiopulmonary resuscitation and invasive mechanical ventilation in the intensive care unit employing user-centered design and a wiki platform for rapid prototyping

    PubMed Central

    Witteman, Holly O.; LeBlanc, Annie; Kryworuchko, Jennifer; Heyland, Daren Keith; Ebell, Mark H.; Blair, Louisa; Tapp, Diane; Dupuis, Audrey; Lavoie-Bérard, Carole-Anne; McGinn, Carrie Anna; Légaré, France; Archambault, Patrick Michel

    2018-01-01

    Background Upon admission to an intensive care unit (ICU), all patients should discuss their goals of care and express their wishes concerning life-sustaining interventions (e.g., cardiopulmonary resuscitation (CPR)). Without such discussions, interventions that prolong life at the cost of decreasing its quality may be used without appropriate guidance from patients. Objectives To adapt an existing decision aid about CPR to create a wiki-based decision aid individually adapted to each patient’s risk factors; and to document the use of a wiki platform for this purpose. Methods We conducted three weeks of ethnographic observation in our ICU to observe intensivists and patients discussing goals of care and to identify their needs regarding decision making. We interviewed intensivists individually. Then we conducted three rounds of rapid prototyping involving 15 patients and 11 health professionals. We recorded and analyzed all discussions, interviews and comments, and collected sociodemographic data. Using a wiki, a website that allows multiple users to contribute or edit content, we adapted the decision aid accordingly and added the Good Outcome Following Attempted Resuscitation (GO-FAR) prediction rule calculator. Results We added discussion of invasive mechanical ventilation. The final decision aid comprises values clarification, risks and benefits of CPR and invasive mechanical ventilation, statistics about CPR, and a synthesis section. We added the GO-FAR prediction calculator as an online adjunct to the decision aid. Although three rounds of rapid prototyping simplified the information in the decision aid, 60% (n = 3/5) of the patients involved in the last cycle still did not understand its purpose. Conclusions Wikis and user-centered design can be used to adapt decision aids to users’ needs and local contexts. Our wiki platform allows other centers to adapt our tools, reducing duplication and accelerating scale-up. Physicians need training in shared decision making skills about goals of care and in using the decision aid. A video version of the decision aid could clarify its purpose. PMID:29447297

  17. AT1 receptor blocker losartan protects against mechanical ventilation-induced diaphragmatic dysfunction

    PubMed Central

    Kwon, Oh Sung; Smuder, Ashley J.; Wiggs, Michael P.; Hall, Stephanie E.; Sollanek, Kurt J.; Morton, Aaron B.; Talbert, Erin E.; Toklu, Hale Z.; Tumer, Nihal

    2015-01-01

    Mechanical ventilation is a life-saving intervention for patients in respiratory failure. Unfortunately, prolonged ventilator support results in diaphragmatic atrophy and contractile dysfunction leading to diaphragm weakness, which is predicted to contribute to problems in weaning patients from the ventilator. While it is established that ventilator-induced oxidative stress is required for the development of ventilator-induced diaphragm weakness, the signaling pathway(s) that trigger oxidant production remain unknown. However, recent evidence reveals that increased plasma levels of angiotensin II (ANG II) result in oxidative stress and atrophy in limb skeletal muscles. Using a well-established animal model of mechanical ventilation, we tested the hypothesis that increased circulating levels of ANG II are required for both ventilator-induced diaphragmatic oxidative stress and diaphragm weakness. Cause and effect was determined by administering an angiotensin-converting enzyme inhibitor (enalapril) to prevent ventilator-induced increases in plasma ANG II levels, and the ANG II type 1 receptor antagonist (losartan) was provided to prevent the activation of ANG II type 1 receptors. Enalapril prevented the increase in plasma ANG II levels but did not protect against ventilator-induced diaphragmatic oxidative stress or diaphragm weakness. In contrast, losartan attenuated both ventilator-induced oxidative stress and diaphragm weakness. These findings indicate that circulating ANG II is not essential for the development of ventilator-induced diaphragm weakness but that activation of ANG II type 1 receptors appears to be a requirement for ventilator-induced diaphragm weakness. Importantly, these experiments provide the first evidence that the Food and Drug Administration-approved drug losartan may have clinical benefits to protect against ventilator-induced diaphragm weakness in humans. PMID:26359481

  18. Adaptation potential of naturally ventilated barns to high temperature extremes: The OptiBarn project

    NASA Astrophysics Data System (ADS)

    Menz, Christoph

    2016-04-01

    Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.

  19. Respiratory support in patients with acute respiratory distress syndrome: an expert opinion.

    PubMed

    Chiumello, Davide; Brochard, Laurent; Marini, John J; Slutsky, Arthur S; Mancebo, Jordi; Ranieri, V Marco; Thompson, B Taylor; Papazian, Laurent; Schultz, Marcus J; Amato, Marcelo; Gattinoni, Luciano; Mercat, Alain; Pesenti, Antonio; Talmor, Daniel; Vincent, Jean-Louis

    2017-09-12

    Acute respiratory distress syndrome (ARDS) is a common condition in intensive care unit patients and remains a major concern, with mortality rates of around 30-45% and considerable long-term morbidity. Respiratory support in these patients must be optimized to ensure adequate gas exchange while minimizing the risks of ventilator-induced lung injury. The aim of this expert opinion document is to review the available clinical evidence related to ventilator support and adjuvant therapies in order to provide evidence-based and experience-based clinical recommendations for the management of patients with ARDS.

  20. Ventilation History of the Tropical Atlantic Thermocline: New Insights From the Sensitivity of Foraminifera to Water Mass Nutrient Concentrations

    NASA Astrophysics Data System (ADS)

    Sexton, P. F.; Norris, R. D.

    2008-12-01

    The sensitivity of certain species of foraminifera to nutrient distributions throughout today's oceans highlights their potential for reconstructing water mass nutrient distributions in the past. Applying these new insights to reconstructed abundances of several key species during the last glacial, we find that thermocline waters throughout the entire tropical Atlantic were better ventilated than today. These findings are in line with independent evidence for stronger intermediate-depth ventilation driven by widespread Glacial North Atlantic Intermediate Water (GNAIW), supporting the validity of our new approach. Our results also suggest that well- ventilated GNAIW penetrated at least as far as 25 degrees South, thereby confining the northernmost glacial limits of poorly ventilated Antarctic Intermediate Water (AAIW) to the southernmost Atlantic. We show that the glacial Atlantic thermocline switched to its modern, more poorly ventilated state (probably indicative of a return of AAIW dominance) in a two-step process: a transient reduction in ventilation during the Bolling/Allerod, with the definitive switch to a regime of poor thermocline ventilation occurring at the close of the Younger Dryas. Furthermore, longer-term reconstructions of past distributions of these several key foraminiferal species suggest that a major and enduring impact of glacial-interglacial cycles on Atlantic hydrography has been this vacillating behaviour in tropical thermocline ventilation.

  1. Mechanical ventilation management during extracorporeal membrane oxygenation for acute respiratory distress syndrome: a retrospective international multicenter study.

    PubMed

    Schmidt, Matthieu; Stewart, Claire; Bailey, Michael; Nieszkowska, Ania; Kelly, Joshua; Murphy, Lorna; Pilcher, David; Cooper, D James; Scheinkestel, Carlos; Pellegrino, Vincent; Forrest, Paul; Combes, Alain; Hodgson, Carol

    2015-03-01

    To describe mechanical ventilation settings in adult patients treated for an acute respiratory distress syndrome with extracorporeal membrane oxygenation and assess the potential impact of mechanical ventilation settings on ICU mortality. Retrospective observational study. Three international high-volume extracorporeal membrane oxygenation centers. A total of 168 patients treated with extracorporeal membrane oxygenation for severe acute respiratory distress syndrome from January 2007 to January 2013. We analyzed the association between mechanical ventilation settings (i.e. plateau pressure, tidal volume, and positive end-expiratory pressure) on ICU mortality using multivariable logistic regression model and Cox-proportional hazards model. We obtained detailed demographic, clinical, daily mechanical ventilation settings and ICU outcome data. One hundred sixty-eight patients (41 ± 14 years old; PaO2/FIO2 67 ± 19 mm Hg) fulfilled our inclusion criteria. Median duration of extracorporeal membrane oxygenation and ICU stay were 10 days (6-18 d) and 28 days (16-42 d), respectively. Lower positive end-expiratory pressure levels and significantly lower plateau pressures during extracorporeal membrane oxygenation were used in the French center than in both Australian centers (23.9 ± 1.4 vs 27.6 ± 3.7 and 27.8 ± 3.6; p < 0.0001). Overall ICU mortality was 29%. Lower positive end-expiratory pressure levels (until day 7) and lower delivered tidal volume after 3 days on extracorporeal membrane oxygenation were associated with significantly higher mortality (p < 0.05). In multivariate analysis, higher positive end-expiratory pressure levels during the first 3 days of extracorporeal membrane oxygenation support were associated with lower mortality (odds ratio, 0.75; 95% CI, 0.64-0.88; p = 0.0006). Other independent predictors of ICU mortality included time between ICU admission and extracorporeal membrane oxygenation initiation, plateau pressure greater than 30 cm H2O before extracorporeal membrane oxygenation initiation, and lactate level on day 3 of extracorporeal membrane oxygenation support. Protective mechanical ventilation strategies were routinely used in high-volume extracorporeal membrane oxygenation centers. However, higher positive end-expiratory pressure levels during the first 3 days on extracorporeal membrane oxygenation support were independently associated with improved survival. Further prospective trials on the optimal mechanical ventilation strategy during extracorporeal membrane oxygenation support are warranted.

  2. Mechanical ventilation for severe asthma.

    PubMed

    Leatherman, James

    2015-06-01

    Acute exacerbations of asthma can lead to respiratory failure requiring ventilatory assistance. Noninvasive ventilation may prevent the need for endotracheal intubation in selected patients. For patients who are intubated and undergo mechanical ventilation, a strategy that prioritizes avoidance of ventilator-related complications over correction of hypercapnia was first proposed 30 years ago and has become the preferred approach. Excessive pulmonary hyperinflation is a major cause of hypotension and barotrauma. An appreciation of the key determinants of hyperinflation is essential to rational ventilator management. Standard therapy for patients with asthma undergoing mechanical ventilation consists of inhaled bronchodilators, corticosteroids, and drugs used to facilitate controlled hypoventilation. Nonconventional interventions such as heliox, general anesthesia, bronchoscopy, and extracorporeal life support have also been advocated for patients with fulminant asthma but are rarely necessary. Immediate mortality for patients who are mechanically ventilated for acute severe asthma is very low and is often associated with out-of-hospital cardiorespiratory arrest before intubation. However, patients who have been intubated for severe asthma are at increased risk for death from subsequent exacerbations and must be managed accordingly in the outpatient setting.

  3. Mechanical ventilation and sepsis induce skeletal muscle catabolism in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Reduced rates of skeletal muscle accretion are a prominent feature of the metabolic response to sepsis in infants and children. Septic neonates often require medical support with mechanical ventilation (MV). The combined effects of MV and sepsis in muscle have not been examined in neonates, in whom ...

  4. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-11-01

    This 2014 Top Innovations profile describes Building America research and support in developing and gaining adoption of ASHRAE 62.2, a residential ventilation standard that is critical to transforming the U.S. housing industry to high-performance homes.

  5. Mechanical ventilation alone, and in the presence of sepsis, impair protein metabolism in the diaphragm of neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Mechanical ventilation (MV) impairs diaphragmatic function and diminishes the ability to wean from ventilatory support in adult humans. In normal neonatal pigs, animals that are highly anabolic, endotoxin (LPS) infusion induces sepsis, reduces peripheral skeletal muscle protein synthesis rates, but ...

  6. Assessing Patient and Caregiver Intent to Use Mobile Device Videoconferencing for Remote Mechanically-Ventilated Patient Management

    ERIC Educational Resources Information Center

    Smith, Brian R.

    2017-01-01

    The Michigan Medicine adult Assisted Ventilation Clinic (AVC) supports patients with neuromuscular disorders and spinal cord injuries and their caregivers at home, helping them avoid expensive emergency department visits, hospitalization, and unnecessary or excessive treatments. Mobile device videoconferencing provides an effective capability for…

  7. Closed loop ventilation mode in Intensive Care Unit: a randomized controlled clinical trial comparing the numbers of manual ventilator setting changes.

    PubMed

    Arnal, Jean-Michel; Garnero, Aude; Novotni, Dominik; Corno, Gaëlle; Donati, Stéphane-Yannis; Demory, Didier; Quintana, Gabrielle; Ducros, Laurent; Laubscher, Thomas; Durand-Gasselin, Jacques

    2018-01-01

    There is an equipoise regarding closed-loop ventilation modes and the ability to reduce workload for providers. On one hand some settings are managed by the ventilator but on another hand the automatic mode introduces new settings for the user. This randomized controlled trial compared the number of manual ventilator setting changes between a full closed loop ventilation and oxygenation mode (INTELLiVENT-ASV®) and conventional ventilation modes (volume assist control and pressure support) in Intensive Care Unit (ICU) patients. The secondary endpoints were to compare the number of arterial blood gas analysis, the sedation dose and the user acceptance. Sixty subjects with an expected duration of mechanical ventilation of at least 48 hours were randomized to be ventilated using INTELLiVENT-ASV® or conventional modes with a protocolized weaning. All manual ventilator setting changes were recorded continuously from inclusion to successful extubation or death. Arterial blood gases were performed upon decision of the clinician in charge. User acceptance score was assessed for nurses and physicians once daily using a Likert Scale. The number of manual ventilator setting changes per 24 h-period per subject was lower in INTELLiVENT-ASV® as compared to conventional ventilation group (5 [4-7] versus 10 [7-17]) manuals settings per subject per day [P<0.001]). The number of arterial blood gas analysis and the sedation doses were not significantly different between the groups. Nurses and physicians reported that INTELLiVENT-ASV® was significantly easier to use as compared to conventional ventilation (P<0.001 for nurses and P<0.01 for physicians). For mechanically ventilated ICU patients, INTELLiVENT-ASV® significantly reduces the number of manual ventilator setting changes with the same number of arterial blood gas analysis and sedation dose, and is easier to use for the caregivers as compared to conventional ventilation modes.

  8. Clinical Validation of 4-Dimensional Computed Tomography Ventilation With Pulmonary Function Test Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, Douglas; Schubert, Leah; Diot, Quentin

    Purpose: A new form of functional imaging has been proposed in the form of 4-dimensional computed tomography (4DCT) ventilation. Because 4DCTs are acquired as part of routine care for lung cancer patients, calculating ventilation maps from 4DCTs provides spatial lung function information without added dosimetric or monetary cost to the patient. Before 4DCT-ventilation is implemented it needs to be clinically validated. Pulmonary function tests (PFTs) provide a clinically established way of evaluating lung function. The purpose of our work was to perform a clinical validation by comparing 4DCT-ventilation metrics with PFT data. Methods and Materials: Ninety-eight lung cancer patients withmore » pretreatment 4DCT and PFT data were included in the study. Pulmonary function test metrics used to diagnose obstructive lung disease were recorded: forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity. Four-dimensional CT data sets and spatial registration were used to compute 4DCT-ventilation images using a density change–based and a Jacobian-based model. The ventilation maps were reduced to single metrics intended to reflect the degree of ventilation obstruction. Specifically, we computed the coefficient of variation (SD/mean), ventilation V20 (volume of lung ≤20% ventilation), and correlated the ventilation metrics with PFT data. Regression analysis was used to determine whether 4DCT ventilation data could predict for normal versus abnormal lung function using PFT thresholds. Results: Correlation coefficients comparing 4DCT-ventilation with PFT data ranged from 0.63 to 0.72, with the best agreement between FEV1 and coefficient of variation. Four-dimensional CT ventilation metrics were able to significantly delineate between clinically normal versus abnormal PFT results. Conclusions: Validation of 4DCT ventilation with clinically relevant metrics is essential. We demonstrate good global agreement between PFTs and 4DCT-ventilation, indicating that 4DCT-ventilation provides a reliable assessment of lung function. Four-dimensional CT ventilation enables exciting opportunities to assess lung function and create functional avoidance radiation therapy plans. The present work provides supporting evidence for the integration of 4DCT-ventilation into clinical trials.« less

  9. SU-F-J-219: Predicting Ventilation Change Due to Radiation Therapy: Dependency On Pre-RT Ventilation and Effort Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, T; Du, K; Bayouth, J

    Purpose: Ventilation change caused by radiation therapy (RT) can be predicted using four-dimensional computed tomography (4DCT) and image registration. This study tested the dependency of predicted post-RT ventilation on effort correction and pre-RT lung function. Methods: Pre-RT and 3 month post-RT 4DCT images were obtained for 13 patients. The 4DCT images were used to create ventilation maps using a deformable image registration based Jacobian expansion calculation. The post-RT ventilation maps were predicted in four different ways using the dose delivered, pre-RT ventilation, and effort correction. The pre-RT ventilation and effort correction were toggled to determine dependency. The four different predictedmore » ventilation maps were compared to the post-RT ventilation map calculated from image registration to establish the best prediction method. Gamma pass rates were used to compare the different maps with the criteria of 2mm distance-to-agreement and 6% ventilation difference. Paired t-tests of gamma pass rates were used to determine significant differences between the maps. Additional gamma pass rates were calculated using only voxels receiving over 20 Gy. Results: The predicted post-RT ventilation maps were in agreement with the actual post-RT maps in the following percentage of voxels averaged over all subjects: 71% with pre-RT ventilation and effort correction, 69% with no pre-RT ventilation and effort correction, 60% with pre-RT ventilation and no effort correction, and 58% with no pre-RT ventilation and no effort correction. When analyzing only voxels receiving over 20 Gy, the gamma pass rates were respectively 74%, 69%, 65%, and 55%. The prediction including both pre- RT ventilation and effort correction was the only prediction with significant improvement over using no prediction (p<0.02). Conclusion: Post-RT ventilation is best predicted using both pre-RT ventilation and effort correction. This is the only prediction that provided a significant improvement on agreement. Research support from NIH grants CA166119 and CA166703, a gift from Roger Koch, and a Pilot Grant from University of Iowa Carver College of Medicine.« less

  10. Humidifier Development and Applicability to the Next Generation Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Conger, Bruce C.; Barnes, Bruce G.; Sompayrac, Robert G.; Paul, Heather L.

    2011-01-01

    A development effort at the NASA Johnson Space Center investigated technologies to determine whether a humidifier would be required in the Portable Life Support System (PLSS) envisioned for future exploration missions. The humidifier has been included in the baseline PLSS schematic since performance testing of the Rapid Cycle Amine (RCA) indicates that the RCA over-dries the ventilation gas stream. Performance tests of a developmental humidifier unit and commercial off-the-shelf (COTS) units were conducted in December 2009. Following these tests, NASA revisited the need for a humidifier via system analysis. Results of this investigation indicate that it is feasible to meet humidity requirements without the humidifier if other changes are made to the PLSS ventilation loop and the Liquid Cooling and Ventilation Garment (LCVG).

  11. Respiratory mechanics in brain injury: A review.

    PubMed

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-02-04

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case that non lung protective ventilator settings are applied. Measurement of respiratory mechanics in BD patients, as well as assessment of their evolution during mechanical ventilation, may lead to preclinical lung injury detection early enough, allowing thus the selection of the appropriate ventilator settings to avoid ventilator-induced lung injury. The aim of this review is to explore the mechanical properties of the respiratory system in BD patients along with the underlying mechanisms, and to translate the evidence of animal and clinical studies into therapeutic implications regarding the mechanical ventilation of these critically ill patients.

  12. Adaptive servo-ventilation as treatment of persistent central sleep apnea in post-acute ischemic stroke patients.

    PubMed

    Brill, Anne-Kathrin; Rösti, Regula; Hefti, Jacqueline Pichler; Bassetti, Claudio; Gugger, Matthias; Ott, Sebastian R

    2014-11-01

    Adaptive servo-ventilation (ASV) is a well-established treatment of central sleep apnea (CSA) related to congestive heart failure (CHF). Few studies have evaluated the effectiveness and adherence in patients with CSA of other etiologies, and even less is known about treatment of CSA in patients of post ischemic stroke. A single-centre retrospective analysis of ASV treatment for CSA in post-acute ischemic stroke patients without concomitant CHF was performed. Demographics, clinical data, sleep studies, ventilator settings, and adherence data were evaluated. Out of 154 patients on ASV, 15 patients had CSA related to ischemic stroke and were started on ASV a median of 11 months after the acute cerebrovascular event. Thirteen out of the 15 patients were initially treated with continuous positive airway pressure (11/15) and bilevel positive airway pressure (2/15) therapy with unsatisfactory control of CSA. ASV significantly improved AHI (46.7 ± 24.3 vs 8.5 ± 12/h, P = 0.001) and reduced ESS (8.7 ± 5.7 vs 5.6 ± 2.5, P = 0.08) with a mean nightly use of ASV of 5.4 ± 2.4 h at 3 months after the initiation of treatment. Results were maintained at 6 months. ASV was well tolerated and clinically effective in this group of patients with persistent CSA after ischemic stroke. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Adaptive servo-ventilation: How does it fit into the treatment of central sleep apnoea syndrome? Expert opinions.

    PubMed

    Priou, P; d'Ortho, M-P; Damy, T; Davy, J-M; Gagnadoux, F; Gentina, T; Meurice, J-C; Pepin, J-L; Tamisier, R; Philippe, C

    2015-12-01

    The preliminary results of the SERVE-HF study have led to the release of safety information with subsequent contraindication to the use of adaptive servo-ventilation (ASV) for the treatment of central sleep apnoeas in patients with chronic symptomatic systolic heart failure with left ventricular ejection fraction (LVEF) ≤ 45%. The aim of this article is to review these results, and to provide more detailed arguments based on data from the literature advocating the continued use of ASV in different indications, including heart failure with preserved LVEF, complex sleep apnoea syndrome, opioid-induced central sleep apnea syndrome, idiopathic central SAS, and central SAS due to a stroke. Based on these findings, we propose to set up registers dedicated to patients in whom ASV has been stopped and in the context of the next setting up of ASV in these specific indications to ensure patient safety and allow reasoned decisions on the use of ASV. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  14. Lung vagal afferent activity in rats with bleomycin-induced lung fibrosis.

    PubMed

    Schelegle, E S; Walby, W F; Mansoor, J K; Chen, A T

    2001-05-01

    Bleomycin treatment in rats results in pulmonary fibrosis that is characterized by a rapid shallow breathing pattern, a decrease in quasi-static lung compliance and a blunting of the Hering-Breuer Inflation Reflex. We examined the impulse activity of pulmonary vagal afferents in anesthetized, mechanically ventilated rats with bleomycin-induced lung fibrosis during the ventilator cycle and static lung inflations/deflations and following the injection of capsaicin into the right atrium. Bleomycin enhanced volume sensitivity of slowly adapting stretch receptors (SARs), while it blunted the sensitivity of these receptors to increasing transpulmonary pressure. Bleomycin treatment increased the inspiratory activity, while it decreased the expiratory activity of rapidly adapting stretch receptors (RARs). Pulmonary C-fiber impulse activity did not appear to be affected by bleomycin treatment. We conclude that the fibrosis-related shift in discharge profile and enhanced volume sensitivity of SARs combined with the increased inspiratory activity of RARs contributes to the observed rapid shallow breathing of bleomycin-induced lung fibrosis.

  15. Effects of Pressure Support Ventilation May Be Lost at High Exercise Intensities in People with COPD.

    PubMed

    Anekwe, David; de Marchie, Michel; Spahija, Jadranka

    2017-06-01

    Pressure support ventilation (PSV) may be used for exercise training in chronic obstructive pulmonary disease (COPD), but its acute effect on maximum exercise capacity is not fully known. The objective of this study was to evaluate the effect of 10 cm H 2 O PSV and a fixed PSV level titrated to patient comfort at rest on maximum exercise workload (WLmax), breathing pattern and metabolic parameters during a symptom-limited incremental bicycle test in individuals with COPD. Eleven individuals with COPD (forced expiratory volume in one second: 49 ± 16%; age: 64 ± 7 years) performed three exercise tests: without a ventilator, with 10 cm H 2 O of PSV and with a fixed level titrated to comfort at rest, using a SERVO-i ventilator. Tests were performed in randomized order and at least 48 hours apart. The WLmax, breathing pattern, metabolic parameters, and mouth pressure (Pmo) were compared using repeated measures analysis of variance. Mean PSV during titration was 8.2 ± 4.5 cm H 2 O. There was no difference in the WLmax achieved during the three tests. At rest, PSV increased the tidal volume, minute ventilation, and mean inspiratory flow with a lower end-tidal CO 2 ; this was not sustained at peak exercise. Pmo decreased progressively (decreased unloading) with PSV at workloads close to peak, suggesting the ventilator was unable to keep up with the increased ventilatory demand at high workloads. In conclusion, with a Servo-i ventilator, 10 cm H 2 O of PSV and a fixed level of PSV established by titration to comfort at rest, is ineffective for the purpose of achieving higher exercise workloads as the acute physiological effects may not be sustained at peak exercise.

  16. Oral care intervention to reduce incidence of ventilator-associated pneumonia in the neurologic intensive care unit.

    PubMed

    Fields, Lorraine B

    2008-10-01

    Ventilator-associated pneumonia (VAP) is a preventable secondary consequence of intubation and mechanical ventilation. VAP is pneumonia that develops in an intubated patient after 48 hours or more of mechanical ventilator support. Mechanically ventilated patients in neurologic and other intensive care units (ICUs) are at an increased risk of VAP due to factors such as decreased level of consciousness; dry, open mouth; and microaspiration of secretions. VAP can be prevented by initiating interventions from the Institute of Healthcare Improvement's VAP bundle, including (a) elevating the head of the bed of ventilated patients to 30 degrees, (b) preventing venous thromboembolism through use of sequential compression devices or anticoagulation, (c) administering gastric acid histamine2 blockers, (d) practicing good hand hygiene, (e) initiating early mobilization, and (f) performing daily sedation interruption at 10 am to evaluate neurologic status. The one intervention not included in the IHI bundle is oral hygiene. The purpose of this project is to support the premise that oral care, including timed toothbrushing, combined with the VAP bundle can mitigate and prevent the occurrence of VAP. Our project specifically addressed timed oral care of mechanically ventilated patients on a 24-bed stroke, neurologic, and medical ICU. Patients were randomized into a control group that performed usual oral care or an intervention group that brushed teeth every 8 hours. The results were immediate and startling, as the VAP rate dropped to zero within a week of beginning the every-8-hours toothbrushing regimen in the intervention group. The study was so successful that the control group was dropped after 6 months, and all intubated patients' teeth were brushed every 8 hours, maintaining the zero rate until the end of the study.

  17. Low-flow venovenous CO₂ removal in association with lung protective ventilation strategy in patients who develop severe progressive respiratory acidosis after lung transplantation.

    PubMed

    Ruberto, F; Bergantino, B; Testa, M C; D'Arena, C; Zullino, V; Congi, P; Paglialunga, S G; Diso, D; Venuta, F; Pugliese, F

    2013-09-01

    Primary graft dysfunction (PGD) might occur after lung transplantation. In some severe cases, conventional therapies like ventilatory support, administration of inhaled nitric oxide (iNO), and intravenous prostacyclins are not sufficient to provide an adequate gas exchange. The aim of our study was to evaluate the use of a lung protective ventilation strategy associated with a low-flow venovenous CO2 removal treatment to reduce ventilator-associated injury in patients that develop severe PGD after lung transplantation. From January 2009 to January 2011, 3 patients developed PGD within 24 hours after lung transplantation. In addition to conventional medical treatment, including hemodynamic support, iNO and prostaglandin E1 (PGE1), we initiated a ventilatory protective strategy associated with low-flow venovenous CO2 removal treatment (LFVVECCO2R). Hemodynamic and respiratory parameters were assessed at baseline as well as after 3, 12, 24, and 48 hours. No adverse events were registered. Despite decreased baseline elevated pulmonary positive pressures, application of a protective ventilation strategy with LFVVECCO2R reduced PaCO2 and pulmonary infiltrates as well as increased pH values and PaO2/FiO2 ratios. Every patient showed simultaneous improvement of clinical and hemodynamic conditions. They were weaned from mechanical ventilation and extubated after 24 hours after the use of the low-flow venovenous CO2 removal device. The use of LFVVECCO2R together with a protective lung ventilation strategy during the perioperative period of lung transplantation may be a valid clinical strategy for patients with PGD and severe respiratory acidosis occured despite adequate mechanical ventilation. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Basic life support with four different compression/ventilation ratios in a pig model: the need for ventilation.

    PubMed

    Kill, Clemens; Torossian, Alexander; Freisburger, Christian; Dworok, Sebastian; Massmann, Martin; Nohl, Thorsten; Henning, Ronald; Wallot, Pascal; Gockel, Andreas; Steinfeldt, Thorsten; Graf, Jürgen; Eberhart, Leopold; Wulf, Hinnerk

    2009-09-01

    During cardiac arrest the paramount goal of basic life support (BLS) is the oxygenation of vital organs. Current recommendations are to combine chest compressions with ventilation in a fixed ratio of 30:2; however the optimum compression/ventilation ratio is still debatable. In our study we compared four different compression/ventilation ratios and documented their effects on the return of spontaneous circulation (ROSC), gas exchange, cerebral tissue oxygenation and haemodynamics in a pig model. Study was performed on 32 pigs under general anaesthesia with endotracheal intubation. Arterial and central venous lines were inserted. For continuous cerebral tissue oxygenation a Licox PtiO(2) probe was implanted. After 3 min of cardiac arrest (ventricular fibrillation) animals were randomized to a compression/ventilation-ratio 30:2, 100:5, 100:2 or compressions-only. Subsequently 10 min BLS, Advanced Life Support (ALS) was performed (100%O(2), 3 defibrillations, 1mg adrenaline i.v.). Data were analyzed with 2-factorial ANOVA. ROSC was achieved in 4/8 (30:2), 5/8 (100:5), 2/8 (100:2) and 0/8 (compr-only) pigs. During BLS, PaCO(2) increased to 55 mm Hg (30:2), 68 mm Hg (100:5; p=0.0001), 66 mm Hg (100:2; p=0.002) and 72 mm Hg (compr-only; p<0.0001). PaO(2) decreased to 58 mmg (30:2), 40 mm Hg (100:5; p=0.15), 43 mm Hg (100:2; p=0.04) and 26 mm Hg (compr-only; p<0.0001). PtiO(2) baseline values were 12.7, 12.0, 11.1 and 10.0 mm Hg and decreased to 8.1 mm Hg (30:2), 4.1 mm Hg (100:5; p=0.08), 4.3 mm Hg (100:2; p=0.04), and 4.5 mm Hg (compr-only; p=0.69). During BLS, a compression/ventilation-ratio of 100:5 seems to be equivalent to 30:2, while ratios of 100:2 or compressions-only detoriate peripheral arterial oxygenation and reduce the chance for ROSC.

  19. Ethical considerations with the management of congenital central hypoventilation syndrome.

    PubMed

    Massie, John; Gillam, Lynn

    2015-05-01

    Congenital central hypoventilation syndrome (CCHS) is a well-recognized disorder of the autonomic nervous system caused by mutations in the PHOX2B gene. The most characteristic feature is failure of ventilatory control, resulting in the need for respiratory support while asleep, and in some cases when awake also. Most cases present in infancy or early childhood. Technological advances allow patients with mild to moderate phenotypesto receive adequate support by non-invasive ventilation (NIV), or diaphragm pacing (or combination of the two) avoiding the need for long-term ventilation by tracheostomy. Daytime functioning of patients with CCHS who require sleep-time ventilation only is expected to be good, with some additional surveillance to ensure they don't accidentally fall asleep without respiratory support available. Some children with CCHS have other complications, such as Hirschprung's disease, learning difficulties, and cardiac arrhythmias (leading in some instances to heart block and the requirement for a pacemaker). In a few cases, patients can develop neurogenic malignancies. Parents bear a significant burden for the care of their child with CCHS including provision of NIV at home, close monitoring, and regular surveillance for complications. Information about patients with CCHS comes from databases in the United States and Europe, but these don't include infants or children for whom ventilator support was not offered. In this paper we use a case study to explore the ethical issues of provision of treatment, or non-treatment, of children with CCHS. © 2014 Wiley Periodicals, Inc.

  20. Mechanical ventilation alone, and in the presence sepsis, induces peripheral skeletal muscle catabolism in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Reduced rates of skeletal muscle accretion are a prominent feature of the metabolic response to sepsis in infants and children. Septic neonates often require medical support with mechanical ventilation (MV). The combined effects of MV and sepsis in muscle have not been examined in neonates, in whom ...

  1. 75 FR 56562 - Proposed Information Collection Request Submitted for Public Comment and Recommendations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... safe and healthful working environment. A well planned mine ventilation system is necessary to assure a fresh air supply to miners at all working places, to control the amounts of harmful airborne... present harsh and hostile working environments. The ventilation system is the most vital life support...

  2. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC).

    PubMed

    Kneyber, Martin C J; de Luca, Daniele; Calderini, Edoardo; Jarreau, Pierre-Henri; Javouhey, Etienne; Lopez-Herce, Jesus; Hammer, Jürg; Macrae, Duncan; Markhorst, Dick G; Medina, Alberto; Pons-Odena, Marti; Racca, Fabrizio; Wolf, Gerhard; Biban, Paolo; Brierley, Joe; Rimensberger, Peter C

    2017-12-01

    Much of the common practice in paediatric mechanical ventilation is based on personal experiences and what paediatric critical care practitioners have adopted from adult and neonatal experience. This presents a barrier to planning and interpretation of clinical trials on the use of specific and targeted interventions. We aim to establish a European consensus guideline on mechanical ventilation of critically children. The European Society for Paediatric and Neonatal Intensive Care initiated a consensus conference of international European experts in paediatric mechanical ventilation to provide recommendations using the Research and Development/University of California, Los Angeles, appropriateness method. An electronic literature search in PubMed and EMBASE was performed using a combination of medical subject heading terms and text words related to mechanical ventilation and disease-specific terms. The Paediatric Mechanical Ventilation Consensus Conference (PEMVECC) consisted of a panel of 15 experts who developed and voted on 152 recommendations related to the following topics: (1) general recommendations, (2) monitoring, (3) targets of oxygenation and ventilation, (4) supportive measures, (5) weaning and extubation readiness, (6) normal lungs, (7) obstructive diseases, (8) restrictive diseases, (9) mixed diseases, (10) chronically ventilated patients, (11) cardiac patients and (12) lung hypoplasia syndromes. There were 142 (93.4%) recommendations with "strong agreement". The final iteration of the recommendations had none with equipoise or disagreement. These recommendations should help to harmonise the approach to paediatric mechanical ventilation and can be proposed as a standard-of-care applicable in daily clinical practice and clinical research.

  3. Predicting the response of the injured lung to the mechanical breath profile

    PubMed Central

    Smith, Bradford J.; Lundblad, Lennart K. A.; Kollisch-Singule, Michaela; Satalin, Joshua; Nieman, Gary; Habashi, Nader

    2015-01-01

    Mechanical ventilation is a crucial component of the supportive care provided to patients with acute respiratory distress syndrome. Current practice stipulates the use of a low tidal volume (Vt) of 6 ml/kg ideal body weight, the presumptive notion being that this limits overdistension of the tissues and thus reduces volutrauma. We have recently found, however, that airway pressure release ventilation (APRV) is efficacious at preventing ventilator-induced lung injury, yet APRV has a very different mechanical breath profile compared with conventional low-Vt ventilation. To gain insight into the relative merits of these two ventilation modes, we measured lung mechanics and derecruitability in rats before and following Tween lavage. We fit to these lung mechanics measurements a computational model of the lung that accounts for both the degree of tissue distension of the open lung and the amount of lung derecruitment that takes place as a function of time. Using this model, we predicted how tissue distension, open lung fraction, and intratidal recruitment vary as a function of ventilator settings both for conventional low-Vt ventilation and for APRV. Our predictions indicate that APRV is more effective at recruiting the lung than low-Vt ventilation, but without causing more overdistension of the tissues. On the other hand, low-Vt ventilation generally produces less intratidal recruitment than APRV. Predictions such as these may be useful for deciding on the relative benefits of different ventilation modes and thus may serve as a means for determining how to ventilate a given lung in the least injurious fashion. PMID:25635004

  4. Effects of Multiple Ventilation Courses and Duration of Mechanical Ventilation on Respiratory Outcomes in Extremely Low-Birth-Weight Infants.

    PubMed

    Jensen, Erik A; DeMauro, Sara B; Kornhauser, Michael; Aghai, Zubair H; Greenspan, Jay S; Dysart, Kevin C

    2015-11-01

    Extubation failure is common in extremely preterm infants. The current paucity of data on the adverse long-term respiratory outcomes associated with reinitiation of mechanical ventilation prevents assessment of the risks and benefits of a trial of extubation in this population. To evaluate whether exposure to multiple courses of mechanical ventilation increases the risk of adverse respiratory outcomes before and after adjustment for the cumulative duration of mechanical ventilation. We performed a retrospective cohort study of extremely low-birth-weight (ELBW; birth weight <1000 g) infants born from January 1, 2006, through December 31, 2012, who were receiving mechanical ventilation. Analysis was conducted between November 2014 and February 2015. Data were obtained from the Alere Neonatal Database. The primary study exposures were the cumulative duration of mechanical ventilation and the number of ventilation courses. The primary outcome was bronchopulmonary dysplasia (BPD) among survivors. Secondary outcomes were death, use of supplemental oxygen at discharge, and tracheostomy. We identified 3343 ELBW infants, of whom 2867 (85.8%) survived to discharge. Among the survivors, 1695 (59.1%) were diagnosed as having BPD, 856 (29.9%) received supplemental oxygen at discharge, and 31 (1.1%) underwent tracheostomy. Exposure to a greater number of mechanical ventilation courses was associated with a progressive increase in the risk of BPD and use of supplemental oxygen at discharge. Compared with a single ventilation course, the adjusted odds ratios for BPD ranged from 1.88 (95% CI, 1.54-2.31) among infants with 2 ventilation courses to 3.81 (95% CI, 2.88-5.04) among those with 4 or more courses. After adjustment for the cumulative duration of mechanical ventilation, the odds of BPD were only increased among infants exposed to 4 or more ventilation courses (adjusted odds ratio, 1.44; 95% CI, 1.04-2.01). The number of ventilation courses was not associated with increased risk of supplemental oxygen use at discharge after adjustment for the length of ventilation. A greater number of ventilation courses did not increase the risk of tracheostomy. Among ELBW infants, a longer cumulative duration of mechanical ventilation largely accounts for the increased risk of chronic respiratory morbidity associated with reinitiation of mechanical ventilation. These results support attempts of extubation in ELBW infants receiving mechanical ventilation on low ventilator settings, even when success is not guaranteed.

  5. Course of Weaning from Prolonged Mechanical Ventilation after Cardiac Surgery

    PubMed Central

    Herlihy, James P.; Koch, Stephen M.; Jackson, Robert; Nora, Hope

    2006-01-01

    In order to determine the temporal pattern of weaning from mechanical ventilation for patients undergoing prolonged mechanical ventilation after cardiac surgery, we performed a retrospective review of 21 patients' weaning courses at our long-term acute care hospital. Using multiple regression analysis of an estimate of individual patients' percentage of mechanical ventilator support per day (%MVSD), we determined that 14 of 21 patients (67%) showed a statistically significant quadratic or cubic relationship between time and %MVSD. These patients showed little or no improvement in their ventilator dependence until a point in time when, abruptly, they began to make rapid progress (a “wean turning point”), after which they progressed to discontinuation of mechanical ventilation in a relatively short period of time. The other 7 patients appeared to have a similar weaning pattern, although the data were not statistically significant. Most patients in the study group weaned from the ventilator through a specific temporal pattern that is newly described herein. Data analysis suggested that the mechanism for the development of a wean turning point was improvement of pulmonary mechanics rather than improvement in gas exchange or respiratory load. Although these observations need to be confirmed by a prospective trial, they may have implications for weaning cardiac surgery patients from prolonged mechanical ventilation, and possibly for weaning a broader group of patients who require prolonged mechanical ventilation. PMID:16878611

  6. High-Frequency Percussive Ventilation and Low Tidal Volume Ventilation in Burns: A Randomized Controlled Trial

    DTIC Science & Technology

    2010-01-01

    incidence of ventilator-associated pneumonia ( VAP ) in patients with inha- lation injury when supported with HFPV compared with conventional modes of...mean ratio of PaO2 to FIO2 was 58 6 with a mean positive end- expiratory pressure of 22 2 cm H2O before rescue. Two of these patients were...a sample size of 110 patients in each arm would have been required to detect a difference in VAP with 80% power. A multicentered study would be

  7. Effect of leak and breathing pattern on the accuracy of tidal volume estimation by commercial home ventilators: a bench study.

    PubMed

    Luján, Manel; Sogo, Ana; Pomares, Xavier; Monsó, Eduard; Sales, Bernat; Blanch, Lluís

    2013-05-01

    New home ventilators are able to provide clinicians data of interest through built-in software. Monitoring of tidal volume (VT) is a key point in the assessment of the efficacy of home mechanical ventilation. To assess the reliability of the VT provided by 5 ventilators in a bench test. Five commercial ventilators from 4 different manufacturers were tested in pressure support mode with the help of a breathing simulator under different conditions of mechanical respiratory pattern, inflation pressure, and intentional leakage. Values provided by the built-in software of each ventilator were compared breath to breath with the VT monitored through an external pneumotachograph. Ten breaths for each condition were compared for every tested situation. All tested ventilators underestimated VT (ranges of -21.7 mL to -83.5 mL, which corresponded to -3.6% to -14.7% of the externally measured VT). A direct relationship between leak and underestimation was found in 4 ventilators, with higher underestimations of the VT when the leakage increased, ranging between -2.27% and -5.42% for each 10 L/min increase in the leakage. A ventilator that included an algorithm that computes the pressure loss through the tube as a function of the flow exiting the ventilator had the minimal effect of leaks on the estimation of VT (0.3%). In 3 ventilators the underestimation was also influenced by mechanical pattern (lower underestimation with restrictive, and higher with obstructive). The inclusion of algorithms that calculate the pressure loss as a function of the flow exiting the ventilator in commercial models may increase the reliability of VT estimation.

  8. Protective lung ventilation in operating room: a systematic review.

    PubMed

    Futier, E; Constantin, J M; Jaber, S

    2014-06-01

    Postoperative pulmonary and extrapulmonary complications adversely affect clinical outcomes and healthcare utilization, so that prevention has become a measure of the quality of perioperative care. Mechanical ventilation is an essential support therapy to maintain adequate gas exchange during general anesthesia for surgery. Mechanical ventilation using high tidal volume (VT) (between 10 and 15 mL/kg) has been historically encouraged to prevent hypoxemia and atelectasis formation in anesthetized patients undergoing abdominal and thoracic surgery. However, there is accumulating evidence from both experimental and clinical studies that mechanical ventilation, especially the use of high VT and plateau pressure, may potentially aggravate or even initiate lung injury. Ventilator-associated lung injury can result from cyclic alveolar overdistension of non-dependent lung tissue, and repetitive opening and closing of dependent lung tissue resulting in ultrastructural damage at the junction of closed and open alveoli. Lung-protective ventilation, which refers to the use of lower VT and limited plateau pressure to minimize overdistension, and positive end-expiratory pressure to prevent alveolar collapse at end-expiration, was shown to improve outcome in critically ill patients with acute respiratory distress syndrome (ARDS). It has been recently suggested that this approach might also be beneficial in a broader population, especially in critically ill patients without ARDS at the onset of mechanical ventilation. There is, however, little evidence regarding a potential beneficial effect of lung protective ventilation during surgery, especially in patients with healthy lungs. Although surgical patients are frequently exposed to much shorter periods of mechanical ventilation, this is an important gap in knowledge given the number of patients receiving mechanical ventilation in the operating room. This review developed the benefits of lung protective ventilation during surgery and general anesthesia and offers some recommendations for mechanical ventilation in the surgical context.

  9. Minute ventilation of cyclists, car and bus passengers: an experimental study.

    PubMed

    Zuurbier, Moniek; Hoek, Gerard; van den Hazel, Peter; Brunekreef, Bert

    2009-10-27

    Differences in minute ventilation between cyclists, pedestrians and other commuters influence inhaled doses of air pollution. This study estimates minute ventilation of cyclists, car and bus passengers, as part of a study on health effects of commuters' exposure to air pollutants. Thirty-four participants performed a submaximal test on a bicycle ergometer, during which heart rate and minute ventilation were measured simultaneously at increasing cycling intensity. Individual regression equations were calculated between heart rate and the natural log of minute ventilation. Heart rates were recorded during 280 two hour trips by bicycle, bus and car and were calculated into minute ventilation levels using the individual regression coefficients. Minute ventilation during bicycle rides were on average 2.1 times higher than in the car (individual range from 1.3 to 5.3) and 2.0 times higher than in the bus (individual range from 1.3 to 5.1). The ratio of minute ventilation of cycling compared to travelling by bus or car was higher in women than in men. Substantial differences in regression equations were found between individuals. The use of individual regression equations instead of average regression equations resulted in substantially better predictions of individual minute ventilations. The comparability of the gender-specific overall regression equations linking heart rate and minute ventilation with one previous American study, supports that for studies on the group level overall equations can be used. For estimating individual doses, the use of individual regression coefficients provides more precise data. Minute ventilation levels of cyclists are on average two times higher than of bus and car passengers, consistent with the ratio found in one small previous study of young adults. The study illustrates the importance of inclusion of minute ventilation data in comparing air pollution doses between different modes of transport.

  10. Ventilator use by emergency medical services during 911 calls in the United States.

    PubMed

    El Sayed, Mazen; Tamim, Hani; Mailhac, Aurelie; N Clay, Mann

    2018-05-01

    Emergency and transport ventilators use in the prehospital field is not well described. This study examines trends of ventilator use by EMS agencies during 911 calls in the United States and identifies factors associated with this use. This retrospective study used four consecutive releases of the US National Emergency Medical Services Information System (NEMSIS) public research dataset (2011-2014) to describe scene EMS activations (911 calls) with and without reported ventilator use. Ventilator use was reported in 260,663 out of 28,221,321 EMS 911 scene activations (0.9%). Patients with ventilator use were older (mean age 67±18years), nearly half were males (49.2%), mostly in urban areas (80.2%) and cared for by advanced life support (ALS) EMS services (89.5%). CPAP mode of ventilation was most common (71.6%). "Breathing problem" was the most common dispatch complaint for EMS activations with ventilator use (63.9%). Common provider impression categories included "respiratory distress" (72.5%), "cardiac rhythm disturbance" (4.6%), "altered level of consciousness" (4.3%) and "cardiac arrest"(4.0%). Ventilator use was consistently higher at the Specialty Care Transport (SCT) and Air Medical Transport (AMT) service levels and increased over the study period for both suburban and rural EMS activations. Significant factors for ventilator use included demographic characteristics, EMS agency type, specific complaints, provider's primary impressions and condition codes. Providers at different EMS levels use ventilators during 911 scene calls in the US. Training of prehospital providers on ventilation technology is needed. The benefit and effectiveness of this intervention remain to be assessed. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A CLIMATE-RESPONSIVE ADAPTIVE CONTROL FOR A COMBINATION PASSIVE SOLAR SHADING AND NATURAL VENTILATION

    EPA Science Inventory

    Currently, nations around the globe are facing striking concerns regarding energy consumption. In the United States, we face increasing demands that will cause increasing fuel prices thus ultimately higher-energy cost. The future could be eased by reduce energy consumption ...

  12. Clinical Practice Guideline of Acute Respiratory Distress Syndrome

    PubMed Central

    Cho, Young-Jae; Moon, Jae Young; Shin, Ein-Soon; Kim, Je Hyeong; Jung, Hoon; Park, So Young; Kim, Ho Cheol; Sim, Yun Su; Rhee, Chin Kook; Lim, Jaemin; Lee, Seok Jeong; Lee, Won-Yeon; Lee, Hyun Jeong; Kwak, Sang Hyun; Kang, Eun Kyeong; Chung, Kyung Soo

    2016-01-01

    There is no well-stated practical guideline for mechanically ventilated patients with or without acute respiratory distress syndrome (ARDS). We generate strong (1) and weak (2) grade of recommendations based on high (A), moderate (B) and low (C) grade in the quality of evidence. In patients with ARDS, we recommend low tidal volume ventilation (1A) and prone position if it is not contraindicated (1B) to reduce their mortality. However, we did not support high-frequency oscillatory ventilation (1B) and inhaled nitric oxide (1A) as a standard treatment. We also suggest high positive end-expiratory pressure (2B), extracorporeal membrane oxygenation as a rescue therapy (2C), and neuromuscular blockage for 48 hours after starting mechanical ventilation (2B). The application of recruitment maneuver may reduce mortality (2B), however, the use of systemic steroids cannot reduce mortality (2B). In mechanically ventilated patients, we recommend light sedation (1B) and low tidal volume even without ARDS (1B) and suggest lung protective ventilation strategy during the operation to lower the incidence of lung complications including ARDS (2B). Early tracheostomy in mechanically ventilated patients can be performed only in limited patients (2A). In conclusion, of 12 recommendations, nine were in the management of ARDS, and three for mechanically ventilated patients. PMID:27790273

  13. CFD and ventilation research.

    PubMed

    Li, Y; Nielsen, P V

    2011-12-01

    There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000-10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize the growing need for CFD verification and validation, suggest ongoing needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical analysis in ventilation research, rather it has become an increasingly important partner. We believe that an effective scientific approach for ventilation studies is still to combine experiments, theory, and CFD. We argue that CFD verification and validation are becoming more crucial than ever as more complex ventilation problems are solved. It is anticipated that ventilation problems at the city scale will be tackled by CFD in the next 10 years. © 2011 John Wiley & Sons A/S.

  14. Randomized clinical trial of extended use of a hydrophobic condenser humidifier: 1 vs. 7 days.

    PubMed

    Thomachot, Laurent; Leone, Marc; Razzouk, Karim; Antonini, François; Vialet, Renaud; Martin, Claude

    2002-01-01

    To determine whether extended use (7 days) would affect the efficiency on heat and water preservation of a hydrophobic condenser humidifier as well as the rate of ventilation-acquired pneumonia, compared with 1 day of use. Prospective, controlled, randomized, not blinded, clinical study. Twelve-bed intensive care unit of a university hospital. One hundred and fifty-five consecutive patients undergoing mechanical ventilation for > or = 48 hrs. After randomization, patients were allocated to one of the two following groups: a) heat and moisture exchangers (HMEs) changed every 24 hrs; b) HMEs changed only once a week. Devices in both groups could be changed at the discretion of the staff when signs of occlusion or increased resistance were identified. Efficient airway humidification and heating were assessed by clinical variables (numbers of tracheal suctionings and instillations required, peak and mean airway pressures). The frequency rates of bronchial colonization and ventilation-acquired pneumonia were evaluated by using clinical and microbiological criteria. Endotracheal tube occlusion, ventilatory support variables, duration of mechanical ventilation, length of intensive care, acquired multiorgan dysfunction, and mortality rates also were recorded. The two groups were similar at the time of randomization. Endotracheal tube occlusion never occurred. In the targeted population (patients ventilated for > or = 7 days), the frequency rate of ventilation-acquired pneumonia was 24% in the HME 1-day group and 17% in the HME 7-day group (p > .05, not significant). Ventilation-acquired pneumonia rates per 1000 ventilatory support days were 16.4/1000 in the HME 1-day group and 12.4/1000 in the HME 7-day group (p > .05, not significant). No statistically significant differences were found between the two groups for duration of mechanical ventilation, intensive care unit length of stay, acquired organ system derangements, and mortality rate. There was indirect evidence of very little, if any, change in HME resistance. Changing the studied hydrophobic HME after 7 days did not affect efficiency, increase resistance, or altered bacterial colonization. The frequency rate of ventilation-acquired pneumonia was also unchanged. Use of HMEs for > 24 hrs and up to 7 days is safe.

