Science.gov

Sample records for adaptive transcriptional response

  1. Transcription Factor ADS-4 Regulates Adaptive Responses and Resistance to Antifungal Azole Stress

    PubMed Central

    Wang, Kangji; Zhang, Zhenying; Chen, Xi; Sun, Xianyun

    2015-01-01

    Azoles are commonly used as antifungal drugs or pesticides to control fungal infections in medicine and agriculture. Fungi adapt to azole stress by rapidly activating the transcription of a number of genes, and transcriptional increases in some azole-responsive genes can elevate azole resistance. The regulatory mechanisms that control transcriptional responses to azole stress in filamentous fungi are not well understood. This study identified a bZIP transcription factor, ADS-4 (antifungal drug sensitive-4), as a new regulator of adaptive responses and resistance to antifungal azoles. Transcription of ads-4 in Neurospora crassa cells increased when they were subjected to ketoconazole treatment, whereas the deletion of ads-4 resulted in hypersensitivity to ketoconazole and fluconazole. In contrast, the overexpression of ads-4 increased resistance to fluconazole and ketoconazole in N. crassa. Transcriptome sequencing (RNA-seq) analysis, followed by quantitative reverse transcription (qRT)-PCR confirmation, showed that ADS-4 positively regulated the transcriptional responses of at least six genes to ketoconazole stress in N. crassa. The gene products of four ADS-4-regulated genes are known contributors to azole resistance, including the major efflux pump CDR4 (Pdr5p ortholog), an ABC multidrug transporter (NcAbcB), sterol C-22 desaturase (ERG5), and a lipid transporter (NcRTA2) that is involved in calcineurin-mediated azole resistance. Deletion of the ads-4-homologous gene Afads-4 in Aspergillus fumigatus caused hypersensitivity to itraconazole and ketoconazole, which suggested that ADS-4 is a functionally conserved regulator of adaptive responses to azoles. This study provides important information on a new azole resistance factor that could be targeted by a new range of antifungal pesticides and drugs. PMID:26100701

  2. Global transcriptional, physiological and metabolite analyses of Desulfovibrio vulgaris Hildenborough responses to salt adaptation

    SciTech Connect

    He, Z.; Zhou, A.; Baidoo, E.; He, Q.; Joachimiak, M. P.; Benke, P.; Phan, R.; Mukhopadhyay, A.; Hemme, C.L.; Huang, K.; Alm, E.J.; Fields, M.W.; Wall, J.; Stahl, D.; Hazen, T.C.; Keasling, J.D.; Arkin, A.P.; Zhou, J.

    2009-12-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by physiological, global transcriptional, and metabolite analyses. The growth of D. vulgaris was inhibited by high levels of NaCl, and the growth inhibition could be relieved by the addition of exogenous amino acids (e.g., glutamate, alanine, tryptophan) or yeast extract. Salt adaptation induced the expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). Genes involved in carbon metabolism, cell motility, and phage structures were repressed. Comparison of transcriptomic profiles of D. vulgaris responses to salt adaptation with those of salt shock (short-term NaCl exposure) showed some similarity as well as a significant difference. Metabolite assays showed that glutamate and alanine were accumulated under salt adaptation, suggesting that they may be used as osmoprotectants in D. vulgaris. A conceptual model is proposed to link the observed results to currently available knowledge for further understanding the mechanisms of D. vulgaris adaptation to elevated NaCl.

  3. Adaptation of the Agrobacterium tumefaciens VirG response regulator to activate transcription in plants.

    PubMed

    Czarnecka-Verner, Eva; Salem, Tarek A; Gurley, William B

    2016-02-01

    The Agrobacterium tumefaciens VirG response regulator of the VirA/VirG two-component system was adapted to function in tobacco protoplasts. The subcellular localization of VirG and VirA proteins transiently expressed in onion cells was determined using GFP fusions. Preliminary studies using Gal4DBD-VP16 fusions with VirG and Escherichia coli UhpA, and NarL response regulators indicated compatibility of these bacterial proteins with the eukaryotic transcriptional apparatus. A strong transcriptional activator based on tandem activation domains from the Drosophila fushi tarazu and Herpes simplex VP16 was created. Selected configurations of the two-site Gal4-vir box GUS reporters were activated by chimeric effectors dependent on either the yeast Gal4 DNA-binding domain or that of VirG. Transcriptional induction of the GUS reporter was highest for the VirE19-element promoter with both constitutive and wild-type VirG-tandem activation domain effectors. Multiple VirE19 elements increased the reporter activity proportionately, indicating that the VirG DNA binding domain was functional in plants. The VirG constitutive-Q-VP16 effector was more active than the VirG wild-type. In both the constitutive and wild-type forms of VirG, Q-VP16 activated transcription of the GUS reporter best when located at the C-terminus, i.e. juxtaposed to the VirG DNA binding domain. These results demonstrate the possibility of using DNA binding domains from bacterial response regulators and their cognate binding elements in the engineering of plant gene expression. PMID:26646288

  4. Adaptation of the Agrobacterium tumefaciens VirG response regulator to activate transcription in plants.

    PubMed

    Czarnecka-Verner, Eva; Salem, Tarek A; Gurley, William B

    2016-02-01

    The Agrobacterium tumefaciens VirG response regulator of the VirA/VirG two-component system was adapted to function in tobacco protoplasts. The subcellular localization of VirG and VirA proteins transiently expressed in onion cells was determined using GFP fusions. Preliminary studies using Gal4DBD-VP16 fusions with VirG and Escherichia coli UhpA, and NarL response regulators indicated compatibility of these bacterial proteins with the eukaryotic transcriptional apparatus. A strong transcriptional activator based on tandem activation domains from the Drosophila fushi tarazu and Herpes simplex VP16 was created. Selected configurations of the two-site Gal4-vir box GUS reporters were activated by chimeric effectors dependent on either the yeast Gal4 DNA-binding domain or that of VirG. Transcriptional induction of the GUS reporter was highest for the VirE19-element promoter with both constitutive and wild-type VirG-tandem activation domain effectors. Multiple VirE19 elements increased the reporter activity proportionately, indicating that the VirG DNA binding domain was functional in plants. The VirG constitutive-Q-VP16 effector was more active than the VirG wild-type. In both the constitutive and wild-type forms of VirG, Q-VP16 activated transcription of the GUS reporter best when located at the C-terminus, i.e. juxtaposed to the VirG DNA binding domain. These results demonstrate the possibility of using DNA binding domains from bacterial response regulators and their cognate binding elements in the engineering of plant gene expression.

