Sample records for adaptive time stepping

  1. Adaptive time steps in trajectory surface hopping simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spörkel, Lasse, E-mail: spoerkel@kofo.mpg.de; Thiel, Walter, E-mail: thiel@kofo.mpg.de

    2016-05-21

    Trajectory surface hopping (TSH) simulations are often performed in combination with active-space multi-reference configuration interaction (MRCI) treatments. Technical problems may arise in such simulations if active and inactive orbitals strongly mix and switch in some particular regions. We propose to use adaptive time steps when such regions are encountered in TSH simulations. For this purpose, we present a computational protocol that is easy to implement and increases the computational effort only in the critical regions. We test this procedure through TSH simulations of a GFP chromophore model (OHBI) and a light-driven rotary molecular motor (F-NAIBP) on semiempirical MRCI potential energymore » surfaces, by comparing the results from simulations with adaptive time steps to analogous ones with constant time steps. For both test molecules, the number of successful trajectories without technical failures rises significantly, from 53% to 95% for OHBI and from 25% to 96% for F-NAIBP. The computed excited-state lifetime remains essentially the same for OHBI and increases somewhat for F-NAIBP, and there is almost no change in the computed quantum efficiency for internal rotation in F-NAIBP. We recommend the general use of adaptive time steps in TSH simulations with active-space CI methods because this will help to avoid technical problems, increase the overall efficiency and robustness of the simulations, and allow for a more complete sampling.« less

  2. Adaptive time steps in trajectory surface hopping simulations

    NASA Astrophysics Data System (ADS)

    Spörkel, Lasse; Thiel, Walter

    2016-05-01

    Trajectory surface hopping (TSH) simulations are often performed in combination with active-space multi-reference configuration interaction (MRCI) treatments. Technical problems may arise in such simulations if active and inactive orbitals strongly mix and switch in some particular regions. We propose to use adaptive time steps when such regions are encountered in TSH simulations. For this purpose, we present a computational protocol that is easy to implement and increases the computational effort only in the critical regions. We test this procedure through TSH simulations of a GFP chromophore model (OHBI) and a light-driven rotary molecular motor (F-NAIBP) on semiempirical MRCI potential energy surfaces, by comparing the results from simulations with adaptive time steps to analogous ones with constant time steps. For both test molecules, the number of successful trajectories without technical failures rises significantly, from 53% to 95% for OHBI and from 25% to 96% for F-NAIBP. The computed excited-state lifetime remains essentially the same for OHBI and increases somewhat for F-NAIBP, and there is almost no change in the computed quantum efficiency for internal rotation in F-NAIBP. We recommend the general use of adaptive time steps in TSH simulations with active-space CI methods because this will help to avoid technical problems, increase the overall efficiency and robustness of the simulations, and allow for a more complete sampling.

  3. Adaptive time stepping for fluid-structure interaction solvers

    DOE PAGES

    Mayr, M.; Wall, W. A.; Gee, M. W.

    2017-12-22

    In this work, a novel adaptive time stepping scheme for fluid-structure interaction (FSI) problems is proposed that allows for controlling the accuracy of the time-discrete solution. Furthermore, it eases practical computations by providing an efficient and very robust time step size selection. This has proven to be very useful, especially when addressing new physical problems, where no educated guess for an appropriate time step size is available. The fluid and the structure field, but also the fluid-structure interface are taken into account for the purpose of a posteriori error estimation, rendering it easy to implement and only adding negligible additionalmore » cost. The adaptive time stepping scheme is incorporated into a monolithic solution framework, but can straightforwardly be applied to partitioned solvers as well. The basic idea can be extended to the coupling of an arbitrary number of physical models. Accuracy and efficiency of the proposed method are studied in a variety of numerical examples ranging from academic benchmark tests to complex biomedical applications like the pulsatile blood flow through an abdominal aortic aneurysm. Finally, the demonstrated accuracy of the time-discrete solution in combination with reduced computational cost make this algorithm very appealing in all kinds of FSI applications.« less

  4. Adaptive time stepping for fluid-structure interaction solvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayr, M.; Wall, W. A.; Gee, M. W.

    In this work, a novel adaptive time stepping scheme for fluid-structure interaction (FSI) problems is proposed that allows for controlling the accuracy of the time-discrete solution. Furthermore, it eases practical computations by providing an efficient and very robust time step size selection. This has proven to be very useful, especially when addressing new physical problems, where no educated guess for an appropriate time step size is available. The fluid and the structure field, but also the fluid-structure interface are taken into account for the purpose of a posteriori error estimation, rendering it easy to implement and only adding negligible additionalmore » cost. The adaptive time stepping scheme is incorporated into a monolithic solution framework, but can straightforwardly be applied to partitioned solvers as well. The basic idea can be extended to the coupling of an arbitrary number of physical models. Accuracy and efficiency of the proposed method are studied in a variety of numerical examples ranging from academic benchmark tests to complex biomedical applications like the pulsatile blood flow through an abdominal aortic aneurysm. Finally, the demonstrated accuracy of the time-discrete solution in combination with reduced computational cost make this algorithm very appealing in all kinds of FSI applications.« less

  5. An adaptive time-stepping strategy for solving the phase field crystal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhengru, E-mail: zrzhang@bnu.edu.cn; Ma, Yuan, E-mail: yuner1022@gmail.com; Qiao, Zhonghua, E-mail: zqiao@polyu.edu.hk

    2013-09-15

    In this work, we will propose an adaptive time step method for simulating the dynamics of the phase field crystal (PFC) model. The numerical simulation of the PFC model needs long time to reach steady state, and then large time-stepping method is necessary. Unconditionally energy stable schemes are used to solve the PFC model. The time steps are adaptively determined based on the time derivative of the corresponding energy. It is found that the use of the proposed time step adaptivity cannot only resolve the steady state solution, but also the dynamical development of the solution efficiently and accurately. Themore » numerical experiments demonstrate that the CPU time is significantly saved for long time simulations.« less

  6. Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; Ravindran, S. S.

    2017-01-01

    Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.

  7. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    NASA Astrophysics Data System (ADS)

    Särkimäki, K.; Hirvijoki, E.; Terävä, J.

    2018-01-01

    We report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell-Jüttner statistics. The implementation is based on the Beliaev-Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space. Detailed description is provided for both the physics and implementation of the operator. The focus is in adaptive integration of stochastic differential equations, which is an overlooked aspect among existing Monte Carlo implementations of Coulomb collision operators. We verify that our operator converges to known analytical results and demonstrate that careless implementation of the adaptive time step can lead to severely erroneous results. The operator is provided as a self-contained Fortran 95 module and can be included into existing orbit-following tools that trace either the full Larmor motion or the guiding center dynamics. The adaptive time-stepping algorithm is expected to be useful in situations where the collision frequencies vary greatly over the course of a simulation. Examples include the slowing-down of fusion products or other fast ions, and the Dreicer generation of runaway electrons as well as the generation of fast ions or electrons with ion or electron cyclotron resonance heating.

  8. Asynchronous adaptive time step in quantitative cellular automata modeling

    PubMed Central

    Zhu, Hao; Pang, Peter YH; Sun, Yan; Dhar, Pawan

    2004-01-01

    Background The behaviors of cells in metazoans are context dependent, thus large-scale multi-cellular modeling is often necessary, for which cellular automata are natural candidates. Two related issues are involved in cellular automata based multi-cellular modeling: how to introduce differential equation based quantitative computing to precisely describe cellular activity, and upon it, how to solve the heavy time consumption issue in simulation. Results Based on a modified, language based cellular automata system we extended that allows ordinary differential equations in models, we introduce a method implementing asynchronous adaptive time step in simulation that can considerably improve efficiency yet without a significant sacrifice of accuracy. An average speedup rate of 4–5 is achieved in the given example. Conclusions Strategies for reducing time consumption in simulation are indispensable for large-scale, quantitative multi-cellular models, because even a small 100 × 100 × 100 tissue slab contains one million cells. Distributed and adaptive time step is a practical solution in cellular automata environment. PMID:15222901

  9. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkimaki, Konsta; Hirvijoki, E.; Terava, J.

    Here, we report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell–Jüttner statistics. The implementation is based on the Beliaev–Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space.

  10. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    DOE PAGES

    Sarkimaki, Konsta; Hirvijoki, E.; Terava, J.

    2017-10-12

    Here, we report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell–Jüttner statistics. The implementation is based on the Beliaev–Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space.

  11. Stepping reaction time and gait adaptability are significantly impaired in people with Parkinson's disease: Implications for fall risk.

    PubMed

    Caetano, Maria Joana D; Lord, Stephen R; Allen, Natalie E; Brodie, Matthew A; Song, Jooeun; Paul, Serene S; Canning, Colleen G; Menant, Jasmine C

    2018-02-01

    Decline in the ability to take effective steps and to adapt gait, particularly under challenging conditions, may be important reasons why people with Parkinson's disease (PD) have an increased risk of falling. This study aimed to determine the extent of stepping and gait adaptability impairments in PD individuals as well as their associations with PD symptoms, cognitive function and previous falls. Thirty-three older people with PD and 33 controls were assessed in choice stepping reaction time, Stroop stepping and gait adaptability tests; measurements identified as fall risk factors in older adults. People with PD had similar mean choice stepping reaction times to healthy controls, but had significantly greater intra-individual variability. In the Stroop stepping test, the PD participants were more likely to make an error (48 vs 18%), took 715 ms longer to react (2312 vs 1517 ms) and had significantly greater response variability (536 vs 329 ms) than the healthy controls. People with PD also had more difficulties adapting their gait in response to targets (poorer stepping accuracy) and obstacles (increased number of steps) appearing at short notice on a walkway. Within the PD group, higher disease severity, reduced cognition and previous falls were associated with poorer stepping and gait adaptability performances. People with PD have reduced ability to adapt gait to unexpected targets and obstacles and exhibit poorer stepping responses, particularly in a test condition involving conflict resolution. Such impaired stepping responses in Parkinson's disease are associated with disease severity, cognitive impairment and falls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. PHISICS/RELAP5-3D Adaptive Time-Step Method Demonstrated for the HTTR LOFC#1 Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Robin Ivey; Balestra, Paolo; Strydom, Gerhard

    A collaborative effort between Japan Atomic Energy Agency (JAEA) and Idaho National Laboratory (INL) as part of the Civil Nuclear Energy Working Group is underway to model the high temperature engineering test reactor (HTTR) loss of forced cooling (LOFC) transient that was performed in December 2010. The coupled version of RELAP5-3D, a thermal fluids code, and PHISICS, a neutronics code, were used to model the transient. The focus of this report is to summarize the changes made to the PHISICS-RELAP5-3D code for implementing an adaptive time step methodology into the code for the first time, and to test it usingmore » the full HTTR PHISICS/RELAP5-3D model developed by JAEA and INL and the LOFC simulation. Various adaptive schemes are available based on flux or power convergence criteria that allow significantly larger time steps to be taken by the neutronics module. The report includes a description of the HTTR and the associated PHISICS/RELAP5-3D model test results as well as the University of Rome sub-contractor report documenting the adaptive time step theory and methodology implemented in PHISICS/RELAP5-3D. Two versions of the HTTR model were tested using 8 and 26 energy groups. It was found that most of the new adaptive methods lead to significant improvements in the LOFC simulation time required without significant accuracy penalties in the prediction of the fission power and the fuel temperature. In the best performing 8 group model scenarios, a LOFC simulation of 20 hours could be completed in real-time, or even less than real-time, compared with the previous version of the code that completed the same transient 3-8 times slower than real-time. A few of the user choice combinations between the methodologies available and the tolerance settings did however result in unacceptably high errors or insignificant gains in simulation time. The study is concluded with recommendations on which methods to use for this HTTR model. An important caveat is that these

  13. Digital-only PLL with adaptive search step

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Lang; Huang, Shu-Chuan; Liu, Jie-Cherng

    2014-06-01

    In this paper, an all-digital phase-locked loop (PLL) with adaptively controlled up/down counter serves as the loop filter is presented, and it is implemented on a field-programmable gate array. The detailed circuit of the adaptive up/down counter implementing the adaptive search algorithm is also given, in which the search step for frequency acquisition is adaptively scaled down in half until it is reduced to zero. The phase jitter of the proposed PLL can be lowered, yet keeping with fast lock-in time. Thus, the dilemma between the low phase jitter and fast lock-in time of the traditional PLL can be resolved. Simulation results and circuit implementation show that the locked count, phase jitter and lock-in time of the proposed PLL are consistent with the theoretical predictions.

  14. Stepping strategies for regulating gait adaptability and stability.

    PubMed

    Hak, Laura; Houdijk, Han; Steenbrink, Frans; Mert, Agali; van der Wurff, Peter; Beek, Peter J; van Dieën, Jaap H

    2013-03-15

    Besides a stable gait pattern, gait in daily life requires the capability to adapt this pattern in response to environmental conditions. The purpose of this study was to elucidate the anticipatory strategies used by able-bodied people to attain an adaptive gait pattern, and how these strategies interact with strategies used to maintain gait stability. Ten healthy subjects walked in a Computer Assisted Rehabilitation ENvironment (CAREN). To provoke an adaptive gait pattern, subjects had to hit virtual targets, with markers guided by their knees, while walking on a self-paced treadmill. The effects of walking with and without this task on walking speed, step length, step frequency, step width and the margins of stability (MoS) were assessed. Furthermore, these trials were performed with and without additional continuous ML platform translations. When an adaptive gait pattern was required, subjects decreased step length (p<0.01), tended to increase step width (p=0.074), and decreased walking speed while maintaining similar step frequency compared to unconstrained walking. These adaptations resulted in the preservation of equal MoS between trials, despite the disturbing influence of the gait adaptability task. When the gait adaptability task was combined with the balance perturbation subjects further decreased step length, as evidenced by a significant interaction between both manipulations (p=0.012). In conclusion, able-bodied people reduce step length and increase step width during walking conditions requiring a high level of both stability and adaptability. Although an increase in step frequency has previously been found to enhance stability, a faster movement, which would coincide with a higher step frequency, hampers accuracy and may consequently limit gait adaptability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Newmark local time stepping on high-performance computing architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rietmann, Max, E-mail: max.rietmann@erdw.ethz.ch; Institute of Geophysics, ETH Zurich; Grote, Marcus, E-mail: marcus.grote@unibas.ch

    In multi-scale complex media, finite element meshes often require areas of local refinement, creating small elements that can dramatically reduce the global time-step for wave-propagation problems due to the CFL condition. Local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. We develop an efficient multilevel LTS-Newmark scheme and implement it in a widely used continuous finite element seismic wave-propagation package. In particular, we extend the standard LTS formulation with adaptations to continuous finite element methods that can be implemented very efficiently with very strongmore » element-size contrasts (more than 100x). Capable of running on large CPU and GPU clusters, we present both synthetic validation examples and large scale, realistic application examples to demonstrate the performance and applicability of the method and implementation on thousands of CPU cores and hundreds of GPUs.« less

  16. Age-related changes in gait adaptability in response to unpredictable obstacles and stepping targets.

    PubMed

    Caetano, Maria Joana D; Lord, Stephen R; Schoene, Daniel; Pelicioni, Paulo H S; Sturnieks, Daina L; Menant, Jasmine C

    2016-05-01

    A large proportion of falls in older people occur when walking. Limitations in gait adaptability might contribute to tripping; a frequently reported cause of falls in this group. To evaluate age-related changes in gait adaptability in response to obstacles or stepping targets presented at short notice, i.e.: approximately two steps ahead. Fifty older adults (aged 74±7 years; 34 females) and 21 young adults (aged 26±4 years; 12 females) completed 3 usual gait speed (baseline) trials. They then completed the following randomly presented gait adaptability trials: obstacle avoidance, short stepping target, long stepping target and no target/obstacle (3 trials of each). Compared with the young, the older adults slowed significantly in no target/obstacle trials compared with the baseline trials. They took more steps and spent more time in double support while approaching the obstacle and stepping targets, demonstrated poorer stepping accuracy and made more stepping errors (failed to hit the stepping targets/avoid the obstacle). The older adults also reduced velocity of the two preceding steps and shortened the previous step in the long stepping target condition and in the obstacle avoidance condition. Compared with their younger counterparts, the older adults exhibited a more conservative adaptation strategy characterised by slow, short and multiple steps with longer time in double support. Even so, they demonstrated poorer stepping accuracy and made more stepping errors. This reduced gait adaptability may place older adults at increased risk of falling when negotiating unexpected hazards. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Continuous-time adaptive critics.

    PubMed

    Hanselmann, Thomas; Noakes, Lyle; Zaknich, Anthony

    2007-05-01

    A continuous-time formulation of an adaptive critic design (ACD) is investigated. Connections to the discrete case are made, where backpropagation through time (BPTT) and real-time recurrent learning (RTRL) are prevalent. Practical benefits are that this framework fits in well with plant descriptions given by differential equations and that any standard integration routine with adaptive step-size does an adaptive sampling for free. A second-order actor adaptation using Newton's method is established for fast actor convergence for a general plant and critic. Also, a fast critic update for concurrent actor-critic training is introduced to immediately apply necessary adjustments of critic parameters induced by actor updates to keep the Bellman optimality correct to first-order approximation after actor changes. Thus, critic and actor updates may be performed at the same time until some substantial error build up in the Bellman optimality or temporal difference equation, when a traditional critic training needs to be performed and then another interval of concurrent actor-critic training may resume.

  18. Efficient computation of the Grünwald-Letnikov fractional diffusion derivative using adaptive time step memory

    NASA Astrophysics Data System (ADS)

    MacDonald, Christopher L.; Bhattacharya, Nirupama; Sprouse, Brian P.; Silva, Gabriel A.

    2015-09-01

    Computing numerical solutions to fractional differential equations can be computationally intensive due to the effect of non-local derivatives in which all previous time points contribute to the current iteration. In general, numerical approaches that depend on truncating part of the system history while efficient, can suffer from high degrees of error and inaccuracy. Here we present an adaptive time step memory method for smooth functions applied to the Grünwald-Letnikov fractional diffusion derivative. This method is computationally efficient and results in smaller errors during numerical simulations. Sampled points along the system's history at progressively longer intervals are assumed to reflect the values of neighboring time points. By including progressively fewer points backward in time, a temporally 'weighted' history is computed that includes contributions from the entire past of the system, maintaining accuracy, but with fewer points actually calculated, greatly improving computational efficiency.

  19. A marching-walking hybrid induces step length adaptation and transfers to natural walking.

    PubMed

    Long, Andrew W; Finley, James M; Bastian, Amy J

    2015-06-01

    Walking is highly adaptable to new demands and environments. We have previously studied adaptation of locomotor patterns via a split-belt treadmill, where subjects learn to walk with one foot moving faster than the other. Subjects learn to adapt their walking pattern by changing the location (spatial) and time (temporal) of foot placement. Here we asked whether we can induce adaptation of a specific walking pattern when one limb does not "walk" but instead marches in place (i.e., marching-walking hybrid). The marching leg's movement is limited during the stance phase, and thus certain sensory signals important for walking may be reduced. We hypothesized that this would produce a spatial-temporal strategy different from that of normal split-belt adaptation. Healthy subjects performed two experiments to determine whether they could adapt their spatial-temporal pattern of step lengths during the marching-walking hybrid and whether the learning transfers to over ground walking. Results showed that the hybrid group did adapt their step lengths, but the time course of adaptation and deadaption was slower than that for the split-belt group. We also observed that the hybrid group utilized a mostly spatial strategy whereas the split-belt group utilized both spatial and temporal strategies. Surprisingly, we found no significant difference between the hybrid and split-belt groups in over ground transfer. Moreover, the hybrid group retained more of the learned pattern when they returned to the treadmill. These findings suggest that physical rehabilitation with this marching-walking paradigm on conventional treadmills may produce changes in symmetry comparable to what is observed during split-belt training. Copyright © 2015 the American Physiological Society.

  20. A marching-walking hybrid induces step length adaptation and transfers to natural walking

    PubMed Central

    Long, Andrew W.; Finley, James M.

    2015-01-01

    Walking is highly adaptable to new demands and environments. We have previously studied adaptation of locomotor patterns via a split-belt treadmill, where subjects learn to walk with one foot moving faster than the other. Subjects learn to adapt their walking pattern by changing the location (spatial) and time (temporal) of foot placement. Here we asked whether we can induce adaptation of a specific walking pattern when one limb does not “walk” but instead marches in place (i.e., marching-walking hybrid). The marching leg's movement is limited during the stance phase, and thus certain sensory signals important for walking may be reduced. We hypothesized that this would produce a spatial-temporal strategy different from that of normal split-belt adaptation. Healthy subjects performed two experiments to determine whether they could adapt their spatial-temporal pattern of step lengths during the marching-walking hybrid and whether the learning transfers to over ground walking. Results showed that the hybrid group did adapt their step lengths, but the time course of adaptation and deadaption was slower than that for the split-belt group. We also observed that the hybrid group utilized a mostly spatial strategy whereas the split-belt group utilized both spatial and temporal strategies. Surprisingly, we found no significant difference between the hybrid and split-belt groups in over ground transfer. Moreover, the hybrid group retained more of the learned pattern when they returned to the treadmill. These findings suggest that physical rehabilitation with this marching-walking paradigm on conventional treadmills may produce changes in symmetry comparable to what is observed during split-belt training. PMID:25867742

  1. Three steps to writing adaptive study protocols in the early phase clinical development of new medicines

    PubMed Central

    2014-01-01

    This article attempts to define terminology and to describe a process for writing adaptive, early phase study protocols which are transparent, self-intuitive and uniform. It provides a step by step guide, giving templates from projects which received regulatory authorisation and were successfully performed in the UK. During adaptive studies evolving data is used to modify the trial design and conduct within the protocol-defined remit. Adaptations within that remit are documented using non-substantial protocol amendments which do not require regulatory or ethical review. This concept is efficient in gathering relevant data in exploratory early phase studies, ethical and time- and cost-effective. PMID:24980283

  2. GOTHIC: Gravitational oct-tree code accelerated by hierarchical time step controlling

    NASA Astrophysics Data System (ADS)

    Miki, Yohei; Umemura, Masayuki

    2017-04-01

    The tree method is a widely implemented algorithm for collisionless N-body simulations in astrophysics well suited for GPU(s). Adopting hierarchical time stepping can accelerate N-body simulations; however, it is infrequently implemented and its potential remains untested in GPU implementations. We have developed a Gravitational Oct-Tree code accelerated by HIerarchical time step Controlling named GOTHIC, which adopts both the tree method and the hierarchical time step. The code adopts some adaptive optimizations by monitoring the execution time of each function on-the-fly and minimizes the time-to-solution by balancing the measured time of multiple functions. Results of performance measurements with realistic particle distribution performed on NVIDIA Tesla M2090, K20X, and GeForce GTX TITAN X, which are representative GPUs of the Fermi, Kepler, and Maxwell generation of GPUs, show that the hierarchical time step achieves a speedup by a factor of around 3-5 times compared to the shared time step. The measured elapsed time per step of GOTHIC is 0.30 s or 0.44 s on GTX TITAN X when the particle distribution represents the Andromeda galaxy or the NFW sphere, respectively, with 224 = 16,777,216 particles. The averaged performance of the code corresponds to 10-30% of the theoretical single precision peak performance of the GPU.

  3. Split-Step Timing of Professional and Junior Tennis Players

    PubMed Central

    Leskosek, Bojan; Filipcic, Tjasa

    2017-01-01

    Abstract The purpose of the study was to determine the timing of a split-step in three categories of tennis players in four groups of strokes. Subjects were divided into three groups: male and female junior, and male professional tennis players. During two tournaments, all matches were recorded with two fixed video cameras. For every stroke, the timing of the split-step between the opponent’s impact point when hitting the ball and the player’s split-step was measured. A two-way analysis of variance (ANOVA) was used to determine the differences between groups of strokes, players and the interaction Player x Stroke Group. A Tukey post-hoc test was employed to determine specific differences. The results revealed differences between players in detecting the opponent’s movement, stroke and ball flight, which were reflected in different split-step timings. Each tennis player has his/her own timing mechanism which they adapt to various game situations. Response times differ significantly depending on the game situation. On average, they are the lowest in the serve, and then gradually rise from the return of the serve to baseline game, reaching the highest values in specific game situations. Players react faster in the first serve than in the second one and in the return of the serve, the response times are lower after the return of the second serve PMID:28210342

  4. MIMO equalization with adaptive step size for few-mode fiber transmission systems.

    PubMed

    van Uden, Roy G H; Okonkwo, Chigo M; Sleiffer, Vincent A J M; de Waardt, Hugo; Koonen, Antonius M J

    2014-01-13

    Optical multiple-input multiple-output (MIMO) transmission systems generally employ minimum mean squared error time or frequency domain equalizers. Using an experimental 3-mode dual polarization coherent transmission setup, we show that the convergence time of the MMSE time domain equalizer (TDE) and frequency domain equalizer (FDE) can be reduced by approximately 50% and 30%, respectively. The criterion used to estimate the system convergence time is the time it takes for the MIMO equalizer to reach an average output error which is within a margin of 5% of the average output error after 50,000 symbols. The convergence reduction difference between the TDE and FDE is attributed to the limited maximum step size for stable convergence of the frequency domain equalizer. The adaptive step size requires a small overhead in the form of a lookup table. It is highlighted that the convergence time reduction is achieved without sacrificing optical signal-to-noise ratio performance.

  5. Significant improvements of electrical discharge machining performance by step-by-step updated adaptive control laws

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Wu, Jianyang; Xu, Xiaoyi; Mu, Xin; Dou, Yunping

    2018-02-01

    In order to obtain improved electrical discharge machining (EDM) performance, we have dedicated more than a decade to correcting one essential EDM defect, the weak stability of the machining, by developing adaptive control systems. The instabilities of machining are mainly caused by complicated disturbances in discharging. To counteract the effects from the disturbances on machining, we theoretically developed three control laws from minimum variance (MV) control law to minimum variance and pole placements coupled (MVPPC) control law and then to a two-step-ahead prediction (TP) control law. Based on real-time estimation of EDM process model parameters and measured ratio of arcing pulses which is also called gap state, electrode discharging cycle was directly and adaptively tuned so that a stable machining could be achieved. To this end, we not only theoretically provide three proved control laws for a developed EDM adaptive control system, but also practically proved the TP control law to be the best in dealing with machining instability and machining efficiency though the MVPPC control law provided much better EDM performance than the MV control law. It was also shown that the TP control law also provided a burn free machining.

  6. Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes

    NASA Astrophysics Data System (ADS)

    Clark, Martyn P.; Kavetski, Dmitri

    2010-10-01

    A major neglected weakness of many current hydrological models is the numerical method used to solve the governing model equations. This paper thoroughly evaluates several classes of time stepping schemes in terms of numerical reliability and computational efficiency in the context of conceptual hydrological modeling. Numerical experiments are carried out using 8 distinct time stepping algorithms and 6 different conceptual rainfall-runoff models, applied in a densely gauged experimental catchment, as well as in 12 basins with diverse physical and hydroclimatic characteristics. Results show that, over vast regions of the parameter space, the numerical errors of fixed-step explicit schemes commonly used in hydrology routinely dwarf the structural errors of the model conceptualization. This substantially degrades model predictions, but also, disturbingly, generates fortuitously adequate performance for parameter sets where numerical errors compensate for model structural errors. Simply running fixed-step explicit schemes with shorter time steps provides a poor balance between accuracy and efficiency: in some cases daily-step adaptive explicit schemes with moderate error tolerances achieved comparable or higher accuracy than 15 min fixed-step explicit approximations but were nearly 10 times more efficient. From the range of simple time stepping schemes investigated in this work, the fixed-step implicit Euler method and the adaptive explicit Heun method emerge as good practical choices for the majority of simulation scenarios. In combination with the companion paper, where impacts on model analysis, interpretation, and prediction are assessed, this two-part study vividly highlights the impact of numerical errors on critical performance aspects of conceptual hydrological models and provides practical guidelines for robust numerical implementation.

  7. Cross-cultural adaptation of instruments assessing breastfeeding determinants: a multi-step approach

    PubMed Central

    2014-01-01

    Background Cross-cultural adaptation is a necessary process to effectively use existing instruments in other cultural and language settings. The process of cross-culturally adapting, including translation, of existing instruments is considered a critical set to establishing a meaningful instrument for use in another setting. Using a multi-step approach is considered best practice in achieving cultural and semantic equivalence of the adapted version. We aimed to ensure the content validity of our instruments in the cultural context of KwaZulu-Natal, South Africa. Methods The Iowa Infant Feeding Attitudes Scale, Breastfeeding Self-Efficacy Scale-Short Form and additional items comprise our consolidated instrument, which was cross-culturally adapted utilizing a multi-step approach during August 2012. Cross-cultural adaptation was achieved through steps to maintain content validity and attain semantic equivalence in the target version. Specifically, Lynn’s recommendation to apply an item-level content validity index score was followed. The revised instrument was translated and back-translated. To ensure semantic equivalence, Brislin’s back-translation approach was utilized followed by the committee review to address any discrepancies that emerged from translation. Results Our consolidated instrument was adapted to be culturally relevant and translated to yield more reliable and valid results for use in our larger research study to measure infant feeding determinants effectively in our target cultural context. Conclusions Undertaking rigorous steps to effectively ensure cross-cultural adaptation increases our confidence that the conclusions we make based on our self-report instrument(s) will be stronger. In this way, our aim to achieve strong cross-cultural adaptation of our consolidated instruments was achieved while also providing a clear framework for other researchers choosing to utilize existing instruments for work in other cultural, geographic and population

  8. Solving delay differential equations in S-ADAPT by method of steps.

    PubMed

    Bauer, Robert J; Mo, Gary; Krzyzanski, Wojciech

    2013-09-01

    S-ADAPT is a version of the ADAPT program that contains additional simulation and optimization abilities such as parametric population analysis. S-ADAPT utilizes LSODA to solve ordinary differential equations (ODEs), an algorithm designed for large dimension non-stiff and stiff problems. However, S-ADAPT does not have a solver for delay differential equations (DDEs). Our objective was to implement in S-ADAPT a DDE solver using the methods of steps. The method of steps allows one to solve virtually any DDE system by transforming it to an ODE system. The solver was validated for scalar linear DDEs with one delay and bolus and infusion inputs for which explicit analytic solutions were derived. Solutions of nonlinear DDE problems coded in S-ADAPT were validated by comparing them with ones obtained by the MATLAB DDE solver dde23. The estimation of parameters was tested on the MATLB simulated population pharmacodynamics data. The comparison of S-ADAPT generated solutions for DDE problems with the explicit solutions as well as MATLAB produced solutions which agreed to at least 7 significant digits. The population parameter estimates from using importance sampling expectation-maximization in S-ADAPT agreed with ones used to generate the data. Published by Elsevier Ireland Ltd.

  9. hp-Adaptive time integration based on the BDF for viscous flows

    NASA Astrophysics Data System (ADS)

    Hay, A.; Etienne, S.; Pelletier, D.; Garon, A.

    2015-06-01

    This paper presents a procedure based on the Backward Differentiation Formulas of order 1 to 5 to obtain efficient time integration of the incompressible Navier-Stokes equations. The adaptive algorithm performs both stepsize and order selections to control respectively the solution accuracy and the computational efficiency of the time integration process. The stepsize selection (h-adaptivity) is based on a local error estimate and an error controller to guarantee that the numerical solution accuracy is within a user prescribed tolerance. The order selection (p-adaptivity) relies on the idea that low-accuracy solutions can be computed efficiently by low order time integrators while accurate solutions require high order time integrators to keep computational time low. The selection is based on a stability test that detects growing numerical noise and deems a method of order p stable if there is no method of lower order that delivers the same solution accuracy for a larger stepsize. Hence, it guarantees both that (1) the used method of integration operates inside of its stability region and (2) the time integration procedure is computationally efficient. The proposed time integration procedure also features a time-step rejection and quarantine mechanisms, a modified Newton method with a predictor and dense output techniques to compute solution at off-step points.

  10. A three dimensional multigrid multiblock multistage time stepping scheme for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Cannizzaro, Frank; Melson, N. D.

    1991-01-01

    A general multiblock method for the solution of the three-dimensional, unsteady, compressible, thin-layer Navier-Stokes equations has been developed. The convective and pressure terms are spatially discretized using Roe's flux differencing technique while the viscous terms are centrally differenced. An explicit Runge-Kutta method is used to advance the solution in time. Local time stepping, adaptive implicit residual smoothing, and the Full Approximation Storage (FAS) multigrid scheme are added to the explicit time stepping scheme to accelerate convergence to steady state. Results for three-dimensional test cases are presented and discussed.

  11. Molecular dynamics based enhanced sampling of collective variables with very large time steps.

    PubMed

    Chen, Pei-Yang; Tuckerman, Mark E

    2018-01-14

    Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.

  12. Molecular dynamics based enhanced sampling of collective variables with very large time steps

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Yang; Tuckerman, Mark E.

    2018-01-01

    Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.

  13. Multi-Time Step Service Restoration for Advanced Distribution Systems and Microgrids

    DOE PAGES

    Chen, Bo; Chen, Chen; Wang, Jianhui; ...

    2017-07-07

    Modern power systems are facing increased risk of disasters that can cause extended outages. The presence of remote control switches (RCSs), distributed generators (DGs), and energy storage systems (ESS) provides both challenges and opportunities for developing post-fault service restoration methodologies. Inter-temporal constraints of DGs, ESS, and loads under cold load pickup (CLPU) conditions impose extra complexity on problem formulation and solution. In this paper, a multi-time step service restoration methodology is proposed to optimally generate a sequence of control actions for controllable switches, ESSs, and dispatchable DGs to assist the system operator with decision making. The restoration sequence is determinedmore » to minimize the unserved customers by energizing the system step by step without violating operational constraints at each time step. The proposed methodology is formulated as a mixed-integer linear programming (MILP) model and can adapt to various operation conditions. Furthermore, the proposed method is validated through several case studies that are performed on modified IEEE 13-node and IEEE 123-node test feeders.« less

  14. Multi-Time Step Service Restoration for Advanced Distribution Systems and Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bo; Chen, Chen; Wang, Jianhui

    Modern power systems are facing increased risk of disasters that can cause extended outages. The presence of remote control switches (RCSs), distributed generators (DGs), and energy storage systems (ESS) provides both challenges and opportunities for developing post-fault service restoration methodologies. Inter-temporal constraints of DGs, ESS, and loads under cold load pickup (CLPU) conditions impose extra complexity on problem formulation and solution. In this paper, a multi-time step service restoration methodology is proposed to optimally generate a sequence of control actions for controllable switches, ESSs, and dispatchable DGs to assist the system operator with decision making. The restoration sequence is determinedmore » to minimize the unserved customers by energizing the system step by step without violating operational constraints at each time step. The proposed methodology is formulated as a mixed-integer linear programming (MILP) model and can adapt to various operation conditions. Furthermore, the proposed method is validated through several case studies that are performed on modified IEEE 13-node and IEEE 123-node test feeders.« less

  15. Stepping through treatment: reflections on an adaptive treatment strategy among methamphetamine users with depression.

    PubMed

    Kay-Lambkin, Frances J; Baker, Amanda L; McKetin, Rebecca; Lee, Nicole

    2010-09-01

    Stepped-care has been recommended in the alcohol and other drug field and adopted in a number of service settings, but few research projects have examined this approach. This article aims to describe a pilot trial of stepped-care methods in the treatment of methamphetamine use and depression comorbidity. An adaptive treatment strategy was developed based on recommendations for stepped-care among methamphetamine users, and incorporating cognitive behaviour therapy/motivational intervention for methamphetamine use and depression. The adaptive treatment strategy was compared with a fixed treatment, comprising an extended integrated cognitive behaviour therapy/motivational intervention treatment. Eighteen participants across two study sites were involved in the trial, and were current users of methamphetamines (at least once weekly) exhibiting at least moderate symptoms of depression (score of 17 or greater on the Beck Depression Inventory II). Treatment delivered via the adaptive treatment (stepped-care) model was associated with improvement in depression and methamphetamine use, however, was not associated with more efficient delivery of psychological treatment to this population relative to the comparison treatment. This pilot trial attests to the potential for adaptive treatment strategies to increase the evidence base for stepped-care approaches within the alcohol and other drug field. However, in order for stepped-care treatment in this trial to be delivered efficiently, specific training in the delivery and philosophy of the model is required.

  16. Transfrontal orbitotomy in the dog: an adaptable three-step approach to the orbit.

    PubMed

    Håkansson, Nils Wallin; Håkansson, Berit Wallin

    2010-11-01

    To describe an adaptable and extensive method for orbitotomy in the dog. An adaptable three-step technique for orbitotomy was developed and applied in nine consecutive cases. The steps are zygomatic arch resection laterally, temporalis muscle elevation medially and zygomatic process osteotomy anteriorly-dorsally. The entire orbit is accessed with excellent exposure and room for surgical manipulation. Facial nerve, lacrimal nerve and lacrimal gland function are preserved. The procedure can easily be converted into an orbital exenteration. Exposure of the orbit was excellent in all cases and anatomically correct closure was achieved. Signs of postoperative discomfort were limited, with moderate, reversible swelling in two cases and mild in seven. Wound infection or emphysema did not occur, nor did any other complication attributable to the operative procedure. Blinking ability and lacrimal function were preserved over follow-up times ranging from 1 to 4 years. Transfrontal orbitotomy in the dog offers excellent exposure and room for manipulation. Anatomically correct closure is easily accomplished, postoperative discomfort is limited and complications are mild and temporary. © 2010 American College of Veterinary Ophthalmologists.

  17. Finite-difference modeling with variable grid-size and adaptive time-step in porous media

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yin, Xingyao; Wu, Guochen

    2014-04-01

    Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However, the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap, combined with variable grid-size and time-step, this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.

  18. Consistency of internal fluxes in a hydrological model running at multiple time steps

    NASA Astrophysics Data System (ADS)

    Ficchi, Andrea; Perrin, Charles; Andréassian, Vazken

    2016-04-01

    Improving hydrological models remains a difficult task and many ways can be explored, among which one can find the improvement of spatial representation, the search for more robust parametrization, the better formulation of some processes or the modification of model structures by trial-and-error procedure. Several past works indicate that model parameters and structure can be dependent on the modelling time step, and there is thus some rationale in investigating how a model behaves across various modelling time steps, to find solutions for improvements. Here we analyse the impact of data time step on the consistency of the internal fluxes of a rainfall-runoff model run at various time steps, by using a large data set of 240 catchments. To this end, fine time step hydro-climatic information at sub-hourly resolution is used as input of a parsimonious rainfall-runoff model (GR) that is run at eight different model time steps (from 6 minutes to one day). The initial structure of the tested model (i.e. the baseline) corresponds to the daily model GR4J (Perrin et al., 2003), adapted to be run at variable sub-daily time steps. The modelled fluxes considered are interception, actual evapotranspiration and intercatchment groundwater flows. Observations of these fluxes are not available, but the comparison of modelled fluxes at multiple time steps gives additional information for model identification. The joint analysis of flow simulation performance and consistency of internal fluxes at different time steps provides guidance to the identification of the model components that should be improved. Our analysis indicates that the baseline model structure is to be modified at sub-daily time steps to warrant the consistency and realism of the modelled fluxes. For the baseline model improvement, particular attention is devoted to the interception model component, whose output flux showed the strongest sensitivity to modelling time step. The dependency of the optimal model

  19. Spectrum of Slip Processes on the Subduction Interface in a Continuum Framework Resolved by Rate-and State Dependent Friction and Adaptive Time Stepping

    NASA Astrophysics Data System (ADS)

    Herrendoerfer, R.; van Dinther, Y.; Gerya, T.

    2015-12-01

    To explore the relationships between subduction dynamics and the megathrust earthquake potential, we have recently developed a numerical model that bridges the gap between processes on geodynamic and earthquake cycle time scales. In a self-consistent, continuum-based framework including a visco-elasto-plastic constitutive relationship, cycles of megathrust earthquake-like ruptures were simulated through a purely slip rate-dependent friction, albeit with very low slip rates (van Dinther et al., JGR, 2013). In addition to much faster earthquakes, a range of aseismic slip processes operate at different time scales in nature. These aseismic processes likely accommodate a considerable amount of the plate convergence and are thus relevant in order to estimate the long-term seismic coupling and related hazard in subduction zones. To simulate and resolve this wide spectrum of slip processes, we innovatively implemented rate-and state dependent friction (RSF) and an adaptive time-stepping into our continuum framework. The RSF formulation, in contrast to our previous friction formulation, takes the dependency of frictional strength on a state variable into account. It thereby allows for continuous plastic yielding inside rate-weakening regions, which leads to aseismic slip. In contrast to the conventional RSF formulation, we relate slip velocities to strain rates and use an invariant formulation. Thus we do not require the a priori definition of infinitely thin, planar faults in a homogeneous elastic medium. With this new implementation of RSF, we succeed to produce consistent cycles of frictional instabilities. By changing the frictional parameter a, b, and the characteristic slip distance, we observe a transition from stable sliding to stick-slip behaviour. This transition is in general agreement with predictions from theoretical estimates of the nucleation size, thereby to first order validating our implementation. By incorporating adaptive time-stepping based on a

  20. On the performance of voltage stepping for the simulation of adaptive, nonlinear integrate-and-fire neuronal networks.

    PubMed

    Kaabi, Mohamed Ghaith; Tonnelier, Arnaud; Martinez, Dominique

    2011-05-01

    In traditional event-driven strategies, spike timings are analytically given or calculated with arbitrary precision (up to machine precision). Exact computation is possible only for simplified neuron models, mainly the leaky integrate-and-fire model. In a recent paper, Zheng, Tonnelier, and Martinez (2009) introduced an approximate event-driven strategy, named voltage stepping, that allows the generic simulation of nonlinear spiking neurons. Promising results were achieved in the simulation of single quadratic integrate-and-fire neurons. Here, we assess the performance of voltage stepping in network simulations by considering more complex neurons (quadratic integrate-and-fire neurons with adaptation) coupled with multiple synapses. To handle the discrete nature of synaptic interactions, we recast voltage stepping in a general framework, the discrete event system specification. The efficiency of the method is assessed through simulations and comparisons with a modified time-stepping scheme of the Runge-Kutta type. We demonstrated numerically that the original order of voltage stepping is preserved when simulating connected spiking neurons, independent of the network activity and connectivity.

  1. Spike-frequency adaptation in the inferior colliculus.

    PubMed

    Ingham, Neil J; McAlpine, David

    2004-02-01

    We investigated spike-frequency adaptation of neurons sensitive to interaural phase disparities (IPDs) in the inferior colliculus (IC) of urethane-anesthetized guinea pigs using a stimulus paradigm designed to exclude the influence of adaptation below the level of binaural integration. The IPD-step stimulus consists of a binaural 3,000-ms tone, in which the first 1,000 ms is held at a neuron's least favorable ("worst") IPD, adapting out monaural components, before being stepped rapidly to a neuron's most favorable ("best") IPD for 300 ms. After some variable interval (1-1,000 ms), IPD is again stepped to the best IPD for 300 ms, before being returned to a neuron's worst IPD for the remainder of the stimulus. Exponential decay functions fitted to the response to best-IPD steps revealed an average adaptation time constant of 52.9 +/- 26.4 ms. Recovery from adaptation to best IPD steps showed an average time constant of 225.5 +/- 210.2 ms. Recovery time constants were not correlated with adaptation time constants. During the recovery period, adaptation to a 2nd best-IPD step followed similar kinetics to adaptation during the 1st best-IPD step. The mean adaptation time constant at stimulus onset (at worst IPD) was 34.8 +/- 19.7 ms, similar to the 38.4 +/- 22.1 ms recorded to contralateral stimulation alone. Individual time constants after stimulus onset were correlated with each other but not with time constants during the best-IPD step. We conclude that such binaurally derived measures of adaptation reflect processes that occur above the level of exclusively monaural pathways, and subsequent to the site of primary binaural interaction.

  2. Step Detection Robust against the Dynamics of Smartphones

    PubMed Central

    Lee, Hwan-hee; Choi, Suji; Lee, Myeong-jin

    2015-01-01

    A novel algorithm is proposed for robust step detection irrespective of step mode and device pose in smartphone usage environments. The dynamics of smartphones are decoupled into a peak-valley relationship with adaptive magnitude and temporal thresholds. For extracted peaks and valleys in the magnitude of acceleration, a step is defined as consisting of a peak and its adjacent valley. Adaptive magnitude thresholds consisting of step average and step deviation are applied to suppress pseudo peaks or valleys that mostly occur during the transition among step modes or device poses. Adaptive temporal thresholds are applied to time intervals between peaks or valleys to consider the time-varying pace of human walking or running for the correct selection of peaks or valleys. From the experimental results, it can be seen that the proposed step detection algorithm shows more than 98.6% average accuracy for any combination of step mode and device pose and outperforms state-of-the-art algorithms. PMID:26516857

  3. A chaos wolf optimization algorithm with self-adaptive variable step-size

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Jiang, Wanlu; Kong, Xiangdong; Quan, Lingxiao; Zhang, Yongshun

    2017-10-01

    To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA) with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as "winner-take-all" and the update mechanism as "survival of the fittest" were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.

  4. Analysis of steps adapted protocol in cardiac rehabilitation in the hospital phase.

    PubMed

    Winkelmann, Eliane Roseli; Dallazen, Fernanda; Bronzatti, Angela Beerbaum Steinke; Lorenzoni, Juliara Cristina Werner; Windmöller, Pollyana

    2015-01-01

    To analyze a cardiac rehabilitation adapted protocol in physical therapy during the postoperative hospital phase of cardiac surgery in a service of high complexity, in aspects regarded to complications and mortality prevalence and hospitalization days. This is an observational cross-sectional, retrospective and analytical study performed by investigating 99 patients who underwent cardiac surgery for coronary artery bypass graft, heart valve replacement or a combination of both. Step program adapted for rehabilitation after cardiac surgery was analyzed under the command of the physiotherapy professional team. In average, a patient stays for two days in the Intensive Care Unit and three to four days in the hospital room, totalizing six days of hospitalization. Fatalities occurred in a higher percentage during hospitalization (5.1%) and up to two years period (8.6%) when compared to 30 days after hospital discharge (1.1%). Among the postoperative complications, the hemodynamic (63.4%) and respiratory (42.6%) were the most prevalent. 36-42% of complications occurred between the immediate postoperative period and the second postoperative day. The hospital discharge started from the fifth postoperative day. We can observe that in each following day, the patients are evolving in achieving the Steps, where Step 3 was the most used during the rehabilitation phase I. This evolution program by steps can to guide the physical rehabilitation at the hospital in patients after cardiac surgery.

  5. Adaptive evolution of Escherichia coli to Ciprofloxacin in controlled stress environments: emergence of resistance in continuous and step-wise gradients

    NASA Astrophysics Data System (ADS)

    Deng, J.; Zhou, L.; Dong, Y.; Sanford, R. A.; Shechtman, L. A.; Alcalde, R.; Werth, C. J.; Fouke, B. W.

    2017-12-01

    Microorganisms in nature have evolved in response to a variety of environmental stresses, including gradients in pH, flow and chemistry. While environmental stresses are generally considered to be the driving force of adaptive evolution, the impact and extent of any specific stress needed to drive such changes has not been well characterized. In this study, a microfluidic diffusion chamber (MDC) and a batch culturing system were used to systematically study the effects of continuous versus step-wise stress increments on adaptation of E. coli to the antibiotic ciprofloxacin. In the MDC, a diffusion gradient of ciprofloxacin was established across a microfluidic well array to microscopically observe changes in Escherichia coli strain 307 replication and migration patterns that would indicate emergence of resistance due to genetic mutations. Cells recovered from the MDC only had resistance of 50-times the original minimum inhibition concentration (MICoriginal) of ciprofloxacin, although minimum exposure concentrations were over 80 × MICoriginal by the end of the experiment. In complementary batch experiments, E. coli 307 were exposed to step-wise daily increases of ciprofloxacin at rates equivalent to 0.1×, 0.2×, 0.4× or 0.8× times MICoriginal/day. Over a period of 18 days, E. coli cells were able to acquire resistance of up to 225 × MICoriginal, with exposure to ciprofloxacin concentration up to only 14.9 × MIC­original. The different levels of acquired resistance in the continuous MDC versus step-wise batch increment experiments suggests that the intrinsic rate of E. coli adaptation was exceeded in the MDC, while the step-wise experiments favor adaptation to the highest ciprofloxacin experiments. Genomic analyses of E. coli DNA extracted from the microfluidic cell and batch cultures indicated four single nucleotide polymorphism (SNP) mutations of amino acid 82, 83 and 87 in the gyrA gene. The progression of adaptation in the step-wise increments of

  6. Manual for implementing a Shared Time Engineering Program (STEP) September 1980 through September 1983

    NASA Astrophysics Data System (ADS)

    Aronoff, H. I.; Leslie, J. J.; Mittleman, A. N.; Holt, S.

    1983-11-01

    This manual describes a Shared Time Engineering Program (STEP) conducted by the New England Apparel Manufacturers Association (NEAMA) headquartered in Fall River Massachusetts, and funded by the Office of Trade Adjustment Assistance of the U.S. Department of Commerce. It is addressed to industry association executives, industrial engineers and others interested in examining an innovative model of industrial engineering assistance to small plants which might be adapted to their particular needs.

  7. Two-step adaptive management for choosing between two management actions

    USGS Publications Warehouse

    Moore, Alana L.; Walker, Leila; Runge, Michael C.; McDonald-Madden, Eve; McCarthy, Michael A

    2017-01-01

    Adaptive management is widely advocated to improve environmental management. Derivations of optimal strategies for adaptive management, however, tend to be case specific and time consuming. In contrast, managers might seek relatively simple guidance, such as insight into when a new potential management action should be considered, and how much effort should be expended on trialing such an action. We constructed a two-time-step scenario where a manager is choosing between two possible management actions. The manager has a total budget that can be split between a learning phase and an implementation phase. We use this scenario to investigate when and how much a manager should invest in learning about the management actions available. The optimal investment in learning can be understood intuitively by accounting for the expected value of sample information, the benefits that accrue during learning, the direct costs of learning, and the opportunity costs of learning. We find that the optimal proportion of the budget to spend on learning is characterized by several critical thresholds that mark a jump from spending a large proportion of the budget on learning to spending nothing. For example, as sampling variance increases, it is optimal to spend a larger proportion of the budget on learning, up to a point: if the sampling variance passes a critical threshold, it is no longer beneficial to invest in learning. Similar thresholds are observed as a function of the total budget and the difference in the expected performance of the two actions. We illustrate how this model can be applied using a case study of choosing between alternative rearing diets for hihi, an endangered New Zealand passerine. Although the model presented is a simplified scenario, we believe it is relevant to many management situations. Managers often have relatively short time horizons for management, and might be reluctant to consider further investment in learning and monitoring beyond collecting data

  8. Two-step adaptive management for choosing between two management actions.

    PubMed

    Moore, Alana L; Walker, Leila; Runge, Michael C; McDonald-Madden, Eve; McCarthy, Michael A

    2017-06-01

    Adaptive management is widely advocated to improve environmental management. Derivations of optimal strategies for adaptive management, however, tend to be case specific and time consuming. In contrast, managers might seek relatively simple guidance, such as insight into when a new potential management action should be considered, and how much effort should be expended on trialing such an action. We constructed a two-time-step scenario where a manager is choosing between two possible management actions. The manager has a total budget that can be split between a learning phase and an implementation phase. We use this scenario to investigate when and how much a manager should invest in learning about the management actions available. The optimal investment in learning can be understood intuitively by accounting for the expected value of sample information, the benefits that accrue during learning, the direct costs of learning, and the opportunity costs of learning. We find that the optimal proportion of the budget to spend on learning is characterized by several critical thresholds that mark a jump from spending a large proportion of the budget on learning to spending nothing. For example, as sampling variance increases, it is optimal to spend a larger proportion of the budget on learning, up to a point: if the sampling variance passes a critical threshold, it is no longer beneficial to invest in learning. Similar thresholds are observed as a function of the total budget and the difference in the expected performance of the two actions. We illustrate how this model can be applied using a case study of choosing between alternative rearing diets for hihi, an endangered New Zealand passerine. Although the model presented is a simplified scenario, we believe it is relevant to many management situations. Managers often have relatively short time horizons for management, and might be reluctant to consider further investment in learning and monitoring beyond collecting data

  9. Speech perception at positive signal-to-noise ratios using adaptive adjustment of time compression.

    PubMed

    Schlueter, Anne; Brand, Thomas; Lemke, Ulrike; Nitzschner, Stefan; Kollmeier, Birger; Holube, Inga

    2015-11-01

    Positive signal-to-noise ratios (SNRs) characterize listening situations most relevant for hearing-impaired listeners in daily life and should therefore be considered when evaluating hearing aid algorithms. For this, a speech-in-noise test was developed and evaluated, in which the background noise is presented at fixed positive SNRs and the speech rate (i.e., the time compression of the speech material) is adaptively adjusted. In total, 29 younger and 12 older normal-hearing, as well as 24 older hearing-impaired listeners took part in repeated measurements. Younger normal-hearing and older hearing-impaired listeners conducted one of two adaptive methods which differed in adaptive procedure and step size. Analysis of the measurements with regard to list length and estimation strategy for thresholds resulted in a practical method measuring the time compression for 50% recognition. This method uses time-compression adjustment and step sizes according to Versfeld and Dreschler [(2002). J. Acoust. Soc. Am. 111, 401-408], with sentence scoring, lists of 30 sentences, and a maximum likelihood method for threshold estimation. Evaluation of the procedure showed that older participants obtained higher test-retest reliability compared to younger participants. Depending on the group of listeners, one or two lists are required for training prior to data collection.

  10. Analysis of steps adapted protocol in cardiac rehabilitation in the hospital phase

    PubMed Central

    Winkelmann, Eliane Roseli; Dallazen, Fernanda; Bronzatti, Angela Beerbaum Steinke; Lorenzoni, Juliara Cristina Werner; Windmöller, Pollyana

    2015-01-01

    Objective To analyze a cardiac rehabilitation adapted protocol in physical therapy during the postoperative hospital phase of cardiac surgery in a service of high complexity, in aspects regarded to complications and mortality prevalence and hospitalization days. Methods This is an observational cross-sectional, retrospective and analytical study performed by investigating 99 patients who underwent cardiac surgery for coronary artery bypass graft, heart valve replacement or a combination of both. Step program adapted for rehabilitation after cardiac surgery was analyzed under the command of the physiotherapy professional team. Results In average, a patient stays for two days in the Intensive Care Unit and three to four days in the hospital room, totalizing six days of hospitalization. Fatalities occurred in a higher percentage during hospitalization (5.1%) and up to two years period (8.6%) when compared to 30 days after hospital discharge (1.1%). Among the postoperative complications, the hemodynamic (63.4%) and respiratory (42.6%) were the most prevalent. 36-42% of complications occurred between the immediate postoperative period and the second postoperative day. The hospital discharge started from the fifth postoperative day. We can observe that in each following day, the patients are evolving in achieving the Steps, where Step 3 was the most used during the rehabilitation phase I. Conclusion This evolution program by steps can to guide the physical rehabilitation at the hospital in patients after cardiac surgery. PMID:25859866

  11. Adaptive Controller Adaptation Time and Available Control Authority Effects on Piloting

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna; Gregory, Irene

    2013-01-01

    Adaptive control is considered for highly uncertain, and potentially unpredictable, flight dynamics characteristic of adverse conditions. This experiment looked at how adaptive controller adaptation time to recover nominal aircraft dynamics affects pilots and how pilots want information about available control authority transmitted. Results indicate that an adaptive controller that takes three seconds to adapt helped pilots when looking at lateral and longitudinal errors. The controllability ratings improved with the adaptive controller, again the most for the three seconds adaptation time while workload decreased with the adaptive controller. The effects of the displays showing the percentage amount of available safe flight envelope used in the maneuver were dominated by the adaptation time. With the displays, the altitude error increased, controllability slightly decreased, and mental demand increased. Therefore, the displays did require some of the subjects resources but these negatives may be outweighed by pilots having more situation awareness of their aircraft.

  12. The prevalence of upright non-stepping time in comparison to stepping time in 11-13 year old school children across seasons.

    PubMed

    McCrorie, P Rw; Duncan, E; Granat, M H; Stansfield, B W

    2012-11-01

    Evidence suggests that behaviours such as standing are beneficial for our health. Unfortunately, little is known of the prevalence of this state, its importance in relation to time spent stepping or variation across seasons. The aim of this study was to quantify, in young adolescents, the prevalence and seasonal changes in time spent upright and not stepping (UNSt(time)) as well as time spent upright and stepping (USt(time)), and their contribution to overall upright time (U(time)). Thirty-three adolescents (12.2 ± 0.3 y) wore the activPAL activity monitor during four school days on two occasions: November/December (winter) and May/June (summer). UNSt(time) contributed 60% of daily U(time) at winter (Mean = 196 min) and 53% at summer (Mean = 171 min); a significant seasonal effect, p < 0.001. USt(time) was significantly greater in summer compared to winter (153 min versus 131 min, p < 0.001). The effects in UNSt(time) could be explained through significant seasonal differences during the school hours (09:00-16:00), whereas the effects in USt(time) could be explained through significant seasonal differences in the evening period (16:00-22:00). Adolescents spent a greater amount of time upright and not stepping than they did stepping, in both winter and summer. The observed seasonal effects for both UNSt(time) and USt(time) provide important information for behaviour change intervention programs.

  13. Real-Time Adaptive Control of Flow-Induced Cavity Tones

    NASA Technical Reports Server (NTRS)

    Kegerise, Michael A.; Cabell, Randolph H.; Cattafesta, Louis N.

    2004-01-01

    An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. The adaptive control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. The algorithm was also able t o maintain suppression of multiple cavity tones as the freestream Mach number was varied over a modest range (0.275 to 0.29). Controller performance was evaluated with a measure of output disturbance rejection and an input sensitivity transfer function. The results suggest that disturbances entering the cavity flow are colocated with the control input at the cavity leading edge. In that case, only tonal components of the cavity wall-pressure fluctuations can be suppressed and arbitrary broadband pressure reduction is not possible. In the control-algorithm development, the cavity dynamics are treated as linear and time invariant (LTI) for a fixed Mach number. The experimental results lend support this treatment.

  14. The impact of weight classification on safety: timing steps to adapt to external constraints

    PubMed Central

    Gill, S.V.

    2015-01-01

    Objectives: The purpose of the current study was to evaluate how weight classification influences safety by examining adults’ ability to meet a timing constraint: walking to the pace of an audio metronome. Methods: With a cross-sectional design, walking parameters were collected as 55 adults with normal (n=30) and overweight (n=25) body mass index scores walked to slow, normal, and fast audio metronome paces. Results: Between group comparisons showed that at the fast pace, those with overweight body mass index (BMI) had longer double limb support and stance times and slower cadences than the normal weight group (all ps<0.05). Examinations of participants’ ability to meet the metronome paces revealed that participants who were overweight had higher cadences at the slow and fast paces (all ps<0.05). Conclusions: Findings suggest that those with overweight BMI alter their gait to maintain biomechanical stability. Understanding how excess weight influences gait adaptation can inform interventions to improve safety for individuals with obesity. PMID:25730658

  15. A cascade reaction network mimicking the basic functional steps of adaptive immune response

    NASA Astrophysics Data System (ADS)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  16. Adaptive multitaper time-frequency spectrum estimation

    NASA Astrophysics Data System (ADS)

    Pitton, James W.

    1999-11-01

    In earlier work, Thomson's adaptive multitaper spectrum estimation method was extended to the nonstationary case. This paper reviews the time-frequency multitaper method and the adaptive procedure, and explores some properties of the eigenvalues and eigenvectors. The variance of the adaptive estimator is used to construct an adaptive smoother, which is used to form a high resolution estimate. An F-test for detecting and removing sinusoidal components in the time-frequency spectrum is also given.

  17. Nonlinear time-series-based adaptive control applications

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.; Rajkumar, V.; Zakrzewski, R. R.

    1991-01-01

    A control design methodology based on a nonlinear time-series reference model is presented. It is indicated by highly nonlinear simulations that such designs successfully stabilize troublesome aircraft maneuvers undergoing large changes in angle of attack as well as large electric power transients due to line faults. In both applications, the nonlinear controller was significantly better than the corresponding linear adaptive controller. For the electric power network, a flexible AC transmission system with series capacitor power feedback control is studied. A bilinear autoregressive moving average reference model is identified from system data, and the feedback control is manipulated according to a desired reference state. The control is optimized according to a predictive one-step quadratic performance index. A similar algorithm is derived for control of rapid changes in aircraft angle of attack over a normally unstable flight regime. In the latter case, however, a generalization of a bilinear time-series model reference includes quadratic and cubic terms in angle of attack.

  18. Guidelines for Adapting Manualized Interventions for New Target Populations: A Step-Wise Approach Using Anger Management as a Model

    PubMed Central

    Goldstein, Naomi E. S.; Kemp, Kathleen A.; Leff, Stephen S.; Lochman, John E.

    2014-01-01

    The use of manual-based interventions tends to improve client outcomes and promote replicability. With an increasingly strong link between funding and the use of empirically supported prevention and intervention programs, manual development and adaptation have become research priorities. As a result, researchers and scholars have generated guidelines for developing manuals from scratch, but there are no extant guidelines for adapting empirically supported, manualized prevention and intervention programs for use with new populations. Thus, this article proposes step-by-step guidelines for the manual adaptation process. It also describes two adaptations of an extensively researched anger management intervention to exemplify how an empirically supported program was systematically and efficiently adapted to achieve similar outcomes with vastly different populations in unique settings. PMID:25110403

  19. Space-time adaptive solution of inverse problems with the discrete adjoint method

    NASA Astrophysics Data System (ADS)

    Alexe, Mihai; Sandu, Adrian

    2014-08-01

    This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The space-time adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the inter-grid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided through a multi-level optimization strategy using discontinuous Galerkin (DG) hp-adaptive discretizations paired with Runge-Kutta (RK) time integration. We extend the concept of dual (adjoint) consistency to space-time RK-DG discretizations, which are then shown to be well suited for the adaptive solution of time-dependent inverse problems. Furthermore, we prove that DG mesh transfer operators on general meshes are also dual consistent. This allows the simultaneous derivation of the discrete adjoint for both the numerical solver and the mesh transfer logic with an automatic code generation mechanism such as algorithmic differentiation (AD), potentially speeding up development of large-scale simulation codes. The theoretical analysis is supported by numerical results reported for a two-dimensional non-stationary inverse problem.

  20. A family of variable step-size affine projection adaptive filter algorithms using statistics of channel impulse response

    NASA Astrophysics Data System (ADS)

    Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar

    2011-12-01

    This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.