  15. WE-AB-202-06: Correlating Lung CT HU with Transformation-Based and Xe-CT Derived Ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, K; Patton, T; Bayouth, J

    Purpose: Regional lung ventilation is useful to reduce radiation-induced function damage during lung cancer radiation therapy. Recently a new direct HU (Hounsfield unit)-based method was proposed to estimate the ventilation potential without image registration. The purpose of this study is to examine if there is a functional dependence between HU values and transformation-based or Xe-CT derived ventilation. Methods: 4DCT images acquired from 13 patients prior to radiation therapy and 4 mechanically ventilated sheep subjects which also have associated Xe-CT images were used for this analysis. Transformation-based ventilation was computed using Jacobian determinant of the transformation field between peak-exhale and peak-inhalemore » 4DCT images. Both transformation and Xe-CT derived ventilation was computed for each HU bin. Color scatter plot and cumulative histogram were used to compare and validate the direct HU-based method. Results: There was little change of the center and shape of the HU histograms between free breathing CT and 4DCT average, with or without smoothing, and between the repeated 4DCT scans. HU of −750 and −630 were found to have the greatest transformation-based ventilation for human and sheep subjects, respectively. Maximum Xe-CT derived ventilation was found to locate at HU of −600 in sheep subjects. The curve between Xe-CT ventilation and HU was noisy for tissue above HU −400, possibly due to less intensity change of Xe gas during wash-out and wash-in phases. Conclusion: Both transformation-based and Xe-CT ventilation demonstrated that lung tissues with HU values in the range of (-750, −600) HU have the maximum ventilation potential. The correlation between HU and ventilation suggests that HU might be used to help guide the ventilation calculation and make it more robust to noise and image registration errors. Research support from NIH grants CA166703 and CA166119 and a gift from Roger Koch.« less

  16. Multifaceted bench comparative evaluation of latest intensive care unit ventilators.

    PubMed

    Garnier, M; Quesnel, C; Fulgencio, J-P; Degrain, M; Carteaux, G; Bonnet, F; Similowski, T; Demoule, A

    2015-07-01

    Independent bench studies using specific ventilation scenarios allow testing of the performance of ventilators in conditions similar to clinical settings. The aims of this study were to determine the accuracy of the latest generation ventilators to deliver chosen parameters in various typical conditions and to provide clinicians with a comprehensive report on their performance. Thirteen modern intensive care unit ventilators were evaluated on the ASL5000 test lung with and without leakage for: (i) accuracy to deliver exact tidal volume (VT) and PEEP in assist-control ventilation (ACV); (ii) performance of trigger and pressurization in pressure support ventilation (PSV); and (iii) quality of non-invasive ventilation algorithms. In ACV, only six ventilators delivered an accurate VT and nine an accurate PEEP. Eleven devices failed to compensate VT and four the PEEP in leakage conditions. Inspiratory delays differed significantly among ventilators in invasive PSV (range 75-149 ms, P=0.03) and non-invasive PSV (range 78-165 ms, P<0.001). The percentage of the ideal curve (concomitantly evaluating the pressurization speed and the levels of pressure reached) also differed significantly (range 57-86% for invasive PSV, P=0.04; and 60-90% for non-invasive PSV, P<0.001). Non-invasive ventilation algorithms efficiently prevented the decrease in pressurization capacities and PEEP levels induced by leaks in, respectively, 10 and 12 out of the 13 ventilators. We observed real heterogeneity of performance amongst the latest generation of intensive care unit ventilators. Although non-invasive ventilation algorithms appear to maintain adequate pressurization efficiently in the case of leakage, basic functions, such as delivered VT in ACV and pressurization in PSV, are often less reliable than the values displayed by the device suggest. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Lung volume, breathing pattern and ventilation inhomogeneity in preterm and term infants.

    PubMed

    Latzin, Philipp; Roth, Stefan; Thamrin, Cindy; Hutten, Gerard J; Pramana, Isabelle; Kuehni, Claudia E; Casaulta, Carmen; Nelle, Matthias; Riedel, Thomas; Frey, Urs

    2009-01-01

    Morphological changes in preterm infants with bronchopulmonary dysplasia (BPD) have functional consequences on lung volume, ventilation inhomogeneity and respiratory mechanics. Although some studies have shown lower lung volumes and increased ventilation inhomogeneity in BPD infants, conflicting results exist possibly due to differences in sedation and measurement techniques. We studied 127 infants with BPD, 58 preterm infants without BPD and 239 healthy term-born infants, at a matched post-conceptional age of 44 weeks during quiet natural sleep according to ATS/ERS standards. Lung function parameters measured were functional residual capacity (FRC) and ventilation inhomogeneity by multiple breath washout as well as tidal breathing parameters. Preterm infants with BPD had only marginally lower FRC (21.4 mL/kg) than preterm infants without BPD (23.4 mL/kg) and term-born infants (22.6 mL/kg), though there was no trend with disease severity. They also showed higher respiratory rates and lower ratios of time to peak expiratory flow and expiratory time (t(PTEF)/t(E)) than healthy preterm and term controls. These changes were related to disease severity. No differences were found for ventilation inhomogeneity. Our results suggest that preterm infants with BPD have a high capacity to maintain functional lung volume during natural sleep. The alterations in breathing pattern with disease severity may reflect presence of adaptive mechanisms to cope with the disease process.

  18. Gas transfer model to design a ventilator for neonatal total liquid ventilation.

    PubMed

    Bonfanti, Mirko; Cammi, Antonio; Bagnoli, Paola

    2015-12-01

    The study was aimed to optimize the gas transfer in an innovative ventilator for neonatal Total Liquid Ventilation (TLV) that integrates the pumping and oxygenation functions in a non-volumetric pulsatile device made of parallel flat silicone membranes. A computational approach was adopted to evaluate oxygen (O2) and carbon dioxide (CO2) exchanges between the liquid perfluorocarbon (PFC) and the oxygenating gas, as a function of the geometrical parameter of the device. A 2D semi-empirical model was implemented to this purpose using Comsol Multiphysics to study both the fluid dynamics and the gas exchange in the ventilator. Experimental gas exchanges measured with a preliminary prototype were compared to the simulation outcomes to prove the model reliability. Different device configurations were modeled to identify the optimal design able to guarantee the desired gas transfer. Good agreement between experimental and simulation outcomes was obtained, validating the model. The optimal configuration, able to achieve the desired gas exchange (ΔpCO2 = 16.5 mmHg and ΔpO2 = 69 mmHg), is a device comprising 40 modules, 300 mm in length (total exchange area = 2.28 m(2)). With this configuration gas transfer performance is satisfactory for all the simulated settings, proving good adaptability of the device. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Design and rationale of the assessment of proper physiologic response with rate adaptive pacing driven by minute ventilation or accelerometer (APPROPRIATE) trial.

    PubMed

    Gilliam, F Roosevelt; Giudici, Michael; Benn, Andrew; Koplan, Bruce; Berg, Kellie Jean Chase; Kraus, Stacia Merkel; Stolen, Kira Q; Alvarez, Guy E; Hopper, Donald L; Wilkoff, Bruce L

    2011-02-01

    Rate-adaptive sensors are designed to restore a physiologic heart rate response to activity, in particular for patients that have chronotropic incompetence (CI). Limited data exist comparing two primary types of sensors; an accelerometer (XL) sensor which detects activity or motion and a minute ventilation (MV) sensor, which detects the product of respiration rate and tidal volume. The APPROPRIATE study will evaluate the MV sensor compared with the XL sensor for superiority in improving functional capacity (peak VO(2)) in pacemaker patients that have CI. This study is a double-blind, randomized, two-arm trial that will enroll approximately 1,000 pacemaker patients. Patients will complete a 6-min walk test at the 2-week visit to screen for potential CI. Those projected to have CI will advance to a 1-month visit. At the 1-month visit, final determination of CI will be done by completing a peak exercise treadmill test while the pacemaker is programmed to DDDR with the device sensors set to passive. Patients failing to meet the study criteria for CI will not continue further in the trial. Patients that demonstrate CI will be randomized to program their rate-adaptive sensors to either MV or XL in a 1:1 ratio. The rate-adaptive sensor will be optimized for each patient using a short walk to determine the appropriate response factor. At a 2-month visit, patients will complete a CPX test with the rate-adaptive sensors in their randomized setting.

  20. TH-E-BRF-02: 4D-CT Ventilation Image-Based IMRT Plans Are Dosimetrically Comparable to SPECT Ventilation Image-Based Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kida, S; University of Tokyo Hospital, Bunkyo, Tokyo; Bal, M

    Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (amore » surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation image-based plans, providing evidence to use 4D-CT ventilation imaging for clinical applications. Supported in part by Free to Breathe Young Investigator Research Grant and NIH/NCI R01 CA 093626. The authors thank Philips Radiation Oncology Systems for the Pinnacle3 treatment planning systems.« less

  1. Experience of long-term use of non-invasive ventilation in motor neuron disease: an interpretative phenomenological analysis.

    PubMed

    Ando, Hikari; Chakrabarti, Biswajit; Angus, Robert M; Cousins, Rosanna; Thornton, Everard W; Young, Carolyn A

    2014-03-01

    Although non-invasive ventilation (NIV) can promote quality of life in motor neuron disease (MND), previous studies have disregarded the impact of progression of illness. This study explored how patients' perceptions of NIV treatment evolve over time and how this was reflected in their adherence to NIV. Five patients with MND (male=4, mean age=59 years), from a bigger cohort who were prospectively followed, had multiple post-NIV semistructured interviews, covering more than 12 months, along with ventilator interaction data. The transcribed phenomenological data were analysed using qualitative methodology. Three themes emerged: experience of NIV, influence on attitudes and perceived impact of NIV on prognosis. The ventilator interaction data identified regular use of NIV by four participants who each gave positive account of their experience of NIV treatment, and irregular use by one participant who at interview revealed a negative attitude to NIV treatment and in whom MND induced feelings of hopelessness. This exploratory study suggests that a positive coping style, adaptation and hope are key factors for psychological well-being and better adherence to NIV. More studies are needed to determine these relationships.

  2. Numerical investigation of pulmonary drug delivery under mechanical ventilation conditions

    NASA Astrophysics Data System (ADS)

    Banerjee, Arindam; van Rhein, Timothy

    2012-11-01

    The effects of mechanical ventilation waveform on fluid flow and particle deposition were studied in a computer model of the human airways. The frequency with which aerosolized drugs are delivered to mechanically ventilated patients demonstrates the importance of understanding the effects of ventilation parameters. This study focuses specifically on the effects of mechanical ventilation waveforms using a computer model of the airways of patient undergoing mechanical ventilation treatment from the endotracheal tube to generation G7. Waveforms were modeled as those commonly used by commercial mechanical ventilators. Turbulence was modeled with LES. User defined particle force models were used to model the drag force with the Cunningham correction factor, the Saffman lift force, and Brownian motion force. The endotracheal tube (ETT) was found to be an important geometric feature, causing a fluid jet towards the right main bronchus, increased turbulence, and a recirculation zone in the right main bronchus. In addition to the enhanced deposition seen at the carinas of the airway bifurcations, enhanced deposition was also seen in the right main bronchus due to impaction and turbulent dispersion resulting from the fluid structures created by the ETT. Authors acknowledge financial support through University of Missouri Research Board Award.

  3. Impact of whole-body rehabilitation in patients receiving chronic mechanical ventilation.

    PubMed

    Martin, Ubaldo J; Hincapie, Luis; Nimchuk, Mark; Gaughan, John; Criner, Gerard J

    2005-10-01

    To evaluate the prevalence and magnitude of weakness in patients receiving chronic mechanical ventilation and the impact of providing aggressive whole-body rehabilitation on conventional weaning variables, muscle strength, and overall functional status. Retrospective analysis of 49 consecutive patients. Multidisciplinary ventilatory rehabilitation unit in an academic medical center. Forty-nine consecutive chronic ventilator-dependent patients referred to a tertiary care hospital ventilator rehabilitation unit. None. Patients were 58 +/- 7 yrs old with multiple etiologies for respiratory failure. On admission, all patients were bedridden and had severe weakness of upper and lower extremities measured by a 5-point muscle strength score and a 7-point Functional Independence Measurement. Postrehabilitation, patients had increases in upper and lower extremity strength (p < .05) and were able to stand and ambulate. All weaned from mechanical ventilation, but three required subsequent intermittent support. Six patients died before hospital discharge. Upper extremity strength on admission inversely correlated with time to wean from mechanical ventilation (R = .72, p < .001). : Patients receiving chronic ventilation are weak and deconditioned but respond to aggressive whole-body and respiratory muscle training with an improvement in strength, weaning outcome, and functional status. Whole-body rehabilitation should be considered a significant component of their therapy.

  4. Clinical review: Long-term noninvasive ventilation

    PubMed Central

    Robert, Dominique; Argaud, Laurent

    2007-01-01

    Noninvasive positive ventilation has undergone a remarkable evolution over the past decades and is assuming an important role in the management of both acute and chronic respiratory failure. Long-term ventilatory support should be considered a standard of care to treat selected patients following an intensive care unit (ICU) stay. In this setting, appropriate use of noninvasive ventilation can be expected to improve patient outcomes, reduce ICU admission, enhance patient comfort, and increase the efficiency of health care resource utilization. Current literature indicates that noninvasive ventilation improves and stabilizes the clinical course of many patients with chronic ventilatory failure. Noninvasive ventilation also permits long-term mechanical ventilation to be an acceptable option for patients who otherwise would not have been treated if tracheostomy were the only alternative. Nevertheless, these results appear to be better in patients with neuromuscular/-parietal disorders than in chronic obstructive pulmonary disease. This clinical review will address the use of noninvasive ventilation (not including continuous positive airway pressure) mainly in diseases responsible for chronic hypoventilation (that is, restrictive disorders, including neuromuscular disease and lung disease) and incidentally in others such as obstructive sleep apnea or problems of central drive. PMID:17419882

  5. Advanced life support study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Summary reports on each of the eight tasks undertaken by this contract are given. Discussed here is an evaluation of a Closed Ecological Life Support System (CELSS), including modeling and analysis of Physical/Chemical Closed Loop Life Support (P/C CLLS); the Environmental Control and Life Support Systems (ECLSS) evolution - Intermodule Ventilation study; advanced technologies interface requirements relative to ECLSS; an ECLSS resupply analysis; the ECLSS module addition relocation systems engineering analysis; an ECLSS cost/benefit analysis to identify rack-level interface requirements of the alternate technologies evaluated in the ventilation study, with a comparison of these with the rack level interface requirements for the baseline technologies; advanced instrumentation - technology database enhancement; and a clean room survey and assessment of various ECLSS evaluation options for different growth scenarios.

  6. Effects of adaptive servo-ventilation therapy on cardiac function and remodeling in patients with chronic heart failure (SAVIOR-C): study protocol for a randomized controlled trial.

    PubMed

    Seino, Yoshihiko; Momomura, Shin-Ichi; Kihara, Yasuki; Adachi, Hitoshi; Yasumura, Yoshio; Yokoyama, Hiroyuki

    2015-01-16

    Adaptive servo-ventilation (ASV) therapy, which is a form of noninvasive positive pressure ventilation therapy and uses an innovative ventilator that has simple operability and provides good patient adherence, potentially has therapeutic benefits-suppression of the deterioration and progression of chronic heart failure (CHF) and a reduction in the number of repeated hospitalizations. Therefore, ASV therapy draws attention as a novel, noninvasive nonpharmacotherapy for patients with CHF owing to its hemodynamics-improving effect, and it is currently being accepted in real-world clinical settings in Japan. However, clinical evidence sufficient for treatment recommendation is lacking because a multicenter, randomized, controlled study of ASV therapy has never been conducted. The present study is a confirmatory, prospective, multicenter, collaborative, open-label, blinded-endpoint, parallel-group, randomized, controlled study. At 40 medical institutions in Japan, 200 Japanese outpatients with mild to severe CHF (age: ≥ 20 years; New York Heart Association classification: greater than or equal to class II) will be randomly assigned to either of the following two study groups: the ASV group, in which 100 outpatients undergo guideline-directed medical therapy and ASV therapy for 24 weeks; and the control group, in which 100 outpatients undergo only guideline-directed medical therapy for 24 weeks. The objective of the present study is to confirm whether the ASV group is superior to the control group concerning the improvement of left ventricular contractility and remodeling, both assessed by two-dimensional echocardiography. Furthermore, the present study will also secondarily examine the effects of ASV therapy on the prognosis and quality of life of patients with CHF. ASV therapy using the device has the potential to provide therapeutic benefits based on its simple operability and good patient adherence and possesses the potential to improve left ventricular contractility and remodeling. Therefore, the present study is expected to afford more solid scientific evidence regarding ASV therapy as a novel, noninvasive, nonpharmacological, in-home, long-term ventilation therapy for patients with mild to severe CHF. UMIN identifier: UMIN000006549 , registered on 17 October, 2011.

  7. Challenges on non-invasive ventilation to treat acute respiratory failure in the elderly.

    PubMed

    Scala, Raffaele

    2016-11-15

    Acute respiratory failure is a frequent complication in elderly patients especially if suffering from chronic cardio-pulmonary diseases. Non-invasive mechanical ventilation constitutes a successful therapeutic tool in the elderly as, like in younger patients, it is able to prevent endotracheal intubation in a wide range of acute conditions; moreover, this ventilator technique is largely applied in the elderly in whom invasive mechanical ventilation is considered not appropriated. Furthermore, the integration of new technological devices, ethical issues and environment of treatment are still largely debated in the treatment of acute respiratory failure in the elderly.This review aims at reporting and critically analyzing the peculiarities in the management of acute respiratory failure in elderly people, the role of noninvasive mechanical ventilation, the potential advantages of applying alternative or integrated therapeutic tools (i.e. high-flow nasal cannula oxygen therapy, non-invasive and invasive cough assist devices and low-flow carbon-dioxide extracorporeal systems), drawbacks in physician's communication and "end of life" decisions. As several areas of this topic are not supported by evidence-based data, this report takes in account also "real-life" data as well as author's experience.The choice of the setting and of the timing of non-invasive mechanical ventilation in elderly people with advanced cardiopulmonary disease should be carefully evaluated together with the chance of using integrated or alternative supportive devices. Last but not least, economic and ethical issues may often challenges the behavior of the physicians towards elderly people who are hospitalized for acute respiratory failure at the end stage of their cardiopulmonary and neoplastic diseases.

  8. Effect Of Pressure Support Versus Unassisted Breathing Through A Tracheostomy Collar On Weaning Duration In Patients Requiring Prolonged Mechanical Ventilation: A Randomized Trial

    PubMed Central

    Jubran, Amal; Grant, Brydon J.B.; Duffner, Lisa A.; Collins, Eileen G.; Lanuza, Dorothy M.; Hoffman, Leslie A.; Tobin, Martin J.

    2013-01-01

    Context Patients requiring prolonged mechanical ventilation (more than 21 days) are commonly weaned at long-term acute care hospitals (LTACHs). The most effective method of weaning such patients has not been investigated. Objective To compare weaning duration with pressure support versus unassisted breathing through a tracheostomy (trach collar) in patients transferred to a LTACH for weaning from prolonged ventilation. Design, Settings, and Participants Between 2000 and 2010, a randomized study was conducted in tracheotomized patients transferred to a single LTACH for weaning from prolonged ventilation. Of 500 patients who underwent a five-day screening procedure, 316 failed and were randomly assigned to wean with pressure support (n=155) or a trach collar (n=161). Six- and twelve-month survival was also determined. Main outcome measure Primary outcome was weaning duration. Secondary outcome was survival at six and twelve months after enrollment. Results Of 316 patients, four were withdrawn and not included in analysis. Of 152 patients in the pressure-support arm, 68 (44.7%) were weaned; 22 (14.5%) died. Of 160 patients in the trach-collar arm, 85 (53.1%) were weaned; 16 (10.0%) died. Median weaning time was shorter with trach collar than with pressure support: 15 [interquartile range, 8–25] versus 19 [12–31] days, p=0.004. The hazard ratio (HR) for successful weaning rate was higher with trach collar than with pressure support (HR, 1.43; 95% confidence interval [CI], 1.03–1.98, p<0.03) after adjusting for baseline clinical covariates. Trach collar achieved faster weaning than did pressure support among subjects who failed the screening procedure at 12–120 hours (HR, 3.33; 95% CI, 1.44–7.70, p<0.01), whereas weaning time was equivalent with the two methods in patients who failed the screening procedure within 0–12 hours. Mortality was equivalent in the pressure-support and trach-collar arms at six months (55.9% versus 51.3%; 4.7 difference, 95% CI −6.4 to 15.7%) and twelve months (66.4% versus 60.0%; 6.5 difference, 95% CI −4.2 to 17.1 %). Conclusion Among patients requiring prolonged mechanical ventilation and treated at a single long-term care facility, unassisted breathing through a tracheostomy, compared with pressure support, resulted in shorter median weaning time, although weaning mode had no effect on survival at 6 and 12 months. PMID:23340588

  9. Effect of pressure support vs unassisted breathing through a tracheostomy collar on weaning duration in patients requiring prolonged mechanical ventilation: a randomized trial.

    PubMed

    Jubran, Amal; Grant, Brydon J B; Duffner, Lisa A; Collins, Eileen G; Lanuza, Dorothy M; Hoffman, Leslie A; Tobin, Martin J

    2013-02-20

    Patients requiring prolonged mechanical ventilation (>21 days) are commonly weaned at long-term acute care hospitals (LTACHs). The most effective method of weaning such patients has not been investigated. To compare weaning duration with pressure support vs unassisted breathing through a tracheostomy collar in patients transferred to an LTACH for weaning from prolonged ventilation. Between 2000 and 2010, a randomized study was conducted in tracheotomized patients transferred to a single LTACH for weaning from prolonged ventilation. Of 500 patients who underwent a 5-day screening procedure, 316 did not tolerate the procedure and were randomly assigned to receive weaning with pressure support (n = 155) or a tracheostomy collar (n = 161). Survival at 6- and 12-month time points was also determined. Primary outcome was weaning duration. Secondary outcome was survival at 6 and 12 months after enrollment. Of 316 patients, 4 were withdrawn and not included in analysis. Of 152 patients in the pressure-support group, 68 (44.7%) were weaned; 22 (14.5%) died. Of 160 patients in the tracheostomy collar group, 85 (53.1%) were weaned; 16 (10.0%) died. Median weaning time was shorter with tracheostomy collar use (15 days; interquartile range [IQR], 8-25) than with pressure support (19 days; IQR, 12-31), P = .004. The hazard ratio (HR) for successful weaning rate was higher with tracheostomy collar use than with pressure support (HR, 1.43; 95% CI, 1.03-1.98; P = .033) after adjusting for baseline clinical covariates. Use of the tracheostomy collar achieved faster weaning than did pressure support among patients who did not tolerate the screening procedure between 12 and 120 hours (HR, 3.33; 95% CI, 1.44-7.70; P = .005), whereas weaning time was equivalent with the 2 methods in patients who did not tolerate the screening procedure within 0 to 12 hours. Mortality was equivalent in the pressure-support and tracheostomy collar groups at 6 months (55.92% vs 51.25%; 4.67% difference, 95% CI, -6.4% to 15.7%) and at 12 months (66.45% vs 60.00%; 6.45% difference, 95% CI, -4.2% to 17.1%). Among patients requiring prolonged mechanical ventilation and treated at a single long-term care facility, unassisted breathing through a tracheostomy, compared with pressure support, resulted in shorter median weaning time, although weaning mode had no effect on survival at 6 and 12 months. clinicaltrials.gov Identifier: NCT01541462.

  10. Respiratory support in oncology ward setting: a prospective descriptive study.

    PubMed

    Mishra, Seema; Bhatnagar, Sushma; Gupta, Deepak; Goyal, Gaurav Nirvani; Agrawal, Ravi; Jain, Roopesh; Chauhan, Himanshu

    2009-01-01

    Mechanical ventilation in cancer patients is a critical issue The present prospective descriptive study was designed (1) to assess the patient population needing respirator support in ward setting at a premier state-run oncology institute in India, (2) to observe and analyze the course of their disease while on respirator, and (3) to coordinate better quality of life measures in cancer patients at the institute based on the present study's outcomes. Beginning from March 2005 to March 2006, all cancer patients who were connected to respirator in the wards were enrolled in the current study. Our anesthesiology department at the cancer institute also has primary responsibility for airway management and mechanical ventilation in high dependency units of oncology wards. Preventilation variables in cancer patients were assessed to judge the futility of mechanical ventilation in ward setting. Subsequently, patients were observed for disease course while on respirator. Final outcome with its etio-pathogenesis was correlated with predicted futility of mechanical ventilation. Over a period of 1 year, 132 (46 men and 86 women) cancer patients with median age 40 years (range 1-75 years) were connected to respirator in oncology wards. Based on the preventilation variables and indications for respirator support, right prediction of medical futility and hospital discharge was made in 77% of patients. Underestimation and overestimation of survival to hospital discharge was made in 10% cases and 13% cases, respectively. Based on preventilation variables, prediction of outcome in cancer patients needing respirator support can be made in 77% cases. This high probability of prediction can be used to educate patients, and their families and primary physicians, for well-informed and documented advance directives, formulated and regularly revised DNAR policies, and judicious use of respirator support for better quality-of-life outcomes.

  11. The Evolution of Unidirectional Pulmonary Airflow.

    PubMed

    Farmer, C G

    2015-07-01

    Conventional wisdom holds that the avian respiratory system is unique because air flows in the same direction through most of the gas-exchange tubules during both phases of ventilation. However, recent studies showing that unidirectional airflow also exists in crocodilians and lizards raise questions about the true phylogenetic distribution of unidirectional airflow, the selective drivers of the trait, the date of origin, and the functional consequences of this phenomenon. These discoveries suggest unidirectional flow was present in the common diapsid ancestor and are inconsistent with the traditional paradigm that unidirectional flow is an adaptation for supporting high rates of gas exchange. Instead, these discoveries suggest it may serve functions such as decreasing the work of breathing, decreasing evaporative respiratory water loss, reducing rates of heat loss, and facilitating crypsis. The divergence in the design of the respiratory system between unidirectionally ventilated lungs and tidally ventilated lungs, such as those found in mammals, is very old, with a minimum date for the divergence in the Permian Period. From this foundation, the avian and mammalian lineages evolved very different respiratory systems. I suggest the difference in design is due to the same selective pressure, expanded aerobic capacity, acting under different environmental conditions. High levels of atmospheric oxygen of the Permian Period relaxed selection for a thin blood-gas barrier and may have resulted in the homogeneous, broncho-alveolar design, whereas the reduced oxygen of the Mesozoic selected for a heterogeneous lung with an extremely thin blood-gas barrier. These differences in lung design may explain the puzzling pattern of ecomorphological diversification of Mesozoic mammals: all were small animals that did not occupy niches requiring a great aerobic capacity. The broncho-alveolar lung and the hypoxia of the Mesozoic may have restricted these mammals from exploiting niches of large body size, where cursorial locomotion can be advantageous, as well as other niches requiring great aerobic capacities, such as those using flapping flight. Furthermore, hypoxia may have exerted positive selection for a parasagittal posture, the diaphragm, and reduced erythrocyte size, innovations that enabled increased rates of ventilation and more rapid rates of diffusion in the lung. ©2015 Int. Union Physiol. Sci./Am. Physiol. Soc.

  12. A review of cetacean lung morphology and mechanics.

    PubMed

    Piscitelli, Marina A; Raverty, Stephen A; Lillie, Margo A; Shadwick, Robert E

    2013-12-01

    Cetaceans possess diverse adaptations in respiratory structure and mechanics that are highly specialized for an array of surfacing and diving behaviors. Some of these adaptations and air management strategies are still not completely understood despite over a century of study. We have compiled the historical and contemporary knowledge of cetacean lung anatomy and mechanics in regards to normal lung function during ventilation and air management while diving. New techniques are emerging utilizing pulmonary mechanics to measure lung function in live cetaceans. Given the diversity of respiratory adaptations in cetaceans, interpretations of these results should consider species-specific anatomy, mechanics, and behavior. Copyright © 2013 Wiley Periodicals, Inc.

  13. TU-G-BRA-04: Changes in Regional Lung Function Measured by 4D-CT Ventilation Imaging for Thoracic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Y; Kadoya, N; Kabus, S

    Purpose: To test the hypothesis: 4D-CT ventilation imaging can show the known effects of radiotherapy on lung function: (1) radiation-induced ventilation reductions, and (2) ventilation increases caused by tumor regression. Methods: Repeat 4D-CT scans (pre-, mid- and/or post-treatment) were acquired prospectively for 11 thoracic cancer patients in an IRB-approved clinical trial. A ventilation image for each time point was created using deformable image registration and the Hounsfield unit (HU)-based or Jacobian-based metric. The 11 patients were divided into two subgroups based on tumor volume reduction using a threshold of 5 cm{sup 3}. To quantify radiation-induced ventilation reduction, six patients whomore » showed a small tumor volume reduction (<5 cm{sup 3}) were analyzed for dose-response relationships. To investigate ventilation increase caused by tumor regression, two of the other five patients were analyzed to compare ventilation changes in the lung lobes affected and unaffected by the tumor. The remaining three patients were excluded because there were no unaffected lobes. Results: Dose-dependent reductions of HU-based ventilation were observed in a majority of the patient-specific dose-response curves and in the population-based dose-response curve, whereas no clear relationship was seen for Jacobian-based ventilation. The post-treatment population-based dose-response curve of HU-based ventilation demonstrated the average ventilation reductions of 20.9±7.0% at 35–40 Gy (equivalent dose in 2-Gy fractions, EQD2), and 40.6±22.9% at 75–80 Gy EQD2. Remarkable ventilation increases in the affected lobes were observed for the two patients who showed an average tumor volume reduction of 37.1 cm{sup 3} and re-opening airways. The mid-treatment increase in HU-based ventilation of patient 3 was 100.4% in the affected lobes, which was considerably greater than 7.8% in the unaffected lobes. Conclusion: This study has demonstrated that 4D-CT ventilation imaging shows the known effects of radiotherapy on lung function: radiation-induced ventilation reduction and ventilation increase caused by tumor regression, providing validation for 4D-CT ventilation imaging. This study was supported in part by a National Lung Cancer Partnership Young Investigator Research grant.« less

  14. Volume guarantee ventilation during surgical closure of patent ductus arteriosus.

    PubMed

    Keszler, Martin; Abubakar, Kabir

    2015-01-01

    Surgical closure of patent ductus arteriosus (PDA) is associated with adverse outcomes. Surgical exposure requires retraction of the lung, resulting in decreased aeration and compliance. Optimal respiratory support for PDA surgery is unknown. Experience with volume guarantee (VG) ventilation at our institution led us to hypothesize that surgery would be better tolerated with automatic adjustment of pressure by VG to maintain tidal volume (VT) during retraction. The objective of this study was to describe ventilator support, VT, and oxygenation of infants supported with VG during PDA surgery. Ventilator variables, oxygen saturation, and heart rate were recorded during PDA surgery in a convenience sample of infants during PDA closure on VG. Pressure limit increased 11% and set VT was 26% lower during lung retraction. Fentanyl and pancuronium/vecuronium were used for anesthesia/muscle relaxation. Longitudinal data were analyzed by analysis of variance for repeated measures. Seven infants, 25.4 ± 1.5 weeks and 723 ± 141 g, underwent closure of PDA on VG at a mean age 29.9 days. No air leak, bradycardia, or death occurred. Target VT was maintained with a modest increase in inflation pressure. Oxygenation remained adequate. VG avoided hypoxemia and maintained adequate VT with only a modest increase in peak inflation pressure and thus may be a useful mode during PDA surgery. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. [Resuscitation - Basic Life Support in adults and application of automatic external defibrillators].

    PubMed

    Bohn, Andreas; Seewald, Stephan; Wnent, Jan

    2016-03-01

    Witnesses of a sudden cardiac arrest play a key-role in resuscitation. Lay-persons should therefore be trained to recognize that a collapsed person who is not breathing at all or breathing normally might suffer from cardiac arrest. Information of professional emergency medical staff by lay-persons and their initiation of cardio-pulmonary-resuscitation-measures are of great importance for cardiac-arrest victims. Ambulance-dispatchers have to support lay-rescuers via telephone. This support includes the localisation of the nearest Automatic External Defibrillator (AED). Presentation of agonal breathing or convulsions due to brain-hypoxia need to be recognized as potential early signs of cardiac arrest. In any case of cardiac arrest chest-compressions need to be started. There is insufficiant data to recommend "chest-compression-only"-CPR as being equally sufficient as cardio-pulmonary-resuscitation including ventilation. Rescuers trained in ventilation should therefore combine compressions and ventilations at a 30:2-ratio. Movement of the chest is being used as a sign of sufficient ventilation. High-quality chest-compressions of at least 5 cm of depth, not exceeding 6 cm, are recommended at a ratio of 100-120 chest conpressions/min. Interruption of chest-compression should be avoided. At busy public places AED should be available to enable lay-rescuers to apply early defibrillation. © Georg Thieme Verlag Stuttgart · New York.

  16. Full-Scale Schlieren Visualization of Commercial Kitchen Ventilation Aerodynamics

    NASA Astrophysics Data System (ADS)

    Miller, J. D.; Settles, G. S.

    1996-11-01

    The efficient removal of cooking effluents from commercial kitchens has been identified as the most pressing energy-related issue in the food service industry. A full-scale schlieren optical system with a 2.1x2.7m field-of-view, described at previous APS/DFD meetings, images the convective airflow associated with a typical gas-fired cooking griddle and ventilation hood. Previous attempts to visualize plumes from cooking equipment by smoke and neutrally-buoyant bubbles were not sufficiently keyed to thermal convection. Here, the point where the ventilation hood fails to capture the effluent plume is clearly visible, thus determining the boundary condition for a balanced ventilation system. Further, the strong influence of turbulent entrainment is seen in the behavior of the combustion products vented by the griddle and the interference caused by a makeup-air outlet located too close to the lip of the ventilation hood. Such applications of traditional fluid dynamics techniques and principles are believed to be important to the maturing of ventilation technology. (Research supported by EPRI and IFMA, Inc.)

  17. Reduction of duration and cost of mechanical ventilation in an intensive care unit by use of a ventilatory management team.

    PubMed

    Cohen, I L; Bari, N; Strosberg, M A; Weinberg, P F; Wacksman, R M; Millstein, B H; Fein, I A

    1991-10-01

    To test the hypothesis that a formal interdisciplinary team approach to managing ICU patients requiring mechanical ventilation enhances ICU efficiency. Retrospective review with cost-effectiveness analysis. A 20-bed medical-surgical ICU in a 450-bed community referral teaching hospital with a critical care fellowship training program. All patients requiring mechanical ventilation in the ICU were included, comparing patients admitted 1 yr before the inception of the ventilatory management team (group 1) with those patients admitted for 1 yr after the inception of the team (group 2). Group 1 included 198 patients with 206 episodes of mechanical ventilation and group 2 included 165 patients with 183 episodes of mechanical ventilation. A team consisting of an ICU attending physician, nurse, and respiratory therapist was formed to conduct rounds regularly and supervise the ventilatory management of ICU patients who were referred to the critical care service. The two study groups were demographically comparable. However, there were significant reductions in resource use in group 2. The number of days on mechanical ventilation decreased (3.9 days per episode of mechanical ventilation [95% confidence interval 0.3 to 7.5 days]), as did days in the ICU (3.3 days per episode of mechanical ventilation [90% confidence interval 0.3 to 6.3 days]), numbers of arterial blood gases (23.2 per episode of mechanical ventilation; p less than .001), and number of indwelling arterial catheters (1 per episode of mechanical ventilation; p less than .001). The estimated cost savings from these reductions was $1,303 per episode of mechanical ventilation. We conclude that a ventilatory management team, or some component thereof, can significantly and safely expedite the process of "weaning" patients from mechanical ventilatory support in the ICU.

  18. High mortality from Guillain-Barré syndrome in Bangladesh.

    PubMed

    Ishaque, Tanveen; Islam, Mohammad B; Ara, Gulshan; Endtz, Hubert P; Mohammad, Quazi D; Jacobs, Bart C; Islam, Zhahirul

    2017-06-01

    Although Guillain-Barré syndrome (GBS) has higher incidence and poor outcome in Bangladesh, mortality from GBS in Bangladesh has never been explored before. We sought to explore the frequency, timing, and risk factors for deaths from GBS in Bangladesh. We conducted a prospective study on 407 GBS patients who were admitted to Dhaka Medical College Hospital, Dhaka, Bangladesh from 2010 to 2013. We compared deceased and alive patients to identify risk factors. Cox regression model was used to adjust for confounders. Of the 407 GBS patients, 50 (12%) died, with the median time interval between the onset of weakness and death of 18 days. Among the fatal cases, 24 (48%) were ≥40 years, 36 (72%) had a Medical Research Council sum score ≤20 at entry, 33 (66%) had a progressive phase <8 days, and 27 (54%) required ventilation support. Ten patients (20%) died due to unavailability of ventilator. The strongest risk factor for deaths was lack of ventilator support when it was required (HR: 11.9; 95% confidence interval [CI]: 4.6-30.7). Other risk factors for death included age ≥40 years (HR: 5.9; 95% CI: 2.1-16.7), mechanical ventilation (HR: 2.3; 95% CI: 1.02-5.2), longer progressive phase (>8 days) (HR: 2.06; 95% CI: 1.1-3.8), autonomic dysfunction (HR: 1.9; 95% CI: 1.05-3.6), and bulbar nerve involvement (HR: 5.4; 95% CI: 1.5-19.2). In Bangladesh, GBS is associated with higher mortality rates, which is related to lack of ventilator support, disease severity, longer progressive phase of the disease, autonomic dysfunction, and involvement of the bulbar nerves. © 2017 Peripheral Nerve Society.

  19. Impact of Prolonged Mechanical Ventilation in Very Low Birth Weight Infants: Results From a National Cohort Study.

    PubMed

    Choi, Young-Bin; Lee, Juyoung; Park, Jisun; Jun, Yong Hoon

    2018-03-01

    To evaluate the in-hospital consequences of prolonged respiratory support with invasive mechanical ventilation in very low birth weight infants. A cohort study was performed using prospectively collected data from 69 neonatal intensive care units participating in the Korean national registry. In total, 3508 very low birth weight infants born between January 1, 2013 and December 31, 2014 were reviewed. The adjusted hazard ratio for death increased significantly for infants who received mechanical ventilation for more than 2 weeks compared with those were mechanically ventilated for 7 days or less. The individual mortality rate increased after 8 weeks, reaching 50% and 60% at 14 and 16 weeks of cumulative mechanical ventilation, respectively. After adjusting for potential confounders, the cumulative duration of mechanical ventilation was associated with a clinically significant increase in the odds of bronchopulmonary dysplasia and pulmonary hypertension. Mechanical ventilation exposure for longer than 2 weeks, compared with 7 days or less, was associated with retinopathy of prematurity requiring laser coagulation and periventricular leukomalacia. The odds of abnormal auditory screening test results were significantly increased in infants who needed mechanical ventilation for more than 4 weeks. A longer cumulative duration of mechanical ventilation was associated with increased lengths of hospitalization and parenteral nutrition and a higher probability of discharge with poor achievement of physical growth. Although mechanical ventilation is a life-saving intervention for premature infants, these results indicate that it is associated with negative consequences when applied for prolonged periods. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A Contemporary Assessment of Acute Mechanical Ventilation in Beijing: Description, Costs, and Outcomes.

    PubMed

    Ye, Yanping; Zhu, Bo; Jiang, Li; Jiang, Qi; Wang, Meiping; Hua, Lin; Xi, Xiuming

    2017-07-01

    To evaluate the contemporary practice, outcomes, and costs related to mechanical ventilation among ICUs in China. A prospective observational cohort study. Fourteen ICUs among 13 hospitals in Beijing, China. Seven hundred ninety-three patients who received at least 24 hours of mechanical ventilation within the first 48 hours of ICU stay. None. The mean age was 64 years. Sixty-three percent were male. New acute respiratory failure accounted for 85.5% of mechanical ventilation cases. Only 4.7% of the patients received mechanical ventilation for acute exacerbation of chronic obstructive pulmonary disease. The most widely used ventilation mode was the combination of synchronized intermittent mandatory ventilation and pressure support (43.6%). Use of lung-protective ventilation is widespread with tidal volumes of 7.1 mL/kg (2.1 mL/kg). The ICU/hospital mortality was 27.6%/29.3%, respectively (8.5%/9.7% for surgical patients and 41.3%/43.2% for medical patients, respectively). The mean level of ICU/hospital cost per patient was $15,271 (18,940)/$22,946 (25,575), respectively. The mean daily ICU cost per patient was $1,212. For the first time, we obtained a preliminary epidemiology data of mechanical ventilation in Beijing, China, through the study. Compared with the other nations, our patients are older, predominantly male, and treated according to prevailing international guidelines yet at a relatively high cost and high mortality. The expanding elderly population predicts increase demand for mechanical ventilation that must be met by continuous improvement in quality and efficiency of critical care services.

  1. Modes of mechanical ventilation for the operating room.

    PubMed

    Ball, Lorenzo; Dameri, Maddalena; Pelosi, Paolo

    2015-09-01

    Most patients undergoing surgical procedures need to be mechanically ventilated, because of the impact of several drugs administered at induction and during maintenance of general anaesthesia on respiratory function. Optimization of intraoperative mechanical ventilation can reduce the incidence of post-operative pulmonary complications and improve the patient's outcome. Preoxygenation at induction of general anaesthesia prolongs the time window for safe intubation, reducing the risk of hypoxia and overweighs the potential risk of reabsorption atelectasis. Non-invasive positive pressure ventilation delivered through different interfaces should be considered at the induction of anaesthesia morbidly obese patients. Anaesthesia ventilators are becoming increasingly sophisticated, integrating many functions that were once exclusive to intensive care. Modern anaesthesia machines provide high performances in delivering the desired volumes and pressures accurately and precisely, including assisted ventilation modes. Therefore, the physicians should be familiar with the potential and pitfalls of the most commonly used intraoperative ventilation modes: volume-controlled, pressure-controlled, dual-controlled and assisted ventilation. Although there is no clear evidence to support the advantage of any one of these ventilation modes over the others, protective mechanical ventilation with low tidal volume and low levels of positive end-expiratory pressure (PEEP) should be considered in patients undergoing surgery. The target tidal volume should be calculated based on the predicted or ideal body weight rather than on the actual body weight. To optimize ventilation monitoring, anaesthesia machines should include end-inspiratory and end-expiratory pause as well as flow-volume loop curves. The routine administration of high PEEP levels should be avoided, as this may lead to haemodynamic impairment and fluid overload. Higher PEEP might be considered during surgery longer than 3 h, laparoscopy in the Trendelenburg position and in patients with body mass index >35 kg/m(2). Large randomized trials are warranted to identify subgroups of patients and the type of surgery that can potentially benefit from specific ventilation modes or ventilation settings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Cost of treating ventilator-associated pneumonia post cardiac surgery in the National Health Service: Results from a propensity-matched cohort study.

    PubMed

    Luckraz, Heyman; Manga, Na'ngono; Senanayake, Eshan L; Abdelaziz, Mahmoud; Gopal, Shameer; Charman, Susan C; Giri, Ramesh; Oppong, Raymond; Andronis, Lazaros

    2018-05-01

    Ventilator-associated pneumonia is associated with significant morbidity, mortality and healthcare costs. Most of the cost data that are available relate to general intensive care patients in privately remunerated institutions. This study assessed the cost of managing ventilator-associated pneumonia in a cardiac intensive care unit in the National Health Service in the United Kingdom. Propensity-matched study of prospectively collected data from the cardiac surgical database between April 2011 and December 2014 in all patients undergoing cardiac surgery (n = 3416). Patients who were diagnosed as developing ventilator-associated pneumonia, as per the surveillance definition for ventilator-associated pneumonia (n = 338), were propensity score matched with those who did not (n = 338). Costs of treating post-op cardiac surgery patients in intensive care and cost difference if ventilator-associated pneumonia occurred based on Healthcare Resource Group categories were assessed. Secondary outcomes included differences in morbidity, mortality and cardiac intensive care unit and in-hospital length of stay. There were no significant differences in the pre-operative characteristics or procedures between the groups. Ventilator-associated pneumonia developed in 10% of post-cardiac surgery patients. Post-operatively, the ventilator-associated pneumonia group required longer ventilation (p < 0.01), more respiratory support, longer cardiac intensive care unit (8 vs 3, p < 0.001) and in-hospital stay (16 vs 9) days. The overall cost for post-operative recovery after cardiac surgery for ventilator-associated pneumonia patients was £15,124 compared to £6295 for non-ventilator-associated pneumonia (p < 0.01). The additional cost of treating patients with ventilator-associated pneumonia was £8829. Ventilator-associated pneumonia was associated with significant morbidity to the patients, generating significant costs. This cost was nearer to the lower end for the cost for general intensive care unit patients in privately reimbursed systems.

  3. Mask leak increases and minute ventilation decreases when chest compressions are added to bag ventilation in a neonatal manikin model.

    PubMed

    Tracy, Mark B; Shah, Dharmesh; Hinder, Murray; Klimek, Jan; Marceau, James; Wright, Audrey

    2014-05-01

    To determine changes in respiratory mechanics when chest compressions are added to mask ventilation, as recommended by the International Liaison Committee on Resuscitation (ILCOR) guidelines for newborn infants. Using a Laerdal Advanced Life Support leak-free baby manikin and a 240-mL self-inflating bag, 58 neonatal staff members were randomly paired to provide mask ventilation, followed by mask ventilation with chest compressions with a 1:3 ratio, for two minutes each. A Florian respiratory function monitor was used to measure respiratory mechanics, including mask leak. The addition of chest compressions to mask ventilation led to a significant reduction in inflation rate, from 63.9 to 32.9 breaths per minute (p < 0.0001), mean airway pressure reduced from 7.6 to 4.9 cm H2 O (p < 0.001), minute ventilation reduced from 770 to 451 mL/kg/min (p < 0.0001), and there was a significant increase in paired mask leak of 6.8% (p < 0.0001). Adding chest compressions to mask ventilation, in accordance with the ILCOR guidelines, in a manikin model is associated with a significant reduction in delivered ventilation and increase in mask leak. If similar findings occur in human infants needing an escalation in resuscitation, there is a potential risk of either delay in recovery or inadequate response to resuscitation. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  4. Intraoperative mechanical ventilation: state of the art.

    PubMed

    Ball, Lorenzo; Costantino, Federico; Orefice, Giulia; Chandrapatham, Karthikka; Pelosi, Paolo

    2017-10-01

    Mechanical ventilation is a cornerstone of the intraoperative management of the surgical patient and is still mandatory in several surgical procedures. In the last decades, research focused on preventing postoperative pulmonary complications (PPCs), both improving risk stratification through the use of predictive scores and protecting the lung adopting so-called protective ventilation strategies. The aim of this review was to give an up-to-date overview of the currently suggested intraoperative ventilation strategies, along with their pathophysiologic rationale, with a focus on challenging conditions, such as obesity, one-lung ventilation and cardiopulmonary bypass. While anesthesia and mechanical ventilation are becoming increasingly safe practices, the contribution to surgical mortality attributable to postoperative lung injury is not negligible: for these reasons, the prevention of PPCs, including the use of protective mechanical ventilation is mandatory. Mechanical ventilation should be optimized providing an adequate respiratory support while minimizing unwanted negative effects. Due to the high number of surgical procedures performed daily, the impact on patients' health and healthcare costs can be relevant, even when new strategies result in an apparently small improvement of outcome. A protective intraoperative ventilation should include a low tidal volume of 6-8 mL/kg of predicted body weight, plateau pressures ideally below 16 cmH2O, the lowest possible driving pressure, moderate-low PEEP levels except in obese patients, laparoscopy and long surgical procedures that might benefit of a slightly higher PEEP. The work of the anesthesiologist should start with a careful preoperative visit to assess the risk, and a close postoperative monitoring.

  5. Perioperative lung protective ventilation in obese patients.

    PubMed

    Fernandez-Bustamante, Ana; Hashimoto, Soshi; Serpa Neto, Ary; Moine, Pierre; Vidal Melo, Marcos F; Repine, John E

    2015-05-06

    The perioperative use and relevance of protective ventilation in surgical patients is being increasingly recognized. Obesity poses particular challenges to adequate mechanical ventilation in addition to surgical constraints, primarily by restricted lung mechanics due to excessive adiposity, frequent respiratory comorbidities (i.e. sleep apnea, asthma), and concerns of postoperative respiratory depression and other pulmonary complications. The number of surgical patients with obesity is increasing, and facing these challenges is common in the operating rooms and critical care units worldwide. In this review we summarize the existing literature which supports the following recommendations for the perioperative ventilation in obese patients: (1) the use of protective ventilation with low tidal volumes (approximately 8 mL/kg, calculated based on predicted -not actual- body weight) to avoid volutrauma; (2) a focus on lung recruitment by utilizing PEEP (8-15 cmH2O) in addition to recruitment maneuvers during the intraoperative period, as well as incentivized deep breathing and noninvasive ventilation early in the postoperative period, to avoid atelectasis, hypoxemia and atelectrauma; and (3) a judicious oxygen use (ideally less than 0.8) to avoid hypoxemia but also possible reabsorption atelectasis. Obesity poses an additional challenge for achieving adequate protective ventilation during one-lung ventilation, but different lung isolation techniques have been adequately performed in obese patients by experienced providers. Postoperative efforts should be directed to avoid hypoventilation, atelectasis and hypoxemia. Further studies are needed to better define optimum protective ventilation strategies and analyze their impact on the perioperative outcomes of surgical patients with obesity.

  6. Energy and cost associated with ventilating office buildings in a tropical climate.

    PubMed

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore's tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore's. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person--which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave--can be much larger than the incremental cost of ventilation.

  7. Development Specification for the FN-323/324, Oxygen Ventilation Loop Fan Assembly

    NASA Technical Reports Server (NTRS)

    Ralston, Russell; Campbell, Colin

    2017-01-01

    This specification establishes the requirements for design, performance, safety, and manufacture of the FN-323/324, Oxygen Ventilation Loop Fan Assembly as part of the Advanced EMU (AEMU) Portable Life Support System (PLSS). Fan development for the advanced Portable Life Support System (PLSS) began in 2009 with the development of Fan 1.0. This fan was used in PLSS 2.0 for circulation of the ventilation loop gas. Fan 2.0 was delivered in 2015 and will be used in the PLSS 2.5 Live Loads test series. This fan used the same motor as Fan 1.0, but had a larger volute and impeller in hopes of achieving lower speeds. The next iteration of the advanced PLSS fan is the subject of the requirements contained within this document, and will be used with the PLSS 2.5 -302 configuration.

  8. [Concepts and monitoring of pulmonary mechanic in patients under ventilatory support in intensive care unit].

    PubMed

    Faustino, Eduardo Antonio

    2007-06-01

    In mechanical ventilation, invasive and noninvasive, the knowledge of respiratory mechanic physiology is indispensable to take decisions and into the efficient management of modern ventilators. Monitoring of pulmonary mechanic parameters is been recommended from all the review works and clinical research. The objective of this study was review concepts of pulmonary mechanic and the methods used to obtain measures in the bed side, preparing a rational sequence to obtain this data. It was obtained bibliographic review through data bank LILACS, MedLine and PubMed, from the last ten years. This review approaches parameters of resistance, pulmonary compliance and intrinsic PEEP as primordial into comprehension of acute respiratory failure and mechanic ventilatory support, mainly in acute respiratory distress syndrome (ARDS) and in chronic obstructive pulmonary disease (COPD). Monitoring pulmonary mechanics in patients under mechanical ventilation in intensive care units gives relevant informations and should be implemented in a rational and systematic way.

  9. Spontaneously regulated vs. controlled ventilation of acute lung injury/acute respiratory distress syndrome.

    PubMed

    Marini, John J

    2011-02-01

    To present an updated discussion of those aspects of controlled positive pressure breathing and retained spontaneous regulation of breathing that impact the management of patients whose tissue oxygenation is compromised by acute lung injury. The recent introduction of ventilation techniques geared toward integrating natural breathing rhythms into even the earliest phase of acute respiratory distress syndrome support (e.g., airway pressure release, proportional assist ventilation, and neurally adjusted ventilatory assist), has stimulated a burst of new investigations. Optimizing gas exchange, avoiding lung injury, and preserving respiratory muscle strength and endurance are vital therapeutic objectives for managing acute lung injury. Accordingly, comparing the physiology and consequences of breathing patterns that preserve and eliminate breathing effort has been a theme of persisting investigative interest throughout the several decades over which it has been possible to sustain cardiopulmonary life support outside the operating theater.