  5. Global Transcriptional, Physiological, and Metabolite Analyses of the Responses of Desulfovibrio vulgaris Hildenborough to Salt Adaptation ▿ †

    PubMed Central

    He, Zhili; Zhou, Aifen; Baidoo, Edward; He, Qiang; Joachimiak, Marcin P.; Benke, Peter; Phan, Richard; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Huang, Katherine; Alm, Eric J.; Fields, Matthew W.; Wall, Judy; Stahl, David; Hazen, Terry C.; Keasling, Jay D.; Arkin, Adam P.; Zhou, Jizhong

    2010-01-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by performing physiological, global transcriptional, and metabolite analyses. Salt adaptation was reflected by increased expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). The expression of genes involved in carbon metabolism, cell growth, and phage structures was decreased. Transcriptome profiles of D. vulgaris responses to salt adaptation were compared with transcriptome profiles of D. vulgaris responses to salt shock (short-term NaCl exposure). Metabolite assays showed that glutamate and alanine accumulated under salt adaptation conditions, suggesting that these amino acids may be used as osmoprotectants in D. vulgaris. Addition of amino acids (glutamate, alanine, and tryptophan) or yeast extract to the growth medium relieved salt-related growth inhibition. A conceptual model that links the observed results to currently available knowledge is proposed to increase our understanding of the mechanisms of D. vulgaris adaptation to elevated NaCl levels. PMID:20038696

  6. Transcriptional Analysis of The Adaptive Digestive System of The Migratory Locust in Response to Plant Defensive Protease Inhibitors

    PubMed Central

    Spit, Jornt; Holtof, Michiel; Badisco, Liesbet; Vergauwen, Lucia; Vogel, Elise; Knapen, Dries; Vanden Broeck, Jozef

    2016-01-01

    Herbivorous insects evolved adaptive mechanisms to compensate for the presence of plant defensive protease inhibitors (PI) in their food. The underlying regulatory mechanisms of these compensatory responses remain largely elusive. In the current study, we investigated the initiation of this adaptive response in the migratory locust, Locusta migratoria, via microarray analysis of gut tissues. Four hours after dietary uptake of PIs, 114 and 150 transcripts were respectively found up- or downregulated. The results suggest a quick trade-off between compensating for potential loss of digestive activity on the one hand, and stress tolerance, defense, and structural integrity of the gut on the other hand. We additionally addressed the role of a group of related upregulated hexamerin-like proteins in the PI-induced response. Simultaneous knockdown of corresponding transcripts by means of RNA interference resulted in a reduced capacity of the locust nymphs to cope with the effects of PI. Moreover, since insect hexamerins have been shown to bind Juvenile Hormone (JH), we also investigated the effect of JH on the proteolytic digestion in L. migratoria. Our results indicate that JH has a stimulatory effect on the expression of three homologous chymotrypsin genes, while knocking down the JH receptor (methoprene tolerant) led to opposite effects. PMID:27581362

  7. Transcriptional Analysis of The Adaptive Digestive System of The Migratory Locust in Response to Plant Defensive Protease Inhibitors

    NASA Astrophysics Data System (ADS)

    Spit, Jornt; Holtof, Michiel; Badisco, Liesbet; Vergauwen, Lucia; Vogel, Elise; Knapen, Dries; vanden Broeck, Jozef

    2016-09-01

    Herbivorous insects evolved adaptive mechanisms to compensate for the presence of plant defensive protease inhibitors (PI) in their food. The underlying regulatory mechanisms of these compensatory responses remain largely elusive. In the current study, we investigated the initiation of this adaptive response in the migratory locust, Locusta migratoria, via microarray analysis of gut tissues. Four hours after dietary uptake of PIs, 114 and 150 transcripts were respectively found up- or downregulated. The results suggest a quick trade-off between compensating for potential loss of digestive activity on the one hand, and stress tolerance, defense, and structural integrity of the gut on the other hand. We additionally addressed the role of a group of related upregulated hexamerin-like proteins in the PI-induced response. Simultaneous knockdown of corresponding transcripts by means of RNA interference resulted in a reduced capacity of the locust nymphs to cope with the effects of PI. Moreover, since insect hexamerins have been shown to bind Juvenile Hormone (JH), we also investigated the effect of JH on the proteolytic digestion in L. migratoria. Our results indicate that JH has a stimulatory effect on the expression of three homologous chymotrypsin genes, while knocking down the JH receptor (methoprene tolerant) led to opposite effects.

  8. Transcriptional Analysis of The Adaptive Digestive System of The Migratory Locust in Response to Plant Defensive Protease Inhibitors.

    PubMed

    Spit, Jornt; Holtof, Michiel; Badisco, Liesbet; Vergauwen, Lucia; Vogel, Elise; Knapen, Dries; Vanden Broeck, Jozef

    2016-01-01

    Herbivorous insects evolved adaptive mechanisms to compensate for the presence of plant defensive protease inhibitors (PI) in their food. The underlying regulatory mechanisms of these compensatory responses remain largely elusive. In the current study, we investigated the initiation of this adaptive response in the migratory locust, Locusta migratoria, via microarray analysis of gut tissues. Four hours after dietary uptake of PIs, 114 and 150 transcripts were respectively found up- or downregulated. The results suggest a quick trade-off between compensating for potential loss of digestive activity on the one hand, and stress tolerance, defense, and structural integrity of the gut on the other hand. We additionally addressed the role of a group of related upregulated hexamerin-like proteins in the PI-induced response. Simultaneous knockdown of corresponding transcripts by means of RNA interference resulted in a reduced capacity of the locust nymphs to cope with the effects of PI. Moreover, since insect hexamerins have been shown to bind Juvenile Hormone (JH), we also investigated the effect of JH on the proteolytic digestion in L. migratoria. Our results indicate that JH has a stimulatory effect on the expression of three homologous chymotrypsin genes, while knocking down the JH receptor (methoprene tolerant) led to opposite effects. PMID:27581362

  9. Transcriptional responses of invasive and indigenous whiteflies to different host plants reveal their disparate capacity of adaptation

    PubMed Central

    Xu, Hong-Xing; Hong, Yue; Zhang, Min-Zhu; Wang, Yong-Liang; Liu, Shu-Sheng; Wang, Xiao-Wei