  1. Design Specifications for Adaptive Real-Time Systems

    DTIC Science & Technology

    1991-12-01

    TICfl \\ E CT E Design Specifications for JAN’\\ 1992 Adaptive Real - Time Systems fl Randall W. Lichota U, Alice H. Muntz - December 1991 \\ \\\\/ 0 / r...268-2056 Technical Report CMU/SEI-91-TR-20 ESD-91-TR-20 December 1991 Design Specifications for Adaptive Real - Time Systems Randall W. Lichota Hughes...Design Specifications for Adaptive Real - Time Systems Abstract: The design specification method described in this report treats a software

  2. Dynamic accommodation responses following adaptation to defocus.

    PubMed

    Cufflin, Matthew P; Mallen, Edward A H

    2008-10-01

    Adaptation to defocus is known to influence the subjective sensitivity to blur in both emmetropes and myopes. Blur is a major contributing factor in the closed-loop dynamic accommodation response. Previous investigations have examined the magnitude of the accommodation response following blur adaptation. We have investigated whether a period of blur adaptation influences the dynamic accommodation response to step and sinusoidal changes in target vergence. Eighteen subjects (six emmetropes, six early onset myopes, and six late onset myopes) underwent 30 min of adaptation to 0.00 D (control), +1.00 D or +3.00 D myopic defocus. Following this adaptation period, accommodation responses to a 2.00 D step change and 2.00 D sinusoidal change (0.2 Hz) in target vergence were recorded continuously using an autorefractor. Adaptation to defocus failed to influence accommodation latency times, but did influence response times to a step change in target vergence. Adaptation to both +1.00 and +3.00 D induced significant increases in response times (p = 0.002 and p = 0.012, respectively) and adaptation to +3.00 D increased the change in accommodation response magnitude (p = 0.014) for a 2.00 D step change in demand. Blur adaptation also significantly increased the peak-to-peak phase lag for accommodation responses to a sinusoidally oscillating target, although failed to influence the accommodation gain. These changes in accommodative response were equivalent across all refractive groups. Adaptation to a degraded stimulus causes an increased level of accommodation for dynamic targets moving towards an observer and increases response times and phase lags. It is suggested that the contrast constancy theory may explain these changes in dynamic behavior.

  3. Cross-cultural adaptation of research instruments: language, setting, time and statistical considerations.

    PubMed

    Gjersing, Linn; Caplehorn, John R M; Clausen, Thomas

    2010-02-10

    Research questionnaires are not always translated appropriately before they are used in new temporal, cultural or linguistic settings. The results based on such instruments may therefore not accurately reflect what they are supposed to measure. This paper aims to illustrate the process and required steps involved in the cross-cultural adaptation of a research instrument using the adaptation process of an attitudinal instrument as an example. A questionnaire was needed for the implementation of a study in Norway 2007. There was no appropriate instruments available in Norwegian, thus an Australian-English instrument was cross-culturally adapted. The adaptation process included investigation of conceptual and item equivalence. Two forward and two back-translations were synthesized and compared by an expert committee. Thereafter the instrument was pretested and adjusted accordingly. The final questionnaire was administered to opioid maintenance treatment staff (n=140) and harm reduction staff (n=180). The overall response rate was 84%. The original instrument failed confirmatory analysis. Instead a new two-factor scale was identified and found valid in the new setting. The failure of the original scale highlights the importance of adapting instruments to current research settings. It also emphasizes the importance of ensuring that concepts within an instrument are equal between the original and target language, time and context. If the described stages in the cross-cultural adaptation process had been omitted, the findings would have been misleading, even if presented with apparent precision. Thus, it is important to consider possible barriers when making a direct comparison between different nations, cultures and times.

  4. Adaptive multi-step Full Waveform Inversion based on Waveform Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Han, Liguo; Xu, Zhuo; Zhang, Fengjiao; Zeng, Jingwen

    2017-04-01

    Full Waveform Inversion (FWI) can be used to build high resolution velocity models, but there are still many challenges in seismic field data processing. The most difficult problem is about how to recover long-wavelength components of subsurface velocity models when seismic data is lacking of low frequency information and without long-offsets. To solve this problem, we propose to use Waveform Mode Decomposition (WMD) method to reconstruct low frequency information for FWI to obtain a smooth model, so that the initial model dependence of FWI can be reduced. In this paper, we use adjoint-state method to calculate the gradient for Waveform Mode Decomposition Full Waveform Inversion (WMDFWI). Through the illustrative numerical examples, we proved that the low frequency which is reconstructed by WMD method is very reliable. WMDFWI in combination with the adaptive multi-step inversion strategy can obtain more faithful and accurate final inversion results. Numerical examples show that even if the initial velocity model is far from the true model and lacking of low frequency information, we still can obtain good inversion results with WMD method. From numerical examples of anti-noise test, we see that the adaptive multi-step inversion strategy for WMDFWI has strong ability to resist Gaussian noise. WMD method is promising to be able to implement for the land seismic FWI, because it can reconstruct the low frequency information, lower the dominant frequency in the adjoint source, and has a strong ability to resist noise.

  5. Short-term Time Step Convergence in a Climate Model

    DOE PAGES

    Wan, Hui; Rasch, Philip J.; Taylor, Mark; ...

    2015-02-11

    A testing procedure is designed to assess the convergence property of a global climate model with respect to time step size, based on evaluation of the root-mean-square temperature difference at the end of very short (1 h) simulations with time step sizes ranging from 1 s to 1800 s. A set of validation tests conducted without sub-grid scale parameterizations confirmed that the method was able to correctly assess the convergence rate of the dynamical core under various configurations. The testing procedure was then applied to the full model, and revealed a slow convergence of order 0.4 in contrast to themore » expected first-order convergence. Sensitivity experiments showed without ambiguity that the time stepping errors in the model were dominated by those from the stratiform cloud parameterizations, in particular the cloud microphysics. This provides a clear guidance for future work on the design of more accurate numerical methods for time stepping and process coupling in the model.« less

  6. Comparison of step-by-step kinematics of resisted, assisted and unloaded 20-m sprint runs.

    PubMed

    van den Tillaar, Roland; Gamble, Paul

    2018-03-26

    This investigation examined step-by-step kinematics of sprint running acceleration. Using a randomised counterbalanced approach, 37 female team handball players (age 17.8 ± 1.6 years, body mass 69.6 ± 9.1 kg, height 1.74 ± 0.06 m) performed resisted, assisted and unloaded 20-m sprints within a single session. 20-m sprint times and step velocity, as well as step length, step frequency, contact and flight times of each step were evaluated for each condition with a laser gun and an infrared mat. Almost all measured parameters were altered for each step under the resisted and assisted sprint conditions (η 2  ≥ 0.28). The exception was step frequency, which did not differ between assisted and normal sprints. Contact time, flight time and step frequency at almost each step were different between 'fast' vs. 'slow' sub-groups (η 2  ≥ 0.22). Nevertheless overall both groups responded similarly to the respective sprint conditions. No significant differences in step length were observed between groups for the respective condition. It is possible that continued exposure to assisted sprinting might allow the female team-sports players studied to adapt their coordination to the 'over-speed' condition and increase step frequency. It is notable that step-by-step kinematics in these sprints were easy to obtain using relatively inexpensive equipment with possibilities of direct feedback.

  7. Short‐term time step convergence in a climate model

    PubMed Central

    Rasch, Philip J.; Taylor, Mark A.; Jablonowski, Christiane

    2015-01-01

    Abstract This paper evaluates the numerical convergence of very short (1 h) simulations carried out with a spectral‐element (SE) configuration of the Community Atmosphere Model version 5 (CAM5). While the horizontal grid spacing is fixed at approximately 110 km, the process‐coupling time step is varied between 1800 and 1 s to reveal the convergence rate with respect to the temporal resolution. Special attention is paid to the behavior of the parameterized subgrid‐scale physics. First, a dynamical core test with reduced dynamics time steps is presented. The results demonstrate that the experimental setup is able to correctly assess the convergence rate of the discrete solutions to the adiabatic equations of atmospheric motion. Second, results from full‐physics CAM5 simulations with reduced physics and dynamics time steps are discussed. It is shown that the convergence rate is 0.4—considerably slower than the expected rate of 1.0. Sensitivity experiments indicate that, among the various subgrid‐scale physical parameterizations, the stratiform cloud schemes are associated with the largest time‐stepping errors, and are the primary cause of slow time step convergence. While the details of our findings are model specific, the general test procedure is applicable to any atmospheric general circulation model. The need for more accurate numerical treatments of physical parameterizations, especially the representation of stratiform clouds, is likely common in many models. The suggested test technique can help quantify the time‐stepping errors and identify the related model sensitivities. PMID:27660669

  8. Adaptive Finite Element Methods for Continuum Damage Modeling

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.

    1995-01-01

    The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.

  9. Projection Operator: A Step Towards Certification of Adaptive Controllers

    NASA Technical Reports Server (NTRS)

    Larchev, Gregory V.; Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    One of the major barriers to wider use of adaptive controllers in commercial aviation is the lack of appropriate certification procedures. In order to be certified by the Federal Aviation Administration (FAA), an aircraft controller is expected to meet a set of guidelines on functionality and reliability while not negatively impacting other systems or safety of aircraft operations. Due to their inherent time-variant and non-linear behavior, adaptive controllers cannot be certified via the metrics used for linear conventional controllers, such as gain and phase margin. Projection Operator is a robustness augmentation technique that bounds the output of a non-linear adaptive controller while conforming to the Lyapunov stability rules. It can also be used to limit the control authority of the adaptive component so that the said control authority can be arbitrarily close to that of a linear controller. In this paper we will present the results of applying the Projection Operator to a Model-Reference Adaptive Controller (MRAC), varying the amount of control authority, and comparing controller s performance and stability characteristics with those of a linear controller. We will also show how adjusting Projection Operator parameters can make it easier for the controller to satisfy the certification guidelines by enabling a tradeoff between controller s performance and robustness.

  10. SU-F-J-66: Anatomy Deformation Based Comparison Between One-Step and Two-Step Optimization for Online ART

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Z; Yu, G; Qin, S

    Purpose: This study investigated that how the quality of adapted plan was affected by inter-fractional anatomy deformation by using one-step and two-step optimization for on line adaptive radiotherapy (ART) procedure. Methods: 10 lung carcinoma patients were chosen randomly to produce IMRT plan by one-step and two-step algorithms respectively, and the prescribed dose was set as 60 Gy on the planning target volume (PTV) for all patients. To simulate inter-fractional target deformation, four specific cases were created by systematic anatomy variation; including target superior shift 0.5 cm, 0.3cm contraction, 0.3 cm expansion and 45-degree rotation. Based on these four anatomy deformation,more » adapted plan, regenerated plan and non-adapted plan were created to evaluate quality of adaptation. Adapted plans were generated automatically by using one-step and two-step algorithms respectively to optimize original plans, and regenerated plans were manually created by experience physicists. Non-adapted plans were produced by recalculating the dose distribution based on corresponding original plans. The deviations among these three plans were statistically analyzed by paired T-test. Results: In PTV superior shift case, adapted plans had significantly better PTV coverage by using two-step algorithm compared with one-step one, and meanwhile there was a significant difference of V95 by comparison with adapted and non-adapted plans (p=0.0025). In target contraction deformation, with almost same PTV coverage, the total lung received lower dose using one-step algorithm than two-step algorithm (p=0.0143,0.0126 for V20, Dmean respectively). In other two deformation cases, there were no significant differences observed by both two optimized algorithms. Conclusion: In geometry deformation such as target contraction, with comparable PTV coverage, one-step algorithm gave better OAR sparing than two-step algorithm. Reversely, the adaptation by using two-step algorithm had higher

  11. Weekly Time Course of Neuro-Muscular Adaptation to Intensive Strength Training.

    PubMed

    Brown, Niklas; Bubeck, Dieter; Haeufle, Daniel F B; Weickenmeier, Johannes; Kuhl, Ellen; Alt, Wilfried; Schmitt, Syn

    2017-01-01

    Detailed description of the time course of muscular adaptation is rarely found in literature. Thus, models of muscular adaptation are difficult to validate since no detailed data of adaptation are available. In this article, as an initial step toward a detailed description and analysis of muscular adaptation, we provide a case report of 8 weeks of intense strength training with two active, male participants. Muscular adaptations were analyzed on a morphological level with MRI scans of the right quadriceps muscle and the calculation of muscle volume, on a voluntary strength level by isometric voluntary contractions with doublet stimulation (interpolated twitch technique) and on a non-voluntary level by resting twitch torques. Further, training volume and isokinetic power were closely monitored during the training phase. Data were analyzed weekly for 1 week prior to training, pre-training, 8 weeks of training and 2 weeks of detraining (no strength training). Results show a very individual adaptation to the intense strength training protocol. While training volume and isokinetic power increased linearly during the training phase, resting twitch parameters decreased for both participants after the first week of training and stayed below baseline until de-training. Voluntary activation level showed an increase in the first 4 weeks of training, while maximum voluntary contraction showed only little increase compared to baseline. Muscle volume increased for both subjects. Especially training status seemed to influence the acute reaction to intense strength training. Fatigue had a major influence on performance and could only be overcome by one participant. The results give a first detailed insight into muscular adaptation to intense strength training on various levels, providing a basis of data for a validation of muscle fatigue and adaptation models.

  12. Coordination of rapid stepping with arm pointing: anticipatory changes and step adaptation.

    PubMed

    Yiou, Eric; Schneider, Cyril; Roussel, Didier

    2007-06-01

    The present study explored whether rapid stepping is influenced by the coordination of an arm pointing task. Nine participants were instructed to (a) point the index finger of the dominant arm towards a target from the standing posture, (b) initiate a rapid forward step with the contralateral leg, and (c) synchronize stepping and pointing (combined task). Force plate and ankle muscle electromyography (EMG) recordings were contrasted between (b) and (c). In the combined task, the arm acceleration trace most often peaked around foot-off, coinciding with a 15% increase in the forward acceleration of the center of gravity (CoG). Backward displacement of the center of foot pressure at foot-off, duration of anticipatory postural adjustments (APAs) and ankle muscle EMG activity remained unchanged. In contrast, durations of swing phase and whole step were reduced and step length was smaller in the combined task. A reduction in the swing phase was correlated with an increased CoG forward acceleration at foot-off. Changes in the biomechanics of step initiation during the combined task might be ascribed to the postural dynamics elicited by arm pointing, and not to a modulation of the step APAs programming.

  13. Solar-driven thermo- and electrochemical degradation of nitrobenzene in wastewater: Adaptation and adoption of solar STEP concept.

    PubMed

    Gu, Di; Shao, Nan; Zhu, Yanji; Wu, Hongjun; Wang, Baohui

    2017-01-05

    The STEP concept has successfully been demonstrated for driving chemical reaction by utilization of solar heat and electricity to minimize the fossil energy, meanwhile, maximize the rate of thermo- and electrochemical reactions in thermodynamics and kinetics. This pioneering investigation experimentally exhibit that the STEP concept is adapted and adopted efficiently for degradation of nitrobenzene. By employing the theoretical calculation and thermo-dependent cyclic voltammetry, the degradation potential of nitrobenzene was found to be decreased obviously, at the same time, with greatly lifting the current, while the temperature was increased. Compared with the conventional electrochemical methods, high efficiency and fast degradation rate were markedly displayed due to the co-action of thermo- and electrochemical effects and the switch of the indirect electrochemical oxidation to the direct one for oxidation of nitrobenzene. A clear conclusion on the mechanism of nitrobenzene degradation by the STEP can be schematically proposed and discussed by the combination of thermo- and electrochemistry based the analysis of the HPLC, UV-vis and degradation data. This theory and experiment provide a pilot for the treatment of nitrobenzene wastewater with high efficiency, clean operation and low carbon footprint, without any other input of energy and chemicals from solar energy. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Real-Time Feedback Control of Flow-Induced Cavity Tones. Part 2; Adaptive Control

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cabell, R. H.; Cattafesta, L. N., III

    2006-01-01

    An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. Past input-output data and an estimate of the open-loop pulse response sequence are all that is needed to implement the algorithm for application at fixed Mach numbers. Transient measurements made during controller adaptation revealed that the controller coefficients converged to a steady state in the mean, and this implies that adaptation can be turned off at some point with no degradation in control performance. When converged, the control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. However, as in the case of fixed-gain GPC, the adaptive GPC performance was limited by spillover in sidebands around the suppressed Rossiter modes. The algorithm was also able to maintain suppression of multiple cavity tones as the freestream Mach number was varied over a modest range (0.275 to 0.29). Beyond this range, stable operation of the control algorithm was not possible due to the fixed plant model in the algorithm.

  15. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    DOE PAGES

    Finn, John M.

    2015-03-01

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a 'special divergence-free' property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. Wemore » also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Ref. [11], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Ref. [35], appears to work very well.« less

  16. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, John M., E-mail: finn@lanl.gov

    2015-03-15

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint.more » We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004

  17. Predictable and Adaptable Complex Real-Time Systems

    DTIC Science & Technology

    1993-09-30

    Predictable and Adaptable Complex Real - Time Systems Grant or Contract Number: N00014-92-J-1048 Reporting Period: 1 Oct 91 - 30 Sep 93 1... Real - Time Systems Grant or Contract Number: N00014-92-J-1048 Reporting Period: 1 Oct 91 - 30 Sep 93 2. Summary of Technical Progress Our...cs.umass.edu Grant or Contract Title: Predictable and Adaptable Complex Real - Time Systems Grant or Contract Number: N00014-92-J-1048 Reporting Period: 1 Oct 91

  18. The first patient treatment of electromagnetic-guided real time adaptive radiotherapy using MLC tracking for lung SABR.

    PubMed

    Booth, Jeremy T; Caillet, Vincent; Hardcastle, Nicholas; O'Brien, Ricky; Szymura, Kathryn; Crasta, Charlene; Harris, Benjamin; Haddad, Carol; Eade, Thomas; Keall, Paul J

    2016-10-01

    Real time adaptive radiotherapy that enables smaller irradiated volumes may reduce pulmonary toxicity. We report on the first patient treatment of electromagnetic-guided real time adaptive radiotherapy delivered with MLC tracking for lung stereotactic ablative body radiotherapy. A clinical trial was developed to investigate the safety and feasibility of MLC tracking in lung. The first patient was an 80-year old man with a single left lower lobe lung metastasis to be treated with SABR to 48Gy in 4 fractions. In-house software was integrated with a standard linear accelerator to adapt the treatment beam shape and position based on electromagnetic transponders implanted in the lung. MLC tracking plans were compared against standard ITV-based treatment planning. MLC tracking plan delivery was reconstructed in the patient to confirm safe delivery. Real time adaptive radiotherapy delivered with MLC tracking compared to standard ITV-based planning reduced the PTV by 41% (18.7-11cm 3 ) and the mean lung dose by 30% (202-140cGy), V20 by 35% (2.6-1.5%) and V5 by 9% (8.9-8%). An emerging technology, MLC tracking, has been translated into the clinic and used to treat lung SABR patients for the first time. This milestone represents an important first step for clinical real-time adaptive radiotherapy that could reduce pulmonary toxicity in lung radiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Adaptive time-variant models for fuzzy-time-series forecasting.

    PubMed

    Wong, Wai-Keung; Bai, Enjian; Chu, Alice Wai-Ching

    2010-12-01

    A fuzzy time series has been applied to the prediction of enrollment, temperature, stock indices, and other domains. Related studies mainly focus on three factors, namely, the partition of discourse, the content of forecasting rules, and the methods of defuzzification, all of which greatly influence the prediction accuracy of forecasting models. These studies use fixed analysis window sizes for forecasting. In this paper, an adaptive time-variant fuzzy-time-series forecasting model (ATVF) is proposed to improve forecasting accuracy. The proposed model automatically adapts the analysis window size of fuzzy time series based on the prediction accuracy in the training phase and uses heuristic rules to generate forecasting values in the testing phase. The performance of the ATVF model is tested using both simulated and actual time series including the enrollments at the University of Alabama, Tuscaloosa, and the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). The experiment results show that the proposed ATVF model achieves a significant improvement in forecasting accuracy as compared to other fuzzy-time-series forecasting models.

  20. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution

    PubMed Central

    Covert, Arthur W.; Lenski, Richard E.; Wilke, Claus O.; Ofria, Charles

    2013-01-01

    Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions. PMID:23918358

  1. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution.

    PubMed

    Covert, Arthur W; Lenski, Richard E; Wilke, Claus O; Ofria, Charles

    2013-08-20

    Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions.

  2. The Chinese Life-Steps Program: A Cultural Adaptation of a Cognitive-Behavioral Intervention to Enhance HIV Medication Adherence.

    PubMed

    Shiu, Cheng-Shi; Chen, Wei-Ti; Simoni, Jane; Fredriksen-Goldsen, Karen; Zhang, Fujie; Zhou, Hongxin

    2013-05-01

    China is considered to be the new frontier of the global AIDS pandemic. Although effective treatment for HIV is becoming widely available in China, adherence to treatment remains a challenge. This study aimed to adapt an intervention promoting HIV-medication adherence-favorably evaluated in the West-for Chinese HIV-positive patients. The adaptation process was theory-driven and covered several key issues of cultural adaptation. We considered the importance of interpersonal relationships and family in China and cultural notions of health. Using an evidence-based treatment protocol originally designed for Western HIV-positive patients, we developed an 11-step Chinese Life-Steps program with an additional culture-specific intervention option. We describe in detail how the cultural elements were incorporated into the intervention and put into practice at each stage. Clinical considerations are also outlined and followed by two case examples that are provided to illustrate our application of the intervention. Finally, we discuss practical and research issues and limitations emerging from our field experiments in a HIV clinic in Beijing. The intervention was tailored to address both universal and culturally specific barriers to adherence and is readily applicable to generalized clinical settings. This evidence-based intervention provides a case example of the process of adapting behavioral interventions to culturally diverse communities with limited resources.

  3. Multiple-time-stepping generalized hybrid Monte Carlo methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escribano, Bruno, E-mail: bescribano@bcamath.org; Akhmatskaya, Elena; IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao

    2015-01-01

    Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC).more » The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.« less

  4. Adaptive back-stepping control of the harmonic drive system with LuGre model-based friction compensation

    NASA Astrophysics Data System (ADS)

    Liu, Sen; Gang, Tieqiang

    2018-03-01

    Harmonic drives are widely used in aerospace and industrial robots. Flexibility, friction and parameter uncertainty will result in transmission performance degradation. In this paper, an adaptive back-stepping method with friction compensation is proposed to improve the tracking performance of the harmonic drive system. The nonlinear friction is described by LuGre model and compensated with a friction observer, and the uncertainty of model parameters is resolved by adaptive parameter estimation method. By using Lyapunov stability theory, it is proved that all the errors of the closed-loop system are uniformly ultimately bounded. Simulations illustrate the effectiveness of our friction compensation method.

  5. Time-Accurate Local Time Stepping and High-Order Time CESE Methods for Multi-Dimensional Flows Using Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary

    2013-01-01

    With the wide availability of affordable multiple-core parallel supercomputers, next generation numerical simulations of flow physics are being focused on unsteady computations for problems involving multiple time scales and multiple physics. These simulations require higher solution accuracy than most algorithms and computational fluid dynamics codes currently available. This paper focuses on the developmental effort for high-fidelity multi-dimensional, unstructured-mesh flow solvers using the space-time conservation element, solution element (CESE) framework. Two approaches have been investigated in this research in order to provide high-accuracy, cross-cutting numerical simulations for a variety of flow regimes: 1) time-accurate local time stepping and 2) highorder CESE method. The first approach utilizes consistent numerical formulations in the space-time flux integration to preserve temporal conservation across the cells with different marching time steps. Such approach relieves the stringent time step constraint associated with the smallest time step in the computational domain while preserving temporal accuracy for all the cells. For flows involving multiple scales, both numerical accuracy and efficiency can be significantly enhanced. The second approach extends the current CESE solver to higher-order accuracy. Unlike other existing explicit high-order methods for unstructured meshes, the CESE framework maintains a CFL condition of one for arbitrarily high-order formulations while retaining the same compact stencil as its second-order counterpart. For large-scale unsteady computations, this feature substantially enhances numerical efficiency. Numerical formulations and validations using benchmark problems are discussed in this paper along with realistic examples.

  6. Improving Adaptive Learning Technology through the Use of Response Times

    ERIC Educational Resources Information Center

    Mettler, Everett; Massey, Christine M.; Kellman, Philip J.

    2011-01-01

    Adaptive learning techniques have typically scheduled practice using learners' accuracy and item presentation history. We describe an adaptive learning system (Adaptive Response Time Based Sequencing--ARTS) that uses both accuracy and response time (RT) as direct inputs into sequencing. Response times are used to assess learning strength and…

  7. Adaptive multi-time-domain subcycling for crystal plasticity FE modeling of discrete twin evolution

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath; Cheng, Jiahao

    2018-02-01

    Crystal plasticity finite element (CPFE) models that accounts for discrete micro-twin nucleation-propagation have been recently developed for studying complex deformation behavior of hexagonal close-packed (HCP) materials (Cheng and Ghosh in Int J Plast 67:148-170, 2015, J Mech Phys Solids 99:512-538, 2016). A major difficulty with conducting high fidelity, image-based CPFE simulations of polycrystalline microstructures with explicit twin formation is the prohibitively high demands on computing time. High strain localization within fast propagating twin bands requires very fine simulation time steps and leads to enormous computational cost. To mitigate this shortcoming and improve the simulation efficiency, this paper proposes a multi-time-domain subcycling algorithm. It is based on adaptive partitioning of the evolving computational domain into twinned and untwinned domains. Based on the local deformation-rate, the algorithm accelerates simulations by adopting different time steps for each sub-domain. The sub-domains are coupled back after coarse time increments using a predictor-corrector algorithm at the interface. The subcycling-augmented CPFEM is validated with a comprehensive set of numerical tests. Significant speed-up is observed with this novel algorithm without any loss of accuracy that is advantageous for predicting twinning in polycrystalline microstructures.

  8. Face Adaptation Effects: Reviewing the Impact of Adapting Information, Time, and Transfer

    PubMed Central

    Strobach, Tilo; Carbon, Claus-Christian

    2013-01-01

    The ability to adapt is essential to live and survive in an ever-changing environment such as the human ecosystem. Here we review the literature on adaptation effects of face stimuli to give an overview of existing findings in this area, highlight gaps in its research literature, initiate new directions in face adaptation research, and help to design future adaptation studies. Furthermore, this review should lead to better understanding of the processing characteristics as well as the mental representations of face-relevant information. The review systematizes studies at a behavioral level in respect of a framework which includes three dimensions representing the major characteristics of studies in this field of research. These dimensions comprise (1) the specificity of adapting face information, e.g., identity, gender, or age aspects of the material to be adapted to (2) aspects of timing (e.g., the sustainability of adaptation effects) and (3) transfer relations between face images presented during adaptation and adaptation tests (e.g., images of the same or different identities). The review concludes with options for how to combine findings across different dimensions to demonstrate the relevance of our framework for future studies. PMID:23760550

  9. [Collaborative application of BEPS at different time steps.

    PubMed

    Lu, Wei; Fan, Wen Yi; Tian, Tian

    2016-09-01

    BEPSHourly is committed to simulate the ecological and physiological process of vegetation at hourly time steps, and is often applied to analyze the diurnal change of gross primary productivity (GPP), net primary productivity (NPP) at site scale because of its more complex model structure and time-consuming solving process. However, daily photosynthetic rate calculation in BEPSDaily model is simpler and less time-consuming, not involving many iterative processes. It is suitable for simulating the regional primary productivity and analyzing the spatial distribution of regional carbon sources and sinks. According to the characteristics and applicability of BEPSDaily and BEPSHourly models, this paper proposed a method of collaborative application of BEPS at daily and hourly time steps. Firstly, BEPSHourly was used to optimize the main photosynthetic parameters: the maximum rate of carboxylation (V c max ) and the maximum rate of photosynthetic electron transport (J max ) at site scale, and then the two optimized parameters were introduced into BEPSDaily model to estimate regional NPP at regional scale. The results showed that optimization of the main photosynthesis parameters based on the flux data could improve the simulate ability of the model. The primary productivity of different forest types in descending order was deciduous broad-leaved forest, mixed forest, coniferous forest in 2011. The collaborative application of carbon cycle models at different steps proposed in this study could effectively optimize the main photosynthesis parameters V c max and J max , simulate the monthly averaged diurnal GPP, NPP, calculate the regional NPP, and analyze the spatial distribution of regional carbon sources and sinks.

  10. The Chinese Life-Steps Program: A Cultural Adaptation of a Cognitive-Behavioral Intervention to Enhance HIV Medication Adherence

    PubMed Central

    Shiu, Cheng-Shi; Chen, Wei-Ti; Simoni, Jane; Fredriksen-Goldsen, Karen; Zhang, Fujie; Zhou, Hongxin

    2013-01-01

    China is considered to be the new frontier of the global AIDS pandemic. Although effective treatment for HIV is becoming widely available in China, adherence to treatment remains a challenge. This study aimed to adapt an intervention promoting HIV-medication adherence—favorably evaluated in the West—for Chinese HIV-positive patients. The adaptation process was theory-driven and covered several key issues of cultural adaptation. We considered the importance of interpersonal relationships and family in China and cultural notions of health. Using an evidence-based treatment protocol originally designed for Western HIV-positive patients, we developed an 11-step Chinese Life-Steps program with an additional culture-specific intervention option. We describe in detail how the cultural elements were incorporated into the intervention and put into practice at each stage. Clinical considerations are also outlined and followed by two case examples that are provided to illustrate our application of the intervention. Finally, we discuss practical and research issues and limitations emerging from our field experiments in a HIV clinic in Beijing. The intervention was tailored to address both universal and culturally specific barriers to adherence and is readily applicable to generalized clinical settings. This evidence-based intervention provides a case example of the process of adapting behavioral interventions to culturally diverse communities with limited resources. PMID:23667305

  11. Stochastic analysis of epidemics on adaptive time varying networks

    NASA Astrophysics Data System (ADS)

    Kotnis, Bhushan; Kuri, Joy

    2013-06-01

    Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an “adaptive threshold,” i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.

  12. A proposed adaptive step size perturbation and observation maximum power point tracking algorithm based on photovoltaic system modeling

    NASA Astrophysics Data System (ADS)

    Huang, Yu

    Solar energy becomes one of the major alternative renewable energy options for its huge abundance and accessibility. Due to the intermittent nature, the high demand of Maximum Power Point Tracking (MPPT) techniques exists when a Photovoltaic (PV) system is used to extract energy from the sunlight. This thesis proposed an advanced Perturbation and Observation (P&O) algorithm aiming for relatively practical circumstances. Firstly, a practical PV system model is studied with determining the series and shunt resistances which are neglected in some research. Moreover, in this proposed algorithm, the duty ratio of a boost DC-DC converter is the object of the perturbation deploying input impedance conversion to achieve working voltage adjustment. Based on the control strategy, the adaptive duty ratio step size P&O algorithm is proposed with major modifications made for sharp insolation change as well as low insolation scenarios. Matlab/Simulink simulation for PV model, boost converter control strategy and various MPPT process is conducted step by step. The proposed adaptive P&O algorithm is validated by the simulation results and detail analysis of sharp insolation changes, low insolation condition and continuous insolation variation.

  13. Secondary Special Education. Part I: The "Stepping Stone Model" Designed for Secondary Learning Disabled Students. Part II: Adapting Materials and Curriculum.

    ERIC Educational Resources Information Center

    Fox, Barbara

    The paper describes the Stepping Stone Model, a model for the remediation and mainstreaming of secondary learning disabled students and the adaptation of curriculum and materials for the model. The Stepping Stone Model is designed to establish the independence of students in the mainstream through content reading. Five areas of concern common to…

  14. Improved tomographic reconstructions using adaptive time-dependent intensity normalization.

    PubMed

    Titarenko, Valeriy; Titarenko, Sofya; Withers, Philip J; De Carlo, Francesco; Xiao, Xianghui

    2010-09-01

    The first processing step in synchrotron-based micro-tomography is the normalization of the projection images against the background, also referred to as a white field. Owing to time-dependent variations in illumination and defects in detection sensitivity, the white field is different from the projection background. In this case standard normalization methods introduce ring and wave artefacts into the resulting three-dimensional reconstruction. In this paper the authors propose a new adaptive technique accounting for these variations and allowing one to obtain cleaner normalized data and to suppress ring and wave artefacts. The background is modelled by the product of two time-dependent terms representing the illumination and detection stages. These terms are written as unknown functions, one scaled and shifted along a fixed direction (describing the illumination term) and one translated by an unknown two-dimensional vector (describing the detection term). The proposed method is applied to two sets (a stem Salix variegata and a zebrafish Danio rerio) acquired at the parallel beam of the micro-tomography station 2-BM at the Advanced Photon Source showing significant reductions in both ring and wave artefacts. In principle the method could be used to correct for time-dependent phenomena that affect other tomographic imaging geometries such as cone beam laboratory X-ray computed tomography.

  15. Adaptive proximate time-optimal servomechanisms - Continuous time case

    NASA Technical Reports Server (NTRS)

    Workman, M. L.; Kosut, R. L.; Franklin, G. F.

    1987-01-01

    A Proximate Time-Optimal Servo (PTOS) is developed, along with conditions for its stability. An algorithm is proposed for adapting the PTOS (APTOS) to improve performance in the face of uncertain plant parameters. Under ideal conditions APTOS is shown to be uniformly asymptotically stable. Simulation results demonstrate the predicted performance.

  16. Optimal Control Modification Adaptive Law for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  17. Spatial and Temporal Control Contribute to Step Length Asymmetry during Split-Belt Adaptation and Hemiparetic Gait

    PubMed Central

    Finley, James M.; Long, Andrew; Bastian, Amy J.; Torres-Oviedo, Gelsy

    2014-01-01

    Background Step length asymmetry (SLA) is a common hallmark of gait post-stroke. Though conventionally viewed as a spatial deficit, SLA can result from differences in where the feet are placed relative to the body (spatial strategy), the timing between foot-strikes (step time strategy), or the velocity of the body relative to the feet (step velocity strategy). Objective The goal of this study was to characterize the relative contributions of each of these strategies to SLA. Methods We developed an analytical model that parses SLA into independent step position, step time, and step velocity contributions. This model was validated by reproducing SLA values for twenty-five healthy participants when their natural symmetric gait was perturbed on a split-belt treadmill moving at either a 2:1 or 3:1 belt-speed ratio. We then applied the validated model to quantify step position, step time, and step velocity contributions to SLA in fifteen stroke survivors while walking at their self-selected speed. Results SLA was predicted precisely by summing the derived contributions, regardless of the belt-speed ratio. Although the contributions to SLA varied considerably across our sample of stroke survivors, the step position contribution tended to oppose the other two – possibly as an attempt to minimize the overall SLA. Conclusions Our results suggest that changes in where the feet are placed or changes in interlimb timing could be used as compensatory strategies to reduce overall SLA in stroke survivors. These results may allow clinicians and researchers to identify patient-specific gait abnormalities and personalize their therapeutic approaches accordingly. PMID:25589580

  18. Time course of dynamic range adaptation in the auditory nerve

    PubMed Central

    Wang, Grace I.; Dean, Isabel; Delgutte, Bertrand

    2012-01-01

    Auditory adaptation to sound-level statistics occurs as early as in the auditory nerve (AN), the first stage of neural auditory processing. In addition to firing rate adaptation characterized by a rate decrement dependent on previous spike activity, AN fibers show dynamic range adaptation, which is characterized by a shift of the rate-level function or dynamic range toward the most frequently occurring levels in a dynamic stimulus, thereby improving the precision of coding of the most common sound levels (Wen B, Wang GI, Dean I, Delgutte B. J Neurosci 29: 13797–13808, 2009). We investigated the time course of dynamic range adaptation by recording from AN fibers with a stimulus in which the sound levels periodically switch from one nonuniform level distribution to another (Dean I, Robinson BL, Harper NS, McAlpine D. J Neurosci 28: 6430–6438, 2008). Dynamic range adaptation occurred rapidly, but its exact time course was difficult to determine directly from the data because of the concomitant firing rate adaptation. To characterize the time course of dynamic range adaptation without the confound of firing rate adaptation, we developed a phenomenological “dual adaptation” model that accounts for both forms of AN adaptation. When fitted to the data, the model predicts that dynamic range adaptation occurs as rapidly as firing rate adaptation, over 100–400 ms, and the time constants of the two forms of adaptation are correlated. These findings suggest that adaptive processing in the auditory periphery in response to changes in mean sound level occurs rapidly enough to have significant impact on the coding of natural sounds. PMID:22457465

  19. Formulation of an explicit-multiple-time-step time integration method for use in a global primitive equation grid model

    NASA Technical Reports Server (NTRS)

    Chao, W. C.

    1982-01-01

    With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is incorporated into the UCLA model. In this scheme, the linearized terms in the governing equations that generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time step dictated by the CFL condition for low-frequency waves. This large time step requires a special modification of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS is a stable, efficient and accurate scheme.

  20. Compact Two-step Laser Time-of-Flight Mass Spectrometer for in Situ Analyses of Aromatic Organics on Planetary Missions

    NASA Technical Reports Server (NTRS)

    Getty, Stephanie; Brickerhoff, William; Cornish, Timothy; Ecelberger, Scott; Floyd, Melissa

    2012-01-01

    RATIONALE A miniature time-of-flight mass spectrometer has been adapted to demonstrate two-step laser desorption-ionization (LOI) in a compact instrument package for enhanced organics detection. Two-step LDI decouples the desorption and ionization processes, relative to traditional laser ionization-desorption, in order to produce low-fragmentation conditions for complex organic analytes. Tuning UV ionization laser energy allowed control ofthe degree of fragmentation, which may enable better identification of constituent species. METHODS A reflectron time-of-flight mass spectrometer prototype measuring 20 cm in length was adapted to a two-laser configuration, with IR (1064 nm) desorption followed by UV (266 nm) postionization. A relatively low ion extraction voltage of 5 kV was applied at the sample inlet. Instrument capabilities and performance were demonstrated with analysis of a model polycyclic aromatic hydrocarbon, representing a class of compounds important to the fields of Earth and planetary science. RESULTS L2MS analysis of a model PAH standard, pyrene, has been demonstrated, including parent mass identification and the onset o(tunable fragmentation as a function of ionizing laser energy. Mass resolution m/llm = 380 at full width at half-maximum was achieved which is notable for gas-phase ionization of desorbed neutrals in a highly-compact mass analyzer. CONCLUSIONS Achieving two-step laser mass spectrometry (L2MS) in a highly-miniature instrument enables a powerful approach to the detection and characterization of aromatic organics in remote terrestrial and planetary applications. Tunable detection of parent and fragment ions with high mass resolution, diagnostic of molecular structure, is possible on such a compact L2MS instrument. Selectivity of L2MS against low-mass inorganic salt interferences is a key advantage when working with unprocessed, natural samples, and a mechanism for the observed selectivity is presented.

  1. Inexact adaptive Newton methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertiger, W.I.; Kelsey, F.J.

    1985-02-01

    The Inexact Adaptive Newton method (IAN) is a modification of the Adaptive Implicit Method/sup 1/ (AIM) with improved Newton convergence. Both methods simplify the Jacobian at each time step by zeroing coefficients in regions where saturations are changing slowly. The methods differ in how the diagonal block terms are treated. On test problems with up to 3,000 cells, IAN consistently saves approximately 30% of the CPU time when compared to the fully implicit method. AIM shows similar savings on some problems, but takes as much CPU time as fully implicit on other test problems due to poor Newton convergence.

  2. Aging effect on step adjustments and stability control in visually perturbed gait initiation.

    PubMed

    Sun, Ruopeng; Cui, Chuyi; Shea, John B

    2017-10-01

    Gait adaptability is essential for fall avoidance during locomotion. It requires the ability to rapidly inhibit original motor planning, select and execute alternative motor commands, while also maintaining the stability of locomotion. This study investigated the aging effect on gait adaptability and dynamic stability control during a visually perturbed gait initiation task. A novel approach was used such that the anticipatory postural adjustment (APA) during gait initiation were used to trigger the unpredictable relocation of a foot-size stepping target. Participants (10 young adults and 10 older adults) completed visually perturbed gait initiation in three adjustment timing conditions (early, intermediate, late; all extracted from the stereotypical APA pattern) and two adjustment direction conditions (medial, lateral). Stepping accuracy, foot rotation at landing, and Margin of Dynamic Stability (MDS) were analyzed and compared across test conditions and groups using a linear mixed model. Stepping accuracy decreased as a function of adjustment timing as well as stepping direction, with older subjects exhibited a significantly greater undershoot in foot placement to late lateral stepping. Late adjustment also elicited a reaching-like movement (i.e. foot rotation prior to landing in order to step on the target), regardless of stepping direction. MDS measures in the medial-lateral and anterior-posterior direction revealed both young and older adults exhibited reduced stability in the adjustment step and subsequent steps. However, young adults returned to stable gait faster than older adults. These findings could be useful for future study of screening deficits in gait adaptability and preventing falls. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Resuscitator’s perceptions and time for corrective ventilation steps during neonatal resuscitation☆

    PubMed Central

    Sharma, Vinay; Lakshminrusimha, Satyan; Carrion, Vivien; Mathew, Bobby

    2016-01-01

    Background The 2010 neonatal resuscitation program (NRP) guidelines incorporate ventilation corrective steps (using the mnemonic – MRSOPA) into the resuscitation algorithm. The perception of neonatal providers, time taken to perform these maneuvers or the effectiveness of these additional steps has not been evaluated. Methods Using two simulated clinical scenarios of varying degrees of cardiovascular compromise –perinatal asphyxia with (i) bradycardia (heart rate – 40 min−1) and (ii) cardiac arrest, 35 NRP certified providers were evaluated for preference to performing these corrective measures, the time taken for performing these steps and time to onset of chest compressions. Results The average time taken to perform ventilation corrective steps (MRSOPA) was 48.9 ± 21.4 s. Providers were less likely to perform corrective steps and proceed directly to endotracheal intubation in the scenario of cardiac arrest as compared to a state of bradycardia. Cardiac compressions were initiated significantly sooner in the scenario of cardiac arrest 89 ± 24 s as compared to severe bradycardia 122 ± 23 s, p < 0.0001. There were no differences in the time taken to initiation of chest compressions between physicians or mid-level care providers or with the level of experience of the provider. Conclusions Effective ventilation of the lungs with corrective steps using a mask is important in most cases of neonatal resuscitation. Neonatal resuscitators prefer early endotracheal intubation and initiation of chest compressions in the presence of asystolic cardiac arrest. Corrective ventilation steps can potentially postpone initiation of chest compressions and may delay return of spontaneous circulation in the presence of severe cardiovascular compromise. PMID:25796996

  4. Next Steps in Network Time Synchronization For Navy Shipboard Applications

    DTIC Science & Technology

    2008-12-01

    40th Annual Precise Time and Time Interval (PTTI) Meeting NEXT STEPS IN NETWORK TIME SYNCHRONIZATION FOR NAVY SHIPBOARD APPLICATIONS...dynamic manner than in previous designs. This new paradigm creates significant network time synchronization challenges. The Navy has been...deploying the Network Time Protocol (NTP) in shipboard computing infrastructures to meet the current network time synchronization requirements

  5. Finite-element time-domain modeling of electromagnetic data in general dispersive medium using adaptive Padé series

    NASA Astrophysics Data System (ADS)

    Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin; Zhdanov, Michael S.

    2017-12-01

    The induced polarization (IP) method has been widely used in geophysical exploration to identify the chargeable targets such as mineral deposits. The inversion of the IP data requires modeling the IP response of 3D dispersive conductive structures. We have developed an edge-based finite-element time-domain (FETD) modeling method to simulate the electromagnetic (EM) fields in 3D dispersive medium. We solve the vector Helmholtz equation for total electric field using the edge-based finite-element method with an unstructured tetrahedral mesh. We adopt the backward propagation Euler method, which is unconditionally stable, with semi-adaptive time stepping for the time domain discretization. We use the direct solver based on a sparse LU decomposition to solve the system of equations. We consider the Cole-Cole model in order to take into account the frequency-dependent conductivity dispersion. The Cole-Cole conductivity model in frequency domain is expanded using a truncated Padé series with adaptive selection of the center frequency of the series for early and late time. This approach can significantly increase the accuracy of FETD modeling.

  6. Multiple time step integrators in ab initio molecular dynamics.

    PubMed

    Luehr, Nathan; Markland, Thomas E; Martínez, Todd J

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  7. Real-time adaptive finite element solution of time-dependent Kohn-Sham equation

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Hu, Guanghui; Liu, Di

    2015-01-01

    In our previous paper (Bao et al., 2012 [1]), a general framework of using adaptive finite element methods to solve the Kohn-Sham equation has been presented. This work is concerned with solving the time-dependent Kohn-Sham equations. The numerical methods are studied in the time domain, which can be employed to explain both the linear and the nonlinear effects. A Crank-Nicolson scheme and linear finite element space are employed for the temporal and spatial discretizations, respectively. To resolve the trouble regions in the time-dependent simulations, a heuristic error indicator is introduced for the mesh adaptive methods. An algebraic multigrid solver is developed to efficiently solve the complex-valued system derived from the semi-implicit scheme. A mask function is employed to remove or reduce the boundary reflection of the wavefunction. The effectiveness of our method is verified by numerical simulations for both linear and nonlinear phenomena, in which the effectiveness of the mesh adaptive methods is clearly demonstrated.

  8. Adaptive NN tracking control of uncertain nonlinear discrete-time systems with nonaffine dead-zone input.

    PubMed

    Liu, Yan-Jun; Tong, Shaocheng

    2015-03-01

    In the paper, an adaptive tracking control design is studied for a class of nonlinear discrete-time systems with dead-zone input. The considered systems are of the nonaffine pure-feedback form and the dead-zone input appears nonlinearly in the systems. The contributions of the paper are that: 1) it is for the first time to investigate the control problem for this class of discrete-time systems with dead-zone; 2) there are major difficulties for stabilizing such systems and in order to overcome the difficulties, the systems are transformed into an n-step-ahead predictor but nonaffine function is still existent; and 3) an adaptive compensative term is constructed to compensate for the parameters of the dead-zone. The neural networks are used to approximate the unknown functions in the transformed systems. Based on the Lyapunov theory, it is proven that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error converges to a small neighborhood of zero. Two simulation examples are provided to verify the effectiveness of the control approach in the paper.

  9. A novel adaptive, real-time algorithm to detect gait events from wearable sensors.

    PubMed

    Chia Bejarano, Noelia; Ambrosini, Emilia; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Monticone, Marco; Ferrante, Simona

    2015-05-01

    A real-time, adaptive algorithm based on two inertial and magnetic sensors placed on the shanks was developed for gait-event detection. For each leg, the algorithm detected the Initial Contact (IC), as the minimum of the flexion/extension angle, and the End Contact (EC) and the Mid-Swing (MS), as minimum and maximum of the angular velocity, respectively. The algorithm consisted of calibration, real-time detection, and step-by-step update. Data collected from 22 healthy subjects (21 to 85 years) walking at three self-selected speeds were used to validate the algorithm against the GaitRite system. Comparable levels of accuracy and significantly lower detection delays were achieved with respect to other published methods. The algorithm robustness was tested on ten healthy subjects performing sudden speed changes and on ten stroke subjects (43 to 89 years). For healthy subjects, F1-scores of 1 and mean detection delays lower than 14 ms were obtained. For stroke subjects, F1-scores of 0.998 and 0.944 were obtained for IC and EC, respectively, with mean detection delays always below 31 ms. The algorithm accurately detected gait events in real time from a heterogeneous dataset of gait patterns and paves the way for the design of closed-loop controllers for customized gait trainings and/or assistive devices.

  10. Patients with Chronic Obstructive Pulmonary Disease Walk with Altered Step Time and Step Width Variability as Compared with Healthy Control Subjects.

    PubMed

    Yentes, Jennifer M; Rennard, Stephen I; Schmid, Kendra K; Blanke, Daniel; Stergiou, Nicholas

    2017-06-01

    Compared with control subjects, patients with chronic obstructive pulmonary disease (COPD) have an increased incidence of falls and demonstrate balance deficits and alterations in mediolateral trunk acceleration while walking. Measures of gait variability have been implicated as indicators of fall risk, fear of falling, and future falls. To investigate whether alterations in gait variability are found in patients with COPD as compared with healthy control subjects. Twenty patients with COPD (16 males; mean age, 63.6 ± 9.7 yr; FEV 1 /FVC, 0.52 ± 0.12) and 20 control subjects (9 males; mean age, 62.5 ± 8.2 yr) walked for 3 minutes on a treadmill while their gait was recorded. The amount (SD and coefficient of variation) and structure of variability (sample entropy, a measure of regularity) were quantified for step length, time, and width at three walking speeds (self-selected and ±20% of self-selected speed). Generalized linear mixed models were used to compare dependent variables. Patients with COPD demonstrated increased mean and SD step time across all speed conditions as compared with control subjects. They also walked with a narrower step width that increased with increasing speed, whereas the healthy control subjects walked with a wider step width that decreased as speed increased. Further, patients with COPD demonstrated less variability in step width, with decreased SD, compared with control subjects at all three speed conditions. No differences in regularity of gait patterns were found between groups. Patients with COPD walk with increased duration of time between steps, and this timing is more variable than that of control subjects. They also walk with a narrower step width in which the variability of the step widths from step to step is decreased. Changes in these parameters have been related to increased risk of falling in aging research. This provides a mechanism that could explain the increased prevalence of falls in patients with COPD.

  11. A discrete-time adaptive control scheme for robot manipulators

    NASA Technical Reports Server (NTRS)

    Tarokh, M.

    1990-01-01

    A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. The scheme utilizes feedback, feedforward, and auxiliary signals, obtained from joint angle measurement through simple expressions. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation. Simulations and experimental results are given to demonstrate the performance of the scheme.

  12. Translation, Validation, and Adaptation of the Time Use Diary from English into the Malay Language for Use in Malaysia.

    PubMed

    Asmuri, Siti Noraini; Brown, Ted; Broom, Lisa J

    2016-07-01

    Valid translations of time use scales are needed by occupational therapists for use in different cross-cultural contexts to gather relevant data to inform practice and research. The purpose of this study was to describe the process of translating, adapting, and validating the Time Use Diary from its current English language edition into a Malay language version. Five steps of the cross-cultural adaptation process were completed: (i) translation from English into the Malay language by a qualified translator, (ii) synthesis of the translated Malay version, (iii) backtranslation from Malay to English by three bilingual speakers, (iv) expert committee review and discussion, and (v) pilot testing of the Malay language version with two participant groups. The translated version was found to be a reliable and valid tool identifying changes and potential challenges in the time use of older adults. This provides Malaysian occupational therapists with a useful tool for gathering time use data in practice settings and for research purposes.

  13. Adaptive Implicit Non-Equilibrium Radiation Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philip, Bobby; Wang, Zhen; Berrill, Mark A

    2013-01-01

    We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  14. Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks.

    PubMed

    Shelley, M J; Tao, L

    2001-01-01

    To avoid the numerical errors associated with resetting the potential following a spike in simulations of integrate-and-fire neuronal networks, Hansel et al. and Shelley independently developed a modified time-stepping method. Their particular scheme consists of second-order Runge-Kutta time-stepping, a linear interpolant to find spike times, and a recalibration of postspike potential using the spike times. Here we show analytically that such a scheme is second order, discuss the conditions under which efficient, higher-order algorithms can be constructed to treat resets, and develop a modified fourth-order scheme. To support our analysis, we simulate a system of integrate-and-fire conductance-based point neurons with all-to-all coupling. For six-digit accuracy, our modified Runge-Kutta fourth-order scheme needs a time-step of Delta(t) = 0.5 x 10(-3) seconds, whereas to achieve comparable accuracy using a recalibrated second-order or a first-order algorithm requires time-steps of 10(-5) seconds or 10(-9) seconds, respectively. Furthermore, since the cortico-cortical conductances in standard integrate-and-fire neuronal networks do not depend on the value of the membrane potential, we can attain fourth-order accuracy with computational costs normally associated with second-order schemes.

  15. Developing a two-step heat treatment for inactivating desiccation-adapted Salmonella spp. in aged chicken litter.

    PubMed

    Chen, Zhao; Wang, Hongye; Jiang, Xiuping

    2015-02-01

    The effectiveness of a two-step heat treatment for eliminating desiccation-adapted Salmonella spp. in aged chicken litter was evaluated. The aged chicken litter with 20, 30, 40, and 50% moisture contents was inoculated with a mixture of four Salmonella serotypes for a 24-h adaptation. Afterwards, the inoculated chicken litter was added into the chicken litter with the adjusted moisture content for a 1-h moist-heat treatment at 65 °C and 100% relative humidity inside a water bath, followed by a dry-heat treatment in a convection oven at 85 °C for 1 h to the desired moisture level (<10-12%). After moist-heat treatment, the populations of Salmonella in aged chicken litter at 20 and 30% moisture contents declined from ≈6.70 log colony-forming units (CFU)/g to 3.31 and 3.00 log CFU/g, respectively. After subsequent 1-h dry-heat treatment, the populations further decreased to 2.97 and 2.57 log CFU/g, respectively. Salmonella cells in chicken litter with 40% and 50% moisture contents were only detectable by enrichment after 40 and 20 min of moist-heat treatment, respectively. Moisture contents in all samples were reduced to <10% after a 1-h dry-heat process. Our results demonstrated that the two-step heat treatment was effective in reducing >5.5 logs of desiccation-adapted Salmonella in aged chicken litter with moisture content at or above 40%. Clearly, the findings from this study may provide the chicken litter processing industry with an effective heat treatment method for producing Salmonella-free chicken litter.

  16. A Step by Step Guide for Planning a Japanese Cultural Festival.

    ERIC Educational Resources Information Center

    Murphy, Carole

    Teachers at all academic levels can adapt the design and content of the sixth grade Japanese cultural festival detailed in this learning packet. Material is divided into 2 sections. Section 1 provides a step-by-step guide to planning and conducting the festival. These instructions, based on 5 years of experience, include a detailed planning…

  17. On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2011-01-01

    This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.

  18. Robustness via Run-Time Adaptation of Contingent Plans

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Washington, Richard; Norvig, Peter (Technical Monitor)

    2000-01-01

    In this paper, we discuss our approach to making the behavior of planetary rovers more robust for the purpose of increased productivity. Due to the inherent uncertainty in rover exploration, the traditional approach to rover control is conservative, limiting the autonomous operation of the rover and sacrificing performance for safety. Our objective is to increase the science productivity possible within a single uplink by allowing the rover's behavior to be specified with flexible, contingent plans and by employing dynamic plan adaptation during execution. We have deployed a system exhibiting flexible, contingent execution; this paper concentrates on our ongoing efforts on plan adaptation, Plans can be revised in two ways: plan steps may be deleted, with execution continuing with the plan suffix; and the current plan may be merged with an "alternate plan" from an on-board library. The plan revision action is chosen to maximize the expected utility of the plan. Plan merging and action deletion constitute a more conservative general-purpose planning system; in return, our approach is more efficient and more easily verified, two important criteria for deployed rovers.

  19. Inherent robustness of discrete-time adaptive control systems

    NASA Technical Reports Server (NTRS)

    Ma, C. C. H.

    1986-01-01

    Global stability robustness with respect to unmodeled dynamics, arbitrary bounded internal noise, as well as external disturbance is shown to exist for a class of discrete-time adaptive control systems when the regressor vectors of these systems are persistently exciting. Although fast adaptation is definitely undesirable, so far as attaining the greatest amount of global stability robustness is concerned, slow adaptation is shown to be not necessarily beneficial. The entire analysis in this paper holds for systems with slowly varying return difference matrices; the plants in these systems need not be slowly varying.

  20. Real time microcontroller implementation of an adaptive myoelectric filter.

    PubMed

    Bagwell, P J; Chappell, P H

    1995-03-01

    This paper describes a real time digital adaptive filter for processing myoelectric signals. The filter time constant is automatically selected by the adaptation algorithm, giving a significant improvement over linear filters for estimating the muscle force and controlling a prosthetic device. Interference from mains sources often produces problems for myoelectric processing, and so 50 Hz and all harmonic frequencies are reduced by an averaging filter and differential process. This makes practical electrode placement and contact less critical and time consuming. An economic real time implementation is essential for a prosthetic controller, and this is achieved using an Intel 80C196KC microcontroller.

  1. Short-Term Adaptive Modification of Dynamic Ocular Accommodation

    PubMed Central

    Bharadwaj, Shrikant R.; Vedamurthy, Indu; Schor, Clifton M.

    2009-01-01

    Purpose Indirect observations suggest that the neural control of accommodation may undergo adaptive recalibration in response to age-related biomechanical changes in the accommodative system. However, there has been no direct demonstration of such an adaptive capability. This investigation was conducted to demonstrate short-term adaptation of accommodative step response dynamics to optically induced changes in neuromuscular demands. Methods Repetitive changes in accommodative effort were induced in 15 subjects (18–34 years) with a double-step adaptation paradigm wherein an initial 2-D step change in blur was followed 350 ms later by either a 2-D step increase in blur (increasing-step paradigm) or a 1.75-D step decrease in blur (decreasing-step paradigm). Peak velocity, peak acceleration, and latency of 2-D single-step test responses were assessed before and after 1.5 hours of training with these paradigms. Results Peak velocity and peak acceleration of 2-D step responses increased after adaptation to the increasing-step paradigm (9/12 subjects), and they decreased after adaptation to the decreasing-step paradigm (4/9 subjects). Adaptive changes in peak velocity and peak acceleration generalized to responses that were smaller (1 D) and larger (3 D) than the 2-D adaptation stimulus. The magnitude of adaptation correlated poorly with the subject's age, but it was significantly negatively correlated with the preadaptation dynamics. Response latency decreased after adaptation, irrespective of the direction of adaptation. Conclusions Short-term adaptive changes in accommodative step response dynamics could be induced, at least in some of our subjects between 18 and 34 years, with a directional bias toward increasing rather than decreasing the dynamics. PMID:19255153

  2. One-step synthesis of hybrid inorganic-organic nanocomposite coatings by novel laser adaptive ablation deposition technique

    NASA Astrophysics Data System (ADS)

    Serbezov, Valery; Sotirov, Sotir

    2013-03-01

    A novel approach for one-step synthesis of hybrid inorganic-organic nanocomposite coatings by new modification of Pulsed Laser Deposition technology called Laser Adaptive Ablation Deposition (LAAD) is presented. Hybrid nanocomposite coatings including Mg- Rapamycin and Mg- Desoximetasone were produced by UV TEA N2 laser under low vacuum (0.1 Pa) and room temperature onto substrates from SS 316L, KCl and NaCl. The laser fluence for Mg alloy was 1, 8 J/cm2 and for Desoximetasone 0,176 J/cm2 and for Rapamycin 0,118 J/cm2 were respectively. The threedimensional two-segmented single target was used to adapt the interaction of focused laser beam with inorganic and organic material. Magnesium alloy nanoparticles with sizes from 50 nm to 250 nm were obtained in organic matrices. The morphology of nanocomposites films were studied by Bright field / Fluorescence optical microscope and Scanning Electron Microscope (SEM). Fourier Transform Infrared (FTIR) spectroscopy measurements were applied in order to study the functional properties of organic component before and after the LAAD process. Energy Dispersive X-ray Spectroscopy (EDX) was used for identification of Mg alloy presence in hybrid nanocomposites coatings. The precise control of process parameters and particularly of the laser fluence adjustment enables transfer on materials with different physical chemical properties and one-step synthesis of complex inorganic- organic nanocomposites coatings.

  3. Considerations for the independent reaction times and step-by-step methods for radiation chemistry simulations

    NASA Astrophysics Data System (ADS)

    Plante, Ianik; Devroye, Luc

    2017-10-01

    Ionizing radiation interacts with the water molecules of the tissues mostly by ionizations and excitations, which result in the formation of the radiation track structure and the creation of radiolytic species such as H.,.OH, H2, H2O2, and e-aq. After their creation, these species diffuse and may chemically react with the neighboring species and with the molecules of the medium. Therefore radiation chemistry is of great importance in radiation biology. As the chemical species are not distributed homogeneously, the use of conventional models of homogeneous reactions cannot completely describe the reaction kinetics of the particles. Actually, many simulations of radiation chemistry are done using the Independent Reaction Time (IRT) method, which is a very fast technique to calculate radiochemical yields but which do not calculate the positions of the radiolytic species as a function of time. Step-by-step (SBS) methods, which are able to provide such information, have been used only sparsely because these are time-consuming in terms of calculation. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry. The SBS and IRT methods are both based on the Green's functions of the diffusion equation (GFDE). In this paper, several sampling algorithms of the GFDE and for the IRT method are presented. We show that the IRT and SBS methods are exactly equivalent for 2-particles systems for diffusion and partially diffusion-controlled reactions between non-interacting particles. We also show that the results obtained with the SBS simulation method with periodic boundary conditions are in agreement with the predictions by classical reaction kinetics theory, which is an important step towards using this method for modelling of biochemical networks and metabolic pathways involved in oxidative stress. Finally, the first simulation results obtained with the code RITRACKS (Relativistic Ion Tracks) are presented.

  4. Performance Optimizing Adaptive Control with Time-Varying Reference Model Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Hashemi, Kelley E.

    2017-01-01

    This paper presents a new adaptive control approach that involves a performance optimization objective. The control synthesis involves the design of a performance optimizing adaptive controller from a subset of control inputs. The resulting effect of the performance optimizing adaptive controller is to modify the initial reference model into a time-varying reference model which satisfies the performance optimization requirement obtained from an optimal control problem. The time-varying reference model modification is accomplished by the real-time solutions of the time-varying Riccati and Sylvester equations coupled with the least-squares parameter estimation of the sensitivities of the performance metric. The effectiveness of the proposed method is demonstrated by an application of maneuver load alleviation control for a flexible aircraft.

  5. Assessing gait adaptability in people with a unilateral amputation on an instrumented treadmill with a projected visual context.