  10. On the application of a new thermal diagnostic model: the passive elements equivalent in term of ventilation inside a room

    NASA Astrophysics Data System (ADS)

    El Khattabi, El Mehdi; Mharzi, Mohamed; Raefat, Saad; Meghari, Zouhair

    2018-05-01

    In this paper, the thermal equivalence of the passive elements of a room in a building located in Fez-Morocco has been studied. The possibility of replacing them with a semi-passive element such as ventilation has been appraised. For this aim a Software in Fortran taking into account the meteorological external conditions along with different parameters of the building envelope has been performed. A new computational approach is adapted to determinate the temperature distribution throughout the building multilayer walls. A novel equation gathering the internal temperature with the external conditions, and the building envelope has been deduced in transient state.

  11. Preoperational test report, recirculation ventilation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, F.T.

    1997-11-11

    This represents a preoperational test report for Recirculation Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102 and supports the ability to exhaust air from each tank. Each system consists of a valved piping loop, a fan, condenser, and moisture separator; equipment is located inside each respective tank farm in its own hardened building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  12. Comparison of face masks in the bag-mask ventilation of a manikin.

    PubMed

    Redfern, D; Rassam, S; Stacey, M R; Mecklenburgh, J S

    2006-02-01

    We conducted a study investigating the effectiveness of four face mask designs in the bag-mask ventilation of a special manikin adapted to simulate a difficult airway. Forty-eight anaesthetists volunteered to bag-mask ventilate the manikin for 3 min with four different face masks. The primary outcome of the study was to calculate mean percentage leak from the face masks over 3 min. Anaesthetists were also asked to rate the face masks using a visual analogue score. The single-use scented intersurgical face mask had the lowest mean leak (20%). This was significantly lower than the mean leak from the single-use, cushioned 7,000 series Air Safety Ltd. face mask (24%) and the reusable silicone Laerdal face mask (27%) but not significantly lower than the mean leak from the reusable anatomical intersurgical face mask (23%). There was a large variation in both performance and satisfaction between anaesthetists with each design. This highlights the importance of having a variety of face masks available for emergency use.

  13. Adaptive servo-ventilation and deadspace: effects on central sleep apnoea.

    PubMed

    Szollosi, I; O'Driscoll, D M; Dayer, M J; Coats, A J; Morrell, M J; Simonds, A K

    2006-06-01

    Central Sleep Apnoea (CSA) occurs commonly in heart failure. Adaptive servo-ventilation (ASV) and deadspace (DS) have been shown in research settings to reverse CSA. The likely mechanism for this is the increase of PaCO(2) above the apnoeic threshold. However the role of increasing FiCO(2) on arousability remains unclear. To compare the effects of ASV and DS on sleep and breathing, in particular effects on Arousal Index (ArI), ten male patients with heart failure and CSA were studied during three nights with polysomnography plus measurements of PetCO(2). The order of the interventions control (C), ASV and DS was randomized. ASV and DS caused similar reductions in apnoea-hypopnoea index [(C) 30.0 +/- 6.6, (ASV) 14.0 +/- 3.8, (DS) 15.9 +/- 4.7 e h(-1); both P < 0.05]. However, DS was associated with decreased total sleep time compared with C (P < 0.02) and increased spontaneous ArI compared to C and ASV (both P < 0.01). Only DS was associated with increased DeltaPetCO(2) from resting wakefulness to eupnic sleep [(C) 2.1 +/- 0.9, (ASV) 1.3 +/- 1.0, (DS) 5.6 +/- 0.5 mmHg; P = 0.01]. ASV and DS both stabilized ventilation however DS application also increased sleep fragmentation with negative impacts on sleep architecture. We speculate that this effect is likely to be mediated by increased PetCO(2) and respiratory effort associated with DS application.

  14. Physiology in Medicine: Understanding dynamic alveolar physiology to minimize ventilator-induced lung injury.

    PubMed

    Nieman, Gary F; Satalin, Josh; Kollisch-Singule, Michaela; Andrews, Penny; Aiash, Hani; Habashi, Nader M; Gatto, Louis A

    2017-06-01

    Acute respiratory distress syndrome (ARDS) remains a serious clinical problem with the main treatment being supportive in the form of mechanical ventilation. However, mechanical ventilation can be a double-edged sword: if set improperly, it can exacerbate the tissue damage caused by ARDS; this is known as ventilator-induced lung injury (VILI). To minimize VILI, we must understand the pathophysiologic mechanisms of tissue damage at the alveolar level. In this Physiology in Medicine paper, the dynamic physiology of alveolar inflation and deflation during mechanical ventilation will be reviewed. In addition, the pathophysiologic mechanisms of VILI will be reviewed, and this knowledge will be used to suggest an optimal mechanical breath profile (MB P : all airway pressures, volumes, flows, rates, and the duration that they are applied at both inspiration and expiration) necessary to minimize VILI. Our review suggests that the current protective ventilation strategy, known as the "open lung strategy," would be the optimal lung-protective approach. However, the viscoelastic behavior of dynamic alveolar inflation and deflation has not yet been incorporated into protective mechanical ventilation strategies. Using our knowledge of dynamic alveolar mechanics (i.e., the dynamic change in alveolar and alveolar duct size and shape during tidal ventilation) to modify the MB P so as to minimize VILI will reduce the morbidity and mortality associated with ARDS. Copyright © 2017 the American Physiological Society.

  15. Striving for habitual well-being in noninvasive ventilation: a grounded theory study of chronic obstructive pulmonary disease patients with acute respiratory failure.

    PubMed

    Sørensen, Dorthe; Frederiksen, Kirsten; Groefte, Thorbjoern; Lomborg, Kirsten

    2014-06-01

    To present a theoretical account of the pattern of behaviour in patients with acute respiratory failure due to chronic obstructive pulmonary disease while undergoing noninvasive ventilation in a hospital setting. Strong evidence supports a positive effect of noninvasive ventilation, but successful treatment remains a challenge. Little attention has been given to patient intolerance to noninvasive ventilation as a cause of treatment failure. A better understanding of the patients' patterns of behaviour during noninvasive ventilation may improve treatment success. A constant comparative classic grounded theory study was performed. Data collection consisted of participant observation during the treatment of 21 patients undergoing noninvasive ventilation, followed by interviews with 11 of the patients after treatment completion. Data were collected from December 2009-January 2012. A substantive theory of striving for habitual well-being was developed. The theory included three phases: initiation, transition and determination. Each phase contained a set of subcategories to indicate the dimensions of and variations in the participants' behaviour. The substantive theory revealed that the patients' behaviour was related to their breathlessness, sensation of being restrained by the mask and head gear, and the side effects of noninvasive ventilation. This inter-relationship should be addressed in the use of noninvasive ventilation for the treatment of patients with chronic obstructive pulmonary disease to achieve treatment success. © 2013 John Wiley & Sons Ltd.

  16. Decisional responsibility for mechanical ventilation and weaning: an international survey

    PubMed Central

    2011-01-01

    Introduction Optimal management of mechanical ventilation and weaning requires dynamic and collaborative decision making to minimize complications and avoid delays in the transition to extubation. In the absence of collaboration, ventilation decision making may be fragmented, inconsistent, and delayed. Our objective was to describe the professional group with responsibility for key ventilation and weaning decisions and to examine organizational characteristics associated with nurse involvement. Methods A multi-center, cross-sectional, self-administered survey was sent to nurse managers of adult intensive care units (ICUs) in Denmark, Germany, Greece, Italy, Norway, Switzerland, Netherlands and United Kingdom (UK). We summarized data as proportions (95% confidence intervals (CIs)) and calculated odds ratios (OR) to examine ICU organizational variables associated with collaborative decision making. Results Response rates ranged from 39% (UK) to 92% (Switzerland), providing surveys from 586 ICUs. Interprofessional collaboration (nurses and physicians) was the most common approach to initial selection of ventilator settings (63% (95% CI 59 to 66)), determination of extubation readiness (71% (67 to 75)), weaning method (73% (69 to 76)), recognition of weaning failure (84% (81 to 87)) and weaning readiness (85% (82 to 87)), and titration of ventilator settings (88% (86 to 91)). A nurse-to-patient ratio other than 1:1 was associated with decreased interprofessional collaboration during titration of ventilator settings (OR 0.2, 95% CI 0.1 to 0.6), weaning method (0.4 (0.2 to 0.9)), determination of extubation readiness (0.5 (0.2 to 0.9)) and weaning failure (0.4 (0.1 to 1.0)). Use of a weaning protocol was associated with increased collaborative decision making for determining weaning (1.8 (1.0 to 3.3)) and extubation readiness (1.9 (1.2 to 3.0)), and weaning method (1.8 (1.1 to 3.0). Country of ICU location influenced the profile of responsibility for all decisions. Automated weaning modes were used in 55% of ICUs. Conclusions Collaborative decision making for ventilation and weaning was employed in most ICUs in all countries although this was influenced by nurse-to-patient ratio, presence of a protocol, and varied across countries. Potential clinical implications of a lack of collaboration include delayed adaptation of ventilation to changing physiological parameters, and delayed recognition of weaning and extubation readiness resulting in unnecessary prolongation of ventilation. PMID:22169094

  17. [Cases and duration of mechanical ventilation in German hospitals : An analysis of DRG incentives and developments in respiratory medicine].

    PubMed

    Biermann, A; Geissler, A

    2016-09-01

    Diagnosis-related groups (DRGs) have been used to reimburse hospitals services in Germany since 2003/04. Like any other reimbursement system, DRGs offer specific incentives for hospitals that may lead to unintended consequences for patients. In the German context, specific procedures and their documentation are suspected to be primarily performed to increase hospital revenues. Mechanical ventilation of patients and particularly the duration of ventilation, which is an important variable for the DRG-classification, are often discussed to be among these procedures. The aim of this study was to examine incentives created by the German DRG-based payment system with regard to mechanical ventilation and to identify factors that explain the considerable increase of mechanically ventilated patients in recent years. Moreover, the assumption that hospitals perform mechanical ventilation in order to gain economic benefits was examined. In order to gain insights on the development of the number of mechanically ventilated patients, patient-level data provided by the German Federal Statistical Office and the German Institute for the Hospital Remuneration System were analyzed. The type of performed ventilation, the total number of ventilation hours, the age distribution, mortality and the DRG distribution for mechanical ventilation were calculated, using methods of descriptive and inferential statistics. Furthermore, changes in DRG-definitions and changes in respiratory medicine were compared for the years 2005-2012. Since the introduction of the DRG-based payment system in Germany, the hours of ventilation and the number of mechanically ventilated patients have substantially increased, while mortality has decreased. During the same period there has been a switch to less invasive ventilation methods. The age distribution has shifted to higher age-groups. A ventilation duration determined by DRG definitions could not be found. Due to advances in respiratory medicine, new ventilation methods have been introduced that are less prone to complications. This development has simultaneously improved survival rates. There was no evidence supporting the assumption that the duration of mechanical ventilation is influenced by the time intervals relevant for DRG grouping. However, presumably operational routines such as staff availability within early and late shifts of the hospital have a significant impact on the termination of mechanical ventilation.

  18. Effect of chest compressions only during experimental basic life support on alveolar collapse and recruitment.

    PubMed

    Markstaller, Klaus; Rudolph, Annette; Karmrodt, Jens; Gervais, Hendrik W; Goetz, Rolf; Becher, Anja; David, Matthias; Kempski, Oliver S; Kauczor, Hans-Ulrich; Dick, Wolfgang F; Eberle, Balthasar

    2008-10-01

    The importance of ventilatory support during cardiac arrest and basic life support is controversial. This experimental study used dynamic computed tomography (CT) to assess the effects of chest compressions only during cardiopulmonary resuscitation (CCO-CPR) on alveolar recruitment and haemodynamic parameters in porcine model of ventricular fibrillation. Twelve anaesthetized pigs (26+/-1 kg) were randomly assigned to one of the following groups: (1) intermittent positive pressure ventilation (IPPV) both during basic life support and advanced cardiac life support, or (2) CCO during basic life support and IPPV during advanced cardiac life support. Measurements were acquired at baseline prior to cardiac arrest, during basic life support, during advanced life support, and after return of spontaneous circulation (ROSC), as follows: dynamic CT series, arterial and central venous pressures, blood gases, and regional organ blood flow. The ventilated and atelectatic lung area was quantified from dynamic CT images. Differences between groups were analyzed using the Kruskal-Wallis test, and a p<0.05 was considered statistically significant. IPPV was associated with cyclic alveolar recruitment and de-recruitment. Compared with controls, the CCO-CPR group had a significantly larger mean fractional area of atelectasis (p=0.009), and significantly lower PaO2 (p=0.002) and mean arterial pressure (p=0.023). The increase in mean atelectatic lung area observed during basic life support in the CCO-CPR group remained clinically relevant throughout the subsequent advanced cardiac life support period and following ROSC, and was associated with prolonged impaired haemodynamics. No inter-group differences in myocardial and cerebral blood flow were observed. A lack of ventilation during basic life support is associated with excessive atelectasis, arterial hypoxaemia and compromised CPR haemodynamics. Moreover, these detrimental effects remain evident even after restoration of IPPV.

  19. Piston-pump-type high frequency oscillatory ventilation for neonates with congenital diaphragmatic hernia: a new protocol.

    PubMed

    Tamura, M; Tsuchida, Y; Kawano, T; Honna, T; Ishibashi, R; Iwanaka, T; Morita, Y; Hashimoto, H; Tada, H; Miyasaka, K

    1988-05-01

    High frequency ventilation and extracorporeal membrane oxygenation (ECMO) are devices that are expected to save the lives of newborn infants whose pulmonary conditions have deteriorated. A piston-pump-type high-frequency oscillator (HFO), developed by Bryan and Miyasaka called "Hummingbird," is considered to be superior to high frequency "jet" ventilators or those of the flow-interrupter type, and was used successfully in two neonates with congenital diaphragmatic hernia (CDH) in a high-risk group. The first baby was on a conventional ventilator with pharmacologic support for the first 54 hours and then operated on. Postoperative deterioration necessitated the use of HFO for the next eight days. The infant then recovered uneventfully. For the second baby, HFO was necessary both preoperatively and postoperatively. This baby had a major diaphragmatic defect and her case was complicated with pneumothorax. There was a long stormy course on HFO (total, 70 days), but the patient was successfully extubated on the 75th day postoperatively and is now doing well. We believe active long preoperative stabilization with pharmacologic support and preoperative and postoperative hyperventilation with a piston-pump-type HFO may be a new innovative strategy for the management of severe CDH patients.

  20. Applications and interpretation of krypton 81m ventilation/technetium 99m macroaggregate perfusion lung scanning in childhood

    NASA Astrophysics Data System (ADS)

    Davies, Hugh Trevor Frimston

    Radionuclide ventilation perfusion lung scans now play an important part in the investigation of paediatric lung disease, providing a safe, noninvasive assessment of regional lung function in children with suspected pulmonary disease. In paediatric practice the most suitable radionuclides are Krypton 81m (Kr81m) and Technetium 99m (Tc99m), which are jointly used in the Kr81m ventilation/Tc99m macroaggregate perfusion lung scan (V/Q lung scan). The Kr81m ventilation scan involves a low radiation dose, requires little or no subject cooperation and because of the very short half life of Kr81m (13 seconds) the steady state image acquired during continuous inhalation of the radionuclide is considered to reflect regional distribution of ventilation. It is now the most important noninvasive method available for the investigation of the regional abnormalities of ventilation characteristic of many congenital and acquired paediatric respiratory diseases, such as diaphragmatic hernia, pulmonary sequestration, bronchopulmonary dysplasia, foreign body inhalation and bronchiectasis. It improves diagnostic accuracy, aids clinical decision making and is used to monitor the progress of disease and response to therapy. Theoretical analysis of the steady state Kr81m ventilation image suggests that it may only reflect regional ventilation when specific ventilation (ventilation per unit volume of lung) is within or below the normal adult range (1-3 L/L/min). At higher values such as those seen in neonates and infants (8-15 L/L/min) Kr81m activity may reflect regional lung volume rather than ventilation, a conclusion supported by the studies of Ciofetta et al. There is some controversy on this issue as animal studies have demonstrated that the Kr81m image reflects ventilation over a much wider range of specific ventilation (up to 13 L/L/min). A clinical study of sick infants and very young children is in agreement with this animal work and suggests that the steady state Kr81m image still reflects regional ventilation in this age group. The doubt cast on the interpretation of the Kr81m steady state image could limit the value of V/Q lung scans in following regional lung function through childhood, a period when specific ventilation is falling rapidly as the child grows. Therefore the first aim of this study was to examine the application of this theoretical model to children and determine whether the changing specific ventilation seen through childhood significantly alters the interpretation of the steady state Kr81m image. This is a necessary first step before conducting longitudinal studies of regional ventilation and perfusion in children. The effect of posture on regional ventilation and perfusion in the adult human lung has been extensively studied. Radiotracer studies have consistently shown that both ventilation and perfusion are preferentially distributed to dependent lung regions during tidal breathing regardless of posture. There is little published information concerning the pattern in children yet there are many differences in lung and chest wall mechanics of children and adults which, along with clinical observation, have led to the hypothesis that the pattern of regional ventilation observed in adults may not be seen in children. Recent reports of regional ventilation in infants and very young children have provided support for this theory. The paper of Heaf et al demonstrated that these differences may in certain circumstances be clinically important. It is not clear however at what age children adopt the "adult pattern of ventilation". In addition to the problems referred to above, attenuation of Kr81m activity as it passes through the chest wall and the changing geometry of the chest during tidal breathing have made quantitative analysis of the image difficult although fractional ventilation and perfusion to each lung can be calculated from the steady state image. In clinical practise, therefore, ventilation and perfusion are usually assessed by inspection of the steady state image. The aims of the present study were therefore: 1. To critically assess Kr81m ventilation and Tc99m MAA perfusion images in children. 2. To derive fractional ventilation and perfusion to each lung in children with normal chest radiography and homogeneous distribution of the radionuclides. 3. To conduct further studies into the effects of gravity on regional lung function. 4. To apply the technique in clinical practise. 5. To attempt to improve quantitation of the Kr81m ventilation image.

  1. Pretest Predictions for Phase II Ventilation Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yiming Sun

    The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, and concrete pipe walls that will be developed during the Phase II ventilation tests involving various test conditions. The results will be used as inputs to validating numerical approach for modeling continuous ventilation, and be used to support the repository subsurface design. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the Phase II ventilation tests, and describe numerical methods that are used to calculate the effects of continuous ventilation. The calculation is limitedmore » to thermal effect only. This engineering work activity is conducted in accordance with the ''Technical Work Plan for: Subsurface Performance Testing for License Application (LA) for Fiscal Year 2001'' (CRWMS M&O 2000d). This technical work plan (TWP) includes an AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', activity evaluation (CRWMS M&O 2000d, Addendum A) that has determined this activity is subject to the YMP quality assurance (QA) program. The calculation is developed in accordance with the AP-3.12Q procedure, ''Calculations''. Additional background information regarding this activity is contained in the ''Development Plan for Ventilation Pretest Predictive Calculation'' (DP) (CRWMS M&O 2000a).« less

  2. A new system for continuous and remote monitoring of patients receiving home mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Battista, L.

    2016-09-01

    Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.

  3. A new system for continuous and remote monitoring of patients receiving home mechanical ventilation.

    PubMed

    Battista, L

    2016-09-01

    Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.

  4. Does Bilevel Positive Airway Pressure Improve Outcome of Acute Respiratory Failure after Open-heart Surgery?

    PubMed Central

    Elgebaly, Ahmed Said

    2017-01-01

    Background: Respiratory failure is of concern in the postoperative period after cardiac surgeries. Invasive ventilation (intermittent positive pressure ventilation [IPPV]) carries the risks and complications of intubation and mechanical ventilation (MV). Aims: Noninvasive positive pressure ventilation (NIPPV) is an alternative method and as effective as IPPV in treating insufficiency of respiration with less complications and minimal effects on respiratory and hemodynamic parameters next to open-heart surgery. Design: This is a prospective, randomized and controlled study. Materials and Methods: Forty-four patients scheduled for cardiac surgery were divided into two equal groups: Group I (IPPV) and Group II (NIPPV). Heart rate (HR), mean arterial pressure (MAP), respiratory rate (RR), oxygen saturation (SpO2), arterial blood gas, weaning time, reintubation, tracheotomy rate, MV time, postoperative hospital stay, and ventilator-associated pneumonia during the period of hospital stay were recorded. Results: There was statistically significant difference in HR between groups with higher in Group I at 30 and 60 min and at 12 and 24 h. According to MAP, it started to increase significantly at hypoxemia, 15 min, 30 min, 4 h, 12 h, and at 24 h which was higher in Group I also. RR, PaO2, and PaCO2 showed significant higher in Group II at 15, 30, and 60 min and 4 h. According to pH, there was a significant difference between groups at 15, 30, and 60 min and at 4, 12, and 24 h postoperatively. SpO2 showed higher significant values in Group I at 15 and 30 min and at 12 h postoperatively. Duration of postoperative supportive ventilation was higher in Group I than that of Group II with statistically significant difference. Complications were statistically insignificant between Group I and Group II. Conclusion: Our study showed superiority of invasive over noninvasive mode of ventilator support. However, NIPPV (bilevel positive airway pressure) was proved to be a safe method. PMID:28994676

  5. Linking lung function to structural damage of alveolar epithelium in ventilator-induced lung injury.

    PubMed

    Hamlington, Katharine L; Smith, Bradford J; Dunn, Celia M; Charlebois, Chantel M; Roy, Gregory S; Bates, Jason H T

    2018-05-06

    Understanding how the mechanisms of ventilator-induced lung injury (VILI), namely atelectrauma and volutrauma, contribute to the failure of the blood-gas barrier and subsequent intrusion of edematous fluid into the airspace is essential for the design of mechanical ventilation strategies that minimize VILI. We ventilated mice with different combinations of tidal volume and positive end-expiratory pressure (PEEP) and linked degradation in lung function measurements to injury of the alveolar epithelium observed via scanning electron microscopy. Ventilating with both high inspiratory plateau pressure and zero PEEP was necessary to cause derangements in lung function as well as visually apparent physical damage to the alveolar epithelium of initially healthy mice. In particular, the epithelial injury was tightly associated with indicators of alveolar collapse. These results support the hypothesis that mechanical damage to the epithelium during VILI is at least partially attributed to atelectrauma-induced damage of alveolar type I epithelial cells. Copyright © 2018. Published by Elsevier B.V.

  6. Respiratory muscle dysfunction: a multicausal entity in the critically ill patient undergoing mechanical ventilation.

    PubMed

    Díaz, Magda C; Ospina-Tascón, Gustavo A; Salazar C, Blanca C

    2014-02-01

    Respiratory muscle dysfunction, particularly of the diaphragm, may play a key role in the pathophysiological mechanisms that lead to difficulty in weaning patients from mechanical ventilation. The limited mobility of critically ill patients, and of the diaphragm in particular when prolonged mechanical ventilation support is required, promotes the early onset of respiratory muscle dysfunction, but this can also be caused or exacerbated by other factors that are common in these patients, such as sepsis, malnutrition, advanced age, duration and type of ventilation, and use of certain medications, such as steroids and neuromuscular blocking agents. In this review we will study in depth this multicausal origin, in which a common mechanism is altered protein metabolism, according to the findings reported in various models. The understanding of this multicausality produced by the same pathophysiological mechanism could facilitate the management and monitoring of patients undergoing mechanical ventilation. Copyright © 2012 SEPAR. Published by Elsevier Espana. All rights reserved.

  7. [Pediatric home ventilation--practical approach].

    PubMed

    Rath-Wacenovsky, Regina

    2015-09-01

    Out-of-hospital ventilation represents only a marginal area of paediatric therapeutic concepts. In Austria, the proportion of children to be supplied with invasive and non-invasive ventilation increases significantly, together with the challenges of caring for their long-term demands. Neuromuscular diseases accounted for almost the sole indication group. Premature and newborn infants with persistent respiratory failures are an increasing group, needing more extensive care due to additional comorbidities. Children with congenital disorder have often been tracheotomised in order to secure their airway, and non-invasive ventilation as a bridge- or long-term therapy gains in importance more and more. Usually, infants with primary or secondary CNS disorders suffer from respiratory complications and eventually from chronic respiratory insufficiencies during adolescence or young adulthood. Here, invasive or non-invasive ventilation can contribute both to a significant stabilisation of health status and also quality of life. Spirit of research, experience, appropriate support structures, and appropriate networking constitute the most relevant quality- and success criteria for home care.

  8. Complementary home mechanical ventilation techniques. SEPAR Year 2014.

    PubMed

    Chiner, Eusebi; Sancho-Chust, José N; Landete, Pedro; Senent, Cristina; Gómez-Merino, Elia

    2014-12-01

    This is a review of the different complementary techniques that are useful for optimizing home mechanical ventilation (HMV). Airway clearance is very important in patients with HMV and many patients, particularly those with reduced peak cough flow, require airway clearance (manual or assisted) or assisted cough techniques (manual or mechanical) and suctioning procedures, in addition to ventilation. In the case of invasive HMV, good tracheostomy cannula management is essential for success. HMV patients may have sleep disturbances that must be taken into account. Sleep studies including complete polysomnography or respiratory polygraphy are helpful for identifying patient-ventilator asynchrony. Other techniques, such as bronchoscopy or nutritional support, may be required in patients on HMV, particularly if percutaneous gastrostomy is required. Information on treatment efficacy can be obtained from HMV monitoring, using methods such as pulse oximetry, capnography or the internal programs of the ventilators themselves. Finally, the importance of the patient's subjective perception is reviewed, as this may potentially affect the success of the HMV. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  9. Lung protective mechanical ventilation strategies in cardiothoracic critical care: a retrospective study.

    PubMed

    Zochios, Vasileios; Hague, Matthew; Giraud, Kimberly; Jones, Nicola

    2016-01-01

    A body of evidence supports the use of low tidal volumes in ventilated patients without lung pathology to slow progress to acute respiratory distress syndrome (ARDS) due to ventilator associated lung injury. We undertook a retrospective chart review and tested the hypothesis that tidal volume is a predictor of mortality in cardiothoracic (medical and surgical) critical care patients receiving invasive mechanical ventilation. Independent predictors of mortality in our study included: type of surgery, albumin, H + , bilirubin, and fluid balance. In particular, it is important to note that cardiac, thoracic, and transplant surgical patients were associated with lower mortality. However, our study did not sample equally from The Berlin Definition of ARDS severity categories (mild, moderate, and severe hypoxemia). Although our study was not adequately powered to detect a difference in mortality between these groups, it will inform the development of a large prospective cohort study exploring the role of low tidal volume ventilation in cardiothoracic critically ill patients.

  10. Dynamic airway pressure-time curve profile (Stress Index): a systematic review.

    PubMed

    Terragni, Pierpaolo; Bussone, Guido; Mascia, Luciana

    2016-01-01

    The assessment of respiratory mechanics at the bedside is necessary in order to identify the most protective ventilatory strategy. Indeed in the last 20 years, adverse effects of positive ventilation to the lung structures have led to a reappraisal of the objectives of mechanical ventilation. The ventilator setting requires repeated readjustment over the period of mechanical ventilation dependency and careful respiratory monitoring to minimize the risks, preventing further injury and permitting the lung and airways healing. Among the different methods that have been proposed and validated, the analysis of dynamic P-t curve (named Stress Index, SI) represents an adequate tool available at the bedside, repeatable and, therefore, able to identify the amount of overdistension occurring in the daily clinical practice, when modifying positive end-expiratory pressure. In this review we will analyze the evidence that supports respiratory mechanics assessment at the bedside and the application of the dynamic P/t curve profile (SI) to optimize protective ventilation in patients with acute respiratory failure.

  11. Center for the Built Environment: Research on Building Envelope Systems

    Science.gov Websites

    Studies Facade and Perimeter Zone Field Study Facades and Thermal Comfort Facade Symposium Mixed-Mode Research Adaptive Comfort Model Mixed-Mode Case Studies Operable Windows and Thermal Comfort Occupant thermal preferences in naturally ventilated as sealed buildings? Case Study Research of Mixed-Mode Office

  12. The correlation between thermal comfort in buildings and fashion products.

    PubMed

    Giesel, Aline; de Mello Souza, Patrícia

    2012-01-01

    This article is about thermal comfort in the wearable product. The research correlates fashion and architecture, in so far as it elects the brise soleil - an architectural element capable of regulating temperature and ventilation inside buildings - as a study referential, in trying to transpose and adapt its mechanisms to the wearable apparel.

  13. Early High-Frequency Oscillatory Ventilation in Pediatric Acute Respiratory Failure. A Propensity Score Analysis.

    PubMed

    Bateman, Scot T; Borasino, Santiago; Asaro, Lisa A; Cheifetz, Ira M; Diane, Shelley; Wypij, David; Curley, Martha A Q

    2016-03-01

    The use of high-frequency oscillatory ventilation (HFOV) for acute respiratory failure in children is prevalent despite the lack of efficacy data. To compare the outcomes of patients with acute respiratory failure managed with HFOV within 24-48 hours of endotracheal intubation with those receiving conventional mechanical ventilation (CMV) and/or late HFOV. This is a secondary analysis of data from the RESTORE (Randomized Evaluation of Sedation Titration for Respiratory Failure) study, a prospective cluster randomized clinical trial conducted between 2009 and 2013 in 31 U.S. pediatric intensive care units. Propensity score analysis, including degree of hypoxia in the model, compared the duration of mechanical ventilation and mortality of patients treated with early HFOV matched with those treated with CMV/late HFOV. Among 2,449 subjects enrolled in RESTORE, 353 patients (14%) were ever supported on HFOV, of which 210 (59%) had HFOV initiated within 24-48 hours of intubation. The propensity score model predicting the probability of receiving early HFOV included 1,064 patients (181 early HFOV vs. 883 CMV/late HFOV) with significant hypoxia (oxygenation index ≥ 8). The degree of hypoxia was the most significant contributor to the propensity score model. After adjusting for risk category, early HFOV use was associated with a longer duration of mechanical ventilation (hazard ratio, 0.75; 95% confidence interval, 0.64-0.89; P = 0.001) but not with mortality (odds ratio, 1.28; 95% confidence interval, 0.92-1.79; P = 0.15) compared with CMV/late HFOV. In adjusted models including important oxygenation variables, early HFOV was associated with a longer duration of mechanical ventilation. These analyses make supporting the current approach to HFOV less convincing.

  14. Heliox Adjunct Therapy for Neonates With Congenital Diaphragmatic Hernia.

    PubMed

    Wise, Audra C; Boutin, Mallory A; Knodel, Ellen M; Proudfoot, James A; Lane, Brian P; Evans, Marva L; Suttner, Denise M; Kimball, Amy L

    2018-05-22

    Congenital diaphragmatic hernia remains a complex disease with significant morbidity and mortality. Hypercarbia is a common derangement in this population, which often requires escalating ventilator support. By decreasing airway turbulence and enhancing CO 2 removal, inhaled helium-oxygen mixture (heliox) has the potential to improve ventilation and thereby decrease ventilator support and its associated lung injury. Retrospective cohort review of all neonates with congenital diaphragmatic hernia treated at Rady Children's Hospital San Diego during 2011-2015. Clinical characteristics were compared between the infants who were treated with heliox and those who did not receive this intervention. To analyze the effect of heliox in the subgroup that received this treatment, ventilator settings and arterial blood gas values were compared before and after starting heliox by using paired t tests. During the study period, 45 neonates with congenital diaphragmatic hernia were admitted to our neonatal ICU, 28 received heliox, and 27 were analyzed. During heliox treatment, Pa CO 2 levels decreased from 68 to 49 mm Hg ( P < .001), amplitude decreased from 33 to 23 cm H 2 O ( P < .001), ventilator frequency decreased from 28 to 23 breaths/min ( P = .02), F IO 2 decreased from 0.52 to 0.40 ( P < .01), and pH increased from 7.3 to 7.4 ( P < .001). The addition of heliox to the standard practice of permissive hypercapnia facilitated improvement in gas exchange, which allowed a decrease in ventilator settings and oxygen exposure, both of which are known to contribute to lung injury in this population. A prospective trial is needed to more clearly define the acute and long-term impacts of this treatment. Copyright © 2018 by Daedalus Enterprises.

  15. Influence of face mask design on bag-valve-mask ventilation performance: a randomized simulation study.

    PubMed

    Na, J U; Han, S K; Choi, P C; Cho, J H; Shin, D H

    2013-10-01

    Different face mask designs can influence bag-valve-mask (BVM) ventilation performance during resuscitation. We compared a single-use, air-cushioned face mask (AM) with a reusable silicone face mask (SM) for quality of BVM ventilation on a manikin simulating cardiac arrest. Thirty-two physicians were recruited, and a prospective, randomized, crossover observational study was conducted after an American Heart Association-accredited basic life support provider course and standardized practice time were completed. Participants performed 12 cycles of BVM ventilation with both the AM and SM on a SmartMan lung simulator. Mean tidal volume was significantly higher in ventilations performed using the AM vs. the SM (548 ± 159 ml vs. 439 ± 163 ml, P < 0.01). In addition, the proportion of low-volume ventilation was significantly lower with the AM than the SM [6/12 (2-11) vs. 9/12 (5-12), P = 0.03]. Bag-valve-AM ventilation volume was not affected by the physical characteristics of the rescuers, except for sex. In contrast, bag-valve-SM ventilation volume was affected by most of the characteristics tested, including sex, height, weight, hand width, hand length, and grip power. The AM seems to be a more efficient face mask than the SM at delivering sufficient ventilation volumes. The performance of the AM did not seem to be associated with the physical characteristics of the rescuers, whereas that of the SM was affected by these factors. The SM may not be an appropriate face mask for performing one-person BVM ventilation during resuscitation for rescuers who are smaller in stature, have a smaller hand size, or have weaker grip power. © 2013 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  16. Adaptation to Impacts of Climate Change on Aeroallergens and Allergic Respiratory Diseases

    PubMed Central

    Beggs, Paul J.

    2010-01-01

    Climate change has the potential to have many significant impacts on aeroallergens such as pollen and mould spores, and therefore related diseases such as asthma and allergic rhinitis. This paper critically reviews this topic, with a focus on the potential adaptation measures that have been identified to date. These are aeroallergen monitoring; aeroallergen forecasting; allergenic plant management; planting practices and policies; urban/settlement planning; building design and heating, ventilating, and air-conditioning (HVAC); access to health care and medications; education; and research. PMID:20948943

  17. The dynamics of the pulmonary microbiome during mechanical ventilation in the intensive care unit and the association with occurrence of pneumonia.

    PubMed

    Zakharkina, Tetyana; Martin-Loeches, Ignacio; Matamoros, Sébastien; Povoa, Pedro; Torres, Antoni; Kastelijn, Janine B; Hofstra, Jorrit J; de Wever, B; de Jong, Menno; Schultz, Marcus J; Sterk, Peter J; Artigas, Antonio; Bos, Lieuwe D J

    2017-09-01

    Ventilator-associated pneumonia (VAP) is the most common nosocomial infections in patients admitted to the ICU. The adapted island model predicts several changes in the respiratory microbiome during intubation and mechanical ventilation. We hypothesised that mechanical ventilation and antibiotic administration decrease the diversity of the respiratory microbiome and that these changes are more profound in patients who develop VAP. Intubated and mechanically ventilated ICU-patients were included. Tracheal aspirates were obtained three times a week. 16S rRNA gene sequencing with the Roche 454 platform was used to measure the composition of the respiratory microbiome. Associations were tested with linear mixed model analysis and principal coordinate analysis. 111 tracheal aspirates were obtained from 35 patients; 11 had VAP, 18 did not have VAP. Six additional patients developed pneumonia within the first 48 hours after intubation. Duration of mechanical ventilation was associated with a decrease in α diversity (Shannon index; fixed-effect regression coefficient (β): -0.03 (95% CI -0.05 to -0.005)), but the administration of antibiotic therapy was not (fixed-effect β: 0.06; 95% CI -0.17 to 0.30). There was a significant difference in change of β diversity between patients who developed VAP and control patients for Bray-Curtis distances (p=0.03) and for Manhattan distances (p=0.04). Burkholderia, Bacillales and, to a lesser extent, Pseudomonadales positively correlated with the change in β diversity. Mechanical ventilation, but not antibiotic administration, was associated with changes in the respiratory microbiome. Dysbiosis of microbial communities in the respiratory tract was most profound in patients who developed VAP. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. A Novel In-Line Delivery System to Administer Dry Powder Mannitol to Mechanically Ventilated Patients.

    PubMed

    Feng, Benny; Tang, Patricia; Leung, Sharon Shui Yee; Dhanani, Jayesh; Chan, Hak-Kim

    2017-04-01

    Mechanically ventilated patients commonly suffer from ventilator-associated pneumonia, hypoxemia, and other lower respiratory tract infection as a result of pathogen colonization and poor sputum clearance. Consequently, there is a high rate of morbidity and mortality in these patients. Dry powder mannitol increases sputum clearance, and therefore, we developed a system to administer it to mechanically ventilated patients without disconnection from the ventilator. The inspiratory line from a ventilator was split by using a three-way valve into two parallel lines where one contains a humidifier for normal breathing cycle and the other line contains a dry powder inhaler (Osmohaler™). The inspiratory air went through the dry powder line and aerosolized the mannitol powder only when its administration to a patient is required. We determined the delivered dose and particle size distributions of emitted aerosols in vitro from 9.5 mm endotracheal and 7.5 mm tracheostomy tubes, with inspiratory airflow of 60, 70, and 80 L/min. This novel setup was able to deliver 24.6% ± 3.33% of the 160 mg loaded dose mannitol powder (4 × 40 mg capsules) and 26.7% ± 2.19% of the 320 mg dose (4 × 80 mg capsules) when the endotracheal tube was used. With the shorter tracheostomy tube, the delivery dose increased to 35.6% ± 3.01% and 39.5% ± 2.04% of the 160 and 320 mg doses, respectively. The volume median diameters of the aerosols were in the respirable range with the largest value being 5.17 ± 0.87 μm. This delivery system has been shown to consistently deliver a high respirable dose of mannitol powder. Since this setup does not require disconnection of patients from the ventilator, it is safer for hypoxemic patients and easier to be adapted in a real clinical use.

  19. Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate

    PubMed Central

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W.

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore’s tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore’s. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person — which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave — can be much larger than the incremental cost of ventilation. PMID:25822504

  20. Nursing diagnoses in patients having mechanical ventilation support in a respiratory intensive care unit in Turkey.

    PubMed

    Yücel, Şebnem Çinar; Eşer, Ismet; Güler, Elem Kocaçal; Khorshid, Leyla

    2011-10-01

    This research was carried out to find out the nursing diagnoses in patients who have mechanical ventilation support in a respiratory intensive care unit. The study was conducted with 51 evaluations of critically ill adult patients who underwent invasive and non-invasive mechanical ventilation therapy in 2008. Data collection was based on Gordon's 11 Functional Health Patterns, and nursing diagnoses were determined according to North American Nursing Diagnosis Association-International (NANDA-I) Taxonomy II. The nursing diagnoses were determined by two researchers separately. The consistency between the nursing diagnoses defined by the two researchers was evaluated by using Cohen's kappa (κ). Forty men (78.4%) and 11 women (21.6%) whose mean ages were 70.19 (SD = 8.96) years were included in the study. Nineteen subgroups of nursing diagnoses about safety/protection domain, and 15 subgroups about activity/rest domain were seen at different rates in the patients. There was a statistically significant difference between mechanical ventilation via tracheostomy or endotracheal tube and decreased cardiac output (d.f. = 1, χ(2) = 4.760, P = 0.029). The relationship between the length of time under mechanical ventilation and impaired physical mobility was considerably significant (d.f. = 3, χ(2) = 24.459, P = 0.000). It was found out that there was a high degree of agreement (96.8%) between the nursing diagnoses defined by the two researchers separately (κ = 0.936, SE = 0.08). © 2011 Blackwell Publishing Asia Pty Ltd.

  1. [Basic life support in pediatrics].

    PubMed

    Calvo Macías, A; Manrique Martínez, I; Rodríguez Núñez, A; López-Herce Cid, J

    2006-09-01

    Basic life support (BLS) is the combination of maneuvers that identifies the child in cardiopulmonary arrest and initiates the substitution of respiratory and circulatory function, without the use of technical adjuncts, until the child can receive more advanced treatment. BLS includes a sequence of steps or maneuvers that should be performed sequentially: ensuring the safety of rescuer and child, assessing unconsciousness, calling for help, positioning the victim, opening the airway, assessing breathing, ventilating, assessing signs of circulation and/or central arterial pulse, performing chest compressions, activating the emergency medical service system, and checking the results of resuscitation. The most important changes in the new guidelines are the compression: ventilation ratio and the algorithm for relieving foreign body airway obstruction. A compression/ ventilation ratio of 30:2 will be recommended for lay rescuers of infants, children and adults. Health professionals will use a compression: ventilation ratio of 15:2 for infants and children. If the health professional is alone, he/she may also use a ratio of 30:2 to avoid fatigue. In the algorithm for relieving foreign body airway obstruction, when the child becomes unconscious, the maneuvers will be similar to the BLS sequence with chest compressions (functioning as a deobstruction procedure) and ventilation, with reassessment of the mouth every 2 min to check for a foreign body, and evaluation of breathing and the presence of vital signs. BLS maneuvers are easy to learn and can be performed by anyone with adequate training. Therefore, BLS should be taught to all citizens.

  2. [Update on the respiratory management of patients with chronic neuromuscular disease].

    PubMed

    Priou, P; Trzepizur, W; Meslier, N; Gagnadoux, F

    2017-12-01

    Neuromuscular diseases include a wide range of conditions that may involve potentially life-threatening respiratory complications (infection, respiratory failure). For patients with neuromuscular diseases, clinical assessment of respiratory function and regular pulmonary function tests are needed to screen for nocturnal respiratory disorders, weakness of the diaphragm and potential restrictive disorders and/or chronic hypercapnic respiratory insufficiency, possibly with couch deficiency. MANAGEMENT OF NOCTURNAL RESPIRATORY DISORDERS AND CHRONIC RESPIRATORY FAILURE: Nocturnal respiratory assistance is an important phase of care for nocturnal respiratory disorders and chronic respiratory failure. This may involve continuous positive airway pressure, adaptative servo-ventilation or non-invasive ventilation with a facial or nasal mask. As needed, diurnal assistance may be proposed by mouthpiece ventilation. Should non-invasive ventilation prove insufficient, or if significant swallowing disorders or recurrent bronchial obstruction develop, or in case of prolonged intubation, tracheotomy may be required. In case of lower airway infection with ineffective cough, physical therapy, associated with air stacking, intermittent positive pressure breathing or mechanical in-exsufflation may be proposed. Care for swallowing disorders, nutritional counseling (cachexia, obesity), vaccinations and therapeutic education are integral elements of patient-centered management aiming to prevent the negative impact of infection and to manage respiratory failure of chronic neuromuscular disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Lung injury and respiratory mechanics in rugby union.

    PubMed

    Lindsay, Angus; Bernard, Angelique; Davidson, Shaun M; Redmond, Daniel P; Chiew, Yeong S; Pretty, Christopher; Chase, J Geoffrey; Shaw, Geoffrey M; Gieseg, Steven P; Draper, Nick

    2016-04-01

    Rugby is a highly popular team contact sport associated with high injury rates. Specifically, there is a chance of inducing internal lung injuries as a result of the physical nature of the game. Such injuries are only identified with the use of specific invasive protocols or equipment. This study presents a model-based method to assess respiratory mechanics of N=11 rugby players that underwent a low intensity experimental Mechanical Ventilation (MV) Test before and after a rugby game. Participants were connected to a ventilator via a facemask and their respiratory mechanics estimated using a time-varying elastance model. All participants had a respiratory elastance <10 cmH2O/L with no significant difference observed between pre and postgame respiratory mechanics (P>0.05). Model-based respiratory mechanics estimation has been used widely in the treatment of the critically ill in intensive care. However, the application of a ventilator to assess the respiratory mechanics of healthy human beings is limited. This method adapted from ICU mechanical ventilation can be used to provide insight to respiratory mechanics of healthy participants that can be used as a more precise measure of lung inflammation/injury that avoids invasive procedures. This is the first study to conceptualize the assessment of respiratory mechanics in healthy athletes as a means to monitor postexercise stress and therefore manage recovery.

  4. The Tulip GT® airway versus the facemask and Guedel airway: a randomised, controlled, cross-over study by Basic Life Support-trained airway providers in anaesthetised patients.

    PubMed

    Shaikh, A; Robinson, P N; Hasan, M

    2016-03-01

    We performed a randomised, controlled, cross-over study of lung ventilation by Basic Life Support-trained providers using either the Tulip GT® airway or a facemask with a Guedel airway in 60 anaesthetised patients. Successful ventilation was achieved if the provider produced an end-tidal CO2 > 3.5 kPa and a tidal volume > 250 ml in two of the first three breaths, within 60 sec and within two attempts. Fifty-seven (95%) providers achieved successful ventilation using the Tulip GT compared with 35 (58%) using the facemask (p < 0.0001). Comparing the Tulip GT and facemask, the mean (SD) end-tidal CO2 was 5.0 (0.7) kPa vs 2.5 (1.5) kPa, tidal volume was 494 (175) ml vs 286 (186) ml and peak inspiratory pressure was 18.3 (3.4) cmH2 O vs 13.6 (7) cmH2 O respectively (all p < 0.0001). Forty-seven (78%) users favoured the Tulip GT airway. These results are similar to a previous manikin study using the same protocol, suggesting a close correlation between human and manikin studies for this airway device. We conclude that the Tulip GT should be considered as an adjunct to airway management both within and outside hospitals when ventilation is being undertaken by Basic Life Support-trained airway providers. © 2015 The Association of Anaesthetists of Great Britain and Ireland.

  5. [Noninvasive ventilation. The 2015 guidelines from the Groupe Assistance Ventilatoire (GAV) of the Société de Pneumologie de Langue Française (SPLF)].

    PubMed

    Rabec, C; Cuvelier, A; Cheval, C; Jaffre, S; Janssens, J-P; Mercy, M; Prigent, A; Rouault, S; Talbi, S; Vandenbroeck, S; Gonzalez-Bermejo, J

    2016-12-01

    A task force issued from the Groupe Assistance Ventilatoire (GAV) of the Société de Pneumologie de Langue Française (SPLF) was committed to develop a series of expert advice concerning various practical topics related to long-term non invasive ventilation by applying the Choosing Wisely ® methodology. Three topics were selected: monitoring of noninvasive ventilation, the interpretation of data obtained from built-in devices coupled to home ventilators and the role of hybrid modes (target volume with variable pressure support. For each topic, the experts have developed practical tips based on a comprehensive analysis of recent insights and evidence from the literature and from clinical experience. Copyright © 2016 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  6. Potential Acceptability of a Pediatric Ventilator Management Computer Protocol.

    PubMed

    Sward, Katherine A; Newth, Christopher J L; Khemani, Robinder G; Page, Kent; Meert, Kathleen L; Carcillo, Joseph A; Shanley, Thomas P; Moler, Frank W; Pollack, Murray M; Dalton, Heidi J; Wessel, David L; Berger, John T; Berg, Robert A; Harrison, Rick E; Doctor, Allan; Dean, J Michael; Holobkov, Richard; Jenkins, Tammara L; Nicholson, Carol E

    2017-11-01

    To examine issues regarding the granularity (size/scale) and potential acceptability of recommendations in a ventilator management protocol for children with pediatric acute respiratory distress syndrome. Survey/questionnaire. The eight PICUs in the Collaborative Pediatric Critical Care Research Network. One hundred twenty-two physicians (attendings and fellows). None. We used an online questionnaire to examine attitudes and assessed recommendations with 50 clinical scenarios. Overall 80% of scenario recommendations were accepted. Acceptance did not vary by provider characteristics but did vary by ventilator mode (high-frequency oscillatory ventilation 83%, pressure-regulated volume control 82%, pressure control 75%; p = 0.002) and variable adjusted (ranging from 88% for peak inspiratory pressure and 86% for FIO2 changes to 69% for positive end-expiratory pressure changes). Acceptance did not vary based on child size/age. There was a preference for smaller positive end-expiratory pressure changes but no clear granularity preference for other variables. Although overall acceptance rate for scenarios was good, there was little consensus regarding the size/scale of ventilator setting changes for children with pediatric acute respiratory distress syndrome. An acceptable protocol could support robust evaluation of ventilator management strategies. Further studies are needed to determine if adherence to an explicit protocol leads to better outcomes.

  7. Outcome of long-term mechanical ventilation support in children.

    PubMed

    Hsia, Shao-Hsuan; Lin, Jainn-Jim; Huang, I-Anne; Wu, Chang-Teng

    2012-10-01

    Improved technology and care in recent years have significantly improved the prognosis and quality of life for patients on long-term mechanical ventilation. This study examined the status of children on long-term mechanical ventilation (MV) support in Taiwan. The medical records of patients between January 1998 and December 2006 were retrospectively reviewed, and the clinical factors were systematically reviewed. One hundred and thirty-nine (139) patients aged 3 months to 18 years, with 53 (38.1%) girls and 86 (61.9%) boys, were enrolled. The common underlying disorders included neurologic/neuromuscular diseases (n=100, 71.9%) and airway/lung dysfunction (n=19, 13.7%). After instituting MV, the children returned to the medical center mainly for infection (n=157, 47.7%) and elective surgery or procedures (n=46, 13.9%). After long-term follow-up, 37 (26.6%) died, 81 (58.3%) were transferred to respiratory care wards in local hospitals, and 21 (15.1%) received home care support. There are now more children on long-term MV support in Taiwan and most are in respiratory care wards in local hospitals. The shift in underlying diagnoses from pulmonary disease to neurogenic respiratory insufficiency affects hospitalization. The main cause of respiratory insufficiency is neurologic insult. Copyright © 2012. Published by Elsevier B.V.

  8. High-frequency oscillatory ventilation in ALI/ARDS.

    PubMed

    Ali, Sammy; Ferguson, Niall D

    2011-07-01

    In the last 2 decades, our goals for mechanical ventilatory support in patients with acute respiratory distress syndrome (ARDS) or acute lung injury (ALI) have changed dramatically. Several randomized controlled trials have built on a substantial body of preclinical work to demonstrate that the way in which we employ mechanical ventilation has an impact on important patient outcomes. Avoiding ventilator-induced lung injury (VILI) is now a major focus when clinicians are considering which ventilatory strategy to employ in patients with ALI/ARDS. Physicians are searching for methods that may further limit VILI, while still achieving adequate gas exchange. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. [Reflections on the use of non-invasive mechanical ventilation in acute respiratory failure].

    PubMed

    Scala, Raffaele

    2012-12-01

    Given its prevalence into the clinical practice, non-invasive ventilation (NIV) can be included among the cornerstones of medicine. Just think of the acute applications of NIV which are in constant expansion, from COPD exacerbation to severe de novo hypoxemia, from postoperative distress to extra-hospital use in acute pulmonary edema, from ongoing support of interventional procedures to delicate strategies for end of life in terminally ill oncologic and non-oncologic patients. The thought should be focused on how, by whom, where and to whom is delivered this mode of artificial ventilation to avoid the risk of trivialization and flattening.

  10. The Clinical Utilisation of Respiratory Elastance Software (CURE Soft): a bedside software for real-time respiratory mechanics monitoring and mechanical ventilation management.