    2015-01-01

    The whitefly Bemisia tabaci contains more than 35 cryptic species. The higher adaptability of Middle East-Asia Minor 1 (MEAM1) cryptic species has been recognized as one important factor for its invasion and displacement of other indigenous species worldwide. Here we compared the performance of the invasive MEAM1 and the indigenous Asia II 3 whitefly species following host plant transfer from a suitable host (cotton) to an unsuitable host (tobacco) and analyzed their transcriptional responses. After transfer to tobacco for 24 h, MEAM1 performed much better than Asia II 3. Transcriptional analysis showed that the patterns of gene regulation were very different with most of the genes up-regulated in MEAM1 but down-regulated in Asia II 3. Whereas carbohydrate and energy metabolisms were repressed in Asia II 3, the gene expression and protein metabolisms were activated in MEAM1. Compared to the constitutive high expression of detoxification genes in MEAM1, most of the detoxification genes were down-regulated in Asia II 3. Enzymatic activities of P450, GST and esterase further verified that the detoxification of MEAM1 was much higher than that of Asia II 3. These results reveal obvious differences in responses of MEAM1 and Asia II 3 to host transfer. PMID:26041313

  10. Phenotypic and transcriptional profiling in Entamoeba histolytica reveal costs to fitness and adaptive responses associated with metronidazole resistance

    PubMed Central

    Penuliar, Gil M.; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2015-01-01

    Antimicrobial chemotherapy is critical in the fight against infectious diseases caused by Entamoeba histolytica. Among the drugs available for the treatment of amebiasis, metronidazole (MTZ) is considered the drug of choice. Recently, in vitro studies have described MTZ resistance and the potential mechanisms involved. Costs to fitness and adaptive responses associated with resistance, however, have not been investigated. In this study we generated an HM-1 derived strain resistant to 12 μM MTZ (MTZR). We examined its phenotypic and transcriptional profile to determine the consequences and mRNA level changes associated with MTZ resistance. Our results indicated increased cell size and granularity, and decreased rates in cell division, adhesion, phagocytosis, cytopathogenicity, and glucose consumption. Transcriptome analysis revealed 142 differentially expressed genes in MTZR. In contrast to other MTZ resistant parasites, MTZR did not down-regulate pyruvate:ferredoxin oxidoreductase, but showed increased expression of genes for a hypothetical protein (HP1) and several iron-sulfur flavoproteins, and downregulation of genes for leucine-rich proteins. Fisher's exact test showed 24 significantly enriched GO terms in MTZR, and a 3-way comparison of modulated genes in MTZR against those of MTZR cultured without MTZ and HM-1 cultured with MTZ, showed that 88 genes were specific to MTZR. Overall, our findings suggested that MTZ resistance is associated with specific transcriptional changes and decreased parasite virulence. PMID:25999919

  11. A Cotton MYB Transcription Factor, GbMYB5, is Positively Involved in Plant Adaptive Response to Drought Stress.

    PubMed

    Chen, Tianzi; Li, Wenjuan; Hu, Xuehong; Guo, Jiaru; Liu, Aimin; Zhang, Baolong

    2015-05-01

    Drought stress negatively affects plant growth and limits plant productivity. Genes functioning in plant responses to drought stress are essential for the development of drought-tolerant crops. Here, we report that an R2R3-type MYB transcription factor gene in Gossypium barbadense, GbMYB5, confers drought tolerance in cotton and transgenic tobacco. Virus-induced gene silencing of GbMYB5 compromised the tolerance of cotton plantlets to drought stress and reduced the post-rewatering water recovery survival rate to 50% as compared with the 90% survival rate in the wild type (WT). Silencing GbMYB5 decreased proline content and antioxidant enzyme activities and increased malondialdehyde (MDA) content in cotton under drought stress. The expression levels of drought-inducible genes NCED3, RD22 and RD26 were not affected by the silencing of GbMYB5. However, GbMYB5-overexpressing tobacco lines displayed hypersensitivity to ABA and improved survival rates as well as reduced water loss rates under drought stress. Furthermore, stomatal size and the rate of opening of stomata were markedly decreased in transgenic tobacco. The overexpression of GbMYB5 enhanced the accumulation of proline and antioxidant enzymes while it reduced production of MDA in transgenic tobacco as compared with the WT under drought stress. The transcript levels of the antioxidant genes SOD, CAT and GST, polyamine biosynthesis genes ADC1 and SAMDC, the late embryogenesis abundant protein-encoding gene ERD10D and drought-responsive genes NCED3, BG and RD26 were generally higher in GbMYB5-overexpressing tobacco than in the WT under drought stress. Collectively, our data suggested that GbMYB5 was positively involved in the plant adaptive response to drought stress. PMID:25657343

  12. A Cotton MYB Transcription Factor, GbMYB5, is Positively Involved in Plant Adaptive Response to Drought Stress.

    PubMed

    Chen, Tianzi; Li, Wenjuan; Hu, Xuehong; Guo, Jiaru; Liu, Aimin; Zhang, Baolong

    2015-05-01

    Drought stress negatively affects plant growth and limits plant productivity. Genes functioning in plant responses to drought stress are essential for the development of drought-tolerant crops. Here, we report that an R2R3-type MYB transcription factor gene in Gossypium barbadense, GbMYB5, confers drought tolerance in cotton and transgenic tobacco. Virus-induced gene silencing of GbMYB5 compromised the tolerance of cotton plantlets to drought stress and reduced the post-rewatering water recovery survival rate to 50% as compared with the 90% survival rate in the wild type (WT). Silencing GbMYB5 decreased proline content and antioxidant enzyme activities and increased malondialdehyde (MDA) content in cotton under drought stress. The expression levels of drought-inducible genes NCED3, RD22 and RD26 were not affected by the silencing of GbMYB5. However, GbMYB5-overexpressing tobacco lines displayed hypersensitivity to ABA and improved survival rates as well as reduced water loss rates under drought stress. Furthermore, stomatal size and the rate of opening of stomata were markedly decreased in transgenic tobacco. The overexpression of GbMYB5 enhanced the accumulation of proline and antioxidant enzymes while it reduced production of MDA in transgenic tobacco as compared with the WT under drought stress. The transcript levels of the antioxidant genes SOD, CAT and GST, polyamine biosynthesis genes ADC1 and SAMDC, the late embryogenesis abundant protein-encoding gene ERD10D and drought-responsive genes NCED3, BG and RD26 were generally higher in GbMYB5-overexpressing tobacco than in the WT under drought stress. Collectively, our data suggested that GbMYB5 was positively involved in the plant adaptive response to drought stress.