    PubMed

    Houdijk, Han; van Ooijen, Mariëlle W; Kraal, Jos J; Wiggerts, Henri O; Polomski, Wojtek; Janssen, Thomas W J; Roerdink, Melvyn

    2012-11-01

    Gait adaptability, including the ability to avoid obstacles and to take visually guided steps, is essential for safe movement through a cluttered world. This aspect of walking ability is important for regaining independent mobility but is difficult to assess in clinical practice. The objective of this study was to investigate the validity of an instrumented treadmill with obstacles and stepping targets projected on the belt's surface for assessing prosthetic gait adaptability. This was an observational study. A control group of people who were able bodied (n=12) and groups of people with transtibial (n=12) and transfemoral (n=12) amputations participated. Participants walked at a self-selected speed on an instrumented treadmill with projected visual obstacles and stepping targets. Gait adaptability was evaluated in terms of anticipatory and reactive obstacle avoidance performance (for obstacles presented 4 steps and 1 step ahead, respectively) and accuracy of stepping on regular and irregular patterns of stepping targets. In addition, several clinical tests were administered, including timed walking tests and reports of incidence of falls and fear of falling. Obstacle avoidance performance and stepping accuracy were significantly lower in the groups with amputations than in the control group. Anticipatory obstacle avoidance performance was moderately correlated with timed walking test scores. Reactive obstacle avoidance performance and stepping accuracy performance were not related to timed walking tests. Gait adaptability scores did not differ in groups stratified by incidence of falls or fear of falling. Because gait adaptability was affected by walking speed, differences in self-selected walking speed may have diminished differences in gait adaptability between groups. Gait adaptability can be validly assessed by use of an instrumented treadmill with a projected visual context. When walking speed is taken into account, this assessment provides unique

  6. Evaluation of atomic pressure in the multiple time-step integration algorithm.

    PubMed

    Andoh, Yoshimichi; Yoshii, Noriyuki; Yamada, Atsushi; Okazaki, Susumu

    2017-04-15

    In molecular dynamics (MD) calculations, reduction in calculation time per MD loop is essential. A multiple time-step (MTS) integration algorithm, the RESPA (Tuckerman and Berne, J. Chem. Phys. 1992, 97, 1990-2001), enables reductions in calculation time by decreasing the frequency of time-consuming long-range interaction calculations. However, the RESPA MTS algorithm involves uncertainties in evaluating the atomic interaction-based pressure (i.e., atomic pressure) of systems with and without holonomic constraints. It is not clear which intermediate forces and constraint forces in the MTS integration procedure should be used to calculate the atomic pressure. In this article, we propose a series of equations to evaluate the atomic pressure in the RESPA MTS integration procedure on the basis of its equivalence to the Velocity-Verlet integration procedure with a single time step (STS). The equations guarantee time-reversibility even for the system with holonomic constrants. Furthermore, we generalize the equations to both (i) arbitrary number of inner time steps and (ii) arbitrary number of force components (RESPA levels). The atomic pressure calculated by our equations with the MTS integration shows excellent agreement with the reference value with the STS, whereas pressures calculated using the conventional ad hoc equations deviated from it. Our equations can be extended straightforwardly to the MTS integration algorithm for the isothermal NVT and isothermal-isobaric NPT ensembles. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Consensus time and conformity in the adaptive voter model

    NASA Astrophysics Data System (ADS)

    Rogers, Tim; Gross, Thilo

    2013-09-01

    The adaptive voter model is a paradigmatic model in the study of opinion formation. Here we propose an extension for this model, in which conflicts are resolved by obtaining another opinion, and analytically study the time required for consensus to emerge. Our results shed light on the rich phenomenology of both the original and extended adaptive voter models, including a dynamical phase transition in the scaling behavior of the mean time to consensus.

  8. A step in time: Changes in standard-frequency and time-signal broadcasts, 1 January 1972

    NASA Technical Reports Server (NTRS)

    Chi, A. R.; Fosque, H. S.

    1973-01-01

    An improved coordinated universal time (UTC) system has been adopted by the International Radio Consultative Committee. It was implemented internationally by the standard-frequency and time-broadcast stations on 1 Jan. 1972. The new UTC system eliminates the frequency offset of 300 parts in 10 to the 10th power between the old UTC and atomic time, thus making the broadcast time interval (the UTC second) constant and defined by the resonant frequency of cesium atoms. The new time scale is kept in synchronism with the rotation of the Earth within plus or minus 0.7 s by step-time adjustments of exactly 1 s, when needed. A time code has been added to the disseminated time signals to permit universal time to be obtained from the broadcasts to the nearest 0.1 s for users requiring such precision. The texts of the International Radio Consultative Committee recommendation and report to implement the new UTC system are given. The coding formats used by various standard time broadcast services to transmit the difference between the universal time (UT1) and the UTC are also given. For users' convenience, worldwide primary VLF and HF transmissions stations, frequencies, and schedules of time emissions are also included. Actual time-step adjustments made by various stations on 1 Jan. 1972, are provided for future reference.

  9. Adaptive [theta]-methods for pricing American options

    NASA Astrophysics Data System (ADS)

    Khaliq, Abdul Q. M.; Voss, David A.; Kazmi, Kamran

    2008-12-01

    We develop adaptive [theta]-methods for solving the Black-Scholes PDE for American options. By adding a small, continuous term, the Black-Scholes PDE becomes an advection-diffusion-reaction equation on a fixed spatial domain. Standard implementation of [theta]-methods would require a Newton-type iterative procedure at each time step thereby increasing the computational complexity of the methods. Our linearly implicit approach avoids such complications. We establish a general framework under which [theta]-methods satisfy a discrete version of the positivity constraint characteristic of American options, and numerically demonstrate the sensitivity of the constraint. The positivity results are established for the single-asset and independent two-asset models. In addition, we have incorporated and analyzed an adaptive time-step control strategy to increase the computational efficiency. Numerical experiments are presented for one- and two-asset American options, using adaptive exponential splitting for two-asset problems. The approach is compared with an iterative solution of the two-asset problem in terms of computational efficiency.

  10. The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadella, M.; Kuru, Ş.; Negro, J., E-mail: jnegro@fta.uva.es

    We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays formore » the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.« less

  11. A Feature-adaptive Subdivision Method for Real-time 3D Reconstruction of Repeated Topology Surfaces

    NASA Astrophysics Data System (ADS)

    Lin, Jinhua; Wang, Yanjie; Sun, Honghai

    2017-03-01

    It's well known that rendering for a large number of triangles with GPU hardware tessellation has made great progress. However, due to the fixed nature of GPU pipeline, many off-line methods that perform well can not meet the on-line requirements. In this paper, an optimized Feature-adaptive subdivision method is proposed, which is more suitable for reconstructing surfaces with repeated cusps or creases. An Octree primitive is established in irregular regions where there are the same sharp vertices or creases, this method can find the neighbor geometry information quickly. Because of having the same topology structure between Octree primitive and feature region, the Octree feature points can match the arbitrary vertices in feature region more precisely. In the meanwhile, the patches is re-encoded in the Octree primitive by using the breadth-first strategy, resulting in a meta-table which allows for real-time reconstruction by GPU hardware tessellation unit. There is only one feature region needed to be calculated under Octree primitive, other regions with the same repeated feature generate their own meta-table directly, the reconstruction time is saved greatly for this step. With regard to the meshes having a large number of repeated topology feature, our algorithm improves the subdivision time by 17.575% and increases the average frame drawing time by 0.2373 ms compared to the traditional FAS (Feature-adaptive Subdivision), at the same time the model can be reconstructed in a watertight manner.

  12. Enforcing the Courant-Friedrichs-Lewy condition in explicitly conservative local time stepping schemes

    NASA Astrophysics Data System (ADS)

    Gnedin, Nickolay Y.; Semenov, Vadim A.; Kravtsov, Andrey V.

    2018-04-01

    An optimally efficient explicit numerical scheme for solving fluid dynamics equations, or any other parabolic or hyperbolic system of partial differential equations, should allow local regions to advance in time with their own, locally constrained time steps. However, such a scheme can result in violation of the Courant-Friedrichs-Lewy (CFL) condition, which is manifestly non-local. Although the violations can be considered to be "weak" in a certain sense and the corresponding numerical solution may be stable, such calculation does not guarantee the correct propagation speed for arbitrary waves. We use an experimental fluid dynamics code that allows cubic "patches" of grid cells to step with independent, locally constrained time steps to demonstrate how the CFL condition can be enforced by imposing a constraint on the time steps of neighboring patches. We perform several numerical tests that illustrate errors introduced in the numerical solutions by weak CFL condition violations and show how strict enforcement of the CFL condition eliminates these errors. In all our tests the strict enforcement of the CFL condition does not impose a significant performance penalty.

  13. Where did the time go? Friction evolves with slip following large velocity steps, normal stress steps, and (?) during long holds

    NASA Astrophysics Data System (ADS)

    Rubin, A. M.; Bhattacharya, P.; Tullis, T. E.; Okazaki, K.; Beeler, N. M.

    2016-12-01

    The popular constitutive formulations of rate-and-state friction offer two end-member views on whether friction evolves only with slip (Slip law state evolution) or with time even without slip (Aging law state evolution). While rate stepping experiments show support for the Slip law, laboratory observed frictional behavior of initially bare rock surfaces near zero slip rate has traditionally been interpreted to show support for time-dependent evolution of frictional strength. Such laboratory derived support for time-dependent evolution has been one of the motivations behind the Aging law being widely used to model earthquake cycles on natural faults.Through a combination of theoretical results and new experimental data on initially bare granite, we show stronger support for the other end member view, i.e. that friction under a wide range of sliding conditions evolves only with slip. Our dataset is unique in that it combines up to 3.5 orders of magnitude rate steps, sequences of holds up to 10000s, and 5% normal stress steps at order of magnitude different sliding rates during the same experimental run. The experiments were done on the Brown rotary shear apparatus using servo feedback, making the machine stiff enough to provide very large departures from steady-state while maintaining stable, quasi-static sliding. Across these diverse sliding conditions, and in particular for both large velocity step decreases and the longest holds, the data are much more consistent with the Slip law version of slip-dependence than the time-dependence formulated in the Aging law. The shear stress response to normal stress steps is also consistently better explained by the Slip law when paired with the Linker-Dieterich type response to normal stress perturbations. However, the remarkable symmetry and slip-dependence of the normal stress step increases and decreases suggest deficiencies in the Linker-Dieterich formulation that we will probe in future experiments.High quality

  14. Errors in Postural Preparation Lead to Increased Choice Reaction Times for Step Initiation in Older Adults

    PubMed Central

    Nutt, John G.; Horak, Fay B.

    2011-01-01

    Background. This study asked whether older adults were more likely than younger adults to err in the initial direction of their anticipatory postural adjustment (APA) prior to a step (indicating a motor program error), whether initial motor program errors accounted for reaction time differences for step initiation, and whether initial motor program errors were linked to inhibitory failure. Methods. In a stepping task with choice reaction time and simple reaction time conditions, we measured forces under the feet to quantify APA onset and step latency and we used body kinematics to quantify forward movement of center of mass and length of first step. Results. Trials with APA errors were almost three times as common for older adults as for younger adults, and they were nine times more likely in choice reaction time trials than in simple reaction time trials. In trials with APA errors, step latency was delayed, correlation between APA onset and step latency was diminished, and forward motion of the center of mass prior to the step was increased. Participants with more APA errors tended to have worse Stroop interference scores, regardless of age. Conclusions. The results support the hypothesis that findings of slow choice reaction time step initiation in older adults are attributable to inclusion of trials with incorrect initial motor preparation and that these errors are caused by deficits in response inhibition. By extension, the results also suggest that mixing of trials with correct and incorrect initial motor preparation might explain apparent choice reaction time slowing with age in upper limb tasks. PMID:21498431

  15. Iteratively improving Hi-C experiments one step at a time.

    PubMed

    Golloshi, Rosela; Sanders, Jacob T; McCord, Rachel Patton

    2018-06-01

    The 3D organization of eukaryotic chromosomes affects key processes such as gene expression, DNA replication, cell division, and response to DNA damage. The genome-wide chromosome conformation capture (Hi-C) approach can characterize the landscape of 3D genome organization by measuring interaction frequencies between all genomic regions. Hi-C protocol improvements and rapid advances in DNA sequencing power have made Hi-C useful to study diverse biological systems, not only to elucidate the role of 3D genome structure in proper cellular function, but also to characterize genomic rearrangements, assemble new genomes, and consider chromatin interactions as potential biomarkers for diseases. Yet, the Hi-C protocol is still complex and subject to variations at numerous steps that can affect the resulting data. Thus, there is still a need for better understanding and control of factors that contribute to Hi-C experiment success and data quality. Here, we evaluate recently proposed Hi-C protocol modifications as well as often overlooked variables in sample preparation and examine their effects on Hi-C data quality. We examine artifacts that can occur during Hi-C library preparation, including microhomology-based artificial template copying and chimera formation that can add noise to the downstream data. Exploring the mechanisms underlying Hi-C artifacts pinpoints steps that should be further optimized in the future. To improve the utility of Hi-C in characterizing the 3D genome of specialized populations of cells or small samples of primary tissue, we identify steps prone to DNA loss which should be considered to adapt Hi-C to lower cell numbers. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Training Rapid Stepping Responses in an Individual With Stroke

    PubMed Central

    Inness, Elizabeth L.; Komar, Janice; Biasin, Louis; Brunton, Karen; Lakhani, Bimal; McIlroy, William E.

    2011-01-01

    Background and Purpose Compensatory stepping reactions are important responses to prevent a fall following a postural perturbation. People with hemiparesis following a stroke show delayed initiation and execution of stepping reactions and often are found to be unable to initiate these steps with the more-affected limb. This case report describes a targeted training program involving repeated postural perturbations to improve control of compensatory stepping in an individual with stroke. Case Description Compensatory stepping reactions of a 68-year-old man were examined 52 days after left hemorrhagic stroke. He required assistance to prevent a fall in all trials administered during his initial examination because he showed weight-bearing asymmetry (with more weight borne on the more-affected right side), was unable to initiate stepping with the right leg (despite blocking of the left leg in some trials), and demonstrated delayed response times. The patient completed 6 perturbation training sessions (30–60 minutes per session) that aimed to improve preperturbation weight-bearing symmetry, to encourage stepping with the right limb, and to reduce step initiation and completion times. Outcomes Improved efficacy of compensatory stepping reactions with training and reduced reliance on assistance to prevent falling were observed. Improvements were noted in preperturbation asymmetry and step timing. Blocking the left foot was effective in encouraging stepping with the more-affected right foot. Discussion This case report demonstrates potential short-term adaptations in compensatory stepping reactions following perturbation training in an individual with stroke. Future work should investigate the links between improved compensatory step characteristics and fall risk in this vulnerable population. PMID:21511992

  17. Comparing the efficacy of metronome beeps and stepping stones to adjust gait: steps to follow!

    PubMed

    Bank, Paulina J M; Roerdink, Melvyn; Peper, C E

    2011-03-01

    Acoustic metronomes and visual targets have been used in rehabilitation practice to improve pathological gait. In addition, they may be instrumental in evaluating and training instantaneous gait adjustments. The aim of this study was to compare the efficacy of two cue types in inducing gait adjustments, viz. acoustic temporal cues in the form of metronome beeps and visual spatial cues in the form of projected stepping stones. Twenty healthy elderly (aged 63.2 ± 3.6 years) were recruited to walk on an instrumented treadmill at preferred speed and cadence, paced by either metronome beeps or projected stepping stones. Gait adaptations were induced using two manipulations: by perturbing the sequence of cues and by imposing switches from one cueing type to the other. Responses to these manipulations were quantified in terms of step-length and step-time adjustments, the percentage correction achieved over subsequent steps, and the number of steps required to restore the relation between gait and the beeps or stepping stones. The results showed that perturbations in a sequence of stepping stones were overcome faster than those in a sequence of metronome beeps. In switching trials, switching from metronome beeps to stepping stones was achieved faster than vice versa, indicating that gait was influenced more strongly by the stepping stones than the metronome beeps. Together these results revealed that, in healthy elderly, the stepping stones induced gait adjustments more effectively than did the metronome beeps. Potential implications for the use of metronome beeps and stepping stones in gait rehabilitation practice are discussed.

  18. Adaptive fixed-time trajectory tracking control of a stratospheric airship.

    PubMed

    Zheng, Zewei; Feroskhan, Mir; Sun, Liang

    2018-05-01

    This paper addresses the fixed-time trajectory tracking control problem of a stratospheric airship. By extending the method of adding a power integrator to a novel adaptive fixed-time control method, the convergence of a stratospheric airship to its reference trajectory is guaranteed to be achieved within a fixed time. The control algorithm is firstly formulated without the consideration of external disturbances to establish the stability of the closed-loop system in fixed-time and demonstrate that the convergence time of the airship is essentially independent of its initial conditions. Subsequently, a smooth adaptive law is incorporated into the proposed fixed-time control framework to provide the system with robustness to external disturbances. Theoretical analyses demonstrate that under the adaptive fixed-time controller, the tracking errors will converge towards a residual set in fixed-time. The results of a comparative simulation study with other recent methods illustrate the remarkable performance and superiority of the proposed control method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics.

    PubMed

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-07-21

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.

  20. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics

    PubMed Central

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-01-01

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format. PMID:23685876

  1. Driver's behavioral adaptation to adaptive cruise control (ACC): the case of speed and time headway.

    PubMed

    Bianchi Piccinini, Giulio Francesco; Rodrigues, Carlos Manuel; Leitão, Miguel; Simões, Anabela

    2014-06-01

    The Adaptive Cruise Control is an Advanced Driver Assistance System (ADAS) that allows maintaining given headway and speed, according to settings pre-defined by the users. Despite the potential benefits associated to the utilization of ACC, previous studies warned against negative behavioral adaptations that might occur while driving with the system activated. Unfortunately, up to now, there are no unanimous results about the effects induced by the usage of ACC on speed and time headway to the vehicle in front. Also, few studies were performed including actual users of ACC among the subjects. This research aimed to investigate the effect of the experience gained with ACC on speed and time headway for a group of users of the system. In addition, it explored the impact of ACC usage on speed and time headway for ACC users and regular drivers. A matched sample driving simulator study was planned as a two-way (2×2) repeated measures mixed design, with the experience with ACC as between-subjects factor and the driving condition (with ACC and manually) as within-subjects factor. The results show that the usage of ACC brought a small but not significant reduction of speed and, especially, the maintenance of safer time headways, being the latter result greater for ACC users, probably as a consequence of their experience in using the system. The usage of ACC did not cause any negative behavioral adaptations to the system regarding speed and time headway. Based on this research work, the Adaptive Cruise Control showed the potential to improve road safety for what concerns the speed and the time headway maintained by the drivers. The speed of the surrounding traffic and the minimum time headway settable through the ACC seem to have an important effect on the road safety improvement achievable with the system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Robust LS-SVM-based adaptive constrained control for a class of uncertain nonlinear systems with time-varying predefined performance

    NASA Astrophysics Data System (ADS)

    Luo, Jianjun; Wei, Caisheng; Dai, Honghua; Yuan, Jianping

    2018-03-01

    This paper focuses on robust adaptive control for a class of uncertain nonlinear systems subject to input saturation and external disturbance with guaranteed predefined tracking performance. To reduce the limitations of classical predefined performance control method in the presence of unknown initial tracking errors, a novel predefined performance function with time-varying design parameters is first proposed. Then, aiming at reducing the complexity of nonlinear approximations, only two least-square-support-vector-machine-based (LS-SVM-based) approximators with two design parameters are required through norm form transformation of the original system. Further, a novel LS-SVM-based adaptive constrained control scheme is developed under the time-vary predefined performance using backstepping technique. Wherein, to avoid the tedious analysis and repeated differentiations of virtual control laws in the backstepping technique, a simple and robust finite-time-convergent differentiator is devised to only extract its first-order derivative at each step in the presence of external disturbance. In this sense, the inherent demerit of backstepping technique-;explosion of terms; brought by the recursive virtual controller design is conquered. Moreover, an auxiliary system is designed to compensate the control saturation. Finally, three groups of numerical simulations are employed to validate the effectiveness of the newly developed differentiator and the proposed adaptive constrained control scheme.

  3. Perceptual Learning of Time-Compressed Speech: More than Rapid Adaptation

    PubMed Central

    Banai, Karen; Lavner, Yizhar

    2012-01-01

    Background Time-compressed speech, a form of rapidly presented speech, is harder to comprehend than natural speech, especially for non-native speakers. Although it is possible to adapt to time-compressed speech after a brief exposure, it is not known whether additional perceptual learning occurs with further practice. Here, we ask whether multiday training on time-compressed speech yields more learning than that observed during the initial adaptation phase and whether the pattern of generalization following successful learning is different than that observed with initial adaptation only. Methodology/Principal Findings Two groups of non-native Hebrew speakers were tested on five different conditions of time-compressed speech identification in two assessments conducted 10–14 days apart. Between those assessments, one group of listeners received five practice sessions on one of the time-compressed conditions. Between the two assessments, trained listeners improved significantly more than untrained listeners on the trained condition. Furthermore, the trained group generalized its learning to two untrained conditions in which different talkers presented the trained speech materials. In addition, when the performance of the non-native speakers was compared to that of a group of naïve native Hebrew speakers, performance of the trained group was equivalent to that of the native speakers on all conditions on which learning occurred, whereas performance of the untrained non-native listeners was substantially poorer. Conclusions/Significance Multiday training on time-compressed speech results in significantly more perceptual learning than brief adaptation. Compared to previous studies of adaptation, the training induced learning is more stimulus specific. Taken together, the perceptual learning of time-compressed speech appears to progress from an initial, rapid adaptation phase to a subsequent prolonged and more stimulus specific phase. These findings are consistent with

  4. The large discretization step method for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Haras, Zigo; Taasan, Shlomo

    1995-01-01

    A new method for the acceleration of linear and nonlinear time dependent calculations is presented. It is based on the Large Discretization Step (LDS) approximation, defined in this work, which employs an extended system of low accuracy schemes to approximate a high accuracy discrete approximation to a time dependent differential operator. Error bounds on such approximations are derived. These approximations are efficiently implemented in the LDS methods for linear and nonlinear hyperbolic equations, presented here. In these algorithms the high and low accuracy schemes are interpreted as the same discretization of a time dependent operator on fine and coarse grids, respectively. Thus, a system of correction terms and corresponding equations are derived and solved on the coarse grid to yield the fine grid accuracy. These terms are initialized by visiting the fine grid once in many coarse grid time steps. The resulting methods are very general, simple to implement and may be used to accelerate many existing time marching schemes.

  5. Enabling fast, stable and accurate peridynamic computations using multi-time-step integration

    DOE PAGES

    Lindsay, P.; Parks, M. L.; Prakash, A.

    2016-04-13

    Peridynamics is a nonlocal extension of classical continuum mechanics that is well-suited for solving problems with discontinuities such as cracks. This paper extends the peridynamic formulation to decompose a problem domain into a number of smaller overlapping subdomains and to enable the use of different time steps in different subdomains. This approach allows regions of interest to be isolated and solved at a small time step for increased accuracy while the rest of the problem domain can be solved at a larger time step for greater computational efficiency. Lastly, performance of the proposed method in terms of stability, accuracy, andmore » computational cost is examined and several numerical examples are presented to corroborate the findings.« less

  6. Time scale matters: genetic analysis does not support adaptation-by-time as the mechanism for adaptive seasonal declines in kokanee reproductive life span

    PubMed Central

    Morbey, Yolanda E; Jensen, Evelyn L; Russello, Michael A

    2014-01-01

    Seasonal declines of fitness-related traits are often attributed to environmental effects or individual-level decisions about reproductive timing and effort, but genetic variation may also play a role. In populations of Pacific salmon (Oncorhynchus spp.), seasonal declines in reproductive life span have been attributed to adaptation-by-time, in which divergent selection for different traits occurs among reproductively isolated temporal components of a population. We evaluated this hypothesis in kokanee (freshwater obligate Oncorhynchus nerka) by testing for temporal genetic structure in neutral and circadian-linked loci. We detected no genetic differences in presumably neutral loci among kokanee with different arrival and maturation dates within a spawning season. Similarly, we detected no temporal genetic structure in OtsClock1b, Omy1009uw, or OmyFbxw11, candidate loci associated with circadian function. The genetic evidence from this study and others indicates a lack of support for adaptation-by-time as an important evolutionary mechanism underlying seasonal declines in reproductive life span and a need for greater consideration of other mechanisms such as time-dependent, adaptive adjustment of reproductive effort. PMID:25478160

  7. Ground Reaction Forces of the Lead and Trail Limbs when Stepping Over an Obstacle

    PubMed Central

    Bovonsunthonchai, Sunee; Khobkhun, Fuengfa; Vachalathiti, Roongtiwa

    2015-01-01

    Background Precise force generation and absorption during stepping over different obstacles need to be quantified for task accomplishment. This study aimed to quantify how the lead limb (LL) and trail limb (TL) generate and absorb forces while stepping over obstacle of various heights. Material/Methods Thirteen healthy young women participated in the study. Force data were collected from 2 force plates when participants stepped over obstacles. Two limbs (right LL and left TL) and 4 conditions of stepping (no obstacle, stepping over 5 cm, 20 cm, and 30 cm obstacle heights) were tested for main effect and interaction effect by 2-way ANOVA. Paired t-test and 1-way repeated-measure ANOVA were used to compare differences of variables between limbs and among stepping conditions, respectively. The main effects on the limb were found in first peak vertical force, minimum vertical force, propulsive peak force, and propulsive impulse. Results Significant main effects of condition were found in time to minimum force, time to the second peak force, time to propulsive peak force, first peak vertical force, braking peak force, propulsive peak force, vertical impulse, braking impulse, and propulsive impulse. Interaction effects of limb and condition were found in first peak vertical force, propulsive peak force, braking impulse, and propulsive impulse. Conclusions Adaptations of force generation in the LL and TL were found to involve adaptability to altered external environment during stepping in healthy young adults. PMID:26169293

  8. Comparing an annual and daily time-step model for predicting field-scale phosphorus loss

    USDA-ARS?s Scientific Manuscript database

    Numerous models exist for describing phosphorus (P) losses from agricultural fields. The complexity of these models varies considerably ranging from simple empirically-based annual time-step models to more complex process-based daily time step models. While better accuracy is often assumed with more...

  9. Sensorimotor and Cognitive Predictors of Impaired Gait Adaptability in Older People.

    PubMed

    Caetano, Maria Joana D; Menant, Jasmine C; Schoene, Daniel; Pelicioni, Paulo H S; Sturnieks, Daina L; Lord, Stephen R

    2017-09-01

    The ability to adapt gait when negotiating unexpected hazards is crucial to maintain stability and avoid falling. This study investigated whether impaired gait adaptability in a task including obstacle and stepping targets is associated with cognitive and sensorimotor capacities in older adults. Fifty healthy older adults (74±7 years) were instructed to either (a) avoid an obstacle at usual step distance or (b) step onto a target at either a short or long step distance projected on a walkway two heel strikes ahead and then continue walking. Participants also completed cognitive and sensorimotor function assessments. Stroop test and reaction time performance significantly discriminated between participants who did and did not make stepping errors, and poorer Trail-Making test performance predicted shorter penultimate step length in the obstacle avoidance condition. Slower reaction time predicted poorer stepping accuracy; increased postural sway, weaker quadriceps strength, and poorer Stroop and Trail-Making test performances predicted increased number of steps taken to approach the target/obstacle and shorter step length; and increased postural sway and higher concern about falling predicted slower step velocity. Superior executive function, fast processing speed, and good muscle strength and balance were all associated with successful gait adaptability. Processing speed appears particularly important for precise foot placements; cognitive capacity for step length adjustments; and early and/or additional cognitive processing involving the inhibition of a stepping pattern for obstacle avoidance. This information may facilitate fall risk assessments and fall prevention strategies. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Sensory adaptation for timing perception.

    PubMed

    Roseboom, Warrick; Linares, Daniel; Nishida, Shin'ya

    2015-04-22

    Recent sensory experience modifies subjective timing perception. For example, when visual events repeatedly lead auditory events, such as when the sound and video tracks of a movie are out of sync, subsequent vision-leads-audio presentations are reported as more simultaneous. This phenomenon could provide insights into the fundamental problem of how timing is represented in the brain, but the underlying mechanisms are poorly understood. Here, we show that the effect of recent experience on timing perception is not just subjective; recent sensory experience also modifies relative timing discrimination. This result indicates that recent sensory history alters the encoding of relative timing in sensory areas, excluding explanations of the subjective phenomenon based only on decision-level changes. The pattern of changes in timing discrimination suggests the existence of two sensory components, similar to those previously reported for visual spatial attributes: a lateral shift in the nonlinear transducer that maps relative timing into perceptual relative timing and an increase in transducer slope around the exposed timing. The existence of these components would suggest that previous explanations of how recent experience may change the sensory encoding of timing, such as changes in sensory latencies or simple implementations of neural population codes, cannot account for the effect of sensory adaptation on timing perception.

  11. Enforcing the Courant–Friedrichs–Lewy condition in explicitly conservative local time stepping schemes

    DOE PAGES

    Gnedin, Nickolay Y.; Semenov, Vadim A.; Kravtsov, Andrey V.

    2018-01-30

    In this study, an optimally efficient explicit numerical scheme for solving fluid dynamics equations, or any other parabolic or hyperbolic system of partial differential equations, should allow local regions to advance in time with their own, locally constrained time steps. However, such a scheme can result in violation of the Courant-Friedrichs-Lewy (CFL) condition, which is manifestly non-local. Although the violations can be considered to be "weak" in a certain sense and the corresponding numerical solution may be stable, such calculation does not guarantee the correct propagation speed for arbitrary waves. We use an experimental fluid dynamics code that allows cubicmore » "patches" of grid cells to step with independent, locally constrained time steps to demonstrate how the CFL condition can be enforced by imposing a condition on the time steps of neighboring patches. We perform several numerical tests that illustrate errors introduced in the numerical solutions by weak CFL condition violations and show how strict enforcement of the CFL condition eliminates these errors. In all our tests the strict enforcement of the CFL condition does not impose a significant performance penalty.« less

  12. Adaptive statistical pattern classifiers for remotely sensed data

    NASA Technical Reports Server (NTRS)

    Gonzalez, R. C.; Pace, M. O.; Raulston, H. S.

    1975-01-01

    A technique for the adaptive estimation of nonstationary statistics necessary for Bayesian classification is developed. The basic approach to the adaptive estimation procedure consists of two steps: (1) an optimal stochastic approximation of the parameters of interest and (2) a projection of the parameters in time or position. A divergence criterion is developed to monitor algorithm performance. Comparative results of adaptive and nonadaptive classifier tests are presented for simulated four dimensional spectral scan data.

  13. Real-time control system for adaptive resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flath, L; An, J; Brase, J

    2000-07-24

    Sustained operation of high average power solid-state lasers currently requires an adaptive resonator to produce the optimal beam quality. We describe the architecture of a real-time adaptive control system for correcting intra-cavity aberrations in a heat capacity laser. Image data collected from a wavefront sensor are processed and used to control phase with a high-spatial-resolution deformable mirror. Our controller takes advantage of recent developments in low-cost, high-performance processor technology. A desktop-based computational engine and object-oriented software architecture replaces the high-cost rack-mount embedded computers of previous systems.

  14. Adaptive Sampling of Time Series During Remote Exploration

    NASA Technical Reports Server (NTRS)

    Thompson, David R.

    2012-01-01

    This work deals with the challenge of online adaptive data collection in a time series. A remote sensor or explorer agent adapts its rate of data collection in order to track anomalous events while obeying constraints on time and power. This problem is challenging because the agent has limited visibility (all its datapoints lie in the past) and limited control (it can only decide when to collect its next datapoint). This problem is treated from an information-theoretic perspective, fitting a probabilistic model to collected data and optimizing the future sampling strategy to maximize information gain. The performance characteristics of stationary and nonstationary Gaussian process models are compared. Self-throttling sensors could benefit environmental sensor networks and monitoring as well as robotic exploration. Explorer agents can improve performance by adjusting their data collection rate, preserving scarce power or bandwidth resources during uninteresting times while fully covering anomalous events of interest. For example, a remote earthquake sensor could conserve power by limiting its measurements during normal conditions and increasing its cadence during rare earthquake events. A similar capability could improve sensor platforms traversing a fixed trajectory, such as an exploration rover transect or a deep space flyby. These agents can adapt observation times to improve sample coverage during moments of rapid change. An adaptive sampling approach couples sensor autonomy, instrument interpretation, and sampling. The challenge is addressed as an active learning problem, which already has extensive theoretical treatment in the statistics and machine learning literature. A statistical Gaussian process (GP) model is employed to guide sample decisions that maximize information gain. Nonsta tion - ary (e.g., time-varying) covariance relationships permit the system to represent and track local anomalies, in contrast with current GP approaches. Most common GP models

  15. Multi-Step Time Series Forecasting with an Ensemble of Varied Length Mixture Models.

    PubMed

    Ouyang, Yicun; Yin, Hujun

    2018-05-01

    Many real-world problems require modeling and forecasting of time series, such as weather temperature, electricity demand, stock prices and foreign exchange (FX) rates. Often, the tasks involve predicting over a long-term period, e.g. several weeks or months. Most existing time series models are inheritably for one-step prediction, that is, predicting one time point ahead. Multi-step or long-term prediction is difficult and challenging due to the lack of information and uncertainty or error accumulation. The main existing approaches, iterative and independent, either use one-step model recursively or treat the multi-step task as an independent model. They generally perform poorly in practical applications. In this paper, as an extension of the self-organizing mixture autoregressive (AR) model, the varied length mixture (VLM) models are proposed to model and forecast time series over multi-steps. The key idea is to preserve the dependencies between the time points within the prediction horizon. Training data are segmented to various lengths corresponding to various forecasting horizons, and the VLM models are trained in a self-organizing fashion on these segments to capture these dependencies in its component AR models of various predicting horizons. The VLM models form a probabilistic mixture of these varied length models. A combination of short and long VLM models and an ensemble of them are proposed to further enhance the prediction performance. The effectiveness of the proposed methods and their marked improvements over the existing methods are demonstrated through a number of experiments on synthetic data, real-world FX rates and weather temperatures.

  16. A local time stepping algorithm for GPU-accelerated 2D shallow water models

    NASA Astrophysics Data System (ADS)

    Dazzi, Susanna; Vacondio, Renato; Dal Palù, Alessandro; Mignosa, Paolo

    2018-01-01

    In the simulation of flooding events, mesh refinement is often required to capture local bathymetric features and/or to detail areas of interest; however, if an explicit finite volume scheme is adopted, the presence of small cells in the domain can restrict the allowable time step due to the stability condition, thus reducing the computational efficiency. With the aim of overcoming this problem, the paper proposes the application of a Local Time Stepping (LTS) strategy to a GPU-accelerated 2D shallow water numerical model able to handle non-uniform structured meshes. The algorithm is specifically designed to exploit the computational capability of GPUs, minimizing the overheads associated with the LTS implementation. The results of theoretical and field-scale test cases show that the LTS model guarantees appreciable reductions in the execution time compared to the traditional Global Time Stepping strategy, without compromising the solution accuracy.

  17. Time-symmetric integration in astrophysics

    NASA Astrophysics Data System (ADS)

    Hernandez, David M.; Bertschinger, Edmund

    2018-04-01

    Calculating the long-term solution of ordinary differential equations, such as those of the N-body problem, is central to understanding a wide range of dynamics in astrophysics, from galaxy formation to planetary chaos. Because generally no analytic solution exists to these equations, researchers rely on numerical methods that are prone to various errors. In an effort to mitigate these errors, powerful symplectic integrators have been employed. But symplectic integrators can be severely limited because they are not compatible with adaptive stepping and thus they have difficulty in accommodating changing time and length scales. A promising alternative is time-reversible integration, which can handle adaptive time-stepping, but the errors due to time-reversible integration in astrophysics are less understood. The goal of this work is to study analytically and numerically the errors caused by time-reversible integration, with and without adaptive stepping. We derive the modified differential equations of these integrators to perform the error analysis. As an example, we consider the trapezoidal rule, a reversible non-symplectic integrator, and show that it gives secular energy error increase for a pendulum problem and for a Hénon-Heiles orbit. We conclude that using reversible integration does not guarantee good energy conservation and that, when possible, use of symplectic integrators is favoured. We also show that time-symmetry and time-reversibility are properties that are distinct for an integrator.

  18. 4 Steps for Redesigning Time for Student and Teacher Learning

    ERIC Educational Resources Information Center

    Nazareno, Lori

    2017-01-01

    Everybody complains about a lack of time in school, but few are prepared to do anything about it. Laying the foundation before making such a shift is essential to the success of the change. Once a broad-based team has been chosen to do the work, they can follow a process explained in four steps with the apt acronym of T.I.M.E.: Taking stock,…

  19. The determination of dark adaptation time using electroretinography in conscious miniature Schnauzer dogs.

    PubMed

    Yu, Hyung-Ah; Jeong, Man-Bok; Park, Shin-Ae; Kim, Won-Tae; Kim, Se-Eun; Chae, Je-Min; Yi, Na-Young; Seo, Kang-Moon

    2007-12-01

    The optimal dark adaptation time of electroretinograms (ERG's) performed on conscious dogs were determined using a commercially available ERG unit with a contact lens electrode and a built-in light source (LED-electrode). The ERG recordings were performed on nine healthy Miniature Schnauzer dogs. The bilateral ERG's at seven different dark adaptation times at an intensity of 2.5 cd.s/m(2) was performed. Signal averaging (4 flashes of light stimuli) was adopted to reduce electrophysiologic noise. As the dark adaptation time increased, a significant increase in the mean a-wave amplitudes was observed in comparison to base-line levels up to 10 min (p < 0.05). Thereafter, no significant differences in amplitude occurred over the dark adaptation time. Moreover, at this time the mean amplitude was 60.30 +/- 18.47 microV. However, no significant changes were observed for the implicit times of the a-wave. The implicit times and amplitude of the b-wave increased significantly up to 20 min of dark adaptation (p < 0.05). Beyond this time, the mean b-wave amplitudes was 132.92 +/- 17.79 microV. The results of the present study demonstrate that, the optimal dark adaptation time when performing ERG's, should be at least 20 min in conscious Miniature Schnauzer dogs.

  20. Adaptive Numerical Algorithms in Space Weather Modeling

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; hide

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  1. Efficient variable time-stepping scheme for intense field-atom interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerjan, C.; Kosloff, R.

    1993-03-01

    The recently developed Residuum method [Tal-Ezer, Kosloff, and Cerjan, J. Comput. Phys. 100, 179 (1992)], a Krylov subspace technique with variable time-step integration for the solution of the time-dependent Schroedinger equation, is applied to the frequently used soft Coulomb potential in an intense laser field. This one-dimensional potential has asymptotic Coulomb dependence with a softened'' singularity at the origin; thus it models more realistic phenomena. Two of the more important quantities usually calculated in this idealized system are the photoelectron and harmonic photon generation spectra. These quantities are shown to be sensitive to the choice of a numerical integration scheme:more » some spectral features are incorrectly calculated or missing altogether. Furthermore, the Residuum method allows much larger grid spacings for equivalent or higher accuracy in addition to the advantages of variable time stepping. Finally, it is demonstrated that enhanced high-order harmonic generation accompanies intense field stabilization and that preparation of the atom in an intermediate Rydberg state leads to stabilization at much lower laser intensity.« less

  2. Real-time control of geometry and stiffness in adaptive structures

    NASA Technical Reports Server (NTRS)

    Ramesh, A. V.; Utku, S.; Wada, B. K.

    1991-01-01

    The basic theory is presented for the geometry, stiffness, and damping control of adaptive structures, with emphasis on adaptive truss structures. Necessary and sufficient conditions are given for stress-free geometry control in statically determinate and indeterminate adaptive discrete structures. Two criteria for selecting the controls are proposed, and their use in real-time control is illustrated by numerical simulation results. It is shown that the stiffness and damping control of adaptive truss structures for vibration suppression is possible by elongation and elongation rate dependent feedback forces from the active elements.

  3. Adaptation of catch-up saccades during the initiation of smooth pursuit eye movements.

    PubMed

    Schütz, Alexander C; Souto, David

    2011-04-01

    Reduction of retinal speed and alignment of the line of sight are believed to be the respective primary functions of smooth pursuit and saccadic eye movements. As the eye muscles strength can change in the short-term, continuous adjustments of motor signals are required to achieve constant accuracy. While adaptation of saccade amplitude to systematic position errors has been extensively studied, we know less about the adaptive response to position errors during smooth pursuit initiation, when target motion has to be taken into account to program saccades, and when position errors at the saccade endpoint could also be corrected by increasing pursuit velocity. To study short-term adaptation (250 adaptation trials) of tracking eye movements, we introduced a position error during the first catch-up saccade made during the initiation of smooth pursuit-in a ramp-step-ramp paradigm. The target position was either shifted in the direction of the horizontally moving target (forward step), against it (backward step) or orthogonally to it (vertical step). Results indicate adaptation of catch-up saccade amplitude to back and forward steps. With vertical steps, saccades became oblique, by an inflexion of the early or late saccade trajectory. With a similar time course, post-saccadic pursuit velocity was increased in the step direction, adding further evidence that under some conditions pursuit and saccades can act synergistically to reduce position errors.

  4. Quadratic adaptive algorithm for solving cardiac action potential models.

    PubMed

    Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing

    2016-10-01

    An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. Copyright © 2016 Elsevier Ltd. All rights

  5. Timing paradox of stepping and falls in ageing: not so quick and quick(er) on the trigger

    PubMed Central

    Mille, Marie‐Laure

    2016-01-01

    Abstract Physiological and degenerative changes affecting human standing balance are major contributors to falls with ageing. During imbalance, stepping is a powerful protective action for preserving balance that may be voluntarily initiated in recognition of a balance threat, or be induced by an externally imposed mechanical or sensory perturbation. Paradoxically, with ageing and falls, initiation slowing of voluntary stepping is observed together with perturbation‐induced steps that are triggered as fast as or faster than for younger adults. While age‐associated changes in sensorimotor conduction, central neuronal processing and cognitive functions are linked to delayed voluntary stepping, alterations in the coupling of posture and locomotion may also prolong step triggering. It is less clear, however, how these factors may explain the accelerated triggering of induced stepping. We present a conceptual model that addresses this issue. For voluntary stepping, a disruption in the normal coupling between posture and locomotion may underlie step‐triggering delays through suppression of the locomotion network based on an estimation of the evolving mechanical state conditions for stability. During induced stepping, accelerated step initiation may represent an event‐triggering process whereby stepping is released according to the occurrence of a perturbation rather than to the specific sensorimotor information reflecting the evolving instability. In this case, errors in the parametric control of induced stepping and its effectiveness in stabilizing balance would be likely to occur. We further suggest that there is a residual adaptive capacity with ageing that could be exploited to improve paradoxical triggering and other changes in protective stepping to impact fall risk. PMID:26915664

  6. Method and apparatus for adaptive force and position control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1989-01-01

    The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.

  7. Large time-step stability of explicit one-dimensional advection schemes

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.

    1993-01-01

    There is a wide-spread belief that most explicit one-dimensional advection schemes need to satisfy the so-called 'CFL condition' - that the Courant number, c = udelta(t)/delta(x), must be less than or equal to one, for stability in the von Neumann sense. This puts severe limitations on the time-step in high-speed, fine-grid calculations and is an impetus for the development of implicit schemes, which often require less restrictive time-step conditions for stability, but are more expensive per time-step. However, it turns out that, at least in one dimension, if explicit schemes are formulated in a consistent flux-based conservative finite-volume form, von Neumann stability analysis does not place any restriction on the allowable Courant number. Any explicit scheme that is stable for c is less than 1, with a complex amplitude ratio, G(c), can be easily extended to arbitrarily large c. The complex amplitude ratio is then given by exp(- (Iota)(Nu)(Theta)) G(delta(c)), where N is the integer part of c, and delta(c) = c - N (less than 1); this is clearly stable. The CFL condition is, in fact, not a stability condition at all, but, rather, a 'range restriction' on the 'pieces' in a piece-wise polynomial interpolation. When a global view is taken of the interpolation, the need for a CFL condition evaporates. A number of well-known explicit advection schemes are considered and thus extended to large delta(t). The analysis also includes a simple interpretation of (large delta(t)) total-variation-diminishing (TVD) constraints.

  8. The determination of dark adaptation time using electroretinography in conscious Miniature Schnauzer dogs

    PubMed Central

    Yu, Hyung-Ah; Jeong, Man-Bok; Park, Shin-Ae; Kim, Won-Tae; Kim, Se-Eun; Chae, Je-Min; Yi, Na-Young

    2007-01-01

    The optimal dark adaptation time of electroretinograms (ERG's) performed on conscious dogs were determined using a commercially available ERG unit with a contact lens electrode and a built-in light source (LED-electrode). The ERG recordings were performed on nine healthy Miniature Schnauzer dogs. The bilateral ERG's at seven different dark adaptation times at an intensity of 2.5 cd·s/m2 was performed. Signal averaging (4 flashes of light stimuli) was adopted to reduce electrophysiologic noise. As the dark adaptation time increased, a significant increase in the mean a-wave amplitudes was observed in comparison to base-line levels up to 10 min (p < 0.05). Thereafter, no significant differences in amplitude occured over the dark adaptation time. Moreover, at this time the mean amplitude was 60.30 ± 18.47 µV. However, no significant changes were observed for the implicit times of the a-wave. The implicit times and amplitude of the b-wave increased significantly up to 20 min of dark adaptation (p < 0.05). Beyond this time, the mean b-wave amplitudes was 132.92 ± 17.79 µV. The results of the present study demonstrate that, the optimal dark adaptation time when performing ERG's, should be at least 20 min in conscious Miniature Schnauzer dogs. PMID:17993756

  9. Timing paradox of stepping and falls in ageing: not so quick and quick(er) on the trigger.

    PubMed

    Rogers, Mark W; Mille, Marie-Laure

    2016-08-15

    Physiological and degenerative changes affecting human standing balance are major contributors to falls with ageing. During imbalance, stepping is a powerful protective action for preserving balance that may be voluntarily initiated in recognition of a balance threat, or be induced by an externally imposed mechanical or sensory perturbation. Paradoxically, with ageing and falls, initiation slowing of voluntary stepping is observed together with perturbation-induced steps that are triggered as fast as or faster than for younger adults. While age-associated changes in sensorimotor conduction, central neuronal processing and cognitive functions are linked to delayed voluntary stepping, alterations in the coupling of posture and locomotion may also prolong step triggering. It is less clear, however, how these factors may explain the accelerated triggering of induced stepping. We present a conceptual model that addresses this issue. For voluntary stepping, a disruption in the normal coupling between posture and locomotion may underlie step-triggering delays through suppression of the locomotion network based on an estimation of the evolving mechanical state conditions for stability. During induced stepping, accelerated step initiation may represent an event-triggering process whereby stepping is released according to the occurrence of a perturbation rather than to the specific sensorimotor information reflecting the evolving instability. In this case, errors in the parametric control of induced stepping and its effectiveness in stabilizing balance would be likely to occur. We further suggest that there is a residual adaptive capacity with ageing that could be exploited to improve paradoxical triggering and other changes in protective stepping to impact fall risk. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  10. Development of a real time activity monitoring Android application utilizing SmartStep.

    PubMed

    Hegde, Nagaraj; Melanson, Edward; Sazonov, Edward

    2016-08-01

    Footwear based activity monitoring systems are becoming popular in academic research as well as consumer industry segments. In our previous work, we had presented developmental aspects of an insole based activity and gait monitoring system-SmartStep, which is a socially acceptable, fully wireless and versatile insole. The present work describes the development of an Android application that captures the SmartStep data wirelessly over Bluetooth Low energy (BLE), computes features on the received data, runs activity classification algorithms and provides real time feedback. The development of activity classification methods was based on the the data from a human study involving 4 participants. Participants were asked to perform activities of sitting, standing, walking, and cycling while they wore SmartStep insole system. Multinomial Logistic Discrimination (MLD) was utilized in the development of machine learning model for activity prediction. The resulting classification model was implemented in an Android Smartphone. The Android application was benchmarked for power consumption and CPU loading. Leave one out cross validation resulted in average accuracy of 96.9% during model training phase. The Android application for real time activity classification was tested on a human subject wearing SmartStep resulting in testing accuracy of 95.4%.

  11. High-Order Implicit-Explicit Multi-Block Time-stepping Method for Hyperbolic PDEs

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner B.; Carpenter, Mark H.; Fisher, Travis C.; Frankel, Steven H.

    2014-01-01

    This work seeks to explore and improve the current time-stepping schemes used in computational fluid dynamics (CFD) in order to reduce overall computational time. A high-order scheme has been developed using a combination of implicit and explicit (IMEX) time-stepping Runge-Kutta (RK) schemes which increases numerical stability with respect to the time step size, resulting in decreased computational time. The IMEX scheme alone does not yield the desired increase in numerical stability, but when used in conjunction with an overlapping partitioned (multi-block) domain significant increase in stability is observed. To show this, the Overlapping-Partition IMEX (OP IMEX) scheme is applied to both one-dimensional (1D) and two-dimensional (2D) problems, the nonlinear viscous Burger's equation and 2D advection equation, respectively. The method uses two different summation by parts (SBP) derivative approximations, second-order and fourth-order accurate. The Dirichlet boundary conditions are imposed using the Simultaneous Approximation Term (SAT) penalty method. The 6-stage additive Runge-Kutta IMEX time integration schemes are fourth-order accurate in time. An increase in numerical stability 65 times greater than the fully explicit scheme is demonstrated to be achievable with the OP IMEX method applied to 1D Burger's equation. Results from the 2D, purely convective, advection equation show stability increases on the order of 10 times the explicit scheme using the OP IMEX method. Also, the domain partitioning method in this work shows potential for breaking the computational domain into manageable sizes such that implicit solutions for full three-dimensional CFD simulations can be computed using direct solving methods rather than the standard iterative methods currently used.

  12. Dependence of Hurricane intensity and structures on vertical resolution and time-step size

    NASA Astrophysics Data System (ADS)

    Zhang, Da-Lin; Wang, Xiaoxue

    2003-09-01

    In view of the growing interests in the explicit modeling of clouds and precipitation, the effects of varying vertical resolution and time-step sizes on the 72-h explicit simulation of Hurricane Andrew (1992) are studied using the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model (i.e., MM5) with the finest grid size of 6 km. It is shown that changing vertical resolution and time-step size has significant effects on hurricane intensity and inner-core cloud/precipitation, but little impact on the hurricane track. In general, increasing vertical resolution tends to produce a deeper storm with lower central pressure and stronger three-dimensional winds, and more precipitation. Similar effects, but to a less extent, occur when the time-step size is reduced. It is found that increasing the low-level vertical resolution is more efficient in intensifying a hurricane, whereas changing the upper-level vertical resolution has little impact on the hurricane intensity. Moreover, the use of a thicker surface layer tends to produce higher maximum surface winds. It is concluded that the use of higher vertical resolution, a thin surface layer, and smaller time-step sizes, along with higher horizontal resolution, is desirable to model more realistically the intensity and inner-core structures and evolution of tropical storms as well as the other convectively driven weather systems.

  13. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data

    NASA Astrophysics Data System (ADS)

    Jothiprakash, V.; Magar, R. B.

    2012-07-01

    SummaryIn this study, artificial intelligent (AI) techniques such as artificial neural network (ANN), Adaptive neuro-fuzzy inference system (ANFIS) and Linear genetic programming (LGP) are used to predict daily and hourly multi-time-step ahead intermittent reservoir inflow. To illustrate the applicability of AI techniques, intermittent Koyna river watershed in Maharashtra, India is chosen as a case study. Based on the observed daily and hourly rainfall and reservoir inflow various types of time-series, cause-effect and combined models are developed with lumped and distributed input data. Further, the model performance was evaluated using various performance criteria. From the results, it is found that the performances of LGP models are found to be superior to ANN and ANFIS models especially in predicting the peak inflows for both daily and hourly time-step. A detailed comparison of the overall performance indicated that the combined input model (combination of rainfall and inflow) performed better in both lumped and distributed input data modelling. It was observed that the lumped input data models performed slightly better because; apart from reducing the noise in the data, the better techniques and their training approach, appropriate selection of network architecture, required inputs, and also training-testing ratios of the data set. The slight poor performance of distributed data is due to large variations and lesser number of observed values.

  14. Normalised subband adaptive filtering with extended adaptiveness on degree of subband filters

    NASA Astrophysics Data System (ADS)

    Samuyelu, Bommu; Rajesh Kumar, Pullakura

    2017-12-01

    This paper proposes an adaptive normalised subband adaptive filtering (NSAF) to accomplish the betterment of NSAF performance. In the proposed NSAF, an extended adaptiveness is introduced from its variants in two ways. In the first way, the step-size is set adaptive, and in the second way, the selection of subbands is set adaptive. Hence, the proposed NSAF is termed here as variable step-size-based NSAF with selected subbands (VS-SNSAF). Experimental investigations are carried out to demonstrate the performance (in terms of convergence) of the VS-SNSAF against the conventional NSAF and its state-of-the-art adaptive variants. The results report the superior performance of VS-SNSAF over the traditional NSAF and its variants. It is also proved for its stability, robustness against noise and substantial computing complexity.

  15. Measuring border delay and crossing times at the US-Mexico border : part II. Step-by-step guidelines for implementing a radio frequency identification (RFID) system to measure border crossing and wait times.

    DOT National Transportation Integrated Search

    2012-06-01

    The purpose of these step-by-step guidelines is to assist in planning, designing, and deploying a system that uses radio frequency identification (RFID) technology to measure the time needed for commercial vehicles to complete the northbound border c...

  16. Adjustment of Adaptive Gain with Bounded Linear Stability Analysis to Improve Time-Delay Margin for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje Srinvas

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a linear damaged twin-engine generic transport model of aircraft. The analysis shows that the system with the adjusted adaptive gain becomes more robust to unmodeled dynamics or time delay.

  17. An adaptive grid algorithm for one-dimensional nonlinear equations

    NASA Technical Reports Server (NTRS)

    Gutierrez, William E.; Hills, Richard G.

    1990-01-01

    Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and

  18. Analysis of 3D poroelastodynamics using BEM based on modified time-step scheme

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Petrov, A. N.; Vorobtsov, I. V.

    2017-10-01

    The development of 3d boundary elements modeling of dynamic partially saturated poroelastic media using a stepping scheme is presented in this paper. Boundary Element Method (BEM) in Laplace domain and the time-stepping scheme for numerical inversion of the Laplace transform are used to solve the boundary value problem. The modified stepping scheme with a varied integration step for quadrature coefficients calculation using the symmetry of the integrand function and integral formulas of Strongly Oscillating Functions was applied. The problem with force acting on a poroelastic prismatic console end was solved using the developed method. A comparison of the results obtained by the traditional stepping scheme with the solutions obtained by this modified scheme shows that the computational efficiency is better with usage of combined formulas.

  19. The "Motor" in Implicit Motor Sequence Learning: A Foot-stepping Serial Reaction Time Task.

    PubMed

    Du, Yue; Clark, Jane E

    2018-05-03

    This protocol describes a modified serial reaction time (SRT) task used to study implicit motor sequence learning. Unlike the classic SRT task that involves finger-pressing movements while sitting, the modified SRT task requires participants to step with both feet while maintaining a standing posture. This stepping task necessitates whole body actions that impose postural challenges. The foot-stepping task complements the classic SRT task in several ways. The foot-stepping SRT task is a better proxy for the daily activities that require ongoing postural control, and thus may help us better understand sequence learning in real-life situations. In addition, response time serves as an indicator of sequence learning in the classic SRT task, but it is unclear whether response time, reaction time (RT) representing mental process, or movement time (MT) reflecting the movement itself, is a key player in motor sequence learning. The foot-stepping SRT task allows researchers to disentangle response time into RT and MT, which may clarify how motor planning and movement execution are involved in sequence learning. Lastly, postural control and cognition are interactively related, but little is known about how postural control interacts with learning motor sequences. With a motion capture system, the movement of the whole body (e.g., the center of mass (COM)) can be recorded. Such measures allow us to reveal the dynamic processes underlying discrete responses measured by RT and MT, and may aid in elucidating the relationship between postural control and the explicit and implicit processes involved in sequence learning. Details of the experimental set-up, procedure, and data processing are described. The representative data are adopted from one of our previous studies. Results are related to response time, RT, and MT, as well as the relationship between the anticipatory postural response and the explicit processes involved in implicit motor sequence learning.

  20. Between-Trial Forgetting Due to Interference and Time in Motor Adaptation.

    PubMed

    Kim, Sungshin; Oh, Youngmin; Schweighofer, Nicolas

    2015-01-01

    Learning a motor task with temporally spaced presentations or with other tasks intermixed between presentations reduces performance during training, but can enhance retention post training. These two effects are known as the spacing and contextual interference effect, respectively. Here, we aimed at testing a unifying hypothesis of the spacing and contextual interference effects in visuomotor adaptation, according to which forgetting between trials due to either spaced presentations or interference by another task will promote between-trial forgetting, which will depress performance during acquisition, but will promote retention. We first performed an experiment with three visuomotor adaptation conditions: a short inter-trial-interval (ITI) condition (SHORT-ITI); a long ITI condition (LONG-ITI); and an alternating condition with two alternated opposite tasks (ALT), with the same single-task ITI as in LONG-ITI. In the SHORT-ITI condition, there was fastest increase in performance during training and largest immediate forgetting in the retention tests. In contrast, in the ALT condition, there was slowest increase in performance during training and little immediate forgetting in the retention tests. Compared to these two conditions, in the LONG-ITI, we found intermediate increase in performance during training and intermediate immediate forgetting. To account for these results, we fitted to the data six possible adaptation models with one or two time scales, and with interference in the fast, or in the slow, or in both time scales. Model comparison confirmed that two time scales and some degree of interferences in either time scale are needed to account for our experimental results. In summary, our results suggest that retention following adaptation is modulated by the degree of between-trial forgetting, which is due to time-based decay in single adaptation task and interferences in multiple adaptation tasks.

  1. Finite-Time Adaptive Control for a Class of Nonlinear Systems With Nonstrict Feedback Structure.

    PubMed

    Sun, Yumei; Chen, Bing; Lin, Chong; Wang, Honghong

    2017-09-18

    This paper focuses on finite-time adaptive neural tracking control for nonlinear systems in nonstrict feedback form. A semiglobal finite-time practical stability criterion is first proposed. Correspondingly, the finite-time adaptive neural control strategy is given by using this criterion. Unlike the existing results on adaptive neural/fuzzy control, the proposed adaptive neural controller guarantees that the tracking error converges to a sufficiently small domain around the origin in finite time, and other closed-loop signals are bounded. At last, two examples are used to test the validity of our results.

  2. Sparse time-frequency decomposition based on dictionary adaptation.

    PubMed

    Hou, Thomas Y; Shi, Zuoqiang

    2016-04-13

    In this paper, we propose a time-frequency analysis method to obtain instantaneous frequencies and the corresponding decomposition by solving an optimization problem. In this optimization problem, the basis that is used to decompose the signal is not known a priori. Instead, it is adapted to the signal and is determined as part of the optimization problem. In this sense, this optimization problem can be seen as a dictionary adaptation problem, in which the dictionary is adaptive to one signal rather than a training set in dictionary learning. This dictionary adaptation problem is solved by using the augmented Lagrangian multiplier (ALM) method iteratively. We further accelerate the ALM method in each iteration by using the fast wavelet transform. We apply our method to decompose several signals, including signals with poor scale separation, signals with outliers and polluted by noise and a real signal. The results show that this method can give accurate recovery of both the instantaneous frequencies and the intrinsic mode functions. © 2016 The Author(s).

  3. Method study on fuzzy-PID adaptive control of electric-hydraulic hitch system

    NASA Astrophysics Data System (ADS)

    Li, Mingsheng; Wang, Liubu; Liu, Jian; Ye, Jin

    2017-03-01

    In this paper, fuzzy-PID adaptive control method is applied to the control of tractor electric-hydraulic hitch system. According to the characteristics of the system, a fuzzy-PID adaptive controller is designed and the electric-hydraulic hitch system model is established. Traction control and position control performance simulation are carried out with the common PID control method. A field test rig was set up to test the electric-hydraulic hitch system. The test results showed that, after the fuzzy-PID adaptive control is adopted, when the tillage depth steps from 0.1m to 0.3m, the system transition process time is 4s, without overshoot, and when the tractive force steps from 3000N to 7000N, the system transition process time is 5s, the system overshoot is 25%.

  4. Decreasing triage time: effects of implementing a step-wise ESI algorithm in an EHR.

    PubMed

    Villa, Stephen; Weber, Ellen J; Polevoi, Steven; Fee, Christopher; Maruoka, Andrew; Quon, Tina

    2018-06-01

    To determine if adapting a widely-used triage scale into a computerized algorithm in an electronic health record (EHR) shortens emergency department (ED) triage time. Before-and-after quasi-experimental study. Urban, tertiary care hospital ED. Consecutive adult patient visits between July 2011 and June 2013. A step-wise algorithm, based on the Emergency Severity Index (ESI-5) was programmed into the triage module of a commercial EHR. Duration of triage (triage interval) for all patients and change in percentage of high acuity patients (ESI 1 and 2) completing triage within 15 min, 12 months before-and-after implementation of the algorithm. Multivariable analysis adjusted for confounders; interrupted time series demonstrated effects over time. Secondary outcomes examined quality metrics and patient flow. About 32 546 patient visits before and 33 032 after the intervention were included. Post-intervention patients were slightly older, census was higher and admission rate slightly increased. Median triage interval was 5.92 min (interquartile ranges, IQR 4.2-8.73) before and 2.8 min (IQR 1.88-4.23) after the intervention (P < 0.001). Adjusted mean triage interval decreased 3.4 min (95% CI: -3.6, -3.2). The proportion of high acuity patients completing triage within 15 min increased from 63.9% (95% CI 62.5, 65.2%) to 75.0% (95% CI 73.8, 76.1). Monthly time series demonstrated immediate and sustained improvement following the intervention. Return visits within 72 h and door-to-balloon time were unchanged. Total length of stay was similar. The computerized triage scale improved speed of triage, allowing more high acuity patients to be seen within recommended timeframes, without notable impact on quality.

  5. Role of step size and max dwell time in anatomy based inverse optimization for prostate implants

    PubMed Central

    Manikandan, Arjunan; Sarkar, Biplab; Rajendran, Vivek Thirupathur; King, Paul R.; Sresty, N.V. Madhusudhana; Holla, Ragavendra; Kotur, Sachin; Nadendla, Sujatha

    2013-01-01

    In high dose rate (HDR) brachytherapy, the source dwell times and dwell positions are vital parameters in achieving a desirable implant dose distribution. Inverse treatment planning requires an optimal choice of these parameters to achieve the desired target coverage with the lowest achievable dose to the organs at risk (OAR). This study was designed to evaluate the optimum source step size and maximum source dwell time for prostate brachytherapy implants using an Ir-192 source. In total, one hundred inverse treatment plans were generated for the four patients included in this study. Twenty-five treatment plans were created for each patient by varying the step size and maximum source dwell time during anatomy-based, inverse-planned optimization. Other relevant treatment planning parameters were kept constant, including the dose constraints and source dwell positions. Each plan was evaluated for target coverage, urethral and rectal dose sparing, treatment time, relative target dose homogeneity, and nonuniformity ratio. The plans with 0.5 cm step size were seen to have clinically acceptable tumor coverage, minimal normal structure doses, and minimum treatment time as compared with the other step sizes. The target coverage for this step size is 87% of the prescription dose, while the urethral and maximum rectal doses were 107.3 and 68.7%, respectively. No appreciable difference in plan quality was observed with variation in maximum source dwell time. The step size plays a significant role in plan optimization for prostate implants. Our study supports use of a 0.5 cm step size for prostate implants. PMID:24049323

  6. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  7. Mutational Effects and Population Dynamics During Viral Adaptation Challenge Current Models

    PubMed Central

    Miller, Craig R.; Joyce, Paul; Wichman, Holly A.