    PubMed

    Szlavecz, Akos; Chiew, Yeong Shiong; Redmond, Daniel; Beatson, Alex; Glassenbury, Daniel; Corbett, Simon; Major, Vincent; Pretty, Christopher; Shaw, Geoffrey M; Benyo, Balazs; Desaive, Thomas; Chase, J Geoffrey

    2014-09-30

    Real-time patient respiratory mechanics estimation can be used to guide mechanical ventilation settings, particularly, positive end-expiratory pressure (PEEP). This work presents a software, Clinical Utilisation of Respiratory Elastance (CURE Soft), using a time-varying respiratory elastance model to offer this ability to aid in mechanical ventilation treatment. CURE Soft is a desktop application developed in JAVA. It has two modes of operation, 1) Online real-time monitoring decision support and, 2) Offline for user education purposes, auditing, or reviewing patient care. The CURE Soft has been tested in mechanically ventilated patients with respiratory failure. The clinical protocol, software testing and use of the data were approved by the New Zealand Southern Regional Ethics Committee. Using CURE Soft, patient's respiratory mechanics response to treatment and clinical protocol were monitored. Results showed that the patient's respiratory elastance (Stiffness) changed with the use of muscle relaxants, and responded differently to ventilator settings. This information can be used to guide mechanical ventilation therapy and titrate optimal ventilator PEEP. CURE Soft enables real-time calculation of model-based respiratory mechanics for mechanically ventilated patients. Results showed that the system is able to provide detailed, previously unavailable information on patient-specific respiratory mechanics and response to therapy in real-time. The additional insight available to clinicians provides the potential for improved decision-making, and thus improved patient care and outcomes.

  11. Mechanical ventilation weaning and extubation after spinal cord injury: a Western Trauma Association multicenter study.

    PubMed

    Kornblith, Lucy Z; Kutcher, Matthew E; Callcut, Rachael A; Redick, Brittney J; Hu, Charles K; Cogbill, Thomas H; Baker, Christopher C; Shapiro, Mark L; Burlew, Clay C; Kaups, Krista L; DeMoya, Marc A; Haan, James M; Koontz, Christopher H; Zolin, Samuel J; Gordy, Stephanie D; Shatz, David V; Paul, Doug B; Cohen, Mitchell J

    2013-12-01

    Respiratory failure after acute spinal cord injury (SCI) is well recognized, but data defining which patients need long-term ventilator support and criteria for weaning and extubation are lacking. We hypothesized that many patients with SCI, even those with cervical SCI, can be successfully managed without long-term mechanical ventilation and its associated morbidity. Under the auspices of the Western Trauma Association Multi-Center Trials Group, a retrospective study of patients with SCI at 14 major trauma centers was conducted. Comprehensive injury, demographic, and outcome data on patients with acute SCI were compiled. The primary outcome variable was the need for mechanical ventilation at discharge. Secondary outcomes included the use of tracheostomy and development of acute lung injury and ventilator-associated pneumonia. A total of 360 patients had SCI requiring mechanical ventilation. Sixteen patients were excluded for death within the first 2 days of hospitalization. Of the 344 patients included, 222 (64.5%) had cervical SCI. Notably, 62.6% of the patients with cervical SCI were ventilator free by discharge. One hundred forty-nine patients (43.3%) underwent tracheostomy, and 53.7% of them were successfully weaned from the ventilator, compared with an 85.6% success rate among those with no tracheostomy (p < 0.05). Patients who underwent tracheostomy had significantly higher rates of ventilator-associated pneumonia (61.1% vs. 20.5%, p < 0.05) and acute lung injury (12.8% vs. 3.6%, p < 0.05) and fewer ventilator-free days (1 vs. 24 p < 0.05). When controlled for injury severity, thoracic injury, and respiratory comorbidities, tracheostomy after cervical SCI was an independent predictor of ventilator dependence with an associated 14-fold higher likelihood of prolonged mechanical ventilation (odds ratio, 14.1; 95% confidence interval, 2.78-71.67; p < 0.05). While many patients with SCI require short-term mechanical ventilation, the majority can be successfully weaned before discharge. In patients with SCI, tracheostomy is associated with major morbidity, and its use, especially among patients with cervical SCI, deserves further study. Prognostic study, level III.

  12. Optimizing care of ventilated infants by improving weighing accuracy on incubator scales.

    PubMed

    El-Kafrawy, Ula; Taylor, R J

    2016-01-01

    To determine the accuracy of weighing ventilated infants on incubator scales and whether the accuracy can be improved by the addition of a ventilator tube compensator (VTC) device to counterbalance the force exerted by the ventilator tubing. Body weights on integral incubator scales were compared in ventilated infants (with and without a VTC), with body weights on standalone electronic scales (true weight). Individual and series of trend weights were obtained on the infants. The method of Bland and Altman was used to assess the introduced bias. The study included 60 ventilated infants; 66% of them weighed <1000 g. A total of 102 paired-weight datasets for 30 infants undergoing conventional ventilation and 30 undergoing high frequency oscillator ventilation (HFOV) supported by a SensorMedics oscillator, (with and without a VTC) were obtained. The mean differences and (95% CI for the bias) between the integral and true scale weighing methods was 60.8 g (49.1 g to 72.5 g) without and -2.8 g (-8.9 g to 3.3 g) with a VTC in HFOV infants; 41.0 g (32.1 g to 50.0 g) without and -5.1 g (-9.3 g to -0.8 g) with a VTC for conventionally ventilated infants. Differences of greater than 2% were considered clinically relevant and occurred in 93.8% without and 20.8% with a VTC in HFOV infants and 81.5% without and 27.8% with VTC in conventionally ventilated infants. The use of the VTC device represents a substantial improvement on the current practice for weighing ventilated infants, particularly in the extreme preterm infants where an over- or underestimated weight can have important clinical implications for treatment. A large-scale clinical trial to validate these findings is needed.

  13. Association between substandard classroom ventilation rates and students' academic achievement.

    PubMed

    Haverinen-Shaughnessy, U; Moschandreas, D J; Shaughnessy, R J

    2011-04-01

    This study focuses on the relationship between classroom ventilation rates and academic achievement. One hundred elementary schools of two school districts in the southwest United States were included in the study. Ventilation rates were estimated from fifth-grade classrooms (one per school) using CO(2) concentrations measured during occupied school days. In addition, standardized test scores and background data related to students in the classrooms studied were obtained from the districts. Of 100 classrooms, 87 had ventilation rates below recommended guidelines based on ASHRAE Standard 62 as of 2004. There is a linear association between classroom ventilation rates and students' academic achievement within the range of 0.9-7.1 l/s per person. For every unit (1 l/s per person) increase in the ventilation rate within that range, the proportion of students passing standardized test (i.e., scoring satisfactory or above) is expected to increase by 2.9% (95%CI 0.9-4.8%) for math and 2.7% (0.5-4.9%) for reading. The linear relationship observed may level off or change direction with higher ventilation rates, but given the limited number of observations, we were unable to test this hypothesis. A larger sample size is needed for estimating the effect of classroom ventilation rates higher than 7.1 l/s per person on academic achievement. The results of this study suggest that increasing the ventilation rates toward recommended guideline ventilation rates in classrooms should translate into improved academic achievement of students. More studies are needed to fully understand the relationships between ventilation rate, other indoor environmental quality parameters, and their effects on students' health and achievement. Achieving the recommended guidelines and pursuing better understanding of the underlying relationships would ultimately support both sustainable and productive school environments for students and personnel. © 2010 John Wiley & Sons A/S.

  14. Mechanical ventilation in disaster situations: a new paradigm using the AGILITIES Score System.

    PubMed

    Wilkens, Eric P; Klein, Gary M

    2010-01-01

    The failure of life-critical systems such as mechanical ventilators in the wake of a pandemic or a disaster may result in death, and therefore, state and federal government agencies must have precautions in place to ensure availability, reliability, and predictability through comprehensive preparedness and response plans. All 50 state emergency preparedness response plans were extensively examined for the attention given to the critically injured and ill patient population during a pandemic or mass casualty event. Public health authorities of each state were contacted as well. Nine of 51 state plans (17.6 percent) included a plan or committee for mechanical ventilation triage and management in a pandemic influenza event. All 51 state plans relied on the Centers for Disease Control and Prevention Flu Surge 2.0 spreadsheet to provide estimates for their influenza planning. In the absence of more specific guidance, the authors have developed and provided guidelines recommended for ventilator triage and the implementation of the AGILITIES Score in the event of a pandemic, mass casualty event, or other catastrophic disaster. The authors present and describe the AGILITIES Score Ventilator Triage System and provide related guidelines to be adopted uniformly by government agencies and hospitals. This scoring system and the set ofguidelines are to be used iA disaster settings, such as Hurricane Katrina, and are based on three key factors: relative health, duration of time on mechanical ventilation, and patients' use of resources during a disaster. For any event requiring large numbers of ventilators for patients, the United States is woefully unprepared. The deficiencies in this aspect of preparedness include (1) lack of accountability for physical ventilators, (2) lack of understanding with which healthcare professionals can safely operate these ventilators, (3) lack of understanding from where additional ventilator resources exist, and (4) a triage strategy to provide ventilator support to those patients with the greatest chances of survival.

  15. Rural Schoolhouses School Grounds, and Their Equipment. Bulletin, 1930, No. 21

    ERIC Educational Resources Information Center

    Dresslar, Fletcher B.; Pruett, Haskell

    1930-01-01

    Schoolhouse planning is becoming specialized. In a few of the larger centers of population there are architects who desire no other work except the planning of school buildings. This is bringing about in the larger cities schoolhouses that are peculiarly adapted to the educational program. They are sanitary, well lighted, and properly ventilated.…

  16. Elective high-frequency oscillatory versus conventional ventilation in preterm infants: a systematic review and meta-analysis of individual patients' data.

    PubMed

    Cools, Filip; Askie, Lisa M; Offringa, Martin; Asselin, Jeanette M; Calvert, Sandra A; Courtney, Sherry E; Dani, Carlo; Durand, David J; Gerstmann, Dale R; Henderson-Smart, David J; Marlow, Neil; Peacock, Janet L; Pillow, J Jane; Soll, Roger F; Thome, Ulrich H; Truffert, Patrick; Schreiber, Michael D; Van Reempts, Patrick; Vendettuoli, Valentina; Vento, Giovanni

    2010-06-12

    Population and study design heterogeneity has confounded previous meta-analyses, leading to uncertainty about effectiveness and safety of elective high-frequency oscillatory ventilation (HFOV) in preterm infants. We assessed effectiveness of elective HFOV versus conventional ventilation in this group. We did a systematic review and meta-analysis of individual patients' data from 3229 participants in ten randomised controlled trials, with the primary outcomes of death or bronchopulmonary dysplasia at 36 weeks' postmenstrual age, death or severe adverse neurological event, or any of these outcomes. For infants ventilated with HFOV, the relative risk of death or bronchopulmonary dysplasia at 36 weeks' postmenstrual age was 0.95 (95% CI 0.88-1.03), of death or severe adverse neurological event 1.00 (0.88-1.13), or any of these outcomes 0.98 (0.91-1.05). No subgroup of infants (eg, gestational age, birthweight for gestation, initial lung disease severity, or exposure to antenatal corticosteroids) benefited more or less from HFOV. Ventilator type or ventilation strategy did not change the overall treatment effect. HFOV seems equally effective to conventional ventilation in preterm infants. Our results do not support selection of preterm infants for HFOV on the basis of gestational age, birthweight for gestation, initial lung disease severity, or exposure to antenatal corticosteroids. Nestlé Belgium, Belgian Red Cross, and Dräger International.

  17. Successful Reinnervation of the Diaphragm After Intercostal to Phrenic Nerve Neurotization in Patients With High Spinal Cord Injury.

    PubMed

    Nandra, Kulvir S; Harari, Martin; Price, Thea P; Greaney, Patrick J; Weinstein, Michael S

    2017-08-01

    Our objective in this study was to extend diaphragmatic pacing therapy to include paraplegic patients with high cervical spinal cord injuries between C3 and C5. Diaphragmatic pacing has been used in patients experiencing ventilator-dependent respiratory failure due to spinal cord injury as a means to reduce or eliminate the need for mechanical ventilation. However, this technique relies on intact phrenic nerve function. Recently, phrenic nerve reconstruction with intercostal nerve grafting has expanded the indications for diaphragmatic pacing. Our study aimed to evaluate early outcomes and efficacy of intercostal nerve transfer in diaphragmatic pacing. Four ventilator-dependent patients with high cervical spinal cord injuries were selected for this study. Each patient demonstrated absence of phrenic nerve function via external neck stimulation and laparoscopic diaphragm mapping. Each patient underwent intercostal to phrenic nerve grafting with implantation of a phrenic nerve pacer. The patients were followed, and ventilator dependence was reassessed at 1 year postoperatively. Our primary outcome was measured by the amount of time our patients tolerated off the ventilator per day. We found that all 4 patients have tolerated paced breathing independent of mechanical ventilation, with 1 patient achieving 24 hours of tracheostomy collar. From this study, intercostal to phrenic nerve transfer seems to be a promising approach in reducing or eliminating ventilator support in patients with C3 to C5 high spinal cord injury.

  18. Preemptive mechanical ventilation can block progressive acute lung injury.

    PubMed

    Sadowitz, Benjamin; Jain, Sumeet; Kollisch-Singule, Michaela; Satalin, Joshua; Andrews, Penny; Habashi, Nader; Gatto, Louis A; Nieman, Gary

    2016-02-04

    Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS.

  19. Preemptive mechanical ventilation can block progressive acute lung injury

    PubMed Central

    Sadowitz, Benjamin; Jain, Sumeet; Kollisch-Singule, Michaela; Satalin, Joshua; Andrews, Penny; Habashi, Nader; Gatto, Louis A; Nieman, Gary

    2016-01-01

    Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS. PMID:26855896

  20. Regional Lung Ventilation Analysis Using Temporally Resolved Magnetic Resonance Imaging.

    PubMed

    Kolb, Christoph; Wetscherek, Andreas; Buzan, Maria Teodora; Werner, René; Rank, Christopher M; Kachelrie, Marc; Kreuter, Michael; Dinkel, Julien; Heuel, Claus Peter; Maier-Hein, Klaus

    We propose a computer-aided method for regional ventilation analysis and observation of lung diseases in temporally resolved magnetic resonance imaging (4D MRI). A shape model-based segmentation and registration workflow was used to create an atlas-derived reference system in which regional tissue motion can be quantified and multimodal image data can be compared regionally. Model-based temporal registration of the lung surfaces in 4D MRI data was compared with the registration of 4D computed tomography (CT) images. A ventilation analysis was performed on 4D MR images of patients with lung fibrosis; 4D MR ventilation maps were compared with corresponding diagnostic 3D CT images of the patients and 4D CT maps of subjects without impaired lung function (serving as reference). Comparison between the computed patient-specific 4D MR regional ventilation maps and diagnostic CT images shows good correlation in conspicuous regions. Comparison to 4D CT-derived ventilation maps supports the plausibility of the 4D MR maps. Dynamic MRI-based flow-volume loops and spirograms further visualize the free-breathing behavior. The proposed methods allow for 4D MR-based regional analysis of tissue dynamics and ventilation in spontaneous breathing and comparison of patient data. The proposed atlas-based reference coordinate system provides an automated manner of annotating and comparing multimodal lung image data.

  1. [The French translation and cultural adaptation of the SRI questionnaire. A questionnaire to assess health-related quality of life in patients with chronic respiratory failure and domiciliary ventilation].

    PubMed

    Cuvelier, A; Lamia, B; Molano, L-C; Muir, J-F; Windisch, W

    2012-05-01

    We performed the French translation and cross-cultural adaptation of the Severe Respiratory Insufficiency (SRI) questionnaire. Written and validated in German, this questionnaire evaluates health-related quality of life in patients treated with domiciliary ventilation for chronic respiratory failure. Four bilingual German-French translators and a linguist were recruited to produce translations and back-translations of the questionnaire constituted of 49 items in seven domains. Two successive versions were generated and compared to the original questionnaire. The difficulty of the translation and the naturalness were quantified for each item using a 1-10 scale and their equivalence to their original counterpart was graded from A to C. The translated questionnaire was finally tested in a pilot study, which included 15 representative patients. The difficulty of the first translation and the first back-translation was respectively quantified as 2.5 (range 1-5.5) and 1.5 (range 1-6) on the 10-point scale (P=0.0014). The naturalness and the equivalence of 8/49 items were considered as insufficient, which led to the production of a second translation and a second back-translation. The meanings of two items needed clarification during the pilot study. The French translation of the SRI questionnaire represents a new instrument for clinical research in patients treated with domiciliary ventilation for chronic respiratory failure. Its validity needs to be tested in a multicenter study. Copyright © 2012 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  2. Creating high performance buildings: Lower energy, better comfort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brager, Gail; Arens, Edward

    2015-03-30

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. Inmore » contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.« less

  3. Systolic blood pressure is superior to other haemodynamic predictors of outcome in community acquired pneumonia.

    PubMed

    Chalmers, J D; Singanayagam, A; Hill, A T

    2008-08-01

    Admission blood pressure (BP) assessment is a central component of severity assessment for community acquired pneumonia. The aim of this study was to establish which readily available haemodynamic measure on admission is most useful for predicting severity in patients admitted with community acquired pneumonia. A prospective observational study of patients admitted with community acquired pneumonia was conducted in Edinburgh, UK. The measurements compared were systolic and diastolic BP, mean arterial pressure and pulse pressure. The outcomes of interest were 30 day mortality and the requirement for mechanical ventilation and/or inotropic support. Admission systolic BP < 90 mm Hg, diastolic BP < or = 60 mm Hg, mean arterial pressure < 70 mm Hg and pulse pressure < or = 40 mm Hg were all associated with increased 30 day mortality and the need for mechanical ventilation and/or inotropic support on multivariate logistic regression. The AUC values for each predictor of 30 day mortality were as follows: systolic BP < 90 mm Hg 0.70; diastolic BP < or = 60 mm Hg 0.59; mean arterial pressure < 70 mm Hg 0.64; and pulse pressure < or = 40 mm Hg 0.60. The AUC values for each predictor of need for mechanical ventilation and/or inotropic support were as follows: systolic BP < 90 mm Hg 0.70; diastolic BP < or = 60 mm Hg 0.68; mean arterial pressure < 70 mm Hg 0.69; and pulse pressure < or = 40 mm Hg 0.59. A simplified CRB65 score containing systolic blood pressure < 90 mm Hg alone performed equally well to standard CRB65 score (AUC 0.76 vs 0.74) and to the standard CURB65 score (0.76 vs 0.76) for the prediction of 30 day mortality. The simplified CRB65 score was equivalent for prediction of mechanical ventilation and/or inotropic support to standard CRB65 (0.77 vs 0.77) and to CURB65 (0.77 vs 0.78). Systolic BP is superior to other haemodynamic predictors of 30 day mortality and need for mechanical ventilation and/or inotropic support in community acquired pneumonia. The CURB65 score can be simplified to a modified CRB65 score by omission of the diastolic BP criterion without compromising its accuracy.

  4. [Role of noninvasive mechanical ventilation in patients with severe avian influenza A (H7N9) complicated with acute respiratory distress syndrome].

    PubMed

    Luo, Haili; Wang, Shaohong; Shen, Feng; Yuan, Tongmei; Pan, Xianguo; Liu, Jingtao; Yao, Ling; Wu, Juncheng; Long, Xuemei

    2018-05-01

    Human infection with avian influenza A (H7N9) is an acute contagious respiratory disease. Acute respiratory distress syndrome (ARDS) is a common complication in patients with severe avian influenza A (H7N9), for whom mechanical ventilation (MV) is an important supportive method. A patient, suffered from severe avian influenza A (H7N9) and complicated with ARDS, was admitted to the Second Affiliated Hospital of Guizhou Medical University in January 2017. With very intensive care for oxygenation, respiration and consciousness, and monitoring, she was successfully cured by comprehensive managements, among which noninvasive mechanical ventilation (NIV) was the major respiratory support method. The result demonstrate that, in patients with conscious state, satisfied expectoration ability and relatively good cooperation, and with close observation of oxygenation and respiratory rate, NIV may be accepted as an effective method for patient with ARDS caused by severe avian influenza A (H7N9).

  5. The ventilated patient undergoing hydrotherapy: a case study.

    PubMed

    Taylor, Susan

    2003-08-01

    The ascending peripheral neuropathy and paralysis that result from Guillain-Barre Syndrome's (GBS) demyelination of peripheral nerves is a challenge to health professionals; the patient requires support during the acute disease process and during the remyelination recovery period, often lasting months to years. The staff of a major metropolitan teaching hospital's critical care unit (CCU) and physiotherapy departments developed a hydrotherapy treatment programme for a ventilated patient with GBS. Through careful planning and appropriate preparation, it was found that hydrotherapy could successfully and safely be incorporated into a patient's treatment regimen. The benefits included improved range of movement due to the supportive nature of water, anecdotal increased strength, size and movement of remyelinating muscles and a psychological improvement. Although this patient has not recovered from GBS to be independent, hydrotherapy was a valuable part of the treatment regimen and it could be suggested the increase muscle strength lead to improved respiratory function and enabled weaning from ventilation, reducing intensive care length of stay and cost.

  6. Spinal Muscular Atrophy Type I: Is It Ethical to Standardize Supportive Care Intervention in Clinical Trials?

    PubMed

    Finkel, Richard S; Bishop, Kathie M; Nelson, Robert M

    2017-02-01

    The natural history of spinal muscular atrophy type I (SMA-I) has changed as improved medical support has become available. With investigational drugs for spinal muscular atrophy now in clinical trials, efficient trial design focuses on enrolling recently diagnosed infants, providing best available supportive care, and minimizing subject variation. The quandary has arisen whether it is ethically appropriate to specify a predefined level of nutritional and/or ventilation support for spinal muscular atrophy type I subjects while participating in these studies. We conducted a survey at 2 spinal muscular atrophy investigator meetings involving physician investigators, clinical evaluators, and study coordinators from North America, Europe, and Asia-Pacific. Each group endorsed the concept that having a predefined degree of nutritional and ventilation support was warranted in this context. We discuss how autonomy, beneficence/non-maleficence, noncoercion, social benefit, and equipoise can be maintained when a predefined level of supportive care is proposed, for participation in a clinical trial.

  7. Extracorporeal respiratory support in adult patients.

    PubMed

    Romano, Thiago Gomes; Mendes, Pedro Vitale; Park, Marcelo; Costa, Eduardo Leite Vieira

    2017-01-01

    In patients with severe respiratory failure, either hypoxemic or hypercapnic, life support with mechanical ventilation alone can be insufficient to meet their needs, especially if one tries to avoid ventilator settings that can cause injury to the lungs. In those patients, extracorporeal membrane oxygenation (ECMO), which is also very effective in removing carbon dioxide from the blood, can provide life support, allowing the application of protective lung ventilation. In this review article, we aim to explore some of the most relevant aspects of using ECMO for respiratory support. We discuss the history of respiratory support using ECMO in adults, as well as the clinical evidence; costs; indications; installation of the equipment; ventilator settings; daily care of the patient and the system; common troubleshooting; weaning; and discontinuation. RESUMO Em pacientes com insuficiência respiratória grave (hipoxêmica ou hipercápnica), o suporte somente com ventilação mecânica pode ser insuficiente para suas necessidades, especialmente quando se tenta evitar o uso de parâmetros ventilatórios que possam causar danos aos pulmões. Nesses pacientes, extracorporeal membrane oxygenation (ECMO, oxigenação extracorpórea por membrana), que também é muito eficaz na remoção de dióxido de carbono do sangue, pode manter a vida, permitindo o uso de ventilação pulmonar protetora. No presente artigo de revisão, objetivamos explorar alguns dos aspectos mais relevantes do suporte respiratório por ECMO. Discutimos a história do suporte respiratório por ECMO em adultos; evidências clínicas; custos; indicações; instalação do equipamento; parâmetros ventilatórios; cuidado diário do paciente e do sistema; solução de problemas comuns; desmame e descontinuação.

  8. Diaphragmatic reinnervation in ventilator-dependent patients with cervical spinal cord injury and concomitant phrenic nerve lesions using simultaneous nerve transfers and implantable neurostimulators.

    PubMed

    Kaufman, Matthew R; Elkwood, Andrew I; Aboharb, Farid; Cece, John; Brown, David; Rezzadeh, Kameron; Jarrahy, Reza

    2015-06-01

    Patients who are ventilator dependent as a result of combined cervical spinal cord injury and phrenic nerve lesions are generally considered to be unsuitable candidates for diaphragmatic pacing due to loss of phrenic nerve integrity and denervation of the diaphragm. There is limited data regarding efficacy of simultaneous nerve transfers and diaphragmatic pacemakers in the treatment of this patient population. A retrospective review was conducted of 14 consecutive patients with combined lesions of the cervical spinal cord and phrenic nerves, and with complete ventilator dependence, who were treated with simultaneous microsurgical nerve transfer and implantation of diaphragmatic pacemakers. Parameters of interest included time to recovery of diaphragm electromyographic activity, average time pacing without the ventilator, and percent reduction in ventilator dependence. Recovery of diaphragm electromyographic activity was demonstrated in 13 of 14 (93%) patients. Eight of these 13 (62%) patients achieved sustainable periods (> 1 h/d) of ventilator weaning (mean = 10 h/d [n = 8]). Two patients recovered voluntary control of diaphragmatic activity and regained the capacity for spontaneous respiration. The one patient who did not exhibit diaphragmatic reinnervation remains within 12 months of initial treatment. Surgical intervention resulted in a 25% reduction (p < 0.05) in ventilator dependency. We have demonstrated that simultaneous nerve transfers and pacemaker implantation can result in reinnervation of the diaphragm and lead to successful ventilator weaning. Our favorable outcomes support consideration of this surgical method for appropriate patients who would otherwise have no alternative therapy to achieve sustained periods of ventilator independence. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Protective versus Conventional Ventilation for Surgery: A Systematic Review and Individual Patient Data Meta-analysis.

    PubMed

    Serpa Neto, Ary; Hemmes, Sabrine N T; Barbas, Carmen S V; Beiderlinden, Martin; Biehl, Michelle; Binnekade, Jan M; Canet, Jaume; Fernandez-Bustamante, Ana; Futier, Emmanuel; Gajic, Ognjen; Hedenstierna, Göran; Hollmann, Markus W; Jaber, Samir; Kozian, Alf; Licker, Marc; Lin, Wen-Qian; Maslow, Andrew D; Memtsoudis, Stavros G; Reis Miranda, Dinis; Moine, Pierre; Ng, Thomas; Paparella, Domenico; Putensen, Christian; Ranieri, Marco; Scavonetto, Federica; Schilling, Thomas; Schmid, Werner; Selmo, Gabriele; Severgnini, Paolo; Sprung, Juraj; Sundar, Sugantha; Talmor, Daniel; Treschan, Tanja; Unzueta, Carmen; Weingarten, Toby N; Wolthuis, Esther K; Wrigge, Hermann; Gama de Abreu, Marcelo; Pelosi, Paolo; Schultz, Marcus J

    2015-07-01

    Recent studies show that intraoperative mechanical ventilation using low tidal volumes (VT) can prevent postoperative pulmonary complications (PPCs). The aim of this individual patient data meta-analysis is to evaluate the individual associations between VT size and positive end-expiratory pressure (PEEP) level and occurrence of PPC. Randomized controlled trials comparing protective ventilation (low VT with or without high levels of PEEP) and conventional ventilation (high VT with low PEEP) in patients undergoing general surgery. The primary outcome was development of PPC. Predefined prognostic factors were tested using multivariate logistic regression. Fifteen randomized controlled trials were included (2,127 patients). There were 97 cases of PPC in 1,118 patients (8.7%) assigned to protective ventilation and 148 cases in 1,009 patients (14.7%) assigned to conventional ventilation (adjusted relative risk, 0.64; 95% CI, 0.46 to 0.88; P < 0.01). There were 85 cases of PPC in 957 patients (8.9%) assigned to ventilation with low VT and high PEEP levels and 63 cases in 525 patients (12%) assigned to ventilation with low VT and low PEEP levels (adjusted relative risk, 0.93; 95% CI, 0.64 to 1.37; P = 0.72). A dose-response relationship was found between the appearance of PPC and VT size (R2 = 0.39) but not between the appearance of PPC and PEEP level (R2 = 0.08). These data support the beneficial effects of ventilation with use of low VT in patients undergoing surgery. Further trials are necessary to define the role of intraoperative higher PEEP to prevent PPC during nonopen abdominal surgery.

  10. Knowledge level of nurses in Jordan on ventilator-associated pneumonia and preventive measures.

    PubMed

    Hassan, Zeinab M; Wahsheh, Moayad A

    2017-05-01

    Ventilator-associated pneumonia is the most prevalent infection in Intensive Care Units, with the highest mortality rate; crude mortality rates may be as high as 20-75%. Many practices such as prevention measures (e.g. hand washing, wearing gloves, suctioning, elevated head of bed between 30° and 45°) have demonstrated an effect of reducing the incidence of this infection. To identify the level of nurses' knowledge of ventilator-associated pneumonia and prevention measures before an educational programme, identify the level of nurses' knowledge on ventilator-associated pneumonia and prevention post an educational programme and identify the reasons for not applying ventilator-associated pneumonia prevention measures among nurses in Jordan. Pre- and post-intervention observational study. Data based on a self-reported questionnaire from 428 nurses who worked in intensive care units were analysed. PowerPoint lectures, videos, printed materials and electronic materials were used in the intervention. Paired t-tests were used to test research questions. More than three-quarters of nurses had a low knowledge level regarding pathophysiology, risk factors and ventilator-associated pneumonia preventative measures. Nurses showed significant improvements in mean scores on the knowledge level of ventilator-associated pneumonia and prevention measures after an educational programme (p < 0.05). The main reasons for not applying prevention measures were the lack of time and no followed protocols in the units. Health education programmes about ventilator-associated pneumonia must be conducted among nurses in Jordan through continuous education. Hospital and nursing administrators should be actively involved in educational programmes and in assuring support for continuing education. Protocol for ventilator-associated pneumonia prevention should be developed based on current evidence-based guidelines. © 2016 British Association of Critical Care Nurses.

  11. Home monitoring of daytime mouthpiece ventilation effectiveness in patients with neuromuscular disease

    PubMed Central

    Nardi, Julie; Leroux, Karl; Orlikowski, David; Prigent, Hélène

    2015-01-01

    Mouthpiece ventilation (MPV) allows patients with neuromuscular disease to receive daytime support from a portable ventilator, which they can disconnect at will, for example, for speaking, eating, swallowing, and coughing. However, MPV carries a risk of underventilation. Our purpose here was to evaluate the effectiveness of daytime MPV under real-life conditions. Eight wheelchair-bound patients who used MPV underwent daytime polygraphy at home with recordings of airflow, mouthpiece pressure, thoracic and abdominal movements, peripheral capillary oxygen saturation (SpO2), and transcutaneous partial pressure of carbon dioxide (PtcCO2). Times and durations of tasks and activities were recorded. The Apnea–Hypopnea Index (AHI) was computed. Patient–ventilator disconnections ≥3 minutes and episodes of hypoventilation defined as PtcCO2>45 mmHg were counted. Patient–ventilator asynchrony events were analyzed. The AHI was >5 hour−1 in two patients. Another patient experienced unexplained 3% drops in arterial oxygen saturations at a frequency of 70 hour−1. Patient–ventilator disconnections ≥3 minutes occurred in seven of eight patients and were consistently associated with decreases in SpO2 and ≥5-mmHg increases in PtcCO2; PtcCO2 rose above 45 mmHg in two patients during these disconnections. The most common type of patient–ventilator asynchrony was ineffective effort. This study confirms that MPV can be effective as long as the patient remains connected to the mouthpiece. However, transient arterial oxygen desaturation and hypercapnia due to disconnection from the ventilator may occur, without inducing unpleasant sensations in the patients. Therefore, an external warning system based on a minimal acceptable value of minute ventilation would probably be useful. PMID:26703922

  12. The Association of Fever with Total Mechanical Ventilation Time in Critically Ill Patients.

    PubMed

    Park, Dong Won; Egi, Moritoki; Nishimura, Masaji; Chang, Youjin; Suh, Gee Young; Lim, Chae Man; Kim, Jae Yeol; Tada, Keiichi; Matsuo, Koichi; Takeda, Shinhiro; Tsuruta, Ryosuke; Yokoyama, Takeshi; Kim, Seon Ok; Koh, Younsuck

    2016-12-01

    This research aims to investigate the impact of fever on total mechanical ventilation time (TVT) in critically ill patients. Subgroup analysis was conducted using a previous prospective, multicenter observational study. We included mechanically ventilated patients for more than 24 hours from 10 Korean and 15 Japanese intensive care units (ICU), and recorded maximal body temperature under the support of mechanical ventilation (MAX(MV)). To assess the independent association of MAX(MV) with TVT, we used propensity-matched analysis in a total of 769 survived patients with medical or surgical admission, separately. Together with multiple linear regression analysis to evaluate the association between the severity of fever and TVT, the effect of MAX(MV) on ventilator-free days was also observed by quantile regression analysis in all subjects including non-survivors. After propensity score matching, a MAX(MV) ≥ 37.5°C was significantly associated with longer mean TVT by 5.4 days in medical admission, and by 1.2 days in surgical admission, compared to those with MAX(MV) of 36.5°C to 37.4°C. In multivariate linear regression analysis, patients with three categories of fever (MAX(MV) of 37.5°C to 38.4°C, 38.5°C to 39.4°C, and ≥ 39.5°C) sustained a significantly longer duration of TVT than those with normal range of MAX(MV) in both categories of ICU admission. A significant association between MAX(MV) and mechanical ventilator-free days was also observed in all enrolled subjects. Fever may be a detrimental factor to prolong TVT in mechanically ventilated patients. These findings suggest that fever in mechanically ventilated patients might be associated with worse mechanical ventilation outcome.

  13. Ventilator use, respiratory problems, and caregiver well-being in korean patients with amyotrophic lateral sclerosis receiving home-based care.

    PubMed

    Kim, Chul-Hoon; Kim, Myoung Soo

    2014-10-01

    The purpose of this study was to describe the status of ventilator use, respiratory problems, and caregiver well-being relating to patients with amyotrophic lateral sclerosis (ALS) using a home-based ventilator as well as to examine the relationship among ventilator use, respiratory problems, and caregiver well-being. Patients with ALS (n = 141) registered in the Severe-Rare Disease Center of the Korean Center for Disease Control and their caregivers (n = 83) were surveyed from August 2008 to April 2009. Trained research assistants visited patient homes; collected data using questionnaires; and then performed analyses with descriptive statistics, χ test, and t test as well as partial correlation analysis using SPSS WIN 18.0. Thirty-two patients used noninvasive ventilation (NIV), and 109 used tracheostomy and mechanical ventilation (TMV). One hundred of the TMV patients used the ventilator 24 hours per day. The ventilator circuit exchange cycle was 0.96 times per month for NIV patients and 1.17 times per month for TMV patients (t = -4.91, p < .001). However, NIV patients had a higher level of tidal volume than TMV patients (t = 3.34, p = .001). Approximately 22% of NIV patients and 24% of TMV patients used one or more physiotherapies for airway clearance. There was a significant relationship between hypoventilation symptoms and caregiver burden (r = .31, p = .006). Hypoventilation symptoms were positively related to physiotherapy (r = .24, p = .042), and physiotherapy was positively related to caregiver burden (r = .24, p = .043). On the basis of the findings of this study, care management for patients with ALS with a home-based ventilator as well as their caregiver's well-being was relatively inappropriate. We recommend that community-based support programs and burden relief programs be considered as managerial interventions.

  14. Music preferences of mechanically ventilated patients participating in a randomized controlled trial.

    PubMed

    Heiderscheit, Annie; Breckenridge, Stephanie J; Chlan, Linda L; Savik, Kay

    2014-01-01

    Mechanical ventilation (MV) is a life-saving measure and supportive modality utilized to treat patients experiencing respiratory failure. Patients experience pain, discomfort, and anxiety as a result of being mechanically ventilated. Music listening is a non-pharmacological intervention used to manage these psychophysiological symptoms associated with mechanical ventilation. The purpose of this secondary analysis was to examine music preferences of 107 MV patients enrolled in a randomized clinical trial that implemented a patient-directed music listening protocol to help manage the psychophysiological symptom of anxiety. Music data presented includes the music genres and instrumentation patients identified as their preferred music. Genres preferred include: classical, jazz, rock, country, and oldies. Instrumentation preferred include: piano, voice, guitar, music with nature sounds, and orchestral music. Analysis of three patients' preferred music received throughout the course of the study is illustrated to demonstrate the complexity of assessing MV patients and the need for an ongoing assessment process.

  15. Are there benefits or harm from pressure targeting during lung-protective ventilation?

    PubMed

    MacIntyre, Neil R; Sessler, Curtis N

    2010-02-01

    Mechanically, breath design is usually either flow/volume-targeted or pressure-targeted. Both approaches can effectively provide lung-protective ventilation, but they prioritize different ventilation parameters, so their responses to changing respiratory-system mechanics and patient effort are different. These different response behaviors have advantages and disadvantages that can be important in specific circumstances. Flow/volume targeting guarantees a set minute ventilation but sometimes may be difficult to synchronize with patient effort, and it will not limit inspiratory pressure. In contrast, pressure targeting, with its variable flow, may be easier to synchronize and will limit inspiratory pressure, but it provides no control over delivered volume. Skilled clinicians can maximize benefits and minimize problems with either flow/volume targeting or pressure targeting. Indeed, as is often the case in managing complex life-support devices, it is operator expertise rather than the device design features that most impacts patient outcomes.

  16. British Thoracic Society Quality Standards for acute non-invasive ventilation in adults

    PubMed Central

    Davies, Michael; Allen, Martin; Bentley, Andrew; Bourke, Stephen C; Creagh-Brown, Ben; D’Oliveiro, Rachel; Glossop, Alastair; Gray, Alasdair; Jacobs, Phillip; Mahadeva, Ravi; Moses, Rachael; Setchfield, Ian

    2018-01-01

    Introduction The purpose of the quality standards document is to provide healthcare professionals, commissioners, service providers and patients with a guide to standards of care that should be met for the provision of acute non-invasive ventilation in adults together with measurable markers of good practice. Methods Development of British Thoracic Society (BTS) Quality Standards follows the BTS process of quality standard production based on the National Institute for Health and Care Excellence process manual for the development of quality standards. Results 6 quality statements have been developed, each describing a standard of care for the provision of acute non-invasive ventilation in the UK, together with measurable markers of good practice. Conclusion BTS Quality Standards for acute non-invasive ventilation in adults form a key part of the range of supporting materials that the Society produces to assist in the dissemination and implementation of guideline’s recommendations. PMID:29636979

  17. Music preferences of mechanically ventilated patients participating in a randomized controlled trial

    PubMed Central

    Heiderscheit, Annie; Breckenridge, Stephanie J.; Chlan, Linda L.; Savik, Kay

    2014-01-01

    Mechanical ventilation (MV) is a life-saving measure and supportive modality utilized to treat patients experiencing respiratory failure. Patients experience pain, discomfort, and anxiety as a result of being mechanically ventilated. Music listening is a non-pharmacological intervention used to manage these psychophysiological symptoms associated with mechanical ventilation. The purpose of this secondary analysis was to examine music preferences of 107 MV patients enrolled in a randomized clinical trial that implemented a patient-directed music listening protocol to help manage the psychophysiological symptom of anxiety. Music data presented includes the music genres and instrumentation patients identified as their preferred music. Genres preferred include: classical, jazz, rock, country, and oldies. Instrumentation preferred include: piano, voice, guitar, music with nature sounds, and orchestral music. Analysis of three patients’ preferred music received throughout the course of the study is illustrated to demonstrate the complexity of assessing MV patients and the need for an ongoing assessment process. PMID:25574992

  18. Work of breathing using different interfaces in spontaneous positive pressure ventilation: helmet, face-mask, and endotracheal tube.

    PubMed

    Oda, Shinya; Otaki, Kei; Yashima, Nozomi; Kurota, Misato; Matsushita, Sachiko; Kumasaka, Airi; Kurihara, Hutaba; Kawamae, Kaneyuki

    2016-08-01

    Noninvasive positive pressure ventilation (NPPV) using a helmet is expected to cause inspiratory trigger delay due to the large collapsible and compliant chamber. We compared the work of breathing (WOB) of NPPV using a helmet or a full face-mask with that of invasive ventilation by tracheal intubation. We used a lung model capable of simulating spontaneous breathing (LUNGOO; Air Water Inc., Japan). LUNGOO was set at compliance (C) = 50 mL/cmH2O and resistance (R) = 5 cmH2O/L/s for normal lung simulation, C = 20 mL/cmH2O and R = 5 cmH2O/L/s for restrictive lung, and C = 50 mL/cmH2O and R = 20 cmH2O/L/s for obstructive lung. Muscle pressure was fixed at 25 cmH2O and respiratory rate at 20 bpm. Pressure support ventilation and continuous positive airway pressure were performed with each interface placed on a dummy head made of reinforced plastic that was connected to LUNGOO. We tested the inspiratory WOB difference between the interfaces with various combinations of ventilator settings (positive end-expiratory pressure 5 cmH2O; pressure support 0, 5, and 10 cmH2O). In the normal lung and restrictive lung models, WOB decreased more with the face-mask than the helmet, especially when accompanied by the level of pressure support. In the obstructive lung model, WOB with the helmet decreased compared with the other two interfaces. In the mixed lung model, there were no significant differences in WOB between the three interfaces. NPPV using a helmet is more effective than the other interfaces for WOB in obstructive lung disease.

  19. Non-invasive ventilation in prone position for refractory hypoxemia after bilateral lung transplantation.

    PubMed

    Feltracco, Paolo; Serra, Eugenio; Barbieri, Stefania; Persona, Paolo; Rea, Federico; Loy, Monica; Ori, Carlo

    2009-01-01

    Temporary graft dysfunction with gas exchange abnormalities is a common finding during the postoperative course of a lung transplant and is often determined by the post-reimplantation syndrome. Supportive measures including oxygen by mask, inotropes, diuretics, and pulmonary vasodilators are usually effective in non-severe post-reimplantation syndromes. However, in less-responsive clinical pictures, tracheal intubation with positive pressure ventilation, or non-invasive positive pressure ventilation (NIV), is necessary. We report on the clinical course of two patients suffering from refractory hypoxemia due to post-reimplantation syndrome treated with NIV in the prone and Trendelenburg positions. NIV was well tolerated and led to resolution of atelectactic areas and dishomogeneous lung infiltrates. Repeated turning from supine to prone under non invasive ventilation determined a stable improvement of gas exchange and prevented a more invasive approach. Even though NIV in the prone position has not yet entered into clinical practice, it could be an interesting option to achieve a better match between ventilation and perfusion. This technique, which we successfully applied in lung transplantation, can be easily extended to other lung diseases with non-recruitable dorso-basal areas.

  20. Effect on lung function of mounthpiece ventilation in Steinert disease. A case report.

    PubMed

    Annunziata, Anna; Fiorentino, Giuseppe; Esquinas, Antonio

    2017-03-01

    In patients with muscular dystrophies both muscle length tension relationship changes and muscle elasticity and plasticity are decreased, resulting in impaired inspiratory muscle function and decreased vital capacity. Furthermore, the loss of deep breathing further increases the risk of alveolar collapse, hypoventilation and atelectasias. In this case report, a stable improvement of vital capacity after treatment with mounthpiece ventilation (MPV), was observed, suggesting that not invasive ventilation (NIV) might help to maintai lung and chest wall compliance, prevent hypoventilation and atelectasias which in turn may slow down the development of the restrictive respiratory pattern. The improvement of vital capacity may have a positive impact on alveolar ventilation by reducing the time with SaO2 values below 90%. This case illustrates that MPV is an effective method to improve respiratory function in patients non-tolerant of nasal mask and a valid alternative option for those who need NIV support for the most part of the day. Furthermore, the use of MPV, alone or combined with other interfaces, improves the quality of life of the neuromuscular patients and promotes a greater adherence to mechanical ventilation.

  1. Mechanical ventilation-associated lung fibrosis in acute respiratory distress syndrome: a significant contributor to poor outcome.

    PubMed

    Cabrera-Benitez, Nuria E; Laffey, John G; Parotto, Matteo; Spieth, Peter M; Villar, Jesús; Zhang, Haibo; Slutsky, Arthur S

    2014-07-01

    One of the most challenging problems in critical care medicine is the management of patients with the acute respiratory distress syndrome. Increasing evidence from experimental and clinical studies suggests that mechanical ventilation, which is necessary for life support in patients with acute respiratory distress syndrome, can cause lung fibrosis, which may significantly contribute to morbidity and mortality. The role of mechanical stress as an inciting factor for lung fibrosis versus its role in lung homeostasis and the restoration of normal pulmonary parenchymal architecture is poorly understood. In this review, the authors explore recent advances in the field of pulmonary fibrosis in the context of acute respiratory distress syndrome, concentrating on its relevance to the practice of mechanical ventilation, as commonly applied by anesthetists and intensivists. The authors focus the discussion on the thesis that mechanical ventilation-or more specifically, that ventilator-induced lung injury-may be a major contributor to lung fibrosis. The authors critically appraise possible mechanisms underlying the mechanical stress-induced lung fibrosis and highlight potential therapeutic strategies to mitigate this fibrosis.

  2. A new global and comprehensive model for ICU ventilator performances evaluation.

    PubMed

    Marjanovic, Nicolas S; De Simone, Agathe; Jegou, Guillaume; L'Her, Erwan

    2017-12-01

    This study aimed to provide a new global and comprehensive evaluation of recent ICU ventilators taking into account both technical performances and ergonomics. Six recent ICU ventilators were evaluated. Technical performances were assessed under two FIO 2 levels (100%, 50%), three respiratory mechanics combinations (Normal: compliance [C] = 70 mL cmH 2 O -1 /resistance [R] = 5 cmH 2 O L -1  s -1 ; Restrictive: C = 30/R = 10; Obstructive: C = 120/R = 20), four exponential levels of leaks (from 0 to 12.5 L min -1 ) and three levels of inspiratory effort (P0.1 = 2, 4 and 8 cmH 2 O), using an automated test lung. Ergonomics were evaluated by 20 ICU physicians using a global and comprehensive model involving physiological response to stress measurements (heart rate, respiratory rate, tidal volume variability and eye tracking), psycho-cognitive scales (SUS and NASA-TLX) and objective tasks completion. Few differences in terms of technical performance were observed between devices. Non-invasive ventilation modes had a huge influence on asynchrony occurrence. Using our global model, either objective tasks completion, psycho-cognitive scales and/or physiological measurements were able to depict significant differences in terms of devices' usability. The level of failure that was observed with some devices depicted the lack of adaptation of device's development to end users' requests. Despite similar technical performance, some ICU ventilators exhibit low ergonomics performance and a high risk of misusage.

  3. Home telemonitoring of non-invasive ventilation decreases healthcare utilisation in a prospective controlled trial of patients with amyotrophic lateral sclerosis.

    PubMed

    Pinto, Anabela; Almeida, José Pedro; Pinto, Susana; Pereira, João; Oliveira, António Gouveia; de Carvalho, Mamede

    2010-11-01

    Non-invasive ventilation (NIV) is an efficient method for treating respiratory failure in patients with amyotrophic lateral sclerosis (ALS). However, it requires a process of adaptation not always achieved due to poor compliance. The role of telemonitoring of NIV is not yet established. To test the advantage of using modem communication in NIV of ALS patients. Prospective, single blinded controlled trial. Population and methods According to their residence, 40 consecutive ventilated ALS patients were assigned to one of two groups: a control group (G1, n=20) in which compliance and ventilator parameter settings were assessed during office visits; or an intervention group (G2, n=20) in which patients received a modem device connected to the ventilator. The number of office and emergency room visits and hospital admissions during the entire span of NIV use and the number of parameter setting changes to achieve full compliance were the primary outcome measurements. Demographic and clinical features were similar between the two groups at admission. No difference in compliance was found between the groups. The incidence of changes in parameter settings throughout the survival period with NIV was lower in G2 (p<0.0001) but it was increased during the initial period needed to achieve full compliance. The number of office or emergency room visits and inhospital admissions was significantly lower in G2 (p<0.0001). Survival showed a trend favouring G2 (p=0.13). This study shows that telemonitoring reduces health care utilisation with probable favourable implications on costs, survival and functional status.

  4. WE-AB-202-03: Quantifying Ventilation Change Due to Radiation Therapy Using 4DCT Jacobian Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, T; Du, K; Bayouth, J

    Purpose: Four-dimensional computed tomography (4DCT) and image registration can be used to determine regional lung ventilation changes after radiation therapy (RT). This study aimed to determine if lung ventilation change following radiation therapy was affected by the pre-RT ventilation of the lung. Methods: 13 subjects had three 4DCT scans: two repeat scans acquired before RT and one three months after RT. Regional ventilation was computed using Jacobian determinant calculations on the registered 4DCT images. The post-RT ventilation map was divided by the pre-RT ventilation map to get a voxel-by-voxel Jacobian ratio map depicting ventilation change over the course of RT.more » Jacobian ratio change was compared over the range of delivered doses. The first pre-RT ventilation image was divided by the second to establish a control for Jacobian ratio change without radiation delivered. The functional change between scans was assessed using histograms of the Jacobian ratios. Results: There were significantly (p < 0.05) more voxels that had a large decrease in Jacobian ratio in the post-RT divided by pre-RT map (15.6%) than the control (13.2%). There were also significantly (p < .01) more voxels that had a large increase in Jacobian ratio (16.2%) when compared to control (13.3%). Lung regions with low function (<10% expansion by Jacobian) showed a slight linear reduction in expansion (0.2%/10 Gy delivered), while high function regions (>10% expansion) showed a greater response (1.2% reduction/10 Gy). Contiguous high function regions > 1 liter occurred in 11 of 13 subjects. Conclusion: There is a significant change in regional ventilation following a course of radiation therapy. The change in Jacobian following RT is dependent both on the delivered dose and the initial ventilation of the lung tissue: high functioning lung has greater ventilation loss for equivalent radiation doses. Substantial regions of high function lung tissue are prevalent. Research support from NIH grants CA166119 and CA166703, a gift from Roger Koch, and a Pilot Grant from University of Iowa Carver College of Medicine.« less

  5. Atelectasis after airway extubation during veno-arterial extracorporeal membrane oxygenation support.

    PubMed

    Wang, Hong; Jia, Ming; Mao, Bin; Hou, Xiaotong

    2017-09-01

    Veno-arterial extracorporeal membrane oxygenation (VA ECMO) is used in cardiopulmonary failure patients to provide temporary assisted circulation. Usually, prolonged intubation and invasive mechanical ventilation are required in patients with ECMO support. We report on two cases of patients who had no pre-existing injuries of the affected lung, underwent VA ECMO support after open-heart surgery and received airway extubation (AE) or awake ECMO with the recovery of left ventricular ejection fraction. Atelectasis happened after AE and non-invasive positive pressure ventilation attenuated the atelectasis of one patient. The atelectasis of the other patient was corrected 10 hours after weaning from ECMO. Both patients were discharged successfully. Awake VA ECMO for post-cardiac surgery patients should be performed with prudence and needs further research.

  6. Partial Support Ventilation and Mitochondrial-Targeted Antioxidants Protect against Ventilator-Induced Decreases in Diaphragm Muscle Protein Synthesis.

    PubMed

    Hudson, Matthew B; Smuder, Ashley J; Nelson, W Bradley; Wiggs, Michael P; Shimkus, Kevin L; Fluckey, James D; Szeto, Hazel H; Powers, Scott K

    2015-01-01

    Mechanical ventilation (MV) is a life-saving intervention in patients in respiratory failure. Unfortunately, prolonged MV results in the rapid development of diaphragm atrophy and weakness. MV-induced diaphragmatic weakness is significant because inspiratory muscle dysfunction is a risk factor for problematic weaning from MV. Therefore, developing a clinical intervention to prevent MV-induced diaphragm atrophy is important. In this regard, MV-induced diaphragmatic atrophy occurs due to both increased proteolysis and decreased protein synthesis. While efforts to impede MV-induced increased proteolysis in the diaphragm are well-documented, only one study has investigated methods of preserving diaphragmatic protein synthesis during prolonged MV. Therefore, we evaluated the efficacy of two therapeutic interventions that, conceptually, have the potential to sustain protein synthesis in the rat diaphragm during prolonged MV. Specifically, these experiments were designed to: 1) determine if partial-support MV will protect against the decrease in diaphragmatic protein synthesis that occurs during prolonged full-support MV; and 2) establish if treatment with a mitochondrial-targeted antioxidant will maintain diaphragm protein synthesis during full-support MV. Compared to spontaneously breathing animals, full support MV resulted in a significant decline in diaphragmatic protein synthesis during 12 hours of MV. In contrast, diaphragm protein synthesis rates were maintained during partial support MV at levels comparable to spontaneous breathing animals. Further, treatment of animals with a mitochondrial-targeted antioxidant prevented oxidative stress during full support MV and maintained diaphragm protein synthesis at the level of spontaneous breathing animals. We conclude that treatment with mitochondrial-targeted antioxidants or the use of partial-support MV are potential strategies to preserve diaphragm protein synthesis during prolonged MV.