  13. Diverse Mechanisms of Sp1-Dependent Transcriptional Regulation Potentially Involved in the Adaptive Response of Cancer Cells to Oxygen-Deficient Conditions

    PubMed Central

    Koizume, Shiro; Miyagi, Yohei

    2015-01-01

    The inside of a tumor often contains a hypoxic area caused by a limited supply of molecular oxygen due to aberrant vasculature. Hypoxia-inducible factors (HIFs) are major transcription factors that are required for cancer cells to adapt to such stress conditions. HIFs, complexed with the aryl hydrocarbon receptor nuclear translocator, bind to and activate target genes as enhancers of transcription. In addition to this common mechanism, the induction of the unfolded protein response and mTOR signaling in response to endoplasmic reticulum stress is also known to be involved in the adaptation to hypoxia conditions. Sp1 is a ubiquitously-expressed transcription factor that plays a vital role in the regulation of numerous genes required for normal cell function. In addition to the well-characterized stress response mechanisms described above, increasing experimental evidence suggests that Sp1 and HIFs collaborate to drive gene expression in cancer cells in response to hypoxia, thereby regulating additional adaptive responses to cellular oxygen deficiency. However, these characteristics of Sp1 and their biological merits have not been summarized. In this review, we will discuss the diverse mechanisms of transcriptional regulation by Sp1 and their potential involvement in the adaptive response of cancer cells to hypoxic tumor microenvironments. PMID:26703734

  14. Global Rsh-dependent transcription profile of Brucella suis during stringent response unravels adaptation to nutrient starvation and cross-talk with other stress responses

    PubMed Central

    2013-01-01

    Background In the intracellular pathogen Brucella spp., the activation of the stringent response, a global regulatory network providing rapid adaptation to growth-affecting stress conditions such as nutrient deficiency, is essential for replication in the host. A single, bi-functional enzyme Rsh catalyzes synthesis and hydrolysis of the alarmone (p)ppGpp, responsible for differential gene expression under stringent conditions. Results cDNA microarray analysis allowed characterization of the transcriptional profiles of the B. suis 1330 wild-type and Δrsh mutant in a minimal medium, partially mimicking the nutrient-poor intramacrophagic environment. A total of 379 genes (11.6% of the genome) were differentially expressed in a rsh-dependent manner, of which 198 were up-, and 181 were down-regulated. The pleiotropic character of the response was confirmed, as the genes encoded an important number of transcriptional regulators, cell envelope proteins, stress factors, transport systems, and energy metabolism proteins. Virulence genes such as narG and sodC, respectively encoding respiratory nitrate reductase and superoxide dismutase, were under the positive control of (p)ppGpp, as well as expression of the cbb3-type cytochrome c oxidase, essential for chronic murine infection. Methionine was the only amino acid whose biosynthesis was absolutely dependent on stringent response in B. suis. Conclusions The study illustrated the complexity of the processes involved in adaptation to nutrient starvation, and contributed to a better understanding of the correlation between stringent response and Brucella virulence. Most interestingly, it clearly indicated (p)ppGpp-dependent cross-talk between at least three stress responses playing a central role in Brucella adaptation to the host: nutrient, oxidative, and low-oxygen stress. PMID:23834488

  15. Role of x-ray-induced transcripts in adaptive responses following x-rays

    SciTech Connect

    Boothman, D.A.

    1992-01-01

    Potentially lethal damage repair (PLDR) and sublethal damage repair, may be the same manifestations of a series of common enzymatic steps. PLDR, has two distinct phases based upon DNA lesion repair and survival recovery studies. The first phase of PLDR occurs very quickly (t{sub {1/2}}:2--20 mins) to increase the survival of X-irradiated cells by mending the vast array of DNA lesions created by ionizing radiation. The second slower phase of PLDR proceeds much later (i.e., >1--2 hrs) following X-irradiation, during which the remaining double-stranded DNA breaks are completely repaired. This second phase of repair closely corresponds to the restructuring of gross chromosomal damage, and can be partially blocked in some human cells by inhibiting protein synthesis. This slower phase of PLDR correlated with a rapid decline in X-ray-induced transformation of normal cells. The fast component of PLDR may be due to constitutively synthesized DNA ligases, topoisomerases, or polymerases, which act immediately to repair damaged, DNA. In contrast, the slow phase of PLDR in human cells may require the induction of specific genes and gene product's involved in the repair of potentially lethal or carcinogenic DNA lesions. Induced gene products (i.e., proteins) specifically synthesized in response to physiological doses of ionizing radiation in radioresistant human melanoma (U1-Mel) cells, and in a variety of other human normal and cancer-prone cells, were identified using two-dimensional gel electrophoresis. We identified and partially characterized ten proteins synthesized by U1-Mel cells. The synthesis of eight of these proteins were specifically induced by ionizing radiation and two proteins were repressed Neither heat shock, UV-irradiation, nor bifunctional alkylating agent treatments resulted in the induction of these proteins. The expression of one protein, XIP269, correlated very well with PLDR capacity.

  16. The RosR transcription factor is required for gene expression dynamics in response to extreme oxidative stress in a hypersaline-adapted archaeon

    PubMed Central

    2012-01-01

    Background Previous work has shown that the hypersaline-adapted archaeon, Halobacterium salinarum NRC-1, is highly resistant to oxidative stress caused by exposure to hydrogen peroxide, UV, and gamma radiation. Dynamic alteration of the gene regulatory network (GRN) has been implicated in such resistance. However, the molecular functions of transcription regulatory proteins involved in this response remain unknown. Results Here we have reanalyzed several existing GRN and systems biology datasets for H. salinarum to identify and characterize a novel winged helix-turn-helix transcription factor, VNG0258H, as a regulator required for reactive oxygen species resistance in this organism. This protein appears to be unique to the haloarchaea at the primary sequence level. High throughput quantitative growth assays in a deletion mutant strain implicate VNG0258H in extreme oxidative stress resistance. According to time course gene expression analyses, this transcription factor is required for the appropriate dynamic response of nearly 300 genes to reactive oxygen species damage from paraquat and hydrogen peroxide. These genes are predicted to function in repair of oxidative damage to proteins and DNA. In vivo DNA binding assays demonstrate that VNG0258H binds DNA to mediate gene regulation. Conclusions Together these results suggest that VNG0258H is a novel archaeal transcription factor that regulates gene expression to enable adaptation to the extremely oxidative, hypersaline niche of H. salinarum. We have therefore renamed VNG0258H as RosR, for reactive oxygen species regulator. PMID:22846541

  17. Different Transcriptional Responses from Slow and Fast Growth Rate Strains of Listeria monocytogenes Adapted to Low Temperature.