    2011-01-01

    Adaptation in haploid organisms has been extensively modeled but little tested. Using a microvirid bacteriophage (ID11), we conducted serial passage adaptations at two bottleneck sizes (104 and 106), followed by fitness assays and whole-genome sequencing of 631 individual isolates. Extensive genetic variation was observed including 22 beneficial, several nearly neutral, and several deleterious mutations. In the three large bottleneck lines, up to eight different haplotypes were observed in samples of 23 genomes from the final time point. The small bottleneck lines were less diverse. The small bottleneck lines appeared to operate near the transition between isolated selective sweeps and conditions of complex dynamics (e.g., clonal interference). The large bottleneck lines exhibited extensive interference and less stochasticity, with multiple beneficial mutations establishing on a variety of backgrounds. Several leapfrog events occurred. The distribution of first-step adaptive mutations differed significantly from the distribution of second-steps, and a surprisingly large number of second-step beneficial mutations were observed on a highly fit first-step background. Furthermore, few first-step mutations appeared as second-steps and second-steps had substantially smaller selection coefficients. Collectively, the results indicate that the fitness landscape falls between the extremes of smooth and fully uncorrelated, violating the assumptions of many current mutational landscape models. PMID:21041559

  8. Sensitivity of The High-resolution Wam Model With Respect To Time Step

    NASA Astrophysics Data System (ADS)

    Kasemets, K.; Soomere, T.

    The northern part of the Baltic Proper and its subbasins (Bothnian Sea, the Gulf of Finland, Moonsund) serve as a challenge for wave modellers. In difference from the southern and the eastern parts of the Baltic Sea, their coasts are highly irregular and contain many peculiarities with the characteristic horizontal scale of the order of a few kilometres. For example, the northern coast of the Gulf of Finland is extremely ragged and contains a huge number of small islands. Its southern coast is more or less regular but has up to 50m high cliff that is frequently covered by high forests. The area also contains numerous banks that have water depth a couple of meters and that may essentially modify wave properties near the banks owing to topographical effects. This feature suggests that a high-resolution wave model should be applied for the region in question, with a horizontal resolution of an order of 1 km or even less. According to the Courant-Friedrich-Lewy criterion, the integration time step for such models must be of the order of a few tens of seconds. A high-resolution WAM model turns out to be fairly sensitive with respect to the particular choice of the time step. In our experiments, a medium-resolution model for the whole Baltic Sea was used, with the horizontal resolution 3 miles (3' along latitudes and 6' along longitudes) and the angular resolution 12 directions. The model was run with steady wind blowing 20 m/s from different directions and with two time steps (1 and 3 minutes). For most of the wind directions, the rms. difference of significant wave heights calculated with differ- ent time steps did not exceed 10 cm and typically was of the order of a few per cents. The difference arose within a few tens of minutes and generally did not increase in further computations. However, in the case of the north wind, the difference increased nearly monotonously and reached 25-35 cm (10-15%) within three hours of integra- tion whereas mean of significant wave

  9. Transformational adaptation when incremental adaptations to climate change are insufficient

    PubMed Central

    Kates, Robert W.; Travis, William R.; Wilbanks, Thomas J.

    2012-01-01

    All human–environment systems adapt to climate and its natural variation. Adaptation to human-induced change in climate has largely been envisioned as increments of these adaptations intended to avoid disruptions of systems at their current locations. In some places, for some systems, however, vulnerabilities and risks may be so sizeable that they require transformational rather than incremental adaptations. Three classes of transformational adaptations are those that are adopted at a much larger scale, that are truly new to a particular region or resource system, and that transform places and shift locations. We illustrate these with examples drawn from Africa, Europe, and North America. Two conditions set the stage for transformational adaptation to climate change: large vulnerability in certain regions, populations, or resource systems; and severe climate change that overwhelms even robust human use systems. However, anticipatory transformational adaptation may be difficult to implement because of uncertainties about climate change risks and adaptation benefits, the high costs of transformational actions, and institutional and behavioral actions that tend to maintain existing resource systems and policies. Implementing transformational adaptation requires effort to initiate it and then to sustain the effort over time. In initiating transformational adaptation focusing events and multiple stresses are important, combined with local leadership. In sustaining transformational adaptation, it seems likely that supportive social contexts and the availability of acceptable options and resources for actions are key enabling factors. Early steps would include incorporating transformation adaptation into risk management and initiating research to expand the menu of innovative transformational adaptations. PMID:22509036

  10. Transformational adaptation when incremental adaptations to climate change are insufficient.

    PubMed

    Kates, Robert W; Travis, William R; Wilbanks, Thomas J

    2012-05-08

    All human-environment systems adapt to climate and its natural variation. Adaptation to human-induced change in climate has largely been envisioned as increments of these adaptations intended to avoid disruptions of systems at their current locations. In some places, for some systems, however, vulnerabilities and risks may be so sizeable that they require transformational rather than incremental adaptations. Three classes of transformational adaptations are those that are adopted at a much larger scale, that are truly new to a particular region or resource system, and that transform places and shift locations. We illustrate these with examples drawn from Africa, Europe, and North America. Two conditions set the stage for transformational adaptation to climate change: large vulnerability in certain regions, populations, or resource systems; and severe climate change that overwhelms even robust human use systems. However, anticipatory transformational adaptation may be difficult to implement because of uncertainties about climate change risks and adaptation benefits, the high costs of transformational actions, and institutional and behavioral actions that tend to maintain existing resource systems and policies. Implementing transformational adaptation requires effort to initiate it and then to sustain the effort over time. In initiating transformational adaptation focusing events and multiple stresses are important, combined with local leadership. In sustaining transformational adaptation, it seems likely that supportive social contexts and the availability of acceptable options and resources for actions are key enabling factors. Early steps would include incorporating transformation adaptation into risk management and initiating research to expand the menu of innovative transformational adaptations.

  11. Comparison of sum-of-hourly and daily time step standardized ASCE Penman-Monteith reference evapotranspiration

    NASA Astrophysics Data System (ADS)

    Djaman, Koffi; Irmak, Suat; Sall, Mamadou; Sow, Abdoulaye; Kabenge, Isa

    2017-10-01

    The objective of this study was to quantify differences associated with using 24-h time step reference evapotranspiration (ETo), as compared with the sum of hourly ETo computations with the standardized ASCE Penman-Monteith (ASCE-PM) model for semi-arid dry conditions at Fanaye and Ndiaye (Senegal) and semiarid humid conditions at Sapu (The Gambia) and Kankan (Guinea). The results showed that there was good agreement between the sum of hourly ETo and daily time step ETo at all four locations. The daily time step overestimated the daily ETo relative to the sum of hourly ETo by 1.3 to 8% for the whole study periods. However, there is location and monthly dependence of the magnitude of ETo values and the ratio of the ETo values estimated by both methods. Sum of hourly ETo tends to give higher ETo during winter time at Fanaye and Sapu, while the daily ETo was higher from March to November at the same weather stations. At Ndiaye and Kankan, daily time step estimates of ETo were high during the year. The simple linear regression slopes between the sum of 24-h ETo and the daily time step ETo at all weather stations varied from 1.02 to 1.08 with high coefficient of determination (R 2 ≥ 0.87). Application of the hourly ETo estimation method might help on accurate ETo estimation to meet irrigation requirement under precision agriculture.

  12. Real-time range acquisition by adaptive structured light.

    PubMed

    Koninckx, Thomas P; Van Gool, Luc

    2006-03-01

    The goal of this paper is to provide a "self-adaptive" system for real-time range acquisition. Reconstructions are based on a single frame structured light illumination. Instead of using generic, static coding that is supposed to work under all circumstances, system adaptation is proposed. This occurs on-the-fly and renders the system more robust against instant scene variability and creates suitable patterns at startup. A continuous trade-off between speed and quality is made. A weighted combination of different coding cues--based upon pattern color, geometry, and tracking--yields a robust way to solve the correspondence problem. The individual coding cues are automatically adapted within a considered family of patterns. The weights to combine them are based on the average consistency with the result within a small time-window. The integration itself is done by reformulating the problem as a graph cut. Also, the camera-projector configuration is taken into account for generating the projection patterns. The correctness of the range maps is not guaranteed, but an estimation of the uncertainty is provided for each part of the reconstruction. Our prototype is implemented using unmodified consumer hardware only and, therefore, is cheap. Frame rates vary between 10 and 25 fps, dependent on scene complexity.

  13. Adaptive multiresolution modeling of groundwater flow in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Malenica, Luka; Gotovac, Hrvoje; Srzic, Veljko; Andric, Ivo

    2016-04-01

    Proposed methodology was originally developed by our scientific team in Split who designed multiresolution approach for analyzing flow and transport processes in highly heterogeneous porous media. The main properties of the adaptive Fup multi-resolution approach are: 1) computational capabilities of Fup basis functions with compact support capable to resolve all spatial and temporal scales, 2) multi-resolution presentation of heterogeneity as well as all other input and output variables, 3) accurate, adaptive and efficient strategy and 4) semi-analytical properties which increase our understanding of usually complex flow and transport processes in porous media. The main computational idea behind this approach is to separately find the minimum number of basis functions and resolution levels necessary to describe each flow and transport variable with the desired accuracy on a particular adaptive grid. Therefore, each variable is separately analyzed, and the adaptive and multi-scale nature of the methodology enables not only computational efficiency and accuracy, but it also describes subsurface processes closely related to their understood physical interpretation. The methodology inherently supports a mesh-free procedure, avoiding the classical numerical integration, and yields continuous velocity and flux fields, which is vitally important for flow and transport simulations. In this paper, we will show recent improvements within the proposed methodology. Since "state of the art" multiresolution approach usually uses method of lines and only spatial adaptive procedure, temporal approximation was rarely considered as a multiscale. Therefore, novel adaptive implicit Fup integration scheme is developed, resolving all time scales within each global time step. It means that algorithm uses smaller time steps only in lines where solution changes are intensive. Application of Fup basis functions enables continuous time approximation, simple interpolation calculations across

  14. An adaptive robust controller for time delay maglev transportation systems

    NASA Astrophysics Data System (ADS)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  15. Optimized quantum sensing with a single electron spin using real-time adaptive measurements.

    PubMed

    Bonato, C; Blok, M S; Dinani, H T; Berry, D W; Markham, M L; Twitchen, D J; Hanson, R

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  16. Real-time Adaptive Control Using Neural Generalized Predictive Control

    NASA Technical Reports Server (NTRS)

    Haley, Pam; Soloway, Don; Gold, Brian

    1999-01-01

    The objective of this paper is to demonstrate the feasibility of a Nonlinear Generalized Predictive Control algorithm by showing real-time adaptive control on a plant with relatively fast time-constants. Generalized Predictive Control has classically been used in process control where linear control laws were formulated for plants with relatively slow time-constants. The plant of interest for this paper is a magnetic levitation device that is nonlinear and open-loop unstable. In this application, the reference model of the plant is a neural network that has an embedded nominal linear model in the network weights. The control based on the linear model provides initial stability at the beginning of network training. In using a neural network the control laws are nonlinear and online adaptation of the model is possible to capture unmodeled or time-varying dynamics. Newton-Raphson is the minimization algorithm. Newton-Raphson requires the calculation of the Hessian, but even with this computational expense the low iteration rate make this a viable algorithm for real-time control.

  17. Virtual Reality as a Medium for Sensorimotor Adaptation Training and Spaceflight Countermeasures

    NASA Technical Reports Server (NTRS)

    Madansingh, S.; Bloomberg, J. J.

    2014-01-01

    among participants where the hallway is perceived to move at either half (0.5x) or twice (2.0x) their preferred walking speed. Participants will remain on the treadmill between trials and will not be warned of the upcoming change to visual flow to minimize preparatory adjustments. Stride length, step frequency and dual-support time will be quantified during each trial. We hypothesize that participants will experience a rapid modification in gait performance during periods of adaptive change, expressed as a decrease in step length, an increase in step frequency and an increase in dual-support time, followed by a period of adaptation where these movement parameters will return to near-baseline levels. As stride length, step frequency and dual support times return to baseline values, an adaptation time constant will be derived to establish individual time-to-adapt (TTA). HMD technology represents a paradigm shift in sensorimotor adaptation training where gait adaptability can be stressed using off-the-shelf consumer products and minimal experimental equipment, allowing for greater training flexibility in astronaut and terrestrial applications alike.

  18. Suggestions for CAP-TSD mesh and time-step input parameters

    NASA Technical Reports Server (NTRS)

    Bland, Samuel R.

    1991-01-01

    Suggestions for some of the input parameters used in the CAP-TSD (Computational Aeroelasticity Program-Transonic Small Disturbance) computer code are presented. These parameters include those associated with the mesh design and time step. The guidelines are based principally on experience with a one-dimensional model problem used to study wave propagation in the vertical direction.

  19. A new parallelization scheme for adaptive mesh refinement

    DOE PAGES

    Loffler, Frank; Cao, Zhoujian; Brandt, Steven R.; ...

    2016-05-06

    Here, we present a new method for parallelization of adaptive mesh refinement called Concurrent Structured Adaptive Mesh Refinement (CSAMR). This new method offers the lower computational cost (i.e. wall time x processor count) of subcycling in time, but with the runtime performance (i.e. smaller wall time) of evolving all levels at once using the time step of the finest level (which does more work than subcycling but has less parallelism). We demonstrate our algorithm's effectiveness using an adaptive mesh refinement code, AMSS-NCKU, and show performance on Blue Waters and other high performance clusters. For the class of problem considered inmore » this paper, our algorithm achieves a speedup of 1.7-1.9 when the processor count for a given AMR run is doubled, consistent with our theoretical predictions.« less

  20. A new parallelization scheme for adaptive mesh refinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loffler, Frank; Cao, Zhoujian; Brandt, Steven R.

    Here, we present a new method for parallelization of adaptive mesh refinement called Concurrent Structured Adaptive Mesh Refinement (CSAMR). This new method offers the lower computational cost (i.e. wall time x processor count) of subcycling in time, but with the runtime performance (i.e. smaller wall time) of evolving all levels at once using the time step of the finest level (which does more work than subcycling but has less parallelism). We demonstrate our algorithm's effectiveness using an adaptive mesh refinement code, AMSS-NCKU, and show performance on Blue Waters and other high performance clusters. For the class of problem considered inmore » this paper, our algorithm achieves a speedup of 1.7-1.9 when the processor count for a given AMR run is doubled, consistent with our theoretical predictions.« less

  1. On the correct use of stepped-sine excitations for the measurement of time-varying bioimpedance.

    PubMed

    Louarroudi, E; Sanchez, B

    2017-02-01

    When a linear time-varying (LTV) bioimpedance is measured using stepped-sine excitations, a compromise must be made: the temporal distortions affecting the data depend on the experimental time, which in turn sets the data accuracy and limits the temporal bandwidth of the system that needs to be measured. Here, the experimental time required to measure linear time-invariant bioimpedance with a specified accuracy is analyzed for different stepped-sine excitation setups. We provide simple equations that allow the reader to know whether LTV bioimpedance can be measured through repeated time- invariant stepped-sine experiments. Bioimpedance technology is on the rise thanks to a plethora of healthcare monitoring applications. The results presented can help to avoid distortions in the data while measuring accurately non-stationary physiological phenomena. The impact of the work presented is broad, including the potential of enhancing bioimpedance studies and healthcare devices using bioimpedance technology.

  2. WAKES: Wavelet Adaptive Kinetic Evolution Solvers

    NASA Astrophysics Data System (ADS)

    Mardirian, Marine; Afeyan, Bedros; Larson, David

    2016-10-01

    We are developing a general capability to adaptively solve phase space evolution equations mixing particle and continuum techniques in an adaptive manner. The multi-scale approach is achieved using wavelet decompositions which allow phase space density estimation to occur with scale dependent increased accuracy and variable time stepping. Possible improvements on the SFK method of Larson are discussed, including the use of multiresolution analysis based Richardson-Lucy Iteration, adaptive step size control in explicit vs implicit approaches. Examples will be shown with KEEN waves and KEEPN (Kinetic Electrostatic Electron Positron Nonlinear) waves, which are the pair plasma generalization of the former, and have a much richer span of dynamical behavior. WAKES techniques are well suited for the study of driven and released nonlinear, non-stationary, self-organized structures in phase space which have no fluid, limit nor a linear limit, and yet remain undamped and coherent well past the drive period. The work reported here is based on the Vlasov-Poisson model of plasma dynamics. Work supported by a Grant from the AFOSR.

  3. Optimized quantum sensing with a single electron spin using real-time adaptive measurements

    NASA Astrophysics Data System (ADS)

    Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  4. Time-Delayed Two-Step Selective Laser Photodamage of Dye-Biomolecule Complexes

    NASA Astrophysics Data System (ADS)

    Andreoni, A.; Cubeddu, R.; de Silvestri, S.; Laporta, P.; Svelto, O.

    1980-08-01

    A scheme is proposed for laser-selective photodamage of biological molecules, based on time-delayed two-step photoionization of a dye molecule bound to the biomolecule. The validity of the scheme is experimentally demonstrated in the case of the dye Proflavine, bound to synthetic polynucleotides.

  5. Walking-adaptability assessments with the Interactive Walkway: Between-systems agreement and sensitivity to task and subject variations.

    PubMed

    Geerse, Daphne J; Coolen, Bert H; Roerdink, Melvyn

    2017-05-01

    The ability to adapt walking to environmental circumstances is an important aspect of walking, yet difficult to assess. The Interactive Walkway was developed to assess walking adaptability by augmenting a multi-Kinect-v2 10-m walkway with gait-dependent visual context (stepping targets, obstacles) using real-time processed markerless full-body kinematics. In this study we determined Interactive Walkway's usability for walking-adaptability assessments in terms of between-systems agreement and sensitivity to task and subject variations. Under varying task constraints, 21 healthy subjects performed obstacle-avoidance, sudden-stops-and-starts and goal-directed-stepping tasks. Various continuous walking-adaptability outcome measures were concurrently determined with the Interactive Walkway and a gold-standard motion-registration system: available response time, obstacle-avoidance and sudden-stop margins, step length, stepping accuracy and walking speed. The same holds for dichotomous classifications of success and failure for obstacle-avoidance and sudden-stops tasks and performed short-stride versus long-stride obstacle-avoidance strategies. Continuous walking-adaptability outcome measures generally agreed well between systems (high intraclass correlation coefficients for absolute agreement, low biases and narrow limits of agreement) and were highly sensitive to task and subject variations. Success and failure ratings varied with available response times and obstacle types and agreed between systems for 85-96% of the trials while obstacle-avoidance strategies were always classified correctly. We conclude that Interactive Walkway walking-adaptability outcome measures are reliable and sensitive to task and subject variations, even in high-functioning subjects. We therefore deem Interactive Walkway walking-adaptability assessments usable for obtaining an objective and more task-specific examination of one's ability to walk, which may be feasible for both high

  6. Fully implicit adaptive mesh refinement solver for 2D MHD

    NASA Astrophysics Data System (ADS)

    Philip, B.; Chacon, L.; Pernice, M.

    2008-11-01

    Application of implicit adaptive mesh refinement (AMR) to simulate resistive magnetohydrodynamics is described. Solving this challenging multi-scale, multi-physics problem can improve understanding of reconnection in magnetically-confined plasmas. AMR is employed to resolve extremely thin current sheets, essential for an accurate macroscopic description. Implicit time stepping allows us to accurately follow the dynamical time scale of the developing magnetic field, without being restricted by fast Alfven time scales. At each time step, the large-scale system of nonlinear equations is solved by a Jacobian-free Newton-Krylov method together with a physics-based preconditioner. Each block within the preconditioner is solved optimally using the Fast Adaptive Composite grid method, which can be considered as a multiplicative Schwarz method on AMR grids. We will demonstrate the excellent accuracy and efficiency properties of the method with several challenging reduced MHD applications, including tearing, island coalescence, and tilt instabilities. B. Philip, L. Chac'on, M. Pernice, J. Comput. Phys., in press (2008)

  7. Using Response Times for Item Selection in Adaptive Testing

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2008-01-01

    Response times on items can be used to improve item selection in adaptive testing provided that a probabilistic model for their distribution is available. In this research, the author used a hierarchical modeling framework with separate first-level models for the responses and response times and a second-level model for the distribution of the…

  8. Gestalt and Other Strategies for Exploring Dreams through a Step-by-Step Approach.

    ERIC Educational Resources Information Center

    France, M. Honore; Allen, G. Edward

    1993-01-01

    The Gestalt dream approach is a practical way to explore personal issues. This article demonstrates how dream work can be adapted by counselors to focus clients to direct forms of personal exploration. A four-step strategy is described. (Authors)

  9. Cartesian Off-Body Grid Adaption for Viscous Time- Accurate Flow Simulation

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2011-01-01

    An improved solution adaption capability has been implemented in the OVERFLOW overset grid CFD code. Building on the Cartesian off-body approach inherent in OVERFLOW and the original adaptive refinement method developed by Meakin, the new scheme provides for automated creation of multiple levels of finer Cartesian grids. Refinement can be based on the undivided second-difference of the flow solution variables, or on a specific flow quantity such as vorticity. Coupled with load-balancing and an inmemory solution interpolation procedure, the adaption process provides very good performance for time-accurate simulations on parallel compute platforms. A method of using refined, thin body-fitted grids combined with adaption in the off-body grids is presented, which maximizes the part of the domain subject to adaption. Two- and three-dimensional examples are used to illustrate the effectiveness and performance of the adaption scheme.

  10. A stabilized Runge–Kutta–Legendre method for explicit super-time-stepping of parabolic and mixed equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.

    2014-01-15

    Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s{sup 2} times larger than amore » single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is

  11. A stabilized Runge-Kutta-Legendre method for explicit super-time-stepping of parabolic and mixed equations

    NASA Astrophysics Data System (ADS)

    Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.

    2014-01-01

    Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge-Kutta-like time-steps to advance the parabolic terms by a time-step that is s2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge-Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems - a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful in

  12. Two biomechanical strategies for locomotor adaptation to split-belt treadmill walking in subjects with and without transtibial amputation.

    PubMed

    Selgrade, Brian P; Toney, Megan E; Chang, Young-Hui

    2017-02-28

    Locomotor adaptation is commonly studied using split-belt treadmill walking, in which each foot is placed on a belt moving at a different speed. As subjects adapt to split-belt walking, they reduce metabolic power, but the biomechanical mechanism behind this improved efficiency is unknown. Analyzing mechanical work performed by the legs and joints during split-belt adaptation could reveal this mechanism. Because ankle work in the step-to-step transition is more efficient than hip work, we hypothesized that control subjects would reduce hip work on the fast belt and increase ankle work during the step-to-step transition as they adapted. We further hypothesized that subjects with unilateral, trans-tibial amputation would instead increase propulsive work from their intact leg on the slow belt. Control subjects reduced hip work and shifted more ankle work to the step-to-step transition, supporting our hypothesis. Contrary to our second hypothesis, intact leg work, ankle work and hip work in amputees were unchanged during adaptation. Furthermore, all subjects increased collisional energy loss on the fast belt, but did not increase propulsive work. This was possible because subjects moved further backward during fast leg single support in late adaptation than in early adaptation, compensating by reducing backward movement in slow leg single support. In summary, subjects used two strategies to improve mechanical efficiency in split-belt walking adaptation: a CoM displacement strategy that allows for less forward propulsion on the fast belt; and, an ankle timing strategy that allows efficient ankle work in the step-to-step transition to increase while reducing inefficient hip work. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Positivity-preserving dual time stepping schemes for gas dynamics

    NASA Astrophysics Data System (ADS)

    Parent, Bernard

    2018-05-01

    A new approach at discretizing the temporal derivative of the Euler equations is here presented which can be used with dual time stepping. The temporal discretization stencil is derived along the lines of the Cauchy-Kowalevski procedure resulting in cross differences in spacetime but with some novel modifications which ensure the positivity of the discretization coefficients. It is then shown that the so-obtained spacetime cross differences result in changes to the wave speeds and can thus be incorporated within Roe or Steger-Warming schemes (with and without reconstruction-evolution) simply by altering the eigenvalues. The proposed approach is advantaged over alternatives in that it is positivity-preserving for the Euler equations. Further, it yields monotone solutions near discontinuities while exhibiting a truncation error in smooth regions less than the one of the second- or third-order accurate backward-difference-formula (BDF) for either small or large time steps. The high resolution and positivity preservation of the proposed discretization stencils are independent of the convergence acceleration technique which can be set to multigrid, preconditioning, Jacobian-free Newton-Krylov, block-implicit, etc. Thus, the current paper also offers the first implicit integration of the time-accurate Euler equations that is positivity-preserving in the strict sense (that is, the density and temperature are guaranteed to remain positive). This is in contrast to all previous positivity-preserving implicit methods which only guaranteed the positivity of the density, not of the temperature or pressure. Several stringent reacting and inert test cases confirm the positivity-preserving property of the proposed method as well as its higher resolution and higher computational efficiency over other second-order and third-order implicit temporal discretization strategies.

  14. Error correction in short time steps during the application of quantum gates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, L.A. de, E-mail: leonardo.castro@usp.br; Napolitano, R.D.J.

    2016-04-15

    We propose a modification of the standard quantum error-correction method to enable the correction of errors that occur due to the interaction with a noisy environment during quantum gates without modifying the codification used for memory qubits. Using a perturbation treatment of the noise that allows us to separate it from the ideal evolution of the quantum gate, we demonstrate that in certain cases it is necessary to divide the logical operation in short time steps intercalated by correction procedures. A prescription of how these gates can be constructed is provided, as well as a proof that, even for themore » cases when the division of the quantum gate in short time steps is not necessary, this method may be advantageous for reducing the total duration of the computation.« less

  15. Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.

    PubMed

    Wang, Leimin; Shen, Yi; Zhang, Guodong

    Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.

  16. Adaptation to visual or auditory time intervals modulates the perception of visual apparent motion

    PubMed Central

    Zhang, Huihui; Chen, Lihan; Zhou, Xiaolin

    2012-01-01

    It is debated whether sub-second timing is subserved by a centralized mechanism or by the intrinsic properties of task-related neural activity in specific modalities (Ivry and Schlerf, 2008). By using a temporal adaptation task, we investigated whether adapting to different time intervals conveyed through stimuli in different modalities (i.e., frames of a visual Ternus display, visual blinking discs, or auditory beeps) would affect the subsequent implicit perception of visual timing, i.e., inter-stimulus interval (ISI) between two frames in a Ternus display. The Ternus display can induce two percepts of apparent motion (AM), depending on the ISI between the two frames: “element motion” for short ISIs, in which the endmost disc is seen as moving back and forth while the middle disc at the overlapping or central position remains stationary; “group motion” for longer ISIs, in which both discs appear to move in a manner of lateral displacement as a whole. In Experiment 1, participants adapted to either the typical “element motion” (ISI = 50 ms) or the typical “group motion” (ISI = 200 ms). In Experiments 2 and 3, participants adapted to a time interval of 50 or 200 ms through observing a series of two paired blinking discs at the center of the screen (Experiment 2) or hearing a sequence of two paired beeps (with pitch 1000 Hz). In Experiment 4, participants adapted to sequences of paired beeps with either low pitches (500 Hz) or high pitches (5000 Hz). After adaptation in each trial, participants were presented with a Ternus probe in which the ISI between the two frames was equal to the transitional threshold of the two types of motions, as determined by a pretest. Results showed that adapting to the short time interval in all the situations led to more reports of “group motion” in the subsequent Ternus probes; adapting to the long time interval, however, caused no aftereffect for visual adaptation but significantly more reports of group motion for

  17. Parallel Multi-Step/Multi-Rate Integration of Two-Time Scale Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Chang, Johnny T.; Ploen, Scott R.; Sohl, Garett. A,; Martin, Bryan J.

    2004-01-01

    Increasing demands on the fidelity of simulations for real-time and high-fidelity simulations are stressing the capacity of modern processors. New integration techniques are required that provide maximum efficiency for systems that are parallelizable. However many current techniques make assumptions that are at odds with non-cascadable systems. A new serial multi-step/multi-rate integration algorithm for dual-timescale continuous state systems is presented which applies to these systems, and is extended to a parallel multi-step/multi-rate algorithm. The superior performance of both algorithms is demonstrated through a representative example.

  18. Age-related differences in lower-limb force-time relation during the push-off in rapid voluntary stepping.

    PubMed

    Melzer, I; Krasovsky, T; Oddsson, L I E; Liebermann, D G

    2010-12-01

    This study investigated the force-time relationship during the push-off stage of a rapid voluntary step in young and older healthy adults, to study the assumption that when balance is lost a quick step may preserve stability. The ability to achieve peak propulsive force within a short time is critical for the performance of such a quick powerful step. We hypothesized that older adults would achieve peak force and power in significantly longer times compared to young people, particularly during the push-off preparatory phase. Fifteen young and 15 older volunteers performed rapid forward steps while standing on a force platform. Absolute anteroposterior and body weight normalized vertical forces during the push-off in the preparation and swing phases were used to determine time to peak and peak force, and step power. Two-way analyses of variance ('Group' [young-older] by 'Phase' [preparation-swing]) were used to assess our hypothesis (P ≤ 0.05). Older people exerted lower peak forces (anteroposterior and vertical) than young adults, but not necessarily lower peak power. More significantly, they showed a longer time to peak force, particularly in the vertical direction during the preparation phase. Older adults generate propulsive forces slowly and reach lower magnitudes, mainly during step preparation. The time to achieve a peak force and power, rather than its actual magnitude, may account for failures in quickly performing a preventive action. Such delay may be associated with the inability to react and recruit muscles quickly. Thus, training elderly to step fast in response to relevant cues may be beneficial in the prevention of falls. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Time-dependent rheological behavior of natural polysaccharide xanthan gum solutions in interrupted shear and step-incremental/reductional shear flow fields

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Seok; Song, Ki-Won

    2015-11-01

    The objective of the present study is to systematically elucidate the time-dependent rheological behavior of concentrated xanthan gum systems in complicated step-shear flow fields. Using a strain-controlled rheometer (ARES), step-shear flow behaviors of a concentrated xanthan gum model solution have been experimentally investigated in interrupted shear flow fields with a various combination of different shear rates, shearing times and rest times, and step-incremental and step-reductional shear flow fields with various shearing times. The main findings obtained from this study are summarized as follows. (i) In interrupted shear flow fields, the shear stress is sharply increased until reaching the maximum stress at an initial stage of shearing times, and then a stress decay towards a steady state is observed as the shearing time is increased in both start-up shear flow fields. The shear stress is suddenly decreased immediately after the imposed shear rate is stopped, and then slowly decayed during the period of a rest time. (ii) As an increase in rest time, the difference in the maximum stress values between the two start-up shear flow fields is decreased whereas the shearing time exerts a slight influence on this behavior. (iii) In step-incremental shear flow fields, after passing through the maximum stress, structural destruction causes a stress decay behavior towards a steady state as an increase in shearing time in each step shear flow region. The time needed to reach the maximum stress value is shortened as an increase in step-increased shear rate. (iv) In step-reductional shear flow fields, after passing through the minimum stress, structural recovery induces a stress growth behavior towards an equilibrium state as an increase in shearing time in each step shear flow region. The time needed to reach the minimum stress value is lengthened as a decrease in step-decreased shear rate.

  20. A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: A multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking.

    PubMed

    Colvill, Emma; Booth, Jeremy; Nill, Simeon; Fast, Martin; Bedford, James; Oelfke, Uwe; Nakamura, Mitsuhiro; Poulsen, Per; Worm, Esben; Hansen, Rune; Ravkilde, Thomas; Scherman Rydhög, Jonas; Pommer, Tobias; Munck Af Rosenschold, Per; Lang, Stephanie; Guckenberger, Matthias; Groh, Christian; Herrmann, Christian; Verellen, Dirk; Poels, Kenneth; Wang, Lei; Hadsell, Michael; Sothmann, Thilo; Blanck, Oliver; Keall, Paul

    2016-04-01

    A study of real-time adaptive radiotherapy systems was performed to test the hypothesis that, across delivery systems and institutions, the dosimetric accuracy is improved with adaptive treatments over non-adaptive radiotherapy in the presence of patient-measured tumor motion. Ten institutions with robotic(2), gimbaled(2), MLC(4) or couch tracking(2) used common materials including CT and structure sets, motion traces and planning protocols to create a lung and a prostate plan. For each motion trace, the plan was delivered twice to a moving dosimeter; with and without real-time adaptation. Each measurement was compared to a static measurement and the percentage of failed points for γ-tests recorded. For all lung traces all measurement sets show improved dose accuracy with a mean 2%/2mm γ-fail rate of 1.6% with adaptation and 15.2% without adaptation (p<0.001). For all prostate the mean 2%/2mm γ-fail rate was 1.4% with adaptation and 17.3% without adaptation (p<0.001). The difference between the four systems was small with an average 2%/2mm γ-fail rate of <3% for all systems with adaptation for lung and prostate. The investigated systems all accounted for realistic tumor motion accurately and performed to a similar high standard, with real-time adaptation significantly outperforming non-adaptive delivery methods. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Adaptive fixed-time control for cluster synchronisation of coupled complex networks with uncertain disturbances

    NASA Astrophysics Data System (ADS)

    Jiang, Shengqin; Lu, Xiaobo; Cai, Guoliang; Cai, Shuiming

    2017-12-01

    This paper focuses on the cluster synchronisation problem of coupled complex networks with uncertain disturbances under an adaptive fixed-time control strategy. To begin with, complex dynamical networks with community structure which are subject to uncertain disturbances are taken into account. Then, a novel adaptive control strategy combined with fixed-time techniques is proposed to guarantee the nodes in the communities to desired states in a settling time. In addition, the stability of complex error systems is theoretically proved based on Lyapunov stability theorem. At last, two examples are presented to verify the effectiveness of the proposed adaptive fixed-time control.

  2. A Personalized Predictive Framework for Multivariate Clinical Time Series via Adaptive Model Selection.

    PubMed

    Liu, Zitao; Hauskrecht, Milos

    2017-11-01

    Building of an accurate predictive model of clinical time series for a patient is critical for understanding of the patient condition, its dynamics, and optimal patient management. Unfortunately, this process is not straightforward. First, patient-specific variations are typically large and population-based models derived or learned from many different patients are often unable to support accurate predictions for each individual patient. Moreover, time series observed for one patient at any point in time may be too short and insufficient to learn a high-quality patient-specific model just from the patient's own data. To address these problems we propose, develop and experiment with a new adaptive forecasting framework for building multivariate clinical time series models for a patient and for supporting patient-specific predictions. The framework relies on the adaptive model switching approach that at any point in time selects the most promising time series model out of the pool of many possible models, and consequently, combines advantages of the population, patient-specific and short-term individualized predictive models. We demonstrate that the adaptive model switching framework is very promising approach to support personalized time series prediction, and that it is able to outperform predictions based on pure population and patient-specific models, as well as, other patient-specific model adaptation strategies.

  3. Adaptive Bayes classifiers for remotely sensed data

    NASA Technical Reports Server (NTRS)

    Raulston, H. S.; Pace, M. O.; Gonzalez, R. C.

    1975-01-01

    An algorithm is developed for a learning, adaptive, statistical pattern classifier for remotely sensed data. The estimation procedure consists of two steps: (1) an optimal stochastic approximation of the parameters of interest, and (2) a projection of the parameters in time and space. The results reported are for Gaussian data in which the mean vector of each class may vary with time or position after the classifier is trained.

  4. Accurate Monotonicity - Preserving Schemes With Runge-Kutta Time Stepping

    NASA Technical Reports Server (NTRS)

    Suresh, A.; Huynh, H. T.

    1997-01-01

    A new class of high-order monotonicity-preserving schemes for the numerical solution of conservation laws is presented. The interface value in these schemes is obtained by limiting a higher-order polynominal reconstruction. The limiting is designed to preserve accuracy near extrema and to work well with Runge-Kutta time stepping. Computational efficiency is enhanced by a simple test that determines whether the limiting procedure is needed. For linear advection in one dimension, these schemes are shown as well as the Euler equations also confirm their high accuracy, good shock resolution, and computational efficiency.

  5. Just-in-time adaptive classifiers-part II: designing the classifier.

    PubMed

    Alippi, Cesare; Roveri, Manuel

    2008-12-01

    Aging effects, environmental changes, thermal drifts, and soft and hard faults affect physical systems by changing their nature and behavior over time. To cope with a process evolution adaptive solutions must be envisaged to track its dynamics; in this direction, adaptive classifiers are generally designed by assuming the stationary hypothesis for the process generating the data with very few results addressing nonstationary environments. This paper proposes a methodology based on k-nearest neighbor (NN) classifiers for designing adaptive classification systems able to react to changing conditions just-in-time (JIT), i.e., exactly when it is needed. k-NN classifiers have been selected for their computational-free training phase, the possibility to easily estimate the model complexity k and keep under control the computational complexity of the classifier through suitable data reduction mechanisms. A JIT classifier requires a temporal detection of a (possible) process deviation (aspect tackled in a companion paper) followed by an adaptive management of the knowledge base (KB) of the classifier to cope with the process change. The novelty of the proposed approach resides in the general framework supporting the real-time update of the KB of the classification system in response to novel information coming from the process both in stationary conditions (accuracy improvement) and in nonstationary ones (process tracking) and in providing a suitable estimate of k. It is shown that the classification system grants consistency once the change targets the process generating the data in a new stationary state, as it is the case in many real applications.

  6. A Step Towards Developing Adaptive Robot-Mediated Intervention Architecture (ARIA) for Children With Autism

    PubMed Central

    Bekele, Esubalew T; Lahiri, Uttama; Swanson, Amy R.; Crittendon, Julie A.; Warren, Zachary E.; Sarkar, Nilanjan

    2013-01-01

    Emerging technology, especially robotic technology, has been shown to be appealing to children with autism spectrum disorders (ASD). Such interest may be leveraged to provide repeatable, accurate and individualized intervention services to young children with ASD based on quantitative metrics. However, existing robot-mediated systems tend to have limited adaptive capability that may impact individualization. Our current work seeks to bridge this gap by developing an adaptive and individualized robot-mediated technology for children with ASD. The system is composed of a humanoid robot with its vision augmented by a network of cameras for real-time head tracking using a distributed architecture. Based on the cues from the child’s head movement, the robot intelligently adapts itself in an individualized manner to generate prompts and reinforcements with potential to promote skills in the ASD core deficit area of early social orienting. The system was validated for feasibility, accuracy, and performance. Results from a pilot usability study involving six children with ASD and a control group of six typically developing (TD) children are presented. PMID:23221831

  7. Fast Determination of Distribution-Connected PV Impacts Using a Variable Time-Step Quasi-Static Time-Series Approach: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry

    The increasing deployment of distribution-connected photovoltaic (DPV) systems requires utilities to complete complex interconnection studies. Relatively simple interconnection study methods worked well for low penetrations of photovoltaic systems, but more complicated quasi-static time-series (QSTS) analysis is required to make better interconnection decisions as DPV penetration levels increase. Tools and methods must be developed to support this. This paper presents a variable-time-step solver for QSTS analysis that significantly shortens the computational time and effort to complete a detailed analysis of the operation of a distribution circuit with many DPV systems. Specifically, it demonstrates that the proposed variable-time-step solver can reduce themore » required computational time by as much as 84% without introducing any important errors to metrics, such as the highest and lowest voltage occurring on the feeder, number of voltage regulator tap operations, and total amount of losses realized in the distribution circuit during a 1-yr period. Further improvement in computational speed is possible with the introduction of only modest errors in these metrics, such as a 91 percent reduction with less than 5 percent error when predicting voltage regulator operations.« less

  8. Comparing Anisotropic Output-Based Grid Adaptation Methods by Decomposition

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Loseille, Adrien; Krakos, Joshua A.; Michal, Todd

    2015-01-01

    Anisotropic grid adaptation is examined by decomposing the steps of flow solution, ad- joint solution, error estimation, metric construction, and simplex grid adaptation. Multiple implementations of each of these steps are evaluated by comparison to each other and expected analytic results when available. For example, grids are adapted to analytic metric fields and grid measures are computed to illustrate the properties of multiple independent implementations of grid adaptation mechanics. Different implementations of each step in the adaptation process can be evaluated in a system where the other components of the adaptive cycle are fixed. Detailed examination of these properties allows comparison of different methods to identify the current state of the art and where further development should be targeted.

  9. Elderly Fallers Enhance Dynamic Stability Through Anticipatory Postural Adjustments during a Choice Stepping Reaction Time

    PubMed Central

    Tisserand, Romain; Robert, Thomas; Chabaud, Pascal; Bonnefoy, Marc; Chèze, Laurence

    2016-01-01

    In the case of disequilibrium, the capacity to step quickly is critical to avoid falling in elderly. This capacity can be simply assessed through the choice stepping reaction time test (CSRT), where elderly fallers (F) take longer to step than elderly non-fallers (NF). However, the reasons why elderly F elongate their stepping time remain unclear. The purpose of this study is to assess the characteristics of anticipated postural adjustments (APA) that elderly F develop in a stepping context and their consequences on the dynamic stability. Forty-four community-dwelling elderly subjects (20 F and 24 NF) performed a CSRT where kinematics and ground reaction forces were collected. Variables were analyzed using two-way repeated measures ANOVAs. Results for F compared to NF showed that stepping time is elongated, due to a longer APA phase. During APA, they seem to use two distinct balance strategies, depending on the axis: in the anteroposterior direction, we measured a smaller backward movement and slower peak velocity of the center of pressure (CoP); in the mediolateral direction, the CoP movement was similar in amplitude and peak velocity between groups but lasted longer. The biomechanical consequence of both strategies was an increased margin of stability (MoS) at foot-off, in the respective direction. By elongating their APA, elderly F use a safer balance strategy that prioritizes dynamic stability conditions instead of the objective of the task. Such a choice in balance strategy probably comes from muscular limitations and/or a higher fear of falling and paradoxically indicates an increased risk of fall. PMID:27965561

  10. Modeling Stepped Leaders Using a Time Dependent Multi-dipole Model and High-speed Video Data

    NASA Astrophysics Data System (ADS)

    Karunarathne, S.; Marshall, T.; Stolzenburg, M.; Warner, T. A.; Orville, R. E.

    2012-12-01

    In summer of 2011, we collected lightning data with 10 stations of electric field change meters (bandwidth of 0.16 Hz - 2.6 MHz) on and around NASA/Kennedy Space Center (KSC) covering nearly 70 km × 100 km area. We also had a high-speed video (HSV) camera recording 50,000 images per second collocated with one of the electric field change meters. In this presentation we describe our use of these data to model the electric field change caused by stepped leaders. Stepped leaders of a cloud to ground lightning flash typically create the initial path for the first return stroke (RS). Most of the time, stepped leaders have multiple complex branches, and one of these branches will create the ground connection for the RS to start. HSV data acquired with a short focal length lens at ranges of 5-25 km from the flash are useful for obtaining the 2-D location of these multiple branches developing at the same time. Using HSV data along with data from the KSC Lightning Detection and Ranging (LDAR2) system and the Cloud to Ground Lightning Surveillance System (CGLSS), the 3D path of a leader may be estimated. Once the path of a stepped leader is obtained, the time dependent multi-dipole model [ Lu, Winn,and Sonnenfeld, JGR 2011] can be used to match the electric field change at various sensor locations. Based on this model, we will present the time-dependent charge distribution along a leader channel and the total charge transfer during the stepped leader phase.

  11. Development of Underwater Laser Scaling Adapter

    NASA Astrophysics Data System (ADS)

    Bluss, Kaspars

    2012-12-01

    In this paper the developed laser scaling adapter is presented. The scaling adapter is equipped with a twin laser unit where the two parallel laser beams are projected onto any target giving an exact indication of scale. The body of the laser scaling adapter is made of Teflon, the density of which is approximately two times the water density. The development involved multiple challenges - numerical hydrodynamic calculations for choosing an appropriate shape which would reduce the effects of turbulence, an accurate sealing of the power supply and the laser diodes, and others. The precision is estimated by the partial derivation method. Both experimental and theoretical data conclude the overall precision error to be in the 1% margin. This paper presents the development steps of such an underwater laser scaling adapter for a remotely operated vehicle (ROV).

  12. Phenotypic plasticity of nest timing in a post-glacial landscape: how do reptiles adapt to seasonal time constraints?

    PubMed

    Edge, Christopher B; Rollinson, Njal; Brooks, Ronald J; Congdon, Justin D; Iverson, John B; Janzen, Fredric J; Litzgus, Jacqueline D

    2017-02-01

    Life histories evolve in response to constraints on the time available for growth and development. Nesting date and its plasticity in response to spring temperature may therefore be important components of fitness in oviparous ectotherms near their northern range limit, as reproducing early provides more time for embryos to complete development before winter. We used data collected over several decades to compare air temperature and nest date plasticity in populations of painted turtles and snapping turtles from a relatively warm environment (southeastern Michigan) near the southern extent of the last glacial maximum to a relatively cool environment (central Ontario) near the northern extent of post-glacial recolonization. For painted turtles, population-level differences in reaction norm elevation for two phenological traits were consistent with adaptation to time constraints, but no differences in reaction norm slopes were observed. For snapping turtle populations, the difference in reaction norm elevation for a single phenological trait was in the opposite direction of what was expected under adaptation to time constraints, and no difference in reaction norm slope was observed. Finally, among-individual variation in individual plasticity for nesting date was detected only in the northern population of snapping turtles, suggesting that reaction norms are less canalized in this northern population. Overall, we observed evidence of phenological adaptation, and possibly maladaptation, to time constraints in long-lived reptiles. Where present, (mal)adaptation occurred by virtue of differences in reaction norm elevation, not reaction norm slope. Glacial history, generation time, and genetic constraint may all play an important role in the evolution of phenological timing and its plasticity in long-lived reptiles. © 2016 by the Ecological Society of America.

  13. Generalization of improved step length symmetry from treadmill to overground walking in persons with stroke and hemiparesis†

    PubMed Central

    Savin, Douglas N.; Morton, Susanne M.; Whitall, Jill

    2013-01-01

    Objectives Determine whether adaptation to a swing phase perturbation during gait transferred from treadmill to overground walking, the rate of overground deadaptation, and whether overground aftereffects improved step length asymmetry in persons with hemiparetic stroke and gait asymmetry. Methods Ten participants with stroke and hemiparesis and 10 controls walked overground on an instrumented gait mat, adapted gait to a swing phase perturbation on a treadmill, then walked overground on the gait mat again. Outcome measures, primary: overground step length symmetry, rates of treadmill step length symmetry adaptation and overground step length symmetry deadaptation; secondary: overground gait velocity, stride length, and stride cycle duration. Results Step length symmetry aftereffects generalized to overground walking and adapted at a similar rate on the treadmill in both groups. Aftereffects decayed at a slower rate overground in participants with stroke and temporarily improved overground step length asymmetry. Both groups’ overground gait velocity increased post adaptation due to increased stride length and decreased stride duration. Conclusions Stroke and hemiparesis do not impair generalization of step length symmetry changes from adapted treadmill to overground walking, but prolong overground aftereffects. Significance Motor adaptation during treadmill walking may be an effective treatment for improving overground gait asymmetries post-stroke. PMID:24286858

  14. On large time step TVD scheme for hyperbolic conservation laws and its efficiency evaluation

    NASA Astrophysics Data System (ADS)

    Qian, ZhanSen; Lee, Chun-Hian

    2012-08-01

    A large time step (LTS) TVD scheme originally proposed by Harten is modified and further developed in the present paper and applied to Euler equations in multidimensional problems. By firstly revealing the drawbacks of Harten's original LTS TVD scheme, and reasoning the occurrence of the spurious oscillations, a modified formulation of its characteristic transformation is proposed and a high resolution, strongly robust LTS TVD scheme is formulated. The modified scheme is proven to be capable of taking larger number of time steps than the original one. Following the modified strategy, the LTS TVD schemes for Yee's upwind TVD scheme and Yee-Roe-Davis's symmetric TVD scheme are constructed. The family of the LTS schemes is then extended to multidimensional by time splitting procedure, and the associated boundary condition treatment suitable for the LTS scheme is also imposed. The numerical experiments on Sod's shock tube problem, inviscid flows over NACA0012 airfoil and ONERA M6 wing are performed to validate the developed schemes. Computational efficiencies for the respective schemes under different CFL numbers are also evaluated and compared. The results reveal that the improvement is sizable as compared to the respective single time step schemes, especially for the CFL number ranging from 1.0 to 4.0.

  15. An adaptive bit synchronization algorithm under time-varying environment.

    NASA Technical Reports Server (NTRS)

    Chow, L. R.; Owen, H. A., Jr.; Wang, P. P.

    1973-01-01

    This paper presents an adaptive estimation algorithm for bit synchronization, assuming that the parameters of the incoming data process are time-varying. Experiment results have proved that this synchronizer is workable either judged by the amount of data required or the speed of convergence.

  16. Effective learning strategies for real-time image-guided adaptive control of multiple-source hyperthermia applicators.

    PubMed

    Cheng, Kung-Shan; Dewhirst, Mark W; Stauffer, Paul R; Das, Shiva

    2010-03-01

    This paper investigates overall theoretical requirements for reducing the times required for the iterative learning of a real-time image-guided adaptive control routine for multiple-source heat applicators, as used in hyperthermia and thermal ablative therapy for cancer. Methods for partial reconstruction of the physical system with and without model reduction to find solutions within a clinically practical timeframe were analyzed. A mathematical analysis based on the Fredholm alternative theorem (FAT) was used to compactly analyze the existence and uniqueness of the optimal heating vector under two fundamental situations: (1) noiseless partial reconstruction and (2) noisy partial reconstruction. These results were coupled with a method for further acceleration of the solution using virtual source (VS) model reduction. The matrix approximation theorem (MAT) was used to choose the optimal vectors spanning the reduced-order subspace to reduce the time for system reconstruction and to determine the associated approximation error. Numerical simulations of the adaptive control of hyperthermia using VS were also performed to test the predictions derived from the theoretical analysis. A thigh sarcoma patient model surrounded by a ten-antenna phased-array applicator was retained for this purpose. The impacts of the convective cooling from blood flow and the presence of sudden increase of perfusion in muscle and tumor were also simulated. By FAT, partial system reconstruction directly conducted in the full space of the physical variables such as phases and magnitudes of the heat sources cannot guarantee reconstructing the optimal system to determine the global optimal setting of the heat sources. A remedy for this limitation is to conduct the partial reconstruction within a reduced-order subspace spanned by the first few maximum eigenvectors of the true system matrix. By MAT, this VS subspace is the optimal one when the goal is to maximize the average tumor temperature

  17. Just-in-Time Adaptive Interventions (JITAIs) in Mobile Health: Key Components and Design Principles for Ongoing Health Behavior Support.

    PubMed

    Nahum-Shani, Inbal; Smith, Shawna N; Spring, Bonnie J; Collins, Linda M; Witkiewitz, Katie; Tewari, Ambuj; Murphy, Susan A

    2018-05-18

    The just-in-time adaptive intervention (JITAI) is an intervention design aiming to provide the right type/amount of support, at the right time, by adapting to an individual's changing internal and contextual state. The availability of increasingly powerful mobile and sensing technologies underpins the use of JITAIs to support health behavior, as in such a setting an individual's state can change rapidly, unexpectedly, and in his/her natural environment. Despite the increasing use and appeal of JITAIs, a major gap exists between the growing technological capabilities for delivering JITAIs and research on the development and evaluation of these interventions. Many JITAIs have been developed with minimal use of empirical evidence, theory, or accepted treatment guidelines. Here, we take an essential first step towards bridging this gap. Building on health behavior theories and the extant literature on JITAIs, we clarify the scientific motivation for JITAIs, define their fundamental components, and highlight design principles related to these components. Examples of JITAIs from various domains of health behavior research are used for illustration. As we enter a new era of technological capacity for delivering JITAIs, it is critical that researchers develop sophisticated and nuanced health behavior theories capable of guiding the construction of such interventions. Particular attention has to be given to better understanding the implications of providing timely and ecologically sound support for intervention adherence and retention.

  18. Remote mission specialist - A study in real-time, adaptive planning

    NASA Technical Reports Server (NTRS)

    Rokey, Mark J.

    1990-01-01

    A high-level planning architecture for robotic operations is presented. The remote mission specialist integrates high-level directives with low-level primitives executable by a run-time controller for command of autonomous servicing activities. The planner has been designed to address such issues as adaptive plan generation, real-time performance, and operator intervention.

  19. Cut-off values for step count and TV viewing time as discriminators of hyperglycaemia in Brazilian children and adolescents.

    PubMed

    Gordia, Alex Pinheiro; Quadros, Teresa Maria Bianchini de; Silva, Luciana Rodrigues; Mota, Jorge

    2016-09-01

    The use of step count and TV viewing time to discriminate youngsters with hyperglycaemia is still a matter of debate. To establish cut-off values for step count and TV viewing time in children and adolescents using glycaemia as the reference criterion. A cross-sectional study was conducted on 1044 schoolchildren aged 6-18 years from Northeastern Brazil. Daily step counts were assessed with a pedometer over 1 week and TV viewing time by self-report. The area under the curve (AUC) ranged from 0.52-0.61 for step count and from 0.49-0.65 for TV viewing time. The daily step count with the highest discriminatory power for hyperglycaemia was 13 884 (sensitivity = 77.8; specificity = 51.8) for male children and 12 371 (sensitivity = 55.6; specificity = 55.5) and 11 292 (sensitivity = 57.7; specificity = 48.6) for female children and adolescents respectively. The cut-off for TV viewing time with the highest discriminatory capacity for hyperglycaemia was 3 hours/day (sensitivity = 57.7-77.8; specificity = 48.6-53.2). This study represents the first step for the development of criteria based on cardiometabolic risk factors for step count and TV viewing time in youngsters. However, the present cut-off values have limited practical application because of their poor accuracy and low sensitivity and specificity.

  20. An Adaptive Method for Switching between Pedestrian/Car Indoor Positioning Algorithms based on Multilayer Time Sequences

    PubMed Central

    Gu, Zhining; Guo, Wei; Li, Chaoyang; Zhu, Xinyan; Guo, Tao

    2018-01-01

    Pedestrian dead reckoning (PDR) positioning algorithms can be used to obtain a target’s location only for movement with step features and not for driving, for which the trilateral Bluetooth indoor positioning method can be used. In this study, to obtain the precise locations of different states (pedestrian/car) using the corresponding positioning algorithms, we propose an adaptive method for switching between the PDR and car indoor positioning algorithms based on multilayer time sequences (MTSs). MTSs, which consider the behavior context, comprise two main aspects: filtering of noisy data in small-scale time sequences and using a state chain to reduce the time delay of algorithm switching in large-scale time sequences. The proposed method can be expected to realize the recognition of stationary, walking, driving, or other states; switch to the correct indoor positioning algorithm; and improve the accuracy of localization compared to using a single positioning algorithm. Our experiments show that the recognition of static, walking, driving, and other states improves by 5.5%, 45.47%, 26.23%, and 21% on average, respectively, compared with convolutional neural network (CNN) method. The time delay decreases by approximately 0.5–8.5 s for the transition between states and by approximately 24 s for the entire process. PMID:29495503

  1. Adaptive steganography

    NASA Astrophysics Data System (ADS)

    Chandramouli, Rajarathnam; Li, Grace; Memon, Nasir D.

    2002-04-01

    Steganalysis techniques attempt to differentiate between stego-objects and cover-objects. In recent work we developed an explicit analytic upper bound for the steganographic capacity of LSB based steganographic techniques for a given false probability of detection. In this paper we look at adaptive steganographic techniques. Adaptive steganographic techniques take explicit steps to escape detection. We explore different techniques that can be used to adapt message embedding to the image content or to a known steganalysis technique. We investigate the advantages of adaptive steganography within an analytical framework. We also give experimental results with a state-of-the-art steganalysis technique demonstrating that adaptive embedding results in a significant number of bits embedded without detection.

  2. Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.

  3. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.

    PubMed

    Ducharme, Scott W; Liddy, Joshua J; Haddad, Jeffrey M; Busa, Michael A; Claxton, Laura J; van Emmerik, Richard E A

    2018-04-01

    Human locomotion is an inherently complex activity that requires the coordination and control of neurophysiological and biomechanical degrees of freedom across various spatiotemporal scales. Locomotor patterns must constantly be altered in the face of changing environmental or task demands, such as heterogeneous terrains or obstacles. Variability in stride times occurring at short time scales (e.g., 5-10 strides) is statistically correlated to larger fluctuations occurring over longer time scales (e.g., 50-100 strides). This relationship, known as fractal dynamics, is thought to represent the adaptive capacity of the locomotor system. However, this has not been tested empirically. Thus, the purpose of this study was to determine if stride time fractality during steady state walking associated with the ability of individuals to adapt their gait patterns when locomotor speed and symmetry are altered. Fifteen healthy adults walked on a split-belt treadmill at preferred speed, half of preferred speed, and with one leg at preferred speed and the other at half speed (2:1 ratio asymmetric walking). The asymmetric belt speed condition induced gait asymmetries that required adaptation of locomotor patterns. The slow speed manipulation was chosen in order to determine the impact of gait speed on stride time fractal dynamics. Detrended fluctuation analysis was used to quantify the correlation structure, i.e., fractality, of stride times. Cross-correlation analysis was used to measure the deviation from intended anti-phasing between legs as a measure of gait adaptation. Results revealed no association between unperturbed walking fractal dynamics and gait adaptability performance. However, there was a quadratic relationship between perturbed, asymmetric walking fractal dynamics and adaptive performance during split-belt walking, whereby individuals who exhibited fractal scaling exponents that deviated from 1/f performed the poorest. Compared to steady state preferred walking

  4. Impact of learning adaptability and time management disposition on study engagement among Chinese baccalaureate nursing students.

    PubMed

    Liu, Jing-Ying; Liu, Yan-Hui; Yang, Ji-Peng

    2014-01-01

    The aim of this study was to explore the relationships among study engagement, learning adaptability, and time management disposition in a sample of Chinese baccalaureate nursing students. A convenient sample of 467 baccalaureate nursing students was surveyed in two universities in Tianjin, China. Students completed a questionnaire that included their demographic information, Chinese Utrecht Work Engagement Scale-Student Questionnaire, Learning Adaptability Scale, and Adolescence Time Management Disposition Scale. One-way analysis of variance tests were used to assess the relationship between certain characteristics of baccalaureate nursing students. Pearson correlation was performed to test the correlation among study engagement, learning adaptability, and time management disposition. Hierarchical linear regression analyses were performed to explore the mediating role of time management disposition. The results revealed that study engagement (F = 7.20, P < .01) and learning adaptability (F = 4.41, P < .01) differed across grade groups. Learning adaptability (r = 0.382, P < .01) and time management disposition (r = 0.741, P < .01) were positively related with study engagement. Time management disposition had a partially mediating effect on the relationship between study engagement and learning adaptability. The findings implicate that educators should not only promote interventions to increase engagement of baccalaureate nursing students but also focus on development, investment in adaptability, and time management. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Eulerian Lagrangian Adaptive Fup Collocation Method for solving the conservative solute transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Gotovac, Hrvoje; Srzic, Veljko

    2014-05-01

    Contaminant transport in natural aquifers is a complex, multiscale process that is frequently studied using different Eulerian, Lagrangian and hybrid numerical methods. Conservative solute transport is typically modeled using the advection-dispersion equation (ADE). Despite the large number of available numerical methods that have been developed to solve it, the accurate numerical solution of the ADE still presents formidable challenges. In particular, current numerical solutions of multidimensional advection-dominated transport in non-uniform velocity fields are affected by one or all of the following problems: numerical dispersion that introduces artificial mixing and dilution, grid orientation effects, unresolved spatial and temporal scales and unphysical numerical oscillations (e.g., Herrera et al, 2009; Bosso et al., 2012). In this work we will present Eulerian Lagrangian Adaptive Fup Collocation Method (ELAFCM) based on Fup basis functions and collocation approach for spatial approximation and explicit stabilized Runge-Kutta-Chebyshev temporal integration (public domain routine SERK2) which is especially well suited for stiff parabolic problems. Spatial adaptive strategy is based on Fup basis functions which are closely related to the wavelets and splines so that they are also compactly supported basis functions; they exactly describe algebraic polynomials and enable a multiresolution adaptive analysis (MRA). MRA is here performed via Fup Collocation Transform (FCT) so that at each time step concentration solution is decomposed using only a few significant Fup basis functions on adaptive collocation grid with appropriate scales (frequencies) and locations, a desired level of accuracy and a near minimum computational cost. FCT adds more collocations points and higher resolution levels only in sensitive zones with sharp concentration gradients, fronts and/or narrow transition zones. According to the our recent achievements there is no need for solving the large

  6. Aerial robot intelligent control method based on back-stepping

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Xue, Qian

    2018-05-01

    The aerial robot is characterized as strong nonlinearity, high coupling and parameter uncertainty, a self-adaptive back-stepping control method based on neural network is proposed in this paper. The uncertain part of the aerial robot model is compensated online by the neural network of Cerebellum Model Articulation Controller and robust control items are designed to overcome the uncertainty error of the system during online learning. At the same time, particle swarm algorithm is used to optimize and fix parameters so as to improve the dynamic performance, and control law is obtained by the recursion of back-stepping regression. Simulation results show that the designed control law has desired attitude tracking performance and good robustness in case of uncertainties and large errors in the model parameters.

  7. Space-Time Joint Interference Cancellation Using Fuzzy-Inference-Based Adaptive Filtering Techniques in Frequency-Selective Multipath Channels

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Chang; Lin, Hsuan-Yu; Chen, Yu-Fan; Wen, Jyh-Horng

    2006-12-01

    An adaptive minimum mean-square error (MMSE) array receiver based on the fuzzy-logic recursive least-squares (RLS) algorithm is developed for asynchronous DS-CDMA interference suppression in the presence of frequency-selective multipath fading. This receiver employs a fuzzy-logic control mechanism to perform the nonlinear mapping of the squared error and squared error variation, denoted by ([InlineEquation not available: see fulltext.],[InlineEquation not available: see fulltext.]), into a forgetting factor[InlineEquation not available: see fulltext.]. For the real-time applicability, a computationally efficient version of the proposed receiver is derived based on the least-mean-square (LMS) algorithm using the fuzzy-inference-controlled step-size[InlineEquation not available: see fulltext.]. This receiver is capable of providing both fast convergence/tracking capability as well as small steady-state misadjustment as compared with conventional LMS- and RLS-based MMSE DS-CDMA receivers. Simulations show that the fuzzy-logic LMS and RLS algorithms outperform, respectively, other variable step-size LMS (VSS-LMS) and variable forgetting factor RLS (VFF-RLS) algorithms at least 3 dB and 1.5 dB in bit-error-rate (BER) for multipath fading channels.