  7. Gas exchange in avian embryos and hatchlings.

    PubMed

    Mortola, Jacopo P

    2009-08-01

    The avian egg has been proven to be an excellent model for the study of the physical principles and the physiological characteristics of embryonic gas exchange. In recent years, it has become a model for the studies of the prenatal development of pulmonary ventilation, its chemical control and its interaction with extra-pulmonary gas exchange. Differently from mammals, in birds the initiation of pulmonary ventilation and the transition from diffusive to convective gas exchange are gradual and slow-occurring events amenable to detailed investigations. The absence of the placenta and of the mother permits the study of the mechanisms of embryonic adaptation to prenatal perturbations in a way that would be impossible with mammalian preparations. First, this review summarises the general aspects of the natural history of the avian egg that are pertinent to embryonic metabolism, growth and gas exchange and the characteristics of the structures participating in gas exchange. Then, the review focuses on the embryonic development of pulmonary ventilation, its regulation in relation to the embryo's environment and metabolic state, the effects that acute or sustained changes in embryonic temperature or oxygenation can have on growth, metabolism and ventilatory control.

  8. Simultaneous application of two independent EIT devices for real-time multi-plane imaging.

    PubMed

    Schullcke, B; Krueger-Ziolek, S; Gong, B; Mueller-Lisse, U; Moeller, K

    2016-09-01

    Diagnosis and treatment of many lung diseases like cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD) could benefit from 3D ventilation information. Applying two EIT systems concurrently is a simple approach without specialized hardware that allows monitoring of regional changes of ventilation distribution inside the thorax at different planes with the high temporal resolution much valued in common single plane EIT. Effects of two simultaneously operated EIT devices on one subject were investigated to monitor rapid processes inside the thorax with a multi-plane approach. Results obtained by simulations with a virtual phantom and measurements with a phantom tank reveal that the distance of electrode planes has an important influence on the signal quality. Band-pass filters adapted according to the distance of the planes, can be used to reduce the crosstalk of the concurrent EIT systems. Besides simulations and phantom tank experiments measurements were also taken from a lung healthy volunteer to demonstrate the operation under realistic conditions. Reconstructed images indicate that it is possible to simultaneously visualize regional ventilation at different planes if settings of the EIT devices are chosen appropriately.

  9. Critical care capacity in Canada: results of a national cross-sectional study.

    PubMed

    Fowler, Robert A; Abdelmalik, Philip; Wood, Gordon; Foster, Denise; Gibney, Noel; Bandrauk, Natalie; Turgeon, Alexis F; Lamontagne, François; Kumar, Anand; Zarychanski, Ryan; Green, Rob; Bagshaw, Sean M; Stelfox, Henry T; Foster, Ryan; Dodek, Peter; Shaw, Susan; Granton, John; Lawless, Bernard; Hill, Andrea; Rose, Louise; Adhikari, Neill K; Scales, Damon C; Cook, Deborah J; Marshall, John C; Martin, Claudio; Jouvet, Philippe

    2015-04-01

    Intensive Care Units (ICUs) provide life-supporting treatment; however, resources are limited, so demand may exceed supply in the event of pandemics, environmental disasters, or in the context of an aging population. We hypothesized that comprehensive national data on ICU resources would permit a better understanding of regional differences in system capacity. After the 2009-2010 Influenza A (H1N1) pandemic, the Canadian Critical Care Trials Group surveyed all acute care hospitals in Canada to assess ICU capacity. Using a structured survey tool administered to physicians, respiratory therapists and nurses, we determined the number of ICU beds, ventilators, and the ability to provide specialized support for respiratory failure. We identified 286 hospitals with 3170 ICU beds and 4982 mechanical ventilators for critically ill patients. Twenty-two hospitals had an ICU that routinely cared for children; 15 had dedicated pediatric ICUs. Per 100,000 population, there was substantial variability in provincial capacity, with a mean of 0.9 hospitals with ICUs (provincial range 0.4-2.8), 10 ICU beds capable of providing mechanical ventilation (provincial range 6-19), and 15 invasive mechanical ventilators (provincial range 10-24). There was only moderate correlation between ventilation capacity and population size (coefficient of determination (R(2)) = 0.771). ICU resources vary widely across Canadian provinces, and during times of increased demand, may result in geographic differences in the ability to care for critically ill patients. These results highlight the need to evolve inter-jurisdictional resource sharing during periods of substantial increase in demand, and provide background data for the development of appropriate critical care capacity benchmarks.

  10. Wind-driven roof turbines: a novel way to improve ventilation for TB infection control in health facilities.

    PubMed

    Cox, Helen; Escombe, Rod; McDermid, Cheryl; Mtshemla, Yolanda; Spelman, Tim; Azevedo, Virginia; London, Leslie

    2012-01-01

    Tuberculosis transmission in healthcare facilities contributes significantly to the TB epidemic, particularly in high HIV settings. Although improving ventilation may reduce transmission, there is a lack of evidence to support low-cost practical interventions. We assessed the efficacy of wind-driven roof turbines to achieve recommended ventilation rates, compared to current recommended practices for natural ventilation (opening windows), in primary care clinic rooms in Khayelitsha, South Africa. Room ventilation was assessed (CO₂ gas tracer technique) in 4 rooms where roof turbines and air-intake grates were installed, across three scenarios: turbine, grate and window closed, only window open, and only turbine and grate open, with concurrent wind speed measurement. 332 measurements were conducted over 24 months. For all 4 rooms combined, median air changes per hour (ACH) increased with wind speed quartiles across all scenarios. Higher median ACH were recorded with open roof turbines and grates, compared to open windows across all wind speed quartiles. Ventilation with open turbine and grate exceeded WHO-recommended levels (60 Litres/second/patient) for 95% or more of measurements in 3 of the 4 rooms; 47% in the remaining room, where wind speeds were lower and a smaller diameter turbine was installed. High room ventilation rates, meeting recommended thresholds, may be achieved using wind-driven roof turbines and grates, even at low wind speeds. Roof turbines and air-intake grates are not easily closed by staff, allowing continued ventilation through colder periods. This simple, low-cost technology represents an important addition to our tools for TB infection control.

  11. The effect of helium-oxygen-assisted mechanical ventilation on chronic obstructive pulmonary disease exacerbation: A systemic review and meta-analysis.

    PubMed

    Wu, Xu; Shao, Chuan; Zhang, Liang; Tu, Jinjing; Xu, Hui; Lin, Zhihui; Xu, Shuguang; Yu, Biyun; Tang, Yaodong; Li, Shanqun

    2018-03-01

    Chronic obstructive pulmonary disease (COPD) is often accompanied by acute exacerbations. Patients of COPD exacerbation suffering from respiratory failure often need the support of mechanical ventilation. Helium-oxygen can be used to reduce airway resistance during mechanical ventilation. The aim of this study is to evaluate the effect of helium-oxygen-assisted mechanical ventilation on COPD exacerbation through a meta-analysis. A comprehensive literature search through databases of Pub Med (1966∼2016), Ovid MEDLINE (1965∼2016), Cochrane EBM (1991∼2016), EMBASE (1974∼2016) and Ovid MEDLINE was performed to identify associated studies. Randomized clinical trials met our inclusion criteria that focus on helium-oxygen-assisted mechanical ventilation on COPD exacerbation were included. The quality of the papers was evaluated after inclusion and information was extracted for meta-analysis. Six articles and 392 patients were included in total. Meta-analysis revealed that helium-oxygen-assisted mechanical ventilation reduced Borg dyspnea scale and increased arterial PH compared with air-oxygen. No statistically significant difference was observed between helium-oxygen and air-oxygen as regards to WOB, PaCO 2 , OI, tracheal intubation rates and mortality within hospital. Our study suggests helium-oxygen-assisted mechanical ventilation can help to reduce Borg dyspnea scale. In terms of the tiny change of PH, its clinical benefit is negligible. There is no conclusive evidence indicating the beneficial effect of helium-oxygen-assisted mechanical ventilation on clinical outcomes or prognosis of COPD exacerbation. © 2017 John Wiley & Sons Ltd.

  12. Older patients with late-stage COPD: Their illness experiences and involvement in decision-making regarding mechanical ventilation and noninvasive ventilation.

    PubMed

    Jerpseth, Heidi; Dahl, Vegard; Nortvedt, Per; Halvorsen, Kristin

    2018-02-01

    To explore the illness experiences of older patients with late-stage chronic obstructive pulmonary disease and to develop knowledge about how patients perceive their preferences to be taken into account in decision-making processes concerning mechanical ventilation and/or noninvasive ventilation. Decisions about whether older patients with late-stage chronic obstructive pulmonary disease will benefit from noninvasive ventilation treatment or whether the time has come for palliative treatment are complicated, both medically and ethically. Knowledge regarding patients' values and preferences concerning ventilation support is crucial yet often lacking. Qualitative design with a hermeneutic-phenomenological approach. The data consist of qualitative in-depth interviews with 12 patients from Norway diagnosed with late-stage chronic obstructive pulmonary disease. The data were analysed within the three interpretative contexts described by Kvale and Brinkmann. The participants described their lives as fragile and burdensome, frequently interrupted by unpredictable and frightening exacerbations. They lacked information about their diagnosis and prognosis and were often not included in decisions about noninvasive ventilation or mechanical ventilation. Findings indicate that these patients are highly vulnerable and have complex needs in terms of nursing care and medical treatment. Moreover, they need access to proactive advanced care planning and an opportunity to discuss their wishes for treatment and care. To provide competent care for these patients, healthcare personnel must be aware of how patients experience being seriously ill. Advanced care planning and shared decision-making should be initiated alongside the curative treatment. © 2017 John Wiley & Sons Ltd.

  13. Wind-Driven Roof Turbines: A Novel Way to Improve Ventilation for TB Infection Control in Health Facilities

    PubMed Central

    Cox, Helen; Escombe, Rod; McDermid, Cheryl; Mtshemla, Yolanda; Spelman, Tim; Azevedo, Virginia; London, Leslie

    2012-01-01

    Objective Tuberculosis transmission in healthcare facilities contributes significantly to the TB epidemic, particularly in high HIV settings. Although improving ventilation may reduce transmission, there is a lack of evidence to support low-cost practical interventions. We assessed the efficacy of wind-driven roof turbines to achieve recommended ventilation rates, compared to current recommended practices for natural ventilation (opening windows), in primary care clinic rooms in Khayelitsha, South Africa. Methods Room ventilation was assessed (CO2 gas tracer technique) in 4 rooms where roof turbines and air-intake grates were installed, across three scenarios: turbine, grate and window closed, only window open, and only turbine and grate open, with concurrent wind speed measurement. 332 measurements were conducted over 24 months. Findings For all 4 rooms combined, median air changes per hour (ACH) increased with wind speed quartiles across all scenarios. Higher median ACH were recorded with open roof turbines and grates, compared to open windows across all wind speed quartiles. Ventilation with open turbine and grate exceeded WHO-recommended levels (60 Litres/second/patient) for 95% or more of measurements in 3 of the 4 rooms; 47% in the remaining room, where wind speeds were lower and a smaller diameter turbine was installed. Conclusion High room ventilation rates, meeting recommended thresholds, may be achieved using wind-driven roof turbines and grates, even at low wind speeds. Roof turbines and air-intake grates are not easily closed by staff, allowing continued ventilation through colder periods. This simple, low-cost technology represents an important addition to our tools for TB infection control. PMID:22253742

  14. Rescue therapy by switching to total face mask after failure of face mask-delivered noninvasive ventilation in do-not-intubate patients in acute respiratory failure.

    PubMed

    Lemyze, Malcolm; Mallat, Jihad; Nigeon, Olivier; Barrailler, Stéphanie; Pepy, Florent; Gasan, Gaëlle; Vangrunderbeeck, Nicolas; Grosset, Philippe; Tronchon, Laurent; Thevenin, Didier

    2013-02-01

    To evaluate the impact of switching to total face mask in cases where face mask-delivered noninvasive mechanical ventilation has already failed in do-not-intubate patients in acute respiratory failure. Prospective observational study in an ICU and a respiratory stepdown unit over a 12-month study period. Switching to total face mask, which covers the entire face, when noninvasive mechanical ventilation using facial mask (oronasal mask) failed to reverse acute respiratory failure. Seventy-four patients with a do-not-intubate order and treated by noninvasive mechanical ventilation for acute respiratory failure. Failure of face mask-delivered noninvasive mechanical ventilation was associated with a three-fold increase in in-hospital mortality (36% vs. 10.5%; p = 0.009). Nevertheless, 23 out of 36 patients (64%) in whom face mask-delivered noninvasive mechanical ventilation failed to reverse acute respiratory failure and, therefore, switched to total face mask survived hospital discharge. Reasons for switching from facial mask to total face mask included refractory hypercapnic acute respiratory failure (n = 24, 66.7%), painful skin breakdown or facial mask intolerance (n = 11, 30%), and refractory hypoxemia (n = 1, 2.7%). In the 24 patients switched from facial mask to total face mask because of refractory hypercapnia, encephalopathy score (3 [3-4] vs. 2 [2-3]; p < 0.0001), PaCO2 (87 ± 25 mm Hg vs. 70 ± 17 mm Hg; p < 0.0001), and pH (7.24 ± 0.1 vs. 7.32 ± 0.09; p < 0.0001) significantly improved after 2 hrs of total face mask-delivered noninvasive ventilation. Patients switched early to total face mask (in the first 12 hrs) developed less pressure sores (n = 5, 24% vs. n = 13, 87%; p = 0.0002), despite greater length of noninvasive mechanical ventilation within the first 48 hrs (44 hrs vs. 34 hrs; p = 0.05) and less protective dressings (n = 2, 9.5% vs. n = 8, 53.3%; p = 0.007). The optimal cutoff value for face mask-delivered noninvasive mechanical ventilation duration in predicting facial pressure sores was 11 hrs (area under the receiver operating characteristic curve, 0.86 ± 0.04; 95% confidence interval 0.76-0.93; p < 0.0001; sensitivity, 84%; specificity, 71%). In patients in hypercapnic acute respiratory failure, for whom escalation to intubation is deemed inappropriate, switching to total face mask can be proposed as a last resort therapy when face mask-delivered noninvasive mechanical ventilation has already failed to reverse acute respiratory failure. This strategy is particularly adapted to provide prolonged periods of continuous noninvasive mechanical ventilation while preventing facial pressure sores.

  15. Are specialized endotracheal tubes and heat-and-moisture exchangers cost-effective in preventing ventilator associated pneumonia?

    PubMed

    Gentile, Michael A; Siobal, Mark S

    2010-02-01

    Ventilator-associated pneumonia (VAP) is a common and serious complication of mechanical ventilation via an artificial airway. As with all nosocomial infections, VAP increases costs, morbidity, and mortality in the intensive care unit (ICU). VAP prevention is a multifaceted priority of the intensive care team, and can include the use of specialized artificial airways and heat-and-moisture exchangers (HME). Substantial evidence supports the use of endotracheal tubes (ETTs) that allow subglottic suctioning; silver-coated and antiseptic-impregnated ETTs; ETTs with thin-walled polyurethane cuffs; and HMEs, but these devices also can have adverse effects. Controversy still exists regarding the evidence, cost-effectiveness, and disadvantages and risks of these devices.

  16. Transitions to Home Mechanical Ventilation: The Experiences of Canadian Ventilator-Assisted Adults and Their Family Caregivers.

    PubMed

    Dale, Craig M; King, Judy; Nonoyama, Mika; Carbone, Sarah; McKim, Douglas; Road, Jeremy; Rose, Louise

    2017-12-28

    Several studies have explored the experience of ventilator-assisted individual (VAIs) living at home with family caregivers. However, few explore the experiences of these individuals as they transition from a hospital setting to living at home with a view to identifying modifiable processes that could optimize transition. This descriptive, qualitative study sought to elucidate barriers to, and facilitators of, transition to home mechanical ventilation (HMV) from the perspective of Canadian VAIs and their family caregivers. Participant recruitment occurred through hospital and community respiratory clinicians based in the four Canadian provinces of Alberta, British Columbia, Ontario, and Saskatchewan. Semi-structured telephone or face-to-face interviews at home were undertaken with 33 individuals including 19 VAIs and 14 family caregivers between 3 to 24 months of transitioning to HMV. Interview data was analyzed using content analysis. Formal teaching of knowledge and skills relevant to HMV within the hospital setting prior to transition was perceived as having an immediate and enduring positive impact on transition. However, family-clinician conflict, information gaps, and persistent lack of trained personal support workers (PSWs) to provide care in the home contributed to maladjustment relating to transition. Participants strongly recommended improved transitional care in the form of respiratory health professional telephone support, home outreach, in addition to training of PSWs. Transition to HMV is a complex and demanding process. Extended HMV training and support may be helpful in mediating adjustment challenges thus reducing stress, caregiver burden and improving health related quality of life for VAIs and family caregivers.

  17. Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratton, J. Chris; Wray, Craig P.

    2013-04-01

    Beginning with the 2008 version of Title 24, new homes in California must comply with ANSI/ASHRAE Standard 62.2-2007 requirements for residential ventilation. Where installed, the limited data available indicate that mechanical ventilation systems do not always perform optimally or even as many codes and forecasts predict. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and acceptable IAQ. Work funded by the California Energy Commission about a decade ago at Berkeley Lab documented procedures for residential commissioning, but did not focus on ventilation systems.more » Since then, standards and approaches for commissioning ventilation systems have been an active area of work in Europe. This report describes our efforts to collect new literature on commissioning procedures and to identify information that can be used to support the future development of residential-ventilation-specific procedures and standards. We recommend that a standardized commissioning process and a commissioning guide for practitioners be developed, along with a combined energy and IAQ benefit assessment standard and tool, and a diagnostic guide for estimating continuous pollutant emission rates of concern in residences (including a database that lists emission test data for commercially-available labeled products).« less

  18. Outcome of Concurrent Occult Hemothorax and Pneumothorax in Trauma Patients Who Required Assisted Ventilation

    PubMed Central

    Mahmood, Ismail; Tawfeek, Zainab; El-Menyar, Ayman; Zarour, Ahmad; Afifi, Ibrahim; Kumar, Suresh; Latifi, Rifat; Al-Thani, Hassan

    2015-01-01

    Background. The management and outcomes of occult hemopneumothorax in blunt trauma patients who required mechanical ventilation are not well studied. We aimed to study patients with occult hemopneumothorax on mechanical ventilation who could be carefully managed without tube thoracostomy. Methods. Chest trauma patients with occult hemopneumothorax who were on mechanical ventilation were prospectively evaluated. The presence of hemopneumothorax was confirmed by CT scanning. Hospital length of stay, complications, and outcome were recorded. Results. A total of 56 chest trauma patients with occult hemopneumothorax who were on ventilatory support were included with a mean age of 36 ± 13 years. Hemopneumothorax was managed conservatively in 72% cases and 28% underwent tube thoracostomy as indicated. 29% of patients developed pneumonia, 16% had Acute Respiratory Distress Syndrome (ARDS), and 7% died. Thickness of hemothorax, duration of mechanical ventilation, and development of ARDS were significantly associated with tube thoracostomy in comparison to no-chest tube group. Conclusions. The majority of occult hemopneumothorax can be carefully managed without tube thoracostomy in patients who required positive pressure ventilation. Tube thoracotomy could be restricted to those who had evidence of increase in the size of the hemothorax or pneumothorax on follow-up chest radiographs or developed respiratory compromise. PMID:25785199

  19. Differences in mortality based on worsening ratio of partial pressure of oxygen to fraction of inspired oxygen corrected for immune system status and respiratory support.

    PubMed

    Miles, Lachlan F; Bailey, Michael; Young, Paul; Pilcher, David V

    2012-03-01

    To define the relationship between worsening oxygenation status (worst PaO(2)/FiO(2) ratio in the first 24 hours after intensive care unit admission) and mortality in immunosuppressed and immunocompetent ICU patients in the presence and absence of mechanical ventilation. Retrospective cohort study. Data were extracted from the Australian and New Zealand Intensive Care Society Adult Patient Database. Adult patients admitted to 129 ICUs in Australasia, 2000-2010. In hospital and ICU mortality; relationship between mortality and declining PaO(2)/FiO(2) ratio by ventilation status and immune status. 457 750 patient records were analysed. Worsening oxygenation status was associated with increasing mortality in all groups. Higher mortality was seen in immunosuppressed patients than immunocompetent patients. After multivariate analysis, in mechanically ventilated patients, declining PaO(2)/FiO(2) ratio in the first 24 hours of ICU admission was associated with a more rapidly rising mortality rate in immunosuppressed patients than non-immunosuppressed patients. Immunosuppression did not affect the relationship between oxygenation status and mortality in non-ventilated patients. Immunosuppression increases the risk of mortality with progressively worsening oxygenation status, but only in the presence of mechanical ventilation. Further research into the impact of mechanical ventilation in immunosuppressed patients is required.

  20. Short-term outcomes of cadaveric lung transplantation in ventilator-dependent patients

    PubMed Central

    2009-01-01

    Introduction Survival after cadaveric lung transplantation (LTx) in respiratory failure recipients who were already dependent on ventilation support prior to transplantation is poor, with a relatively high rate of surgical mortality and morbidity. In this study, we sought to describe the short-term outcomes of bilateral sequential LTx (BSLTx) under extracorporeal membrane oxygenation (ECMO) support in a consecutive series of preoperative respiratory failure patients. Methods Between July 2006 and July 2008, we performed BSLTx under venoarterious (VA) ECMO support in 10 respiratory failure patients with various lung diseases. Prior to transplantation, 6 patients depended on invasive mechanical ventilation support and the others (40%) needed noninvasive positive pressure ventilation to maintain adequate gas exchange. Their mean age was 40.9 years and the mean observation period was 16.4 months. Results Except for 1 ECMO circuit that had been set up in the intensive care unit for pulmonary crisis 5 days prior to transplantation, most ECMO (90%) circuits were set up in the operating theater prior to pneumonectomy of native lung during transplantation. Patients were successfully weaned off ECMO circuits immediately after transplantation in 8 cases, and within 1 day (1/10 patients) and after 9 days (1/10 patients) due to severe reperfusion lung edema following transplantation. The mean duration of ECMO support in those successfully weaned off in the operating theater (n = 8) was 7.8 hours. The average duration of intensive care unit stay (n = 10) was 43.1 days (range, 35 to 162 days) and hospital stay (n = 10) was 70 days (range, 20 to 86 days). Although 4 patients (40%) had different degrees of complicated postoperative courses unrelated to ECMO, all patients were discharged home postoperatively. The mean forced vital capacity and the forced expiratory volume in 1 second both increased significantly postoperatively. The cumulative survival rates at 3 months and at 12 months post-transplantation were 100% and 90%. Conclusions Although BSLTx in this critical population has varied surgical complications and prolonged length of postoperative ICU and hospital stays, all the patients observed in this study could tolerate the transplant procedures under VA ECMO support with promising pulmonary function and satisfactory short-term outcome. PMID:19660110

  1. A simple bedside approach to therapeutic goals achievement during the management of deceased organ donors--An adapted version of the "VIP" approach.

    PubMed

    Westphal, Glauco Adrieno

    2016-02-01

    The disproportion between the supply and demand of transplant organs could be alleviated by improving the quality of clinical management of deceased potential donors. As a large number of donor losses by cardiac arrest occur due to hemodynamic instability, without instituting all essential maintenance measures, it is likely that the application of simplified potential donor maintenance protocols will help to decrease potential donor losses and increase the supply of organs for transplantation. The Ventilation, Infusion and Pumping (VIP) strategy is a mnemonic method that brings together key aspects of the restoration of oxygen delivery to tissues during hemodynamic instability: adequate mechanical Ventilation, volume Infusion and evaluation of heart Pump effectiveness. The inclusion of the additional initials, "P" and "S," refers to Pharmacological treatment and Specificities involved in the etiology of shock. The use of simplified care standards can assist in adhering to essential potential donor management measures. Therefore, using a simplified method as the adapted VIP approach can contribute to improving management standards of potential organ donors and increasing the supply of organs for transplantation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. OBESITY: CHALLENGES TO VENTILATORY CONTROL DURING EXERCISE A BRIEF REVIEW

    PubMed Central

    Babb, Tony G.

    2013-01-01

    Obesity is a national health issue in the US. Among the many physiological changes induced by obesity, it also presents a unique challenge to ventilatory control during exercise due to increased metabolic demand of moving larger limbs, increased work of breathing due to extra weight on the chest wall, and changes in breathing mechanics. These challenges to ventilatory control in obesity can be inconspicuous or overt among obese adults but for the most part adaptation of ventilatory control during exercise in obesity appears remarkably unnoticed in the majority of obese people. In this brief review, the changes to ventilatory control required for maintaining normal ventilation during exercise will be examined, especially the interaction between respiratory neural drive and ventilation. Also, gaps in our current knowledge will be discussed. PMID:23707540

  3. Evidence to Support Tooth Brushing in Critically Ill Patients

    PubMed Central

    Ames, Nancy J.

    2012-01-01

    Tooth brushing in critically ill patients has been advocated by many as a standard of care despite the limited evidence to support this practice. Attention has been focused on oral care as the evidence accumulates to support an association between the bacteria in the oral microbiome and those respiratory pathogens that cause pneumonia. It is plausible to assume that respiratory pathogens originating in the oral cavity are aspirated into the lungs, causing infection. A recent study of the effects of a powered toothbrush on the incidence of ventilator-associated pneumonia was stopped early because of a lack of effect in the treatment group. This review summarizes the evidence that supports the effectiveness of tooth brushing in critically ill adults and children receiving mechanical ventilation. Possible reasons for the lack of benefit of tooth brushing demonstrated in clinical trials are discussed. Recommendations for future trials in critically ill patients are suggested. With increased emphasis being placed on oral care, the evidence that supports this intervention must be evaluated carefully. PMID:21532045

  4. Evidence to support tooth brushing in critically ill patients.

    PubMed

    Ames, Nancy J

    2011-05-01

    Tooth brushing in critically ill patients has been advocated by many as a standard of care despite the limited evidence to support this practice. Attention has been focused on oral care as the evidence accumulates to support an association between the bacteria in the oral microbiome and those respiratory pathogens that cause pneumonia. It is plausible to assume that respiratory pathogens originating in the oral cavity are aspirated into the lungs, causing infection. A recent study of the effects of a powered toothbrush on the incidence of ventilator-associated pneumonia was stopped early because of a lack of effect in the treatment group. This review summarizes the evidence that supports the effectiveness of tooth brushing in critically ill adults and children receiving mechanical ventilation. Possible reasons for the lack of benefit of tooth brushing demonstrated in clinical trials are discussed. Recommendations for future trials in critically ill patients are suggested. With increased emphasis being placed on oral care, the evidence that supports this intervention must be evaluated carefully.

  5. Effects of Modes, Obesity, and Body Position on Non-invasive Positive Pressure Ventilation Success in the Intensive Care Unit: A Randomized Controlled Study.

    PubMed

    Türk, Murat; Aydoğdu, Müge; Gürsel, Gül

    2018-01-01

    Different outcomes and success rates of non-invasive positive pressure ventilation (NPPV) in patients with acute hypercapnic respiratory failure (AHRF) still pose a significant problem in intensive care units. Previous studies investigating different modes, body positioning, and obesity-associated hypoventilation in patients with chronic respiratory failure showed that these factors may affect ventilator mechanics to achieve a better minute ventilation. This study tried to compare pressure support (BiPAP-S) and average volume targeted pressure support (AVAPS-S) modes in patients with acute or acute-on-chronic hypercapnic respiratory failure. In addition, short-term effects of body position and obesity within both modes were analyzed. We conducted a randomized controlled study in a 7-bed intensive care unit. The course of blood gas analysis and differences in ventilation variables were compared between BiPAP-S (n=33) and AVAPS-S (n=29), and between semi-recumbent and lateral positions in both modes. No difference was found in the length of hospital stay and the course of PaCO2, pH, and HCO3 levels between the modes. There was a mean reduction of 5.7±4.1 mmHg in the PaCO2 levels in the AVAPS-S mode, and 2.7±2.3 mmHg in the BiPAP-S mode per session (p<0.05). Obesity didn't have any effect on the course of PaCO2 in both the modes. Body positioning had no notable effect in both modes. Although the decrease in the PaCO2 levels in the AVAPS-S mode per session was remarkably high, the course was similar in both modes. Furthermore, obesity and body positioning had no prominent effect on the PaCO2 response and ventilator mechanics. Post hoc power analysis showed that the sample size was not adequate to detect a significant difference between the modes.

  6. Core Outcomes in Ventilation Trials (COVenT): protocol for a core outcome set using a Delphi survey with a nested randomised trial and observational cohort study.

    PubMed

    Blackwood, Bronagh; Ringrow, Suzanne; Clarke, Mike; Marshall, John; Rose, Louise; Williamson, Paula; McAuley, Danny

    2015-08-20

    Among clinical trials of interventions that aim to modify time spent on mechanical ventilation for critically ill patients there is considerable inconsistency in chosen outcomes and how they are measured. The Core Outcomes in Ventilation Trials (COVenT) study aims to develop a set of core outcomes for use in future ventilation trials in mechanically ventilated adults and children. We will use a mixed methods approach that incorporates a randomised trial nested within a Delphi study and a consensus meeting. Additionally, we will conduct an observational cohort study to evaluate uptake of the core outcome set in published studies at 5 and 10 years following core outcome set publication. The three-round online Delphi study will use a list of outcomes that have been reported previously in a review of ventilation trials. The Delphi panel will include a range of stakeholder groups including patient support groups. The panel will be randomised to one of three feedback methods to assess the impact of the feedback mechanism on subsequent ranking of outcomes. A final consensus meeting will be held with stakeholder representatives to review outcomes. The COVenT study aims to develop a core outcome set for ventilation trials in critical care, explore the best Delphi feedback mechanism for achieving consensus and determine if participation increases use of the core outcome set in the long term.

  7. Quantification of Age-Related Lung Tissue Mechanics under Mechanical Ventilation.

    PubMed

    Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M

    2017-09-29

    Elderly patients with obstructive lung diseases often receive mechanical ventilation to support their breathing and restore respiratory function. However, mechanical ventilation is known to increase the severity of ventilator-induced lung injury (VILI) in the elderly. Therefore, it is important to investigate the effects of aging to better understand the lung tissue mechanics to estimate the severity of ventilator-induced lung injuries. Two age-related geometric models involving human bronchioles from generation G10 to G23 and alveolar sacs were developed. The first is for a 50-year-old (normal) and second is for an 80-year old (aged) model. Lung tissue mechanics of normal and aged models were investigated under mechanical ventilation through computational simulations. Results obtained indicated that lung tissue strains during inhalation (t = 0.2 s) decreased by about 40% in the alveolar sac (G23) and 27% in the bronchiole (G20), respectively, for the 80-year-old as compared to the 50-year-old. The respiratory mechanics parameters (work of breathing per unit volume and maximum tissue strain) over G20 and G23 for the 80-year-old decreased by about 64% (three-fold) and 80% (four-fold), respectively, during the mechanical ventilation breathing cycle. However, there was a significant increase (by about threefold) in lung compliance for the 80-year-old in comparison to the 50-year-old. These findings from the computational simulations demonstrated that lung mechanical characteristics are significantly compromised in aging tissues, and these effects were quantified in this study.

  8. Methodological aspects of crossover and maximum fat-oxidation rate point determination.

    PubMed

    Michallet, A-S; Tonini, J; Regnier, J; Guinot, M; Favre-Juvin, A; Bricout, V; Halimi, S; Wuyam, B; Flore, P

    2008-11-01

    Indirect calorimetry during exercise provides two metabolic indices of substrate oxidation balance: the crossover point (COP) and maximum fat oxidation rate (LIPOXmax). We aimed to study the effects of the analytical device, protocol type and ventilatory response on variability of these indices, and the relationship with lactate and ventilation thresholds. After maximum exercise testing, 14 relatively fit subjects (aged 32+/-10 years; nine men, five women) performed three submaximum graded tests: one was based on a theoretical maximum power (tMAP) reference; and two were based on the true maximum aerobic power (MAP). Gas exchange was measured concomitantly using a Douglas bag (D) and an ergospirometer (E). All metabolic indices were interpretable only when obtained by the D reference method and MAP protocol. Bland and Altman analysis showed overestimation of both indices with E versus D. Despite no mean differences between COP and LIPOXmax whether tMAP or MAP was used, the individual data clearly showed disagreement between the two protocols. Ventilation explained 10-16% of the metabolic index variations. COP was correlated with ventilation (r=0.96, P<0.01) and the rate of increase in blood lactate (r=0.79, P<0.01), and LIPOXmax correlated with the ventilation threshold (r=0.95, P<0.01). This study shows that, in fit healthy subjects, the analytical device, reference used to build the protocol and ventilation responses affect metabolic indices. In this population, and particularly to obtain interpretable metabolic indices, we recommend a protocol based on the true MAP or one adapted to include the transition from fat to carbohydrate. The correlation between metabolic indices and lactate/ventilation thresholds suggests that shorter, classical maximum progressive exercise testing may be an alternative means of estimating these indices in relatively fit subjects. However, this needs to be confirmed in patients who have metabolic defects.

  9. Cerebral hypoxia

    MedlinePlus

    ... support is most important. Treatment involves: Breathing assistance (mechanical ventilation) and oxygen Controlling the heart rate and rhythm Fluids, blood products, or medicines to raise blood pressure ...

  10. Prophylactic Use of High-Frequency Percussive Ventilation in Patients with Inhalation Injury,

    DTIC Science & Technology

    1991-06-01

    stabilizing such col- in burn wound management, infection control, lapsed diseased lung segments. 3- 2 In addition some in- and metabolic support increased the...confirmed in each patient by bronchoscopy and/or󈧥 Xe- 8. PCO2 < 50 mmHg but progressively increasing non ventilation-perfusion lung scan. The presence of...death for all patients admitted to the In- Inhalation injury documented by bronchoscopy or Xenon lung scan stitute of Surgical Research between January

  11. Glutamine supplemented parenteral nutrition to prevent ventilator-associated pneumonia in the intensive care unit.

    PubMed

    Aydoğmuş, Meltem Türkay; Tomak, Yakup; Tekin, Murat; Katı, Ismail; Hüseyinoğlu, Urfettin

    2012-12-01

    Ventilator-associated pneumonia (VAP) is a form of nosocomial pneumonia that increases patient morbidity and mortality, length of hospital stay, and healthcare costs. Glutamine preserves the intestinal mucosal structure, increases immune function, and reduces harmful changes in gut permeability in patients receiving total parenteral nutrition (TPN). We hypothesized that TPN supplemented by glutamine might prevent the development of VAP in patients on mechanical ventilator support in the intensive care unit (ICU). With the approval of the ethics committee and informed consent from relatives, 60 patients who were followed in the ICU with mechanical ventilator support were included in our study. Patients were divided into three groups. The first group received enteral nutrition (n=20), and the second was prescribed TPN (n=20) while the third group was given glutamine-supplemented TPN (n=20). C-reactive protein (CRP), sedimentation rate, body temperature, development of purulent secretions, increase in the amount of secretions, changes in the characteristics of secretions and an increase in requirement of deep tracheal aspiration were monitored for seven days by daily examination and radiographs. No statistically significant difference was found among groups in terms of development of VAP (p=0.622). Although VAP developed at a lower rate in the glutamine-supplemented TPN group, no statistically significant difference was found among any of the groups. Glutamine-supplemented TPN may have no superiority over unsupplemented enteral and TPN in preventing VAP.

  12. Reducing heat stress under thermal insulation in protective clothing: microclimate cooling by a 'physiological' method.

    PubMed

    Glitz, K J; Seibel, U; Rohde, U; Gorges, W; Witzki, A; Piekarski, C; Leyk, D

    2015-01-01

    Heat stress caused by protective clothing limits work time. Performance improvement of a microclimate cooling method that enhances evaporative and to a minor extent convective heat loss was tested. Ten male volunteers in protective overalls completed a work-rest schedule (130 min; treadmill: 3 × 30 min, 3 km/h, 5% incline) with or without an additional air-diffusing garment (climatic chamber: 25°C, 50% RH, 0.2 m/s wind). Heat loss was supported by ventilating the garment with dry air (600 l/min, ≪5% RH, 25°C). Ventilation leads (M ± SD, n = 10, ventilated vs. non-ventilated) to substantial strain reduction (max. HR: 123 ± 12 b/min vs. 149 ± 24 b/min) by thermal relief (max. core temperature: 37.8 ± 0.3°C vs. 38.4 ± 0.4°C, max. mean skin temperature: 34.7 ± 0.8°C vs. 37.1 ± 0.3°C) and offers essential extensions in performance and work time under thermal insulation. Heat stress caused by protective clothing limits work time. Performance can be improved by a microclimate cooling method that supports evaporative and to a minor extent convective heat loss. Sweat evaporation is the most effective thermoregulatory mechanism for heat dissipation and can be enhanced by insufflating dry air into clothing.

  13. Home mechanical ventilation in Canada: a national survey.

    PubMed

    Rose, Louise; McKim, Douglas A; Katz, Sherri L; Leasa, David; Nonoyama, Mika; Pedersen, Cheryl; Goldstein, Roger S; Road, Jeremy D

    2015-05-01

    No comprehensive Canadian national data describe the prevalence of and service provision for ventilator-assisted individuals living at home, data critical to health-care system planning for appropriate resourcing. Our objective was to generate national data profiling service providers, users, types of services, criteria for initiation and monitoring, ventilator servicing arrangements, education, and barriers to home transition. Eligible providers delivering services to ventilator-assisted individuals (adult and pediatric) living at home were identified by our national provider inventory and referrals from other providers. The survey was administered via a web link from August 2012 to April 2013. The survey response rate was 152/171 (89%). We identified 4,334 ventilator-assisted individuals: an estimated prevalence of 12.9/100,000 population, with 73% receiving noninvasive ventilation (NIV) and 18% receiving intermittent mandatory ventilation (9% not reported). Services were delivered by 39 institutional providers and 113 community providers. We identified variation in initiation criteria for NIV, with polysomnography demonstrating nocturnal hypoventilation (57%), daytime hypercapnia (38%), and nocturnal hypercapnia (32%) as the most common criteria. Various models of ventilator servicing were reported. Most providers (64%) stated that caregiver competency was a prerequisite for home discharge; however, repeated competency assessment and retraining were offered by only 45%. Important barriers to home transition were: insufficient funding for paid caregivers, equipment, and supplies; a shortage of paid caregivers; and negotiating public funding arrangements. Ventilatory support in the community appears well-established, with most individuals managed with NIV. Although caregiver competency is a prerequisite to discharge, ongoing assessment and retraining were infrequent. Funding and caregiver availability were important barriers to home transition. Copyright © 2015 by Daedalus Enterprises.

  14. Checklist Model to Improve Work Practices in Small-Scale Demolition Operations with Silica Dust Exposures

    PubMed Central

    Muianga, Custodio; Rice, Carol; Lentz, Thomas; Lockey, James; Niemeier, Richard; Succop, Paul

    2012-01-01

    A systematic approach was developed to review, revise and adapt existing exposure control guidance used in developed countries for use in developing countries. One-page employee and multiple-page supervisor guidance sheets were adapted from existing documents using a logic framework and workers were trained to use the information to improve work practices. Interactive, hands-on training was delivered to 26 workers at five small-scale demolition projects in Maputo City, Mozambique, and evaluated. A pre-and-post walkthrough survey used by trained observers documented work practice changes. Worker feedback indicated that the training was effective and useful. Workers acquired knowledge (84% increase, p < 0.01) and applied the work practice guidance. The difference of proportions between use of work practice components before and after the intervention was statistically significant (p < 0.05). Changes in work practices following training included preplanning, use of wet methods and natural ventilation and end-of-task review. Respirable dust measurements indicated a reduction in exposure following training. Consistency in observer ratings and observations support the reliability and validity of the instruments. This approach demonstrated the short-term benefit of training in changing work practices; follow-up is required to determine the long-term impact on changes in work practices, and to evaluate the need for refresher training. PMID:22470296

  15. Pectus excavatum in children: pulmonary scintigraphy before and after corrective surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blickman, J.G.; Rosen, P.R.; Welch, K.J.

    1985-09-01

    Regional distribution of pulmonary function was evaluated preoperatively and postoperatively with xenon-133 perfusion and ventilation scintigraphy in 17 patients with pectus excavatum. Ventilatory preoperative studies were abnormal in 12 of 17 patients, resolving in seven of 12 postoperatively. Perfusion scans were abnormal in ten of 17 patients preoperatively; six of ten showed improvement postoperatively. Ventilation-perfusion ratios were abnormal in ten of 17 patients, normalizing postoperatively in six of ten. Symmetry of ventilation-perfusion ratio images improved in six out of nine in the latter group. The distribution of regional lung function in pectus excavatum can be evaluated preoperatively to support indicationsmore » for surgery. Postoperative improvement can be documented by physiological changes produced by the surgical correction.« less

  16. Automatic Tube Compensation versus Pressure Support Ventilation and Extubation Outcome in Children: A Randomized Controlled Study

    PubMed Central

    El-beleidy, Ahmed Saad El-din; Khattab, Asser Abd EL-Hamied; El-Sherbini, Seham Awad; Al-gebaly, Hebatalla Fadel

    2013-01-01

    Background. Automatic tube compensation (ATC) has been developed to overcome the imposed work of breathing due to artificial airways during spontaneous breathing trials (SBTs). Objectives. This study aimed to assess extubation outcome after an SBT (spontaneous breathing trial) with ATC compared with pressure support ventilation (PSV) and to determine the risk factors for extubation failure. Methods. Patients ready for extubation were randomly assigned to two-hour spontaneous breathing trial with either ATC or pressure support ventilation. Results. In the ATC group (n = 17), 11 (65%) patients passed the SBT with subsequent extubation failure (9%). While in PSV group (n = 19), 10 (53%) patients passed the SBT with subsequent extubation failure (10%). This represented a positive predictive value for ATC of 91% and PSV of 90% (P = 0.52). Five (83%) of the patients who failed the SBT in ATC group were reintubated. This represented a higher negative predictive value for ATC of 83% than for PSV which was 56%. None of the assessed risk factors were independently associated with extubation failure including failed trial. Conclusion. ATC was equivalent to PSV in predicting patients with successful extubation. A trial failure in ATC group is associated with but does not definitely predict extubation failure. PMID:23533800

  17. Rationale and design of the SERVE-HF study: treatment of sleep-disordered breathing with predominant central sleep apnoea with adaptive servo-ventilation in patients with chronic heart failure.

    PubMed

    Cowie, Martin R; Woehrle, Holger; Wegscheider, Karl; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita; Somers, Virend K; Zannad, Faiez; Teschler, Helmut

    2013-08-01

    Central sleep apnoea/Cheyne-Stokes respiration (CSA/CSR) is a risk factor for increased mortality and morbidity in heart failure (HF). Adaptive servo-ventilation (ASV) is a non-invasive ventilation modality for the treatment of CSA/CSR in patients with HF. SERVE-HF is a multinational, multicentre, randomized, parallel trial designed to assess the effects of addition of ASV (PaceWave, AutoSet CS; ResMed) to optimal medical management compared with medical management alone (control group) in patients with symptomatic chronic HF, LVEF ≤45%, and predominant CSA. The trial is based on an event-driven group sequential design, and the final analysis will be performed when 651 events have been observed or the study is terminated at one of the two interim analyses. The aim is to randomize ∼1200 patients to be followed for a minimum of 2 years. Patients are to stay in the trial up to study termination. The first patient was randomized in February 2008 and the study is expected to end mid 2015. The primary combined endpoint is the time to first event of all-cause death, unplanned hospitalization (or unplanned prolongation of a planned hospitalization) for worsening (chronic) HF, cardiac transplantation, resuscitation of sudden cardiac arrest, or appropriate life-saving shock for ventricular fibrillation or fast ventricular tachycardia in implantable cardioverter defibrillator patients. The SERVE-HF study is a randomized study that will provide important data on the effect of treatment with ASV on morbidity and mortality, as well as the cost-effectiveness of this therapy, in patients with chronic HF and predominantly CSA/CSR. ISRCTN19572887.

  18. Inhibitory input from slowly adapting lung stretch receptors to retrotrapezoid nucleus chemoreceptors

    PubMed Central

    Moreira, Thiago S; Takakura, Ana C; Colombari, Eduardo; West, Gavin H; Guyenet, Patrice G

    2007-01-01

    The retrotrapezoid nucleus (RTN) contains CO2-activated interneurons with properties consistent with central respiratory chemoreceptors. These neurons are glutamatergic and express the transcription factor Phox2b. Here we tested whether RTN neurons receive an input from slowly adapting pulmonary stretch receptors (SARs) in halothane-anaesthetized ventilated rats. In vagotomized rats, RTN neurons were inhibited to a variable extent by stimulating myelinated vagal afferents using the lowest intensity needed to inhibit the phrenic nerve discharge (PND). In rats with intact vagus nerves, RTN neurons were inhibited, also to a variable extent, by increasing positive end-expiratory pressure (PEEP; 2–6 cmH2O). The cells most sensitive to PEEP were inhibited during each lung inflation at rest and were instantly activated by stopping ventilation. Muscimol (GABA-A agonist) injection in or next to the solitary tract at area postrema level desynchronized PND from ventilation, eliminated the lung inflation-synchronous inhibition of RTN neurons and their steady inhibition by PEEP but did not change their CO2 sensitivity. Muscimol injection into the rostral ventral respiratory group eliminated PND but did not change RTN neuron response to either lung inflation, PEEP increases, vagal stimulation or CO2. Generalized glutamate receptor blockade with intracerebroventricular (i.c.v.) kynurenate eliminated PND and the response of RTN neurons to lung inflation but did not change their CO2 sensitivity. PEEP-sensitive RTN neurons expressed Phox2b. In conclusion, RTN chemoreceptors receive an inhibitory input from myelinated lung stretch receptors, presumably SARs. The lung input to RTN may be di-synaptic with inhibitory pump cells as sole interneurons. PMID:17255166

  19. Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure.

    PubMed

    Colombo, Davide; Cammarota, Gianmaria; Bergamaschi, Valentina; De Lucia, Marta; Corte, Francesco Della; Navalesi, Paolo

    2008-11-01

    Neurally adjusted ventilatory assist (NAVA) is a new mode wherein the assistance is provided in proportion to diaphragm electrical activity (EAdi). We assessed the physiologic response to varying levels of NAVA and pressure support ventilation (PSV). ICU of a University Hospital. Fourteen intubated and mechanically ventilated patients. DESIGN AND PROTOCOL: Cross-over, prospective, randomized controlled trial. PSV was set to obtain a VT/kg of 6-8 ml/kg with an active inspiration. NAVA was matched with a dedicated software. The assistance was decreased and increased by 50% with both modes. The six assist levels were randomly applied. Arterial blood gases (ABGs), tidal volume (VT/kg), peak EAdi, airway pressure (Paw), neural and flow-based timing. Asynchrony was calculated using the asynchrony index (AI). There was no difference in ABGs regardless of mode and assist level. The differences in breathing pattern, ventilator assistance, and respiratory drive and timing between PSV and NAVA were overall small at the two lower assist levels. At the highest assist level, however, we found greater VT/kg (9.1 +/- 2.2 vs. 7.1 +/- 2 ml/kg, P < 0.001), and lower breathing frequency (12 +/- 6 vs. 18 +/- 8.2, P < 0.001) and peak EAdi (8.6 +/- 10.5 vs. 12.3 +/- 9.0, P < 0.002) in PSV than in NAVA; we found mismatch between neural and flow-based timing in PSV, but not in NAVA. AI exceeded 10% in five (36%) and no (0%) patients with PSV and NAVA, respectively (P < 0.05). Compared to PSV, NAVA averted the risk of over-assistance, avoided patient-ventilator asynchrony, and improved patient-ventilator interaction.

  20. Place of death in patients with amyotrophic lateral sclerosis.

    PubMed

    Escarrabill, J; Vianello, A; Farrero, E; Ambrosino, N; Martínez Llorens, J; Vitacca, M

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a degenerative neurological disorder that affects motor neurons. Involvement of respiratory muscles causes the failure of the ventilator pump with more or less significant bulbar troubles. ALS course is highly variable but, in most cases, this disease entails a very significant burden for patients and caregivers, especially in the end-of-life period. In order to analyze the characteristics of ALS patients who die at home (DH) and in hospital (DHosp) and to study the variability of clinical practice, a retrospective medical records analysis was performed (n=77 from five hospitals). time elapsed since the onset of symptoms and the beginning of ventilation, characteristics of ventilation (device, mask and hours/day), and support devices and procedures. In all, 14% of patients were ventilated by tracheotomy. From the analysis, 57% of patients were of DH. Mean time since the onset of symptoms was 35.93±25.89 months, significantly shorter in patients who DHosp (29.28±19.69 months) than DH (41.12±29.04) (p=0.044). The percentage of patients with facial ventilation is higher in DHosp (11.4% vs 39.4%, p<0.005). DH or not is related to a set of elements in which health resources, physician attitudes and support resources in the community play a role in the decision-making process. There is great variability between countries and between hospitals in the same country. Given the variability of circumstances in each territory, the place of death in ALS might not be the most important element; more important are the conditions under which the process unfolds. Copyright © 2013 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.

  1. Role of non-invasive ventilation (NIV) in the perioperative period.

    PubMed

    Jaber, Samir; Michelet, Pierre; Chanques, Gerald

    2010-06-01

    Anaesthesia, postoperative pain and surgery (more so if the site of the surgery approaches the diaphragm) will induce respiratory modifications: hypoxaemia, pulmonary volume decrease and atelectasis associated to a restrictive syndrome and a diaphragm dysfunction. These modifications of the respiratory function occur early after surgery and may induce acute respiratory failure (ARF). Maintenance of adequate oxygenation in the postoperative period is of major importance, especially when pulmonary complications such as ARF occur. Non-invasive ventilation (NIV) refers to techniques allowing respiratory support without the need of endotracheal intubation. Two types of NIV are commonly used: noninvasive continuous positive airway pressure (CPAP) and noninvasive positive pressure ventilation (NPPV) which delivers two levels of positive pressure (pressure support ventilation + positive end-expiratory pressure). NIV may be an important tool to prevent (prophylactic treatment) or to treat ARF avoiding intubation (curative treatment). The aims of NIV are: (1) to partially compensate for the affected respiratory function by reducing the work of breathing, (2) to improve alveolar recruitment with better gas exchange (oxygenation and ventilation) and (3) to reduce left ventricular after load increasing cardiac output and improving haemodynamics. Evidence suggests that NIV, as a prophylactic or curative treatment, has been proven to be an effective strategy to reduce intubation rates, nosocomial infections, intensive care unit and hospital lengths of stay, morbidity and mortality in postoperative patients. However, before initiating NIV, any surgical complication must be treated. The aims of this article are (1) to describe the rationale behind the application of NIV, (2) to report indications (including induction of anaesthesia) and contraindications and (3) to offer some algorithms for safe usage of NIV in high-risk surgery patients.

  2. Performance of cardiopulmonary resuscitation during prolonged basic life support in military medical university students: A manikin study.

    PubMed

    Wang, Juan; Zhuo, Chao-Nan; Zhang, Lei; Gong, Yu-Shun; Yin, Chang-Lin; Li, Yong-Qin

    2015-01-01

    The quality of chest compressions can be significantly improved after training of rescuers according to the latest national guidelines of China. However, rescuers may be unable to maintain adequate compression or ventilation throughout a response of average emergency medical services because of increased rescuer fatigue. In the present study, we evaluated the performance of cardiopulmonary resuscitation (CPR) in training of military medical university students during a prolonged basic life support (BLS). A 3-hour BLS training was given to 120 military medical university students. Six months after the training, 115 students performed single rescuer BLS on a manikin for 8 minutes. The qualities of chest compressions as well as ventilations were assessed. The average compression depth and rate were 53.7±5.3 mm and 135.1±15.7 compressions per minute respectively. The proportion of chest compressions with appropriate depth was 71.7%±28.4%. The average ventilation volume was 847.2±260.4 mL and the proportion of students with adequate ventilation was 63.5%. Compared with male students, significantly lower compression depth (46.7±4.8 vs. 54.6±4.8 mm, P<0.001) and adequate compression rate (35.5%±26.5% vs. 76.1%±25.1%, P<0.001) were observed in female students. CPR was found to be related to gender, body weight, and body mass index of students in this study. The quality of chest compressions was well maintained in male students during 8 minutes of conventional CPR but declined rapidly in female students after 2 minutes according to the latest national guidelines. Physical fitness and rescuer fatigue did not affect the quality of ventilation.