    PubMed

    Cordero, Ninoska; Maza, Felipe; Navea-Perez, Helen; Aravena, Andrés; Marquez-Fontt, Bárbara; Navarrete, Paola; Figueroa, Guillermo; González, Mauricio; Latorre, Mauricio; Reyes-Jara, Angélica

    2016-01-01

    Listeria monocytogenes has become one of the principal foodborne pathogens worldwide. The capacity of this bacterium to grow at low temperatures has opened an interesting field of study in terms of the identification and classification of new strains of L. monocytogenes with different growth capacities at low temperatures. We determined the growth rate at 8°C of 110 strains of L. monocytogenes isolated from different food matrices. We identified a group of slow and fast strains according to their growth rate at 8°C and performed a global transcriptomic assay in strains previously adapted to low temperature. We then identified shared and specific transcriptional mechanisms, metabolic and cellular processes of both groups; bacterial motility was the principal process capable of differentiating the adaptation capacity of L. monocytogenes strains with different ranges of tolerance to low temperatures. Strains belonging to the fast group were less motile, which may allow these strains to achieve a greater rate of proliferation at low temperature. PMID:26973610

  18. Different Transcriptional Responses from Slow and Fast Growth Rate Strains of Listeria monocytogenes Adapted to Low Temperature

    PubMed Central

    Cordero, Ninoska; Maza, Felipe; Navea-Perez, Helen; Aravena, Andrés; Marquez-Fontt, Bárbara; Navarrete, Paola; Figueroa, Guillermo; González, Mauricio; Latorre, Mauricio; Reyes-Jara, Angélica

    2016-01-01

    Listeria monocytogenes has become one of the principal foodborne pathogens worldwide. The capacity of this bacterium to grow at low temperatures has opened an interesting field of study in terms of the identification and classification of new strains of L. monocytogenes with different growth capacities at low temperatures. We determined the growth rate at 8°C of 110 strains of L. monocytogenes isolated from different food matrices. We identified a group of slow and fast strains according to their growth rate at 8°C and performed a global transcriptomic assay in strains previously adapted to low temperature. We then identified shared and specific transcriptional mechanisms, metabolic and cellular processes of both groups; bacterial motility was the principal process capable of differentiating the adaptation capacity of L. monocytogenes strains with different ranges of tolerance to low temperatures. Strains belonging to the fast group were less motile, which may allow these strains to achieve a greater rate of proliferation at low temperature. PMID:26973610

  19. Role of x-ray-induced transcripts in adaptive responses following x-rays. Progress report, Year 2

    SciTech Connect

    Not Available

    1993-09-01

    I will describe our recent data in which we have extracted and purified a sufficient amount of RNA from primed and unprimed U1-Mel cells to begin the search for new genes which are modulated by priming or high dose irradiation during the establishment and/or challenge of adapted cells, respectively. Gene transcripts which are altered during ASRs now include alterations in xip5 (a gene with homology to human growth hormone), xipl2 (a gene with homology to human angiogenesis factor and a gene which may be involved in apoptosis due to its possible RNase activity), cyclin A (which is altered in primed cells only after a high dose of ionizing radiation), cyclin B (which is also altered in a similar manner as cyclin A), p53 (a tumor suppressor gene involved in cell division control in G{sub 1} following ionizing radiation), and glutathionine S transferase-pi (a gene product which has been demonstrated to be involved in DNA repair and redox cycling). In contrast, the remaining xip CDNA clones [i.e., xip1-4,6-11, which were isolated following high dose ionizing radiation exposure to human U1-Mel cells], Prad-1 (a gene involved in cell cycle controlling events at the G{sub 1} portion of the cell cycle), 36B4 (a gene involved in homeostasis), and cdc2 (a gene involved in the regulation of the S-phase portion of the cell cycle), were not altered following ionizing radiation, either during the establishment or challenge of adapted human cells.

  20. The adaptive response of anaerobically grown Saccharomyces cerevisiae to hydrogen peroxide is mediated by the Yap1 and Skn7 transcription factors.

    PubMed

    Beckhouse, Anthony G; Grant, Chris M; Rogers, Peter J; Dawes, Ian W; Higgins, Vincent J

    2008-12-01

    The molecular mechanisms involved in the ability of cells to adapt and respond to differing oxygen tensions are of great interest to the pharmaceutical, medical and fermentation industries. The transcriptional profiles reported in previous studies of cells grown under anaerobic, aerobic and dynamic growth conditions have shown significantly altered responses including induction of genes regulated by the oxidative stress transcription factor Yap1p when oxygen was present. The present study investigated the phenotypic changes that occur in cells when shifted from anaerobic to aerobic growth conditions and it was found through mutant analyses that the elevated activity of Yap1p during the shift was mediated by the phospholipid hydroperoxide-sensing protein encoded by GPX3. Cell viability and growth rate were unaffected even though anaerobically grown cells were found to be hypersensitive to low doses of the oxidative stress-inducing compound hydrogen peroxide (H(2)O(2)). Adaptation to H(2)O(2) treatment was demonstrated to occur when anaerobically grown wild-type cells were aerated for a short time that was reliant on the Yap1p and Skn7p transcription factors. PMID:18795957

  1. Identification of Nrf2-dependent airway epithelial adaptive response to proinflammatory oxidant-hypochlorous acid challenge by transcription profiling.

    PubMed

    Zhu, Lingxiang; Pi, Jingbo; Wachi, Shinichiro; Andersen, Melvin E; Wu, Reen; Chen, Yin

    2008-03-01

    In inflammatory diseases of the airway, a high level (estimated to be as high as 8 mM) of HOCl can be generated through a reaction catalyzed by the leukocyte granule enzyme myeloperoxidase (MPO). HOCl, a potent oxidative agent, causes extensive tissue injury through its reaction with various cellular substances, including thiols, nucleotides, and amines. In addition to its physiological source, HOCl can also be generated by chlorine gas inhalation from an accident or a potential terrorist attack. Despite the important role of HOCl-induced airway epithelial injury, the underlying molecular mechanism is largely unknown. In the present study, we found that HOCl induced dose-dependent toxicity in airway epithelial cells. By transcription profiling using GeneChip, we identified a battery of HOCl-inducible antioxidant genes, all of which have been reported previously to be regulated by nuclear factor erythroid-related factor 2 (Nrf2), a transcription factor that is critical to the lung antioxidant response. Consistent with this finding, Nrf2 was found to be activated time and dose dependently by HOCl. Although the epidermal growth factor receptor-MAPK pathway was also highly activated by HOCl, it was not involved in Nrf2 activation and Nrf2-dependent gene expression. Instead, HOCl-induced cellular oxidative stress appeared to lead directly to Nrf2 activation. To further understand the functional significance of Nrf2 activation, small interference RNA was used to knock down Nrf2 level by targeting Nrf2 or enhance nuclear accumulation of Nrf2 by targeting its endogenous inhibitor Keap1. By both methods, we conclude that Nrf2 directly protects airway epithelial cells from HOCl-induced toxicity.

  2. The Transcriptional Response of Listeria monocytogenes during Adaptation to Growth on Lactate and Diacetate Includes Synergistic Changes That Increase Fermentative Acetoin Production▿†

    PubMed Central

    Stasiewicz, Matthew J.; Wiedmann, Martin; Bergholz, Teresa M.