  8. Telepresence, time delay, and adaptation

    NASA Technical Reports Server (NTRS)

    Held, Richard; Durlach, Nathaniel

    1989-01-01

    Displays are now being used extensively throughout the society. More and more time is spent watching television, movies, computer screens, etc. Furthermore, in an increasing number of cases, the observer interacts with the display and plays the role of operator as well as observer. To a large extent, the normal behavior in the normal environment can also be thought of in these same terms. Taking liberties with Shakespeare, it might be said, all the world's a display and all the individuals in it are operators in and on the display. Within this general context of interactive display systems, a discussion is began with a conceptual overview of a particular class of such systems, namely, teleoperator systems. The notion is considered of telepresence and the factors that limit telepresence, including decorrelation between the: (1) motor output of the teleoperator as sensed directly via the kinesthetic/tactual system, and (2) the motor output of the teleoperator as sensed indirectly via feedback from the slave robot, i.e., via a visual display of the motor actions of the slave robot. Finally, the deleterious effect of time delay (a particular decorrelation) on sensory-motor adaptation (an important phenomenon related to telepresence) is examined.

  9. Conditional adaptive Bayesian spectral analysis of nonstationary biomedical time series.

    PubMed

    Bruce, Scott A; Hall, Martica H; Buysse, Daniel J; Krafty, Robert T

    2018-03-01

    Many studies of biomedical time series signals aim to measure the association between frequency-domain properties of time series and clinical and behavioral covariates. However, the time-varying dynamics of these associations are largely ignored due to a lack of methods that can assess the changing nature of the relationship through time. This article introduces a method for the simultaneous and automatic analysis of the association between the time-varying power spectrum and covariates, which we refer to as conditional adaptive Bayesian spectrum analysis (CABS). The procedure adaptively partitions the grid of time and covariate values into an unknown number of approximately stationary blocks and nonparametrically estimates local spectra within blocks through penalized splines. CABS is formulated in a fully Bayesian framework, in which the number and locations of partition points are random, and fit using reversible jump Markov chain Monte Carlo techniques. Estimation and inference averaged over the distribution of partitions allows for the accurate analysis of spectra with both smooth and abrupt changes. The proposed methodology is used to analyze the association between the time-varying spectrum of heart rate variability and self-reported sleep quality in a study of older adults serving as the primary caregiver for their ill spouse. © 2017, The International Biometric Society.

  10. Multiple Time-Step Dual-Hamiltonian Hybrid Molecular Dynamics — Monte Carlo Canonical Propagation Algorithm

    PubMed Central

    Weare, Jonathan; Dinner, Aaron R.; Roux, Benoît

    2016-01-01

    A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method. PMID:26918826

  11. A double-inverted pendulum model for studying the adaptability of postural control to frequency during human stepping in place.

    PubMed

    Breniere, Y; Ribreau, C

    1998-10-01

    In order to analyze the influence of gravity and body characteristics on the control of center of mass (CM) oscillations in stepping in place, equations of motion in oscillating systems were developed using a double-inverted pendulum model which accounts for both the head-arms-trunk (HAT) segment and the two-legged system. The principal goal of this work is to propose an equivalent model which makes use of the usual anthropometric data for the human body, in order to study the ability of postural control to adapt to the step frequency in this particular paradigm of human gait. This model allows the computation of CM-to-CP amplitude ratios, when the center of foot pressure (CP) oscillates, as a parametric function of the stepping in place frequency, whose parameters are gravity and major body characteristics. Motion analysis from a force plate was used to test the model by comparing experimental and simulated values of variations of the CM-to-CP amplitude ratio in the frontal plane versus the frequency. With data from the literature, the model is used to calculate the intersegmental torque which stabilizes the HAT when the Leg segment is subjected to a harmonic torque with an imposed frequency.

  12. Application of adaptive gridding to magnetohydrodynamic flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnack, D.D.; Lotatti, I.; Satyanarayana, P.

    1996-12-31

    The numerical simulation of the primitive, three-dimensional, time-dependent, resistive MHD equations on an unstructured, adaptive poloidal mesh using the TRIM code has been reported previously. The toroidal coordinate is approximated pseudo-spectrally with finite Fourier series and Fast-Fourier Transforms. The finite-volume algorithm preserves the magnetic field as solenoidal to round-off error, and also conserves mass, energy, and magnetic flux exactly. A semi-implicit method is used to allow for large time steps on the unstructured mesh. This is important for tokamak calculations where the relevant time scale is determined by the poloidal Alfven time. This also allows the viscosity to be treatedmore » implicitly. A conjugate-gradient method with pre-conditioning is used for matrix inversion. Applications to the growth and saturation of ideal instabilities in several toroidal fusion systems has been demonstrated. Recently we have concentrated on the details of the mesh adaption algorithm used in TRIM. We present several two-dimensional results relating to the use of grid adaptivity to track the evolution of hydrodynamic and MHD structures. Examples of plasma guns, opening switches, and supersonic flow over a magnetized sphere are presented. Issues relating to mesh adaption criteria are discussed.« less

  13. A time step criterion for the stable numerical simulation of hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Juan-Lien Ramirez, Alina; Löhnert, Stefan; Neuweiler, Insa

    2017-04-01

    The process of propagating or widening cracks in rock formations by means of fluid flow, known as hydraulic fracturing, has been gaining attention in the last couple of decades. There is growing interest in its numerical simulation to make predictions. Due to the complexity of the processes taking place, e.g. solid deformation, fluid flow in an open channel, fluid flow in a porous medium and crack propagation, this is a challenging task. Hydraulic fracturing has been numerically simulated for some years now [1] and new methods to take more of its processes into account (increasing accuracy) while modeling in an efficient way (lower computational effort) have been developed in recent years. An example is the use of the Extended Finite Element Method (XFEM), whose application originated within the framework of solid mechanics, but is now seen as an effective method for the simulation of discontinuities with no need for re-meshing [2]. While more focus has been put to the correct coupling of the processes mentioned above, less attention has been paid to the stability of the model. When using a quasi-static approach for the simulation of hydraulic fracturing, choosing an adequate time step is not trivial. This is in particular true if the equations are solved in a staggered way. The difficulty lies within the inconsistency between the static behavior of the solid and the dynamic behavior of the fluid. It has been shown that too small time steps may lead to instabilities early into the simulation time [3]. While the solid reaches a stationary state instantly, the fluid is not able to achieve equilibrium with its new surrounding immediately. This is why a time step criterion has been developed to quantify the instability of the model concerning the time step. The presented results were created with a 2D poroelastic model, using the XFEM for both the solid and the fluid phases. An embedded crack propagates following the energy release rate criteria when the fluid pressure

  14. Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod

    PubMed Central

    Hut, R. A.; Beersma, D. G. M.

    2011-01-01

    Virtually all species have developed cellular oscillations and mechanisms that synchronize these cellular oscillations to environmental cycles. Such environmental cycles in biotic (e.g. food availability and predation risk) or abiotic (e.g. temperature and light) factors may occur on a daily, annual or tidal time scale. Internal timing mechanisms may facilitate behavioural or physiological adaptation to such changes in environmental conditions. These timing mechanisms commonly involve an internal molecular oscillator (a ‘clock’) that is synchronized (‘entrained’) to the environmental cycle by receptor mechanisms responding to relevant environmental signals (‘Zeitgeber’, i.e. German for time-giver). To understand the evolution of such timing mechanisms, we have to understand the mechanisms leading to selective advantage. Although major advances have been made in our understanding of the physiological and molecular mechanisms driving internal cycles (proximate questions), studies identifying mechanisms of natural selection on clock systems (ultimate questions) are rather limited. Here, we discuss the selective advantage of a circadian system and how its adaptation to day length variation may have a functional role in optimizing seasonal timing. We discuss various cases where selective advantages of circadian timing mechanisms have been shown and cases where temporarily loss of circadian timing may cause selective advantage. We suggest an explanation for why a circadian timing system has emerged in primitive life forms like cyanobacteria and we evaluate a possible molecular mechanism that enabled these bacteria to adapt to seasonal variation in day length. We further discuss how the role of the circadian system in photoperiodic time measurement may explain differential selection pressures on circadian period when species are exposed to changing climatic conditions (e.g. global warming) or when they expand their geographical range to different latitudes or

  15. Long-term Outcomes After Stepping Down Asthma Controller Medications: A Claims-Based, Time-to-Event Analysis.

    PubMed

    Rank, Matthew A; Johnson, Ryan; Branda, Megan; Herrin, Jeph; van Houten, Holly; Gionfriddo, Michael R; Shah, Nilay D

    2015-09-01

    Long-term outcomes after stepping down asthma medications are not well described. This study was a retrospective time-to-event analysis of individuals diagnosed with asthma who stepped down their asthma controller medications using a US claims database spanning 2000 to 2012. Four-month intervals were established and a step-down event was defined by a ≥ 50% decrease in days-supplied of controller medications from one interval to the next; this definition is inclusive of step-down that occurred without health-care provider guidance or as a consequence of a medication adherence lapse. Asthma stability in the period prior to step-down was defined by not having an asthma exacerbation (inpatient visit, ED visit, or dispensing of a systemic corticosteroid linked to an asthma visit) and having fewer than two rescue inhaler claims in a 4-month period. The primary outcome in the period following step-down was time-to-first asthma exacerbation. Thirty-two percent of the 26,292 included individuals had an asthma exacerbation in the 24-month period following step-down of asthma controller medication, though only 7% had an ED visit or hospitalization for asthma. The length of asthma stability prior to stepping down asthma medication was strongly associated with the risk of an asthma exacerbation in the subsequent 24-month period: < 4 months' stability, 44%; 4 to 7 months, 34%; 8 to 11 months, 30%; and ≥ 12 months, 21% (P < .001). In a large, claims-based, real-world study setting, 32% of individuals have an asthma exacerbation in the 2 years following a step-down event.

  16. Adaptive MPC based on MIMO ARX-Laguerre model.

    PubMed

    Ben Abdelwahed, Imen; Mbarek, Abdelkader; Bouzrara, Kais

    2017-03-01

    This paper proposes a method for synthesizing an adaptive predictive controller using a reduced complexity model. This latter is given by the projection of the ARX model on Laguerre bases. The resulting model is entitled MIMO ARX-Laguerre and it is characterized by an easy recursive representation. The adaptive predictive control law is computed based on multi-step-ahead finite-element predictors, identified directly from experimental input/output data. The model is tuned in each iteration by an online identification algorithms of both model parameters and Laguerre poles. The proposed approach avoids time consuming numerical optimization algorithms associated with most common linear predictive control strategies, which makes it suitable for real-time implementation. The method is used to synthesize and test in numerical simulations adaptive predictive controllers for the CSTR process benchmark. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Adaptive Sensing of Time Series with Application to Remote Exploration

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Cabrol, Nathalie A.; Furlong, Michael; Hardgrove, Craig; Low, Bryan K. H.; Moersch, Jeffrey; Wettergreen, David

    2013-01-01

    We address the problem of adaptive informationoptimal data collection in time series. Here a remote sensor or explorer agent throttles its sampling rate in order to track anomalous events while obeying constraints on time and power. This problem is challenging because the agent has limited visibility -- all collected datapoints lie in the past, but its resource allocation decisions require predicting far into the future. Our solution is to continually fit a Gaussian process model to the latest data and optimize the sampling plan on line to maximize information gain. We compare the performance characteristics of stationary and nonstationary Gaussian process models. We also describe an application based on geologic analysis during planetary rover exploration. Here adaptive sampling can improve coverage of localized anomalies and potentially benefit mission science yield of long autonomous traverses.

  18. Space-time mesh adaptation for solute transport in randomly heterogeneous porous media.

    PubMed

    Dell'Oca, Aronne; Porta, Giovanni Michele; Guadagnini, Alberto; Riva, Monica

    2018-05-01

    We assess the impact of an anisotropic space and time grid adaptation technique on our ability to solve numerically solute transport in heterogeneous porous media. Heterogeneity is characterized in terms of the spatial distribution of hydraulic conductivity, whose natural logarithm, Y, is treated as a second-order stationary random process. We consider nonreactive transport of dissolved chemicals to be governed by an Advection Dispersion Equation at the continuum scale. The flow field, which provides the advective component of transport, is obtained through the numerical solution of Darcy's law. A suitable recovery-based error estimator is analyzed to guide the adaptive discretization. We investigate two diverse strategies guiding the (space-time) anisotropic mesh adaptation. These are respectively grounded on the definition of the guiding error estimator through the spatial gradients of: (i) the concentration field only; (ii) both concentration and velocity components. We test the approach for two-dimensional computational scenarios with moderate and high levels of heterogeneity, the latter being expressed in terms of the variance of Y. As quantities of interest, we key our analysis towards the time evolution of section-averaged and point-wise solute breakthrough curves, second centered spatial moment of concentration, and scalar dissipation rate. As a reference against which we test our results, we consider corresponding solutions associated with uniform space-time grids whose level of refinement is established through a detailed convergence study. We find a satisfactory comparison between results for the adaptive methodologies and such reference solutions, our adaptive technique being associated with a markedly reduced computational cost. Comparison of the two adaptive strategies tested suggests that: (i) defining the error estimator relying solely on concentration fields yields some advantages in grasping the key features of solute transport taking place within

  19. The effects of a two-step transfer on a visuomotor adaptation task.

    PubMed

    Aiken, Christopher A; Pan, Zhujun; Van Gemmert, Arend W A

    2017-11-01

    The literature has shown robust effects of transfer-of-learning to the contralateral side and more recently transfer-of-learning effects to a new effector type on the ipsilateral side. Few studies have investigated the effects of transfer-of-learning when skills transfer to both a new effector type and the contralateral side (two-step transfer). The purpose of the current study was to investigate the effects of two-step transfer and to examine which aspects of the movement transfer and which aspects do not. Individuals practiced a 30° visual rotation task with either the dominant or non-dominant limb and with either the use of the fingers and wrist or elbow and shoulder. Following practice, participants performed the task with the untrained effector type on the contralateral side. Results showed that initial direction error and trajectory length transferred from the dominant to the non-dominant side and movement time transferred from the elbow and shoulder condition to the wrist and finger conditions irrespective of which limb was used during practice. The results offer a unique perspective on the current theoretical and practical implications for transfer-of-learning and are further discussed in this paper.

  20. Multidimensional FEM-FCT schemes for arbitrary time stepping

    NASA Astrophysics Data System (ADS)

    Kuzmin, D.; Möller, M.; Turek, S.

    2003-05-01

    The flux-corrected-transport paradigm is generalized to finite-element schemes based on arbitrary time stepping. A conservative flux decomposition procedure is proposed for both convective and diffusive terms. Mathematical properties of positivity-preserving schemes are reviewed. A nonoscillatory low-order method is constructed by elimination of negative off-diagonal entries of the discrete transport operator. The linearization of source terms and extension to hyperbolic systems are discussed. Zalesak's multidimensional limiter is employed to switch between linear discretizations of high and low order. A rigorous proof of positivity is provided. The treatment of non-linearities and iterative solution of linear systems are addressed. The performance of the new algorithm is illustrated by numerical examples for the shock tube problem in one dimension and scalar transport equations in two dimensions.

  1. Adapting the SLIM diabetes prevention intervention to a Dutch real-life setting: joint decision making by science and practice.

    PubMed

    Jansen, Sophia C; Haveman-Nies, Annemien; Duijzer, Geerke; Ter Beek, Josien; Hiddink, Gerrit J; Feskens, Edith J M

    2013-05-08

    Although many evidence-based diabetes prevention interventions exist, they are not easily applicable in real-life settings. Moreover, there is a lack of examples which describe the adaptation process of these interventions to practice. In this paper we present an example of such an adaptation. We adapted the SLIM (Study on Lifestyle intervention and Impaired glucose tolerance Maastricht) diabetes prevention intervention to a Dutch real-life setting, in a joint decision making process of intervention developers and local health care professionals. We used 3 adaptation steps in accordance with current adaptation frameworks. In the first step, the elements of the SLIM intervention were identified. In the second step, these elements were judged for their applicability in a real-life setting. In the third step, adaptations were proposed and discussed for those elements which were deemed not applicable. Participants invited for this process included intervention developers and local health care professionals (n=19). In the first adaptation step, a total of 22 intervention elements were identified. In the second step, 12 of these 22 intervention elements were judged as inapplicable. In the third step, a consensus was achieved for the adaptations of all 12 elements. The adapted elements were in the following categories: target population, techniques, intensity, delivery mode, materials, organisational structure, and political and financial conditions. The adaptations either lay in changing the SLIM protocol (6 elements) or the real-life working procedures (1 element), or a combination of both (4 elements). The positive result of this study is that a consensus was achieved within a relatively short time period (nine months) between the developers of the SLIM intervention and local health care professionals on the adaptations needed to make SLIM applicable in a Dutch real-life setting. Our example shows that it is possible to combine the perspectives of scientists and

  2. Adaptive tracking of a time-varying field with a quantum sensor

    NASA Astrophysics Data System (ADS)

    Bonato, Cristian; Berry, Dominic W.

    2017-05-01

    Sensors based on single spins can enable magnetic-field detection with very high sensitivity and spatial resolution. Previous work has concentrated on sensing of a constant magnetic field or a periodic signal. Here, we instead investigate the problem of estimating a field with nonperiodic variation described by a Wiener process. We propose and study, by numerical simulations, an adaptive tracking protocol based on Bayesian estimation. The tracking protocol updates the probability distribution for the magnetic field based on measurement outcomes and adapts the choice of sensing time and phase in real time. By taking the statistical properties of the signal into account, our protocol strongly reduces the required measurement time. This leads to a reduction of the error in the estimation of a time-varying signal by up to a factor of four compare with protocols that do not take this information into account.

  3. A CMOS merged CDR and continuous-time adaptive equalizer

    NASA Astrophysics Data System (ADS)

    Sánchez-Azqueta, C.; Aguirre, J.; Gimeno, C.; Aldea, C.; Celma, S.

    2015-06-01

    We present a low-voltage merged CDR and cntinuous-time adaptive equalizer capable to compensate the attenu- ation of a SI-POF channel while at the same time synchronizing and regenerating the incoming signal in a single stage. The system operates at 1.25 Gbps for NRZ modulation through a 50-m SI-POF channel and it is designed in standard 0.18-μm CMOS fed at 1 V with a power consumption of 43.4 mW.

  4. A coupled weather generator - rainfall-runoff approach on hourly time steps for flood risk analysis

    NASA Astrophysics Data System (ADS)

    Winter, Benjamin; Schneeberger, Klaus; Dung Nguyen, Viet; Vorogushyn, Sergiy; Huttenlau, Matthias; Merz, Bruno; Stötter, Johann

    2017-04-01

    The evaluation of potential monetary damage of flooding is an essential part of flood risk management. One possibility to estimate the monetary risk is to analyze long time series of observed flood events and their corresponding damages. In reality, however, only few flood events are documented. This limitation can be overcome by the generation of a set of synthetic, physically and spatial plausible flood events and subsequently the estimation of the resulting monetary damages. In the present work, a set of synthetic flood events is generated by a continuous rainfall-runoff simulation in combination with a coupled weather generator and temporal disaggregation procedure for the study area of Vorarlberg (Austria). Most flood risk studies focus on daily time steps, however, the mesoscale alpine study area is characterized by short concentration times, leading to large differences between daily mean and daily maximum discharge. Accordingly, an hourly time step is needed for the simulations. The hourly metrological input for the rainfall-runoff model is generated in a two-step approach. A synthetic daily dataset is generated by a multivariate and multisite weather generator and subsequently disaggregated to hourly time steps with a k-Nearest-Neighbor model. Following the event generation procedure, the negative consequences of flooding are analyzed. The corresponding flood damage for each synthetic event is estimated by combining the synthetic discharge at representative points of the river network with a loss probability relation for each community in the study area. The loss probability relation is based on exposure and susceptibility analyses on a single object basis (residential buildings) for certain return periods. For these impact analyses official inundation maps of the study area are used. Finally, by analyzing the total event time series of damages, the expected annual damage or losses associated with a certain probability of occurrence can be estimated for

  5. Contrast-based sensorless adaptive optics for retinal imaging.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes.

  6. Highly accurate adaptive TOF determination method for ultrasonic thickness measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Lianjie; Liu, Haibo; Lian, Meng; Ying, Yangwei; Li, Te; Wang, Yongqing

    2018-04-01

    Determining the time of flight (TOF) is very critical for precise ultrasonic thickness measurement. However, the relatively low signal-to-noise ratio (SNR) of the received signals would induce significant TOF determination errors. In this paper, an adaptive time delay estimation method has been developed to improve the TOF determination’s accuracy. An improved variable step size adaptive algorithm with comprehensive step size control function is proposed. Meanwhile, a cubic spline fitting approach is also employed to alleviate the restriction of finite sampling interval. Simulation experiments under different SNR conditions were conducted for performance analysis. Simulation results manifested the performance advantage of proposed TOF determination method over existing TOF determination methods. When comparing with the conventional fixed step size, and Kwong and Aboulnasr algorithms, the steady state mean square deviation of the proposed algorithm was generally lower, which makes the proposed algorithm more suitable for TOF determination. Further, ultrasonic thickness measurement experiments were performed on aluminum alloy plates with various thicknesses. They indicated that the proposed TOF determination method was more robust even under low SNR conditions, and the ultrasonic thickness measurement accuracy could be significantly improved.

  7. A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations

    PubMed Central

    Thalhammer, Mechthild; Abhau, Jochen

    2012-01-01

    As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross–Pitaevskii equation arising in the description of Bose–Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross–Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter 0<ε≪1, especially when it is desired to capture correctly the quantitative behaviour of the wave function itself. The required high resolution in space constricts the feasibility of numerical computations for both, the Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that the

  8. A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations.

    PubMed

    Thalhammer, Mechthild; Abhau, Jochen

    2012-08-15

    As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross-Pitaevskii equation arising in the description of Bose-Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross-Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter [Formula: see text], especially when it is desired to capture correctly the quantitative behaviour of the wave function itself. The required high resolution in space constricts the feasibility of numerical computations for both, the Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that

  9. Review of Real-Time Simulator and the Steps Involved for Implementation of a Model from MATLAB/SIMULINK to Real-Time

    NASA Astrophysics Data System (ADS)

    Mikkili, Suresh; Panda, Anup Kumar; Prattipati, Jayanthi

    2015-06-01

    Nowadays the researchers want to develop their model in real-time environment. Simulation tools have been widely used for the design and improvement of electrical systems since the mid twentieth century. The evolution of simulation tools has progressed in step with the evolution of computing technologies. In recent years, computing technologies have improved dramatically in performance and become widely available at a steadily decreasing cost. Consequently, simulation tools have also seen dramatic performance gains and steady cost decreases. Researchers and engineers now have the access to affordable, high performance simulation tools that were previously too cost prohibitive, except for the largest manufacturers. This work has introduced a specific class of digital simulator known as a real-time simulator by answering the questions "what is real-time simulation", "why is it needed" and "how it works". The latest trend in real-time simulation consists of exporting simulation models to FPGA. In this article, the Steps involved for implementation of a model from MATLAB to REAL-TIME are provided in detail.

  10. A dynamic dual role of IL-2 signaling in the two-step differentiation process of adaptive regulatory T cells.

    PubMed

    Guo, Zhiyong; Khattar, Mithun; Schroder, Paul M; Miyahara, Yoshihiro; Wang, Guohua; He, Xiaoshung; Chen, Wenhao; Stepkowski, Stanislaw M

    2013-04-01

    The molecular mechanism of the extrathymic generation of adaptive, or inducible, CD4(+)Foxp3(+) regulatory T cells (iTregs) remains incompletely defined. We show that exposure of splenic CD4(+)CD25(+)Foxp3(-) cells to IL-2, but not other common γ-chain cytokines, resulted in Stat5 phosphorylation and induced Foxp3 expression in ∼10% of the cells. Thus, IL-2/Stat5 signaling may be critical for Foxp3 induction in peripheral CD4(+)CD25(+)Foxp3(-) iTreg precursors. In this study, to further define the role of IL-2 in the formation of iTreg precursors as well as their subsequent Foxp3 expression, we designed a two-step iTreg differentiation model. During the initial "conditioning" step, CD4(+)CD25(-)Foxp3(-) naive T cells were activated by TCR stimulation. Inhibition of IL-2 signaling via Jak3-Stat5 was required during this step to generate CD4(+)CD25(+)Foxp3(-) cells containing iTreg precursors. During the subsequent Foxp3-induction step driven by cytokines, IL-2 was the most potent cytokine to induce Foxp3 expression in these iTreg precursors. This two-step method generated a large number of iTregs with relatively stable expression of Foxp3, which were able to prevent CD4(+)CD45RB(high) cell-mediated colitis in Rag1(-/-) mice. In consideration of this information, whereas initial inhibition of IL-2 signaling upon T cell priming generates iTreg precursors, subsequent activation of IL-2 signaling in these precursors induces the expression of Foxp3. These findings advance the understanding of iTreg differentiation and may facilitate the therapeutic use of iTregs in immune disorders.

  11. ChromAlign: A two-step algorithmic procedure for time alignment of three-dimensional LC-MS chromatographic surfaces.

    PubMed

    Sadygov, Rovshan G; Maroto, Fernando Martin; Hühmer, Andreas F R

    2006-12-15

    We present an algorithmic approach to align three-dimensional chromatographic surfaces of LC-MS data of complex mixture samples. The approach consists of two steps. In the first step, we prealign chromatographic profiles: two-dimensional projections of chromatographic surfaces. This is accomplished by correlation analysis using fast Fourier transforms. In this step, a temporal offset that maximizes the overlap and dot product between two chromatographic profiles is determined. In the second step, the algorithm generates correlation matrix elements between full mass scans of the reference and sample chromatographic surfaces. The temporal offset from the first step indicates a range of the mass scans that are possibly correlated, then the correlation matrix is calculated only for these mass scans. The correlation matrix carries information on highly correlated scans, but it does not itself determine the scan or time alignment. Alignment is determined as a path in the correlation matrix that maximizes the sum of the correlation matrix elements. The computational complexity of the optimal path generation problem is reduced by the use of dynamic programming. The program produces time-aligned surfaces. The use of the temporal offset from the first step in the second step reduces the computation time for generating the correlation matrix and speeds up the process. The algorithm has been implemented in a program, ChromAlign, developed in C++ language for the .NET2 environment in WINDOWS XP. In this work, we demonstrate the applications of ChromAlign to alignment of LC-MS surfaces of several datasets: a mixture of known proteins, samples from digests of surface proteins of T-cells, and samples prepared from digests of cerebrospinal fluid. ChromAlign accurately aligns the LC-MS surfaces we studied. In these examples, we discuss various aspects of the alignment by ChromAlign, such as constant time axis shifts and warping of chromatographic surfaces.

  12. Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching.

    PubMed

    Edwards, Ann L; Dawson, Michael R; Hebert, Jacqueline S; Sherstan, Craig; Sutton, Richard S; Chan, K Ming; Pilarski, Patrick M

    2016-10-01

    Myoelectric prostheses currently used by amputees can be difficult to control. Machine learning, and in particular learned predictions about user intent, could help to reduce the time and cognitive load required by amputees while operating their prosthetic device. The goal of this study was to compare two switching-based methods of controlling a myoelectric arm: non-adaptive (or conventional) control and adaptive control (involving real-time prediction learning). Case series study. We compared non-adaptive and adaptive control in two different experiments. In the first, one amputee and one non-amputee subject controlled a robotic arm to perform a simple task; in the second, three able-bodied subjects controlled a robotic arm to perform a more complex task. For both tasks, we calculated the mean time and total number of switches between robotic arm functions over three trials. Adaptive control significantly decreased the number of switches and total switching time for both tasks compared with the conventional control method. Real-time prediction learning was successfully used to improve the control interface of a myoelectric robotic arm during uninterrupted use by an amputee subject and able-bodied subjects. Adaptive control using real-time prediction learning has the potential to help decrease both the time and the cognitive load required by amputees in real-world functional situations when using myoelectric prostheses. © The International Society for Prosthetics and Orthotics 2015.

  13. An overview on STEP-NC compliant controller development

    NASA Astrophysics Data System (ADS)

    Othman, M. A.; Minhat, M.; Jamaludin, Z.

    2017-10-01

    The capabilities of conventional Computer Numerical Control (CNC) machine tools as termination organiser to fabricate high-quality parts promptly, economically and precisely are undeniable. To date, most CNCs follow the programming standard of ISO 6983, also called G & M code. However, in fluctuating shop floor environment, flexibility and interoperability of current CNC system to react dynamically and adaptively are believed still limited. This outdated programming language does not explicitly relate to each other to have control of arbitrary locations other than the motion of the block-by-block. To address this limitation, new standard known as STEP-NC was developed in late 1990s and is formalized as an ISO 14649. It adds intelligence to the CNC in term of interoperability, flexibility, adaptability and openness. This paper presents an overview of the research work that have been done in developing a STEP-NC controller standard and the capabilities of STEP-NC to overcome modern manufacturing demands. Reviews stated that most existing STEP-NC controller prototypes are based on type 1 and type 2 implementation levels. There are still lack of effort being done to develop type 3 and type 4 STEP-NC compliant controller.

  14. 10 Steps for Implementing Change.

    ERIC Educational Resources Information Center

    Marsee, Jeff

    2002-01-01

    Offers steps for adapting the change process to institutional culture: align leadership style with organizational culture, don't overuse change missionaries, protect change agents, define the problem, maintain focus when the project drifts, identify and remove barriers before implementing action plans, assign responsibilities to individuals,…

  15. Rapid adaptation to microgravity in mammalian macrophage cells.

    PubMed

    Thiel, Cora S; de Zélicourt, Diane; Tauber, Svantje; Adrian, Astrid; Franz, Markus; Simmet, Dana M; Schoppmann, Kathrin; Hauschild, Swantje; Krammer, Sonja; Christen, Miriam; Bradacs, Gesine; Paulsen, Katrin; Wolf, Susanne A; Braun, Markus; Hatton, Jason; Kurtcuoglu, Vartan; Franke, Stefanie; Tanner, Samuel; Cristoforetti, Samantha; Sick, Beate; Hock, Bertold; Ullrich, Oliver

    2017-02-27

    Despite the observed severe effects of microgravity on mammalian cells, many astronauts have completed long term stays in space without suffering from severe health problems. This raises questions about the cellular capacity for adaptation to a new gravitational environment. The International Space Station (ISS) experiment TRIPLE LUX A, performed in the BIOLAB laboratory of the ISS COLUMBUS module, allowed for the first time the direct measurement of a cellular function in real time and on orbit. We measured the oxidative burst reaction in mammalian macrophages (NR8383 rat alveolar macrophages) exposed to a centrifuge regime of internal 0 g and 1 g controls and step-wise increase or decrease of the gravitational force in four independent experiments. Surprisingly, we found that these macrophages adapted to microgravity in an ultra-fast manner within seconds, after an immediate inhibitory effect on the oxidative burst reaction. For the first time, we provided direct evidence of cellular sensitivity to gravity, through real-time on orbit measurements and by using an experimental system, in which all factors except gravity were constant. The surprisingly ultra-fast adaptation to microgravity indicates that mammalian macrophages are equipped with a highly efficient adaptation potential to a low gravity environment. This opens new avenues for the exploration of adaptation of mammalian cells to gravitational changes.

  16. Performance optimization of PM-16QAM transmission system enabled by real-time self-adaptive coding.

    PubMed

    Qu, Zhen; Li, Yao; Mo, Weiyang; Yang, Mingwei; Zhu, Shengxiang; Kilper, Daniel C; Djordjevic, Ivan B

    2017-10-15

    We experimentally demonstrate self-adaptive coded 5×100  Gb/s WDM polarization multiplexed 16 quadrature amplitude modulation transmission over a 100 km fiber link, which is enabled by a real-time control plane. The real-time optical signal-to-noise ratio (OSNR) is measured using an optical performance monitoring device. The OSNR measurement is processed and fed back using control plane logic and messaging to the transmitter side for code adaptation, where the binary data are adaptively encoded with three types of low-density parity-check (LDPC) codes with code rates of 0.8, 0.75, and 0.7 of large girth. The total code-adaptation latency is measured to be 2273 ms. Compared with transmission without adaptation, average net capacity improvements of 102%, 36%, and 7.5% are obtained, respectively, by adaptive LDPC coding.

  17. Biophysical Characterization of a Thermoalkaliphilic Molecular Motor with a High Stepping Torque Gives Insight into Evolutionary ATP Synthase Adaptation*

    PubMed Central

    McMillan, Duncan G. G.; Watanabe, Rikiya; Ueno, Hiroshi; Cook, Gregory M.; Noji, Hiroyuki

    2016-01-01

    F1F0 ATP synthases are bidirectional molecular motors that translocate protons across the cell membrane by either synthesizing or hydrolyzing ATP. Alkaliphile ATP synthases are highly adapted, performing oxidative phosphorylation at high pH against an inverted pH gradient (acidin/alkalineout). Unlike mesophilic ATP synthases, alkaliphilic enzymes have tightly regulated ATP hydrolysis activity, which can be relieved in the presence of lauryldimethylamine oxide. Here, we characterized the rotary dynamics of the Caldalkalibacillus thermarum TA2.A1 F1 ATPase (TA2F1) with two forms of single molecule analysis, a magnetic bead duplex and a gold nanoparticle. TA2F1 rotated in a counterclockwise direction in both systems, adhering to Michaelis-Menten kinetics with a maximum rotation rate (Vmax) of 112.4 revolutions/s. TA2F1 displayed 120° unitary steps coupled with ATP hydrolysis. Torque measurements revealed the highest torque (52.4 piconewtons) derived from an F1 molecule using fluctuation theorem. The implications of high torque in terms of extreme environment adaptation are discussed. PMID:27624936

  18. Adaptation and learning: characteristic time scales of performance dynamics.

    PubMed

    Newell, Karl M; Mayer-Kress, Gottfried; Hong, S Lee; Liu, Yeou-Teh

    2009-12-01

    A multiple time scales landscape model is presented that reveals structures of performance dynamics that were not resolved in the traditional power law analysis of motor learning. It shows the co-existence of separate processes during and between practice sessions that evolve in two independent dimensions characterized by time scales that differ by about an order of magnitude. Performance along the slow persistent dimension of learning improves often as much and sometimes more during rest (memory consolidation and/or insight generation processes) than during a practice session itself. In contrast, the process characterized by the fast, transient dimension of adaptation reverses direction between practice sessions, thereby significantly degrading performance at the beginning of the next practice session (warm-up decrement). The theoretical model fits qualitatively and quantitatively the data from Snoddy's [Snoddy, G. S. (1926). Learning and stability. Journal of Applied Psychology, 10, 1-36] classic learning study of mirror tracing and other averaged and individual data sets, and provides a new account of the processes of change in adaptation and learning. 2009 Elsevier B.V. All rights reserved.

  19. A multistage time-stepping scheme for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, E.

    1985-01-01

    A class of explicit multistage time-stepping schemes is used to construct an algorithm for solving the compressible Navier-Stokes equations. Flexibility in treating arbitrary geometries is obtained with a finite-volume formulation. Numerical efficiency is achieved by employing techniques for accelerating convergence to steady state. Computer processing is enhanced through vectorization of the algorithm. The scheme is evaluated by solving laminar and turbulent flows over a flat plate and an NACA 0012 airfoil. Numerical results are compared with theoretical solutions or other numerical solutions and/or experimental data.

  20. Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis.

    PubMed

    Liu, Zhi; Lai, Guanyu; Zhang, Yun; Chen, Xin; Chen, Chun Lung Philip

    2014-12-01

    This paper investigates the fusion of unknown direction hysteresis model with adaptive neural control techniques in face of time-delayed continuous time nonlinear systems without strict-feedback form. Compared with previous works on the hysteresis phenomenon, the direction of the modified Bouc-Wen hysteresis model investigated in the literature is unknown. To reduce the computation burden in adaptation mechanism, an optimized adaptation method is successfully applied to the control design. Based on the Lyapunov-Krasovskii method, two neural-network-based adaptive control algorithms are constructed to guarantee that all the system states and adaptive parameters remain bounded, and the tracking error converges to an adjustable neighborhood of the origin. In final, some numerical examples are provided to validate the effectiveness of the proposed control methods.

  1. Just-in-Time Adaptive Interventions (JITAIs) in Mobile Health: Key Components and Design Principles for Ongoing Health Behavior Support

    PubMed Central

    Nahum-Shani, Inbal; Smith, Shawna N.; Spring, Bonnie J.; Collins, Linda M.; Witkiewitz, Katie; Tewari, Ambuj; Murphy, Susan A.

    2016-01-01

    Background The just-in-time adaptive intervention (JITAI) is an intervention design aiming to provide the right type/amount of support, at the right time, by adapting to an individual's changing internal and contextual state. The availability of increasingly powerful mobile and sensing technologies underpins the use of JITAIs to support health behavior, as in such a setting an individual's state can change rapidly, unexpectedly, and in his/her natural environment. Purpose Despite the increasing use and appeal of JITAIs, a major gap exists between the growing technological capabilities for delivering JITAIs and research on the development and evaluation of these interventions. Many JITAIs have been developed with minimal use of empirical evidence, theory, or accepted treatment guidelines. Here, we take an essential first step towards bridging this gap. Methods Building on health behavior theories and the extant literature on JITAIs, we clarify the scientific motivation for JITAIs, define their fundamental components, and highlight design principles related to these components. Examples of JITAIs from various domains of health behavior research are used for illustration. Conclusion As we enter a new era of technological capacity for delivering JITAIs, it is critical that researchers develop sophisticated and nuanced health behavior theories capable of guiding the construction of such interventions. Particular attention has to be given to better understanding the implications of providing timely and ecologically sound support for intervention adherence and retention. PMID:27663578

  2. Real-Time Adaptive Control Allocation Applied to a High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Lallman, Frederick J.; Bundick, W. Thomas

    2001-01-01

    Abstract This paper presents the development and application of one approach to the control of aircraft with large numbers of control effectors. This approach, referred to as real-time adaptive control allocation, combines a nonlinear method for control allocation with actuator failure detection and isolation. The control allocator maps moment (or angular acceleration) commands into physical control effector commands as functions of individual control effectiveness and availability. The actuator failure detection and isolation algorithm is a model-based approach that uses models of the actuators to predict actuator behavior and an adaptive decision threshold to achieve acceptable false alarm/missed detection rates. This integrated approach provides control reconfiguration when an aircraft is subjected to actuator failure, thereby improving maneuverability and survivability of the degraded aircraft. This method is demonstrated on a next generation military aircraft Lockheed-Martin Innovative Control Effector) simulation that has been modified to include a novel nonlinear fluid flow control control effector based on passive porosity. Desktop and real-time piloted simulation results demonstrate the performance of this integrated adaptive control allocation approach.

  3. From dinosaurs to modern bird diversity: extending the time scale of adaptive radiation.

    PubMed

    Moen, Daniel; Morlon, Hélène

    2014-05-01

    What explains why some groups of organisms, like birds, are so species rich? And what explains their extraordinary ecological diversity, ranging from large, flightless birds to small migratory species that fly thousand of kilometers every year? These and similar questions have spurred great interest in adaptive radiation, the diversification of ecological traits in a rapidly speciating group of organisms. Although the initial formulation of modern concepts of adaptive radiation arose from consideration of the fossil record, rigorous attempts to identify adaptive radiation in the fossil record are still uncommon. Moreover, most studies of adaptive radiation concern groups that are less than 50 million years old. Thus, it is unclear how important adaptive radiation is over temporal scales that span much larger portions of the history of life. In this issue, Benson et al. test the idea of a "deep-time" adaptive radiation in dinosaurs, compiling and using one of the most comprehensive phylogenetic and body-size datasets for fossils. Using recent phylogenetic statistical methods, they find that in most clades of dinosaurs there is a strong signal of an "early burst" in body-size evolution, a predicted pattern of adaptive radiation in which rapid trait evolution happens early in a group's history and then slows down. They also find that body-size evolution did not slow down in the lineage leading to birds, hinting at why birds survived to the present day and diversified. This paper represents one of the most convincing attempts at understanding deep-time adaptive radiations.

  4. Enhancing multi-step quantum state tomography by PhaseLift

    NASA Astrophysics Data System (ADS)

    Lu, Yiping; Zhao, Qing

    2017-09-01

    Multi-photon system has been studied by many groups, however the biggest challenge faced is the number of copies of an unknown state are limited and far from detecting quantum entanglement. The difficulty to prepare copies of the state is even more serious for the quantum state tomography. One possible way to solve this problem is to use adaptive quantum state tomography, which means to get a preliminary density matrix in the first step and revise it in the second step. In order to improve the performance of adaptive quantum state tomography, we develop a new distribution scheme of samples and extend it to three steps, that is to correct it once again based on the density matrix obtained in the traditional adaptive quantum state tomography. Our numerical results show that the mean square error of the reconstructed density matrix by our new method is improved to the level from 10-4 to 10-9 for several tested states. In addition, PhaseLift is also applied to reduce the required storage space of measurement operator.

  5. Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε-error bound.

    PubMed

    Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai

    2011-01-01

    In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method.

  6. Quick and Easy Adaptations and Accommodations for Early Childhood Students

    ERIC Educational Resources Information Center

    Breitfelder, Leisa M.

    2008-01-01

    Research-based information is used to support the idea of the use of adaptations and accommodations for early childhood students who have varying disabilities. Multiple adaptations and accommodations are outlined. A step-by-step plan is provided on how to make specific adaptations and accommodations to fit the specific needs of early childhood…

  7. Modeling the time--varying subjective quality of HTTP video streams with rate adaptations.

    PubMed

    Chen, Chao; Choi, Lark Kwon; de Veciana, Gustavo; Caramanis, Constantine; Heath, Robert W; Bovik, Alan C

    2014-05-01

    Newly developed hypertext transfer protocol (HTTP)-based video streaming technologies enable flexible rate-adaptation under varying channel conditions. Accurately predicting the users' quality of experience (QoE) for rate-adaptive HTTP video streams is thus critical to achieve efficiency. An important aspect of understanding and modeling QoE is predicting the up-to-the-moment subjective quality of a video as it is played, which is difficult due to hysteresis effects and nonlinearities in human behavioral responses. This paper presents a Hammerstein-Wiener model for predicting the time-varying subjective quality (TVSQ) of rate-adaptive videos. To collect data for model parameterization and validation, a database of longer duration videos with time-varying distortions was built and the TVSQs of the videos were measured in a large-scale subjective study. The proposed method is able to reliably predict the TVSQ of rate adaptive videos. Since the Hammerstein-Wiener model has a very simple structure, the proposed method is suitable for online TVSQ prediction in HTTP-based streaming.

  8. An integration time adaptive control method for atmospheric composition detection of occultation

    NASA Astrophysics Data System (ADS)

    Ding, Lin; Hou, Shuai; Yu, Fei; Liu, Cheng; Li, Chao; Zhe, Lin

    2018-01-01

    When sun is used as the light source for atmospheric composition detection, it is necessary to image sun for accurate identification and stable tracking. In the course of 180 second of the occultation, the magnitude of sun light intensity through the atmosphere changes greatly. It is nearly 1100 times illumination change between the maximum atmospheric and the minimum atmospheric. And the process of light change is so severe that 2.9 times per second of light change can be reached. Therefore, it is difficult to control the integration time of sun image camera. In this paper, a novel adaptive integration time control method for occultation is presented. In this method, with the distribution of gray value in the image as the reference variable, and the concepts of speed integral PID control, the integration time adaptive control problem of high frequency imaging. The large dynamic range integration time automatic control in the occultation can be achieved.

  9. Effects of the lateral amplitude and regularity of upper body fluctuation on step time variability evaluated using return map analysis.

    PubMed

    Chidori, Kazuhiro; Yamamoto, Yuji

    2017-01-01

    The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls.

  10. Effects of the lateral amplitude and regularity of upper body fluctuation on step time variability evaluated using return map analysis

    PubMed Central

    2017-01-01

    The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls. PMID:28700633

  11. A video-based real-time adaptive vehicle-counting system for urban roads.

    PubMed

    Liu, Fei; Zeng, Zhiyuan; Jiang, Rong

    2017-01-01

    In developing nations, many expanding cities are facing challenges that result from the overwhelming numbers of people and vehicles. Collecting real-time, reliable and precise traffic flow information is crucial for urban traffic management. The main purpose of this paper is to develop an adaptive model that can assess the real-time vehicle counts on urban roads using computer vision technologies. This paper proposes an automatic real-time background update algorithm for vehicle detection and an adaptive pattern for vehicle counting based on the virtual loop and detection line methods. In addition, a new robust detection method is introduced to monitor the real-time traffic congestion state of road section. A prototype system has been developed and installed on an urban road for testing. The results show that the system is robust, with a real-time counting accuracy exceeding 99% in most field scenarios.

  12. A video-based real-time adaptive vehicle-counting system for urban roads

    PubMed Central

    2017-01-01

    In developing nations, many expanding cities are facing challenges that result from the overwhelming numbers of people and vehicles. Collecting real-time, reliable and precise traffic flow information is crucial for urban traffic management. The main purpose of this paper is to develop an adaptive model that can assess the real-time vehicle counts on urban roads using computer vision technologies. This paper proposes an automatic real-time background update algorithm for vehicle detection and an adaptive pattern for vehicle counting based on the virtual loop and detection line methods. In addition, a new robust detection method is introduced to monitor the real-time traffic congestion state of road section. A prototype system has been developed and installed on an urban road for testing. The results show that the system is robust, with a real-time counting accuracy exceeding 99% in most field scenarios. PMID:29135984

  13. Channel Noise-Enhanced Synchronization Transitions Induced by Time Delay in Adaptive Neuronal Networks with Spike-Timing-Dependent Plasticity

    NASA Astrophysics Data System (ADS)

    Xie, Huijuan; Gong, Yubing; Wang, Baoying

    In this paper, we numerically study the effect of channel noise on synchronization transitions induced by time delay in adaptive scale-free Hodgkin-Huxley neuronal networks with spike-timing-dependent plasticity (STDP). It is found that synchronization transitions by time delay vary as channel noise intensity is changed and become most pronounced when channel noise intensity is optimal. This phenomenon depends on STDP and network average degree, and it can be either enhanced or suppressed as network average degree increases depending on channel noise intensity. These results show that there are optimal channel noise and network average degree that can enhance the synchronization transitions by time delay in the adaptive neuronal networks. These findings could be helpful for better understanding of the regulation effect of channel noise on synchronization of neuronal networks. They could find potential implications for information transmission in neural systems.

  14. Operational flood control of a low-lying delta system using large time step Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Tian, Xin; van Overloop, Peter-Jules; Negenborn, Rudy R.; van de Giesen, Nick

    2015-01-01

    The safety of low-lying deltas is threatened not only by riverine flooding but by storm-induced coastal flooding as well. For the purpose of flood control, these deltas are mostly protected in a man-made environment, where dikes, dams and other adjustable infrastructures, such as gates, barriers and pumps are widely constructed. Instead of always reinforcing and heightening these structures, it is worth considering making the most of the existing infrastructure to reduce the damage and manage the delta in an operational and overall way. In this study, an advanced real-time control approach, Model Predictive Control, is proposed to operate these structures in the Dutch delta system (the Rhine-Meuse delta). The application covers non-linearity in the dynamic behavior of the water system and the structures. To deal with the non-linearity, a linearization scheme is applied which directly uses the gate height instead of the structure flow as the control variable. Given the fact that MPC needs to compute control actions in real-time, we address issues regarding computational time. A new large time step scheme is proposed in order to save computation time, in which different control variables can have different control time steps. Simulation experiments demonstrate that Model Predictive Control with the large time step setting is able to control a delta system better and much more efficiently than the conventional operational schemes.

  15. Method for six-legged robot stepping on obstacles by indirect force estimation

    NASA Astrophysics Data System (ADS)

    Xu, Yilin; Gao, Feng; Pan, Yang; Chai, Xun

    2016-07-01

    Adaptive gaits for legged robots often requires force sensors installed on foot-tips, however impact, temperature or humidity can affect or even damage those sensors. Efforts have been made to realize indirect force estimation on the legged robots using leg structures based on planar mechanisms. Robot Octopus III is a six-legged robot using spatial parallel mechanism(UP-2UPS) legs. This paper proposed a novel method to realize indirect force estimation on walking robot based on a spatial parallel mechanism. The direct kinematics model and the inverse kinematics model are established. The force Jacobian matrix is derived based on the kinematics model. Thus, the indirect force estimation model is established. Then, the relation between the output torques of the three motors installed on one leg to the external force exerted on the foot tip is described. Furthermore, an adaptive tripod static gait is designed. The robot alters its leg trajectory to step on obstacles by using the proposed adaptive gait. Both the indirect force estimation model and the adaptive gait are implemented and optimized in a real time control system. An experiment is carried out to validate the indirect force estimation model. The adaptive gait is tested in another experiment. Experiment results show that the robot can successfully step on a 0.2 m-high obstacle. This paper proposes a novel method to overcome obstacles for the six-legged robot using spatial parallel mechanism legs and to avoid installing the electric force sensors in harsh environment of the robot's foot tips.

  16. Verification and Validation Methodology of Real-Time Adaptive Neural Networks for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gupta, Pramod; Loparo, Kenneth; Mackall, Dale; Schumann, Johann; Soares, Fola

    2004-01-01

    Recent research has shown that adaptive neural based control systems are very effective in restoring stability and control of an aircraft in the presence of damage or failures. The application of an adaptive neural network with a flight critical control system requires a thorough and proven process to ensure safe and proper flight operation. Unique testing tools have been developed as part of a process to perform verification and validation (V&V) of real time adaptive neural networks used in recent adaptive flight control system, to evaluate the performance of the on line trained neural networks. The tools will help in certification from FAA and will help in the successful deployment of neural network based adaptive controllers in safety-critical applications. The process to perform verification and validation is evaluated against a typical neural adaptive controller and the results are discussed.

  17. VisAdapt: A Visualization Tool to Support Climate Change Adaptation.

    PubMed

    Johansson, Jimmy; Opach, Tomasz; Glaas, Erik; Neset, Tina-Simone; Navarra, Carlo; Linner, Bjorn-Ola; Rod, Jan Ketil

    2017-01-01

    The web-based visualization VisAdapt tool was developed to help laypeople in the Nordic countries assess how anticipated climate change will impact their homes. The tool guides users through a three-step visual process that helps them explore risks and identify adaptive actions specifically modified to their location and house type. This article walks through the tool's multistep, user-centered design process. Although VisAdapt's target end users are Nordic homeowners, the insights gained from the development process and the lessons learned from the project are applicable to a wide range of domains.

  18. Minimizing the effect of process mismatch in a neuromorphic system using spike-timing-dependent adaptation.

    PubMed

    Cameron, Katherine; Murray, Alan

    2008-05-01

    This paper investigates whether spike-timing-dependent plasticity (STDP) can minimize the effect of mismatch within the context of a depth-from-motion algorithm. To improve noise rejection, this algorithm contains a spike prediction element, whose performance is degraded by analog very large scale integration (VLSI) mismatch. The error between the actual spike arrival time and the prediction is used as the input to an STDP circuit, to improve future predictions. Before STDP adaptation, the error reflects the degree of mismatch within the prediction circuitry. After STDP adaptation, the error indicates to what extent the adaptive circuitry can minimize the effect of transistor mismatch. The circuitry is tested with static and varying prediction times and chip results are presented. The effect of noisy spikes is also investigated. Under all conditions the STDP adaptation is shown to improve performance.

  19. Healing the healer: one step at a time.

    PubMed

    Gershon, J Casey

    2014-03-01

    Health care workers have the most challenging of professions. They are expected to work long hours while demonstrating compassion and care for the patients that they serve. Although health care practitioners are among the most disciplined of working professionals, they are often some of the unhealthiest of individuals, facing enormous amounts of stress in their lives. Healing the Healer: One Step at a Time is a 6-week health fitness program. It explores the unique challenges faced in the field of health care and teaches techniques to address those challenges head on. Healing the Healer uses Nordic walking as the exercise portion of the class. The case study examines the structure, purpose, and design of this 6-week course. Special attention is given to four basic sections: balance, pacing, joy, and discipline. The arguments presented in this article are theory based and supported by case study evidence.

  20. Contrast-based sensorless adaptive optics for retinal imaging

    PubMed Central

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T.O.; He, Zheng; Metha, Andrew

    2015-01-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes. PMID:26417525

  1. Study of chromatic adaptation via neutral white matches on different viewing media.

    PubMed

    Zhai, Qiyan; Luo, Ming R

    2018-03-19

    Two experiments were carried out to study the neutral white and the chromatic adaptation in human vision and color science. After matching neutral whites under different illuminants using both surface and self-luminous colors, the result were used to verify the previous study about the chromatic adaptation. Not all the white illuminants were found neutral even the adaptation time is long. The baseline illuminant of the two-step chromatic adaptation transform was found as the illuminant with the same chromaticity of the neutral white under it and depended on viewing medium in the present study. The results were also used as corresponding colors to derive models of the effective degree of chromatic adaptation, which were found highly associated with the chromaticity of the adapting illuminant.

  2. Real-Time, Single-Step Bioassay Using Nanoplasmonic Resonator With Ultra-High Sensitivity

    NASA Technical Reports Server (NTRS)

    Zhang, Xiang (Inventor); Chen, Fanqing Frank (Inventor); Su, Kai-Hang (Inventor); Wei, Qi-Huo (Inventor); Ellman, Jonathan A. (Inventor); Sun, Cheng (Inventor)

    2014-01-01

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  3. Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity

    DOEpatents

    Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng

    2014-04-01

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  4. Adaptive goal setting and financial incentives: a 2 × 2 factorial randomized controlled trial to increase adults' physical activity.

    PubMed

    Adams, Marc A; Hurley, Jane C; Todd, Michael; Bhuiyan, Nishat; Jarrett, Catherine L; Tucker, Wesley J; Hollingshead, Kevin E; Angadi, Siddhartha S

    2017-03-29

    Emerging interventions that rely on and harness variability in behavior to adapt to individual performance over time may outperform interventions that prescribe static goals (e.g., 10,000 steps/day). The purpose of this factorial trial was to compare adaptive vs. static goal setting and immediate vs. delayed, non-contingent financial rewards for increasing free-living physical activity (PA). A 4-month 2 × 2 factorial randomized controlled trial tested main effects for goal setting (adaptive vs. static goals) and rewards (immediate vs. delayed) and interactions between factors to increase steps/day as measured by a Fitbit Zip. Moderate-to-vigorous PA (MVPA) minutes/day was examined as a secondary outcome. Participants (N = 96) were mainly female (77%), aged 41 ± 9.5 years, and all were insufficiently active and overweight/obese (mean BMI = 34.1 ± 6.2). Participants across all groups increased by 2389 steps/day on average from baseline to intervention phase (p < .001). Participants receiving static goals showed a stronger increase in steps per day from baseline phase to intervention phase (2630 steps/day) than those receiving adaptive goals (2149 steps/day; difference = 482 steps/day, p = .095). Participants receiving immediate rewards showed stronger improvement (2762 step/day increase) from baseline to intervention phase than those receiving delayed rewards (2016 steps/day increase; difference = 746 steps/day, p = .009). However, the adaptive goals group showed a slower decrease in steps/day from the beginning of the intervention phase to the end of the intervention phase (i.e. less than half the rate) compared to the static goals group (-7.7 steps vs. -18.3 steps each day; difference = 10.7 steps/day, p < .001) resulting in better improvements for the adaptive goals group by study end. Rate of change over the intervention phase did not differ between reward groups. Significant goal phase x goal setting x reward interactions were

  5. Effects of Turbulence Model and Numerical Time Steps on Von Karman Flow Behavior and Drag Accuracy of Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Amalia, E.; Moelyadi, M. A.; Ihsan, M.

    2018-04-01

    The flow of air passing around a circular cylinder on the Reynolds number of 250,000 is to show Von Karman Vortex Street Phenomenon. This phenomenon was captured well by using a right turbulence model. In this study, some turbulence models available in software ANSYS Fluent 16.0 was tested to simulate Von Karman vortex street phenomenon, namely k- epsilon, SST k-omega and Reynolds Stress, Detached Eddy Simulation (DES), and Large Eddy Simulation (LES). In addition, it was examined the effect of time step size on the accuracy of CFD simulation. The simulations are carried out by using two-dimensional and three- dimensional models and then compared with experimental data. For two-dimensional model, Von Karman Vortex Street phenomenon was captured successfully by using the SST k-omega turbulence model. As for the three-dimensional model, Von Karman Vortex Street phenomenon was captured by using Reynolds Stress Turbulence Model. The time step size value affects the smoothness quality of curves of drag coefficient over time, as well as affecting the running time of the simulation. The smaller time step size, the better inherent drag coefficient curves produced. Smaller time step size also gives faster computation time.

  6. Sustainability of the whole-community project '10,000 Steps': a longitudinal study.

    PubMed

    Van Acker, Ragnar; De Bourdeaudhuij, Ilse; De Cocker, Katrien; Klesges, Lisa M; Willem, Annick; Cardon, Greet

    2012-03-05

    In the dissemination and implementation literature, there is a dearth of information on the sustainability of community-wide physical activity (PA) programs in general and of the '10,000 Steps' project in particular. This paper reports a longitudinal evaluation of organizational and individual sustainability indicators of '10,000 Steps'. Among project adopters, department heads of 24 public services were surveyed 1.5 years after initially reported project implementation to assess continuation, institutionalization, sustained implementation of intervention components, and adaptations. Barriers and facilitators of project sustainability were explored. Citizens (n = 483) living near the adopting organizations were interviewed to measure maintenance of PA differences between citizens aware and unaware of '10,000 Steps'. Independent-samples t, Mann-Whitney U, and chi-square tests were used to compare organizations for representativeness and individual PA differences. Of all organizations, 50% continued '10,000 Steps' (mostly in cycles) and continuation was independent of organizational characteristics. Level of intervention institutionalization was low to moderate on evaluations of routinization and moderate for project saturation. The global implementation score (58%) remained stable and three of nine project components were continued by less than half of organizations (posters, street signs and variants, personalized contact). Considerable independent adaptations of the project were reported (e.g. campaign image). Citizens aware of '10,000 Steps' remained more active during leisure time than those unaware (227 ± 235 and 176 ± 198 min/week, respectively; t = -2.6; p < .05), and reported more household-related (464 ± 397 and 389 ± 346 min/week, respectively; t = -2.2; p < .05) and moderate-intensity-PA (664 ± 424 and 586 ± 408 min/week, respectively; t = -2.0; p < .05). Facilitators of project sustainability included an organizational leader supporting the project

  7. Sustainability of the whole-community project '10,000 Steps': a longitudinal study

    PubMed Central

    2012-01-01

    Background In the dissemination and implementation literature, there is a dearth of information on the sustainability of community-wide physical activity (PA) programs in general and of the '10,000 Steps' project in particular. This paper reports a longitudinal evaluation of organizational and individual sustainability indicators of '10,000 Steps'. Methods Among project adopters, department heads of 24 public services were surveyed 1.5 years after initially reported project implementation to assess continuation, institutionalization, sustained implementation of intervention components, and adaptations. Barriers and facilitators of project sustainability were explored. Citizens (n = 483) living near the adopting organizations were interviewed to measure maintenance of PA differences between citizens aware and unaware of '10,000 Steps'. Independent-samples t, Mann-Whitney U, and chi-square tests were used to compare organizations for representativeness and individual PA differences. Results Of all organizations, 50% continued '10,000 Steps' (mostly in cycles) and continuation was independent of organizational characteristics. Level of intervention institutionalization was low to moderate on evaluations of routinization and moderate for project saturation. The global implementation score (58%) remained stable and three of nine project components were continued by less than half of organizations (posters, street signs and variants, personalized contact). Considerable independent adaptations of the project were reported (e.g. campaign image). Citizens aware of '10,000 Steps' remained more active during leisure time than those unaware (227 ± 235 and 176 ± 198 min/week, respectively; t = -2.6; p < .05), and reported more household-related (464 ± 397 and 389 ± 346 min/week, respectively; t = -2.2; p < .05) and moderate-intensity-PA (664 ± 424 and 586 ± 408 min/week, respectively; t = -2.0; p < .05). Facilitators of project sustainability included an organizational

  8. THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignone, A.; Tzeferacos, P.; Zanni, C.

    We present a description of the adaptive mesh refinement (AMR) implementation of the PLUTO code for solving the equations of classical and special relativistic magnetohydrodynamics (MHD and RMHD). The current release exploits, in addition to the static grid version of the code, the distributed infrastructure of the CHOMBO library for multidimensional parallel computations over block-structured, adaptively refined grids. We employ a conservative finite-volume approach where primary flow quantities are discretized at the cell center in a dimensionally unsplit fashion using the Corner Transport Upwind method. Time stepping relies on a characteristic tracing step where piecewise parabolic method, weighted essentially non-oscillatory,more » or slope-limited linear interpolation schemes can be handily adopted. A characteristic decomposition-free version of the scheme is also illustrated. The solenoidal condition of the magnetic field is enforced by augmenting the equations with a generalized Lagrange multiplier providing propagation and damping of divergence errors through a mixed hyperbolic/parabolic explicit cleaning step. Among the novel features, we describe an extension of the scheme to include non-ideal dissipative processes, such as viscosity, resistivity, and anisotropic thermal conduction without operator splitting. Finally, we illustrate an efficient treatment of point-local, potentially stiff source terms over hierarchical nested grids by taking advantage of the adaptivity in time. Several multidimensional benchmarks and applications to problems of astrophysical relevance assess the potentiality of the AMR version of PLUTO in resolving flow features separated by large spatial and temporal disparities.« less

  9. Real-Time Robust Adaptive Modeling and Scheduling for an Electronic Commerce Server

    NASA Astrophysics Data System (ADS)

    Du, Bing; Ruan, Chun

    With the increasing importance and pervasiveness of Internet services, it is becoming a challenge for the proliferation of electronic commerce services to provide performance guarantees under extreme overload. This paper describes a real-time optimization modeling and scheduling approach for performance guarantee of electronic commerce servers. We show that an electronic commerce server may be simulated as a multi-tank system. A robust adaptive server model is subject to unknown additive load disturbances and uncertain model matching. Overload control techniques are based on adaptive admission control to achieve timing guarantees. We evaluate the performance of the model using a complex simulation that is subjected to varying model parameters and massive overload.