  3. Performance of cardiopulmonary resuscitation during prolonged basic life support in military medical university students: A manikin study

    PubMed Central

    Wang, Juan; Zhuo, Chao-nan; Zhang, Lei; Gong, Yu-shun; Yin, Chang-lin; Li, Yong-qin

    2015-01-01

    BACKGROUND: The quality of chest compressions can be significantly improved after training of rescuers according to the latest national guidelines of China. However, rescuers may be unable to maintain adequate compression or ventilation throughout a response of average emergency medical services because of increased rescuer fatigue. In the present study, we evaluated the performance of cardiopulmonary resuscitation (CPR) in training of military medical university students during a prolonged basic life support (BLS). METHODS: A 3-hour BLS training was given to 120 military medical university students. Six months after the training, 115 students performed single rescuer BLS on a manikin for 8 minutes. The qualities of chest compressions as well as ventilations were assessed. RESULTS: The average compression depth and rate were 53.7±5.3 mm and 135.1±15.7 compressions per minute respectively. The proportion of chest compressions with appropriate depth was 71.7%±28.4%. The average ventilation volume was 847.2±260.4 mL and the proportion of students with adequate ventilation was 63.5%. Compared with male students, significantly lower compression depth (46.7±4.8 vs. 54.6±4.8 mm, P<0.001) and adequate compression rate (35.5%±26.5% vs. 76.1%±25.1%, P<0.001) were observed in female students. CONCLUSIONS: CPR was found to be related to gender, body weight, and body mass index of students in this study. The quality of chest compressions was well maintained in male students during 8 minutes of conventional CPR but declined rapidly in female students after 2 minutes according to the latest national guidelines. Physical fitness and rescuer fatigue did not affect the quality of ventilation. PMID:26401177

  4. Outcome of critically ill allogeneic hematopoietic stem-cell transplantation recipients: a reappraisal of indications for organ failure supports.

    PubMed

    Pène, Frédéric; Aubron, Cécile; Azoulay, Elie; Blot, François; Thiéry, Guillaume; Raynard, Bruno; Schlemmer, Benoît; Nitenberg, Gérard; Buzyn, Agnès; Arnaud, Philippe; Socié, Gérard; Mira, Jean-Paul

    2006-02-01

    Because the overall outcome of critically ill hematologic patients has improved, we evaluated the short-term and long-term outcomes of the poor risk subgroup of allogeneic hematopoietic stem-cell transplantation (HSCT) recipients requiring admission to the intensive care unit (ICU). This was a retrospective multicenter study of allogeneic HSCT recipients admitted to the ICU between 1997 and 2003. Two hundred nine critically ill allogeneic HSCT recipients were included in the study. Admission in the ICU occurred during the engraftment period (< or = 30 days after transplantation) for 70 of the patients and after the engraftment period for 139 patients. The overall in-ICU, in-hospital, 6-month, and 1-year survival rates were 48.3%, 32.5%, 27.2%, and 21%, respectively. Mechanical ventilation was required in 122 patients and led to a dramatic decrease in survival rates, resulting in in-ICU, in-hospital, 6-month, and 1-year survival rates of 18%, 15.6%, 14%, and 10.6%, respectively. Mechanical ventilation, elevated bilirubin level, and corticosteroid treatment for the indication of active graft-versus-host disease (GVHD) were independent predictors of death in the whole cohort. In the subgroup of patients requiring mechanical ventilation, associated organ failures, such as shock and liver dysfunction, were independent predictors of death. ICU admission during engraftment period was associated with acceptable outcome in mechanically ventilated patients, whereas patients with late complications of HSCT in the setting of active GVHD had a poor outcome. Extensive unlimited intensive care support is justified for allogeneic HSCT recipients with complications occurring during the engraftment period. Conversely, initiation or maintenance of mechanical ventilation is questionable in the setting of active GVHD.

  5. Late Glacial-Holocene record of benthic foraminiferal morphogroups from the eastern Arabian Sea OMZ: Paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Verma, K.; Bharti, S. K.; Singh, A. D.

    2018-03-01

    The Arabian Sea is characterized today by a well-developed and perennial oxygen minimum zone (OMZ) at mid-water depths. The Indian margin where the OMZ impinges provides sediment records ideal to study past changes in the OMZ intensity and its vertical extent in response to the changes of monsoon-driven primary productivity and intermediate water ventilation. Benthic foraminifera, depending upon their adaptation capabilities to variation in sea floor environment and microhabitat preferences, develop various functional morphologies that can be potentially used in paleoenvironmental reconstruction. In this study, we analysed benthic foraminiferal morphogroups in assemblage records of the last 30 ka in a sediment core collected from the lower OMZ of the Indian margin (off Goa). In total, nine morphogroups within two broadly classified epifaunal and infaunal microhabitat categories are identified. The abundance of morphogroups varies significantly during the late Glacial, Deglacial and Holocene. It appears that monsoon wind driven organic matter flux, and water column ventilation governing the OMZ intensity and sea-bottom oxygen condition, have profound influence on structuring the benthic foraminiferal morphogroups. We found a few morphogroups showing major changes in their abundances during the periods corresponding to the northern hemisphere climatic events. Benthic foraminifera with planoconvex tests are abundant during the cold Heinrich events, when the sea bottom was oxygenated due to a better ventilated, weak OMZ; whereas, those having tapered/cylindrical tests dominate during the last glacial maximum and the Holocene between 5 and 8 ka BP, when the OMZ was intensified and poorly ventilated, leading to oxygen-depleted benthic environment. Characteristically, increased abundance of taxa with milioline tests during the Heinrich 1 further suggests enhanced ventilation attributed probably to the influence of oxygen-rich Antarctic Intermediate Water (AAIW).

  6. Massive gas insufflation without effect on esophageal reflectometry profiles

    NASA Astrophysics Data System (ADS)

    Raphael, David T.; Arnaudov, Dimiter; Benbassat, Maxim

    2003-10-01

    Time-domain acoustic reflectometry generates a ``one-dimensional'' image of the interior of a cavity in the form of an area-distance profile. After patient intubation with a breathing tube, the characteristic reflectometry profile consists of a constant-area segment corresponding to the length of the tube, followed either by a rapid increase in the area beyond the carina (lung) or by a sudden decrease in the area to zero (esophagus). In the cardiac arrest setting, during mistaken placement of the breathing tube into the esophagus, followed by aggressive manual ventilation, is it possible to markedly distend the esophagus, such that the esophageal profile looks like a tracheal profile? With approval of the USC IUCAC Committee, an animal study was conducted with anesthetized, tracheally intubated, and mechanically ventilated dogs. With a separate breathing tube in the esophagus, aggressive esophageal ventilation (comparable to that seen in the cardiopulmonary resuscitation setting) was accomplished with a manual resuscitation bag. A Benson Hood Labs two-microphone reflectometer was used to obtain esophageal profiles with and without the above ventilation. In this pilot study, there was no significant esophageal distention as a result of the above ventilation. [Research supported by the Alfred E. Mann Institute.

  7. Acetazolamide: a second wind for a respiratory stimulant in the intensive care unit?

    PubMed

    Heming, Nicholas; Urien, Saïk; Faisy, Christophe

    2012-08-07

    Patients with chronic obstructive pulmonary disease (COPD) are affected by episodes of respiratory exacerbations, some of which can be severe and may necessitate respiratory support. Prolonged invasive mechanical ventilation is associated with increased mortality rates. Persistent failure to discontinue invasive mechanical ventilation is a major issue in patients with COPD. Pure or mixed metabolic alkalosis is a common finding in the intensive care unit (ICU) and is associated with a worse outcome. In patients with COPD, the condition is called post-hypercapnic alkalosis and is a complication of mechanical ventilation. Reversal of metabolic alkalosis may facilitate weaning from mechanical ventilation of patients with COPD. Acetazolamide, a non-specific carbonic anhydrase inhibitor, is one of the drugs employed in the ICU to reverse metabolic alkalosis. The drug is relatively safe, undesirable effects being rare. The compartmentalization of the different isoforms of the carbonic anhydrase enzyme may, in part, explain the lack of evidence of the efficacy of acetazolamide as a respiratory stimulant. Recent findings suggest that the usually employed doses of acetazolamide in the ICU may be insufficient to significantly improve respiratory parameters in mechanically ventilated patients with COPD. Randomized controlled trials using adequate doses of acetazolamide are required to address this issue.

  8. Prone positioning ventilation for treatment of acute lung injury and acute respiratory distress syndrome.

    PubMed

    Lan, Mei-juan; He, Xiao-di

    2009-08-01

    Patients who are diagnosed with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) usually have ventilation-perfusion mismatch, severe decrease in lung capacity, and gas exchange abnormalities. Health care workers have implemented various strategies in an attempt to compensate for these pathological alterations. By rotating patients with ALI/ARDS between the supine and prone position, it is possible to achieve a significant improvement in PaO2/FiO2, decrease shunting and therefore improve oxygenation without use of expensive, invasive and experimental procedures. Prone positioning is a safe and effective way to improve ventilation when conventional strategies fail to initiate a patient response. Because a specific cure for ARDS is not available, the goal is to support the patients with therapies that cause the least amount of injury while the lungs have an opportunity to heal. Based on current data, a trial of prone positioning ventilation should be offered to the patients who have ALI/ARDS in the early course of the disease. Published studies exhibit substantial heterogeneity in clinical results, suggesting that an adequately sized study optimizing the duration of proning ventilation strategy is warranted to enable definitive conclusions to be drawn.

  9. Low tidal volume mechanical ventilation against no ventilation during cardiopulmonary bypass heart surgery (MECANO): study protocol for a randomized controlled trial.

    PubMed

    Nguyen, Lee S; Merzoug, Messaouda; Estagnasie, Philippe; Brusset, Alain; Law Koune, Jean-Dominique; Aubert, Stephane; Waldmann, Thierry; Grinda, Jean-Michel; Gibert, Hadrien; Squara, Pierre

    2017-12-02

    Postoperative pulmonary complications are a leading cause of morbidity and mortality after cardiac surgery. There are no recommendations on mechanical ventilation associated with cardiopulmonary bypass (CPB) during surgery and anesthesiologists perform either no ventilation (noV) at all during CPB or maintain low tidal volume (LTV) ventilation. Indirect evidence points towards better pulmonary outcomes when LTV is performed but no large-scale prospective trial has yet been published in cardiac surgery. The MECANO trial is a single-center, double-blind, randomized, controlled trial comparing two mechanical ventilation strategies, noV and LTV, during cardiac surgery with CPB. In total, 1500 patients are expected to be included, without any restrictions. They will be randomized between noV and LTV on a 1:1 ratio. The noV group will receive no ventilation during CPB. The LTV group will receive 5 breaths/minute with a tidal volume of 3 mL/kg and positive end-expiratory pressure of 5 cmH2O. The primary endpoint will be a composite of all-cause mortality, early respiratory failure defined as a ratio of partial pressure of oxygen/fraction of inspired oxygen <200 mmHg at 1 hour after arrival in the ICU, heavy oxygenation support (defined as a patient requiring either non-invasive ventilation, mechanical ventilation or high-flow oxygen) at 2 days after arrival in the ICU or ventilator-acquired pneumonia defined by the Center of Disease Control. Lung recruitment maneuvers will be performed in the noV and LTV groups at the end of surgery and at arrival in ICU with an insufflation at +30 cmH20 for 5 seconds. Secondary endpoints are those composing the primary endpoint with the addition of pneumothorax, CPB duration, quantity of postoperative bleeding, red blood cell transfusions, revision surgery requirements, length of stay in the ICU and in the hospital and total hospitalization costs. Patients will be followed until hospital discharge. The MECANO trial is the first of its kind to compare in a double-blind design, a no-ventilation to a low-tidal volume strategy for mechanical ventilation during cardiac surgery with CPB, with a primary composite outcome including death, respiratory failure and postoperative pneumonia. ClinicalTrials.gov, NCT03098524 . Registered on 27 February 2017.

  10. Nasal continuous positive airway pressure (CPAP) for the respiratory care of the newborn infant.

    PubMed

    Diblasi, Robert M

    2009-09-01

    Nasal continuous positive airway pressure (CPAP) is a noninvasive form of respiratory assistance that has been used to support spontaneously breathing infants with lung disease for nearly 40 years. Following reports that mechanical ventilation contributes to pulmonary growth arrest and the development of chronic lung disease, there is a renewed interest in using CPAP as the prevailing method for supporting newborn infants. Animal and human research has shown that CPAP is less injurious to the lungs than is mechanical ventilation. The major concepts that embrace lung protection during CPAP are the application of spontaneous breathing at a constant distending pressure and avoidance of intubation and positive-pressure inflations. A major topic for current research focuses on whether premature infants should be supported initially with CPAP following delivery, or after the infant has been extubated following prophylactic surfactant administration. Clinical trials have shown that CPAP reduces the need for intubation/mechanical ventilation and surfactant administration, but it is still unclear whether CPAP reduces chronic lung disease and mortality, compared to modern lung-protective ventilation techniques. Despite the successes, little is known about how best to manage patients using CPAP. It is also unclear whether different strategies or devices used to maintain CPAP play a role in improving outcomes in infants. Nasal CPAP technology has evolved over the last 10 years, and bench and clinical research has evaluated differences in physiologic effects related to these new devices. Ultimately, clinicians' abilities to perceive changes in the pathophysiologic conditions of infants receiving CPAP and the quality of airway care provided are likely to be the most influential factors in determining patient outcomes.

  11. Surgical Closure of Patent Ductus Arteriosus in Premature Neonates Weighing Less Than 1,000 grams: Contemporary Outcomes.

    PubMed

    Lehenbauer, David G; Fraser, Charles D; Crawford, Todd C; Hibino, Naru; Aucott, Susan; Grimm, Joshua C; Patel, Nishant; Magruder, J Trent; Cameron, Duke E; Vricella, Luca

    2018-07-01

    The safety of surgical closure of patent ductus arteriosus (PDA) in very low birth weight premature neonates has been questioned because of associated morbidities. However, these studies are vulnerable to significant bias as surgical ligation has historically been utilized as "rescue" therapy. The objective of this study was to review our institutions' outcomes of surgical PDA ligation. All neonates with operative weight of ≤1.00 kg undergoing surgical PDA ligation from 2003 to 2015 were analyzed. Records were queried to identify surgical complications, perioperative morbidity, and mortality. Outcomes included pre- and postoperative ventilator requirements, pre- and postoperative inotropic support, acute kidney injury, surgical complications, and 30-day mortality. One hundred sixty-six preterm neonates underwent surgical ligation. One hundred twenty-one (70.3%) had failed indomethacin closure. One hundred sixty-four (98.8%) patients required mechanical ventilation prior to surgery. At 17 postoperative days, freedom from the ventilator reached 50%. Of 109 (66.4%) patients requiring prolonged preoperative inotropic support, 59 (54.1%) were liberated from inotropes by postoperative day 1. Surgical morbidity was encountered in four neonates (2.4%): two (1.2%) patients had a postoperative pneumothorax requiring tube thoracostomy, one (0.6%) patient had a recurrent laryngeal nerve injury, and one (0.6%) patient had significant intraoperative bleeding. The 30-day all-cause mortality was 1.8% (n = 3); no deaths occurred intraoperatively. In this retrospective investigation, surgical PDA closure was associated with low 30-day mortality and minimal morbidity and resulted in rapid discontinuation of inotropic support and weaning from mechanical ventilation. Given the safety of this intervention, surgical PDA ligation merits consideration in the management strategy of the preterm neonate with a PDA.

  12. Increased ventilation of Antarctic deep water during the warm mid-Pliocene.

    PubMed

    Zhang, Zhongshi; Nisancioglu, Kerim H; Ninnemann, Ulysses S

    2013-01-01

    The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ(13)C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ(13)C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features.

  13. Increased ventilation of Antarctic deep water during the warm mid-Pliocene

    PubMed Central

    Zhang, Zhongshi; Nisancioglu, Kerim H.; Ninnemann, Ulysses S.

    2013-01-01

    The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ13C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ13C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features. PMID:23422667

  14. Mathematics of Ventilator-induced Lung Injury.

    PubMed

    Rahaman, Ubaidur

    2017-08-01

    Ventilator-induced lung injury (VILI) results from mechanical disruption of blood-gas barrier and consequent edema and releases of inflammatory mediators. A transpulmonary pressure (P L ) of 17 cmH 2 O increases baby lung volume to its anatomical limit, predisposing to VILI. Viscoelastic property of lung makes pulmonary mechanics time dependent so that stress (P L ) increases with respiratory rate. Alveolar inhomogeneity in acute respiratory distress syndrome acts as a stress riser, multiplying global stress at regional level experienced by baby lung. Limitation of stress (P L ) rather than strain (tidal volume [V T ]) is the safe strategy of mechanical ventilation to prevent VILI. Driving pressure is the noninvasive surrogate of lung strain, but its relations to P L is dependent on the chest wall compliance. Determinants of lung stress (V T , driving pressure, positive end-expiratory pressure, and inspiratory flow) can be quantified in terms of mechanical power, and a safe threshold can be determined, which can be used in decision-making between safe mechanical ventilation and extracorporeal lung support.

  15. [Diaphragm pacing for the ventilatory support of the quadriplegic patients with respiratory paralysis].

    PubMed

    Cheng, H; Wang, L S; Pan, H C; Shoung, H M; Lee, L S

    1992-02-01

    Electrical stimulation of the phrenic nerve to pace the diaphragm in patients with chronic ventilatory insufficiency has been an established therapeutic modality since William W.L. Glenn first described using radiofrequency signals in 1978 to stimulate the phrenic nerves. Before this event, patients who were ventilator-dependent and thus bedridden because of respiratory paralysis associated with quadriplegia usually anticipated little chance for physical or psychosocial rehabilitation. Two cases of C1-C2 subluxtion with cord injury and chronic ventilatory insufficiency were implanted at VGH-Taipei with diaphragm pacemaker in 1988. Postoperative phrenic nerve stimulation was given according to individual training schedule. One case with total phrenic paralysis received bilateral phrenic nerve stimulation and became weaned from the ventilator 6 months later. The other case with partially active ventilatory function received unilateral phrenic nerve stimulation to compensate the ventilation. However, its final outcome still showed the necessity of a bilateral mode to achieve adequate ventilation irrespective of strenuous training for 2 years.

  16. The effects of "psychological inoculation" versus ventilation on the mental resilience of Israeli citizens under continuous war stress.

    PubMed

    Farchi, Moshe; Gidron, Yori

    2010-05-01

    Anxiety and hopelessness are common reactions of citizens exposed to continuous war threats. Common interventions focus on support, calming, and emotional ventilation, with few attempts to reduce people's cognitive barriers concerning active coping, which could increase their resilience. This study tested the effects of psychological inoculation (PI), which specifically aims to challenge such barriers, on the mental resilience of Israeli citizens living in Sderot. Participants were randomly assigned to either 2 PI sessions or 2 ventilation sessions, provided over the phone. Anxiety, helplessness, pessimism, and functioning were briefly assessed at baseline and 1 week after interventions. No time, group, or group x time interactions were observed. However, a time x group x sex interaction emerged for helplessness: Men benefited from the PI whereas women benefited from ventilation, in reducing helplessness. Under chronic war stress, it seems difficult to improve people's resilience, although PI may be partly beneficial for men. Further research is needed to test the effects of PI on mental resilience.

  17. Characterization of Ventilatory Modes in Dragonfly Nymph

    NASA Astrophysics Data System (ADS)

    Roh, Chris; Saxton-Fox, Theresa; Gharib, Morteza

    2013-11-01

    A dragonfly nymph's highly modified hindgut has multiple ventilatory modes: hyperventilation (i.e. jet propulsion), gulping ventilation (extended expiratory phase) and normal ventilation. Each mode involves dynamic manipulation of the exit diameter and pressure. To study the different fluid dynamics associated with the three modes, Anisopteran larvae of the family Aeshnidae were tethered onto a rod for flow visualization. The result showed distinct flow structures. The hyperventilation showed a highly turbulent and powerful jet that occurred at high frequency. The gulping ventilation produced a single vortex at a moderate frequency. The normal ventilation showed two distinct vortices, a low-Reynolds number vortex, followed by a high-Reynolds number vortex. Furthermore, a correlation of the formation of the vortices with the movement of the sternum showed that the dragonfly is actively controlling the timing and the speed of the vortices to have them at equal distance from the jet exit at the onset of inspiration. This behavior prevents inspiration of the oxygen deficient expirated water, resulting in the maximization of the oxygen intake. Supported by NSF GRFP.

  18. Utilizing a Suited Manikin Test Apparatus and Spacesuit Ventilation Loop to Evaluate Carbon Dioxide Washout

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Norcross, Jason; Jeng, Frank; Swickrath, Mike

    2014-01-01

    NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the spacesuit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a spacesuit. A Suited Manikin Test Apparatus (SMTA) is being developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.

  19. Comparison of invasive and noninvasive positive pressure ventilation delivered by means of a helmet for weaning of patients from mechanical ventilation.

    PubMed

    Carron, Michele; Rossi, Sandra; Carollo, Cristiana; Ori, Carlo

    2014-08-01

    The effectiveness of noninvasive positive pressure ventilation delivered by helmet (H-NPPV) as a weaning approach in patients with acute respiratory failure is unclear. We randomly and evenly assigned 64 patients intubated for acute respiratory failure to conventional weaning with invasive mechanical ventilation (IMV) or H-NPPV. The primary end point was a reduction in IMV duration by 6 days between the 2 groups. Secondary end points were the occurrence of ventilator-associated pneumonia and major complications, duration of mechanical ventilation and weaning, intensive care unit and hospital length of stay, and survival. The mean duration of IMV was significantly reduced in the H-NPPV group compared with the IMV group (P<.0001), without significant difference in duration of weaning (P=.26) and total ventilatory support (P=.45). In the H-NPPV group, the incidence of major complications was less than the IMV group (P=.032). Compared with the H-NPPV group, the IMV group was associated with a greater incidence of VAP (P=.018) and an increased risk of nosocomial pneumonia (P=.049). The mortality rate was similar between the groups, with no significant difference in overall intensive care unit (P=.47) or hospital length of stay (P=.37). H-NPPV was well tolerated and effective in patients who were difficult to wean. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Utilizing a Suited Manikin Test Apparatus and Space Suit Ventilation Loop to Evaluate Carbon Dioxide Washout

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Paul, Thomas; Norcross, Jason; Alonso, Jesus Delgado; Swickrath, Mike

    2015-01-01

    NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a portable life support subsystem (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide (CO2) delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the space suit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a space suit. A suited manikin test apparatus (SMTA) was developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.

  1. Respiration, respiratory metabolism and energy consumption under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Makarov, G. F.

    1975-01-01

    Changes in the physiological indices of respiration, respiratory metabolism and energy consumption in spacecrews under weightlessness conditions manifest themselves in increased metabolic rates, higher pulmonary ventilation volume, oxygen consumption and carbon dioxide elimination, energy consumption levels in proportion to reduction in neuroemotional and psychic stress, adaptation to weightlessness and work-rest cycles, and finally in a relative stabilization of metabolic processes due to hemodynamic shifts.

  2. Contribution of blood oxygen and carbon dioxide sensing to the energetic optimization of human walking.

    PubMed

    Wong, Jeremy D; O'Connor, Shawn M; Selinger, Jessica C; Donelan, J Maxwell

    2017-08-01

    People can adapt their gait to minimize energetic cost, indicating that walking's neural control has access to ongoing measurements of the body's energy use. In this study we tested the hypothesis that an important source of energetic cost measurements arises from blood gas receptors that are sensitive to O 2 and CO 2 concentrations. These receptors are known to play a role in regulating other physiological processes related to energy consumption, such as ventilation rate. Given the role of O 2 and CO 2 in oxidative metabolism, sensing their levels can provide an accurate estimate of the body's total energy use. To test our hypothesis, we simulated an added energetic cost for blood gas receptors that depended on a subject's step frequency and determined if subjects changed their behavior in response to this simulated cost. These energetic costs were simulated by controlling inspired gas concentrations to decrease the circulating levels of O 2 and increase CO 2 We found this blood gas control to be effective at shifting the step frequency that minimized the ventilation rate and perceived exertion away from the normally preferred frequency, indicating that these receptors provide the nervous system with strong physiological and psychological signals. However, rather than adapt their preferred step frequency toward these lower simulated costs, subjects persevered at their normally preferred frequency even after extensive experience with the new simulated costs. These results suggest that blood gas receptors play a negligible role in sensing energetic cost for the purpose of optimizing gait. NEW & NOTEWORTHY Human gait adaptation implies that the nervous system senses energetic cost, yet this signal is unknown. We tested the hypothesis that the blood gas receptors sense cost for gait optimization by controlling blood O 2 and CO 2 with step frequency as people walked. At the simulated energetic minimum, ventilation and perceived exertion were lowest, yet subjects preferred walking at their original frequency. This suggests that blood gas receptors are not critical for sensing cost during gait. Copyright © 2017 the American Physiological Society.

  3. Bench experiments comparing simulated inspiratory effort when breathing helium-oxygen mixtures to that during positive pressure support with air.

    PubMed

    Martin, Andrew R; Katz, Ira M; Jenöfi, Katharina; Caillibotte, Georges; Brochard, Laurent; Texereau, Joëlle

    2012-10-03

    Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort. In addition, breathing He/O2 alone may provide an alternative to pressure support in circumstances where NIV is not available or poorly tolerated.

  4. Brazilian recommendations of mechanical ventilation 2013. Part 2

    PubMed Central

    2014-01-01

    Perspectives on invasive and noninvasive ventilatory support for critically ill patients are evolving, as much evidence indicates that ventilation may have positive effects on patient survival and the quality of the care provided in intensive care units in Brazil. For those reasons, the Brazilian Association of Intensive Care Medicine (Associação de Medicina Intensiva Brasileira - AMIB) and the Brazilian Thoracic Society (Sociedade Brasileira de Pneumologia e Tisiologia - SBPT), represented by the Mechanical Ventilation Committee and the Commission of Intensive Therapy, respectively, decided to review the literature and draft recommendations for mechanical ventilation with the goal of creating a document for bedside guidance as to the best practices on mechanical ventilation available to their members. The document was based on the available evidence regarding 29 subtopics selected as the most relevant for the subject of interest. The project was developed in several stages, during which the selected topics were distributed among experts recommended by both societies with recent publications on the subject of interest and/or significant teaching and research activity in the field of mechanical ventilation in Brazil. The experts were divided into pairs that were charged with performing a thorough review of the international literature on each topic. All the experts met at the Forum on Mechanical Ventilation, which was held at the headquarters of AMIB in São Paulo on August 3 and 4, 2013, to collaboratively draft the final text corresponding to each sub-topic, which was presented to, appraised, discussed and approved in a plenary session that included all 58 participants and aimed to create the final document. PMID:25410835

  5. Severity of illness and outcome in adult patients with primary varicella pneumonia.

    PubMed

    Gregorakos, Leonidas; Myrianthefs, Pavlos; Markou, Nikolaos; Chroni, Despina; Sakagianni, Ekaterini

    2002-01-01

    Varicella pneumonia is a serious complication of primary varicella infection in adults that often results in respiratory failure and death. To analyze the clinical and laboratory manifestations of primary varicella pneumonia in patients admitted to our intensive care unit (ICU). Retrospective study on patients treated in our ICU with a diagnosis of primary varicella pneumonia during a period of 15 years. We recorded age, gender, smoking habits, clinical and laboratory findings, arterial blood gases, chest radiograph, illness severity (SAPS II), length of stay, necessity for mechanical ventilation, complications, therapy and survival. We examined the influence of the duration of respiratory symptoms and rash prior to admission, and the influence of illness severity on outcome. There was a statistically significant difference in duration of respiratory symptoms, duration of rash and SAPS II on admission between: (a) mechanically ventilated patients vs. spontaneously breathing patients (p < 0.007, p < 0.00, p < 0.00), (b) patients who survived vs. patients with poor outcome (p < 0.001, p < 0.000, p < 0.000), and (c) mechanically ventilated patients with poor outcome vs. mechanically ventilated patients who survived (p < 0.001, p < 0.00, p < 0.000). Overall mortality was 13.6%; death occurred only in mechanically ventilated patients (mortality 33.3%). Primary varicella pneumonia remains a critical problem with significant mortality. When recognized before respiratory failure ensues and mechanical ventilation becomes mandatory, patients could have an excellent outcome. Adult patients who delay asking for medical support, the disease may lead to the need for mechanical ventilation and severe complications with a fatal outcome. Copyright 2002 S. Karger AG, Basel

  6. Four-dimensional optical coherence tomography imaging of total liquid ventilated rats

    NASA Astrophysics Data System (ADS)

    Kirsten, Lars; Schnabel, Christian; Gaertner, Maria; Koch, Edmund

    2013-06-01

    Optical coherence tomography (OCT) can be utilized for the spatially and temporally resolved visualization of alveolar tissue and its dynamics in rodent models, which allows the investigation of lung dynamics on the microscopic scale of single alveoli. The findings could provide experimental input data for numerical simulations of lung tissue mechanics and could support the development of protective ventilation strategies. Real four-dimensional OCT imaging permits the acquisition of several OCT stacks within one single ventilation cycle. Thus, the entire four-dimensional information is directly obtained. Compared to conventional virtual four-dimensional OCT imaging, where the image acquisition is extended over many ventilation cycles and is triggered on pressure levels, real four-dimensional OCT is less vulnerable against motion artifacts and non-reproducible movement of the lung tissue over subsequent ventilation cycles, which widely reduces image artifacts. However, OCT imaging of alveolar tissue is affected by refraction and total internal reflection at air-tissue interfaces. Thus, only the first alveolar layer beneath the pleura is visible. To circumvent this effect, total liquid ventilation can be carried out to match the refractive indices of lung tissue and the breathing medium, which improves the visibility of the alveolar structure, the image quality and the penetration depth and provides the real structure of the alveolar tissue. In this study, a combination of four-dimensional OCT imaging with total liquid ventilation allowed the visualization of the alveolar structure in rat lung tissue benefiting from the improved depth range beneath the pleura and from the high spatial and temporal resolution.

  7. Brazilian recommendations of mechanical ventilation 2013. Part I

    PubMed Central

    Barbas, Carmen Sílvia Valente; Ísola, Alexandre Marini; Farias, Augusto Manoel de Carvalho; Cavalcanti, Alexandre Biasi; Gama, Ana Maria Casati; Duarte, Antonio Carlos Magalhães; Vianna, Arthur; Serpa, Ary; Bravim, Bruno de Arruda; Pinheiro, Bruno do Valle; Mazza, Bruno Franco; de Carvalho, Carlos Roberto Ribeiro; Toufen, Carlos; David, Cid Marcos Nascimento; Taniguchi, Corine; Mazza, Débora Dutra da Silveira; Dragosavac, Desanka; Toledo, Diogo Oliveira; Costa, Eduardo Leite; Caser, Eliana Bernardete; Silva, Eliezer; Amorim, Fabio Ferreira; Saddy, Felipe; Galas, Filomena Regina Barbosa Gomes; Silva, Gisele Sampaio; de Matos, Gustavo Faissol Janot; Emmerich, João Claudio; Valiatti, Jorge Luis dos Santos; Teles, José Mario Meira; Victorino, Josué Almeida; Ferreira, Juliana Carvalho; Prodomo, Luciana Passuello do Vale; Hajjar, Ludhmila Abrahão; Martins, Luiz Cláudio; Malbouisson, Luiz Marcelo Sá; Vargas, Mara Ambrosina de Oliveira; Reis, Marco Antonio Soares; Amato, Marcelo Brito Passos; Holanda, Marcelo Alcântara; Park, Marcelo; Jacomelli, Marcia; Tavares, Marcos; Damasceno, Marta Cristina Paulette; Assunção, Murillo Santucci César; Damasceno, Moyzes Pinto Coelho Duarte; Youssef, Nazah Cherif Mohamad; Teixeira, Paulo José Zimmermann; Caruso, Pedro; Duarte, Péricles Almeida Delfino; Messeder, Octavio; Eid, Raquel Caserta; Rodrigues, Ricardo Goulart; de Jesus, Rodrigo Francisco; Kairalla, Ronaldo Adib; Justino, Sandra; Nemer, Sérgio Nogueira; Romero, Simone Barbosa; Amado, Verônica Moreira

    2014-01-01

    Perspectives on invasive and noninvasive ventilatory support for critically ill patients are evolving, as much evidence indicates that ventilation may have positive effects on patient survival and the quality of the care provided in intensive care units in Brazil. For those reasons, the Brazilian Association of Intensive Care Medicine (Associação de Medicina Intensiva Brasileira - AMIB) and the Brazilian Thoracic Society (Sociedade Brasileira de Pneumologia e Tisiologia - SBPT), represented by the Mechanical Ventilation Committee and the Commission of Intensive Therapy, respectively, decided to review the literature and draft recommendations for mechanical ventilation with the goal of creating a document for bedside guidance as to the best practices on mechanical ventilation available to their members. The document was based on the available evidence regarding 29 subtopics selected as the most relevant for the subject of interest. The project was developed in several stages, during which the selected topics were distributed among experts recommended by both societies with recent publications on the subject of interest and/or significant teaching and research activity in the field of mechanical ventilation in Brazil. The experts were divided into pairs that were charged with performing a thorough review of the international literature on each topic. All the experts met at the Forum on Mechanical Ventilation, which was held at the headquarters of AMIB in São Paulo on August 3 and 4, 2013, to collaboratively draft the final text corresponding to each sub-topic, which was presented to, appraised, discussed and approved in a plenary session that included all 58 participants and aimed to create the final document. PMID:25028944

  8. Brazilian recommendations of mechanical ventilation 2013. Part 2

    PubMed Central

    Barbas, Carmen Sílvia Valente; Ísola, Alexandre Marini; Farias, Augusto Manoel de Carvalho; Cavalcanti, Alexandre Biasi; Gama, Ana Maria Casati; Duarte, Antonio Carlos Magalhães; Vianna, Arthur; Serpa Neto, Ary; Bravim, Bruno de Arruda; Pinheiro, Bruno do Valle; Mazza, Bruno Franco; de Carvalho, Carlos Roberto Ribeiro; Toufen Júnior, Carlos; David, Cid Marcos Nascimento; Taniguchi, Corine; Mazza, Débora Dutra da Silveira; Dragosavac, Desanka; Toledo, Diogo Oliveira; Costa, Eduardo Leite; Caser, Eliana Bernadete; Silva, Eliezer; Amorim, Fabio Ferreira; Saddy, Felipe; Galas, Filomena Regina Barbosa Gomes; Silva, Gisele Sampaio; de Matos, Gustavo Faissol Janot; Emmerich, João Claudio; Valiatti, Jorge Luis dos Santos; Teles, José Mario Meira; Victorino, Josué Almeida; Ferreira, Juliana Carvalho; Prodomo, Luciana Passuello do Vale; Hajjar, Ludhmila Abrahão; Martins, Luiz Claudio; Malbouisson, Luis Marcelo Sá; Vargas, Mara Ambrosina de Oliveira; Reis, Marco Antonio Soares; Amato, Marcelo Brito Passos; Holanda, Marcelo Alcântara; Park, Marcelo; Jacomelli, Marcia; Tavares, Marcos; Damasceno, Marta Cristina Paulette; Assunção, Murillo Santucci César; Damasceno, Moyzes Pinto Coelho Duarte; Youssef, Nazah Cherif Mohamed; Teixeira, Paulo José Zimmermann; Caruso, Pedro; Duarte, Péricles Almeida Delfino; Messeder, Octavio; Eid, Raquel Caserta; Rodrigues, Ricardo Goulart; de Jesus, Rodrigo Francisco; Kairalla, Ronaldo Adib; Justino, Sandra; Nemer, Sergio Nogueira; Romero, Simone Barbosa; Amado, Verônica Moreira

    2014-01-01

    Perspectives on invasive and noninvasive ventilatory support for critically ill patients are evolving, as much evidence indicates that ventilation may have positive effects on patient survival and the quality of the care provided in intensive care units in Brazil. For those reasons, the Brazilian Association of Intensive Care Medicine (Associação de Medicina Intensiva Brasileira - AMIB) and the Brazilian Thoracic Society (Sociedade Brasileira de Pneumologia e Tisiologia - SBPT), represented by the Mechanical Ventilation Committee and the Commission of Intensive Therapy, respectively, decided to review the literature and draft recommendations for mechanical ventilation with the goal of creating a document for bedside guidance as to the best practices on mechanical ventilation available to their members. The document was based on the available evidence regarding 29 subtopics selected as the most relevant for the subject of interest. The project was developed in several stages, during which the selected topics were distributed among experts recommended by both societies with recent publications on the subject of interest and/or significant teaching and research activity in the field of mechanical ventilation in Brazil. The experts were divided into pairs that were charged with performing a thorough review of the international literature on each topic. All the experts met at the Forum on Mechanical Ventilation, which was held at the headquarters of AMIB in São Paulo on August 3 and 4, 2013, to collaboratively draft the final text corresponding to each sub-topic, which was presented to, appraised, discussed and approved in a plenary session that included all 58 participants and aimed to create the final document. PMID:25295817

  9. Replicating human expertise of mechanical ventilation waveform analysis in detecting patient-ventilator cycling asynchrony using machine learning.

    PubMed

    Gholami, Behnood; Phan, Timothy S; Haddad, Wassim M; Cason, Andrew; Mullis, Jerry; Price, Levi; Bailey, James M

    2018-06-01

    - Acute respiratory failure is one of the most common problems encountered in intensive care units (ICU) and mechanical ventilation is the mainstay of supportive therapy for such patients. A mismatch between ventilator delivery and patient demand is referred to as patient-ventilator asynchrony (PVA). An important hurdle in addressing PVA is the lack of a reliable framework for continuously and automatically monitoring the patient and detecting various types of PVA. - The problem of replicating human expertise of waveform analysis for detecting cycling asynchrony (i.e., delayed termination, premature termination, or none) was investigated in a pilot study involving 11 patients in the ICU under invasive mechanical ventilation. A machine learning framework is used to detect cycling asynchrony based on waveform analysis. - A panel of five experts with experience in PVA evaluated a total of 1377 breath cycles from 11 mechanically ventilated critical care patients. The majority vote was used to label each breath cycle according to cycling asynchrony type. The proposed framework accurately detected the presence or absence of cycling asynchrony with sensitivity (specificity) of 89% (99%), 94% (98%), and 97% (93%) for delayed termination, premature termination, and no cycling asynchrony, respectively. The system showed strong agreement with human experts as reflected by the kappa coefficients of 0.90, 0.91, and 0.90 for delayed termination, premature termination, and no cycling asynchrony, respectively. - The pilot study establishes the feasibility of using a machine learning framework to provide waveform analysis equivalent to an expert human. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Results from Carbon Dioxide Washout Testing Using a Suited Manikin Test Apparatus with a Space Suit Ventilation Test Loop

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; McMillin, Summer; Vonau, Walt; Kanne, Bryan; Korona, Adam; Swickrath, Mike

    2016-01-01

    NASA is developing an advanced portable life support system (PLSS) to meet the needs of a new NASA advanced space suit. The PLSS is one of the most critical aspects of the space suit providing the necessary oxygen, ventilation, and thermal protection for an astronaut performing a spacewalk. The ventilation subsystem in the PLSS must provide sufficient carbon dioxide (CO2) removal and ensure that the CO2 is washed away from the oronasal region of the astronaut. CO2 washout is a term used to describe the mechanism by which CO2 levels are controlled within the helmet to limit the concentration of CO2 inhaled by the astronaut. Accumulation of CO2 in the helmet or throughout the ventilation loop could cause the suited astronaut to experience hypercapnia (excessive carbon dioxide in the blood). A suited manikin test apparatus (SMTA) integrated with a space suit ventilation test loop was designed, developed, and assembled at NASA in order to experimentally validate adequate CO2 removal throughout the PLSS ventilation subsystem and to quantify CO2 washout performance under various conditions. The test results from this integrated system will be used to validate analytical models and augment human testing. This paper presents the system integration of the PLSS ventilation test loop with the SMTA including the newly developed regenerative Rapid Cycle Amine component used for CO2 removal and tidal breathing capability to emulate the human. The testing and analytical results of the integrated system are presented along with future work.

  11. Brazilian recommendations of mechanical ventilation 2013. Part I

    PubMed Central

    2014-01-01

    Perspectives on invasive and noninvasive ventilatory support for critically ill patients are evolving, as much evidence indicates that ventilation may have positive effects on patient survival and the quality of the care provided in intensive care units in Brazil. For those reasons, the Brazilian Association of Intensive Care Medicine (Associação de Medicina Intensiva Brasileira - AMIB) and the Brazilian Thoracic Society (Sociedade Brasileira de Pneumologia e Tisiologia - SBPT), represented by the Mechanical Ventilation Committee and the Commission of Intensive Therapy, respectively, decided to review the literature and draft recommendations for mechanical ventilation with the goal of creating a document for bedside guidance as to the best practices on mechanical ventilation available to their members. The document was based on the available evidence regarding 29 subtopics selected as the most relevant for the subject of interest. The project was developed in several stages, during which the selected topics were distributed among experts recommended by both societies with recent publications on the subject of interest and/or significant teaching and research activity in the field of mechanical ventilation in Brazil. The experts were divided into pairs that were charged with performing a thorough review of the international literature on each topic. All the experts met at the Forum on Mechanical Ventilation, which was held at the headquarters of AMIB in São Paulo on August 3 and 4, 2013, to collaboratively draft the final text corresponding to each sub-topic, which was presented to, appraised, discussed and approved in a plenary session that included all 58 participants and aimed to create the final document. PMID:25210957

  12. Extra corporeal membrane oxygenation to facilitate lung protective ventilation and prevent ventilator-induced lung injury in severe Pneumocystis pneumonia with pneumomediastinum: a case report and short literature review.

    PubMed

    Ali, Husain Shabbir; Hassan, Ibrahim Fawzy; George, Saibu

    2016-04-14

    Pulmonary infections caused by Pneumocystis jirovecii in immunocompromised host can be associated with cysts, pneumatoceles and air leaks that can progress to pneumomediastinum and pneumothoraxes. In such cases, it can be challenging to maintain adequate gas exchange by conventional mechanical ventilation and at the same time prevent further ventilator-induced lung injury. We report a young HIV positive male with poorly compliant lungs and pneumomediastinum secondary to severe Pneumocystis infection, rescued with veno-venous extra corporeal membrane oxygenation (V-V ECMO). A 26 year old male with no significant past medical history was admitted with fever, cough and shortness of breath. He initially required non-invasive ventilation for respiratory failure. However, his respiratory function progressively deteriorated due to increasing pulmonary infiltrates and development of pneumomediastinum, eventually requiring endotracheal intubation and invasive ventilation. Despite attempts at optimizing gas exchange by ventilatory maneuvers, patients' pulmonary parameters worsened necessitating rescue ECMO therapy. The introduction of V-V ECMO facilitated the use of ultra-protective lung ventilation and prevented progression of pneumomediastinum, maintaining optimal gas exchange. It allowed time for the antibiotics to show effect and pulmonary parenchyma to heal. Further diagnostic workup revealed Pneumocystis jirovecii as the causative organism for pneumonia and serology confirmed Human Immunodeficiency Virus infection. Patient was successfully treated with appropriate antimicrobials and de-cannulated after six days of ECMO support. ECMO was an effective salvage therapy in HIV positive patient with an otherwise fatal respiratory failure due to Pneumocystis pneumonia and air leak syndrome.

  13. Lung Function and Incidence of Chronic Obstructive Pulmonary Disease after Improved Cooking Fuels and Kitchen Ventilation: A 9-Year Prospective Cohort Study

    PubMed Central

    Zhou, Yumin; Zou, Yimin; Li, Xiaochen; Chen, Shuyun; Zhao, Zhuxiang; He, Fang; Zou, Weifeng; Luo, Qiuping; Li, Wenxi; Pan, Yiling; Deng, Xiaoliang; Wang, Xiaoping; Qiu, Rong; Liu, Shiliang; Zheng, Jingping; Zhong, Nanshan; Ran, Pixin

    2014-01-01

    Background Biomass smoke is associated with the risk of chronic obstructive pulmonary disease (COPD), but few studies have elaborated approaches to reduce the risk of COPD from biomass burning. The purpose of this study was to determine whether improved cooking fuels and ventilation have effects on pulmonary function and the incidence of COPD. Methods and Findings A 9-y prospective cohort study was conducted among 996 eligible participants aged at least 40 y from November 1, 2002, through November 30, 2011, in 12 villages in southern China. Interventions were implemented starting in 2002 to improve kitchen ventilation (by providing support and instruction for improving biomass stoves or installing exhaust fans) and to promote the use of clean fuels (i.e., biogas) instead of biomass for cooking (by providing support and instruction for installing household biogas digesters); questionnaire interviews and spirometry tests were performed in 2005, 2008, and 2011. That the interventions improved air quality was confirmed via measurements of indoor air pollutants (i.e., SO2, CO, CO2, NO2, and particulate matter with an aerodynamic diameter of 10 µm or less) in a randomly selected subset of the participants' homes. Annual declines in lung function and COPD incidence were compared between those who took up one, both, or neither of the interventions. Use of clean fuels and improved ventilation were associated with a reduced decline in forced expiratory volume in 1 s (FEV1): decline in FEV1 was reduced by 12 ml/y (95% CI, 4 to 20 ml/y) and 13 ml/y (95% CI, 4 to 23 ml/y) in those who used clean fuels and improved ventilation, respectively, compared to those who took up neither intervention, after adjustment for confounders. The combined improvements of use of clean fuels and improved ventilation had the greatest favorable effects on the decline in FEV1, with a slowing of 16 ml/y (95% CI, 9 to 23 ml/y). The longer the duration of improved fuel use and ventilation, the greater the benefits in slowing the decline of FEV1 (p<0.05). The reduction in the risk of COPD was unequivocal after the fuel and ventilation improvements, with an odds ratio of 0.28 (95% CI, 0.11 to 0.73) for both improvements. Conclusions Replacing biomass with biogas for cooking and improving kitchen ventilation are associated with a reduced decline in FEV1 and risk of COPD. Trial Registration Chinese Clinical Trial Register ChiCTR-OCH-12002398 Please see later in the article for the Editors' Summary PMID:24667834

  14. Combination of Extracorporeal Life Support and Mesenchymal Stem Cell Therapy for Treatment of ARDS in Combat Casualties and Evacuation of Service Members with ARDS

    DTIC Science & Technology

    2017-10-01

    invasiveness of mechanical ventilation and inflammatory mediators as well as improvement in oxygenation and functional outcome. 4 Keywords Acute...The Clark system is allowing us to measure the mitochondrial activity by the oxygen consumption during activation. Because the LPS-induced injury we... Ventilation • Tidal Volume • Respiratory Rate • Peak inspiratory Pressure • Positive End Expiratory Pressure (PEEP) • Fraction of inspired oxygen

  15. Extracorporeal Membrane Oxygenation in a Patient With Refractory Acute Respiratory Distress Syndrome Secondary to Toxic Epidermal Necrolysis.

    DTIC Science & Technology

    2014-12-01

    she had complained of a sore throat, some difficulty in breathing, and chest pain. Two weeks earlier, she had started lamotrigine for depression. On...Despite escalating ventilator support for 7 days with airway pressure release ventilation, high levels of fraction of inspired oxygen (FiO2), and, later...out of clinical necessity, heavy sedation and paralytics, her saturations remained low (70–80%), with mean airway pressures in the mid-30s and a ris

  16. Clinical outcomes of patients requiring ventilatory support in Brazilian intensive care units: a multicenter, prospective, cohort study

    PubMed Central

    2013-01-01

    Introduction Contemporary information on mechanical ventilation (MV) use in emerging countries is limited. Moreover, most epidemiological studies on ventilatory support were carried out before significant developments, such as lung protective ventilation or broader application of non-invasive ventilation (NIV). We aimed to evaluate the clinical characteristics, outcomes and risk factors for hospital mortality and failure of NIV in patients requiring ventilatory support in Brazilian intensive care units (ICU). Methods In a multicenter, prospective, cohort study, a total of 773 adult patients admitted to 45 ICUs over a two-month period requiring invasive ventilation or NIV for more than 24 hours were evaluated. Causes of ventilatory support, prior chronic health status and physiological data were assessed. Multivariate analysis was used to identifiy variables associated with hospital mortality and NIV failure. Results Invasive MV and NIV were used as initial ventilatory support in 622 (80%) and 151 (20%) patients. Failure with subsequent intubation occurred in 54% of NIV patients. The main reasons for ventilatory support were pneumonia (27%), neurologic disorders (19%) and non-pulmonary sepsis (12%). ICU and hospital mortality rates were 34% and 42%. Using the Berlin definition, acute respiratory distress syndrome (ARDS) was diagnosed in 31% of the patients with a hospital mortality of 52%. In the multivariate analysis, age (odds ratio (OR), 1.03; 95% confidence interval (CI), 1.01 to 1.03), comorbidities (OR, 2.30; 95% CI, 1.28 to 3.17), associated organ failures (OR, 1.12; 95% CI, 1.05 to 1.20), moderate (OR, 1.92; 95% CI, 1.10 to 3.35) to severe ARDS (OR, 2.12; 95% CI, 1.01 to 4.41), cumulative fluid balance over the first 72 h of ICU (OR, 2.44; 95% CI, 1.39 to 4.28), higher lactate (OR, 1.78; 95% CI, 1.27 to 2.50), invasive MV (OR, 2.67; 95% CI, 1.32 to 5.39) and NIV failure (OR, 3.95; 95% CI, 1.74 to 8.99) were independently associated with hospital mortality. The predictors of NIV failure were the severity of associated organ dysfunctions (OR, 1.20; 95% CI, 1.05 to 1.34), ARDS (OR, 2.31; 95% CI, 1.10 to 4.82) and positive fluid balance (OR, 2.09; 95% CI, 1.02 to 4.30). Conclusions Current mortality of ventilated patients in Brazil is elevated. Implementation of judicious fluid therapy and a watchful use and monitoring of NIV patients are potential targets to improve outcomes in this setting. Trial registration ClinicalTrials.gov NCT01268410. PMID:23557378

  17. Poor Adherence to Lung-Protective Mechanical Ventilation in Pediatric Acute Respiratory Distress Syndrome.

    PubMed

    Ward, Shan L; Quinn, Carson M; Valentine, Stacey L; Sapru, Anil; Curley, Martha A Q; Willson, Douglas F; Liu, Kathleen D; Matthay, Michael A; Flori, Heidi R

    2016-10-01

    To determine the frequency of low-tidal volume ventilation in pediatric acute respiratory distress syndrome and assess if any demographic or clinical factors improve low-tidal volume ventilation adherence. Descriptive post hoc analysis of four multicenter pediatric acute respiratory distress syndrome studies. Twenty-six academic PICU. Three hundred fifteen pediatric acute respiratory distress syndrome patients. All patients who received conventional mechanical ventilation at hours 0 and 24 of pediatric acute respiratory distress syndrome who had data to calculate ideal body weight were included. Two cutoff points for low-tidal volume ventilation were assessed: less than or equal to 6.5 mL/kg of ideal body weight and less than or equal to 8 mL/kg of ideal body weight. Of 555 patients, we excluded 240 for other respiratory support modes or missing data. The remaining 315 patients had a median PaO2-to-FIO2 ratio of 140 (interquartile range, 90-201), and there were no differences in demographics between those who did and did not receive low-tidal volume ventilation. With tidal volume cutoff of less than or equal to 6.5 mL/kg of ideal body weight, the adherence rate was 32% at hour 0 and 33% at hour 24. A low-tidal volume ventilation cutoff of tidal volume less than or equal to 8 mL/kg of ideal body weight resulted in an adherence rate of 58% at hour 0 and 60% at hour 24. Low-tidal volume ventilation use was no different by severity of pediatric acute respiratory distress syndrome nor did adherence improve over time. At hour 0, overweight children were less likely to receive low-tidal volume ventilation less than or equal to 6.5 mL/kg ideal body weight (11% overweight vs 38% nonoverweight; p = 0.02); no difference was noted by hour 24. Furthermore, in the overweight group, using admission weight instead of ideal body weight resulted in misclassification of up to 14% of patients as receiving low-tidal volume ventilation when they actually were not. Low-tidal volume ventilation is underused in the first 24 hours of pediatric acute respiratory distress syndrome. Age, Pediatric Risk of Mortality-III, and pediatric acute respiratory distress syndrome severity were not associated with improved low-tidal volume ventilation adherence nor did adherence improve over time. Overweight children were less likely to receive low-tidal volume ventilation strategies in the first day of illness.