    2011-01-01

    The organic acids lactate and diacetate are commonly used in combination in ready-to-eat foods because they show synergistic ability to inhibit the growth of Listeria monocytogenes. Full-genome microarrays were used to investigate the synergistic transcriptomic responses of two L. monocytogenes strains, H7858 (serotype 4b) and F6854 (serotype 1/2a), to these two organic acids under conditions representing osmotic and cold stress encountered in foods. Strains were exposed to brain heart infusion (BHI) broth at 7°C with 4.65% water-phase (w.p.) NaCl at pH 6.1 with (i) 2% w.p. potassium lactate, (ii) 0.14% w.p. sodium diacetate, (iii) the combination of both at the same levels, or (iv) no organic acids as a control. RNA was extracted 8 h after exposure, during lag phase, to capture gene transcription changes during adaptation to the organic acid stress. Significant differential transcription of 1,041 genes in H7858 and 640 genes in F6854 was observed in at least one pair of the 4 different treatments. The effects of combined treatment with lactate and diacetate included (i) synergistic transcription differences for 474 and 209 genes in H7858 and F6854, respectively, (ii) differential transcription of genes encoding cation transporters and ABC transporters of metals, and (iii) altered metabolism, including induction of a nutrient-limiting stress response, reduction of menaquinone biosynthesis, and a shift from fermentative production of acetate and lactate to energetically less favorable, neutral acetoin. These data suggest that additional treatments that interfere with cellular energy generation processes could more efficiently inhibit the growth of L. monocytogenes. PMID:21666015

  3. Senescence responsive transcriptional element

    DOEpatents

    Campisi, Judith; Testori, Alessandro

    1999-01-01

    Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.

  4. Senescence responsive transcriptional element

    SciTech Connect

    Campisi, J.; Testori, A.

    1999-10-12

    Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.

  5. Role of x-ray-induced transcripts in adaptive responses following x-rays. Progress report, year 1

    SciTech Connect

    Boothman, D.A.

    1992-09-01

    Potentially lethal damage repair (PLDR) and sublethal damage repair, may be the same manifestations of a series of common enzymatic steps. PLDR, has two distinct phases based upon DNA lesion repair and survival recovery studies. The first phase of PLDR occurs very quickly (t{sub {1/2}}:2--20 mins) to increase the survival of X-irradiated cells by mending the vast array of DNA lesions created by ionizing radiation. The second slower phase of PLDR proceeds much later (i.e., >1--2 hrs) following X-irradiation, during which the remaining double-stranded DNA breaks are completely repaired. This second phase of repair closely corresponds to the restructuring of gross chromosomal damage, and can be partially blocked in some human cells by inhibiting protein synthesis. This slower phase of PLDR correlated with a rapid decline in X-ray-induced transformation of normal cells. The fast component of PLDR may be due to constitutively synthesized DNA ligases, topoisomerases, or polymerases, which act immediately to repair damaged, DNA. In contrast, the slow phase of PLDR in human cells may require the induction of specific genes and gene product`s involved in the repair of potentially lethal or carcinogenic DNA lesions. Induced gene products (i.e., proteins) specifically synthesized in response to physiological doses of ionizing radiation in radioresistant human melanoma (U1-Mel) cells, and in a variety of other human normal and cancer-prone cells, were identified using two-dimensional gel electrophoresis. We identified and partially characterized ten proteins synthesized by U1-Mel cells. The synthesis of eight of these proteins were specifically induced by ionizing radiation and two proteins were repressed Neither heat shock, UV-irradiation, nor bifunctional alkylating agent treatments resulted in the induction of these proteins. The expression of one protein, XIP269, correlated very well with PLDR capacity.

  6. Transcriptional Control of Inflammatory Responses

    PubMed Central

    Smale, Stephen T.; Natoli, Gioacchino

    2014-01-01

    The inflammatory response requires the activation of a complex transcriptional program that is both cell-type- and stimulus-specific and involves the dynamic regulation of hundreds of genes. In the context of an inflamed tissue, extensive changes in gene expression occur in both parenchymal cells and infiltrating cells of the immune system. Recently, basic transcriptional mechanisms that control inflammation have been clarified at a genome scale, particularly in macrophages and conventional dendritic cells. The regulatory logic of distinct groups of inflammatory genes can be explained to some extent by identifiable sequence-encoded features of their chromatin organization, which impact on transcription factor (TF) accessibility and impose different requirements for gene activation. Moreover, it has become apparent that the interplay between TFs activated by inflammatory stimuli and master regulators exerts a crucial role in controlling cell-type-specific transcriptional outputs. PMID:25213094

  7. Adaptive response modelling

    NASA Astrophysics Data System (ADS)

    Campa, Alessandro; Esposito, Giuseppe; Belli, Mauro

    Cellular response to radiation is often modified by a previous delivery of a small "priming" dose: a smaller amount of damage, defined by the end point being investigated, is observed, and for this reason the effect is called adaptive response. An improved understanding of this effect is essential (as much as for the case of the bystander effect) for a reliable radiation risk assessment when low dose irradiations are involved. Experiments on adaptive response have shown that there are a number of factors that strongly influence the occurrence (and the level) of the adaptation. In particular, priming doses and dose rates have to fall in defined ranges; the same is true for the time interval between the delivery of the small priming dose and the irradiation with the main, larger, dose (called in this case challenging dose). Different hypotheses can be formulated on the main mechanism(s) determining the adaptive response: an increased efficiency of DNA repair, an increased level of antioxidant enzymes, an alteration of cell cycle progression, a chromatin conformation change. An experimental clearcut evidence going definitely in the direction of one of these explanations is not yet available. Modelling can be done at different levels. Simple models, relating the amount of damage, through elementary differential equations, to the dose and dose rate experienced by the cell, are relatively easy to handle, and they can be modified to account for the priming irradiation. However, this can hardly be of decisive help in the explanation of the mechanisms, since each parameter of these models often incorporates in an effective way several cellular processes related to the response to radiation. In this presentation we show our attempts to describe adaptive response with models that explicitly contain, as a dynamical variable, the inducible adaptive agent. At a price of a more difficult treatment, this approach is probably more prone to give support to the experimental studies

  8. The Transcriptional Response of Cryptococcus neoformans to Ingestion by Acanthamoeba castellanii and Macrophages Provides Insights into the Evolutionary Adaptation to the Mammalian Host

    PubMed Central

    Paes, Hugo Costa; Albuquerque, Patrícia; Tavares, Aldo Henrique F. P.; Fernandes, Larissa; Silva-Pereira, Ildinete; Casadevall, Arturo