  10. Step styles of pedestrians at different densities

    NASA Astrophysics Data System (ADS)

    Wang, Jiayue; Weng, Wenguo; Boltes, Maik; Zhang, Jun; Tordeux, Antoine; Ziemer, Verena

    2018-02-01

    Stepping locomotion is the basis of human movement. The investigation of stepping locomotion and its affecting factors is necessary for a more realistic knowledge of human movement, which is usually referred to as walking with equal step lengths for the right and left leg. To study pedestrians’ stepping locomotion, a set of single-file movement experiments involving 39 participants of the same age walking on a highly curved oval course is conducted. The microscopic characteristics of the pedestrians including 1D Voronoi density, speed, and step length are calculated based on a projected coordinate. The influence of the projection lines with different radii on the measurement of these quantities is investigated. The step lengths from the straight and curved parts are compared using the Kolmogorov-Smirnov test. During the experiments, six different step styles are observed and the proportions of different step styles change with the density. At low density, the main step style is the stable-large step style and the step lengths of one pedestrian are almost constant. At high density, some pedestrians adjust and decrease their step lengths. Some pedestrians take relatively smaller and larger steps alternately to adapt to limited space.

  11. Effects of Differentially Time-Consuming Tests on Computer-Adaptive Test Scores

    ERIC Educational Resources Information Center

    Bridgeman, Brent; Cline, Frederick

    2004-01-01

    Time limits on some computer-adaptive tests (CATs) are such that many examinees have difficulty finishing, and some examinees may be administered tests with more time-consuming items than others. Results from over 100,000 examinees suggested that about half of the examinees must guess on the final six questions of the analytical section of the…

  12. The Potential of Adaptive Design in Animal Studies.

    PubMed

    Majid, Arshad; Bae, Ok-Nam; Redgrave, Jessica; Teare, Dawn; Ali, Ali; Zemke, Daniel

    2015-10-12

    Clinical trials are the backbone of medical research, and are often the last step in the development of new therapies for use in patients. Prior to human testing, however, preclinical studies using animal subjects are usually performed in order to provide initial data on the safety and effectiveness of prospective treatments. These studies can be costly and time consuming, and may also raise concerns about the ethical treatment of animals when potentially harmful procedures are involved. Adaptive design is a process by which the methods used in a study may be altered while it is being conducted in response to preliminary data or other new information. Adaptive design has been shown to be useful in reducing the time and costs associated with clinical trials, and may provide similar benefits in preclinical animal studies. The purpose of this review is to summarize various aspects of adaptive design and evaluate its potential for use in preclinical research.

  13. The Potential of Adaptive Design in Animal Studies

    PubMed Central

    Majid, Arshad; Bae, Ok-Nam; Redgrave, Jessica; Teare, Dawn; Ali, Ali; Zemke, Daniel

    2015-01-01

    Clinical trials are the backbone of medical research, and are often the last step in the development of new therapies for use in patients. Prior to human testing, however, preclinical studies using animal subjects are usually performed in order to provide initial data on the safety and effectiveness of prospective treatments. These studies can be costly and time consuming, and may also raise concerns about the ethical treatment of animals when potentially harmful procedures are involved. Adaptive design is a process by which the methods used in a study may be altered while it is being conducted in response to preliminary data or other new information. Adaptive design has been shown to be useful in reducing the time and costs associated with clinical trials, and may provide similar benefits in preclinical animal studies. The purpose of this review is to summarize various aspects of adaptive design and evaluate its potential for use in preclinical research. PMID:26473839

  14. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  15. Two-step relaxation mode analysis with multiple evolution times applied to all-atom molecular dynamics protein simulation.

    PubMed

    Karasawa, N; Mitsutake, A; Takano, H

    2017-12-01

    Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n]polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μs molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.

  16. Two-step relaxation mode analysis with multiple evolution times applied to all-atom molecular dynamics protein simulation

    NASA Astrophysics Data System (ADS)

    Karasawa, N.; Mitsutake, A.; Takano, H.

    2017-12-01

    Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n ] polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μ s molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.

  17. Prism adaptation and generalization during visually guided locomotor tasks.

    PubMed

    Alexander, M Scott; Flodin, Brent W G; Marigold, Daniel S

    2011-08-01

    The ability of individuals to adapt locomotion to constraints associated with the complex environments normally encountered in everyday life is paramount for survival. Here, we tested the ability of 24 healthy young adults to adapt to a rightward prism shift (∼11.3°) while either walking and stepping to targets (i.e., precision stepping task) or stepping over an obstacle (i.e., obstacle avoidance task). We subsequently tested for generalization to the other locomotor task. In the precision stepping task, we determined the lateral end-point error of foot placement from the targets. In the obstacle avoidance task, we determined toe clearance and lateral foot placement distance from the obstacle before and after stepping over the obstacle. We found large, rightward deviations in foot placement on initial exposure to prisms in both tasks. The majority of measures demonstrated adaptation over repeated trials, and adaptation rates were dependent mainly on the task. On removal of the prisms, we observed negative aftereffects for measures of both tasks. Additionally, we found a unilateral symmetric generalization pattern in that the left, but not the right, lower limb indicated generalization across the 2 locomotor tasks. These results indicate that the nervous system is capable of rapidly adapting to a visuomotor mismatch during visually demanding locomotor tasks and that the prism-induced adaptation can, at least partially, generalize across these tasks. The results also support the notion that the nervous system utilizes an internal model for the control of visually guided locomotion.

  18. Adaptive temporal refinement in injection molding

    NASA Astrophysics Data System (ADS)

    Karyofylli, Violeta; Schmitz, Mauritius; Hopmann, Christian; Behr, Marek

    2018-05-01

    Mold filling is an injection molding stage of great significance, because many defects of the plastic components (e.g. weld lines, burrs or insufficient filling) can occur during this process step. Therefore, it plays an important role in determining the quality of the produced parts. Our goal is the temporal refinement in the vicinity of the evolving melt front, in the context of 4D simplex-type space-time grids [1, 2]. This novel discretization method has an inherent flexibility to employ completely unstructured meshes with varying levels of resolution both in spatial dimensions and in the time dimension, thus allowing the use of local time-stepping during the simulations. This can lead to a higher simulation precision, while preserving calculation efficiency. A 3D benchmark case, which concerns the filling of a plate-shaped geometry, is used for verifying our numerical approach [3]. The simulation results obtained with the fully unstructured space-time discretization are compared to those obtained with the standard space-time method and to Moldflow simulation results. This example also serves for providing reliable timing measurements and the efficiency aspects of the filling simulation of complex 3D molds while applying adaptive temporal refinement.

  19. Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction

    NASA Astrophysics Data System (ADS)

    Kavetski, Dmitri; Clark, Martyn P.

    2010-10-01

    Despite the widespread use of conceptual hydrological models in environmental research and operations, they remain frequently implemented using numerically unreliable methods. This paper considers the impact of the time stepping scheme on model analysis (sensitivity analysis, parameter optimization, and Markov chain Monte Carlo-based uncertainty estimation) and prediction. It builds on the companion paper (Clark and Kavetski, 2010), which focused on numerical accuracy, fidelity, and computational efficiency. Empirical and theoretical analysis of eight distinct time stepping schemes for six different hydrological models in 13 diverse basins demonstrates several critical conclusions. (1) Unreliable time stepping schemes, in particular, fixed-step explicit methods, suffer from troublesome numerical artifacts that severely deform the objective function of the model. These deformations are not rare isolated instances but can arise in any model structure, in any catchment, and under common hydroclimatic conditions. (2) Sensitivity analysis can be severely contaminated by numerical errors, often to the extent that it becomes dominated by the sensitivity of truncation errors rather than the model equations. (3) Robust time stepping schemes generally produce "better behaved" objective functions, free of spurious local optima, and with sufficient numerical continuity to permit parameter optimization using efficient quasi Newton methods. When implemented within a multistart framework, modern Newton-type optimizers are robust even when started far from the optima and provide valuable diagnostic insights not directly available from evolutionary global optimizers. (4) Unreliable time stepping schemes lead to inconsistent and biased inferences of the model parameters and internal states. (5) Even when interactions between hydrological parameters and numerical errors provide "the right result for the wrong reason" and the calibrated model performance appears adequate, unreliable

  20. Retraining walking adaptability following incomplete spinal cord injury.

    PubMed

    Fox, Emily J; Tester, Nicole J; Butera, Katie A; Howland, Dena R; Spiess, Martina R; Castro-Chapman, Paula L; Behrman, Andrea L

    2017-01-01

    Functional walking requires the ability to modify one's gait pattern to environmental demands and task goals-gait adaptability. Following incomplete spinal cord injury (ISCI), gait rehabilitation such as locomotor training (Basic-LT) emphasizes intense, repetitive stepping practice. Rehabilitation approaches focusing on practice of gait adaptability tasks have not been established for individuals with ISCIs but may promote recovery of higher level walking skills. The primary purpose of this case series was to describe and determine the feasibility of administering a gait adaptability retraining approach-Adapt-LT-by comparing the dose and intensity of Adapt-LT to Basic-LT. Three individuals with ISCIs (>1 year, AIS C or D) completed three weeks each (15 sessions) of Basic-LT and Adapt-LT. Interventions included practice on a treadmill with body weight support and practice overground (≥30 mins total). Adapt-LT focused on speed changes, obstacle negotiation, and backward walking. Training parameters (step counts, speeds, perceived exertion) were compared and outcomes assessed pre and post interventions. Based on completion of the protocol and similarities in training parameters in the two interventions, it was feasible to administer Adapt-LT with a similar dosage and intensity as Basic-LT. Additionally, the participants demonstrated gains in walking function and balance following each training type. Rehabilitation that includes stepping practice with adaptability tasks is feasible for individuals with ISCIs. Further investigation is needed to determine the efficacy of Adapt-LT.

  1. Leap Frog and Time Step Sub-Cycle Scheme for Coupled Neutronics and Thermal-Hydraulic Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.

    2002-07-01

    As the result of the advancing TCP/IP based inter-process communication technology, more and more legacy thermal-hydraulic codes have been coupled with neutronics codes to provide best-estimate capabilities for reactivity related reactor transient analysis. Most of the coupling schemes are based on closely coupled serial or parallel approaches. Therefore, the execution of the coupled codes usually requires significant CPU time, when a complicated system is analyzed. Leap Frog scheme has been used to reduce the run time. The extent of the decoupling is usually determined based on a trial and error process for a specific analysis. It is the intent ofmore » this paper to develop a set of general criteria, which can be used to invoke the automatic Leap Frog algorithm. The algorithm will not only provide the run time reduction but also preserve the accuracy. The criteria will also serve as the base of an automatic time step sub-cycle scheme when a sudden reactivity change is introduced and the thermal-hydraulic code is marching with a relatively large time step. (authors)« less

  2. Piecing together the puzzle: Improving event content coverage for real-time sub-event detection using adaptive microblog crawling

    PubMed Central

    Tokarchuk, Laurissa; Wang, Xinyue; Poslad, Stefan

    2017-01-01

    In an age when people are predisposed to report real-world events through their social media accounts, many researchers value the benefits of mining user generated content from social media. Compared with the traditional news media, social media services, such as Twitter, can provide more complete and timely information about the real-world events. However events are often like a puzzle and in order to solve the puzzle/understand the event, we must identify all the sub-events or pieces. Existing Twitter event monitoring systems for sub-event detection and summarization currently typically analyse events based on partial data as conventional data collection methodologies are unable to collect comprehensive event data. This results in existing systems often being unable to report sub-events in real-time and often in completely missing sub-events or pieces in the broader event puzzle. This paper proposes a Sub-event detection by real-TIme Microblog monitoring (STRIM) framework that leverages the temporal feature of an expanded set of news-worthy event content. In order to more comprehensively and accurately identify sub-events this framework first proposes the use of adaptive microblog crawling. Our adaptive microblog crawler is capable of increasing the coverage of events while minimizing the amount of non-relevant content. We then propose a stream division methodology that can be accomplished in real time so that the temporal features of the expanded event streams can be analysed by a burst detection algorithm. In the final steps of the framework, the content features are extracted from each divided stream and recombined to provide a final summarization of the sub-events. The proposed framework is evaluated against traditional event detection using event recall and event precision metrics. Results show that improving the quality and coverage of event contents contribute to better event detection by identifying additional valid sub-events. The novel combination of

  3. Piecing together the puzzle: Improving event content coverage for real-time sub-event detection using adaptive microblog crawling.

    PubMed

    Tokarchuk, Laurissa; Wang, Xinyue; Poslad, Stefan

    2017-01-01

    In an age when people are predisposed to report real-world events through their social media accounts, many researchers value the benefits of mining user generated content from social media. Compared with the traditional news media, social media services, such as Twitter, can provide more complete and timely information about the real-world events. However events are often like a puzzle and in order to solve the puzzle/understand the event, we must identify all the sub-events or pieces. Existing Twitter event monitoring systems for sub-event detection and summarization currently typically analyse events based on partial data as conventional data collection methodologies are unable to collect comprehensive event data. This results in existing systems often being unable to report sub-events in real-time and often in completely missing sub-events or pieces in the broader event puzzle. This paper proposes a Sub-event detection by real-TIme Microblog monitoring (STRIM) framework that leverages the temporal feature of an expanded set of news-worthy event content. In order to more comprehensively and accurately identify sub-events this framework first proposes the use of adaptive microblog crawling. Our adaptive microblog crawler is capable of increasing the coverage of events while minimizing the amount of non-relevant content. We then propose a stream division methodology that can be accomplished in real time so that the temporal features of the expanded event streams can be analysed by a burst detection algorithm. In the final steps of the framework, the content features are extracted from each divided stream and recombined to provide a final summarization of the sub-events. The proposed framework is evaluated against traditional event detection using event recall and event precision metrics. Results show that improving the quality and coverage of event contents contribute to better event detection by identifying additional valid sub-events. The novel combination of

  4. Development of a time-dependent incompressible Navier-Stokes solver based on a fractional-step method

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Moshe

    1990-01-01

    The main goals are the development, validation, and application of a fractional step solution method of the time-dependent incompressible Navier-Stokes equations in generalized coordinate systems. A solution method that combines a finite volume discretization with a novel choice of the dependent variables and a fractional step splitting to obtain accurate solutions in arbitrary geometries is extended to include more general situations, including cases with moving grids. The numerical techniques are enhanced to gain efficiency and generality.

  5. Scalable explicit implementation of anisotropic diffusion with Runge-Kutta-Legendre super-time stepping

    NASA Astrophysics Data System (ADS)

    Vaidya, Bhargav; Prasad, Deovrat; Mignone, Andrea; Sharma, Prateek; Rickler, Luca

    2017-12-01

    An important ingredient in numerical modelling of high temperature magnetized astrophysical plasmas is the anisotropic transport of heat along magnetic field lines from higher to lower temperatures. Magnetohydrodynamics typically involves solving the hyperbolic set of conservation equations along with the induction equation. Incorporating anisotropic thermal conduction requires to also treat parabolic terms arising from the diffusion operator. An explicit treatment of parabolic terms will considerably reduce the simulation time step due to its dependence on the square of the grid resolution (Δx) for stability. Although an implicit scheme relaxes the constraint on stability, it is difficult to distribute efficiently on a parallel architecture. Treating parabolic terms with accelerated super-time-stepping (STS) methods has been discussed in literature, but these methods suffer from poor accuracy (first order in time) and also have difficult-to-choose tuneable stability parameters. In this work, we highlight a second-order (in time) Runge-Kutta-Legendre (RKL) scheme (first described by Meyer, Balsara & Aslam 2012) that is robust, fast and accurate in treating parabolic terms alongside the hyperbolic conversation laws. We demonstrate its superiority over the first-order STS schemes with standard tests and astrophysical applications. We also show that explicit conduction is particularly robust in handling saturated thermal conduction. Parallel scaling of explicit conduction using RKL scheme is demonstrated up to more than 104 processors.

  6. Diversity and disparity through time in the adaptive radiation of Antarctic notothenioid fishes.

    PubMed

    Colombo, M; Damerau, M; Hanel, R; Salzburger, W; Matschiner, M

    2015-02-01

    According to theory, adaptive radiation is triggered by ecological opportunity that can arise through the colonization of new habitats, the extinction of antagonists or the origin of key innovations. In the course of an adaptive radiation, diversification and morphological evolution are expected to slow down after an initial phase of rapid adaptation to vacant ecological niches, followed by speciation. Such 'early bursts' of diversification are thought to occur because niche space becomes increasingly filled over time. The diversification of Antarctic notothenioid fishes into over 120 species has become one of the prime examples of adaptive radiation in the marine realm and has likely been triggered by an evolutionary key innovation in the form of the emergence of antifreeze glycoproteins. Here, we test, using a novel time-calibrated phylogeny of 49 species and five traits that characterize notothenioid body size and shape as well as buoyancy adaptations and habitat preferences, whether the notothenioid adaptive radiation is compatible with an early burst scenario. Extensive Bayesian model comparison shows that phylogenetic age estimates are highly dependent on model choice and that models with unlinked gene trees are generally better supported and result in younger age estimates. We find strong evidence for elevated diversification rates in Antarctic notothenioids compared to outgroups, yet no sign of rate heterogeneity in the course of the radiation, except that the notothenioid family Artedidraconidae appears to show secondarily elevated diversification rates. We further observe an early burst in trophic morphology, suggesting that the notothenioid radiation proceeds in stages similar to other prominent examples of adaptive radiation. © 2014 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  7. The genomic basis of circadian and circalunar timing adaptations in a midge.

    PubMed

    Kaiser, Tobias S; Poehn, Birgit; Szkiba, David; Preussner, Marco; Sedlazeck, Fritz J; Zrim, Alexander; Neumann, Tobias; Nguyen, Lam-Tung; Betancourt, Andrea J; Hummel, Thomas; Vogel, Heiko; Dorner, Silke; Heyd, Florian; von Haeseler, Arndt; Tessmar-Raible, Kristin

    2016-12-01

    Organisms use endogenous clocks to anticipate regular environmental cycles, such as days and tides. Natural variants resulting in differently timed behaviour or physiology, known as chronotypes in humans, have not been well characterized at the molecular level. We sequenced the genome of Clunio marinus, a marine midge whose reproduction is timed by circadian and circalunar clocks. Midges from different locations show strain-specific genetic timing adaptations. We examined genetic variation in five C. marinus strains from different locations and mapped quantitative trait loci for circalunar and circadian chronotypes. The region most strongly associated with circadian chronotypes generates strain-specific differences in the abundance of calcium/calmodulin-dependent kinase II.1 (CaMKII.1) splice variants. As equivalent variants were shown to alter CaMKII activity in Drosophila melanogaster, and C. marinus (Cma)-CaMKII.1 increases the transcriptional activity of the dimer of the circadian proteins Cma-CLOCK and Cma-CYCLE, we suggest that modulation of alternative splicing is a mechanism for natural adaptation in circadian timing.

  8. A methodological survey identified eight proposed frameworks for the adaptation of health related guidelines.

    PubMed

    Darzi, Andrea; Abou-Jaoude, Elias A; Agarwal, Arnav; Lakis, Chantal; Wiercioch, Wojtek; Santesso, Nancy; Brax, Hneine; El-Jardali, Fadi; Schünemann, Holger J; Akl, Elie A

    2017-06-01

    Our objective was to identify and describe published frameworks for adaptation of clinical, public health, and health services guidelines. We included reports describing methods of adaptation of guidelines in sufficient detail to allow its reproducibility. We searched Medline and EMBASE databases. We also searched personal files, as well manuals and handbooks of organizations and professional societies that proposed methods of adaptation and adoption of guidelines. We followed standard systematic review methodology. Our search captured 12,021 citations, out of which we identified eight proposed methods of guidelines adaptation: ADAPTE, Adapted ADAPTE, Alberta Ambassador Program adaptation phase, GRADE-ADOLOPMENT, MAGIC, RAPADAPTE, Royal College of Nursing (RCN), and Systematic Guideline Review (SGR). The ADAPTE framework consists of a 24-step process to adapt guidelines to a local context taking into consideration the needs, priorities, legislation, policies, and resources. The Alexandria Center for Evidence-Based Clinical Practice Guidelines updated one of ADAPTE's tools, modified three tools, and added three new ones. In addition, they proposed optionally using three other tools. The Alberta Ambassador Program adaptation phase consists of 11 steps and focused on adapting good-quality guidelines for nonspecific low back pain into local context. GRADE-ADOLOPMENT is an eight-step process based on the GRADE Working Group's Evidence to Decision frameworks and applied in 22 guidelines in the context of national guideline development program. The MAGIC research program developed a five-step adaptation process, informed by ADAPTE and the GRADE approach in the context of adapting thrombosis guidelines. The RAPADAPTE framework consists of 12 steps based on ADAPTE and using synthesized evidence databases, retrospectively derived from the experience of producing a high-quality guideline for the treatment of breast cancer with limited resources in Costa Rica. The RCN outlines

  9. Discrete maximal regularity of time-stepping schemes for fractional evolution equations.

    PubMed

    Jin, Bangti; Li, Buyang; Zhou, Zhi

    2018-01-01

    In this work, we establish the maximal [Formula: see text]-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text], [Formula: see text], in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis (Math Ann 319:735-758, 2001. doi:10.1007/PL00004457) and its discrete analogue due to Blunck (Stud Math 146:157-176, 2001. doi:10.4064/sm146-2-3). These results generalize the corresponding results for parabolic problems.

  10. Piezoelectric step-motion actuator

    DOEpatents

    Mentesana,; Charles, P [Leawood, KS

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  11. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU.

    PubMed

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-03-11

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications.

  12. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU

    PubMed Central

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-01-01

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications. PMID:26978363

  13. Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties.

    PubMed

    Mofid, Omid; Mobayen, Saleh

    2018-01-01

    Adaptive control methods are developed for stability and tracking control of flight systems in the presence of parametric uncertainties. This paper offers a design technique of adaptive sliding mode control (ASMC) for finite-time stabilization of unmanned aerial vehicle (UAV) systems with parametric uncertainties. Applying the Lyapunov stability concept and finite-time convergence idea, the recommended control method guarantees that the states of the quad-rotor UAV are converged to the origin with a finite-time convergence rate. Furthermore, an adaptive-tuning scheme is advised to guesstimate the unknown parameters of the quad-rotor UAV at any moment. Finally, simulation results are presented to exhibit the helpfulness of the offered technique compared to the previous methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.

    PubMed

    Chen, Tien-Chi; Yu, Chih-Hsien

    2009-07-01

    A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.

  15. A novel adaptive finite time controller for bilateral teleoperation system

    NASA Astrophysics Data System (ADS)

    Wang, Ziwei; Chen, Zhang; Liang, Bin; Zhang, Bo

    2018-03-01

    Most bilateral teleoperation researches focus on the system stability within time-delays. However, practical teleoperation tasks require high performances besides system stability, such as convergence rate and accuracy. This paper investigates bilateral teleoperation controller design with transient performances. To ensure the transient performances and system stability simultaneously, an adaptive non-singular fast terminal mode controller is proposed to achieve practical finite-time stability considering system uncertainties and time delays. In addition, a novel switching scheme is introduced, in which way the singularity problem of conventional terminal sliding manifold is avoided. Finally, numerical simulations demonstrate the effectiveness and validity of the proposed method.

  16. An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, Jill M. A.; Ilie, Silvana, E-mail: silvana@ryerson.ca

    2016-03-15

    Stochastic modelling is critical for studying many biochemical processes in a cell, in particular when some reacting species have low population numbers. For many such cellular processes the spatial distribution of the molecular species plays a key role. The evolution of spatially heterogeneous biochemical systems with some species in low amounts is accurately described by the mesoscopic model of the Reaction-Diffusion Master Equation. The Inhomogeneous Stochastic Simulation Algorithm provides an exact strategy to numerically solve this model, but it is computationally very expensive on realistic applications. We propose a novel adaptive time-stepping scheme for the tau-leaping method for approximating themore » solution of the Reaction-Diffusion Master Equation. This technique combines effective strategies for variable time-stepping with path preservation to reduce the computational cost, while maintaining the desired accuracy. The numerical tests on various examples arising in applications show the improved efficiency achieved by the new adaptive method.« less

  17. Unique characteristics of motor adaptation during walking in young children.

    PubMed

    Musselman, Kristin E; Patrick, Susan K; Vasudevan, Erin V L; Bastian, Amy J; Yang, Jaynie F

    2011-05-01

    Children show precocious ability in the learning of languages; is this the case with motor learning? We used split-belt walking to probe motor adaptation (a form of motor learning) in children. Data from 27 children (ages 8-36 mo) were compared with those from 10 adults. Children walked with the treadmill belts at the same speed (tied belt), followed by walking with the belts moving at different speeds (split belt) for 8-10 min, followed again by tied-belt walking (postsplit). Initial asymmetries in temporal coordination (i.e., double support time) induced by split-belt walking were slowly reduced, with most children showing an aftereffect (i.e., asymmetry in the opposite direction to the initial) in the early postsplit period, indicative of learning. In contrast, asymmetries in spatial coordination (i.e., center of oscillation) persisted during split-belt walking and no aftereffect was seen. Step length, a measure of both spatial and temporal coordination, showed intermediate effects. The time course of learning in double support and step length was slower in children than in adults. Moreover, there was a significant negative correlation between the size of the initial asymmetry during early split-belt walking (called error) and the aftereffect for step length. Hence, children may have more difficulty learning when the errors are large. The findings further suggest that the mechanisms controlling temporal and spatial adaptation are different and mature at different times.

  18. Regulation of step frequency in transtibial amputee endurance athletes using a running-specific prosthesis.

    PubMed

    Oudenhoven, Laura M; Boes, Judith M; Hak, Laura; Faber, Gert S; Houdijk, Han

    2017-01-25

    Running specific prostheses (RSP) are designed to replicate the spring-like behaviour of the human leg during running, by incorporating a real physical spring in the prosthesis. Leg stiffness is an important parameter in running as it is strongly related to step frequency and running economy. To be able to select a prosthesis that contributes to the required leg stiffness of the athlete, it needs to be known to what extent the behaviour of the prosthetic leg during running is dominated by the stiffness of the prosthesis or whether it can be regulated by adaptations of the residual joints. The aim of this study was to investigate whether and how athletes with an RSP could regulate leg stiffness during distance running at different step frequencies. Seven endurance runners with an unilateral transtibial amputation performed five running trials on a treadmill at a fixed speed, while different step frequencies were imposed (preferred step frequency (PSF) and -15%, -7.5%, +7.5% and +15% of PSF). Among others, step time, ground contact time, flight time, leg stiffness and joint kinetics were measured for both legs. In the intact leg, increasing step frequency was accompanied by a decrease in both contact and flight time, while in the prosthetic leg contact time remained constant and only flight time decreased. In accordance, leg stiffness increased in the intact leg, but not in the prosthetic leg. Although a substantial contribution of the residual leg to total leg stiffness was observed, this contribution did not change considerably with changing step frequency. Amputee athletes do not seem to be able to alter prosthetic leg stiffness to regulate step frequency during running. This invariant behaviour indicates that RSP stiffness has a large effect on total leg stiffness and therefore can have an important influence on running performance. Nevertheless, since prosthetic leg stiffness was considerably lower than stiffness of the RSP, compliance of the residual leg should

  19. Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics

    NASA Astrophysics Data System (ADS)

    Guo, Qiang

    Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of

  20. A two-hop based adaptive routing protocol for real-time wireless sensor networks.

    PubMed

    Rachamalla, Sandhya; Kancherla, Anitha Sheela

    2016-01-01

    One of the most important and challenging issues in wireless sensor networks (WSNs) is to optimally manage the limited energy of nodes without degrading the routing efficiency. In this paper, we propose an energy-efficient adaptive routing mechanism for WSNs, which saves energy of nodes by removing the much delayed packets without degrading the real-time performance of the used routing protocol. It uses the adaptive transmission power algorithm which is based on the attenuation of the wireless link to improve the energy efficiency. The proposed routing mechanism can be associated with any geographic routing protocol and its performance is evaluated by integrating with the well known two-hop based real-time routing protocol, PATH and the resulting protocol is energy-efficient adaptive routing protocol (EE-ARP). The EE-ARP performs well in terms of energy consumption, deadline miss ratio, packet drop and end-to-end delay.

  1. Real-time real-sky dual-conjugate adaptive optics experiment

    NASA Astrophysics Data System (ADS)

    Knutsson, Per; Owner-Petersen, Mette

    2006-06-01

    The current status of a real-time real-sky dual-conjugate adaptive optics experiment is presented. This experiment is a follow-up on a lab experiment at Lund Observatory that demonstrated dual-conjugate adaptive optics on a static atmosphere. The setup is to be placed at Lund Observatory. This means that the setup will be available 24h a day and does not have to share time with other instruments. The optical design of the experiment is finalized. A siderostat will be used to track the guide object and all other optical components are placed on an optical table. A small telescope, 35 cm aperture, is used and following this a tip-tilt mirror and two deformable mirrors are placed. The wave-front sensor is a Shack-Hartmann sensor using a SciMeasure Li'l Joe CCD39 camera system. The maximum update rate of the setup will be 0.5 kHz and the control system will be running under Linux. The effective wavelength will be 750 nm. All components in the setup have been acquired and the completion of the setup is underway. Collaborating partners in this project are the Applied Optics Group at National University of Ireland, Galway and the Swedish Defense Research Agency.

  2. Real time optimization algorithm for wavefront sensorless adaptive optics OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel J.; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Sarunic, Marinko V.; Verhaegen, Michel; Jian, Yifan

    2017-02-01

    Optical Coherence Tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. A limitation of the performance and utilization of the OCT systems has been the lateral resolution. Through the combination of wavefront sensorless adaptive optics with dual variable optical elements, we present a compact lens based OCT system that is capable of imaging the photoreceptor mosaic. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient eyes, and a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators for aberration correction to obtain near diffraction limited imaging at the retina. A parallel processing computational platform permitted real-time image acquisition and display. The Data-based Online Nonlinear Extremum seeker (DONE) algorithm was used for real time optimization of the wavefront sensorless adaptive optics OCT, and the performance was compared with a coordinate search algorithm. Cross sectional images of the retinal layers and en face images of the cone photoreceptor mosaic acquired in vivo from research volunteers before and after WSAO optimization are presented. Applying the DONE algorithm in vivo for wavefront sensorless AO-OCT demonstrates that the DONE algorithm succeeds in drastically improving the signal while achieving a computational time of 1 ms per iteration, making it applicable for high speed real time applications.

  3. Online adaptive optimal control for continuous-time nonlinear systems with completely unknown dynamics

    NASA Astrophysics Data System (ADS)

    Lv, Yongfeng; Na, Jing; Yang, Qinmin; Wu, Xing; Guo, Yu

    2016-01-01

    An online adaptive optimal control is proposed for continuous-time nonlinear systems with completely unknown dynamics, which is achieved by developing a novel identifier-critic-based approximate dynamic programming algorithm with a dual neural network (NN) approximation structure. First, an adaptive NN identifier is designed to obviate the requirement of complete knowledge of system dynamics, and a critic NN is employed to approximate the optimal value function. Then, the optimal control law is computed based on the information from the identifier NN and the critic NN, so that the actor NN is not needed. In particular, a novel adaptive law design method with the parameter estimation error is proposed to online update the weights of both identifier NN and critic NN simultaneously, which converge to small neighbourhoods around their ideal values. The closed-loop system stability and the convergence to small vicinity around the optimal solution are all proved by means of the Lyapunov theory. The proposed adaptation algorithm is also improved to achieve finite-time convergence of the NN weights. Finally, simulation results are provided to exemplify the efficacy of the proposed methods.

  4. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.

    PubMed

    Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J

    2009-11-28

    In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.

  5. Prisms to travel in time: Investigation of time-space association through prismatic adaptation effect on mental time travel.

    PubMed

    Anelli, Filomena; Ciaramelli, Elisa; Arzy, Shahar; Frassinetti, Francesca

    2016-11-01

    Accumulating evidence suggests that humans process time and space in similar veins. Humans represent time along a spatial continuum, and perception of temporal durations can be altered through manipulations of spatial attention by prismatic adaptation (PA). Here, we investigated whether PA-induced manipulations of spatial attention can also influence more conceptual aspects of time, such as humans' ability to travel mentally back and forward in time (mental time travel, MTT). Before and after leftward- and rightward-PA, participants projected themselves in the past, present or future time (i.e., self-projection), and, for each condition, determined whether a series of events were located in the past or the future with respect to that specific self-location in time (i.e., self-reference). The results demonstrated that leftward and rightward shifts of spatial attention facilitated recognition of past and future events, respectively. These findings suggest that spatial attention affects the temporal processing of the human self. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A spectral radius scaling semi-implicit iterative time stepping method for reactive flow simulations with detailed chemistry

    NASA Astrophysics Data System (ADS)

    Xie, Qing; Xiao, Zhixiang; Ren, Zhuyin

    2018-09-01

    A spectral radius scaling semi-implicit time stepping scheme has been developed for simulating unsteady compressible reactive flows with detailed chemistry, in which the spectral radius in the LUSGS scheme has been augmented to account for viscous/diffusive and reactive terms and a scalar matrix is proposed to approximate the chemical Jacobian using the minimum species destruction timescale. The performance of the semi-implicit scheme, together with a third-order explicit Runge-Kutta scheme and a Strang splitting scheme, have been investigated in auto-ignition and laminar premixed and nonpremixed flames of three representative fuels, e.g., hydrogen, methane, and n-heptane. Results show that the minimum species destruction time scale can well represent the smallest chemical time scale in reactive flows and the proposed scheme can significantly increase the allowable time steps in simulations. The scheme is stable when the time step is as large as 10 μs, which is about three to five orders of magnitude larger than the smallest time scales in various tests considered. For the test flames considered, the semi-implicit scheme achieves second order of accuracy in time. Moreover, the errors in quantities of interest are smaller than those from the Strang splitting scheme indicating the accuracy gain when the reaction and transport terms are solved coupled. Results also show that the relative efficiency of different schemes depends on fuel mechanisms and test flames. When the minimum time scale in reactive flows is governed by transport processes instead of chemical reactions, the proposed semi-implicit scheme is more efficient than the splitting scheme. Otherwise, the relative efficiency depends on the cost in sub-iterations for convergence within each time step and in the integration for chemistry substep. Then, the capability of the compressible reacting flow solver and the proposed semi-implicit scheme is demonstrated for capturing the hydrogen detonation waves

  7. Transfer effects of step training on stepping performance in untrained directions in older adults: A randomized controlled trial.

    PubMed

    Okubo, Yoshiro; Menant, Jasmine; Udyavar, Manasa; Brodie, Matthew A; Barry, Benjamin K; Lord, Stephen R; L Sturnieks, Daina

    2017-05-01

    Although step training improves the ability of quick stepping, some home-based step training systems train limited stepping directions and may cause harm by reducing stepping performance in untrained directions. This study examines the possible transfer effects of step training on stepping performance in untrained directions in older people. Fifty four older adults were randomized into: forward step training (FT); lateral plus forward step training (FLT); or no training (NT) groups. FT and FLT participants undertook a 15-min training session involving 200 step repetitions. Prior to and post training, choice stepping reaction time and stepping kinematics in untrained, diagonal and lateral directions were assessed. Significant interactions of group and time (pre/post-assessment) were evident for the first step after training indicating negative (delayed response time) and positive (faster peak stepping speed) transfer effects in the diagonal direction in the FT group. However, when the second to the fifth steps after training were included in the analysis, there were no significant interactions of group and time for measures in the diagonal stepping direction. Step training only in the forward direction improved stepping speed but may acutely slow response times in the untrained diagonal direction. However, this acute effect appears to dissipate after a few repeated step trials. Step training in both forward and lateral directions appears to induce no negative transfer effects in diagonal stepping. These findings suggest home-based step training systems present low risk of harm through negative transfer effects in untrained stepping directions. ANZCTR 369066. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Comparison of step-by-step kinematics in repeated 30m sprints in female soccer players.

    PubMed

    van den Tillaar, Roland

    2018-01-04

    The aim of this study was to compare kinematics in repeated 30m sprints in female soccer players. Seventeen subjects performed seven 30m sprints every 30s in one session. Kinematics were measured with an infrared contact mat and laser gun, and running times with an electronic timing device. The main findings were that sprint times increased in the repeated sprint ability test. The main changes in kinematics during the repeated sprint ability test were increased contact time and decreased step frequency, while no change in step length was observed. The step velocity increased in almost each step until the 14, which occurred around 22m. After this, the velocity was stable until the last step, when it decreased. This increase in step velocity was mainly caused by the increased step length and decreased contact times. It was concluded that the fatigue induced in repeated 30m sprints in female soccer players resulted in decreased step frequency and increased contact time. Employing this approach in combination with a laser gun and infrared mat for 30m makes it very easy to analyse running kinematics in repeated sprints in training. This extra information gives the athlete, coach and sports scientist the opportunity to give more detailed feedback and help to target these changes in kinematics better to enhance repeated sprint performance.

  9. Fully implicit moving mesh adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2005-10-01

    In many problems of interest, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former is best dealt with with fully implicit methods, which are able to step over fast frequencies to resolve the dynamical time scale of interest. The latter requires grid adaptivity for efficiency. Moving-mesh grid adaptive methods are attractive because they can be designed to minimize the numerical error for a given resolution. However, the required grid governing equations are typically very nonlinear and stiff, and of considerably difficult numerical treatment. Not surprisingly, fully coupled, implicit approaches where the grid and the physics equations are solved simultaneously are rare in the literature, and circumscribed to 1D geometries. In this study, we present a fully implicit algorithm for moving mesh methods that is feasible for multidimensional geometries. A crucial element is the development of an effective multilevel treatment of the grid equation.ootnotetextL. Chac'on, G. Lapenta, A fully implicit, nonlinear adaptive grid strategy, J. Comput. Phys., accepted (2005) We will show that such an approach is competitive vs. uniform grids both from the accuracy (due to adaptivity) and the efficiency standpoints. Results for a variety of models 1D and 2D geometries, including nonlinear diffusion, radiation-diffusion, Burgers equation, and gas dynamics will be presented.

  10. Magnetic Resonance Imaging-Guided Adaptive Radiation Therapy: A "Game Changer" for Prostate Treatment?

    PubMed

    Pathmanathan, Angela U; van As, Nicholas J; Kerkmeijer, Linda G W; Christodouleas, John; Lawton, Colleen A F; Vesprini, Danny; van der Heide, Uulke A; Frank, Steven J; Nill, Simeon; Oelfke, Uwe; van Herk, Marcel; Li, X Allen; Mittauer, Kathryn; Ritter, Mark; Choudhury, Ananya; Tree, Alison C

    2018-02-01

    Radiation therapy to the prostate involves increasingly sophisticated delivery techniques and changing fractionation schedules. With a low estimated α/β ratio, a larger dose per fraction would be beneficial, with moderate fractionation schedules rapidly becoming a standard of care. The integration of a magnetic resonance imaging (MRI) scanner and linear accelerator allows for accurate soft tissue tracking with the capacity to replan for the anatomy of the day. Extreme hypofractionation schedules become a possibility using the potentially automated steps of autosegmentation, MRI-only workflow, and real-time adaptive planning. The present report reviews the steps involved in hypofractionated adaptive MRI-guided prostate radiation therapy and addresses the challenges for implementation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Multi-channel time-reversal receivers for multi and 1-bit implementations

    DOEpatents

    Candy, James V.; Chambers, David H.; Guidry, Brian L.; Poggio, Andrew J.; Robbins, Christopher L.

    2008-12-09

    A communication system for transmitting a signal through a channel medium comprising digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. In one embodiment a transmitter is adapted to transmit the signal, a multiplicity of receivers are adapted to receive the signal, a digitizer digitizes the signal, and a time-reversal signal processor is adapted to time-reverse the digitized signal. An embodiment of the present invention includes multi bit implementations. Another embodiment of the present invention includes 1-bit implementations. Another embodiment of the present invention includes a multiplicity of receivers used in the step of transmitting the signal through the channel medium.

  12. Effect of eccentricity and light level on the timing of light adaptation mechanisms.

    PubMed

    Barrionuevo, Pablo A; Matesanz, Beatriz M; Gloriani, Alejandro H; Arranz, Isabel; Issolio, Luis; Mar, Santiago; Aparicio, Juan A

    2018-04-01

    We explored the complexity of the light adaptation process, assessing adaptation recovery (Ar) at different eccentricities and light levels. Luminance thresholds were obtained with transient background fields at mesopic and photopic light levels for temporal retinal eccentricities (0°-15°) with test/background stimulus size of 0.5°/1° using a staircase procedure in a two-channel Maxwellian view optical system. Ar was obtained in comparison with steady data [Vis. Res.125, 12 (2016)VISRAM0042-698910.1016/j.visres.2016.04.008]. Light level proportionally affects Ar only at fovea. Photopic extrafoveal thresholds were one log unit higher for transient conditions. Adaptation was equally fast at low light levels for different retinal locations with variations mainly affected by noise. These results evidence different timing in the mechanisms of adaptation involved.

  13. Adaptive Monocular Visual-Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices.

    PubMed

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-11-07

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual-inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual-inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual-inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.

  14. Adaptive Monocular Visual–Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices

    PubMed Central

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-01-01

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual–inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual–inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual–inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual–inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method. PMID:29112143

  15. Forecasting Sensorimotor Adaptability from Baseline Inter-Trial Correlations

    NASA Technical Reports Server (NTRS)

    Beaton, K. H.; Bloomberg, J. J.

    2014-01-01

    measured in the frequency domain. Therefore, we use the power spectrum (PS), which is the Fourier transform of the ACF, to describe our inter-trial correlations. The decay of the PS yields a straight line on a log-log frequency plot, which we quantify by Beta = - (slope of PS on log-log axes). Hence, Beta is a measure of the strength of inter- trial correlations in the baseline data. Larger Beta values are indicative of longer inter-trial correlations. Experimental Approach: We will begin by performing a retrospective analysis of treadmill-gait adaptation data previously collected by Dr. Bloomberg and colleagues. Specifically, we will quantify the strength of inter-trial correlations in the baseline step cadence and heart rate data and compare it to the locomotor adaptability performance results already described by these investigators. Incorporating these datasets will also allow us to explore the applicability of (and potential limitations surrounding) the use of Beta in forecasting physiological performance. We will also perform a new experiment, in which Beta will be derived from baseline data collected during over-ground (non-treadmill) walking, which will enable us to consider locomotor performance, through the parameter Beta, under the most functionallyrelevant, natural gait condition. This experiment will incorporate two baseline and five post-training over-ground locomotion tests to explore the consistency and potential adaptability of the Beta values themselves. HYPOTHESES: We hypothesize that the strength of baseline inter-trial correlations of step cadence and heart rate will relate to locomotor adaptability. Specifically, we anticipate that individuals who show weaker longer-term inter-trial correlations in baseline step cadence data will be the better adaptors, as step cadence can be modified in real-time (i.e., online corrections are an inherent property of the locomotor system; analogous to results observed in the VOR). Conversely, because heart rate is not

  16. Group sequential designs for stepped-wedge cluster randomised trials.

    PubMed

    Grayling, Michael J; Wason, James Ms; Mander, Adrian P

    2017-10-01

    The stepped-wedge cluster randomised trial design has received substantial attention in recent years. Although various extensions to the original design have been proposed, no guidance is available on the design of stepped-wedge cluster randomised trials with interim analyses. In an individually randomised trial setting, group sequential methods can provide notable efficiency gains and ethical benefits. We address this by discussing how established group sequential methodology can be adapted for stepped-wedge designs. Utilising the error spending approach to group sequential trial design, we detail the assumptions required for the determination of stepped-wedge cluster randomised trials with interim analyses. We consider early stopping for efficacy, futility, or efficacy and futility. We describe first how this can be done for any specified linear mixed model for data analysis. We then focus on one particular commonly utilised model and, using a recently completed stepped-wedge cluster randomised trial, compare the performance of several designs with interim analyses to the classical stepped-wedge design. Finally, the performance of a quantile substitution procedure for dealing with the case of unknown variance is explored. We demonstrate that the incorporation of early stopping in stepped-wedge cluster randomised trial designs could reduce the expected sample size under the null and alternative hypotheses by up to 31% and 22%, respectively, with no cost to the trial's type-I and type-II error rates. The use of restricted error maximum likelihood estimation was found to be more important than quantile substitution for controlling the type-I error rate. The addition of interim analyses into stepped-wedge cluster randomised trials could help guard against time-consuming trials conducted on poor performing treatments and also help expedite the implementation of efficacious treatments. In future, trialists should consider incorporating early stopping of some kind into

  17. Time step rescaling recovers continuous-time dynamical properties for discrete-time Langevin integration of nonequilibrium systems.

    PubMed

    Sivak, David A; Chodera, John D; Crooks, Gavin E

    2014-06-19

    When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.

  18. Redo Laparoscopic Gastric Bypass: One-Step or Two-Step Procedure?

    PubMed

    Theunissen, Caroline M J; Guelinckx, Nele; Maring, John K; Langenhoff, Barbara S

    2016-11-01

    The adjustable gastric band (AGB) is a bariatric procedure that used to be widely performed. However, AGB failure-signifying band-related complications or unsatisfactory weight loss, resulting in revision surgery (redo operations)-frequently occurs. Often this entails a conversion to a laparoscopic Roux-en-Y gastric bypass (LRYGB). This can be performed as a one-step or two-step (separate band removal) procedure. Data were collected from patients operated from 2012 to 2014 in a single bariatric centre. We compared 107 redo LRYGB after AGB failure with 1020 primary LRYGB. An analysis was performed of the one-step vs. two-step redo procedures. All redo procedures were performed by experienced bariatric surgeons. No difference in major complication rate was seen (2.8 vs. 2.3 %, p = 0.73) between redo and primary LRYGB, and overall complication severity for redos was low (mainly Clavien-Dindo 1 or 2). Weight loss results were comparable for primary and redo procedures. The one-step and two-step redos were comparable regarding complication rates and readmissions. The operating time for the one-step redo LRYGB was 136 vs. 107.5 min for the two-step (median, p < 0.001), excluding the operating time of separate AGB removal (mean 61 min, range 36-110). Removal of a failed AGB and LRYGB in a one-step procedure is safe when performed by experienced bariatric surgeons. However, when erosion or perforation of the AGB occurs, we advise caution and would perform the redo LRYGB as a two-step procedure. Equal weights can be achieved at 1 year post redo LRYGB as after primary LRYGB procedures.

  19. Performance of an attention-demanding task during treadmill walking shifts the noise qualities of step-to-step variation in step width.

    PubMed

    Grabiner, Mark D; Marone, Jane R; Wyatt, Marilynn; Sessoms, Pinata; Kaufman, Kenton R

    2018-06-01

    The fractal scaling evident in the step-to-step fluctuations of stepping-related time series reflects, to some degree, neuromotor noise. The primary purpose of this study was to determine the extent to which the fractal scaling of step width, step width and step width variability are affected by performance of an attention-demanding task. We hypothesized that the attention-demanding task would shift the structure of the step width time series toward white, uncorrelated noise. Subjects performed two 10-min treadmill walking trials, a control trial of undisturbed walking and a trial during which they performed a mental arithmetic/texting task. Motion capture data was converted to step width time series, the fractal scaling of which were determined from their power spectra. Fractal scaling decreased by 22% during the texting condition (p < 0.001) supporting the hypothesized shift toward white uncorrelated noise. Step width and step width variability increased 19% and five percent, respectively (p < 0.001). However, a stepwise discriminant analysis to which all three variables were input revealed that the control and dual task conditions were discriminated only by step width fractal scaling. The change of the fractal scaling of step width is consistent with increased cognitive demand and suggests a transition in the characteristics of the signal noise. This may reflect an important advance toward the understanding of the manner in which neuromotor noise contributes to some types of falls. However, further investigation of the repeatability of the results, the sensitivity of the results to progressive increases in cognitive load imposed by attention-demanding tasks, and the extent to which the results can be generalized to the gait of older adults seems warranted. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Modelling of Sub-daily Hydrological Processes Using Daily Time-Step Models: A Distribution Function Approach to Temporal Scaling

    NASA Astrophysics Data System (ADS)

    Kandel, D. D.; Western, A. W.; Grayson, R. B.

    2004-12-01

    Mismatches in scale between the fundamental processes, the model and supporting data are a major limitation in hydrologic modelling. Surface runoff generation via infiltration excess and the process of soil erosion are fundamentally short time-scale phenomena and their average behaviour is mostly determined by the short time-scale peak intensities of rainfall. Ideally, these processes should be simulated using time-steps of the order of minutes to appropriately resolve the effect of rainfall intensity variations. However, sub-daily data support is often inadequate and the processes are usually simulated by calibrating daily (or even coarser) time-step models. Generally process descriptions are not modified but rather effective parameter values are used to account for the effect of temporal lumping, assuming that the effect of the scale mismatch can be counterbalanced by tuning the parameter values at the model time-step of interest. Often this results in parameter values that are difficult to interpret physically. A similar approach is often taken spatially. This is problematic as these processes generally operate or interact non-linearly. This indicates a need for better techniques to simulate sub-daily processes using daily time-step models while still using widely available daily information. A new method applicable to many rainfall-runoff-erosion models is presented. The method is based on temporal scaling using statistical distributions of rainfall intensity to represent sub-daily intensity variations in a daily time-step model. This allows the effect of short time-scale nonlinear processes to be captured while modelling at a daily time-step, which is often attractive due to the wide availability of daily forcing data. The approach relies on characterising the rainfall intensity variation within a day using a cumulative distribution function (cdf). This cdf is then modified by various linear and nonlinear processes typically represented in hydrological and

  1. Development of a time-dependent incompressible Navier-Stokes solver based on a fractional-step method

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Moshe

    1990-01-01

    The development, validation and application of a fractional step solution method of the time-dependent incompressible Navier-Stokes equations in generalized coordinate systems are discussed. A solution method that combines a finite-volume discretization with a novel choice of the dependent variables and a fractional step splitting to obtain accurate solutions in arbitrary geometries was previously developed for fixed-grids. In the present research effort, this solution method is extended to include more general situations, including cases with moving grids. The numerical techniques are enhanced to gain efficiency and generality.

  2. A Neural Mechanism for Time-Window Separation Resolves Ambiguity of Adaptive Coding

    PubMed Central

    Hildebrandt, K. Jannis; Ronacher, Bernhard; Hennig, R. Matthias; Benda, Jan

    2015-01-01

    The senses of animals are confronted with changing environments and different contexts. Neural adaptation is one important tool to adjust sensitivity to varying intensity ranges. For instance, in a quiet night outdoors, our hearing is more sensitive than when we are confronted with the plurality of sounds in a large city during the day. However, adaptation also removes available information on absolute sound levels and may thus cause ambiguity. Experimental data on the trade-off between benefits and loss through adaptation is scarce and very few mechanisms have been proposed to resolve it. We present an example where adaptation is beneficial for one task—namely, the reliable encoding of the pattern of an acoustic signal—but detrimental for another—the localization of the same acoustic stimulus. With a combination of neurophysiological data, modeling, and behavioral tests, we show that adaptation in the periphery of the auditory pathway of grasshoppers enables intensity-invariant coding of amplitude modulations, but at the same time, degrades information available for sound localization. We demonstrate how focusing the response of localization neurons to the onset of relevant signals separates processing of localization and pattern information temporally. In this way, the ambiguity of adaptive coding can be circumvented and both absolute and relative levels can be processed using the same set of peripheral neurons. PMID:25761097

  3. Counterrotating prop-fan simulations which feature a relative-motion multiblock grid decomposition enabling arbitrary time-steps

    NASA Technical Reports Server (NTRS)

    Janus, J. Mark; Whitfield, David L.

    1990-01-01

    Improvements are presented of a computer algorithm developed for the time-accurate flow analysis of rotating machines. The flow model is a finite volume method utilizing a high-resolution approximate Riemann solver for interface flux definitions. The numerical scheme is a block LU implicit iterative-refinement method which possesses apparent unconditional stability. Multiblock composite gridding is used to orderly partition the field into a specified arrangement of blocks exhibiting varying degrees of similarity. Block-block relative motion is achieved using local grid distortion to reduce grid skewness and accommodate arbitrary time step selection. A general high-order numerical scheme is applied to satisfy the geometric conservation law. An even-blade-count counterrotating unducted fan configuration is chosen for a computational study comparing solutions resulting from altering parameters such as time step size and iteration count. The solutions are compared with measured data.

  4. In Vitro Stretch Injury Induces Time- and Severity-Dependent Alterations of STEP Phosphorylation and Proteolysis in Neurons

    PubMed Central

    Mesfin, Mahlet N.; von Reyn, Catherine R.; Mott, Rosalind E.; Putt, Mary E.

    2012-01-01

    Abstract Striatal-enriched tyrosine phosphatase (STEP) has been identified as a component of physiological and pathophysiological signaling pathways mediated by N-methyl-d-aspartate (NMDA) receptor/calcineurin/calpain activation. Activation of these pathways produces a subsequent change in STEP isoform expression or activation via dephosphorylation. In this study, we evaluated changes in STEP phosphorylation and proteolysis in dissociated cortical neurons after sublethal and lethal mechanical injury using an in vitro stretch injury device. Sublethal stretch injury produces minimal changes in STEP phosphorylation at early time points, and increased STEP phosphorylation at 24 h that is blocked by the NMDA-receptor antagonist APV, the calcineurin-inhibitor FK506, and the sodium channel blocker tetrodotoxin. Lethal stretch injury produces rapid STEP dephosphorylation via NR2B-containing NMDA receptors, but not calcineurin, and a subsequent biphasic phosphorylation pattern. STEP61 expression progressively increases after sublethal stretch with no change in calpain-mediated STEP33 formation, while lethal stretch injury results in STEP33 formation via a NR2B-containing NMDA receptor pathway within 1 h of injury. Blocking calpain activation in the initial 30 min after stretch injury increases the ratio of active STEP in cells and blocks STEP33 formation, suggesting that STEP is an early substrate of calpain after mechanical injury. There is a strong correlation between the amount of STEP33 formed and the degree of cell death observed after lethal stretch injury. In summary, these data demonstrate that previously characterized pathways of STEP regulation via the NMDA receptor are generally conserved in mechanical injury, and suggest that calpain-mediated cleavage of STEP33 should be further examined as an early marker of neuronal fate after stretch injury. PMID:22435660

  5. Adaptive real-time dual-comb spectroscopy.

    PubMed

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W

    2014-02-27

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.

  6. Adaptive real-time dual-comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-02-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.

  7. Adaptive real-time dual-comb spectroscopy

    PubMed Central

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-01-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences. PMID:24572636

  8. Advanced propeller noise prediction in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Dunn, M. H.; Spence, P. L.

    1992-01-01

    The time domain code ASSPIN gives acousticians a powerful technique of advanced propeller noise prediction. Except for nonlinear effects, the code uses exact solutions of the Ffowcs Williams-Hawkings equation with exact blade geometry and kinematics. By including nonaxial inflow, periodic loading noise, and adaptive time steps to accelerate computer execution, the development of this code becomes complete.

  9. Step-by-Step Simulation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    Radiolytic species are formed approximately 1 ps after the passage of ionizing radiation through matter. After their formation, they diffuse and chemically react with other radiolytic species and neighboring biological molecules, leading to various oxidative damage. Therefore, the simulation of radiation chemistry is of considerable importance to understand how radiolytic species damage biological molecules [1]. The step-by-step simulation of chemical reactions is difficult, because the radiolytic species are distributed non-homogeneously in the medium. Consequently, computational approaches based on Green functions for diffusion-influenced reactions should be used [2]. Recently, Green functions for more complex type of reactions have been published [3-4]. We have developed exact random variate generators of these Green functions [5], which will allow us to use them in radiation chemistry codes. Moreover, simulating chemistry using the Green functions is which is computationally very demanding, because the probabilities of reactions between each pair of particles should be evaluated at each timestep [2]. This kind of problem is well adapted for General Purpose Graphic Processing Units (GPGPU), which can handle a large number of similar calculations simultaneously. These new developments will allow us to include more complex reactions in chemistry codes, and to improve the calculation time. This code should be of importance to link radiation track structure simulations and DNA damage models.

  10. Space-time adaptive ADER-DG schemes for dissipative flows: Compressible Navier-Stokes and resistive MHD equations

    NASA Astrophysics Data System (ADS)

    Fambri, Francesco; Dumbser, Michael; Zanotti, Olindo

    2017-11-01

    scheme on the subgrid averages within that troubled cell. Finally, a high order DG polynomial is reconstructed back from the evolved subcell averages. We apply the whole approach for the first time to the equations of compressible gas dynamics and magnetohydrodynamics in the presence of viscosity, thermal conductivity and magnetic resistivity, therefore extending our family of adaptive ADER-DG schemes to cases for which the numerical fluxes also depend on the gradient of the state vector. The distinguished high-resolution properties of the presented numerical scheme standout against a wide number of non-trivial test cases both for the compressible Navier-Stokes and the viscous and resistive magnetohydrodynamics equations. The present results show clearly that the shock-capturing capability of the news schemes is significantly enhanced within a cell-by-cell Adaptive Mesh Refinement (AMR) implementation together with time accurate local time stepping (LTS).

  11. Adaptive density trajectory cluster based on time and space distance

    NASA Astrophysics Data System (ADS)

    Liu, Fagui; Zhang, Zhijie

    2017-10-01

    There are some hotspot problems remaining in trajectory cluster for discovering mobile behavior regularity, such as the computation of distance between sub trajectories, the setting of parameter values in cluster algorithm and the uncertainty/boundary problem of data set. As a result, based on the time and space, this paper tries to define the calculation method of distance between sub trajectories. The significance of distance calculation for sub trajectories is to clearly reveal the differences in moving trajectories and to promote the accuracy of cluster algorithm. Besides, a novel adaptive density trajectory cluster algorithm is proposed, in which cluster radius is computed through using the density of data distribution. In addition, cluster centers and number are selected by a certain strategy automatically, and uncertainty/boundary problem of data set is solved by designed weighted rough c-means. Experimental results demonstrate that the proposed algorithm can perform the fuzzy trajectory cluster effectively on the basis of the time and space distance, and obtain the optimal cluster centers and rich cluster results information adaptably for excavating the features of mobile behavior in mobile and sociology network.

  12. StePS: Stereographically Projected Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Rácz, Gábor; Szapudi, István; Csabai, István; Dobos, László

    2018-05-01

    StePS (Stereographically Projected Cosmological Simulations) compactifies the infinite spatial extent of the Universe into a finite sphere with isotropic boundary conditions to simulate the evolution of the large-scale structure. This eliminates the need for periodic boundary conditions, which are a numerical convenience unsupported by observation and which modifies the law of force on large scales in an unrealistic fashion. StePS uses stereographic projection for space compactification and naive O(N2) force calculation; this arrives at a correlation function of the same quality more quickly than standard (tree or P3M) algorithms with similar spatial and mass resolution. The N2 force calculation is easy to adapt to modern graphics cards, hence StePS can function as a high-speed prediction tool for modern large-scale surveys.

  13. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system

    PubMed Central

    2012-01-01

    Background This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. Discussion The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from

  14. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system.

    PubMed

    Bell, Iris R; Koithan, Mary

    2012-10-22

    This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create "top-down" nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism's allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from disease. Homeopathic

  15. Real-time implementing wavefront reconstruction for adaptive optics

    NASA Astrophysics Data System (ADS)

    Wang, Caixia; Li, Mei; Wang, Chunhong; Zhou, Luchun; Jiang, Wenhan

    2004-12-01

    The capability of real time wave-front reconstruction is important for an adaptive optics (AO) system. The bandwidth of system and the real-time processing ability of the wave-front processor is mainly affected by the speed of calculation. The system requires enough number of subapertures and high sampling frequency to compensate atmospheric turbulence. The number of reconstruction operation is increased accordingly. Since the performance of AO system improves with the decrease of calculation latency, it is necessary to study how to increase the speed of wavefront reconstruction. There are two methods to improve the real time of the reconstruction. One is to convert the wavefront reconstruction matrix, such as by wavelet or FFT. The other is enhancing the performance of the processing element. Analysis shows that the latency cutting is performed with the cost of reconstruction precision by the former method. In this article, the latter method is adopted. From the characteristic of the wavefront reconstruction algorithm, a systolic array by FPGA is properly designed to implement real-time wavefront reconstruction. The system delay is reduced greatly by the utilization of pipeline and parallel processing. The minimum latency of reconstruction is the reconstruction calculation of one subaperture.

  16. Ultra-fast consensus of discrete-time multi-agent systems with multi-step predictive output feedback

    NASA Astrophysics Data System (ADS)

    Zhang, Wenle; Liu, Jianchang

    2016-04-01

    This article addresses the ultra-fast consensus problem of high-order discrete-time multi-agent systems based on a unified consensus framework. A novel multi-step predictive output mechanism is proposed under a directed communication topology containing a spanning tree. By predicting the outputs of a network several steps ahead and adding this information into the consensus protocol, it is shown that the asymptotic convergence factor is improved by a power of q + 1 compared to the routine consensus. The difficult problem of selecting the optimal control gain is solved well by introducing a variable called convergence step. In addition, the ultra-fast formation achievement is studied on the basis of this new consensus protocol. Finally, the ultra-fast consensus with respect to a reference model and robust consensus is discussed. Some simulations are performed to illustrate the effectiveness of the theoretical results.

  17. A New Approach to Interference Excision in Radio Astronomy: Real-Time Adaptive Cancellation

    NASA Astrophysics Data System (ADS)

    Barnbaum, Cecilia; Bradley, Richard F.

    1998-11-01

    Every year, an increasing amount of radio-frequency (RF) spectrum in the VHF, UHF, and microwave bands is being utilized to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Such services already cause problems for radio astronomy even in very remote observing sites, and the potential for this form of light pollution to grow is alarming. Preventive measures to eliminate interference through FCC legislation and ITU agreements can be effective; however, many times this approach is inadequate and interference excision at the receiver is necessary. Conventional techniques such as RF filters, RF shielding, and postprocessing of data have been only somewhat successful, but none has been sufficient. Adaptive interference cancellation is a real-time approach to interference excision that has not been used before in radio astronomy. We describe here, for the first time, adaptive interference cancellation in the context of radio astronomy instrumentation, and we present initial results for our prototype receiver. In the 1960s, analog adaptive interference cancelers were developed that obtain a high degree of cancellation in problems of radio communications and radar. However, analog systems lack the dynamic range, noised performance, and versatility required by radio astronomy. The concept of digital adaptive interference cancellation was introduced in the mid-1960s as a way to reduce unwanted noise in low-frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartments of automobiles. These audio-frequency applications require bandwidths of only a few tens of kilohertz. Only recently has high-speed digital filter technology made high dynamic range adaptive canceling possible in a bandwidth as large as a few megahertz, finally opening the door to application in radio astronomy. We have

  18. Pitch Adaptation Patterns in Bimodal Cochlear Implant Users: Over Time and After Experience

    PubMed Central

    Reiss, Lina A.J.; Ito, Rindy A.; Eggleston, Jessica L.; Liao, Selena; Becker, Jillian J.; Lakin, Carrie E.; Warren, Frank M.; McMenomey, Sean O.