  18. Obesity: challenges to ventilatory control during exercise--a brief review.

    PubMed

    Babb, Tony G

    2013-11-01

    Obesity is a national health issue in the US. Among the many physiological changes induced by obesity, it also presents a unique challenge to ventilatory control during exercise due to increased metabolic demand of moving larger limbs, increased work of breathing due to extra weight on the chest wall, and changes in breathing mechanics. These challenges to ventilatory control in obesity can be inconspicuous or overt among obese adults but for the most part adaptation of ventilatory control during exercise in obesity appears remarkably unnoticed in the majority of obese people. In this brief review, the changes to ventilatory control required for maintaining normal ventilation during exercise will be examined, especially the interaction between respiratory neural drive and ventilation. Also, gaps in our current knowledge will be discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Pressure support versus T-tube for weaning from mechanical ventilation in adults.

    PubMed

    Ladeira, Magdaline T; Vital, Flávia M R; Andriolo, Régis B; Andriolo, Brenda N G; Atallah, Alvaro N; Peccin, Maria S

    2014-05-27

    Mechanical ventilation is important in caring for patients with critical illness. Clinical complications, increased mortality, and high costs of health care are associated with prolonged ventilatory support or premature discontinuation of mechanical ventilation. Weaning refers to the process of gradually or abruptly withdrawing mechanical ventilation. The weaning process begins after partial or complete resolution of the underlying pathophysiology precipitating respiratory failure and ends with weaning success (successful extubation in intubated patients or permanent withdrawal of ventilatory support in tracheostomized patients). To evaluate the effectiveness and safety of two strategies, a T-tube and pressure support ventilation, for weaning adult patients with respiratory failure that required invasive mechanical ventilation for at least 24 hours, measuring weaning success and other clinically important outcomes. We searched the following electronic databases: Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2012, Issue 6); MEDLINE (via PubMed) (1966 to June 2012); EMBASE (January 1980 to June 2012); LILACS (1986 to June 2012); CINAHL (1982 to June 2012); SciELO (from 1997 to August 2012); thesis repository of CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) (http://capesdw.capes.gov.br/capesdw/) (August 2012); and Current Controlled Trials (August 2012).We reran the search in December 2013. We will deal with any studies of interest when we update the review. We included randomized controlled trials (RCTs) that compared a T-tube with pressure support (PS) for the conduct of spontaneous breathing trials and as methods of gradual weaning of adult patients with respiratory failure of various aetiologies who received invasive mechanical ventilation for at least 24 hours. Two authors extracted data and assessed the methodological quality of the included studies. Meta-analyses using the random-effects model were conducted for nine outcomes. Relative risk (RR) and mean difference (MD) or standardized mean difference (SMD) were used to estimate the treatment effect, with 95% confidence intervals (CI). We included nine RCTs with 1208 patients; 622 patients were randomized to a PS spontaneous breathing trial (SBT) and 586 to a T-tube SBT. The studies were classified into three categories of weaning: simple, difficult, and prolonged. Four studies placed patients in two categories of weaning. Pressure support ventilation (PSV) and a T-tube were used directly as SBTs in four studies (844 patients, 69.9% of the sample). In 186 patients (15.4%) both interventions were used along with gradual weaning from mechanical ventilation; the PS was gradually decreased, twice a day, until it was minimal and periods with a T-tube were gradually increased to two and eight hours for patients with difficult and prolonged weaning. In two studies (14.7% of patients) the PS was lowered to 2 to 4 cm H2O and 3 to 5 cm H2O based on ventilatory parameters until the minimal PS levels were reached. PS was then compared to the trial with the T-tube (TT).We identified 33 different reported outcomes in the included studies; we took 14 of them into consideration and performed meta-analyses on nine. With regard to the sequence of allocation generation, allocation concealment, selective reporting and attrition bias, no study presented a high risk of bias. We found no clear evidence of a difference between PS and TT for weaning success (RR 1.07, 95% CI 0.97 to 1.17, 9 studies, low quality of evidence), intensive care unit (ICU) mortality (RR 0.81, 95% CI 0.53 to 1.23, 5 studies, low quality of evidence), reintubation (RR 0.92, 95% CI 0.66 to 1.26, 7 studies, low quality evidence), ICU and long-term weaning unit (LWU) length of stay (MD -7.08 days, 95% CI -16.26 to 2.1, 2 studies, low quality of evidence) and pneumonia (RR 0.67, 95% CI 0.08 to 5.85, 2 studies, low quality of evidence). PS was significantly superior to the TT for successful SBTs (RR 1.09, 95% CI 1.02 to 1.17, 4 studies, moderate quality of evidence). Four studies reported on weaning duration, however we were unable to combined the study data because of differences in how the studies presented their data. One study was at high risk of other bias and four studies were at high risk for detection bias. Three studies reported that the weaning duration was shorter with PS, and in one study the duration was shorter in patients with a TT. To date, we have found evidence of generally low quality from studies comparing pressure support ventilation (PSV) and with a T-tube. The effects on weaning success, ICU mortality, reintubation, ICU and LWU length of stay, and pneumonia were imprecise. However, PSV was more effective than a T-tube for successful spontaneous breathing trials (SBTs) among patients with simple weaning. Based on the findings of single trials, three studies presented a shorter weaning duration in the group undergoing PS SBT, however a fourth study found a shorter weaning duration with a T-tube.

  20. Requirements and Sizing Investigation for Constellation Space Suit Portable Life Support System Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Waguespack, Glenn

    2010-01-01

    The Trace Contaminant Control System (TCCS), located within the ventilation loop of the Constellation Space Suit Portable Life Support System (PLSS), is responsible for removing hazardous trace contaminants from the space suit ventilation flow. This paper summarizes the results of a trade study that evaluated if trace contaminant control could be accomplished without a TCCS, relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Trace contaminant generation rates were revisited to verify that values reflect the latest designs for Constellation Space Suit System (CSSS) pressure garment materials and PLSS hardware. Additionally, TCCS sizing calculations were performed and a literature survey was conducted to review the latest developments in trace contaminant technologies.

  1. A study of the effect of nasal modes of ventilation on the incidence of gastro-oesophageal reflux in preterm neonates.

    PubMed

    Mathai, Ss; Datta, Karuna; Adhikari, Km

    2012-01-01

    Nasal modes of respiratory support cause variable amounts of gastric dilatation which may increase gastro-oesophageal reflux (GER) in preterms. To compare the incidence of GER in nasally ventilated, preterm babies with controls (babies not on ventilation). A prospective, observational comparative study. Twenty-three preterm babies of gestational age 28-36 weeks and weight ranging between 1,000 g and < 2,500 g on either nasal continuous positive airway pressure (nCPAP) or nasal intermittent positive pressure venti-lation (nIPPV) were assessed for GER. They were compared with controls not on ventilation some of who were test babies when off ventilation (subgroup A) and some were unrelated babies not on ventilator but matched for gestational age and weight with test babies (subgroup B). All babies were subjected to continuous, oesophageal pH monitoring with dual sensor (upper and lower oesophageal) catheters. Reflux index (RI) was calculated as the percentage of study time the lower oesophageal pH was < 4. Primary outcome was the RI in the test and controls groups. Secondary outcome was the temporal relation of the reflux with symptoms if any. Numerical data were shown as mean with standard deviation and statistical comparisons were done using the χ(2)-test, Fischer test, and t-test wherever applicable. The RI was higher in ventilated babies as compared to the control group, particularly in the subgroup A, where test babies formed their own controls. Grade IV reflux (7 cases) was seen only in the ventilated babies. There was no difference in the incidence of GER in babies on nCPAP as compared with nIPPV. Grade IV reflux could not be reliably predicted by RI alone. No definite temporal relation between episodes of reflux and symptoms could be determined in this study. There is an increase in GER in preterms on nasal modes of ventilation. A combination of upper (pharyngeal) and lower oesophageal sensors are preferred to a single lower oesophageal sensor when assessing GER by oesophageal pHmetry in neonates.

  2. Lung Transcriptomics during Protective Ventilatory Support in Sepsis-Induced Acute Lung Injury

    PubMed Central

    Acosta-Herrera, Marialbert; Lorenzo-Diaz, Fabian; Pino-Yanes, Maria; Corrales, Almudena; Valladares, Francisco; Klassert, Tilman E.; Valladares, Basilio; Slevogt, Hortense; Ma, Shwu-Fan

    2015-01-01

    Acute lung injury (ALI) is a severe inflammatory process of the lung. The only proven life-saving support is mechanical ventilation (MV) using low tidal volumes (LVT) plus moderate to high levels of positive end-expiratory pressure (PEEP). However, it is currently unknown how they exert the protective effects. To identify the molecular mechanisms modulated by protective MV, this study reports transcriptomic analyses based on microarray and microRNA sequencing in lung tissues from a clinically relevant animal model of sepsis-induced ALI. Sepsis was induced by cecal ligation and puncture (CLP) in male Sprague-Dawley rats. At 24 hours post-CLP, septic animals were randomized to three ventilatory strategies: spontaneous breathing, LVT (6 ml/kg) plus 10 cmH2O PEEP and high tidal volume (HVT, 20 ml/kg) plus 2 cmH2O PEEP. Healthy, non-septic, non-ventilated animals served as controls. After 4 hours of ventilation, lung samples were obtained for histological examination and gene expression analysis using microarray and microRNA sequencing. Validations were assessed using parallel analyses on existing publicly available genome-wide association study findings and transcriptomic human data. The catalogue of deregulated processes differed among experimental groups. The ‘response to microorganisms’ was the most prominent biological process in septic, non-ventilated and in HVT animals. Unexpectedly, the ‘neuron projection morphogenesis’ process was one of the most significantly deregulated in LVT. Further support for the key role of the latter process was obtained by microRNA studies, as four species targeting many of its genes (Mir-27a, Mir-103, Mir-17-5p and Mir-130a) were found deregulated. Additional analyses revealed 'VEGF signaling' as a central underlying response mechanism to all the septic groups (spontaneously breathing or mechanically ventilated). Based on this data, we conclude that a co-deregulation of 'VEGF signaling' along with 'neuron projection morphogenesis', which have been never anticipated in ALI pathogenesis, promotes lung-protective effects of LVT with high levels of PEEP. PMID:26147972

  3. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo

    2009-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  4. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Conger, Bruce; Sompyrac, Robert; Chamberlain, Mateo

    2008-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  5. Thermal Effectiveness of Wall Indoor Fountain in Warm Humid Climate

    NASA Astrophysics Data System (ADS)

    Seputra, J. A. P.

    2018-03-01

    Nowadays, many buildings wield indoor water features such as waterfalls, fountains, and water curtains to improve their aesthetical value. Despite the provision of air cooling due to water evaporation, this feature also has adverse effect if applied in warm humid climate since evaporation might increase air humidity beyond the comfort level. Yet, there are no specific researches intended to measure water feature’s effect upon its thermal condition. In response, this research examines the influence of evaporative cooling on indoor wall fountain toward occupant’s thermal comfort in warm humid climate. To achieve this goal, case study is established in Waroeng Steak Restaurant’s dining room in Surakarta-Indonesia. In addition, SNI 03-6572-2001 with comfort range of 20.5–27.1°C and 40-60% of relative humidity is utilized as thermal criterion. Furthermore, Computational Fluid Dynamics (CFD) is employed to process the data and derive conclusions. Research variables are; feature’s height, obstructions, and fan types. As results, Two Bumps Model (ToB) is appropriate when employs natural ventilation. However, if the room is mechanically ventilated, Three Bumps Model (TeB) becomes the best choice. Moreover, application of adaptive ventilation is required to maintain thermal balance.

  6. Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury.

    PubMed

    Hasan, Djo; Blankman, Paul; Nieman, Gary F

    2017-09-01

    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.

  7. Imaging Lung Function in Mice Using SPECT/CT and Per-Voxel Analysis

    PubMed Central

    Jobse, Brian N.; Rhem, Rod G.; McCurry, Cory A. J. R.; Wang, Iris Q.; Labiris, N. Renée

    2012-01-01

    Chronic lung disease is a major worldwide health concern but better tools are required to understand the underlying pathologies. Ventilation/perfusion (V/Q) single photon emission computed tomography (SPECT) with per-voxel analysis allows for non-invasive measurement of regional lung function. A clinically adapted V/Q methodology was used in healthy mice to investigate V/Q relationships. Twelve week-old mice were imaged to describe normal lung function while 36 week-old mice were imaged to determine how age affects V/Q. Mice were ventilated with Technegas™ and injected with 99mTc-macroaggregated albumin to trace ventilation and perfusion, respectively. For both processes, SPECT and CT images were acquired, co-registered, and quantitatively analyzed. On a per-voxel basis, ventilation and perfusion were moderately correlated (R = 0.58±0.03) in 12 week old animals and a mean log(V/Q) ratio of −0.07±0.01 and standard deviation of 0.36±0.02 were found, defining the extent of V/Q matching. In contrast, 36 week old animals had significantly increased levels of V/Q mismatching throughout the periphery of the lung. Measures of V/Q were consistent across healthy animals and differences were observed with age demonstrating the capability of this technique in quantifying lung function. Per-voxel analysis and the ability to non-invasively assess lung function will aid in the investigation of chronic lung disease models and drug efficacy studies. PMID:22870297

  8. Idioms of distress: alternatives in the expression of psychosocial distress: a case study from South India.

    PubMed

    Nichter, M

    1981-12-01

    This paper focuses attention on alternative modes of expressing distress and the need to analyze particular manifestations of distress in relation to personal and cultural meaning complexes as well as the availability and social implications of coexisting idioms of expression. To illustrate this point the case of South Kanarese Havik Brahmin women is presented. These women are described as having a weak social support network and limited opportunities to ventilate feelings and seek counsel outside the household. Alternative means of expressing psychosocial distress resorted to by Havik women are discussed in relation to associated Brahminic values, norms and stereotypes. Somatization is focused upon as an important idiom through which distress is communicated. Idioms of distress more peripheral to the personal or cultural behavioral repertoire of Havik women are considered as adaptive responses in circumstances where other modes of expression fail to communicate distress adequately or provide appropriate coping strategies. The importance of an 'idioms of distress' approach to psychiatric evaluation is noted.

  9. An evaluation of three experimental processes for two-dimensional transonic tests

    NASA Technical Reports Server (NTRS)

    Zuppardi, Gennaro

    1989-01-01

    The aerodynamic measurements in conventional wind tunnels usually suffer from the interference effects of the sting supporting the model and the test section walls. These effects are particularly severe in the transonic regime. Sting interference effects can be overcome through the Magnetic Suspension technique. Wall effects can be alleviated by: testing airfoils in conventional, ventilated tunnels at relatively small model to tunnel size ratios; treatment of the tunnel wall boundary layers; or by utilization of the Adaptive Wall Test Section (AWTS) concept. The operating capabilities and results from two of the foremost two-dimensional, transonic, AWTS facilities in existence are assessed. These facilities are the NASA 0.3-Meter Transonic Cryogenic Tunnel and the ONERA T-2 facility located in Toulouse, France. In addition, the results derived from the well known conventional facility, the NAE 5 ft x 5 ft Canadian wind tunnel will be assessed. CAST10/D0A2 Airfoil results will be used in all of the evaluations.

  10. Pediatric Out-of-Hospital Cardiac Arrest Characteristics and Their Association With Survival and Neurobehavioral Outcome.

    PubMed

    Meert, Kathleen L; Telford, Russell; Holubkov, Richard; Slomine, Beth S; Christensen, James R; Dean, J Michael; Moler, Frank W

    2016-12-01

    To investigate relationships between cardiac arrest characteristics and survival and neurobehavioral outcome among children recruited to the Therapeutic Hypothermia after Pediatric Cardiac Arrest Out-of-Hospital trial. Secondary analysis of Therapeutic Hypothermia after Pediatric Cardiac Arrest Out-of-Hospital trial data. Thirty-six PICUs in the United States and Canada. All children (n = 295) had chest compressions for greater than or equal to 2 minutes, were comatose, and required mechanical ventilation after return of circulation. Neurobehavioral function was assessed using the Vineland Adaptive Behavior Scales, Second Edition at baseline (reflecting prearrest status) and 12 months postarrest. U.S. norms for Vineland Adaptive Behavior Scales, Second Edition scores are 100 (mean) ± 15 (SD). Higher scores indicate better functioning. Outcomes included 12-month survival and 12-month survival with Vineland Adaptive Behavior Scales, Second Edition greater than or equal to 70. Cardiac etiology of arrest, initial arrest rhythm of ventricular fibrillation/tachycardia, shorter duration of chest compressions, compressions not required at hospital arrival, fewer epinephrine doses, and witnessed arrest were associated with greater 12-month survival and 12-month survival with Vineland Adaptive Behavior Scales, Second Edition greater than or equal to 70. Weekend arrest was associated with lower 12-month survival. Body habitus was associated with 12-month survival with Vineland Adaptive Behavior Scales, Second Edition greater than or equal to 70; underweight children had better outcomes, and obese children had worse outcomes. On multivariate analysis, acute life threatening event/sudden unexpected infant death, chest compressions more than 30 minutes, and weekend arrest were associated with lower 12-month survival; witnessed arrest was associated with greater 12-month survival. Acute life threatening event/sudden unexpected infant death, other respiratory causes of arrest except drowning, other/unknown causes of arrest, and compressions more than 30 minutes were associated with lower 12-month survival with Vineland Adaptive Behavior Scales, Second Edition greater than or equal to 70. Many factors are associated with survival and neurobehavioral outcome among children who are comatose and require mechanical ventilation after out-of-hospital cardiac arrest. These factors may be useful for identifying children at risk for poor outcomes, and for improving prevention and resuscitation strategies.

  11. Perfluorocarbon-associated gas exchange in normal and acid-injured large sheep.

    PubMed

    Hernan, L J; Fuhrman, B P; Kaiser, R E; Penfil, S; Foley, C; Papo, M C; Leach, C L

    1996-03-01

    We hypothesized that a) perfluorocarbon-associated gas exchange could be accomplished in normal large sheep; b) the determinants of gas exchange would be similar during perfluorocarbon-associated gas exchange and conventional gas ventilation; c)in large animals with lung injury, perfluorocarbon-associated gas exchange could be used to enhance gas exchange without adverse effects on hemodynamics; and d) the large animal with lung injury could be supported with an FIO2 of <1.0 during perfluorocarbon-associated gas exchange. Prospective, observational animal study and prospective randomized, controlled animal study. An animal laboratory in a university setting. Thirty adult ewes. Five normal ewes (61.0 +/- 4.0 kg) underwent perfluorocarbon-associated gas exchange to ascertain the effects of tidal volume, end-inspiratory pressure, and positive end-expiratory pressure (PEEP) on oxygenation. Respiratory rate, tidal volume, and minute ventilation were studied to determine their effects on CO2 clearance. Sheep, weighing 58.9 +/- 8.3 kg, had lung injury induced by instilling 2 mL/kg of 0.05 Normal hydrochloric acid into the trachea. Five minutes after injury, PEEP was increased to 10 cm H2O. Ten minutes after injury, sheep with Pao2 values of <100 torr (<13.3 kPa) were randomized to continue gas ventilation (control, n=9) or to institute perfluorocarbon-associated gas exchange (n=9) by instilling 1.6 L of unoxygenated perflubron into the trachea and resuming gas ventilation. Blood gas and hemodynamic measurements were obtained throughout the 4-hr study. Both tidal volume and end-inspiratory pressure influenced oxygenation in normal sheep during perfluorocarbon-associated gas exchange. Minute ventilation determined CO2 clearance during perfluorocarbon-associated gas exchange in normal sheep. After acid aspiration lung injury, perfluorocarbon-associated gas exchange increased PaO2 and reduced intrapulmonary shunt fraction. Hypoxia and intrapulmonary shunting were unabated after injury in control animals. Hemodynamics were not influenced by the institution of perfluorocarbon-associated gas exchange. Tidal volume and end-inspiratory pressure directly influence oxygenation during perfluorocarbon-associated gas exchange in large animals. Minute ventilation influences clearance of CO2. In adult sheep with acid aspiration lung injury, perfluorocarbon-associated gas exchange at an FIO2 of <1.0 supports oxygenation and improves intrapulmonary shunting, without adverse hemodynamic effects, when compared with conventional gas ventilation.

  12. Respiratory system mechanics in acute respiratory distress syndrome.

    PubMed

    Kallet, Richard H; Katz, Jeffrey A

    2003-09-01

    Respiratory mechanics research is important to the advancement of ARDS management. Twenty-eight years ago, research on the effects of PEEP and VT indicated that the lungs of ARDS patients did not behave in a manner consistent with homogenously distributed lung injury. Both Suter and colleagues] and Katz and colleagues reported that oxygenation continued to improve as PEEP increased (suggesting lung recruitment), even though static Crs decreased and dead-space ventilation increased (suggesting concurrent lung overdistension). This research strongly suggested that without VT reduction, the favorable effects of PEEP on lung recruitment are offset by lung overdistension at end-inspiration. The implications of these studies were not fully appreciated at that time, in part because the concept of ventilator-associated lung injury was in its nascent state. Ten years later. Gattinoni and colleagues compared measurements of static pressure-volume curves with FRC and CT scans of the chest in ARDS. They found that although PEEP recruits collapsed (primarily dorsal) lung segments, it simultaneously causes overdistension of non-dependent, inflated lung regions. Furthermore, the specific compliance of the aerated, residually healthy lung tissue is essentially normal. The main implication of these findings is that traditional mechanical ventilation practice was injecting excessive volumes of gas into functionally small lungs. Therefore, the emblematic low static Crs measured in ARDS reflects not only surface tension phenomena and recruitment of collapsed airspaces but also overdistension of the remaining healthy lung. The studies reviewed in this article support the concept that lung injury in ARDS is heterogeneously distributed, with resulting disparate mechanical stresses, and indicate the additional complexity from alterations in chest wall mechanics. Most of these studies, however, were published before lung-protective ventilation. Therefore, further studies are needed to refine the understanding of the mechanical effects of lung-protective ventilation. Although low-VT ventilation is becoming a standard of care for ARDS patients, many issues remain unresolved; among them are the role of PEEP and recruitment maneuvers in either preventing or promoting lung injury and the effects of respiratory rate and graded VT reduction on mechanical stress in the lungs. The authors believe that advances in mechanical ventilation that may further improve patient outcomes are likely to come from more sophisticated monitoring capabilities (ie, the ability to measure P1 or perhaps Cslice) than from the creation of new modes of ventilatory support.

  13. Caloric Requirements of Patients With Brain Impairment and Cerebral Palsy Who Are Dependent on Chronic Ventilation.

    PubMed

    Gale, Rena; Namestnic, Julia; Singer, Pierre; Kagan, Ilya

    2017-11-01

    Israeli law mandates chronic ventilator support for children and adolescents who are severely brain impaired and show minimal responses. Feeding protocols in these cases have been based on the caloric requirements of healthy children, deducting calories for lack of activity as well as an individual adjustment according to the cerebral palsy growth curves. However, patients are still inclined to gain excessive weight. Our objective was to determine the caloric requirements of these patients. Sixteen patients hospitalized in a dedicated unit who were ventilated through tracheostomies and fed via gastrostomies were included. Patients were aged 3-24 years; duration of ventilation was 1-7.5 years; and diagnoses included congenital genetic or brain malformations (n = 9), hypoxic accidents (n = 4), and postbacterial or postviral encephalitis (n = 3). Resting energy expenditure (REE) was determined by indirect calorimetry. REE values were compared with the caloric requirements of age-comparable healthy children and the calories actually delivered. Data were analyzed with paired t tests, Pearson correlations, and linear regression. The REE of our patients was 46% lower than the estimated caloric requirements of healthy children. In practice, patients received 32% more calories than that measured by REE. These findings were not affected by age, weight, diagnosis, or length of hospitalization. The caloric expenditure of these patients is very low. A diet guided by indirect calorimetry is proposed to aid in providing optimal nutrition support for this unique population to avoid overfeeding and obesity.

  14. Chapter 5. Essential equipment, pharmaceuticals and supplies. Recommendations and standard operating procedures for intensive care unit and hospital preparations for an influenza epidemic or mass disaster.

    PubMed

    Sprung, Charles L; Kesecioglu, Jozef

    2010-04-01

    To provide recommendations and standard operating procedures for intensive care unit and hospital preparations for an influenza pandemic or mass disaster with a specific focus on essential equipment, pharmaceuticals and supplies. Based on a literature review and expert opinion, a Delphi process was used to define the essential topics including essential equipment, pharmaceuticals and supplies. Key recommendations include: (1) ensure that adequate essential medical equipment, pharmaceuticals and important supplies are available during a disaster; (2) develop a communication and coordination system between health care facilities and local/regional/state/country governmental authorities for the provision of additional support; (3) determine the required resources, order and stockpile adequate resources, and judiciously distribute them; (4) acquire additional mechanical ventilators that are portable, provide adequate gas exchange for a range of clinical conditions, function with low-flow oxygen and without high pressure, and are safe for patients and staff; (5) provide advanced ventilatory support and rescue therapies including high levels of inspired oxygen and positive end-expiratory pressure, volume and pressure control ventilation, inhaled nitric oxide, high-frequency ventilation, prone positioning ventilation and extracorporeal membrane oxygenation; (6) triage scarce resources including equipment, pharmaceuticals and supplies based on those who are likely to benefit most or on a 'first come, first served' basis. Judicious planning and adoption of protocols for providing adequate equipment, pharmaceuticals and supplies are necessary to optimize outcomes during a pandemic.

  15. Laryngeal closure impedes non-invasive ventilation at birth

    PubMed Central

    Crawshaw, Jessica R; Kitchen, Marcus J; Binder-Heschl, Corinna; Thio, Marta; Wallace, Megan J; Kerr, Lauren T; Roehr, Charles C; Lee, Katie L; Buckley, Genevieve A; Davis, Peter G; Flemmer, Andreas; te Pas, Arjan B; Hooper, Stuart B

    2018-01-01

    Background Non-invasive ventilation is sometimes unable to provide the respiratory needs of very premature infants in the delivery room. While airway obstruction is thought to be the main problem, the site of obstruction is unknown. We investigated whether closure of the larynx and epiglottis is a major site of airway obstruction. Methods We used phase contrast X-ray imaging to visualise laryngeal function in spontaneously breathing premature rabbits immediately after birth and at approximately 1 hour after birth. Non-invasive respiratory support was applied via a facemask and images were analysed to determine the percentage of the time the glottis and the epiglottis were open. Hypothesis Immediately after birth, the larynx is predominantly closed, only opening briefly during a breath, making non-invasive intermittent positive pressure ventilation (iPPV) ineffective, whereas after lung aeration, the larynx is predominantly open allowing non-invasive iPPV to ventilate the lung. Results The larynx and epiglottis were predominantly closed (open 25.5%±1.1% and 17.1%±1.6% of the time, respectively) in pups with unaerated lungs and unstable breathing patterns immediately after birth. In contrast, the larynx and the epiglottis were mostly open (90.5%±1.9% and 72.3%±2.3% of the time, respectively) in pups with aerated lungs and stable breathing patterns irrespective of time after birth. Conclusion Laryngeal closure impedes non-invasive iPPV at birth and may reduce the effectiveness of non-invasive respiratory support in premature infants immediately after birth. PMID:29054974

  16. Frequently Asked Questions about Ventilator-Associated Pneumonia

    MedlinePlus

    ... Personnel PPE Training Infection Control Assessment Tools Water Management Programs Map: HAI Prevention Activities Research CDC Supported Projects Prevention Epicenters (PE) Healthcare Safety Research (SHEPheRD) Environmental ...

  17. Benzene poisoning

    MedlinePlus

    ... treated. The person may receive: Blood and urine tests. Breathing support, including a tube through the mouth into the lungs, and a breathing machine (ventilator). Chest x-ray. Endoscopy -- camera placed down ...

  18. First experience of using new adaptive servo-ventilation device for Cheyne-Stokes respiration with central sleep apnea among Japanese patients with congestive heart failure: report of 4 clinical cases.

    PubMed

    Kasai, Takatoshi; Narui, Koji; Dohi, Tomotaka; Takaya, Hisashi; Yanagisawa, Naotake; Dungan, George; Ishiwata, Sugao; Ohno, Minoru; Ymaguchi, Tetsu; Momomura, Shin-ichi

    2006-09-01

    Cheyne-Stokes respiration with central sleep apnea (CSR-CSA) in congestive heart failure (CHF) is generally considered a poor prognostic indicator, but treatment of CSR-CSA using an adaptive servo-ventilation (ASV) device has been developed. This is the first evaluation of its use in the management of CSR-CSA in Japanese CHF patients. Four CHF patients with CSR-CSA that was unresponsive to conventional positive airway pressure (CPAP) underwent 3 nights of polysomnography: baseline, CPAP or bi-level PAP, and on the ASV. The apnea - hypopnea index (AHI) and central-AHI (CAHI) were markedly improved on ASV (AHI 62.7+/-10.1 to 5.9+/-2.2 /h, p=0.0006, CAHI 54.5+/-6.7 to 5.6+/-2.3 /h, p=0.007). In addition, the sleep quality improved significantly on ASV, including arousal index (62.0+/-10.5 to 18.7 +/-6.2 /h, p=0.012), percentage of slow-wave sleep (2.6+/-2.6 to 19.4+/-4.8 %, p=0.042). ASV markedly improved CSR-CSA in patients with CHF. It is a promising treatment for Japanese patients with CHF.

  19. The effect of adaptive servo ventilation (ASV) on objective and subjective outcomes in Cheyne-Stokes respiration (CSR) with central sleep apnea (CSA) in heart failure (HF): A systematic review.

    PubMed

    Yang, Hyunju; Sawyer, Amy M

    2016-01-01

    To summarize the current evidence for adaptive servo ventilation (ASV) in Cheyne-Stokes respiration (CSR) with central sleep apnea (CSA) in heart failure (HF) and advance a research agenda and clinical considerations for ASV-treated CSR-CSA in HF. CSR-CSA in HF is associated with higher overall mortality, worse outcomes and lower quality of life (QOL) than HF without CSR-CSA. Five databases were searched using key words (n = 234). Randomized controlled trials assessed objective sleep quality, cardiac, and self-reported outcomes in adults (≥18 years) with HF (n = 10). ASV has a beneficial effect on the reduction of central sleep apnea in adult patients with CSR-CSA in HF, but it is not be superior to CPAP, bilevel PPV, or supplemental oxygen in terms of sleep quality defined by polysomnography, cardiovascular outcomes, subjective daytime sleepiness, and quality of life. ASV is not recommended for CSR-CSA in HF. It is important to continue to refer HF patients for sleep evaluation to clearly discern OSA from CSR-CSA. Symptom management research, inclusive of objective and subjective outcomes, in CSR-CSA in HF adults is needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Management of Sleep Disordered Breathing in Patients with Heart Failure.

    PubMed

    Oates, Connor P; Ananthram, Manjula; Gottlieb, Stephen S

    2018-06-01

    This paper reviews treatment options for sleep disordered breathing (SDB) in patients with heart failure. We sought to identify therapies for SDB with the best evidence for long-term use in patients with heart failure and to minimize uncertainties in clinical practice by examining frequently discussed questions: what is the role of continuous positive airway pressure (CPAP) in patients with heart failure? Is adaptive servo-ventilation (ASV) safe in patients with heart failure? To what extent is SDB a modifiable risk factor? Consistent evidence has demonstrated that the development of SDB in patients with heart failure is a poor prognostic indicator and a risk factor for cardiovascular mortality. However, despite numerous available interventions for obstructive sleep apnea and central sleep apnea, it remains unclear what effect these therapies have on patients with heart failure. To date, all major randomized clinical trials have failed to demonstrate a survival benefit with SDB therapy and one major study investigating the use of adaptive servo-ventilation demonstrated harm. Significant questions persist regarding the management of SDB in patients with heart failure. Until appropriately powered trials identify a treatment modality that increases cardiovascular survival in patients with SDB and heart failure, a patient's heart failure management should remain the priority of medical care.

  1. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Lacomini, Christie; Paul, Heather L.

    2009-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2-selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (L CO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas represents a significant source of potential energy for the warming of the adsorbent bed as it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously.

  2. 4-D segmentation and normalization of 3He MR images for intrasubject assessment of ventilated lung volumes

    NASA Astrophysics Data System (ADS)

    Contrella, Benjamin; Tustison, Nicholas J.; Altes, Talissa A.; Avants, Brian B.; Mugler, John P., III; de Lange, Eduard E.

    2012-03-01

    Although 3He MRI permits compelling visualization of the pulmonary air spaces, quantitation of absolute ventilation is difficult due to confounds such as field inhomogeneity and relative intensity differences between image acquisition; the latter complicating longitudinal investigations of ventilation variation with respiratory alterations. To address these potential difficulties, we present a 4-D segmentation and normalization approach for intra-subject quantitative analysis of lung hyperpolarized 3He MRI. After normalization, which combines bias correction and relative intensity scaling between longitudinal data, partitioning of the lung volume time series is performed by iterating between modeling of the combined intensity histogram as a Gaussian mixture model and modulating the spatial heterogeneity tissue class assignments through Markov random field modeling. Evaluation of the algorithm was retrospectively applied to a cohort of 10 asthmatics between 19-25 years old in which spirometry and 3He MR ventilation images were acquired both before and after respiratory exacerbation by a bronchoconstricting agent (methacholine). Acquisition was repeated under the same conditions from 7 to 467 days (mean +/- standard deviation: 185 +/- 37.2) later. Several techniques were evaluated for matching intensities between the pre and post-methacholine images with the 95th percentile value histogram matching demonstrating superior correlations with spirometry measures. Subsequent analysis evaluated segmentation parameters for assessing ventilation change in this cohort. Current findings also support previous research that areas of poor ventilation in response to bronchoconstriction are relatively consistent over time.

  3. Nasal high-flow therapy reduces work of breathing compared with oxygen during sleep in COPD and smoking controls: a prospective observational study

    PubMed Central

    Kirkness, Jason P.; Grote, Ludger; Fricke, Kathrin; Schwartz, Alan R.; Smith, Philip; Schneider, Hartmut

    2017-01-01

    Patients with chronic obstructive pulmonary disease (COPD) endure excessive resistive and elastic loads leading to chronic respiratory failure. Oxygen supplementation corrects hypoxemia but is not expected to reduce mechanical loads. Nasal high-flow (NHF) therapy supports breathing by reducing dead space, but it is unclear how it affects mechanical loads of patients with COPD. The objective of this study was to compare the effects of low-flow oxygen and NHF therapy on ventilation and work of breathing (WOB) in patients with COPD and controls during sleep. Patients with COPD (n = 12) and controls (n = 6) were recruited and submitted to polysomnography to measure sleep parameters and ventilation in response to administration of oxygen and NHF. A subset of six patients also had an esophageal catheter inserted for the purpose of measuring WOB. Patients with COPD had similar minute ventilation (V̇e) but lower tidal volumes than matched controls. With oxygen, SaO2was increased and V̇e was reduced in both controls and patients with COPD, but there was an increase in transcutaneous CO2 levels. NHF produced a greater reduction in V̇e and was associated with a reduction in CO2 levels. Although NHF halved WOB, oxygen produced only a minor reduction in this parameter. We conclude that oxygen produced little change in WOB, which was associated with CO2 elevations. On the other hand, NHF produced a large reduction in V̇e and WOB with a concomitant decrease in CO2 levels. Our data indicate that NHF improves alveolar ventilation during sleep compared with oxygen and room air in patients with COPD and therefore can decrease their cost of breathing. NEW & NOTEWORTHY Nasal high-flow (NHF) therapy can support ventilation in patients with chronic obstructive pulmonary disease during sleep by decreasing the work of breathing and improving CO2 levels. On the other hand, oxygen supplementation corrects hypoxemia, but it produces only a minimal reduction in work of breathing and is associated with increased CO2 levels. Therefore, NHF can be a useful method to assist ventilation in patients with increased respiratory mechanical loads. PMID:27815367

  4. Sulforhodamine B interacts with albumin to lower surface tension and protect against ventilation injury of flooded alveoli

    PubMed Central

    Kharge, Angana Banerjee; Wu, You

    2014-01-01

    In the acute respiratory distress syndrome, alveolar flooding by proteinaceous edema liquid impairs gas exchange. Mechanical ventilation is used as a supportive therapy. In regions of the edematous lung, alveolar flooding is heterogeneous, and stress is concentrated in aerated alveoli. Ventilation exacerbates stress concentrations and injuriously overexpands aerated alveoli. Injury degree is proportional to surface tension, T. Lowering T directly lessens injury. Furthermore, as heterogeneous flooding causes the stress concentrations, promoting equitable liquid distribution between alveoli should, indirectly, lessen injury. We present a new theoretical analysis suggesting that liquid is trapped in discrete alveoli by a pressure barrier that is proportional to T. Experimentally, we identify two rhodamine dyes, sulforhodamine B and rhodamine WT, as surface active in albumin solution and investigate whether the dyes lessen ventilation injury. In the isolated rat lung, we micropuncture a surface alveolus, instill albumin solution, and obtain an area with heterogeneous alveolar flooding. We demonstrate that rhodamine dye addition lowers T, reduces ventilation-induced injury, and facilitates liquid escape from flooded alveoli. In vitro we show that rhodamine dye is directly surface active in albumin solution. We identify sulforhodamine B as a potential new therapeutic agent for the treatment of the acute respiratory distress syndrome. PMID:25414246

  5. Respiratory muscle activity and patient–ventilator asynchrony during different settings of noninvasive ventilation in stable hypercapnic COPD: does high inspiratory pressure lead to respiratory muscle unloading?

    PubMed Central

    Duiverman, Marieke L; Huberts, Anouk S; van Eykern, Leo A; Bladder, Gerrie; Wijkstra, Peter J

    2017-01-01

    Introduction High-intensity noninvasive ventilation (NIV) has been shown to improve outcomes in stable chronic obstructive pulmonary disease patients. However, there is insufficient knowledge about whether with this more controlled ventilatory mode optimal respiratory muscle unloading is provided without an increase in patient–ventilator asynchrony (PVA). Patients and methods Ten chronic obstructive pulmonary disease patients on home mechanical ventilation were included. Four different ventilatory settings were investigated in each patient in random order, each for 15 min, varying the inspiratory positive airway pressure and backup breathing frequency. With surface electromyography (EMG), activities of the intercostal muscles, diaphragm, and scalene muscles were determined. Furthermore, pressure tracings were derived simultaneously in order to assess PVA. Results Compared to spontaneous breathing, the most pronounced decrease in EMG activity was achieved with the high-pressure settings. Adding a high breathing frequency did reduce EMG activity per breath, while the decrease in EMG activity over 1 min was comparable with the high-pressure, low-frequency setting. With high backup breathing frequencies less breaths were pressure supported (25% vs 97%). PVAs occurred more frequently with the low-frequency settings (P=0.017). Conclusion High-intensity NIV might provide optimal unloading of respiratory muscles, without undue increases in PVA. PMID:28138234

  6. Oxygen therapy devices and portable ventilators for improved physical activity in daily life in patients with chronic respiratory disease.

    PubMed

    Furlanetto, Karina Couto; Pitta, Fabio

    2017-02-01

    Patients with hypoxemia and chronic respiratory failure may need to use oxygen therapy to correct hypoxemia and to use ventilatory support to augment alveolar ventilation, reverse abnormalities in blood gases (in particular hypercapnia) and reduce the work of breathing. Areas covered: This narrative review provides an overview on the use of oxygen therapy devices or portable ventilators for improved physical activity in daily life (PADL) as well as discusses the issue of lower mobility in daily life among stable patients with chronic respiratory disease who present indication for long-term oxygen therapy (LTOT) or home-based noninvasive ventilation (NIV). A literature review of these concepts was performed by using all related search terms. Expert commentary: Technological advances led to the development of light and small oxygen therapy devices and portable ventilators which aim to facilitate patients' mobility and ambulation. However, the day-by-day dependence of a device may reduce mobility and partially impair patients' PADL. Nocturnal NIV implementation in hypercapnic patients seems promising to improve PADL. The magnitude of their equipment-related physical inactivity is underexplored up to this moment and more long-term randomized clinical trials and meta-analysis examining the effects of ambulatory oxygen and NIV on PADL are required.

  7. Respiratory muscle activity and patient-ventilator asynchrony during different settings of noninvasive ventilation in stable hypercapnic COPD: does high inspiratory pressure lead to respiratory muscle unloading?

    PubMed

    Duiverman, Marieke L; Huberts, Anouk S; van Eykern, Leo A; Bladder, Gerrie; Wijkstra, Peter J

    2017-01-01

    High-intensity noninvasive ventilation (NIV) has been shown to improve outcomes in stable chronic obstructive pulmonary disease patients. However, there is insufficient knowledge about whether with this more controlled ventilatory mode optimal respiratory muscle unloading is provided without an increase in patient-ventilator asynchrony (PVA). Ten chronic obstructive pulmonary disease patients on home mechanical ventilation were included. Four different ventilatory settings were investigated in each patient in random order, each for 15 min, varying the inspiratory positive airway pressure and backup breathing frequency. With surface electromyography (EMG), activities of the intercostal muscles, diaphragm, and scalene muscles were determined. Furthermore, pressure tracings were derived simultaneously in order to assess PVA. Compared to spontaneous breathing, the most pronounced decrease in EMG activity was achieved with the high-pressure settings. Adding a high breathing frequency did reduce EMG activity per breath, while the decrease in EMG activity over 1 min was comparable with the high-pressure, low-frequency setting. With high backup breathing frequencies less breaths were pressure supported (25% vs 97%). PVAs occurred more frequently with the low-frequency settings ( P =0.017). High-intensity NIV might provide optimal unloading of respiratory muscles, without undue increases in PVA.

  8. Microclimate measuring and fluid‑dynamic simulation in an industrial broiler house: testing of an experimental ventilation system.

    PubMed

    Bianchi, Biagio; Giametta, Ferruccio; La Fianza, Giovanna; Gentile, Andrea; Catalano, Pasquale

    2015-01-01

    The environment in the broiler house is a combination of physical and biological factors generating a complex dynamic system of interactions between birds, husbandry system, light, temperature, and the aerial environment. Ventilation plays a key role in this scenario. It is pivotal to remove carbon dioxide and water vapor from the air of the hen house. Adequate ventilation rates provide the most effective method of controlling temperature within the hen house. They allow for controlling the relative humidity and can play a key role in alleviating the negative effects of high stocking density and of wet litter. In the present study the results of experimental tests performed in a breeding broiler farm are shown. In particular the efficiency of a semi transversal ventilation system was studied against the use of a pure transversal one. In order to verify the efficiency of the systems, fluid dynamic simulations were carried out using the software Comsol multiphysics. The results of this study show that a correct architectural and structural design of the building must be supported by a design of the ventilation system able to maintain the environmental parameters within the limits of the thermo‑neutral and welfare conditions and to achieve the highest levels of productivity.

  9. Acetazolamide: a second wind for a respiratory stimulant in the intensive care unit?

    PubMed Central

    2012-01-01

    Patients with chronic obstructive pulmonary disease (COPD) are affected by episodes of respiratory exacerbations, some of which can be severe and may necessitate respiratory support. Prolonged invasive mechanical ventilation is associated with increased mortality rates. Persistent failure to discontinue invasive mechanical ventilation is a major issue in patients with COPD. Pure or mixed metabolic alkalosis is a common finding in the intensive care unit (ICU) and is associated with a worse outcome. In patients with COPD, the condition is called post-hypercapnic alkalosis and is a complication of mechanical ventilation. Reversal of metabolic alkalosis may facilitate weaning from mechanical ventilation of patients with COPD. Acetazolamide, a non-specific carbonic anhydrase inhibitor, is one of the drugs employed in the ICU to reverse metabolic alkalosis. The drug is relatively safe, undesirable effects being rare. The compartmentalization of the different isoforms of the carbonic anhydrase enzyme may, in part, explain the lack of evidence of the efficacy of acetazolamide as a respiratory stimulant. Recent findings suggest that the usually employed doses of acetazolamide in the ICU may be insufficient to significantly improve respiratory parameters in mechanically ventilated patients with COPD. Randomized controlled trials using adequate doses of acetazolamide are required to address this issue. PMID:22866939

  10. Asphalt cement poisoning

    MedlinePlus

    ... treated. The person may receive: Blood and urine tests. Breathing support, including a tube through the mouth into the lungs, and a breathing machine (ventilator). Bronchoscopy -- camera placed down the throat to ...

  11. Utility and safety of draining pleural effusions in mechanically ventilated patients: a systematic review and meta-analysis

    PubMed Central

    2011-01-01

    Introduction Pleural effusions are frequently drained in mechanically ventilated patients but the benefits and risks of this procedure are not well established. Methods We performed a literature search of multiple databases (MEDLINE, EMBASE, HEALTHSTAR, CINAHL) up to April 2010 to identify studies reporting clinical or physiological outcomes of mechanically ventilated critically ill patients who underwent drainage of pleural effusions. Studies were adjudicated for inclusion independently and in duplicate. Data on duration of ventilation and other clinical outcomes, oxygenation and lung mechanics, and adverse events were abstracted in duplicate independently. Results Nineteen observational studies (N = 1,124) met selection criteria. The mean PaO2:FiO2 ratio improved by 18% (95% confidence interval (CI) 5% to 33%, I2 = 53.7%, five studies including 118 patients) after effusion drainage. Reported complication rates were low for pneumothorax (20 events in 14 studies including 965 patients; pooled mean 3.4%, 95% CI 1.7 to 6.5%, I2 = 52.5%) and hemothorax (4 events in 10 studies including 721 patients; pooled mean 1.6%, 95% CI 0.8 to 3.3%, I2 = 0%). The use of ultrasound guidance (either real-time or for site marking) was not associated with a statistically significant reduction in the risk of pneumothorax (OR = 0.32; 95% CI 0.08 to 1.19). Studies did not report duration of ventilation, length of stay in the intensive care unit or hospital, or mortality. Conclusions Drainage of pleural effusions in mechanically ventilated patients appears to improve oxygenation and is safe. We found no data to either support or refute claims of beneficial effects on clinically important outcomes such as duration of ventilation or length of stay. PMID:21288334

  12. The Effect of Listening to Holy Quran Recitation on Weaning Patients Receiving Mechanical Ventilation in the Intensive Care Unit: A Pilot Study.

    PubMed

    Yadak, Mohammad; Ansari, Khalid Aziz; Qutub, Hatem; Al-Otaibi, Hajed; Al-Omar, Omar; Al-Onizi, Nawal; Farooqi, Faraz Ahmed

    2017-09-30

    Mechanical ventilation (MV) causes high level of stress in hospitalized patients. Weaning is the gradual process of decreasing ventilator support that in turn lead to termination of MV and increased respiratory effort, which may exacerbate symptoms and prolong MV. This study aimed to investigate the effect of listening to Holy Quran recitation (HQR) as a non-pharmacological intervention in patients during weaning from mechanical ventilation. This is a randomized controlled trial in which 55 patients admitted in the intensive care unit (ICU) and on mechanical ventilation were recruited. Patients were divided into experimental (case) and control group. In the experimental group, patients received 30 min of HQR, whereas in the control group, patients had 30 min of rest in bed before the start of the weaning. The physiological and/or clinical parameters of weaning were recorded. These parameters include rapid shallow breathing index, respiratory rate, heart rate, oxygen saturation, exhaled carbon dioxide, and blood pressure. The baseline demographic data for groups were presented in tables. The mean age was 54 ± 0.5 years for the experimental and 56.4 ± 18.5 years for the control groups. The physiological and clinical parameters were compared between case and control and found no significant difference. The preliminary findings of this pilot study suggest that there is no negative effect of HQR on weaning patients from mechanical ventilation in the ICU. The results also outline and explorthe possible utility of HQR further in ICU patients as an intervention in weaning patients off from ventilator in the ICU. Although there remains much to be done, our work generates important findings in the field of critical care management.

  13. Spatiotemporal Aeration and Lung Injury Patterns Are Influenced by the First Inflation Strategy at Birth.

    PubMed

    Tingay, David G; Rajapaksa, Anushi; Zonneveld, C Elroy; Black, Don; Perkins, Elizabeth J; Adler, Andy; Grychtol, Bartłomiej; Lavizzari, Anna; Frerichs, Inéz; Zahra, Valerie A; Davis, Peter G

    2016-02-01

    Ineffective aeration during the first inflations at birth creates regional aeration and ventilation defects, initiating injurious pathways. This study aimed to compare a sustained first inflation at birth or dynamic end-expiratory supported recruitment during tidal inflations against ventilation without intentional recruitment on gas exchange, lung mechanics, spatiotemporal regional aeration and tidal ventilation, and regional lung injury in preterm lambs. Lambs (127 ± 2 d gestation), instrumented at birth, were ventilated for 60 minutes from birth with either lung-protective positive pressure ventilation (control) or as per control after either an initial 30 seconds of 40 cm H2O sustained inflation (SI) or an initial stepwise end-expiratory pressure recruitment maneuver during tidal inflations (duration 180 s; open lung ventilation [OLV]). At study completion, molecular markers of lung injury were analyzed. The initial use of an OLV maneuver, but not SI, at birth resulted in improved lung compliance, oxygenation, end-expiratory lung volume, and reduced ventilatory needs compared with control, persisting throughout the study. These changes were due to more uniform inter- and intrasubject gravity-dependent spatiotemporal patterns of aeration (measured using electrical impedance tomography). Spatial distribution of tidal ventilation was more stable after either recruitment maneuver. All strategies caused regional lung injury patterns that mirrored associated regional volume states. Irrespective of strategy, spatiotemporal volume loss was consistently associated with up-regulation of early growth response-1 expression. Our results show that mechanical and molecular consequences of lung aeration at birth are not simply related to rapidity of fluid clearance; they are also related to spatiotemporal pressure-volume interactions within the lung during inflation and deflation.

  14. Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia.

    PubMed

    Figueira, R L; Gonçalves, F L; Simões, A L; Bernardino, C A; Lopes, L S; Castro E Silva, O; Sbragia, L

    2016-06-23

    Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC). This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group): 1) preterm control (PTC), 2) preterm ventilated (PTV), 3) preterm asphyxiated (PTA), 4) preterm asphyxiated and ventilated (PTAV), 5) term control (TC), 6) term ventilated (TV), 7) term asphyxiated (TA), and 8) term asphyxiated and ventilated (TAV). We measured body, brain, and intestine weights and respective ratios [(BW), (BrW), (IW), (BrW/BW) and (IW/BW)]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus) and intestine (jejunum/ileum) tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP). IW was lower in the TA than in the other terms (P<0.05), and the IW/BW ratio was lower in the TA than in the TAV (P<0.005). PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex) and TA (cortex/hippocampus) (P<0.005). I-FABP was higher in PTAV (P<0.005) and TA (ileum) (P<0.05). I-FABP expression was increased in PTAV subgroup (P<0.0001). Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers.

  15. Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia

    PubMed Central

    Figueira, R.L.; Gonçalves, F.L.; Simões, A.L.; Bernardino, C.A.; Lopes, L.S.; Castro e Silva, O.; Sbragia, L.