    2013-01-01

    Virulence of Cryptococcus neoformans for mammals, and in particular its intracellular style, was proposed to emerge from evolutionary pressures on its natural environment by protozoan predation, which promoted the selection of strategies that allow intracellular survival in macrophages. In fact, Acanthamoeba castellanii ingests yeast cells, which then can replicate intracellularly. In addition, most fungal factors needed to establish infection in the mammalian host are also important for survival within the amoeba. To better understand the origin of C. neoformans virulence, we compared the transcriptional profile of yeast cells internalized by amoebae and murine macrophages after 6 h of infection. Our results showed 656 and 293 genes whose expression changed at least 2-fold in response to the intracellular environments of amoebae and macrophages, respectively. Among the genes that were found in both groups, we focused on open reading frame (ORF) CNAG_05662, which was potentially related to sugar transport but had no determined biological function. To characterize its function, we constructed a mutant strain and evaluated its ability to grow on various carbon sources. The results showed that this gene, named PTP1 (polyol transporter protein 1), is involved in the transport of 5- and 6-carbon polyols such as mannitol and sorbitol, but its presence or absence had no effect on cryptococcal virulence for mice or moth larvae. Overall, these results are consistent with the hypothesis that the capacity for mammalian virulence originated from fungus-protozoan interactions in the environment and provide a better understanding of how C. neoformans adapts to the mammalian host. PMID:23524994

  9. Reinitiation enhances reliable transcriptional responses in eukaryotes.

    PubMed

    Liu, Bo; Yuan, Zhanjiang; Aihara, Kazuyuki; Chen, Luonan

    2014-08-01

    Gene transcription is a noisy process carried out by the transcription machinery recruited to the promoter. Noise reduction is a fundamental requirement for reliable transcriptional responses which in turn are crucial for signal transduction. Compared with the relatively simple transcription initiation in prokaryotes, eukaryotic transcription is more complex partially owing to its additional reinitiation mechanism. By theoretical analysis, we showed that reinitiation reduces noise in eukaryotic transcription independent of the transcription level. Besides, a higher reinitiation rate enables a stable scaffold complex an advantage in noise reduction. Finally, we showed that the coupling between scaffold formation and transcription can further reduce transcription noise independent of the transcription level. Furthermore, compared with the reinitiation mechanism, the noise reduction effect of the coupling can be of more significance in the case that the transcription level is low and the intrinsic noise dominates. Our results uncover a mechanistic route which eukaryotes may use to facilitate a more reliable response in the noisy transcription process. PMID:24850905

  10. Regulated cell death and adaptive stress responses.

    PubMed

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Kepp, Oliver; Kroemer, Guido

    2016-06-01

    Eukaryotic cells react to potentially dangerous perturbations of the intracellular or extracellular microenvironment by activating rapid (transcription-independent) mechanisms that attempt to restore homeostasis. If such perturbations persist, cells may still try to cope with stress by activating delayed and robust (transcription-dependent) adaptive systems, or they may actively engage in cellular suicide. This regulated form of cell death can manifest with various morphological, biochemical and immunological correlates, and constitutes an ultimate attempt of stressed cells to maintain organismal homeostasis. Here, we dissect the general organization of adaptive cellular responses to stress, their intimate connection with regulated cell death, and how the latter operates for the preservation of organismal homeostasis.

  11. Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages

    PubMed Central

    Schnappinger, Dirk; Ehrt, Sabine; Voskuil, Martin I.; Liu, Yang; Mangan, Joseph A.; Monahan, Irene M.; Dolganov, Gregory; Efron, Brad; Butcher, Philip D.; Nathan, Carl; Schoolnik, Gary K.

    2003-01-01

    Little is known about the biochemical environment in phagosomes harboring an infectious agent. To assess the state of this organelle we captured the transcriptional responses of Mycobacterium tuberculosis (MTB) in macrophages from wild-type and nitric oxide (NO) synthase 2–deficient mice before and after immunologic activation. The intraphagosomal transcriptome was compared with the transcriptome of MTB in standard broth culture and during growth in diverse conditions designed to simulate features of the phagosomal environment. Genes expressed differentially as a consequence of intraphagosomal residence included an interferon γ– and NO-induced response that intensifies an iron-scavenging program, converts the microbe from aerobic to anaerobic respiration, and induces a dormancy regulon. Induction of genes involved in the activation and β-oxidation of fatty acids indicated that fatty acids furnish carbon and energy. Induction of σE-dependent, sodium dodecyl sulfate–regulated genes and genes involved in mycolic acid modification pointed to damage and repair of the cell envelope. Sentinel genes within the intraphagosomal transcriptome were induced similarly by MTB in the lungs of mice. The microbial transcriptome thus served as a bioprobe of the MTB phagosomal environment, showing it to be nitrosative, oxidative, functionally hypoxic, carbohydrate poor, and capable of perturbing the pathogen's cell envelope. PMID:12953091

  12. Nickel-responsive transcriptional regulators.

    PubMed

    Musiani, Francesco; Zambelli, Barbara; Bazzani, Micaela; Mazzei, Luca; Ciurli, Stefano

    2015-09-01

    Nickel is an essential micronutrient for a large number of living organisms, but it is also a toxic metal ion when it accumulates beyond the sustainable level as it may result if and when its cellular trafficking is not properly governed. Therefore, the homeostasis and metabolism of nickel is tightly regulated through metal-specific protein networks that respond to the available Ni(II) concentration. These are directed by specific nickel sensors, able to couple Ni(II) binding to a change in their DNA binding affinity and/or specificity, thus translating the cellular level of Ni(II) into a modification of the expression of the proteins devoted to modulating nickel uptake, efflux and cellular utilization. This review describes the Ni(II)-dependent transcriptional regulators discovered so far, focusing on their structural features, metal coordination modes and metal binding thermodynamics. Understanding these properties is essential to comprehend how these sensors correlate nickel availability to metal coordination and functional responses. A broad and comparative study, described here, reveals some general traits that characterize the binding stoichiometry and Ni(II) affinity of these metallo-sensors.

  13. Transcription factor Nrf2 mediates an adaptive response to sulforaphane that protects fibroblasts in vitro against the cytotoxic effects of electrophiles, peroxides and redox-cycling agents

    SciTech Connect

    Higgins, Larry G.; Kelleher, Michael O.; Eggleston, Ian M.; Itoh, Ken; Yamamoto, Masayuki; Hayes, John D.