    2014-01-01

    Background Pitch plasticity has been observed in Hybrid cochlear implant (CI) users. Does pitch plasticity also occur in bimodal CI users with traditional long-electrode CIs, and is pitch adaptation pattern associated with electrode discrimination or speech recognition performance? Objective Characterize pitch adaptation patterns in long-electrode CI users, correlate these patterns with electrode discrimination and speech perception outcomes, and analyze which subject factors are associated with the different patterns. Methods Electric-to-acoustic pitch matches were obtained in 19 subjects over time from CI activation to at least 12 months after activation, and in a separate group of 18 subjects in a single visit after at least 24 months of CI experience. Audiometric thresholds, electrode discrimination performance, and speech perception scores were also measured. Results Subjects measured over time had pitch adaptation patterns that fit one of the following categories: 1) “Pitch-adapting”, i.e. the mismatch between perceived electrode pitch and the corresponding frequency-to-electrode allocations decreased; 2) “Pitch-dropping”, i.e. the pitches of multiple electrodes dropped and converged to a similar low pitch; 3) “Pitch-unchanging”, i.e. electrode pitches did not change. Subjects measured after CI experience had a parallel set of adaptation patterns: 1) “Matched-pitch”, i.e. the electrode pitch was matched to the frequency allocation; 2) “Low-pitch”, i.e. the pitches of multiple electrodes were all around the lowest frequency allocation; 3) “Nonmatched-pitch”, i.e. the pitch patterns were compressed relative to the frequency allocations and did not fit either the matched-pitch or low-pitch categories. Unlike Hybrid CI users which were mostly in the pitch-adapting/matched-pitch category, the majority of bimodal CI users were in the latter two categories, pitch-dropping/low-pitch or pitch-unchanging/nonmatched-pitch. Subjects with pitch-adapting

  19. One Step at a Time: Using Task Analyses to Teach Skills

    ERIC Educational Resources Information Center

    Snodgrass, Melinda R.; Meadan, Hedda; Ostrosky, Michaelene M.; Cheung, W. Catherine

    2017-01-01

    Task analyses are useful when teaching children how to complete tasks by breaking the tasks into small steps, particularly when children struggle to learn a skill during typical classroom instruction. We describe how to create a task analysis by identifying the steps a child needs to independently perform the task, how to assess what steps a child…

  20. Features: Real-Time Adaptive Feature and Document Learning for Web Search.

    ERIC Educational Resources Information Center

    Chen, Zhixiang; Meng, Xiannong; Fowler, Richard H.; Zhu, Binhai

    2001-01-01

    Describes Features, an intelligent Web search engine that is able to perform real-time adaptive feature (i.e., keyword) and document learning. Explains how Features learns from users' document relevance feedback and automatically extracts and suggests indexing keywords relevant to a search query, and learns from users' keyword relevance feedback…

  1. Direction-specific adaptation effects acquired in a slow rotation room

    NASA Technical Reports Server (NTRS)

    Graybiel, A.; Knepton, J.

    1972-01-01

    Thirty-eight subjects were required to execute 120 head movements in a slow rotation room at each 1-rpm increase in velocity of the room between 0 and 6 rpm and, after a single-step gradual return to zero velocity, execute 120 head movements either immediately after the return or after delay periods varying from 1 to 24 hours unless, at any time, more than mild symptoms of motion sickness were elicited. A second stress profile differed by the sequential addition of an incremental adaptation schedule in which the direction of rotation was reversed. The experimental findings demonstrated the acquisition of direction-specific adaptation effects that underwent spontaneous decay with a short time constant (hours). Speculations are presented which could account for the simultaneous acquisition of short-term and long-term adaptation effects. The findings support the theory that motion sickness, although a consequence of vestibular stimulation, has its immediate origin in nonvestibular systems, implying a faculative or temporary linkage between the vestibular and nonvestibular systems.

  2. Performance evaluation of GPU parallelization, space-time adaptive algorithms, and their combination for simulating cardiac electrophysiology.

    PubMed

    Sachetto Oliveira, Rafael; Martins Rocha, Bernardo; Burgarelli, Denise; Meira, Wagner; Constantinides, Christakis; Weber Dos Santos, Rodrigo

    2018-02-01

    The use of computer models as a tool for the study and understanding of the complex phenomena of cardiac electrophysiology has attained increased importance nowadays. At the same time, the increased complexity of the biophysical processes translates into complex computational and mathematical models. To speed up cardiac simulations and to allow more precise and realistic uses, 2 different techniques have been traditionally exploited: parallel computing and sophisticated numerical methods. In this work, we combine a modern parallel computing technique based on multicore and graphics processing units (GPUs) and a sophisticated numerical method based on a new space-time adaptive algorithm. We evaluate each technique alone and in different combinations: multicore and GPU, multicore and GPU and space adaptivity, multicore and GPU and space adaptivity and time adaptivity. All the techniques and combinations were evaluated under different scenarios: 3D simulations on slabs, 3D simulations on a ventricular mouse mesh, ie, complex geometry, sinus-rhythm, and arrhythmic conditions. Our results suggest that multicore and GPU accelerate the simulations by an approximate factor of 33×, whereas the speedups attained by the space-time adaptive algorithms were approximately 48. Nevertheless, by combining all the techniques, we obtained speedups that ranged between 165 and 498. The tested methods were able to reduce the execution time of a simulation by more than 498× for a complex cellular model in a slab geometry and by 165× in a realistic heart geometry simulating spiral waves. The proposed methods will allow faster and more realistic simulations in a feasible time with no significant loss of accuracy. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Adaptive Network Dynamics - Modeling and Control of Time-Dependent Social Contacts

    PubMed Central

    Schwartz, Ira B.; Shaw, Leah B.; Shkarayev, Maxim S.

    2013-01-01

    Real networks consisting of social contacts do not possess static connections. That is, social connections may be time dependent due to a variety of individual behavioral decisions based on current network connections. Examples of adaptive networks occur in epidemics, where information about infectious individuals may change the rewiring of healthy people, or in the recruitment of individuals to a cause or fad, where rewiring may optimize recruitment of susceptible individuals. In this paper, we will review some of the dynamical properties of adaptive networks, and show how they predict novel phenomena as well as yield insight into new controls. The applications will be control of epidemic outbreaks and terrorist recruitment modeling. PMID:25414913

  4. Use of a complete starter feed in grain adaptation programs for feedlot cattle.

    PubMed

    Schneider, C J; Nuttelman, B L; Shreck, A L; Burken, D B; Griffin, W A; Gramkow, J L; Stock, R A; Klopfenstein, T J; Erickson, G E

    2017-08-01

    . When F1 or F2 was being fed, DMI was similar ( ≥ 0.40) for CON47 and 1-STEP in Exp. 4. When F1 or F2 was being fed, 1-STEP cattle had lower average ruminal pH ( ≤ 0.03) and greater time below a pH of 5.3 ( ≤ 0.03). Using RAMP for grain adaptation improved performance compared with traditional adaptation. Rapid adaptation with RAMP decreased pH, but no performance differences were observed between long and rapid RAMP adaptation programs. Therefore, cattle started on RAMP do not require extensive adaptation before feeding a finishing diet with Sweet Bran.

  5. Do kinematic metrics of walking balance adapt to perturbed optical flow?

    PubMed

    Thompson, Jessica D; Franz, Jason R

    2017-08-01

    Visual (i.e., optical flow) perturbations can be used to study balance control and balance deficits. However, it remains unclear whether walking balance control adapts to such perturbations over time. Our purpose was to investigate the propensity for visuomotor adaptation in walking balance control using prolonged exposure to optical flow perturbations. Ten subjects (age: 25.4±3.8years) walked on a treadmill while watching a speed-matched virtual hallway with and without continuous mediolateral optical flow perturbations of three different amplitudes. Each of three perturbation trials consisted of 8min of prolonged exposure followed by 1min of unperturbed walking. Using 3D motion capture, we analyzed changes in foot placement kinematics and mediolateral sacrum motion. At their onset, perturbations elicited wider and shorter steps, alluding to a more cautious, general anticipatory balance control strategy. As perturbations continued, foot placement tended toward values seen during unperturbed walking while step width variability and mediolateral sacrum motion concurrently increased. Our findings suggest that subjects progressively shifted from a general anticipatory balance control strategy to a reactive, task-specific strategy using step-to-step adjustments. Prolonged exposure to optical flow perturbations may have clinical utility to reinforce reactive, task-specific balance control through training. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dual adaptive control: Design principles and applications

    NASA Technical Reports Server (NTRS)

    Mookerjee, Purusottam

    1988-01-01

    The design of an actively adaptive dual controller based on an approximation of the stochastic dynamic programming equation for a multi-step horizon is presented. A dual controller that can enhance identification of the system while controlling it at the same time is derived for multi-dimensional problems. This dual controller uses sensitivity functions of the expected future cost with respect to the parameter uncertainties. A passively adaptive cautious controller and the actively adaptive dual controller are examined. In many instances, the cautious controller is seen to turn off while the latter avoids the turn-off of the control and the slow convergence of the parameter estimates, characteristic of the cautious controller. The algorithms have been applied to a multi-variable static model which represents a simplified linear version of the relationship between the vibration output and the higher harmonic control input for a helicopter. Monte Carlo comparisons based on parametric and nonparametric statistical analysis indicate the superiority of the dual controller over the baseline controller.

  7. Postoperative Time Dependent Tibiofemoral Articular Cartilage Contact Kinematics during Step-up after ACL Reconstruction

    PubMed Central

    Lin, Lin; Li, Jing-Sheng; Kernkamp, Willem A.; Hosseini, Ali; Kim, ChangWan; Yin, Peng; Wang, Lianxin; Tsai, Tsung-Yuan; Asnis, Peter; Li, Guoan

    2016-01-01

    This study was to investigate the in vivo tibiofemoral cartilage contact locations before and after anterior cruciate ligament (ACL) reconstruction at 6 and 36 months. Ten patients with unilateral ACL injury were included. A step-up motion was analyzed using a combined magnetic resonance modeling and dual fluoroscopic imaging techniques. The preoperative (i.e. ACL deficient and healthy contralateral) and postoperative cartilage contact locations at 6 and 36 months were analyzed. Similar patterns of the cartilage contact locations during the step-up motion were found for the preoperative and postoperative knee states as compared to the preoperative healthy contralateral side. At the end of step-up motion, the medial contact locations at postoperative 36 months were more anterior when compared to the preoperative healthy contralateral (p=0.02) and 6 months postoperative knee states (p=0.01). The changes of the cartilage contact locations at 36 months after ACL reconstruction compared to the healthy contralateral side were strongly correlated with the changes at 6 months postoperatively. This study showed that the tibiofemoral cartilage contact locations of the knee changes with time after ACL reconstruction, implying an ongoing recovery process within the 36 months after the surgery. There could be an association between the short-term (6 months) and longer-term (36 months) contact kinematics after ACL reconstruction. Future studies need to investigate the intrinsic relationship between knee kinematics at different times after ACL reconstruction. PMID:27720228

  8. One step screening of retroviral producer clones by real time quantitative PCR.

    PubMed

    Towers, G J; Stockholm, D; Labrousse-Najburg, V; Carlier, F; Danos, O; Pagès, J C

    1999-01-01

    Recombinant retroviruses are obtained from either stably or transiently transfected retrovirus producer cells. In the case of stably producing lines, a large number of clones must be screened in order to select the one with the highest titre. The multi-step selection of high titre producing clones is time consuming and expensive. We have taken advantage of retroviral endogenous reverse transcription to develop a quantitative PCR assay on crude supernatant from producing clones. We used Taqman PCR technology, which, by using fluorescence measurement at each cycle of amplification, allows PCR product quantification. Fluorescence results from specific degradation of a probe oligonucleotide by the Taq polymerase 3'-5' exonuclease activity. Primers and probe sequences were chosen to anneal to the viral strong stop species, which is the first DNA molecule synthesised during reverse transcription. The protocol consists of a single real time PCR, using as template filtered viral supernatant without any other pre-treatment. We show that the primers and probe described allow quantitation of serially diluted plasmid to as few as 15 plasmid molecules. We then test 200 GFP-expressing retroviral-producing clones either by FACS analysis of infected cells or by using the quantitative PCR. We confirm that the Taqman protocol allows the detection of virus in supernatant and selection of high titre clones. Furthermore, we can determine infectious titre by quantitative PCR on genomic DNA from infected cells, using an additional set of primers and probe to albumin to normalise for the genomic copy number. We demonstrate that real time quantitative PCR can be used as a powerful and reliable single step, high throughput screen for high titre retroviral producer clones.

  9. Fixed and Data Adaptive Kernels in Cohen’s Class of Time-Frequency Distributions

    DTIC Science & Technology

    1992-09-01

    translated into its associated analytic signal by using the techniques discussed in Chapter Four. 1. Wigner - Ville Distribution function PS = wvd (data,winlen...step,begin,theend) % PS = wvd (data,winlen,step,begin,theend) % ’wvd.ml returns the Wigner - Ville time-frequency distribution % for the input data...12 IV. FIXED KERNEL DISTRIBUTIONS .................................................................. 19 A. WIGNER - VILLE DISTRIBUTION

  10. Discrete-time switching periodic adaptive control for time-varying parameters with unknown periodicity

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Huang, Deqing; Yang, Wanqiu

    2018-06-01

    In this paper, we address the problem of unknown periodicity for a class of discrete-time nonlinear parametric systems without assuming any growth conditions on the nonlinearities. The unknown periodicity hides in the parametric uncertainties, which is difficult to estimate with existing techniques. By incorporating a logic-based switching mechanism, we identify the period and bound of unknown parameter simultaneously. Lyapunov-based analysis is given to demonstrate that a finite number of switchings can guarantee the asymptotic tracking for the nonlinear parametric systems. The simulation result also shows the efficacy of the proposed switching periodic adaptive control approach.

  11. Step training improves reaction time, gait and balance and reduces falls in older people: a systematic review and meta-analysis.

    PubMed

    Okubo, Yoshiro; Schoene, Daniel; Lord, Stephen R

    2017-04-01

    To examine the effects of stepping interventions on fall risk factors and fall incidence in older people. Electronic databases (PubMed, EMBASE, CINAHL, Cochrane, CENTRAL) and reference lists of included articles from inception to March 2015. Randomised (RCT) or clinical controlled trials (CCT) of volitional and reactive stepping interventions that included older (minimum age 60) people providing data on falls or fall risk factors. Meta-analyses of seven RCTs (n=660) showed that the stepping interventions significantly reduced the rate of falls (rate ratio=0.48, 95% CI 0.36 to 0.65, p<0.0001, I 2 =0%) and the proportion of fallers (risk ratio=0.51, 95% CI 0.38 to 0.68, p<0.0001, I 2 =0%). Subgroup analyses stratified by reactive and volitional stepping interventions revealed a similar efficacy for rate of falls and proportion of fallers. A meta-analysis of two RCTs (n=62) showed that stepping interventions significantly reduced laboratory-induced falls, and meta-analysis findings of up to five RCTs and CCTs (n=36-416) revealed that stepping interventions significantly improved simple and choice stepping reaction time, single leg stance, timed up and go performance (p<0.05), but not measures of strength. The findings indicate that both reactive and volitional stepping interventions reduce falls among older adults by approximately 50%. This clinically significant reduction may be due to improvements in reaction time, gait, balance and balance recovery but not in strength. Further high-quality studies aimed at maximising the effectiveness and feasibility of stepping interventions are required. CRD42015017357. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Obstacle avoidance locomotor tasks: adaptation, memory and skill transfer.

    PubMed

    Kloter, Evelyne; Dietz, Volker

    2012-05-01

    The aim of this study was to explore the neural basis of adaptation, memory and skill transfer during human stepping over obstacles. Whilst walking on a treadmill, subjects had to perform uni- and bilateral obstacle steps. Acoustic feedback information about foot clearance was provided. Non-noxious electrical stimuli were applied to the right tibial nerve during the mid-stance phase of the right leg, i.e. 'prior' to the right or 'during' the left leg swing over the obstacle. The electromyogram (EMG) responses evoked by these stimuli in arm and leg muscles are known to reflect the neural coordination during normal and obstacle steps. The leading and trailing legs rapidly adapted foot clearance during obstacle steps with small further changes when the same obstacle condition was repeated. This adaptation was associated with a corresponding decrease in arm and leg muscle reflex EMG responses. Arm (but not leg) muscle EMG responses were greater when the stimulus was applied 'during' obstacle crossing by the left leg leading compared with stimulation 'prior' to right leg swing over the obstacle. A corresponding difference existed in arm muscle background EMG. The results indicate that, firstly, the somatosensory information gained by the performance and adaptation of uni- and bilateral obstacle stepping becomes transferred to the trailing leg in a context-specific manner. Secondly, EMG activity in arm and leg muscles parallels biomechanical adaptation of foot clearance. Thirdly, a consistently high EMG activity in the arm muscles during swing over the obstacle is required for equilibrium control. Thus, such a precision locomotor task is achieved by a context-specific, coordinated activation of arm and leg muscles for performance and equilibrium control that includes adaptation, memory and skill transfer. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  13. Distributed Adaptive Finite-Time Approach for Formation-Containment Control of Networked Nonlinear Systems Under Directed Topology.

    PubMed

    Wang, Yujuan; Song, Yongduan; Ren, Wei

    2017-07-06

    This paper presents a distributed adaptive finite-time control solution to the formation-containment problem for multiple networked systems with uncertain nonlinear dynamics and directed communication constraints. By integrating the special topology feature of the new constructed symmetrical matrix, the technical difficulty in finite-time formation-containment control arising from the asymmetrical Laplacian matrix under single-way directed communication is circumvented. Based upon fractional power feedback of the local error, an adaptive distributed control scheme is established to drive the leaders into the prespecified formation configuration in finite time. Meanwhile, a distributed adaptive control scheme, independent of the unavailable inputs of the leaders, is designed to keep the followers within a bounded distance from the moving leaders and then to make the followers enter the convex hull shaped by the formation of the leaders in finite time. The effectiveness of the proposed control scheme is confirmed by the simulation.

  14. Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory

    PubMed Central

    Tao, Qing

    2017-01-01

    Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this paper, we propose a robust and adaptive online gradient learning method, RoAdam (Robust Adam), for long short-term memory (LSTM) to predict time series with outliers. This method tunes the learning rate of the stochastic gradient algorithm adaptively in the process of prediction, which reduces the adverse effect of outliers. It tracks the relative prediction error of the loss function with a weighted average through modifying Adam, a popular stochastic gradient method algorithm for training deep neural networks. In our algorithm, the large value of the relative prediction error corresponds to a small learning rate, and vice versa. The experiments on both synthetic data and real time series show that our method achieves better performance compared to the existing methods based on LSTM. PMID:29391864

  15. Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory.

    PubMed

    Yang, Haimin; Pan, Zhisong; Tao, Qing

    2017-01-01

    Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this paper, we propose a robust and adaptive online gradient learning method, RoAdam (Robust Adam), for long short-term memory (LSTM) to predict time series with outliers. This method tunes the learning rate of the stochastic gradient algorithm adaptively in the process of prediction, which reduces the adverse effect of outliers. It tracks the relative prediction error of the loss function with a weighted average through modifying Adam, a popular stochastic gradient method algorithm for training deep neural networks. In our algorithm, the large value of the relative prediction error corresponds to a small learning rate, and vice versa. The experiments on both synthetic data and real time series show that our method achieves better performance compared to the existing methods based on LSTM.

  16. Importance of the cutoff value in the quadratic adaptive integrate-and-fire model.

    PubMed

    Touboul, Jonathan

    2009-08-01

    The quadratic adaptive integrate-and-fire model (Izhikevich, 2003 , 2007 ) is able to reproduce various firing patterns of cortical neurons and is widely used in large-scale simulations of neural networks. This model describes the dynamics of the membrane potential by a differential equation that is quadratic in the voltage, coupled to a second equation for adaptation. Integration is stopped during the rise phase of a spike at a voltage cutoff value V(c) or when it blows up. Subsequently the membrane potential is reset, and the adaptation variable is increased by a fixed amount. We show in this note that in the absence of a cutoff value, not only the voltage but also the adaptation variable diverges in finite time during spike generation in the quadratic model. The divergence of the adaptation variable makes the system very sensitive to the cutoff: changing V(c) can dramatically alter the spike patterns. Furthermore, from a computational viewpoint, the divergence of the adaptation variable implies that the time steps for numerical simulation need to be small and adaptive. However, divergence of the adaptation variable does not occur for the quartic model (Touboul, 2008 ) and the adaptive exponential integrate-and-fire model (Brette & Gerstner, 2005 ). Hence, these models are robust to changes in the cutoff value.

  17. Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.

    PubMed

    Saller, Maximilian A C; Habershon, Scott

    2017-07-11

    Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.

  18. Adaptive Output-Feedback Neural Control of Switched Uncertain Nonlinear Systems With Average Dwell Time.

    PubMed

    Long, Lijun; Zhao, Jun

    2015-07-01

    This paper investigates the problem of adaptive neural tracking control via output-feedback for a class of switched uncertain nonlinear systems without the measurements of the system states. The unknown control signals are approximated directly by neural networks. A novel adaptive neural control technique for the problem studied is set up by exploiting the average dwell time method and backstepping. A switched filter and different update laws are designed to reduce the conservativeness caused by adoption of a common observer and a common update law for all subsystems. The proposed controllers of subsystems guarantee that all closed-loop signals remain bounded under a class of switching signals with average dwell time, while the output tracking error converges to a small neighborhood of the origin. As an application of the proposed design method, adaptive output feedback neural tracking controllers for a mass-spring-damper system are constructed.

  19. Simplified Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two time step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting rates of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx are obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering

  20. An adaptive moving finite volume scheme for modeling flood inundation over dry and complex topography

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Chen, Guoxian; Huang, Yuefei; Yang, Jerry Zhijian; Feng, Hui

    2013-04-01

    A new geometrical conservative interpolation on unstructured meshes is developed for preserving still water equilibrium and positivity of water depth at each iteration of mesh movement, leading to an adaptive moving finite volume (AMFV) scheme for modeling flood inundation over dry and complex topography. Unlike traditional schemes involving position-fixed meshes, the iteration process of the AFMV scheme moves a fewer number of the meshes adaptively in response to flow variables calculated in prior solutions and then simulates their posterior values on the new meshes. At each time step of the simulation, the AMFV scheme consists of three parts: an adaptive mesh movement to shift the vertices position, a geometrical conservative interpolation to remap the flow variables by summing the total mass over old meshes to avoid the generation of spurious waves, and a partial differential equations(PDEs) discretization to update the flow variables for a new time step. Five different test cases are presented to verify the computational advantages of the proposed scheme over nonadaptive methods. The results reveal three attractive features: (i) the AMFV scheme could preserve still water equilibrium and positivity of water depth within both mesh movement and PDE discretization steps; (ii) it improved the shock-capturing capability for handling topographic source terms and wet-dry interfaces by moving triangular meshes to approximate the spatial distribution of time-variant flood processes; (iii) it was able to solve the shallow water equations with a relatively higher accuracy and spatial-resolution with a lower computational cost.

  1. From Dinosaurs to Modern Bird Diversity: Extending the Time Scale of Adaptive Radiation

    PubMed Central

    Moen, Daniel; Morlon, Hélène

    2014-01-01

    What explains why some groups of organisms, like birds, are so species rich? And what explains their extraordinary ecological diversity, ranging from large, flightless birds to small migratory species that fly thousand of kilometers every year? These and similar questions have spurred great interest in adaptive radiation, the diversification of ecological traits in a rapidly speciating group of organisms. Although the initial formulation of modern concepts of adaptive radiation arose from consideration of the fossil record, rigorous attempts to identify adaptive radiation in the fossil record are still uncommon. Moreover, most studies of adaptive radiation concern groups that are less than 50 million years old. Thus, it is unclear how important adaptive radiation is over temporal scales that span much larger portions of the history of life. In this issue, Benson et al. test the idea of a “deep-time” adaptive radiation in dinosaurs, compiling and using one of the most comprehensive phylogenetic and body-size datasets for fossils. Using recent phylogenetic statistical methods, they find that in most clades of dinosaurs there is a strong signal of an “early burst” in body-size evolution, a predicted pattern of adaptive radiation in which rapid trait evolution happens early in a group's history and then slows down. They also find that body-size evolution did not slow down in the lineage leading to birds, hinting at why birds survived to the present day and diversified. This paper represents one of the most convincing attempts at understanding deep-time adaptive radiations. PMID:24802950

  2. Outward Bound to the Galaxies--One Step at a Time

    ERIC Educational Resources Information Center

    Ward, R. Bruce; Miller-Friedmann, Jaimie; Sienkiewicz, Frank; Antonucci, Paul

    2012-01-01

    Less than a century ago, astronomers began to unlock the cosmic distances within and beyond the Milky Way. Understanding the size and scale of the universe is a continuing, step-by-step process that began with the remarkably accurate measurement of the distance to the Moon made by early Greeks. In part, the authors have ITEAMS (Innovative…

  3. A step-defined sedentary lifestyle index: <5000 steps/day.

    PubMed

    Tudor-Locke, Catrine; Craig, Cora L; Thyfault, John P; Spence, John C

    2013-02-01

    Step counting (using pedometers or accelerometers) is widely accepted by researchers, practitioners, and the general public. Given the mounting evidence of the link between low steps/day and time spent in sedentary behaviours, how few steps/day some populations actually perform, and the growing interest in the potentially deleterious effects of excessive sedentary behaviours on health, an emerging question is "How many steps/day are too few?" This review examines the utility, appropriateness, and limitations of using a reoccurring candidate for a step-defined sedentary lifestyle index: <5000 steps/day. Adults taking <5000 steps/day are more likely to have a lower household income and be female, older, of African-American vs. European-American heritage, a current vs. never smoker, and (or) living with chronic disease and (or) disability. Little is known about how contextual factors (e.g., built environment) foster such low levels of step-defined physical activity. Unfavorable indicators of body composition and cardiometabolic risk have been consistently associated with taking <5000 steps/day. The acute transition (3-14 days) of healthy active young people from higher (>10 000) to lower (<5000 or as low as 1500) daily step counts induces reduced insulin sensitivity and glycemic control, increased adiposity, and other negative changes in health parameters. Although few alternative values have been considered, the continued use of <5000 steps/day as a step-defined sedentary lifestyle index for adults is appropriate for researchers and practitioners and for communicating with the general public. There is little evidence to advocate any specific value indicative of a step-defined sedentary lifestyle index in children and adolescents.

  4. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians.

    PubMed

    Pang, Shengshi; Jordan, Andrew N

    2017-03-09

    Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T 2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T 4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case.

  5. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians

    PubMed Central

    Pang, Shengshi; Jordan, Andrew N.

    2017-01-01

    Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case. PMID:28276428

  6. Rubbing time and bonding performance of one-step adhesives to primary enamel and dentin.

    PubMed

    Botelho, Maria Paula Jacobucci; Isolan, Cristina Pereira; Schwantz, Júlia Kaster; Lopes, Murilo Baena; Moraes, Rafael Ratto de

    2017-01-01

    This study investigated whether increasing the concentration of acidic monomers in one-step adhesives would allow reducing their application time without interfering with the bonding ability to primary enamel and dentin. Experimental one-step self-etch adhesives were formulated with 5 wt% (AD5), 20 wt% (AD20), or 35 wt% (AD35) acidic monomer. The adhesives were applied using rubbing motion for 5, 10, or 20 s. Bond strengths to primary enamel and dentin were tested under shear stress. A commercial etch-and-rinse adhesive (Single Bond 2; 3M ESPE) served as reference. Scanning electron microscopy was used to observe the morphology of bonded interfaces. Data were analysed at p<0.05. In enamel, AD35 had higher bond strength when rubbed for at least 10 s, while application for 5 s generated lower bond strength. In dentin, increased acidic monomer improved bonding only for 20 s rubbing time. The etch-and-rinse adhesive yielded higher bond strength to enamel and similar bonding to dentin as compared with the self-etch adhesives. The adhesive layer was thicker and more irregular for the etch-and-rinse material, with no appreciable differences among the self-etch systems. Overall, increasing the acidic monomer concentration only led to an increase in bond strength to enamel when the rubbing time was at least 10 s. In dentin, despite the increase in bond strength with longer rubbing times, the results favoured the experimental adhesives compared to the conventional adhesive. Reduced rubbing time of self-etch adhesives should be avoided in the clinical setup.

  7. An experimental study of an adaptive-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Celik, Zeki; Roberts, Leonard

    1988-01-01

    A series of adaptive wall ventilated wind tunnel experiments was carried out to demonstrate the feasibility of using the side wall pressure distribution as the flow variable for the assessment of compatibility with free air conditions. Iterative and one step convergence methods were applied using the streamwise velocity component, the side wall pressure distribution and the normal velocity component in order to investigate their relative merits. The advantage of using the side wall pressure as the flow variable is to reduce the data taking time which is one the major contributors to the total testing time. In ventilated adaptive wall wind tunnel testing, side wall pressure measurements require simple instrumentation as opposed to the Laser Doppler Velocimetry used to measure the velocity components. In ventilated adaptive wall tunnel testing, influence coefficients are required to determine the pressure corrections in the plenum compartment. Experiments were carried out to evaluate the influence coefficients from side wall pressure distributions, and from streamwise and normal velocity distributions at two control levels. Velocity measurements were made using a two component Laser Doppler Velocimeter system.

  8. Cognitive Performance and Locomotor Adaptation in Persons With Anterior Cruciate Ligament Reconstruction.

    PubMed

    Stone, Amanda E; Roper, Jaimie A; Herman, Daniel C; Hass, Chris J

    2018-05-01

    Persons with anterior cruciate ligament reconstruction (ACLR) show deficits in gait and neuromuscular control following rehabilitation. This altered behavior extends to locomotor adaptation and learning, however the contributing factors to this observed behavior have yet to be investigated. The purpose of this study was to assess differences in locomotor adaptation and learning between ACLR and controls, and identify underlying contributors to motor adaptation in these individuals. Twenty ACLR individuals and 20 healthy controls (CON) agreed to participate in this study. Participants performed four cognitive and dexterity tasks (local version of Trail Making Test, reaction time test, electronic pursuit rotor test, and the Purdue pegboard). Three-dimensional kinematics were also collected while participants walked on a split-belt treadmill. ACLR individuals completed the local versions of Trails A and Trails B significantly faster than CON. During split-belt walking, ACLR individuals demonstrated smaller step length asymmetry during EARLY and LATE adaptation, smaller double support asymmetry during MID adaptation, and larger stance time asymmetry during DE-ADAPT compared with CON. ACLR individuals performed better during tasks that required visual attention and task switching and were less perturbed during split-belt walking compared to controls. Persons with ACLR may use different strategies than controls, cognitive or otherwise, to adapt locomotor patterns.

  9. Estimating the limits of adaptation from historical behaviour: Insights from the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Jina, A.; Hsiang, S. M.; Kopp, R. E., III; Rasmussen, D.; Rising, J.

    2014-12-01

    The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assessed the climate risks posed to the United States' economy in a number of economic sectors [1]. The main analysis presents projections of climate impacts with an assumption of "no adaptation". Yet, historically, when the climate imposed an economic cost upon society, adaptive responses were taken to minimise these costs. These adaptive behaviours, both autonomous and planned, can be expected to occur as climate impacts increase in the future. To understand the extent to which adaptation might decrease some of the worst impacts of climate change, we empirically estimate adaptive responses. We do this in three sectors considered in the analysis - crop yield, crime, and mortality - and estimate adaptive capacity in two steps. First, looking at changes in climate impacts through time, we identify a historical rate of adaptation. Second, spatial differences in climate impacts are then used to stratify regions into more adapted or less adapted based on climate averages. As these averages change across counties in the US, we allow each to become more adapted at the rate identified in step one. We are then able to estimate the residual damages, assuming that only the historical adaptive behaviours have taken place (fig 1). Importantly, we are unable to estimate any costs associated with these adaptations, nor are we able to estimate more novel (for example, new technological discoveries) or more disruptive (for example, migration) adaptive behaviours. However, an important insight is that historical adaptive behaviours may not be capable of reducing the worst impacts of climate change. The persistence of impacts in even the most exposed areas indicates that there are non-trivial costs associated with adaptation that will need to be met from other sources or through novel behavioural changes. References: [1] T. Houser et al. (2014), American Climate

  10. Clipping in neurocontrol by adaptive dynamic programming.

    PubMed

    Fairbank, Michael; Prokhorov, Danil; Alonso, Eduardo

    2014-10-01

    In adaptive dynamic programming, neurocontrol, and reinforcement learning, the objective is for an agent to learn to choose actions so as to minimize a total cost function. In this paper, we show that when discretized time is used to model the motion of the agent, it can be very important to do clipping on the motion of the agent in the final time step of the trajectory. By clipping, we mean that the final time step of the trajectory is to be truncated such that the agent stops exactly at the first terminal state reached, and no distance further. We demonstrate that when clipping is omitted, learning performance can fail to reach the optimum, and when clipping is done properly, learning performance can improve significantly. The clipping problem we describe affects algorithms that use explicit derivatives of the model functions of the environment to calculate a learning gradient. These include backpropagation through time for control and methods based on dual heuristic programming. However, the clipping problem does not significantly affect methods based on heuristic dynamic programming, temporal differences learning, or policy-gradient learning algorithms.

  11. Adaptive spatial combining for passive time-reversed communications.

    PubMed

    Gomes, João; Silva, António; Jesus, Sérgio

    2008-08-01

    Passive time reversal has aroused considerable interest in underwater communications as a computationally inexpensive means of mitigating the intersymbol interference introduced by the channel using a receiver array. In this paper the basic technique is extended by adaptively weighting sensor contributions to partially compensate for degraded focusing due to mismatch between the assumed and actual medium impulse responses. Two algorithms are proposed, one of which restores constructive interference between sensors, and the other one minimizes the output residual as in widely used equalization schemes. These are compared with plain time reversal and variants that employ postequalization and channel tracking. They are shown to improve the residual error and temporal stability of basic time reversal with very little added complexity. Results are presented for data collected in a passive time-reversal experiment that was conducted during the MREA'04 sea trial. In that experiment a single acoustic projector generated a 24-PSK (phase-shift keyed) stream at 200400 baud, modulated at 3.6 kHz, and received at a range of about 2 km on a sparse vertical array with eight hydrophones. The data were found to exhibit significant Doppler scaling, and a resampling-based preprocessing method is also proposed here to compensate for that scaling.

  12. Intermediate view reconstruction using adaptive disparity search algorithm for real-time 3D processing

    NASA Astrophysics Data System (ADS)

    Bae, Kyung-hoon; Park, Changhan; Kim, Eun-soo

    2008-03-01

    In this paper, intermediate view reconstruction (IVR) using adaptive disparity search algorithm (ASDA) is for realtime 3-dimensional (3D) processing proposed. The proposed algorithm can reduce processing time of disparity estimation by selecting adaptive disparity search range. Also, the proposed algorithm can increase the quality of the 3D imaging. That is, by adaptively predicting the mutual correlation between stereo images pair using the proposed algorithm, the bandwidth of stereo input images pair can be compressed to the level of a conventional 2D image and a predicted image also can be effectively reconstructed using a reference image and disparity vectors. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm improves the PSNRs of a reconstructed image to about 4.8 dB by comparing with that of conventional algorithms, and reduces the Synthesizing time of a reconstructed image to about 7.02 sec by comparing with that of conventional algorithms.

  13. Hard real-time beam scheduler enables adaptive images in multi-probe systems

    NASA Astrophysics Data System (ADS)

    Tobias, Richard J.

    2014-03-01

    Real-time embedded-system concepts were adapted to allow an imaging system to responsively control the firing of multiple probes. Large-volume, operator-independent (LVOI) imaging would increase the diagnostic utility of ultrasound. An obstacle to this innovation is the inability of current systems to drive multiple transducers dynamically. Commercial systems schedule scanning with static lists of beams to be fired and processed; here we allow an imager to adapt to changing beam schedule demands, as an intelligent response to incoming image data. An example of scheduling changes is demonstrated with a flexible duplex mode two-transducer application mimicking LVOI imaging. Embedded-system concepts allow an imager to responsively control the firing of multiple probes. Operating systems use powerful dynamic scheduling algorithms, such as fixed priority preemptive scheduling. Even real-time operating systems lack the timing constraints required for ultrasound. Particularly for Doppler modes, events must be scheduled with sub-nanosecond precision, and acquired data is useless without this requirement. A successful scheduler needs unique characteristics. To get close to what would be needed in LVOI imaging, we show two transducers scanning different parts of a subjects leg. When one transducer notices flow in a region where their scans overlap, the system reschedules the other transducer to start flow mode and alter its beams to get a view of the observed vessel and produce a flow measurement. The second transducer does this in a focused region only. This demonstrates key attributes of a successful LVOI system, such as robustness against obstructions and adaptive self-correction.

  14. ADAPTIVE REAL-TIME CARDIAC MRI USING PARADISE: VALIDATION BY THE PHYSIOLOGICALLY IMPROVED NCAT PHANTOM

    PubMed Central

    Sharif, Behzad; Bresler, Yoram

    2013-01-01

    Patient-Adaptive Reconstruction and Acquisition Dynamic Imaging with Sensitivity Encoding (PARADISE) is a dynamic MR imaging scheme that optimally combines parallel imaging and model-based adaptive acquisition. In this work, we propose the application of PARADISE to real-time cardiac MRI. We introduce a physiologically improved version of a realistic four-dimensional cardiac-torso (NCAT) phantom, which incorporates natural beat-to-beat heart rate and motion variations. Cardiac cine imaging using PARADISE is simulated and its performance is analyzed by virtue of the improved phantom. Results verify the effectiveness of PARADISE for high resolution un-gated real-time cardiac MRI and its superiority over conventional acquisition methods. PMID:24398475

  15. Adapting livestock management to spatio-temporal heterogeneity in semi-arid rangelands.

    PubMed

    Jakoby, O; Quaas, M F; Baumgärtner, S; Frank, K

    2015-10-01

    Management strategies in rotational grazing systems differ in their level of complexity and adaptivity. Different components of such grazing strategies are expected to allow for adaptation to environmental heterogeneities in space and time. However, most models investigating general principles of rangeland management strategies neglect spatio-temporal system properties including seasonality and spatial heterogeneity of environmental variables. We developed an ecological-economic rangeland model that combines a spatially explicit farm structure with intra-annual time steps. This allows investigating different management components in rotational grazing systems (including stocking and rotation rules) and evaluating their effect on the ecological and economic states of semi-arid grazing systems. Our results show that adaptive stocking is less sensitive to overstocking compared to a constant stocking strategy. Furthermore, the rotation rule becomes important only at stocking numbers that maximize expected income. Altogether, the best of the tested strategies is adaptive stocking combined with a rotation that adapts to both spatial forage availability and seasonality. This management strategy maximises mean income and at the same time maintains the rangeland in a viable condition. However, we could also show that inappropriate adaptation that neglects seasonality even leads to deterioration. Rangelands characterised by higher inter-annual climate variability show a higher risk of income losses under a non-adaptive stocking rule, and non-adaptive rotation is least able to buffer increasing climate variability. Overall, all important system properties including seasonality and spatial heterogeneity of available resources need to be considered when designing an appropriate rangeland management system. Resulting adaptive rotational grazing strategies can be valuable for improving management and mitigating income risks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Short-term saccadic adaptation in the macaque monkey: a binocular mechanism

    PubMed Central

    Schultz, K. P.

    2013-01-01

    Saccadic eye movements are rapid transfers of gaze between objects of interest. Their duration is too short for the visual system to be able to follow their progress in time. Adaptive mechanisms constantly recalibrate the saccadic responses by detecting how close the landings are to the selected targets. The double-step saccadic paradigm is a common method to simulate alterations in saccadic gain. While the subject is responding to a first target shift, a second shift is introduced in the middle of this movement, which masks it from visual detection. The error in landing introduced by the second shift is interpreted by the brain as an error in the programming of the initial response, with gradual gain changes aimed at compensating the apparent sensorimotor mismatch. A second shift applied dichoptically to only one eye introduces disconjugate landing errors between the two eyes. A monocular adaptive system would independently modify only the gain of the eye exposed to the second shift in order to reestablish binocular alignment. Our results support a binocular mechanism. A version-based saccadic adaptive process detects postsaccadic version errors and generates compensatory conjugate gain alterations. A vergence-based saccadic adaptive process detects postsaccadic disparity errors and generates corrective nonvisual disparity signals that are sent to the vergence system to regain binocularity. This results in striking dynamical similarities between visually driven combined saccade-vergence gaze transfers, where the disparity is given by the visual targets, and the double-step adaptive disconjugate responses, where an adaptive disparity signal is generated internally by the saccadic system. PMID:23076111

  17. Conflict-driven adaptive control is enhanced by integral negative emotion on a short time scale.

    PubMed

    Yang, Qian; Pourtois, Gilles

    2018-02-05

    Negative emotion influences cognitive control, and more specifically conflict adaptation. However, discrepant results have often been reported in the literature. In this study, we broke down negative emotion into integral and incidental components using a modern motivation-based framework, and assessed whether the former could change conflict adaptation. In the first experiment, we manipulated the duration of the inter-trial-interval (ITI) to assess the actual time-scale of this effect. Integral negative emotion was induced by using loss-related feedback contingent on task performance, and measured at the subjective and physiological levels. Results showed that conflict-driven adaptive control was enhanced when integral negative emotion was elicited, compared to a control condition without changes in defensive motivation. Importantly, this effect was only found when a short, as opposed to long ITI was used, suggesting that it had a short time scale. In the second experiment, we controlled for effects of feature repetition and contingency learning, and replicated an enhanced conflict adaptation effect when integral negative emotion was elicited and a short ITI was used. We interpret these new results against a standard cognitive control framework assuming that integral negative emotion amplifies specific control signals transiently, and in turn enhances conflict adaptation.

  18. An adaptive three-stage extended Kalman filter for nonlinear discrete-time system in presence of unknown inputs.

    PubMed

    Xiao, Mengli; Zhang, Yongbo; Wang, Zhihua; Fu, Huimin

    2018-04-01

    Considering the performances of conventional Kalman filter may seriously degrade when it suffers stochastic faults and unknown input, which is very common in engineering problems, a new type of adaptive three-stage extended Kalman filter (AThSEKF) is proposed to solve state and fault estimation in nonlinear discrete-time system under these conditions. The three-stage UV transformation and adaptive forgetting factor are introduced for derivation, and by comparing with the adaptive augmented state extended Kalman filter, it is proven to be uniformly asymptotically stable. Furthermore, the adaptive three-stage extended Kalman filter is applied to a two-dimensional radar tracking scenario to illustrate the effect, and the performance is compared with that of conventional three stage extended Kalman filter (ThSEKF) and the adaptive two-stage extended Kalman filter (ATEKF). The results show that the adaptive three-stage extended Kalman filter is more effective than these two filters when facing the nonlinear discrete-time systems with information of unknown inputs not perfectly known. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Spatiotemporal topology and temporal sequence identification with an adaptive time-delay neural network

    NASA Astrophysics Data System (ADS)

    Lin, Daw-Tung; Ligomenides, Panos A.; Dayhoff, Judith E.

    1993-08-01

    Inspired from the time delays that occur in neurobiological signal transmission, we describe an adaptive time delay neural network (ATNN) which is a powerful dynamic learning technique for spatiotemporal pattern transformation and temporal sequence identification. The dynamic properties of this network are formulated through the adaptation of time-delays and synapse weights, which are adjusted on-line based on gradient descent rules according to the evolution of observed inputs and outputs. We have applied the ATNN to examples that possess spatiotemporal complexity, with temporal sequences that are completed by the network. The ATNN is able to be applied to pattern completion. Simulation results show that the ATNN learns the topology of a circular and figure eight trajectories within 500 on-line training iterations, and reproduces the trajectory dynamically with very high accuracy. The ATNN was also trained to model the Fourier series expansion of the sum of different odd harmonics. The resulting network provides more flexibility and efficiency than the TDNN and allows the network to seek optimal values for time-delays as well as optimal synapse weights.

  20. The Influence of Time Spent in Outdoor Play on Daily and Aerobic Step Count in Costa Rican Children

    ERIC Educational Resources Information Center

    Morera Castro, Maria del Rocio

    2011-01-01

    The purpose of this study is to examine the influence of time spent in outdoor play (i.e., on weekday and weekend days) on daily (i.e., average step count) and aerobic step count (i.e., average moderate to vigorous physical activity [MVPA] during the weekdays and weekend days) in fifth grade Costa Rican children. It was hypothesized that: (a)…

  1. ASIS v1.0: an adaptive solver for the simulation of atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Cariolle, Daniel; Moinat, Philippe; Teyssèdre, Hubert; Giraud, Luc; Josse, Béatrice; Lefèvre, Franck

    2017-04-01

    This article reports on the development and tests of the adaptive semi-implicit scheme (ASIS) solver for the simulation of atmospheric chemistry. To solve the ordinary differential equation systems associated with the time evolution of the species concentrations, ASIS adopts a one-step linearized implicit scheme with specific treatments of the Jacobian of the chemical fluxes. It conserves mass and has a time-stepping module to control the accuracy of the numerical solution. In idealized box-model simulations, ASIS gives results similar to the higher-order implicit schemes derived from the Rosenbrock's and Gear's methods and requires less computation and run time at the moderate precision required for atmospheric applications. When implemented in the MOCAGE chemical transport model and the Laboratoire de Météorologie Dynamique Mars general circulation model, the ASIS solver performs well and reveals weaknesses and limitations of the original semi-implicit solvers used by these two models. ASIS can be easily adapted to various chemical schemes and further developments are foreseen to increase its computational efficiency, and to include the computation of the concentrations of the species in aqueous-phase in addition to gas-phase chemistry.

  2. Adaptive Proactive Inhibitory Control for Embedded Real-Time Applications

    PubMed Central

    Yang, Shufan; McGinnity, T. Martin; Wong-Lin, KongFatt

    2012-01-01

    Psychologists have studied the inhibitory control of voluntary movement for many years. In particular, the countermanding of an impending action has been extensively studied. In this work, we propose a neural mechanism for adaptive inhibitory control in a firing-rate type model based on current findings in animal electrophysiological and human psychophysical experiments. We then implement this model on a field-programmable gate array (FPGA) prototyping system, using dedicated real-time hardware circuitry. Our results show that the FPGA-based implementation can run in real-time while achieving behavioral performance qualitatively suggestive of the animal experiments. Implementing such biological inhibitory control in an embedded device can lead to the development of control systems that may be used in more realistic cognitive robotics or in neural prosthetic systems aiding human movement control. PMID:22701420

  3. Deriving adaptive operating rules of hydropower reservoirs using time-varying parameters generated by the EnKF

    NASA Astrophysics Data System (ADS)

    Feng, Maoyuan; Liu, Pan; Guo, Shenglian; Shi, Liangsheng; Deng, Chao; Ming, Bo

    2017-08-01

    Operating rules have been used widely to decide reservoir operations because of their capacity for coping with uncertain inflow. However, stationary operating rules lack adaptability; thus, under changing environmental conditions, they cause inefficient reservoir operation. This paper derives adaptive operating rules based on time-varying parameters generated using the ensemble Kalman filter (EnKF). A deterministic optimization model is established to obtain optimal water releases, which are further taken as observations of the reservoir simulation model. The EnKF is formulated to update the operating rules sequentially, providing a series of time-varying parameters. To identify the index that dominates the variations of the operating rules, three hydrologic factors are selected: the reservoir inflow, ratio of future inflow to current available water, and available water. Finally, adaptive operating rules are derived by fitting the time-varying parameters with the identified dominant hydrologic factor. China's Three Gorges Reservoir was selected as a case study. Results show that (1) the EnKF has the capability of capturing the variations of the operating rules, (2) reservoir inflow is the factor that dominates the variations of the operating rules, and (3) the derived adaptive operating rules are effective in improving hydropower benefits compared with stationary operating rules. The insightful findings of this study could be used to help adapt reservoir operations to mitigate the effects of changing environmental conditions.

  4. A multi-time-step noise reduction method for measuring velocity statistics from particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Machicoane, Nathanaël; López-Caballero, Miguel; Bourgoin, Mickael; Aliseda, Alberto; Volk, Romain

    2017-10-01

    We present a method to improve the accuracy of velocity measurements for fluid flow or particles immersed in it, based on a multi-time-step approach that allows for cancellation of noise in the velocity measurements. Improved velocity statistics, a critical element in turbulent flow measurements, can be computed from the combination of the velocity moments computed using standard particle tracking velocimetry (PTV) or particle image velocimetry (PIV) techniques for data sets that have been collected over different values of time intervals between images. This method produces Eulerian velocity fields and Lagrangian velocity statistics with much lower noise levels compared to standard PIV or PTV measurements, without the need of filtering and/or windowing. Particle displacement between two frames is computed for multiple different time-step values between frames in a canonical experiment of homogeneous isotropic turbulence. The second order velocity structure function of the flow is computed with the new method and compared to results from traditional measurement techniques in the literature. Increased accuracy is also demonstrated by comparing the dissipation rate of turbulent kinetic energy measured from this function against previously validated measurements.

  5. Group sequential designs for stepped-wedge cluster randomised trials

    PubMed Central

    Grayling, Michael J; Wason, James MS; Mander, Adrian P

    2017-01-01

    Background/Aims: The stepped-wedge cluster randomised trial design has received substantial attention in recent years. Although various extensions to the original design have been proposed, no guidance is available on the design of stepped-wedge cluster randomised trials with interim analyses. In an individually randomised trial setting, group sequential methods can provide notable efficiency gains and ethical benefits. We address this by discussing how established group sequential methodology can be adapted for stepped-wedge designs. Methods: Utilising the error spending approach to group sequential trial design, we detail the assumptions required for the determination of stepped-wedge cluster randomised trials with interim analyses. We consider early stopping for efficacy, futility, or efficacy and futility. We describe first how this can be done for any specified linear mixed model for data analysis. We then focus on one particular commonly utilised model and, using a recently completed stepped-wedge cluster randomised trial, compare the performance of several designs with interim analyses to the classical stepped-wedge design. Finally, the performance of a quantile substitution procedure for dealing with the case of unknown variance is explored. Results: We demonstrate that the incorporation of early stopping in stepped-wedge cluster randomised trial designs could reduce the expected sample size under the null and alternative hypotheses by up to 31% and 22%, respectively, with no cost to the trial’s type-I and type-II error rates. The use of restricted error maximum likelihood estimation was found to be more important than quantile substitution for controlling the type-I error rate. Conclusion: The addition of interim analyses into stepped-wedge cluster randomised trials could help guard against time-consuming trials conducted on poor performing treatments and also help expedite the implementation of efficacious treatments. In future, trialists should

  6. Some design guidelines for discrete-time adaptive controllers

    NASA Technical Reports Server (NTRS)

    Rohrs, C. E.; Athans, M.; Valavani, L.; Stein, G.

    1985-01-01

    There have been many algorithms proposed for adaptive control which will provide globally asymptotically stable controllers if some stringent conditions on the plant are met. The conditions on the plant cannot be met in practice as all plants will contain high frequency unmolded dynamics therefore, blind implementation of the published algorithms can lead to disastrous results. This paper uses a linearization analysis of a non-linear adaptive controller to demonstrate analytically design guidelines which aleviate some of the problems associated with adaptive control in the presence of unmodeled dynamics.

  7. Exploration of zeroth-order wavefunctions and energies as a first step toward intramolecular symmetry-adapted perturbation theory

    NASA Astrophysics Data System (ADS)

    Gonthier, Jérôme F.; Corminboeuf, Clémence

    2014-04-01

    Non-covalent interactions occur between and within all molecules and have a profound impact on structural and electronic phenomena in chemistry, biology, and material science. Understanding the nature of inter- and intramolecular interactions is essential not only for establishing the relation between structure and properties, but also for facilitating the rational design of molecules with targeted properties. These objectives have motivated the development of theoretical schemes decomposing intermolecular interactions into physically meaningful terms. Among the various existing energy decomposition schemes, Symmetry-Adapted Perturbation Theory (SAPT) is one of the most successful as it naturally decomposes the interaction energy into physical and intuitive terms. Unfortunately, analogous approaches for intramolecular energies are theoretically highly challenging and virtually nonexistent. Here, we introduce a zeroth-order wavefunction and energy, which represent the first step toward the development of an intramolecular variant of the SAPT formalism. The proposed energy expression is based on the Chemical Hamiltonian Approach (CHA), which relies upon an asymmetric interpretation of the electronic integrals. The orbitals are optimized with a non-hermitian Fock matrix based on two variants: one using orbitals strictly localized on individual fragments and the other using canonical (delocalized) orbitals. The zeroth-order wavefunction and energy expression are validated on a series of prototypical systems. The computed intramolecular interaction energies demonstrate that our approach combining the CHA with strictly localized orbitals achieves reasonable interaction energies and basis set dependence in addition to producing intuitive energy trends. Our zeroth-order wavefunction is the primary step fundamental to the derivation of any perturbation theory correction, which has the potential to truly transform our understanding and quantification of non

  8. Exploration of zeroth-order wavefunctions and energies as a first step toward intramolecular symmetry-adapted perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonthier, Jérôme F.; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch

    2014-04-21

    Non-covalent interactions occur between and within all molecules and have a profound impact on structural and electronic phenomena in chemistry, biology, and material science. Understanding the nature of inter- and intramolecular interactions is essential not only for establishing the relation between structure and properties, but also for facilitating the rational design of molecules with targeted properties. These objectives have motivated the development of theoretical schemes decomposing intermolecular interactions into physically meaningful terms. Among the various existing energy decomposition schemes, Symmetry-Adapted Perturbation Theory (SAPT) is one of the most successful as it naturally decomposes the interaction energy into physical and intuitivemore » terms. Unfortunately, analogous approaches for intramolecular energies are theoretically highly challenging and virtually nonexistent. Here, we introduce a zeroth-order wavefunction and energy, which represent the first step toward the development of an intramolecular variant of the SAPT formalism. The proposed energy expression is based on the Chemical Hamiltonian Approach (CHA), which relies upon an asymmetric interpretation of the electronic integrals. The orbitals are optimized with a non-hermitian Fock matrix based on two variants: one using orbitals strictly localized on individual fragments and the other using canonical (delocalized) orbitals. The zeroth-order wavefunction and energy expression are validated on a series of prototypical systems. The computed intramolecular interaction energies demonstrate that our approach combining the CHA with strictly localized orbitals achieves reasonable interaction energies and basis set dependence in addition to producing intuitive energy trends. Our zeroth-order wavefunction is the primary step fundamental to the derivation of any perturbation theory correction, which has the potential to truly transform our understanding and quantification of non

  9. Human heat adaptation.

    PubMed

    Taylor, Nigel A S

    2014-01-01

    In this overview, human morphological and functional adaptations during naturally and artificially induced heat adaptation are explored. Through discussions of adaptation theory and practice, a theoretical basis is constructed for evaluating heat adaptation. It will be argued that some adaptations are specific to the treatment used, while others are generalized. Regarding ethnic differences in heat tolerance, the case is put that reported differences in heat tolerance are not due to natural selection, but can be explained on the basis of variations in adaptation opportunity. These concepts are expanded to illustrate how traditional heat adaptation and acclimatization represent forms of habituation, and thermal clamping (controlled hyperthermia) is proposed as a superior model for mechanistic research. Indeed, this technique has led to questioning the perceived wisdom of body-fluid changes, such as the expansion and subsequent decay of plasma volume, and sudomotor function, including sweat habituation and redistribution. Throughout, this contribution was aimed at taking another step toward understanding the phenomenon of heat adaptation and stimulating future research. In this regard, research questions are posed concerning the influence that variations in morphological configuration may exert upon adaptation, the determinants of postexercise plasma volume recovery, and the physiological mechanisms that modify the cholinergic sensitivity of sweat glands, and changes in basal metabolic rate and body core temperature following adaptation. © 2014 American Physiological Society.

  10. Absolute phase estimation: adaptive local denoising and global unwrapping.

    PubMed

    Bioucas-Dias, Jose; Katkovnik, Vladimir; Astola, Jaakko; Egiazarian, Karen

    2008-10-10

    The paper attacks absolute phase estimation with a two-step approach: the first step applies an adaptive local denoising scheme to the modulo-2 pi noisy phase; the second step applies a robust phase unwrapping algorithm to the denoised modulo-2 pi phase obtained in the first step. The adaptive local modulo-2 pi phase denoising is a new algorithm based on local polynomial approximations. The zero-order and the first-order approximations of the phase are calculated in sliding windows of varying size. The zero-order approximation is used for pointwise adaptive window size selection, whereas the first-order approximation is used to filter the phase in the obtained windows. For phase unwrapping, we apply the recently introduced robust (in the sense of discontinuity preserving) PUMA unwrapping algorithm [IEEE Trans. Image Process.16, 698 (2007)] to the denoised wrapped phase. Simulations give evidence that the proposed algorithm yields state-of-the-art performance, enabling strong noise attenuation while preserving image details. (c) 2008 Optical Society of America

  11. Future Time Perspective as a Predictor of Adolescents' Adaptive Behavior in School

    ERIC Educational Resources Information Center

    Carvalho, Renato Gil Gomes

    2015-01-01

    Future time perspective (FTP) has been associated with positive outcomes in adolescents' development across different contexts. However, the extent to which FTP influences adaptation needs additional understanding. In this study, we analysed the relationship between FTP and adolescents' behavior in school, as expressed in several indicators of…

  12. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation

    PubMed Central

    Anthony Eikema, Diderik Jan A.; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A.; Scott-Pandorf, Melissa M.; Bloomberg, Jacob J.; Mukherjee, Mukul

    2015-01-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, is believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study we therefore investigated the effect of optic flow on tactile stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices, and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetry were

  13. Data-Based Predictive Control with Multirate Prediction Step

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan S.

    2010-01-01

    Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.

  14. The practical application of adaptive study design in early phase clinical trials: a retrospective analysis of time savings.

    PubMed

    Lorch, U; Berelowitz, K; Ozen, C; Naseem, A; Akuffo, E; Taubel, J

    2012-05-01

    The interest in adaptive study design is evident from the growing amount of clinical research employing this model in the mid to later stages of medicines development. Little has been published on the practical application and merits of adaptive study design in early phase clinical research. This paper describes a retrospective analysis performed on a sample of 29 industry lead adaptive early phase studies commencing between 1 January 2006 and 31 December 2010 in a clinical trials unit in London, England. All studies containing at least one adaptive feature in the original protocol were included in the analysis. The scope of the analysis was to assess whether the use of adaptive study designs provided tangible benefits over the use of conventional study designs using time savings as the main measure. We conclude that the use of adaptive study design saves time in early phase research programs. This is achieved by abolishing the need for substantial amendments or by mitigating their impact on timelines and by using adaptive scheduling efficiencies.

  15. Adaptation to abrupt time shifts of the oscillator(s) controlling human circadian rhythms.

    PubMed Central

    Mills, J N; Minors, D S; Waterhouse, J M

    1978-01-01

    1. Thirty-six subjects in an isolation unit were subjected to time shifts of 12 hr, or of 8 hr in either direction. 2. The rhythms of body temperature and excretion of eight urinary constituents were studied before and after the shift, both on a usual nychthemeral routine and during 24 hr when they remained under constant conditions, awake, engaged in light, mainly sedentary activity, and consuming identical food and fluid every hour. 3. The rhythms on nychthemeral routine were defined by fitting cosine curves. On constant routine the rhythm after the shift was cross-correlated with the original rhythm, either with variable delay (or advance) or with an additive mixture between this variably shifted rhythm and the unshifted or a fully shifted rhythm. The process yielding the highest correlation coefficient was accepted as the best descriptor of the nature of adaptation. 4. A combination of two rhythms was observed more often for urinary sodium, chloride and phosphate than for other variables. 5. Adaptation appeared to have proceeded further after westward than eastward shifts, and this difference was particularly noticeable for urinary potassium, sodium and chloride. 6. Partial adaptation usually involved a phase delay, even after an eastward shift when a cumulative delay of 16 hr would be needed to achieve full adaptation and re-entrainment. 7. Observations under nychthemeral conditions often gave a false idea of the degree of adaptation. In particular, after an eastward shift the phase of the rhythms appeared to shift in the appropriate direction when studied under nychthemeral conditions whereas the endogenous oscillator either showed no consistent behaviour or, in the control of urate excretion, a shift in the wrong direction. 8. The implications for people undergoing time shifts, in the course of shift work or transmeridional flights, are indicated. PMID:745108

  16. Rubbing time and bonding performance of one-step adhesives to primary enamel and dentin

    PubMed Central

    Botelho, Maria Paula Jacobucci; Isolan, Cristina Pereira; Schwantz, Júlia Kaster; Lopes, Murilo Baena; de Moraes, Rafael Ratto

    2017-01-01

    Abstract Objectives: This study investigated whether increasing the concentration of acidic monomers in one-step adhesives would allow reducing their application time without interfering with the bonding ability to primary enamel and dentin. Material and methods: Experimental one-step self-etch adhesives were formulated with 5 wt% (AD5), 20 wt% (AD20), or 35 wt% (AD35) acidic monomer. The adhesives were applied using rubbing motion for 5, 10, or 20 s. Bond strengths to primary enamel and dentin were tested under shear stress. A commercial etch-and-rinse adhesive (Single Bond 2; 3M ESPE) served as reference. Scanning electron microscopy was used to observe the morphology of bonded interfaces. Data were analysed at p<0.05. Results: In enamel, AD35 had higher bond strength when rubbed for at least 10 s, while application for 5 s generated lower bond strength. In dentin, increased acidic monomer improved bonding only for 20 s rubbing time. The etch-and-rinse adhesive yielded higher bond strength to enamel and similar bonding to dentin as compared with the self-etch adhesives. The adhesive layer was thicker and more irregular for the etch-and-rinse material, with no appreciable differences among the self-etch systems. Conclusion: Overall, increasing the acidic monomer concentration only led to an increase in bond strength to enamel when the rubbing time was at least 10 s. In dentin, despite the increase in bond strength with longer rubbing times, the results favoured the experimental adhesives compared to the conventional adhesive. Reduced rubbing time of self-etch adhesives should be avoided in the clinical setup. PMID:29069150

  17. Development of a Just-in-Time Adaptive mHealth Intervention for Insomnia: Usability Study.

    PubMed

    Pulantara, I Wayan; Parmanto, Bambang; Germain, Anne

    2018-05-17

    Healthy sleep is a fundamental component of physical and brain health. Insomnia, however, is a prevalent sleep disorder that compromises functioning, productivity, and health. Therefore, developing efficient treatment delivery methods for insomnia can have significant societal and personal health impacts. Cognitive behavioral therapy for insomnia (CBTI) is the recommended first-line treatment of insomnia but access is currently limited for patients, since treatment must occur in specialty sleep clinics, which suffer from an insufficient number of trained clinicians. Smartphone-based interventions offer a promising means for improving the delivery of CBTI. Furthermore, novel features such as real-time monitoring and assessment, personalization, dynamic adaptations of the intervention, and context awareness can enhance treatment personalization and effectiveness, and reduce associated costs. Ultimately, this "Just in Time Adaptive Intervention" for insomnia-an intervention approach that is acceptable to patients and clinicians, and is based on mobile health (mHealth) platform and tools-can significantly improve patient access and clinician delivery of evidence-based insomnia treatments. This study aims to develop and assess the usability of a Just in Time Adaptive Intervention application platform called iREST ("interactive Resilience Enhancing Sleep Tactics") for use in behavioral insomnia interventions. iREST can be used by both patients and clinicians. The development of iREST was based on the Iterative and Incremental Development software development model. Requirement analysis was based on the case study's description, workflow and needs, clinician inputs, and a previously conducted BBTI military study/implementation of the Just in Time Adaptive Intervention architecture. To evaluate the usability of the iREST mHealth tool, a pilot usability study was conducted. Additionally, this study explores the feasibility of using an off-the-shelf wearable device to

  18. Automatic Adaptation to Fast Input Changes in a Time-Invariant Neural Circuit

    PubMed Central

    Bharioke, Arjun; Chklovskii, Dmitri B.