    2016-01-01

    Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC). This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group): 1) preterm control (PTC), 2) preterm ventilated (PTV), 3) preterm asphyxiated (PTA), 4) preterm asphyxiated and ventilated (PTAV), 5) term control (TC), 6) term ventilated (TV), 7) term asphyxiated (TA), and 8) term asphyxiated and ventilated (TAV). We measured body, brain, and intestine weights and respective ratios [(BW), (BrW), (IW), (BrW/BW) and (IW/BW)]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus) and intestine (jejunum/ileum) tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP). IW was lower in the TA than in the other terms (P<0.05), and the IW/BW ratio was lower in the TA than in the TAV (P<0.005). PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex) and TA (cortex/hippocampus) (P<0.005). I-FABP was higher in PTAV (P<0.005) and TA (ileum) (P<0.05). I-FABP expression was increased in PTAV subgroup (P<0.0001). Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers. PMID:27356106

  16. Hemodynamic effects of external continuous negative pressure ventilation compared with those of continuous positive pressure ventilation in dogs with acute lung injury.

    PubMed

    Skaburskis, M; Helal, R; Zidulka, A

    1987-10-01

    Patients with noncardiogenic pulmonary edema requiring ventilatory assistance are usually supported with CPPV using positive end-expiratory pressure (PEEP), but CPPV requires endotracheal intubation and may decrease cardiac output (QT). The purpose of this study was to examine thoracoabdominal continuous negative pressure ventilation (CNPV) using external negative end-expiratory pressure (NEEP). The effects on gas exchange and hemodynamics were compared with those of CPPV with PEEP, with the premise that CNPV might sustain venous return and improve QT. In 6 supine, anesthetized and paralyzed dogs with oleic-acid-induced pulmonary edema, 30 min of CNPV was alternated twice with 30 min of CPPV. Positive and negative pressure ventilation were carefully matched for fractional inspired oxygen concentration (FIO2 = 0.56), breathing frequency, and tidal volume. In addition, we matched the increase in delta FRC obtained with the constant distending pressures produced by both modes of ventilation. An average of -9 cm H2O of NEEP produced the same delta FRC as 10.8 cm H2O of PEEP. Gas exchange did not differ significantly between the 2 modes. However, QT was 15.8% higher during CNPV than during CPPV (p less than 0.02). Mixed venous oxygen saturation also improved during CNPV compared with that during CPPV (58.3 versus 54.5%, p less than 0.01). Negative pressure ventilation using NEEP may be a viable alternative to positive pressure ventilation with PEEP in the management of critically ill patients with noncardiogenic pulmonary edema. It offers comparable improvement in gas exchange with the advantages of less cardiac depression and the possible avoidance of endotracheal intubation.

  17. Glutamate receptors in the nucleus tractus solitarius contribute to ventilatory acclimatization to hypoxia in rat

    PubMed Central

    Pamenter, Matthew E; Carr, J Austin; Go, Ariel; Fu, Zhenxing; Reid, Stephen G; Powell, Frank L

    2014-01-01

    When exposed to a hypoxic environment the body's first response is a reflex increase in ventilation, termed the hypoxic ventilatory response (HVR). With chronic sustained hypoxia (CSH), such as during acclimatization to high altitude, an additional time-dependent increase in ventilation occurs, which increases the HVR. This secondary increase persists after exposure to CSH and involves plasticity within the circuits in the central nervous system that control breathing. Currently these mechanisms of HVR plasticity are unknown and we hypothesized that they involve glutamatergic synapses in the nucleus tractus solitarius (NTS), where afferent endings from arterial chemoreceptors terminate. To test this, we treated rats held in normoxia (CON) or 10% O2 (CSH) for 7 days and measured ventilation in conscious, unrestrained animals before and after microinjecting glutamate receptor agonists and antagonists into the NTS. In normoxia, AMPA increased ventilation 25% and 50% in CON and CSH, respectively, while NMDA doubled ventilation in both groups (P < 0.05). Specific AMPA and NMDA receptor antagonists (NBQX and MK801, respectively) abolished these effects. MK801 significantly decreased the HVR in CON rats, and completely blocked the acute HVR in CSH rats but had no effect on ventilation in normoxia. NBQX decreased ventilation whenever it was increased relative to normoxic controls; i.e. acute hypoxia in CON and CSH, and normoxia in CSH. These results support our hypothesis that glutamate receptors in the NTS contribute to plasticity in the HVR with CSH. The mechanism underlying this synaptic plasticity is probably glutamate receptor modification, as in CSH rats the expression of phosphorylated NR1 and GluR1 proteins in the NTS increased 35% and 70%, respectively, relative to that in CON rats. PMID:24492841

  18. Glutamate receptors in the nucleus tractus solitarius contribute to ventilatory acclimatization to hypoxia in rat.

    PubMed

    Pamenter, Matthew E; Carr, J Austin; Go, Ariel; Fu, Zhenxing; Reid, Stephen G; Powell, Frank L

    2014-04-15

    When exposed to a hypoxic environment the body's first response is a reflex increase in ventilation, termed the hypoxic ventilatory response (HVR). With chronic sustained hypoxia (CSH), such as during acclimatization to high altitude, an additional time-dependent increase in ventilation occurs, which increases the HVR. This secondary increase persists after exposure to CSH and involves plasticity within the circuits in the central nervous system that control breathing. Currently these mechanisms of HVR plasticity are unknown and we hypothesized that they involve glutamatergic synapses in the nucleus tractus solitarius (NTS), where afferent endings from arterial chemoreceptors terminate. To test this, we treated rats held in normoxia (CON) or 10% O2 (CSH) for 7 days and measured ventilation in conscious, unrestrained animals before and after microinjecting glutamate receptor agonists and antagonists into the NTS. In normoxia, AMPA increased ventilation 25% and 50% in CON and CSH, respectively, while NMDA doubled ventilation in both groups (P < 0.05). Specific AMPA and NMDA receptor antagonists (NBQX and MK801, respectively) abolished these effects. MK801 significantly decreased the HVR in CON rats, and completely blocked the acute HVR in CSH rats but had no effect on ventilation in normoxia. NBQX decreased ventilation whenever it was increased relative to normoxic controls; i.e. acute hypoxia in CON and CSH, and normoxia in CSH. These results support our hypothesis that glutamate receptors in the NTS contribute to plasticity in the HVR with CSH. The mechanism underlying this synaptic plasticity is probably glutamate receptor modification, as in CSH rats the expression of phosphorylated NR1 and GluR1 proteins in the NTS increased 35% and 70%, respectively, relative to that in CON rats.

  19. A randomized trial of nasal prong or face mask for respiratory support for preterm newborns.

    PubMed

    McCarthy, Lisa K; Twomey, Anne R; Molloy, Eleanor J; Murphy, John F A; O'Donnell, Colm P F

    2013-08-01

    Resuscitation guidelines recommend that respiratory support should be given to newborns via a face mask (FM) in the delivery room (DR). Respiratory support given to preterm newborns via a single nasal prong (SNP; ie, short nasal tube, nasopharyngeal tube) may be more effective. We wished to determine whether giving respiratory support to preterm newborns with a SNP rather than a FM reduces the rate of intubation in the DR. Infants <31 weeks' gestation were randomized just before delivery to SNP (endotracheal tube shortened to 5 cm) or FM. Randomization was stratified by gestation (<28 weeks, 28-30(+6)). Infants with apnea, respiratory distress, and/or heart rate <100 received positive pressure ventilation with a T-piece. The primary outcome was intubation and mechanical ventilation in the DR. Infants in both groups were intubated for heart rate <100 and/or apnea despite PPV and not solely for surfactant administration. All other aspects of treatment in the DR and NICU were the same. Relevant secondary outcomes were recorded and data were analyzed by using the intention-to-treat principle. One hundred forty-four infants were enrolled. The rate of intubation in the DR was the same in both groups (11/72 [15%] vs 11/72 [15%], P = 1.000]. Infants assigned to SNP had lower SpO2 at 5 minutes and received a higher maximum concentration of oxygen in the DR. There were no significant differences in other secondary outcomes. Giving respiratory support to newborn infants <31 weeks' gestation via a SNP, compared with a FM, did not result in less intubation and ventilation in the DR.

  20. Effect of metronome rates on the quality of bag-mask ventilation during metronome-guided 30:2 cardiopulmonary resuscitation: A randomized simulation study.

    PubMed

    Na, Ji Ung; Han, Sang Kuk; Choi, Pil Cho; Shin, Dong Hyuk

    2017-01-01

    Metronome guidance is a feasible and effective feedback technique to improve the quality of cardiopulmonary resuscitation (CPR). The rate of the metronome should be set between 100 to 120 ticks/minute and the speed of ventilation may have crucial effect on the quality of ventilation. We compared three different metronome rates (100, 110, 120 ticks/minute) to investigate its effect on the quality of ventilation during metronome-guided 30:2 CPR. This is a prospective, randomized, crossover observational study using a RespiTrainer○ r . To simulate 30 chest compressions, one investigator counted from 1 to 30 in cadence with the metronome rate (1 count for every 1 tick), and the participant performed 2 consecutive ventilations immediately following the counting of 30. Thirty physicians performed 5 sets of 2 consecutive (total 10) bag-mask ventilations for each metronome rate. Participants were instructed to squeeze the bag over 2 ticks (1.0 to 1.2 seconds depending on the rate of metronome) and deflate the bag over 2 ticks. The sequence of three different metronome rates was randomized. Mean tidal volume significantly decreased as the metronome rate was increased from 110 ticks/minute to 120 ticks/minute (343±84 mL vs. 294±90 mL, P =0.004). Peak airway pressure significantly increased as metronome rate increased from 100 ticks/minute to 110 ticks/minute (18.7 vs. 21.6 mmHg, P =0.006). In metronome-guided 30:2 CPR, a higher metronome rate may adversely affect the quality of bag-mask ventilations. In cases of cardiac arrest where adequate ventilation support is necessary, 100 ticks/minute may be better than 110 or 120 ticks/minute to deliver adequate tidal volume during audio tone guided 30:2 CPR.

  1. Effect of metronome rates on the quality of bag-mask ventilation during metronome-guided 30:2 cardiopulmonary resuscitation: A randomized simulation study

    PubMed Central

    Na, Ji Ung; Han, Sang Kuk; Choi, Pil Cho; Shin, Dong Hyuk

    2017-01-01

    BACKGROUND: Metronome guidance is a feasible and effective feedback technique to improve the quality of cardiopulmonary resuscitation (CPR). The rate of the metronome should be set between 100 to 120 ticks/minute and the speed of ventilation may have crucial effect on the quality of ventilation. We compared three different metronome rates (100, 110, 120 ticks/minute) to investigate its effect on the quality of ventilation during metronome-guided 30:2 CPR. METHODS: This is a prospective, randomized, crossover observational study using a RespiTrainer○r. To simulate 30 chest compressions, one investigator counted from 1 to 30 in cadence with the metronome rate (1 count for every 1 tick), and the participant performed 2 consecutive ventilations immediately following the counting of 30. Thirty physicians performed 5 sets of 2 consecutive (total 10) bag-mask ventilations for each metronome rate. Participants were instructed to squeeze the bag over 2 ticks (1.0 to 1.2 seconds depending on the rate of metronome) and deflate the bag over 2 ticks. The sequence of three different metronome rates was randomized. RESULTS: Mean tidal volume significantly decreased as the metronome rate was increased from 110 ticks/minute to 120 ticks/minute (343±84 mL vs. 294±90 mL, P=0.004). Peak airway pressure significantly increased as metronome rate increased from 100 ticks/minute to 110 ticks/minute (18.7 vs. 21.6 mmHg, P=0.006). CONCLUSION: In metronome-guided 30:2 CPR, a higher metronome rate may adversely affect the quality of bag-mask ventilations. In cases of cardiac arrest where adequate ventilation support is necessary, 100 ticks/minute may be better than 110 or 120 ticks/minute to deliver adequate tidal volume during audio tone guided 30:2 CPR. PMID:28458759

  2. Comparison of lung protective ventilation strategies in a rabbit model of acute lung injury.

    PubMed

    Rotta, A T; Gunnarsson, B; Fuhrman, B P; Hernan, L J; Steinhorn, D M

    2001-11-01

    To determine the impact of different protective and nonprotective mechanical ventilation strategies on the degree of pulmonary inflammation, oxidative damage, and hemodynamic stability in a saline lavage model of acute lung injury. A prospective, randomized, controlled, in vivo animal laboratory study. Animal research facility of a health sciences university. Forty-six New Zealand White rabbits. Mature rabbits were instrumented with a tracheostomy and vascular catheters. Lavage-injured rabbits were randomized to receive conventional ventilation with either a) low peak end-expiratory pressure (PEEP; tidal volume of 10 mL/kg, PEEP of 2 cm H2O); b) high PEEP (tidal volume of 10 mL/kg, PEEP of 10 cm H2O); c) low tidal volume with PEEP above Pflex (open lung strategy, tidal volume of 6 mL/kg, PEEP set 2 cm H2O > Pflex); or d) high-frequency oscillatory ventilation. Animals were ventilated for 4 hrs. Lung lavage fluid and tissue samples were obtained immediately after animals were killed. Lung lavage fluid was assayed for measurements of total protein, elastase activity, tumor necrosis factor-alpha, and malondialdehyde. Lung tissue homogenates were assayed for measurements of myeloperoxidase activity and malondialdehyde. The need for inotropic support was recorded. Animals that received a lung protective strategy (open lung or high-frequency oscillatory ventilation) exhibited more favorable oxygenation and lung mechanics compared with the low PEEP and high PEEP groups. Animals ventilated by a lung protective strategy also showed attenuation of inflammation (reduced tracheal fluid protein, tracheal fluid elastase, tracheal fluid tumor necrosis factor-alpha, and pulmonary leukostasis). Animals treated with high-frequency oscillatory ventilation had attenuated oxidative injury to the lung and greater hemodynamic stability compared with the other experimental groups. Both lung protective strategies were associated with improved oxygenation, attenuated inflammation, and decreased lung damage. However, in this small-animal model of acute lung injury, an open lung strategy with deliberate hypercapnia was associated with significant hemodynamic instability.

  3. Kennedy Space Center Environmental Health Program

    NASA Technical Reports Server (NTRS)

    Creech, Joanne W.

    1997-01-01

    Topic considered include: environmental health services; health physics; ionizing radiation; pollution control; contamination investigations; natural resources; surface water; health hazard evaluations; combustion gas; launch support; asbestos; hazardous noise; and ventilation.

  4. Hydrocarbon pneumonia

    MedlinePlus

    ... pneumonia is caused by drinking or breathing in gasoline , kerosene , furniture polish , paint thinner, or other oily ... Arterial blood gas monitoring Breathing support, including oxygen, inhalation treatment, breathing tube and ventilator (machine), in severe ...

  5. Muscular Dystrophy

    MedlinePlus

    ... to improve mobility a ventilator to support breathing robotics to help perform routine daily tasks Physical Therapy ... to meet their needs as muscle deterioration advances. Robotic technologies also are under development to help kids ...

  6. Results of the Trace Contaminant Control Needs Evaluation and Sizing Study for Space Suit Life Support Development

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.

    2009-01-01

    The Trace Contaminant Control System (TCCS), located within the ventilation loop of the Portable Life Support System (PLSS) of the Constellation Space Suit Element (CSSE), is responsible for removing hazardous trace contaminants from the space suit ventilation flow. This paper summarizes the results of a trade study that evaluated if trace contaminant control could be accomplished without a TCCS, relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Trace contaminant generation rates were revisited to verify that values reflect the latest designs for CSSE pressure garment materials and PLSS hardware. Additionally, TCCS sizing calculations were performed and a literature survey was conducted to review the latest developments in trace contaminant technologies.

  7. Helmet Exhalation Capture System (HECS) Sizing Evaluation for an Advanced Space Suit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Waguespack, Glenn M.; Paul, Thomas H.; Conger, Bruce C.

    2008-01-01

    As part of NASA s initiative to develop an advanced portable life support system (PLSS), a baseline schematic has been chosen that includes gaseous oxygen in a closed circuit ventilation configuration. Supply oxygen enters the suit at the back of the helmet and return gases pass over the astronaut s body to be extracted at the astronaut s wrists and ankles through the liquid cooling and ventilation garment (LCVG). The extracted gases are then treated using a rapid cycling amine (RCA) system for carbon dioxide and water removal and activated carbon for trace gas removal before being mixed with makeup oxygen and reintroduced into the helmet. Thermal control is provided by a suit water membrane evaporator (SWME). As an extension of the original schematic development, NASA evaluated several Helmet Exhalation Capture System (HECS) configurations as alternatives to the baseline. The HECS configurations incorporate the use of full contact masks or non-contact masks to reduce flow requirements within the PLSS ventilation subsystem. The primary scope of this study was to compare the alternatives based on mass and volume considerations; however other design issues were also briefly investigated. This paper summarizes the results of this sizing analysis task.

  8. Communicating with individuals receiving home mechanical ventilation: the experiences of key communication partners.

    PubMed

    Laakso, Katja; Markström, Agneta; Havstam, Christina; Idvall, Markus; Hartelius, Lena

    2014-01-01

    The aim of the study was to explore the communication experiences of key communications partners (CPs) of individuals receiving home mechanical ventilation (HMV), with particular emphasis on the possibilities, difficulties and limitations CPs experienced in communication, possible support given to facilitate communication and exploring what made a skilled communicator. A qualitative research design using interviews was used. The participants included 19 key CPs of individuals receiving HMV. The analysis resulted in five themes: Encountering communication limitations, Functional communication strategies, Being a communication facilitator, Role insecurity and Emotional reactions and coping. The findings revealed that CPs needed to develop partly new reference frames for communication. In particular, participants emphasised the need to understand and interpret subtle details in the communicative interaction. The findings are discussed in the light of previous research, in particular an earlier study exploring another perspective; the ventilator-supported individuals' experiences of communication. Issues relating to the educational needs of CPs of individuals receiving HMV are discussed. The results are intended to enhance understanding of the challenges that individuals receiving HMV and their CPs face with communication, which should be of relevance not only to speech therapists, but for all healthcare practitioners in the field of HMV.

  9. [At what age can children perform effective cardiopulmonary resuscitation? - Effectiveness of cardiopulmonary resuscitation skills among primary school children].

    PubMed

    Bánfai, Bálint; Pandur, Attila; Pék, Emese; Csonka, Henrietta; Betlehem, József

    2017-01-01

    In cardiac arrest life can be saved by bystanders. Our aim was to determine at what age can schoolchildren perform correct cardiopulmonary resuscitation. 164 schoolchildren (age 7-14) were involved in the study. A basic life support training consisted of 45 minutes education in small groups (8-10 children). They were tested during a 2-minute-long continuous cardiopulmonary resuscitation scenario using the "AMBU CPR Software". Average depth of chest compression was 44.07 ± 12.6 mm. 43.9% of participants were able to do effective chest compressions. Average ventilation volume was 0.17 ± 0.31 liter. 12.8% of participants were able to ventilate effectively the patient. It was significant correlation between the chest compression depth (p<0.001) and ventilation (p<0.001) and the children's age, weight, height and BMI. Primary school children are able to learn cardiopulmonary resuscitation. The ability to do effective chest compressions and ventilation depended on the children's physical capability. Orv. Hetil., 2017, 158(4), 147-152.

  10. Home mechanical ventilation: A Canadian Thoracic Society clinical practice guideline

    PubMed Central

    McKim, Douglas A; Road, Jeremy; Avendano, Monica; Abdool, Steve; Côté, Fabien; Duguid, Nigel; Fraser, Janet; Maltais, François; Morrison, Debra L; O’Connell, Colleen; Petrof, Basil J; Rimmer, Karen; Skomro, Robert

    2011-01-01

    Increasing numbers of patients are surviving episodes of prolonged mechanical ventilation or benefitting from the recent availability of user-friendly noninvasive ventilators. Although many publications pertaining to specific aspects of home mechanical ventilation (HMV) exist, very few comprehensive guidelines that bring together all of the current literature on patients at risk for or using mechanical ventilatory support are available. The Canadian Thoracic Society HMV Guideline Committee has reviewed the available English literature on topics related to HMV in adults, and completed a detailed guideline that will help standardize and improve the assessment and management of individuals requiring noninvasive or invasive HMV. The guideline provides a disease-specific review of illnesses including amyotrophic lateral sclerosis, spinal cord injury, muscular dystrophies, myotonic dystrophy, kyphoscoliosis, post-polio syndrome, central hypoventilation syndrome, obesity hypoventilation syndrome, and chronic obstructive pulmonary disease as well as important common themes such as airway clearance and the process of transition to home. The guidelines have been extensively reviewed by international experts, allied health professionals and target audiences. They will be updated on a regular basis to incorporate any new information. PMID:22059178

  11. Role of analgesics, sedatives, neuromuscular blockers, and delirium.

    PubMed

    Hall, Jesse B; Schweickert, William; Kress, John P

    2009-10-01

    A major focus on critical care medicine concerns the institution of life-support therapies, such as mechanical ventilation, during periods of organ failure to permit a window of opportunity to diagnose and treat underlying disorders so that patients may be returned to their prior functional status upon recovery. With the growing success of these intensive care unit-based therapies and longer-term follow-up of patients, severe weakness involving the peripheral nervous system and muscles has been identified in many recovering patients, often confounding the time course or magnitude of recovery. Mechanical ventilation is often accompanied by pharmacologic treatments including analgesics, sedatives, and neuromuscular blockers. These drugs and the encephalopathies accompanying some forms of critical illness result in a high prevalence of delirium in mechanically ventilated patients. These drug effects likely contribute to an impaired ability to assess the magnitude of intensive care unit-acquired weakness, to additional time spent immobilized and mechanically ventilated, and to additional weakness from the patient's relative immobility and bedridden state. This review surveys recent literature documenting these relationships and identifying approaches to minimize pharmacologic contributions to intensive care unit-acquired weakness.

  12. [Unexpected treatable dyspnea caused by intratracheal granuloma in an amyotrophic lateral sclerosis patient with mechanical ventilation].

    PubMed

    Ishida, Shimon; Kimura, Fumiharu; Hosokawa, Takafumi; Satoh, Toshihiko; Furutama, Daisuke; Sugino, Masakazu

    2007-09-01

    Respiratory insufficiency is a problem that develops in nearly all people diagnosed with amyotrophic lateral sclerosis (ALS). A 46-year-old man with ALS, who had been in a bedridden state with tracheal ventilation support, complained of faintness and dyspnea. The airway pressure of the ventilator had increased, and bleeding from the trachea had occurred several times. A fiberoptic bronchoscopy showed granulation located on the anterior wall of the trachea and severe airway obstruction of the tracheostomy tube. Although a long tracheostomy tube had been intubated for the initial management of the tracheal granulation, a tumor on the posterior tracheal wall had relapsed and occluded the tracheal lumen. A self-expandable metallic airway stent was placed into the tracheal stenosis. After stenting, his symptoms of dyspnea and syncope imploved, and the increased airway pressure of the ventilator was normalized. We speculated that the tracheal granuloma had occurred due to a tracheal mucosal injury related to endotracheal suctioning. We should pay attention to complaints of dyspnea in ALS patients with tracheostomy and make a careful consideration to airway care including suction management.

  13. Successful management of drug-induced hypercapnic acidosis with naloxone and noninvasive positive pressure ventilation.

    PubMed

    Agrafiotis, Michalis; Tryfon, Stavros; Siopi, Demetra; Chassapidou, Georgia; Galanou, Artemis; Tsara, Venetia

    2015-02-01

    A 74-year-old man was referred to our hospital due to deteriorating level of consciousness and desaturation. His Glasgow Coma Scale was 6, and his pupils were constricted but responded to light. Chest radiograph was negative for significant findings. Arterial blood gas evaluation on supplemental oxygen revealed severe acute on chronic respiratory acidosis: pH 7.15; PCO2, 133 mm Hg; PO2,64 mm Hg; and HCO3, 31 mmol/L. He regained full consciousness (Glasgow Coma Scale, 15) after receiving a 0.4 mg dose of naloxone, but because of persistent severe respiratory acidosis (pH 7.21; PCO2, 105 mm Hg), he was immediately commenced on noninvasive positive pressure ventilation (NIV) displaying a remarkable improvement in arterial blood gas values within the next few hours. However, in the days that followed, he remained dependent on NIV, and he was finally discharged on a home mechanical ventilation prescription. In cases of drug-induced respiratory depression, NIV should be regarded as an acceptable treatment, as it can provide ventilatory support without the increased risks associated with invasive mechanical ventilation.

  14. [Central sleep apnea syndrome].

    PubMed

    Sanner, B; Schäfer, T

    2008-04-01

    Central sleep apnea (CSA) is characterized by a lack of drive to inspire for at least 10 sec. In the CSA-syndrome accompanying arousals and desaturations of the arterial blood cause sleep disturbances and sympathetic nerve activations which lead to excessive daytime sleepiness and increase the risk for cardiovascular morbidity. There are six manifestations of CSA: a rare primary or idiopathic form, often in hypocapnic patients with an increased hypercapnic ventilatory drive; Cheyne-Stokes respiration, characterised by periodic CSA and a crescendo/decrescendo breathing pattern, often in patients with severe cardiac or neurological diseases; high altitude-induced periodic breathing (above 4000 m), CSA due to medical or neurological conditions; CSA due to drug or substance use; and primary sleep apnea of infancy. Besides the consequent treatment of the underlying medical conditions therapeutic options include the use of drugs, e. g. acetacolamide or oxygen, as well as non-invasive ventilation, e. g. continuous positive airway pressure (CPAP) or adaptive servo-ventilation.

  15. [Withdrawal of assisted ventilation in the home: making decisions in paediatric palliative care].

    PubMed

    García-Salido, A; Monleón-Luque, M; Barceló-Escario, M; Del Rincón-Fernández, C; Catá-Del Palacio, E; Martino-Alba, Ricardo

    2014-03-01

    End-of-life care is of growing interest in Paediatrics. The number of children with diseases being treated using high-technology as palliative treatment has also increased. The creation of multidisciplinary care teams with 24/7 hours home care may prevent prolonged hospital stays in these patients. To adapt the treatment in order to avoid new hospital admissions and to obtain a better quality of life is a desirable objective. The taking of decisions and subsequent withdrawal of mechanical ventilation in the home is presented, along with the underlying disease and the acute event that led to the worsening of the patient. The decision-making and clinical management until the death of the patient is then discussed and reviewed. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  16. Construction of a 2- by 2-foot transonic adaptive-wall test section at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Morgan, Daniel G.; Lee, George

    1986-01-01

    The development of a new production-size, two-dimensional, adaptive-wall test section with ventilated walls at the NASA Ames Research Center is described. The new facility incorporates rapid closed-loop operation, computer/sensor integration, and on-line interference assessment and wall corrections. Air flow through the test section is controlled by a series of plenum compartments and three-way slide vales. A fast-scan laser velocimeter was built to measure velocity boundary conditions for the interference assessment scheme. A 15.2-cm- (6.0-in.-) chord NACA 0012 airfoil model will be used in the first experiments during calibration of the facility.

  17. Pseudomonas aeruginosa ventilator-associated pneumonia management

    PubMed Central

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising. PMID:26855594

  18. Mechanical ventilation in acute respiratory distress syndrome: The open lung revisited.

    PubMed

    Amado-Rodríguez, L; Del Busto, C; García-Prieto, E; Albaiceta, G M

    2017-12-01

    Acute respiratory distress syndrome (ARDS) is still related to high mortality and morbidity rates. Most patients with ARDS will require ventilatory support. This treatment has a direct impact upon patient outcome and is associated to major side effects. In this regard, ventilator-associated lung injury (VALI) is the main concern when this technique is used. The ultimate mechanisms of VALI and its management are under constant evolution. The present review describes the classical mechanisms of VALI and how they have evolved with recent findings from physiopathological and clinical studies, with the aim of analyzing the clinical implications derived from them. Lastly, a series of knowledge-based recommendations are proposed that can be helpful for the ventilator assisted management of ARDS at the patient bedside. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  19. [Non-invasive mechanical ventilation in postoperative patients. A clinical review].

    PubMed

    Esquinas, A M; Jover, J L; Úbeda, A; Belda, F J

    2015-11-01

    Non-invasive ventilation (NIV) is a method of ventilatory support that is increasing in importance day by day in the management of postoperative respiratory failure. Its role in the prevention and treatment of atelectasis is particularly important in the in the period after thoracic and abdominal surgeries. Similarly, in the transplanted patient, NIV can shorten the time of invasive mechanical ventilation, reducing the risk of infectious complications in these high-risk patients. It has been performed A systematic review of the literature has been performed, including examining the technical, clinical experiences and recommendations concerning the application of NIV in the postoperative period. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Humidification on Ventilated Patients: Heated Humidifications or Heat and Moisture Exchangers?

    PubMed Central

    Cerpa, F; Cáceres, D; Romero-Dapueto, C; Giugliano-Jaramillo, C; Pérez, R; Budini, H; Hidalgo, V; Gutiérrez, T; Molina, J; Keymer, J

    2015-01-01

    The normal physiology of conditioning of inspired gases is altered when the patient requires an artificial airway access and an invasive mechanical ventilation (IMV). The endotracheal tube (ETT) removes the natural mechanisms of filtration, humidification and warming of inspired air. Despite the noninvasive ventilation (NIMV) in the upper airways, humidification of inspired gas may not be optimal mainly due to the high flow that is being created by the leakage compensation, among other aspects. Any moisture and heating deficit is compensated by the large airways of the tracheobronchial tree, these are poorly suited for this task, which alters mucociliary function, quality of secretions, and homeostasis gas exchange system. To avoid the occurrence of these events, external devices that provide humidification, heating and filtration have been developed, with different degrees of evidence that support their use. PMID:26312102

  1. Humidification on Ventilated Patients: Heated Humidifications or Heat and Moisture Exchangers?

    PubMed

    Cerpa, F; Cáceres, D; Romero-Dapueto, C; Giugliano-Jaramillo, C; Pérez, R; Budini, H; Hidalgo, V; Gutiérrez, T; Molina, J; Keymer, J

    2015-01-01

    The normal physiology of conditioning of inspired gases is altered when the patient requires an artificial airway access and an invasive mechanical ventilation (IMV). The endotracheal tube (ETT) removes the natural mechanisms of filtration, humidification and warming of inspired air. Despite the noninvasive ventilation (NIMV) in the upper airways, humidification of inspired gas may not be optimal mainly due to the high flow that is being created by the leakage compensation, among other aspects. Any moisture and heating deficit is compensated by the large airways of the tracheobronchial tree, these are poorly suited for this task, which alters mucociliary function, quality of secretions, and homeostasis gas exchange system. To avoid the occurrence of these events, external devices that provide humidification, heating and filtration have been developed, with different degrees of evidence that support their use.

  2. Pseudomonas aeruginosa ventilator-associated pneumonia management.

    PubMed

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising.

  3. Case-Mix, Care Processes, and Outcomes in Medically-Ill Patients Receiving Mechanical Ventilation in a Low-Resource Setting from Southern India: A Prospective Clinical Case Series.

    PubMed

    Karthikeyan, Balasubramanian; Kadhiravan, Tamilarasu; Deepanjali, Surendran; Swaminathan, Rathinam Palamalai

    2015-01-01

    Mechanical ventilation is a resource intensive organ support treatment, and historical studies from low-resource settings had reported a high mortality. We aimed to study the outcomes in patients receiving mechanical ventilation in a contemporary low-resource setting. We prospectively studied the characteristics and outcomes (disease-related, mechanical ventilation-related, and process of care-related) in 237 adults mechanically ventilated for a medical illness at a teaching hospital in southern India during February 2011 to August 2012. Vital status of patients discharged from hospital was ascertained on Day 90 or later. Mean age of the patients was 40 ± 17 years; 140 (51%) were men. Poisoning and envenomation accounted for 98 (41%) of 237 admissions. In total, 87 (37%) patients died in-hospital; 16 (7%) died after discharge; 115 (49%) were alive at 90-day assessment; and 19 (8%) were lost to follow-up. Weaning was attempted in 171 (72%) patients; most patients (78 of 99 [79%]) failing the first attempt could be weaned off. Prolonged mechanical ventilation was required in 20 (8%) patients. Adherence to head-end elevation and deep vein thrombosis prophylaxis were 164 (69%) and 147 (62%) respectively. Risk of nosocomial infections particularly ventilator-associated pneumonia was high (57.2 per 1,000 ventilator-days). Higher APACHE II score quartiles (adjusted HR [95% CI] quartile 2, 2.65 [1.19-5.89]; quartile 3, 2.98 [1.24-7.15]; quartile 4, 5.78 [2.45-13.60]), and new-onset organ failure (2.98 [1.94-4.56]) were independently associated with the risk of death. Patients with poisoning had higher risk of reintubation (43% vs. 20%; P = 0.001) and ventilator-associated pneumonia (75% vs. 53%; P = 0.001). But, their mortality was significantly lower compared to the rest (24% vs. 44%; P = 0.002). The case-mix considerably differs from other settings. Mortality in this low-resource setting is similar to high-resource settings. But, further improvements in care processes and prevention of nosocomial infections are required.

  4. Abdominal Muscle Activity during Mechanical Ventilation Increases Lung Injury in Severe Acute Respiratory Distress Syndrome.

    PubMed

    Zhang, Xianming; Wu, Weiliang; Zhu, Yongcheng; Jiang, Ying; Du, Juan; Chen, Rongchang

    2016-01-01

    It has proved that muscle paralysis was more protective for injured lung in severe acute respiratory distress syndrome (ARDS), but the precise mechanism is not clear. The purpose of this study was to test the hypothesis that abdominal muscle activity during mechanically ventilation increases lung injury in severe ARDS. Eighteen male Beagles were studied under mechanical ventilation with anesthesia. Severe ARDS was induced by repetitive oleic acid infusion. After lung injury, Beagles were randomly assigned into spontaneous breathing group (BIPAPSB) and abdominal muscle paralysis group (BIPAPAP). All groups were ventilated with BIPAP model for 8h, and the high pressure titrated to reached a tidal volume of 6ml/kg, the low pressure was set at 10 cmH2O, with I:E ratio 1:1, and respiratory rate adjusted to a PaCO2 of 35-60 mmHg. Six Beagles without ventilator support comprised the control group. Respiratory variables, end-expiratory volume (EELV) and gas exchange were assessed during mechanical ventilation. The levels of Interleukin (IL)-6, IL-8 in lung tissue and plasma were measured by qRT-PCR and ELISA respectively. Lung injury scores were determined at end of the experiment. For the comparable ventilator setting, as compared with BIPAPSB group, the BIPAPAP group presented higher EELV (427±47 vs. 366±38 ml) and oxygenation index (293±36 vs. 226±31 mmHg), lower levels of IL-6(216.6±48.0 vs. 297.5±71.2 pg/ml) and IL-8(246.8±78.2 vs. 357.5±69.3 pg/ml) in plasma, and lower express levels of IL-6 mRNA (15.0±3.8 vs. 21.2±3.7) and IL-8 mRNA (18.9±6.8 vs. 29.5±7.9) in lung tissues. In addition, less lung histopathology injury were revealed in the BIPAPAP group (22.5±2.0 vs. 25.2±2.1). Abdominal muscle activity during mechanically ventilation is one of the injurious factors in severe ARDS, so abdominal muscle paralysis might be an effective strategy to minimize ventilator-induce lung injury.

  5. Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhang, Guoqiang

    2008-05-01

    A thermal comfort field study has been carried out in five cities in the humid subtropical climate zone in China. The survey was performed in naturally ventilated and air-conditioned buildings during the summer season in 2006. There were 229 occupants from 111 buildings who participated in this study and 229 questionnaire responses were collected. Thermal acceptability assessment reveals that the indoor environment in naturally ventilated buildings could not meet the 80% acceptability criteria prescribed by ASHRAE Standard 55, and people tended to feel more comfortable in air-conditioned buildings with the air-conditioned occupants voting with higher acceptability (89%) than the naturally ventilated occupants (58%). The neutral temperatures in naturally ventilated and air-conditioned buildings were 28.3°C and 27.7°C, respectively. The range of accepted temperature in naturally ventilated buildings (25.0˜31.6°C) was wider than that in air-conditioned buildings (25.1˜30.3°C), which suggests that occupants in naturally ventilated buildings seemed to be more tolerant of higher temperatures. Preferred temperatures were 27.9°C and 27.3°C in naturally ventilated and air-conditioned buildings, respectively, both of which were 0.4°C cooler than neutral temperatures. This result suggests that people of hot climates may use words like “slightly cool” to describe their preferred thermal state. The relationship between draught sensation and indoor air velocity at different temperature ranges indicates that indoor air velocity had a significant influence over the occupants’ comfort sensation, and air velocities required by occupants increased with the increasing of operative temperatures. Thus, an effective way of natural ventilation which can create the preferred higher air movement is called for. Finally, the indoor set-point temperature of 26°C or even higher in air-conditioned buildings was confirmed as making people comfortable, which supports the regulation in China that in public and office buildings the set-point temperature of air-conditioning system should not be lower than 26°C.

  6. TU-G-BRA-03: Predicting Radiation Therapy Induced Ventilation Changes Using 4DCT Jacobian Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, T; Du, K; Bayouth, J

    2015-06-15

    Purpose: Longitudinal changes in lung ventilation following radiation therapy can be mapped using four-dimensional computed tomography(4DCT) and image registration. This study aimed to predict ventilation changes caused by radiation therapy(RT) as a function of pre-RT ventilation and delivered dose. Methods: 4DCT images were acquired before and 3 months after radiation therapy for 13 subjects. Jacobian ventilation maps were calculated from the 4DCT images, warped to a common coordinate system, and a Jacobian ratio map was computed voxel-by-voxel as the ratio of post-RT to pre-RT Jacobian calculations. A leave-one-out method was used to build a response model for each subject: post-RTmore » to pre-RT Jacobian ratio data and dose distributions of 12 subjects were applied to the subject’s pre-RT Jacobian map to predict the post-RT Jacobian. The predicted Jacobian map was compared to the actual post-RT Jacobian map to evaluate efficacy. Within this cohort, 8 subjects had repeat pre-RT scans that were compared as a reference for no ventilation change. Maps were compared using gamma pass rate criteria of 2mm distance-to-agreement and 6% ventilation difference. Gamma pass rates were compared using paired t-tests to determine significant differences. Further analysis masked non-radiation induced changes by excluding voxels below specified dose thresholds. Results: Visual inspection demonstrates the predicted post-RT ventilation map is similar to the actual map in magnitude and distribution. Quantitatively, the percentage of voxels in agreement when excluding voxels receiving below specified doses are: 74%/20Gy, 73%/10Gy, 73%/5Gy, and 71%/0Gy. By comparison, repeat scans produced 73% of voxels within the 6%/2mm criteria. The agreement of the actual post-RT maps with the predicted maps was significantly better than agreement with pre-RT maps (p<0.02). Conclusion: This work validates that significant changes to ventilation post-RT can be predicted. The differences between the predicted and actual outcome are similar to differences between repeat scans with equivalent ventilation. This work was supported by NIH grant CA166703 and a Pilot Grant from University of Iowa Carver College of Medicine.« less

  7. Comparison between effects of pressure support and pressure-controlled ventilation on lung and diaphragmatic damage in experimental emphysema.

    PubMed

    Padilha, Gisele de A; Horta, Lucas F B; Moraes, Lillian; Braga, Cassia L; Oliveira, Milena V; Santos, Cíntia L; Ramos, Isalira P; Morales, Marcelo M; Capelozzi, Vera Luiza; Goldenberg, Regina C S; de Abreu, Marcelo Gama; Pelosi, Paolo; Silva, Pedro L; Rocco, Patricia R M

    2016-12-01

    In patients with emphysema, invasive mechanical ventilation settings should be adjusted to minimize hyperinflation while reducing respiratory effort and providing adequate gas exchange. We evaluated the impact of pressure-controlled ventilation (PCV) and pressure support ventilation (PSV) on pulmonary and diaphragmatic damage, as well as cardiac function, in experimental emphysema. Emphysema was induced by intratracheal instillation of porcine pancreatic elastase in Wistar rats, once weekly for 4 weeks. Control animals received saline under the same protocol. Eight weeks after first instillation, control and emphysema rats were randomly assigned to PCV (n = 6/each) or PSV (n = 6/each) under protective tidal volume (6 ml/kg) for 4 h. Non-ventilated control and emphysema animals (n = 6/group) were used to characterize the model and for molecular biology analysis. Cardiorespiratory function, lung histology, diaphragm ultrastructure alterations, extracellular matrix organization, diaphragmatic proteolysis, and biological markers associated with pulmonary inflammation, alveolar stretch, and epithelial and endothelial cell damage were assessed. Emphysema animals exhibited cardiorespiratory changes that resemble human emphysema, such as increased areas of lung hyperinflation, pulmonary amphiregulin expression, and diaphragmatic injury. In emphysema animals, PSV compared to PCV yielded: no changes in gas exchange; decreased mean transpulmonary pressure (Pmean,L), ratio between inspiratory and total time (Ti/Ttot), lung hyperinflation, and amphiregulin expression in lung; increased ratio of pulmonary artery acceleration time to pulmonary artery ejection time, suggesting reduced right ventricular afterload; and increased ultrastructural damage to the diaphragm. Amphiregulin correlated with Pmean,L (r = 0.99, p < 0.0001) and hyperinflation (r = 0.70, p = 0.043), whereas Ti/Ttot correlated with hyperinflation (r = 0.81, p = 0.002) and Pmean,L (r = 0.60, p = 0.04). In the model of elastase-induced emphysema used herein, PSV reduced lung damage and improved cardiac function when compared to PCV, but worsened diaphragmatic injury.

  8. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  9. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  10. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  11. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  12. 14 CFR 23.967 - Fuel tank installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....967 Fuel tank installation. (a) Each fuel tank must be supported so that tank loads are not... tank liner is used, it must be supported so that it is not required to withstand fluid loads; (4... securing or loss of the fuel filler cap. (b) Each tank compartment must be ventilated and drained to...

  13. Integrated high efficiency blower apparatus for HVAC systems

    DOEpatents

    Liu, Xiaoyue; Weigman, Herman; Wang, Shixiao

    2007-07-24

    An integrated centrifugal blower wheel for a heating, ventilation and air conditioning (HVAC) blower unit includes a first blade support, a second blade support, and a plurality of S-shaped blades disposed between the first and second blade supports, wherein each of the S-shaped blades has a trailing edge bent in a forward direction with respect to a defined direction of rotation of the wheel.

  14. [Suspension of Respiratory Support in Patients with Amyotrophic Lateral Sclerosis].

    PubMed

    Silberberg, Agustín A; Robetto, Josefina; Achával, Mora

    2018-01-01

    Decision making in advanced Amyotrophic Lateral Sclerosis (ALS) patients keeps on being a controversial issue. The aim of this work is to discuss ethical implications of withdrawing respiratory support treatment in patients with ALS. Through a bibliographic search on Pubmed database (2010-2016) we investigated whether or not the use of Non-Invasive Ventilation (NIV) and Mechanical Ventilation (MV) would increase survival and quality of life. We included 38 review articles. From these papers, results and ethical implications of initiating and mainly withdrawing respiratory support were analyzed. Survival time increased with NIV and with MV. Quality of life, above all according to physiological criteria, improved with NIV but regarding MV it remained controversial. Implementation and future withdrawal of MV seemed open to medical and ethical discussion. From a perspective of the intrinsic dignity of every human being, whatever its quality of life was, and knowing that no effective therapies for the underlying disease are available, the decision to remove MV in a patient with advanced ALS requires: knowledge of the will of the patient and, above all, evaluating whether this respiratory support measure is becoming objectively disproportionate.

  15. Bench experiments comparing simulated inspiratory effort when breathing helium-oxygen mixtures to that during positive pressure support with air

    PubMed Central

    2012-01-01

    Background Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Methods Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Results Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. Conclusions The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort. In addition, breathing He/O2 alone may provide an alternative to pressure support in circumstances where NIV is not available or poorly tolerated. PMID:23031537

  16. Discontinuous ventilator weaning of patients with acute SCI.

    PubMed

    Füssenich, Wout; Hirschfeld Araujo, Sven; Kowald, Birgitt; Hosman, Allard; Auerswald, Marc; Thietje, Roland

    2018-05-01

    Retrospective, single centre cohort study. To determine factors associated with ventilator weaning success and failure in patients with acute spinal cord injury (SCI); determine length of time and attempts required to wean from the ventilator successfully and determine the incidence of pneumonia. BG Klinikum Hamburg, Level 1 trauma centre, SCI Department, Germany. From 2010 until 2017, 165 consecutive patients with cervical SCI, initially dependent on a ventilator, were included and weaned discontinuously via tracheal cannula. Data related to anthropometric details, neurological injury, respiratory outcomes, and weaning parameters were prospectively recorded in a database and retrospectively analysed. Seventy-nine percent of all patients were successfully weaned from ventilation. Average duration of the complete weaning process was 37 days. Ninety-one percent of the successfully weaned patients completed this on first attempt. Age (>56 years), level of injury (C4 and/or above), vital capacity (<1500 ml), obesity (>25 kg/m 2 ), and chronic obstructive pulmonary disease (COPD) significantly decreased the chance of successful weaning. These factors also correlated with a higher number of weaning attempts. High level of injury, older age, and reduced vital capacity also increased the duration of the weaning process. Patients with low vital capacity and concurrent therapy with Baclofen and Dantrolene showed higher rates of pneumonia. We conclude that mentioned factors are associated with weaning outcome and useful for clinical recommendations and patient counselling. These data further support the complexity of ventilator weaning in the SCI population due to associated complications, therefore we recommend conducting weaning of patients with SCI on intensive or intermediate care units (ICU/IMCU) in specialised centres.

  17. Gastropulmonary Route of Infection and the Prevalence of Microaspiration in the Elderly Patients with Ventilator-Associated Pneumonia Verified by Molecular Microbiology-GM-PFGE.

    PubMed

    Liu, Qing-hua; Zhang, Jing; Lin, Dian-jie; Mou, Xiao-yan; He, Li-xian; Qu, Jie-ming; Li, Hua-yin; Hu, Bi-jie; Zhu, Ying-min; Zhu, Du-ming; Gao, Xiao-dong

    2015-04-01

    Gastropulmonary route of infection was considered to be an important mechanism of ventilator-associated pneumonia (VAP). However there is little evidence to support this assumption. Moreover, the prevalence of microaspiration in elderly ventilated patients was not well understood. To confirm gastropulmonary infection route and investigate the prevalence of microaspiration in elderly ventilated patients using genome macrorestriction-pulsed field gel electrophoresis (GM-PFGE). Patients over 60 years old, expected to receive mechanical ventilation longer than 48 h, were prospectively enrolled from October 2009 to January 2012. Clinical data were collected and recorded until they died, developed pneumonia, or were extubated. Samples from gastric fluid, subglottic secretion and lower respiratory tract (LRT) were collected during the follow-up for microbiological examination. To evaluate the homogeneity, GM-PFGE was performed on strains responsible for VAP that had the same biochemical phenotype as those isolated from gastric juice and subglottic secretions sequentially. Among 44 VAP patients, 76 strains were isolated from LRT and considered responsible for VAP. Twenty-two isolates had the same biochemical phenotype with the corresponding gastric isolates. The homology was further confirmed using GM-PFGE in 12 episodes of VAP. Nearly 30% of VAPs were caused by microaspiration based on the analysis of bacterial phenotype or GM-PFGE. In addition, 58.3% patients with gastric colonization developed VAP, especially late-onset VAP (LOP). Gastropulmonary infection route exists in VAP especially LOP in elderly ventilated patients. It is one of the important mechanisms in the development of VAP.

  18. Roles of sunlight and natural ventilation for controlling infection: historical and current perspectives.

    PubMed

    Hobday, R A; Dancer, S J

    2013-08-01

    Infections caught in buildings are a major global cause of sickness and mortality. Understanding how infections spread is pivotal to public health yet current knowledge of indoor transmission remains poor. To review the roles of natural ventilation and sunlight for controlling infection within healthcare environments. Comprehensive literature search was performed, using electronic and library databases to retrieve English language papers combining infection; risk; pathogen; and mention of ventilation; fresh air; and sunlight. Foreign language articles with English translation were included, with no limit imposed on publication date. In the past, hospitals were designed with south-facing glazing, cross-ventilation and high ceilings because fresh air and sunlight were thought to reduce infection risk. Historical and recent studies suggest that natural ventilation offers protection from transmission of airborne pathogens. Particle size, dispersal characteristics and transmission risk require more work to justify infection control practices concerning airborne pathogens. Sunlight boosts resistance to infection, with older studies suggesting potential roles for surface decontamination. Current knowledge of indoor transmission of pathogens is inadequate, partly due to lack of agreed definitions for particle types and mechanisms of spread. There is recent evidence to support historical data on the effects of natural ventilation but virtually none for sunlight. Modern practice of designing healthcare buildings for comfort favours pathogen persistence. As the number of effective antimicrobial agents declines, further work is required to clarify absolute risks from airborne pathogens along with any potential benefits from additional fresh air and sunlight. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  19. An Official American Thoracic Society Clinical Practice Guideline: Pediatric Chronic Home Invasive Ventilation

    PubMed Central

    Collaco, Joseph M.; Baker, Christopher D.; Carroll, John L.; Sharma, Girish D.; Brozek, Jan L.; Finder, Jonathan D.; Ackerman, Veda L.; Arens, Raanan; Boroughs, Deborah S.; Carter, Jodi; Daigle, Karen L.; Dougherty, Joan; Gozal, David; Kevill, Katharine; Kravitz, Richard M.; Kriseman, Tony; MacLusky, Ian; Rivera-Spoljaric, Katherine; Tori, Alvaro J.; Ferkol, Thomas; Halbower, Ann C.

    2016-01-01

    Background: Children with chronic invasive ventilator dependence living at home are a diverse group of children with special health care needs. Medical oversight, equipment management, and community resources vary widely. There are no clinical practice guidelines available to health care professionals for the safe hospital discharge and home management of these complex children. Purpose: To develop evidence-based clinical practice guidelines for the hospital discharge and home/community management of children requiring chronic invasive ventilation. Methods: The Pediatric Assembly of the American Thoracic Society assembled an interdisciplinary workgroup with expertise in the care of children requiring chronic invasive ventilation. The experts developed four questions of clinical importance and used an evidence-based strategy to identify relevant medical evidence. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology was used to formulate and grade recommendations. Results: Clinical practice recommendations for the management of children with chronic ventilator dependence at home are provided, and the evidence supporting each recommendation is discussed. Conclusions: Collaborative generalist and subspecialist comanagement is the Medical Home model most likely to be successful for the care of children requiring chronic invasive ventilation. Standardized hospital discharge criteria are suggested. An awake, trained caregiver should be present at all times, and at least two family caregivers should be trained specifically for the child’s care. Standardized equipment for monitoring, emergency preparedness, and airway clearance are outlined. The recommendations presented are based on the current evidence and expert opinion and will require an update as new evidence and/or technologies become available. PMID:27082538

  20. Real-time video communication improves provider performance in a simulated neonatal resuscitation.

    PubMed

    Fang, Jennifer L; Carey, William A; Lang, Tara R; Lohse, Christine M; Colby, Christopher E

    2014-11-01

    To determine if a real-time audiovisual link with a neonatologist, termed video-assisted resuscitation or VAR, improves provider performance during a simulated neonatal resuscitation scenario. Using high-fidelity simulation, 46 study participants were presented with a neonatal resuscitation scenario. The control group performed independently, while the intervention group utilized VAR. Time to effective ventilation was compared using Wilcoxon rank sum tests. Providers' use of the corrective steps for ineffective ventilation per the NRP algorithm was compared using Cochran-Armitage trend tests. The time needed to establish effective ventilation was significantly reduced in the intervention group when compared to the control group (mean time 2 min 42 s versus 4 min 11 s, p<0.001). In the setting of ineffective ventilation, only 35% of control subjects used three or more of the first five corrective steps and none of them used all five steps. Providers in the control group most frequently neglected to open the mouth and increase positive pressure. In contrast, all of those in the intervention group used all of the first five corrective steps, p<0.001. All participants in the control group decided to intubate the infant to establish effective ventilation, compared to none in the intervention group, p<0.001. Using VAR during a simulated neonatal resuscitation scenario significantly reduces the time to establish effective ventilation and improves provider adherence to NRP guidelines. This technology may be a means for regional centers to support local providers during a neonatal emergency to improve patient safety and improve neonatal outcomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

Top