    2015-01-01

    Neurons must faithfully encode signals that can vary over many orders of magnitude despite having only limited dynamic ranges. For a correlated signal, this dynamic range constraint can be relieved by subtracting away components of the signal that can be predicted from the past, a strategy known as predictive coding, that relies on learning the input statistics. However, the statistics of input natural signals can also vary over very short time scales e.g., following saccades across a visual scene. To maintain a reduced transmission cost to signals with rapidly varying statistics, neuronal circuits implementing predictive coding must also rapidly adapt their properties. Experimentally, in different sensory modalities, sensory neurons have shown such adaptations within 100 ms of an input change. Here, we show first that linear neurons connected in a feedback inhibitory circuit can implement predictive coding. We then show that adding a rectification nonlinearity to such a feedback inhibitory circuit allows it to automatically adapt and approximate the performance of an optimal linear predictive coding network, over a wide range of inputs, while keeping its underlying temporal and synaptic properties unchanged. We demonstrate that the resulting changes to the linearized temporal filters of this nonlinear network match the fast adaptations observed experimentally in different sensory modalities, in different vertebrate species. Therefore, the nonlinear feedback inhibitory network can provide automatic adaptation to fast varying signals, maintaining the dynamic range necessary for accurate neuronal transmission of natural inputs. PMID:26247884

  19. Using a "time machine" to test for local adaptation of aquatic microbes to temporal and spatial environmental variation.

    PubMed

    Fox, Jeremy W; Harder, Lawrence D

    2015-01-01

    Local adaptation occurs when different environments are dominated by different specialist genotypes, each of which is relatively fit in its local conditions and relatively unfit under other conditions. Analogously, ecological species sorting occurs when different environments are dominated by different competing species, each of which is relatively fit in its local conditions. The simplest theory predicts that spatial, but not temporal, environmental variation selects for local adaptation (or generates species sorting), but this prediction is difficult to test. Although organisms can be reciprocally transplanted among sites, doing so among times seems implausible. Here, we describe a reciprocal transplant experiment testing for local adaptation or species sorting of lake bacteria in response to both temporal and spatial variation in water chemistry. The experiment used a -80°C freezer as a "time machine." Bacterial isolates and water samples were frozen for later use, allowing transplantation of older isolates "forward in time" and newer isolates "backward in time." Surprisingly, local maladaptation predominated over local adaptation in both space and time. Such local maladaptation may indicate that adaptation, or the analogous species sorting process, fails to keep pace with temporal fluctuations in water chemistry. This hypothesis could be tested with more finely resolved temporal data. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  20. ADAPTIVE METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS VIA NATURAL EMBEDDINGS AND REJECTION SAMPLING WITH MEMORY.

    PubMed

    Rackauckas, Christopher; Nie, Qing

    2017-01-01

    Adaptive time-stepping with high-order embedded Runge-Kutta pairs and rejection sampling provides efficient approaches for solving differential equations. While many such methods exist for solving deterministic systems, little progress has been made for stochastic variants. One challenge in developing adaptive methods for stochastic differential equations (SDEs) is the construction of embedded schemes with direct error estimates. We present a new class of embedded stochastic Runge-Kutta (SRK) methods with strong order 1.5 which have a natural embedding of strong order 1.0 methods. This allows for the derivation of an error estimate which requires no additional function evaluations. Next we derive a general method to reject the time steps without losing information about the future Brownian path termed Rejection Sampling with Memory (RSwM). This method utilizes a stack data structure to do rejection sampling, costing only a few floating point calculations. We show numerically that the methods generate statistically-correct and tolerance-controlled solutions. Lastly, we show that this form of adaptivity can be applied to systems of equations, and demonstrate that it solves a stiff biological model 12.28x faster than common fixed timestep algorithms. Our approach only requires the solution to a bridging problem and thus lends itself to natural generalizations beyond SDEs.

  1. ADAPTIVE METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS VIA NATURAL EMBEDDINGS AND REJECTION SAMPLING WITH MEMORY

    PubMed Central

    Rackauckas, Christopher

    2017-01-01

    Adaptive time-stepping with high-order embedded Runge-Kutta pairs and rejection sampling provides efficient approaches for solving differential equations. While many such methods exist for solving deterministic systems, little progress has been made for stochastic variants. One challenge in developing adaptive methods for stochastic differential equations (SDEs) is the construction of embedded schemes with direct error estimates. We present a new class of embedded stochastic Runge-Kutta (SRK) methods with strong order 1.5 which have a natural embedding of strong order 1.0 methods. This allows for the derivation of an error estimate which requires no additional function evaluations. Next we derive a general method to reject the time steps without losing information about the future Brownian path termed Rejection Sampling with Memory (RSwM). This method utilizes a stack data structure to do rejection sampling, costing only a few floating point calculations. We show numerically that the methods generate statistically-correct and tolerance-controlled solutions. Lastly, we show that this form of adaptivity can be applied to systems of equations, and demonstrate that it solves a stiff biological model 12.28x faster than common fixed timestep algorithms. Our approach only requires the solution to a bridging problem and thus lends itself to natural generalizations beyond SDEs. PMID:29527134

  2. Adaptive output-feedback control for switched stochastic uncertain nonlinear systems with time-varying delay.

    PubMed

    Song, Zhibao; Zhai, Junyong

    2018-04-01

    This paper addresses the problem of adaptive output-feedback control for a class of switched stochastic time-delay nonlinear systems with uncertain output function, where both the control coefficients and time-varying delay are unknown. The drift and diffusion terms are subject to unknown homogeneous growth condition. By virtue of adding a power integrator technique, an adaptive output-feedback controller is designed to render that the closed-loop system is bounded in probability, and the state of switched stochastic nonlinear system can be globally regulated to the origin almost surely. A numerical example is provided to demonstrate the validity of the proposed control method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Adaptive Event-Triggered Control Based on Heuristic Dynamic Programming for Nonlinear Discrete-Time Systems.

    PubMed

    Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo

    2017-07-01

    This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.

  4. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    NASA Astrophysics Data System (ADS)

    Philip, B.; Wang, Z.; Berrill, M. A.; Birke, M.; Pernice, M.

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  5. Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics

    NASA Technical Reports Server (NTRS)

    Rohrs, C. E.; Valavani, L.; Athans, M.; Stein, G.

    1985-01-01

    This paper examines the robustness properties of existing adaptive control algorithms to unmodeled plant high-frequency dynamics and unmeasurable output disturbances. It is demonstrated that there exist two infinite-gain operators in the nonlinear dynamic system which determines the time-evolution of output and parameter errors. The pragmatic implications of the existence of such infinite-gain operators is that: (1) sinusoidal reference inputs at specific frequencies and/or (2) sinusoidal output disturbances at any frequency (including dc), can cause the loop gain to increase without bound, thereby exciting the unmodeled high-frequency dynamics, and yielding an unstable control system. Hence, it is concluded that existing adaptive control algorithms as they are presented in the literature referenced in this paper, cannot be used with confidence in practical designs where the plant contains unmodeled dynamics because instability is likely to result. Further understanding is required to ascertain how the currently implemented adaptive systems differ from the theoretical systems studied here and how further theoretical development can improve the robustness of adaptive controllers.

  6. New Reduced Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2004-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes that are being developed at Glenn. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx were obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3

  7. Development of a scalable generic platform for adaptive optics real time control

    NASA Astrophysics Data System (ADS)

    Surendran, Avinash; Burse, Mahesh P.; Ramaprakash, A. N.; Parihar, Padmakar

    2015-06-01

    The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well-defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system should also accommodate for different data transmission protocols (like Ethernet, USB, IEEE 1394 etc.) for transmitting data to and from the FPGA device, thus providing a more flexible platform for Adaptive Optics control. Preliminary simulation results for the formulation of the platform, and a design of a fully scalable slope computer is presented.

  8. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  9. A Smartphone Step Counter Using IMU and Magnetometer for Navigation and Health Monitoring Applications

    PubMed Central

    Khedr, Maan; El-Sheimy, Nasser

    2017-01-01

    The growing market of smart devices make them appealing for various applications. Motion tracking can be achieved using such devices, and is important for various applications such as navigation, search and rescue, health monitoring, and quality of life-style assessment. Step detection is a crucial task that affects the accuracy and quality of such applications. In this paper, a new step detection technique is proposed, which can be used for step counting and activity monitoring for health applications as well as part of a Pedestrian Dead Reckoning (PDR) system. Inertial and Magnetic sensors measurements are analyzed and fused for detecting steps under varying step modes and device pose combinations using a free-moving handheld device (smartphone). Unlike most of the state of the art research in the field, the proposed technique does not require a classifier, and adaptively tunes the filters and thresholds used without the need for presets while accomplishing the task in a real-time operation manner. Testing shows that the proposed technique successfully detects steps under varying motion speeds and device use cases with an average performance of 99.6%, and outperforms some of the state of the art techniques that rely on classifiers and commercial wristband products. PMID:29117143

  10. Biomechanical influences on balance recovery by stepping.

    PubMed

    Hsiao, E T; Robinovitch, S N

    1999-10-01

    Stepping represents a common means for balance recovery after a perturbation to upright posture. Yet little is known regarding the biomechanical factors which determine whether a step succeeds in preventing a fall. In the present study, we developed a simple pendulum-spring model of balance recovery by stepping, and used this to assess how step length and step contact time influence the effort (leg contact force) and feasibility of balance recovery by stepping. We then compared model predictions of step characteristics which minimize leg contact force to experimentally observed values over a range of perturbation strengths. At all perturbation levels, experimentally observed step execution times were higher than optimal, and step lengths were smaller than optimal. However, the predicted increase in leg contact force associated with these deviations was substantial only for large perturbations. Furthermore, increases in the strength of the perturbation caused subjects to take larger, quicker steps, which reduced their predicted leg contact force. We interpret these data to reflect young subjects' desire to minimize recovery effort, subject to neuromuscular constraints on step execution time and step length. Finally, our model predicts that successful balance recovery by stepping is governed by a coupling between step length, step execution time, and leg strength, so that the feasibility of balance recovery decreases unless declines in one capacity are offset by enhancements in the others. This suggests that one's risk for falls may be affected more by small but diffuse neuromuscular impairments than by larger impairment in a single motor capacity.

  11. Study of chromatic adaptation using memory color matches, Part II: colored illuminants.

    PubMed

    Smet, Kevin A G; Zhai, Qiyan; Luo, Ming R; Hanselaer, Peter

    2017-04-03

    In a previous paper, 12 corresponding color data sets were derived for 4 neutral illuminants using the long-term memory colours of five familiar objects. The data were used to test several linear (one-step and two-step von Kries, RLAB) and nonlinear (Hunt and Nayatani) chromatic adaptation transforms (CAT). This paper extends that study to a total of 156 corresponding color sets by including 9 more colored illuminants: 2 with low and 2 with high correlated color temperatures as well as 5 representing high chroma adaptive conditions. As in the previous study, a two-step von Kries transform whereby the degree of adaptation D is optimized to minimize the DEu'v' prediction errors outperformed all other tested models for both memory color and literature corresponding color sets, whereby prediction errors were lower for the memory color set. Most of the transforms tested, except the two- and one-step von Kries models with optimized D, showed large errors for corresponding color subsets that contained non-neutral adaptive conditions as all of them tended to overestimate the effective degree of adaptation in this study. An analysis of the impact of the sensor space primaries in which the adaptation is performed was found to have little impact compared to that of model choice. Finally, the effective degree of adaptation for the 13 illumination conditions (4 neutral + 9 colored) was successfully modelled using a bivariate Gaussian in a Macleod-Boyton like chromaticity diagram.

  12. Discrete-Time Local Value Iteration Adaptive Dynamic Programming: Admissibility and Termination Analysis.

    PubMed

    Wei, Qinglai; Liu, Derong; Lin, Qiao

    In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.

  13. Real‐time monitoring and control of the load phase of a protein A capture step

    PubMed Central

    Rüdt, Matthias; Brestrich, Nina; Rolinger, Laura

    2016-01-01

    ABSTRACT The load phase in preparative Protein A capture steps is commonly not controlled in real‐time. The load volume is generally based on an offline quantification of the monoclonal antibody (mAb) prior to loading and on a conservative column capacity determined by resin‐life time studies. While this results in a reduced productivity in batch mode, the bottleneck of suitable real‐time analytics has to be overcome in order to enable continuous mAb purification. In this study, Partial Least Squares Regression (PLS) modeling on UV/Vis absorption spectra was applied to quantify mAb in the effluent of a Protein A capture step during the load phase. A PLS model based on several breakthrough curves with variable mAb titers in the HCCF was successfully calibrated. The PLS model predicted the mAb concentrations in the effluent of a validation experiment with a root mean square error (RMSE) of 0.06 mg/mL. The information was applied to automatically terminate the load phase, when a product breakthrough of 1.5 mg/mL was reached. In a second part of the study, the sensitivity of the method was further increased by only considering small mAb concentrations in the calibration and by subtracting an impurity background signal. The resulting PLS model exhibited a RMSE of prediction of 0.01 mg/mL and was successfully applied to terminate the load phase, when a product breakthrough of 0.15 mg/mL was achieved. The proposed method has hence potential for the real‐time monitoring and control of capture steps at large scale production. This might enhance the resin capacity utilization, eliminate time‐consuming offline analytics, and contribute to the realization of continuous processing. Biotechnol. Bioeng. 2017;114: 368–373. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc. PMID:27543789

  14. The evolutionary time machine: forecasting how populations can adapt to changing environments using dormant propagules

    PubMed Central

    Orsini, Luisa; Schwenk, Klaus; De Meester, Luc; Colbourne, John K.; Pfrender, Michael E.; Weider, Lawrence J.

    2013-01-01

    Evolutionary changes are determined by a complex assortment of ecological, demographic and adaptive histories. Predicting how evolution will shape the genetic structures of populations coping with current (and future) environmental challenges has principally relied on investigations through space, in lieu of time, because long-term phenotypic and molecular data are scarce. Yet, dormant propagules in sediments, soils and permafrost are convenient natural archives of population-histories from which to trace adaptive trajectories along extended time periods. DNA sequence data obtained from these natural archives, combined with pioneering methods for analyzing both ecological and population genomic time-series data, are likely to provide predictive models to forecast evolutionary responses of natural populations to environmental changes resulting from natural and anthropogenic stressors, including climate change. PMID:23395434

  15. A Comparative Study of Acousto-Optic Time-Integrating Correlators for Adaptive Jamming Cancellation

    DTIC Science & Technology

    1997-10-01

    This final report presents a comparative study of the space-integrating and time-integrating configurations of an acousto - optic correlator...systematically evaluate all existing acousto - optic correlator architectures and to determine which would be most suitable for adaptive jamming

  16. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel

  17. Adaptive logical stochastic resonance in time-delayed synthetic genetic networks

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zheng, Wenbin; Song, Aiguo

    2018-04-01

    In the paper, the concept of logical stochastic resonance is applied to implement logic operation and latch operation in time-delayed synthetic genetic networks derived from a bacteriophage λ. Clear logic operation and latch operation can be obtained when the network is tuned by modulated periodic force and time-delay. In contrast with the previous synthetic genetic networks based on logical stochastic resonance, the proposed system has two advantages. On one hand, adding modulated periodic force to the background noise can increase the length of the optimal noise plateau of obtaining desired logic response and make the system adapt to varying noise intensity. On the other hand, tuning time-delay can extend the optimal noise plateau to larger range. The result provides possible help for designing new genetic regulatory networks paradigm based on logical stochastic resonance.

  18. Giant Steps in Cefalù

    NASA Astrophysics Data System (ADS)

    Jeffery, David J.; Mazzali, Paolo A.

    2007-08-01

    Giant steps is a technique to accelerate Monte Carlo radiative transfer in optically-thick cells (which are isotropic and homogeneous in matter properties and into which astrophysical atmospheres are divided) by greatly reducing the number of Monte Carlo steps needed to propagate photon packets through such cells. In an optically-thick cell, packets starting from any point (which can be regarded a point source) well away from the cell wall act essentially as packets diffusing from the point source in an infinite, isotropic, homogeneous atmosphere. One can replace many ordinary Monte Carlo steps that a packet diffusing from the point source takes by a randomly directed giant step whose length is slightly less than the distance to the nearest cell wall point from the point source. The giant step is assigned a time duration equal to the time for the RMS radius for a burst of packets diffusing from the point source to have reached the giant step length. We call assigning giant-step time durations this way RMS-radius (RMSR) synchronization. Propagating packets by series of giant steps in giant-steps random walks in the interiors of optically-thick cells constitutes the technique of giant steps. Giant steps effectively replaces the exact diffusion treatment of ordinary Monte Carlo radiative transfer in optically-thick cells by an approximate diffusion treatment. In this paper, we describe the basic idea of giant steps and report demonstration giant-steps flux calculations for the grey atmosphere. Speed-up factors of order 100 are obtained relative to ordinary Monte Carlo radiative transfer. In practical applications, speed-up factors of order ten and perhaps more are possible. The speed-up factor is likely to be significantly application-dependent and there is a trade-off between speed-up and accuracy. This paper and past work suggest that giant-steps error can probably be kept to a few percent by using sufficiently large boundary-layer optical depths while still

  19. Community-based adapted tango dancing for individuals with Parkinson's disease and older adults.

    PubMed

    Hackney, Madeleine E; Hackney, Madeleine; McKee, Kathleen

    2014-12-09

    Adapted tango dancing improves mobility and balance in older adults and additional populations with balance impairments. It is composed of very simple step elements. Adapted tango involves movement initiation and cessation, multi-directional perturbations, varied speeds and rhythms. Focus on foot placement, whole body coordination, and attention to partner, path of movement, and aesthetics likely underlie adapted tango's demonstrated efficacy for improving mobility and balance. In this paper, we describe the methodology to disseminate the adapted tango teaching methods to dance instructor trainees and to implement the adapted tango by the trainees in the community for older adults and individuals with Parkinson's Disease (PD). Efficacy in improving mobility (measured with the Timed Up and Go, Tandem stance, Berg Balance Scale, Gait Speed and 30 sec chair stand), safety and fidelity of the program is maximized through targeted instructor and volunteer training and a structured detailed syllabus outlining class practices and progression.

  20. Studying the Global Bifurcation Involving Wada Boundary Metamorphosis by a Method of Generalized Cell Mapping with Sampling-Adaptive Interpolation

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Ming; Jiang, Jun; Hong, Ling; Tang, Dafeng

    In this paper, a new method of Generalized Cell Mapping with Sampling-Adaptive Interpolation (GCMSAI) is presented in order to enhance the efficiency of the computation of one-step probability transition matrix of the Generalized Cell Mapping method (GCM). Integrations with one mapping step are replaced by sampling-adaptive interpolations of third order. An explicit formula of interpolation error is derived for a sampling-adaptive control to switch on integrations for the accuracy of computations with GCMSAI. By applying the proposed method to a two-dimensional forced damped pendulum system, global bifurcations are investigated with observations of boundary metamorphoses including full to partial and partial to partial as well as the birth of fully Wada boundary. Moreover GCMSAI requires a computational time of one thirtieth up to one fiftieth compared to that of the previous GCM.

  1. A very low number of national adaptations of the World Health Organization guidelines for HIV and tuberculosis reported their processes.

    PubMed

    Godah, Mohammad W; Abdul Khalek, Rima A; Kilzar, Lama; Zeid, Hiba; Nahlawi, Acile; Lopes, Luciane Cruz; Darzi, Andrea J; Schünemann, Holger J; Akl, Elie A

    2016-12-01

    Low- and middle-income countries adapt World Health Organization (WHO) guidelines instead of de novo development for financial, epidemiologic, sociopolitical, cultural, organizational, and other reasons. To systematically evaluate reported processes used in the adaptation of WHO guidelines for human immunodeficiency virus (HIV) and tuberculosis (TB). We searched three online databases/repositories: United States Agency for International Development (USAID) AIDS Support and Technical Resources - Sector One program (AIDSTAR-One) National Treatment Database; the AIDSspace Guideline Repository, and WHO Database of national HIV and TB guidelines. We assessed the rigor and quality of reported adaptation methodology using the ADAPTE process as benchmark. Of 170 eligible guidelines, only 32 (19%) reported documentation on the adaptation process. The median and interquartile range of the number of ADAPTE steps fulfilled by the eligible guidelines were 11.5 (10, 13.5) (out of 23 steps). The number of guidelines (out of 32 steps) fulfilling each ADAPTE step was 18 (interquartile range, 5-27). Seventeen of 32 guidelines (53%) met all steps relevant to the setup phase, whereas none met all steps relevant to the adaptation phase. The number of well-documented adaptation methodologies in national HIV and/or TB guidelines is very low. There is a need for the use of standardized and systematic framework for guideline adaptation and improved reporting of processes used. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Testing the role of phenotypic plasticity for local adaptation: growth and development in time-constrained Rana temporaria populations.

    PubMed

    Lind, M I; Johansson, F

    2011-12-01

    Phenotypic plasticity can be important for local adaptation, because it enables individuals to survive in a novel environment until genetic changes have been accumulated by genetic accommodation. By analysing the relationship between development rate and growth rate, it can be determined whether plasticity in life-history traits is caused by changed physiology or behaviour. We extended this to examine whether plasticity had been aiding local adaptation, by investigating whether the plastic response had been fixed in locally adapted populations. Tadpoles from island populations of Rana temporaria, locally adapted to different pool-drying regimes, were monitored in a common garden. Individual differences in development rate were caused by different foraging efficiency. However, developmental plasticity was physiologically mediated by trading off growth against development rate. Surprisingly, plasticity has not aided local adaptation to time-stressed environments, because local adaptation was not caused by genetic assimilation but on selection on the standing genetic variation in development time. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  3. Adaptive-optics optical coherence tomography processing using a graphics processing unit.

    PubMed

    Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T

    2014-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.

  4. A Variable Step-Size Proportionate Affine Projection Algorithm for Identification of Sparse Impulse Response

    NASA Astrophysics Data System (ADS)

    Liu, Ligang; Fukumoto, Masahiro; Saiki, Sachio; Zhang, Shiyong

    2009-12-01

    Proportionate adaptive algorithms have been proposed recently to accelerate convergence for the identification of sparse impulse response. When the excitation signal is colored, especially the speech, the convergence performance of proportionate NLMS algorithms demonstrate slow convergence speed. The proportionate affine projection algorithm (PAPA) is expected to solve this problem by using more information in the input signals. However, its steady-state performance is limited by the constant step-size parameter. In this article we propose a variable step-size PAPA by canceling the a posteriori estimation error. This can result in high convergence speed using a large step size when the identification error is large, and can then considerably decrease the steady-state misalignment using a small step size after the adaptive filter has converged. Simulation results show that the proposed approach can greatly improve the steady-state misalignment without sacrificing the fast convergence of PAPA.

  5. Adaptive Responses to Prochloraz Exposure That Alter Dose-Response and Time-Course Behaviors

    EPA Science Inventory

    Dose response and time-course (DRTC) are, along with exposure, the major determinants of health risk. Adaptive changes within exposed organisms in response to environmental stress are common, and alter DRTC behaviors to minimize the effects caused by stressors. In this project, ...

  6. Two-Step Oxidation of Refractory Gold Concentrates with Different Microbial Communities.

    PubMed

    Wang, Guo-Hua; Xie, Jian-Ping; Li, Shou-Peng; Guo, Yu-Jie; Pan, Ying; Wu, Haiyan; Liu, Xin-Xing

    2016-11-28

    Bio-oxidation is an effective technology for treatment of refractory gold concentrates. However, the unsatisfactory oxidation rate and long residence time, which cause a lower cyanide leaching rate and gold recovery, are key factors that restrict the application of traditional bio-oxidation technology. In this study, the oxidation rate of refractory gold concentrates and the adaption of microorganisms were analyzed to evaluate a newly developed two-step pretreatment process, which includes a high temperature chemical oxidation step and a subsequent bio-oxidation step. The oxidation rate and recovery rate of gold were improved significantly after the two-step process. The results showed that the highest oxidation rate of sulfide sulfur could reach to 99.01 % with an extreme thermophile microbial community when the pulp density was 5%. Accordingly, the recovery rate of gold was elevated to 92.51%. Meanwhile, the results revealed that moderate thermophiles performed better than acidophilic mesophiles and extreme thermophiles, whose oxidation rates declined drastically when the pulp density was increased to 10% and 15%. The oxidation rates of sulfide sulfur with moderate thermophiles were 93.94% and 65.73% when the pulp density was increased to 10% and 15%, respectively. All these results indicated that the two-step pretreatment increased the oxidation rate of refractory gold concentrates and is a potential technology to pretreat the refractory sample. Meanwhile, owing to the sensitivity of the microbial community under different pulp density levels, the optimization of microbial community in bio-oxidation is necessary in industry.

  7. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    PubMed

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. AMOBH: Adaptive Multiobjective Black Hole Algorithm.

    PubMed

    Wu, Chong; Wu, Tao; Fu, Kaiyuan; Zhu, Yuan; Li, Yongbo; He, Wangyong; Tang, Shengwen

    2017-01-01

    This paper proposes a new multiobjective evolutionary algorithm based on the black hole algorithm with a new individual density assessment (cell density), called "adaptive multiobjective black hole algorithm" (AMOBH). Cell density has the characteristics of low computational complexity and maintains a good balance of convergence and diversity of the Pareto front. The framework of AMOBH can be divided into three steps. Firstly, the Pareto front is mapped to a new objective space called parallel cell coordinate system. Then, to adjust the evolutionary strategies adaptively, Shannon entropy is employed to estimate the evolution status. At last, the cell density is combined with a dominance strength assessment called cell dominance to evaluate the fitness of solutions. Compared with the state-of-the-art methods SPEA-II, PESA-II, NSGA-II, and MOEA/D, experimental results show that AMOBH has a good performance in terms of convergence rate, population diversity, population convergence, subpopulation obtention of different Pareto regions, and time complexity to the latter in most cases.

  9. Adaptive twisting sliding mode algorithm for hypersonic reentry vehicle attitude control based on finite-time observer.

    PubMed

    Guo, Zongyi; Chang, Jing; Guo, Jianguo; Zhou, Jun

    2018-06-01

    This paper focuses on the adaptive twisting sliding mode control for the Hypersonic Reentry Vehicles (HRVs) attitude tracking issue. The HRV attitude tracking model is transformed into the error dynamics in matched structure, whereas an unmeasurable state is redefined by lumping the existing unmatched disturbance with the angular rate. Hence, an adaptive finite-time observer is used to estimate the unknown state. Then, an adaptive twisting algorithm is proposed for systems subject to disturbances with unknown bounds. The stability of the proposed observer-based adaptive twisting approach is guaranteed, and the case of noisy measurement is analyzed. Also, the developed control law avoids the aggressive chattering phenomenon of the existing adaptive twisting approaches because the adaptive gains decrease close to the disturbance once the trajectories reach the sliding surface. Finally, numerical simulations on the attitude control of the HRV are conducted to verify the effectiveness and benefit of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Regularized two-step brain activity reconstruction from spatiotemporal EEG data

    NASA Astrophysics Data System (ADS)

    Alecu, Teodor I.; Voloshynovskiy, Sviatoslav; Pun, Thierry

    2004-10-01

    We are aiming at using EEG source localization in the framework of a Brain Computer Interface project. We propose here a new reconstruction procedure, targeting source (or equivalently mental task) differentiation. EEG data can be thought of as a collection of time continuous streams from sparse locations. The measured electric potential on one electrode is the result of the superposition of synchronized synaptic activity from sources in all the brain volume. Consequently, the EEG inverse problem is a highly underdetermined (and ill-posed) problem. Moreover, each source contribution is linear with respect to its amplitude but non-linear with respect to its localization and orientation. In order to overcome these drawbacks we propose a novel two-step inversion procedure. The solution is based on a double scale division of the solution space. The first step uses a coarse discretization and has the sole purpose of globally identifying the active regions, via a sparse approximation algorithm. The second step is applied only on the retained regions and makes use of a fine discretization of the space, aiming at detailing the brain activity. The local configuration of sources is recovered using an iterative stochastic estimator with adaptive joint minimum energy and directional consistency constraints.

  11. Experimental demonstration of real-time adaptive one-qubit quantum-state tomography

    NASA Astrophysics Data System (ADS)

    Yin, Qi; Li, Li; Xiang, Xiao; Xiang, Guo-Yong; Li, Chuang-Feng; Guo, Guang-Can

    2017-01-01

    Quantum-state tomography plays a pivotal role in quantum computation and information processing. To improve the accuracy in estimating an unknown state, carefully designed measurement schemes, such as adopting an adaptive strategy, are necessarily needed, which have gained great interest recently. In this work, based on the proposal of Sugiyama et al. [Phys. Rev. A 85, 052107 (2012)], 10.1103/PhysRevA.85.052107, we experimentally realize an adaptive quantum-state tomography for one qubit in an optical system. Since this scheme gives an analytical solution to the optimal measurement basis problem, our experiment is updated in real time and the infidelity between the real state and the estimated state is tracked with the detected photons. We observe an almost 1 /N scaling rule of averaged infidelity against the overall number of photons, N , in our experiment, which outperforms 1 /√{N } of nonadaptive schemes.

  12. Soft sensor modelling by time difference, recursive partial least squares and adaptive model updating

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Yang, W.; Xu, O.; Zhou, L.; Wang, J.

    2017-04-01

    To investigate time-variant and nonlinear characteristics in industrial processes, a soft sensor modelling method based on time difference, moving-window recursive partial least square (PLS) and adaptive model updating is proposed. In this method, time difference values of input and output variables are used as training samples to construct the model, which can reduce the effects of the nonlinear characteristic on modelling accuracy and retain the advantages of recursive PLS algorithm. To solve the high updating frequency of the model, a confidence value is introduced, which can be updated adaptively according to the results of the model performance assessment. Once the confidence value is updated, the model can be updated. The proposed method has been used to predict the 4-carboxy-benz-aldehyde (CBA) content in the purified terephthalic acid (PTA) oxidation reaction process. The results show that the proposed soft sensor modelling method can reduce computation effectively, improve prediction accuracy by making use of process information and reflect the process characteristics accurately.

  13. Simplified Two-Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydorgen/Oxygen

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two-time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (> 1 x 10(exp -20) moles/cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T4). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/air fuel and for the H2/O2. A similar correlation is also developed using data from NASA s Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T4) as a function of overall fuel/air ratio, pressure and initial temperature (T3). High values of the regression coefficient R2 are obtained.

  14. LPTA: Location Predictive and Time Adaptive Data Gathering Scheme with Mobile Sink for Wireless Sensor Networks

    PubMed Central

    Rodrigues, Joel J. P. C.

    2014-01-01

    This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes. PMID:25302327

  15. Investigation of FPGA-Based Real-Time Adaptive Digital Pulse Shaping for High-Count-Rate Applications

    NASA Astrophysics Data System (ADS)

    Saxena, Shefali; Hawari, Ayman I.

    2017-07-01

    Digital signal processing techniques have been widely used in radiation spectrometry to provide improved stability and performance with compact physical size over the traditional analog signal processing. In this paper, field-programmable gate array (FPGA)-based adaptive digital pulse shaping techniques are investigated for real-time signal processing. National Instruments (NI) NI 5761 14-bit, 250-MS/s adaptor module is used for digitizing high-purity germanium (HPGe) detector's preamplifier pulses. Digital pulse processing algorithms are implemented on the NI PXIe-7975R reconfigurable FPGA (Kintex-7) using the LabVIEW FPGA module. Based on the time separation between successive input pulses, the adaptive shaping algorithm selects the optimum shaping parameters (rise time and flattop time of trapezoid-shaping filter) for each incoming signal. A digital Sallen-Key low-pass filter is implemented to enhance signal-to-noise ratio and reduce baseline drifting in trapezoid shaping. A recursive trapezoid-shaping filter algorithm is employed for pole-zero compensation of exponentially decayed (with two-decay constants) preamplifier pulses of an HPGe detector. It allows extraction of pulse height information at the beginning of each pulse, thereby reducing the pulse pileup and increasing throughput. The algorithms for RC-CR2 timing filter, baseline restoration, pile-up rejection, and pulse height determination are digitally implemented for radiation spectroscopy. Traditionally, at high-count-rate conditions, a shorter shaping time is preferred to achieve high throughput, which deteriorates energy resolution. In this paper, experimental results are presented for varying count-rate and pulse shaping conditions. Using adaptive shaping, increased throughput is accepted while preserving the energy resolution observed using the longer shaping times.

  16. ViCAR: An Adaptive and Landmark-Free Registration of Time Lapse Image Data from Microfluidics Experiments

    PubMed Central

    Hattab, Georges; Schlüter, Jan-Philip; Becker, Anke; Nattkemper, Tim W.

    2017-01-01

    In order to understand gene function in bacterial life cycles, time lapse bioimaging is applied in combination with different marker protocols in so called microfluidics chambers (i.e., a multi-well plate). In one experiment, a series of T images is recorded for one visual field, with a pixel resolution of 60 nm/px. Any (semi-)automatic analysis of the data is hampered by a strong image noise, low contrast and, last but not least, considerable irregular shifts during the acquisition. Image registration corrects such shifts enabling next steps of the analysis (e.g., feature extraction or tracking). Image alignment faces two obstacles in this microscopic context: (a) highly dynamic structural changes in the sample (i.e., colony growth) and (b) an individual data set-specific sample environment which makes the application of landmarks-based alignments almost impossible. We present a computational image registration solution, we refer to as ViCAR: (Vi)sual (C)ues based (A)daptive (R)egistration, for such microfluidics experiments, consisting of (1) the detection of particular polygons (outlined and segmented ones, referred to as visual cues), (2) the adaptive retrieval of three coordinates throughout different sets of frames, and finally (3) an image registration based on the relation of these points correcting both rotation and translation. We tested ViCAR with different data sets and have found that it provides an effective spatial alignment thereby paving the way to extract temporal features pertinent to each resulting bacterial colony. By using ViCAR, we achieved an image registration with 99.9% of image closeness, based on the average rmsd of 4.10−2 pixels, and superior results compared to a state of the art algorithm. PMID:28620411

  17. Channel noise-induced temporal coherence transitions and synchronization transitions in adaptive neuronal networks with time delay

    NASA Astrophysics Data System (ADS)

    Gong, Yubing; Xie, Huijuan

    2017-09-01

    Using spike-timing-dependent plasticity (STDP), we study the effect of channel noise on temporal coherence and synchronization of adaptive scale-free Hodgkin-Huxley neuronal networks with time delay. It is found that the spiking regularity and spatial synchronization of the neurons intermittently increase and decrease as channel noise intensity is varied, exhibiting transitions of temporal coherence and synchronization. Moreover, this phenomenon depends on time delay, STDP, and network average degree. As time delay increases, the phenomenon is weakened, however, there are optimal STDP and network average degree by which the phenomenon becomes strongest. These results show that channel noise can intermittently enhance the temporal coherence and synchronization of the delayed adaptive neuronal networks. These findings provide a new insight into channel noise for the information processing and transmission in neural systems.

  18. Community-based Adapted Tango Dancing for Individuals with Parkinson's Disease and Older Adults

    PubMed Central

    Hackney, Madeleine E.; McKee, Kathleen

    2014-01-01

    Adapted tango dancing improves mobility and balance in older adults and additional populations with balance impairments. It is composed of very simple step elements. Adapted tango involves movement initiation and cessation, multi-directional perturbations, varied speeds and rhythms. Focus on foot placement, whole body coordination, and attention to partner, path of movement, and aesthetics likely underlie adapted tango’s demonstrated efficacy for improving mobility and balance. In this paper, we describe the methodology to disseminate the adapted tango teaching methods to dance instructor trainees and to implement the adapted tango by the trainees in the community for older adults and individuals with Parkinson’s Disease (PD). Efficacy in improving mobility (measured with the Timed Up and Go, Tandem stance, Berg Balance Scale, Gait Speed and 30 sec chair stand), safety and fidelity of the program is maximized through targeted instructor and volunteer training and a structured detailed syllabus outlining class practices and progression. PMID:25548831

  19. Control Circuit For Two Stepping Motors

    NASA Technical Reports Server (NTRS)

    Ratliff, Roger; Rehmann, Kenneth; Backus, Charles

    1990-01-01

    Control circuit operates two independent stepping motors, one at a time. Provides following operating features: After selected motor stepped to chosen position, power turned off to reduce dissipation; Includes two up/down counters that remember at which one of eight steps each motor set. For selected motor, step indicated by illumination of one of eight light-emitting diodes (LED's) in ring; Selected motor advanced one step at time or repeatedly at rate controlled; Motor current - 30 mA at 90 degree positions, 60 mA at 45 degree positions - indicated by high or low intensity of LED that serves as motor-current monitor; Power-on reset feature provides trouble-free starts; To maintain synchronism between control circuit and motors, stepping of counters inhibited when motor power turned off.

  20. The advantages and limitations of guideline adaptation frameworks.

    PubMed

    Wang, Zhicheng; Norris, Susan L; Bero, Lisa

    2018-05-29

    The implementation of evidence-based guidelines can improve clinical and public health outcomes by helping health professionals practice in the most effective manner, as well as assisting policy-makers in designing optimal programs. Adaptation of a guideline to suit the context in which it is intended to be applied can be a key step in the implementation process. Without taking the local context into account, certain interventions recommended in evidence-based guidelines may be infeasible under local conditions. Guideline adaptation frameworks provide a systematic way of approaching adaptation, and their use may increase transparency, methodological rigor, and the quality of the adapted guideline. This paper presents a number of adaptation frameworks that are currently available. We aim to compare the advantages and limitations of their processes, methods, and resource implications. These insights into adaptation frameworks can inform the future development of guidelines and systematic methods to optimize their adaptation. Recent adaptation frameworks show an evolution from adapting entire existing guidelines, to adapting specific recommendations extracted from an existing guideline, to constructing evidence tables for each recommendation that needs to be adapted. This is a move towards more recommendation-focused, context-specific processes and considerations. There are still many gaps in knowledge about guideline adaptation. Most of the frameworks reviewed lack any evaluation of the adaptation process and outcomes, including user satisfaction and resources expended. The validity, usability, and health impact of guidelines developed via an adaptation process have not been studied. Lastly, adaptation frameworks have not been evaluated for use in low-income countries. Despite the limitations in frameworks, a more systematic approach to adaptation based on a framework is valuable, as it helps to ensure that the recommendations stay true to the evidence while taking

  1. Coding and decoding with adapting neurons: a population approach to the peri-stimulus time histogram.

    PubMed

    Naud, Richard; Gerstner, Wulfram

    2012-01-01

    The response of a neuron to a time-dependent stimulus, as measured in a Peri-Stimulus-Time-Histogram (PSTH), exhibits an intricate temporal structure that reflects potential temporal coding principles. Here we analyze the encoding and decoding of PSTHs for spiking neurons with arbitrary refractoriness and adaptation. As a modeling framework, we use the spike response model, also known as the generalized linear neuron model. Because of refractoriness, the effect of the most recent spike on the spiking probability a few milliseconds later is very strong. The influence of the last spike needs therefore to be described with high precision, while the rest of the neuronal spiking history merely introduces an average self-inhibition or adaptation that depends on the expected number of past spikes but not on the exact spike timings. Based on these insights, we derive a 'quasi-renewal equation' which is shown to yield an excellent description of the firing rate of adapting neurons. We explore the domain of validity of the quasi-renewal equation and compare it with other rate equations for populations of spiking neurons. The problem of decoding the stimulus from the population response (or PSTH) is addressed analogously. We find that for small levels of activity and weak adaptation, a simple accumulator of the past activity is sufficient to decode the original input, but when refractory effects become large decoding becomes a non-linear function of the past activity. The results presented here can be applied to the mean-field analysis of coupled neuron networks, but also to arbitrary point processes with negative self-interaction.

  2. Associations of office workers' objectively assessed occupational sitting, standing and stepping time with musculoskeletal symptoms.

    PubMed

    Coenen, Pieter; Healy, Genevieve N; Winkler, Elisabeth A H; Dunstan, David W; Owen, Neville; Moodie, Marj; LaMontagne, Anthony D; Eakin, Elizabeth A; O'Sullivan, Peter B; Straker, Leon M

    2018-04-22

    We examined the association of musculoskeletal symptoms (MSS) with workplace sitting, standing and stepping time, as well as sitting and standing time accumulation (i.e. usual bout duration of these activities), measured objectively with the activPAL3 monitor. Using baseline data from the Stand Up Victoria trial (216 office workers, 14 workplaces), cross-sectional associations of occupational activities with self-reported MSS (low-back, upper and lower extremity symptoms in the last three months) were examined using probit regression, correcting for clustering and adjusting for confounders. Sitting bout duration was significantly (p < 0.05) associated, non-linearly, with MSS, such that those in the middle tertile displayed the highest prevalence of upper extremity symptoms. Other associations were non-significant but sometimes involved large differences in symptom prevalence (e.g. 38%) by activity. Though causation is unclear, these non-linear associations suggest that sitting and its alternatives (i.e. standing and stepping) interact with MSS and this should be considered when designing safe work systems. Practitioner summary: We studied associations of objectively assessed occupational activities with musculoskeletal symptoms in office workers. Workers who accumulated longer sitting bouts reported fewer upper extremity symptoms. Total activity duration was not significantly associated with musculoskeletal symptoms. We underline the importance of considering total volumes and patterns of activity time in musculoskeletal research.

  3. One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media.

    PubMed

    Wang, Xiang-Hua; Yin, Wen-Yan; Chen, Zhi Zhang David

    2013-09-09

    The one-step leapfrog alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method is reformulated for simulating general electrically dispersive media. It models material dispersive properties with equivalent polarization currents. These currents are then solved with the auxiliary differential equation (ADE) and then incorporated into the one-step leapfrog ADI-FDTD method. The final equations are presented in the form similar to that of the conventional FDTD method but with second-order perturbation. The adapted method is then applied to characterize (a) electromagnetic wave propagation in a rectangular waveguide loaded with a magnetized plasma slab, (b) transmission coefficient of a plane wave normally incident on a monolayer graphene sheet biased by a magnetostatic field, and (c) surface plasmon polaritons (SPPs) propagation along a monolayer graphene sheet biased by an electrostatic field. The numerical results verify the stability, accuracy and computational efficiency of the proposed one-step leapfrog ADI-FDTD algorithm in comparison with analytical results and the results obtained with the other methods.

  4. Effect of time step size and turbulence model on the open water hydrodynamic performance prediction of contra-rotating propellers

    NASA Astrophysics Data System (ADS)

    Wang, Zhan-zhi; Xiong, Ying

    2013-04-01

    A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.

  5. Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings

    NASA Astrophysics Data System (ADS)

    Chen, Po-Chang; Huang, An-Chyau

    2005-04-01

    An adaptive sliding controller is proposed in this paper for controlling a non-autonomous quarter-car suspension system with time-varying loadings. The bound of the car-body loading is assumed to be available. Then, the reference coordinate is placed at the static position under the nominal loading so that the system dynamic equation is derived. Due to spring nonlinearities, the system property becomes asymmetric after coordinate transformation. Besides, in practical cases, system parameters are not easy to be obtained precisely for controller design. Therefore, in this paper, system uncertainties are lumped into two unknown time-varying functions. Since the variation bound of one of the unknown functions is not available, conventional adaptive schemes and robust designs are not applicable. To deal with this problem, the function approximation technique is employed to represent the unknown function as a finite combination of basis functions. The Lyapunov direct method can thus be used to find adaptive laws for updating coefficients in the approximating series and to prove stability of the closed-loop system. Since the position and velocity measurements of the unsprung mass are lumped into the unknown function, there is no need to install sensors on the axle and wheel assembly in the actual implementation. Simulation results are presented to show the performance of the proposed strategy.

  6. An Approach to Stable Gradient-Descent Adaptation of Higher Order Neural Units.

    PubMed

    Bukovsky, Ivo; Homma, Noriyasu

    2017-09-01

    Stability evaluation of a weight-update system of higher order neural units (HONUs) with polynomial aggregation of neural inputs (also known as classes of polynomial neural networks) for adaptation of both feedforward and recurrent HONUs by a gradient descent method is introduced. An essential core of the approach is based on the spectral radius of a weight-update system, and it allows stability monitoring and its maintenance at every adaptation step individually. Assuring the stability of the weight-update system (at every single adaptation step) naturally results in the adaptation stability of the whole neural architecture that adapts to the target data. As an aside, the used approach highlights the fact that the weight optimization of HONU is a linear problem, so the proposed approach can be generally extended to any neural architecture that is linear in its adaptable parameters.

  7. Childhood personality types: vulnerability and adaptation over time.

    PubMed

    De Clercq, Barbara; Rettew, David; Althoff, Robert R; De Bolle, Marleen

    2012-06-01

      Substantial evidence suggests that a Five-Factor Model personality assessment generates a valid description of childhood individual differences and relates to a range of psychological outcomes. Less is known, however, about naturally occurring profiles of personality and their links to psychopathology. The current study explores whether childhood personality characteristics tend to cluster in particular personality profiles that show unique associations with psychopathology and quality of life across time.   Latent class analysis was conducted on maternal rated general personality of a Flemish childhood community sample (N = 477; mean age 10.6 years). The associations of latent class membership probability with psychopathology and quality of life 2 years later were examined, using a multi-informant perspective.   Four distinguishable latent classes were found, representing a Moderate, a Protected, an Undercontrolled and a Vulnerable childhood personality type. Each of these types showed unique associations with childhood outcomes across raters.   Four different personality types can be delineated at young age and have a significant value in understanding vulnerability and adaptation over time. © 2011 The Authors. Journal of Child Psychology and Psychiatry © 2011 Association for Child and Adolescent Mental Health.

  8. Fully implicit moving mesh adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Serazio, C.; Chacon, L.; Lapenta, G.

    2006-10-01

    In many problems of interest, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former is best dealt with with fully implicit methods, which are able to step over fast frequencies to resolve the dynamical time scale of interest. The latter requires grid adaptivity for efficiency. Moving-mesh grid adaptive methods are attractive because they can be designed to minimize the numerical error for a given resolution. However, the required grid governing equations are typically very nonlinear and stiff, and of considerably difficult numerical treatment. Not surprisingly, fully coupled, implicit approaches where the grid and the physics equations are solved simultaneously are rare in the literature, and circumscribed to 1D geometries. In this study, we present a fully implicit algorithm for moving mesh methods that is feasible for multidimensional geometries. Crucial elements are the development of an effective multilevel treatment of the grid equation, and a robust, rigorous error estimator. For the latter, we explore the effectiveness of a coarse grid correction error estimator, which faithfully reproduces spatial truncation errors for conservative equations. We will show that the moving mesh approach is competitive vs. uniform grids both in accuracy (due to adaptivity) and efficiency. Results for a variety of models 1D and 2D geometries will be presented. L. Chac'on, G. Lapenta, J. Comput. Phys., 212 (2), 703 (2006) G. Lapenta, L. Chac'on, J. Comput. Phys., accepted (2006)

  9. Development of a protocol to quantify local bone adaptation over space and time: Quantification of reproducibility.

    PubMed

    Lu, Yongtao; Boudiffa, Maya; Dall'Ara, Enrico; Bellantuono, Ilaria; Viceconti, Marco

    2016-07-05

    In vivo micro-computed tomography (µCT) scanning of small rodents is a powerful method for longitudinal monitoring of bone adaptation. However, the life-time bone growth in small rodents makes it a challenge to quantify local bone adaptation. Therefore, the aim of this study was to develop a protocol, which can take into account large bone growth, to quantify local bone adaptations over space and time. The entire right tibiae of eight 14-week-old C57BL/6J female mice were consecutively scanned four times in an in vivo µCT scanner using a nominal isotropic image voxel size of 10.4µm. The repeated scan image datasets were aligned to the corresponding baseline (first) scan image dataset using rigid registration. 80% of tibia length (starting from the endpoint of the proximal growth plate) was selected as the volume of interest and partitioned into 40 regions along the tibial long axis (10 divisions) and in the cross-section (4 sectors). The bone mineral content (BMC) was used to quantify bone adaptation and was calculated in each region. All local BMCs have precision errors (PE%CV) of less than 3.5% (24 out of 40 regions have PE%CV of less than 2%), least significant changes (LSCs) of less than 3.8%, and 38 out of 40 regions have intraclass correlation coefficients (ICCs) of over 0.8. The proposed protocol allows to quantify local bone adaptations over an entire tibia in longitudinal studies, with a high reproducibility, an essential requirement to reduce the number of animals to achieve the necessary statistical power. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Effects of Conjugate Gradient Methods and Step-Length Formulas on the Multiscale Full Waveform Inversion in Time Domain: Numerical Experiments

    NASA Astrophysics Data System (ADS)

    Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José; Liu, Qinya; Zhou, Bing

    2017-05-01

    We carry out full waveform inversion (FWI) in time domain based on an alternative frequency-band selection strategy that allows us to implement the method with success. This strategy aims at decomposing the seismic data within partially overlapped frequency intervals by carrying out a concatenated treatment of the wavelet to largely avoid redundant frequency information to adapt to wavelength or wavenumber coverage. A pertinent numerical test proves the effectiveness of this strategy. Based on this strategy, we comparatively analyze the effects of update parameters for the nonlinear conjugate gradient (CG) method and step-length formulas on the multiscale FWI through several numerical tests. The investigations of up to eight versions of the nonlinear CG method with and without Gaussian white noise make clear that the HS (Hestenes and Stiefel in J Res Natl Bur Stand Sect 5:409-436, 1952), CD (Fletcher in Practical methods of optimization vol. 1: unconstrained optimization, Wiley, New York, 1987), and PRP (Polak and Ribière in Revue Francaise Informat Recherche Opertionelle, 3e Année 16:35-43, 1969; Polyak in USSR Comput Math Math Phys 9:94-112, 1969) versions are more efficient among the eight versions, while the DY (Dai and Yuan in SIAM J Optim 10:177-182, 1999) version always yields inaccurate result, because it overestimates the deeper parts of the model. The application of FWI algorithms using distinct step-length formulas, such as the direct method ( Direct), the parabolic search method ( Search), and the two-point quadratic interpolation method ( Interp), proves that the Interp is more efficient for noise-free data, while the Direct is more efficient for Gaussian white noise data. In contrast, the Search is less efficient because of its slow convergence. In general, the three step-length formulas are robust or partly insensitive to Gaussian white noise and the complexity of the model. When the initial velocity model deviates far from the real model or the

  11. Intraindividual Stepping Reaction Time Variability Predicts Falls in Older Adults With Mild Cognitive Impairment.

    PubMed

    Bunce, David; Haynes, Becky I; Lord, Stephen R; Gschwind, Yves J; Kochan, Nicole A; Reppermund, Simone; Brodaty, Henry; Sachdev, Perminder S; Delbaere, Kim

    2017-06-01

    Reaction time measures have considerable potential to aid neuropsychological assessment in a variety of health care settings. One such measure, the intraindividual reaction time variability (IIV), is of particular interest as it is thought to reflect neurobiological disturbance. IIV is associated with a variety of age-related neurological disorders, as well as gait impairment and future falls in older adults. However, although persons diagnosed with Mild Cognitive Impairment (MCI) are at high risk of falling, the association between IIV and prospective falls is unknown. We conducted a longitudinal cohort study in cognitively intact (n = 271) and MCI (n = 154) community-dwelling adults aged 70-90 years. IIV was assessed through a variety of measures including simple and choice hand reaction time and choice stepping reaction time tasks (CSRT), the latter administered as a single task and also with a secondary working memory task. Logistic regression did not show an association between IIV on the hand-held tasks and falls. Greater IIV in both CSRT tasks, however, did significantly increase the risk of future falls. This effect was specific to the MCI group, with a stronger effect in persons exhibiting gait, posture, or physiological impairment. The findings suggest that increased stepping IIV may indicate compromised neural circuitry involved in executive function, gait, and posture in persons with MCI increasing their risk of falling. IIV measures have potential to assess neurobiological disturbance underlying physical and cognitive dysfunction in old age, and aid fall risk assessment and routine care in community and health care settings. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Matrix-Dominated Time-Dependent Deformation and Damage of Graphite Epoxy Composite -- Experimental Data under Multiple-Step Relaxation.

    DTIC Science & Technology

    1983-05-01

    50 50 51 - 2 1 No input -- -- -- -- -- -- -- 2 No input - - - - - - - 3 No input -- - - - - - - 4 No input - - - - - - - 5 52 53 54 -- 329 329 330 6...398 *SOverall 160 160 161 161 6 1 162 153 164 165 399 400 401 402 2 166 167 168 169 403 404 405 406 3 170 171 172 173 407 408 409 410 4 174 175 176...0 ’<K fle.- 0 * 00 0 0 FILTERED DATA 70,:TIME =T - 183.798 (HRS.) - 52 - o- - A T360/52M8 - STEP/RELAXATIO4 - SPECIMEN No. 2 - STEP No. 5 00 0= mmia a

  13. Length and time for development of laminar flow in tubes following a step increase of volume flux

    NASA Astrophysics Data System (ADS)

    Chaudhury, Rafeed A.; Herrmann, Marcus; Frakes, David H.; Adrian, Ronald J.

    2015-01-01

    Laminar flows starting up from rest in round tubes are relevant to numerous industrial and biomedical applications. The two most common types are flows driven by an abruptly imposed constant pressure gradient or by an abruptly imposed constant volume flux. Analytical solutions are available for transient, fully developed flows, wherein streamwise development over the entrance length is absent (Szymanski in J de Mathématiques Pures et Appliquées 11:67-107, 1932; Andersson and Tiseth in Chem Eng Commun 112(1):121-133, 1992, respectively). They represent the transient responses of flows in tubes that are very long compared with the entrance length, a condition that is seldom satisfied in biomedical tube networks. This study establishes the entrance (development) length and development time of starting laminar flow in a round tube of finite length driven by a piston pump that produces a step change from zero flow to a constant volume flux for Reynolds numbers between 500 and 3,000. The flows are examined experimentally, using stereographic particle image velocimetry and computationally using computational fluid dynamics, and are then compared with the known analytical solutions for fully developed flow conditions in infinitely long tubes. Results show that step function volume flux start-up flows reach steady state and fully developed flow five times more quickly than those driven by a step function pressure gradient, a 500 % change when compared with existing estimates. Based on these results, we present new, simple guidelines for achieving experimental flows that are fully developed in space and time in realistic (finite) tube geometries. To a first approximation, the time to achieve steady spatially developing flow is nearly equal to the time needed to achieve steady, fully developed flow. Conversely, the entrance length needed to achieve fully developed transient flow is approximately equal to the length needed to achieve fully developed steady flow. Beyond this

  14. Evolution of complex adaptations in molecular systems

    PubMed Central

    Pál, Csaba; Papp, Balázs

    2017-01-01

    A central challenge in evolutionary biology concerns the mechanisms by which complex adaptations arise. Such adaptations depend on the fixation of multiple, highly specific mutations, where intermediate stages of evolution seemingly provide little or no benefit. It is generally assumed that the establishment of complex adaptations is very slow in nature, as evolution of such traits demands special population genetic or environmental circumstances. However, blueprints of complex adaptations in molecular systems are pervasive, indicating that they can readily evolve. We discuss the prospects and limitations of non-adaptive scenarios, which assume multiple neutral or deleterious steps in the evolution of complex adaptations. Next, we examine how complex adaptations can evolve by natural selection in changing environment. Finally, we argue that molecular ’springboards’, such as phenotypic heterogeneity and promiscuous interactions facilitate this process by providing access to new adaptive paths. PMID:28782044

  15. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  16. An Adaptive and Time-Efficient ECG R-Peak Detection Algorithm.

    PubMed

    Qin, Qin; Li, Jianqing; Yue, Yinggao; Liu, Chengyu

    2017-01-01

    R-peak detection is crucial in electrocardiogram (ECG) signal analysis. This study proposed an adaptive and time-efficient R-peak detection algorithm for ECG processing. First, wavelet multiresolution analysis was applied to enhance the ECG signal representation. Then, ECG was mirrored to convert large negative R-peaks to positive ones. After that, local maximums were calculated by the first-order forward differential approach and were truncated by the amplitude and time interval thresholds to locate the R-peaks. The algorithm performances, including detection accuracy and time consumption, were tested on the MIT-BIH arrhythmia database and the QT database. Experimental results showed that the proposed algorithm achieved mean sensitivity of 99.39%, positive predictivity of 99.49%, and accuracy of 98.89% on the MIT-BIH arrhythmia database and 99.83%, 99.90%, and 99.73%, respectively, on the QT database. By processing one ECG record, the mean time consumptions were 0.872 s and 0.763 s for the MIT-BIH arrhythmia database and QT database, respectively, yielding 30.6% and 32.9% of time reduction compared to the traditional Pan-Tompkins method.

  17. An Adaptive and Time-Efficient ECG R-Peak Detection Algorithm

    PubMed Central

    Qin, Qin

    2017-01-01

    R-peak detection is crucial in electrocardiogram (ECG) signal analysis. This study proposed an adaptive and time-efficient R-peak detection algorithm for ECG processing. First, wavelet multiresolution analysis was applied to enhance the ECG signal representation. Then, ECG was mirrored to convert large negative R-peaks to positive ones. After that, local maximums were calculated by the first-order forward differential approach and were truncated by the amplitude and time interval thresholds to locate the R-peaks. The algorithm performances, including detection accuracy and time consumption, were tested on the MIT-BIH arrhythmia database and the QT database. Experimental results showed that the proposed algorithm achieved mean sensitivity of 99.39%, positive predictivity of 99.49%, and accuracy of 98.89% on the MIT-BIH arrhythmia database and 99.83%, 99.90%, and 99.73%, respectively, on the QT database. By processing one ECG record, the mean time consumptions were 0.872 s and 0.763 s for the MIT-BIH arrhythmia database and QT database, respectively, yielding 30.6% and 32.9% of time reduction compared to the traditional Pan-Tompkins method. PMID:29104745

  18. Obstacle stepping involves spinal anticipatory activity associated with quadrupedal limb coordination.

    PubMed

    Michel, J; van Hedel, H J A; Dietz, V

    2008-04-01

    Obstacle avoidance steps are associated with a facilitation of spinal reflexes in leg muscles. Here we have examined the involvement of both leg and arm muscles. Subjects walking with reduced vision on a treadmill were acoustically informed about an approaching obstacle and received feedback about task performance. Reflex responses evoked by tibial nerve stimulation were observed in all arm and leg muscles examined in this study. They were enhanced before the execution of obstacle avoidance compared with normal steps and showed an exponential adaptation in contralateral arm flexor muscles corresponding to the improvement of task performance. This enhancement was absent when the body was partially supported during the task. During the execution of obstacle steps, electromyographic activity in the arm muscles mimicked the preceding reflex behaviour with respect to enhancement and adaptation. Our results demonstrate an anticipatory quadrupedal limb coordination with an involvement of proximal arm muscles in the acquisition and performance of this precision locomotor task. This is presumably achieved by an up-regulated activity of coupled cervico-thoracal interneuronal circuits.

  19. Online adaptation and verification of VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crijns, Wouter, E-mail: wouter.crijns@uzleuven.be; Defraene, Gilles; Depuydt, Tom

    2015-07-15

    clinical practice. Results: The proposed adaptation of a two-arc VMAT plan resulted in the intended CTV{sub mean} (Δ ≤ 3%) and TCP (ΔTCP ≤ 0.001). Moreover, the method assures the intended CI{sub 95%} (Δ ≤ 11%) resulting in lowered rectal NTCP for all cases. Compared to replanning, their adaptation is faster (13 s vs 10 min) and more intuitive. Compared to the current clinical practice, it has a better protection of the healthy tissue. Compared to IMRT, VMAT is more robust to anatomical variations, but it is also less sensitive to the different correction steps. The observed variations of the plan parameters in their database included a linear dependence on the date of treatment planning and on the target radius. The MCS is not retained as QA metric due to a contrasting behavior of its components (LSV and AAV). If three out of four plan parameters (MU, EqFS, AAV, and LSV) need to lie inside a 50% prediction interval (3/4—50%PI), all adapted plans will be accepted. In contrast, all replanned plans do not meet this loose criterion, mainly because they have no connection to the initially optimized and verified plan. Conclusions: A direct (forward) VMAT adaptation performs equally well as (inverse) replanning but is faster and can be extended to real-time adaptation. The prediction intervals for the machine parameters are equivalent to the tolerance tables for couch shifts in the current clinical practice. A 3/4—50%PI QA criterion accepts all the adapted plans but rejects all the replanned plans.« less

  20. Adaptive dynamics on an environmental gradient that changes over a geological time-scale.

    PubMed

    Fortelius, Mikael; Geritz, Stefan; Gyllenberg, Mats; Toivonen, Jaakko

    2015-07-07

    The standard adaptive dynamics framework assumes two timescales, i.e. fast population dynamics and slow evolutionary dynamics. We further assume a third timescale, which is even slower than the evolutionary timescale. We call this the geological timescale and we assume that slow climatic change occurs within this timescale. We study the evolution of our model population over this very slow geological timescale with bifurcation plots of the standard adaptive dynamics framework. The bifurcation parameter being varied describes the abiotic environment that changes over the geological timescale. We construct evolutionary trees over the geological timescale and observe both gradual phenotypic evolution and punctuated branching events. We concur with the established notion that branching of a monomorphic population on an environmental gradient only happens when the gradient is not too shallow and not too steep. However, we show that evolution within the habitat can produce polymorphic populations that inhabit steep gradients. What is necessary is that the environmental gradient at some point in time is such that the initial branching of the monomorphic population can occur. We also find that phenotypes adapted to environments in the middle of the existing environmental range are more likely to branch than phenotypes adapted to extreme environments. Copyright © 2015 Elsevier Ltd. All rights reserved.