    2009-06-15

    Sulforaphane can stimulate cellular adaptation to redox stressors through transcription factor Nrf2. Using mouse embryonic fibroblasts (MEFs) as a model, we show herein that the normal homeostatic level of glutathione in Nrf2{sup -/-} MEFs was only 20% of that in their wild-type counterparts. Furthermore, the rate of glutathione synthesis following its acute depletion upon treatment with 3 {mu}mol/l sulforaphane was very substantially lower in Nrf2{sup -/-} MEFs than in wild-type cells, and the rebound leading to a {approx} 1.9-fold increase in glutathione that occurred 12-24 h after Nrf2{sup +/+} MEFs were treated with sulforaphane was not observed in Nrf2{sup -/-} fibroblasts. Wild-type MEFs that had been pre-treated for 24 h with 3 {mu}mol/l sulforaphane exhibited between 1.4- and 3.2-fold resistance against thiol-reactive electrophiles, including isothiocyanates, {alpha},{beta}-unsaturated carbonyl compounds (e.g. acrolein), aryl halides and alkene epoxides. Pre-treatment of Nrf2{sup +/+} MEFs with sulforaphane also protected against hydroperoxides (e.g. cumene hydroperoxide, CuOOH), free radical-generating compounds (e.g. menadione), and genotoxic electrophiles (e.g. chlorambucil). By contrast, Nrf2{sup -/-} MEFs were typically {approx} 50% less tolerant of these agents than wild-type fibroblasts, and sulforaphane pre-treatment did not protect the mutant cells against xenobiotics. To test whether Nrf2-mediated up-regulation of glutathione represents the major cytoprotective mechanism stimulated by sulforaphane, 5 {mu}mol/l buthionine sulfoximine (BSO) was used to inhibit glutathione synthesis. In Nrf2{sup +/+} MEFs pre-treated with sulforaphane, BSO diminished intrinsic resistance and abolished inducible resistance to acrolein, CuOOH and chlorambucil, but not menadione. Thus Nrf2-dependent up-regulation of GSH is the principal mechanism by which sulforaphane pre-treatment induced resistance to acrolein, CuOOH and chlorambucil, but not menadione.

  14. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway

    PubMed Central

    Chinchankar, Meghna N.; Ferguson, Annabel A.; Ghazi, Arjumand; Fisher, Alfred L.

    2016-01-01

    The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique

  15. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway.

    PubMed

    Keith, Scott A; Maddux, Sarah K; Zhong, Yayu; Chinchankar, Meghna N; Ferguson, Annabel A; Ghazi, Arjumand; Fisher, Alfred L

    2016-02-01

    The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique

  16. Transcriptional response of Enterococcus faecalis to sunlight.

    PubMed

    Sassoubre, Lauren M; Ramsey, Matthew M; Gilmore, Michael S; Boehm, Alexandria B

    2014-01-01

    Microarrays were used to investigate the transcriptional response of Enterococcus faecalis to photostress. E. faecalis are Gram-positive bacteria used as indicators of water quality and have been shown to vary diurnally in response to sunlight. E. faecalis in filtered seawater microcosms were exposed to artificial sunlight for 12h and then placed in the dark for 12h. Transcript abundance was measured at 0, 2, 6, 12, and 24h in the sunlit microcosm and a dark control using microarrays. Culturable E. faecalis concentrations decreased 6-7 orders of magnitude within the first 6h of light exposure. After 12h in the dark, no evidence of dark-repair was observed. Expression data collected after 12h of sunlight exposure revealed a difference in transcript abundance in the light relative to dark microcosms for 35 unique ORFs, 33 ORFs showed increased transcript abundance and 2 ORFs showed reduced transcript abundance. A majority (51%) of the ORFs with increased transcript abundance in the sunlit relative to dark microcosms encoded hypothetical proteins; others were associated with protein synthesis, oxidative stress and DNA repair. Results suggest that E. faecalis exposed to sunlight actively transcribe RNA in response to photostress.

  17. Transcription Factors Involved in Prostate Gland Adaptation to Androgen Deprivation

    PubMed Central

    Rosa-Ribeiro, Rafaela; Nishan, Umar; Vidal, Ramon Oliveira; Barbosa, Guilherme Oliveira; Reis, Leonardo Oliveira; Cesar, Carlos Lenz; Carvalho, Hernandes F.

    2014-01-01

    Androgens regulate prostate physiology, and exert their effects through the androgen receptor. We hypothesized that androgen deprivation needs additional transcription factors to orchestrate the changes taking place in the gland after castration and for the adaptation of the epithelial cells to the androgen-deprived environment, ultimately contributing to the origin of castration-resistant prostate cancer. This study was undertaken to identify transcription factors that regulate gene expression after androgen deprivation by castration (Cas). For the sake of comparison, we extended the analysis to the effects of administration of a high dose of 17β-estradiol (E2) and a combination of both (Cas+E2). We approached this by (i) identifying gene expression profiles and enrichment terms, and by searching for transcription factors in the derived regulatory pathways; and (ii) by determining the density of putative transcription factor binding sites in the proximal promoter of the 10 most up- or down-regulated genes in each experimental group in comparison to the controls Gapdh and Tbp7. Filtering and validation confirmed the expression and localized EVI1 (Mecom), NFY, ELK1, GATA2, MYBL1, MYBL2, and NFkB family members (NFkB1, NFkB2, REL, RELA and RELB) in the epithelial and/or stromal cells. These transcription factors represent major regulators of epithelial cell survival and immaturity as well as an adaptation of the gland as an immune barrier in the absence of functional stimulation by androgens. Elk1 was expressed in smooth muscle cells and was up-regulated after day 4. Evi1 and Nfy genes are expressed in both epithelium and stroma, but were apparently not affected by androgen deprivation. PMID:24886974

  18. Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms

    PubMed Central

    Baldoni, Elena; Genga, Annamaria; Cominelli, Eleonora

    2015-01-01

    Water scarcity is one of the major causes of poor plant performance and limited crop yields worldwide and it is the single most common cause of severe food shortage in developing countries. Several molecular networks involved in stress perception, signal transduction and stress responses in plants have been elucidated so far. Transcription factors are major players in water stress signaling. In recent years, different MYB transcription factors, mainly in Arabidopsis thaliana (L.) Heynh. but also in some crops, have been characterized for their involvement in drought response. For some of them there is evidence supporting a specific role in response to water stress, such as the regulation of stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation of flower development. Moreover, some of these genes have also been characterized for their involvement in other abiotic or biotic stresses, an important feature considering that in nature, plants are often simultaneously subjected to multiple rather than single environmental perturbations. This review summarizes recent studies highlighting the role of the MYB family of transcription factors in the adaptive responses to drought stress. The practical application value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed. PMID:26184177

  19. Transcriptional analysis of adaptation to high glucose concentrations in Zymomonas mobilis.

    PubMed

    Zhang, Kun; Shao, Huanhuan; Cao, Qinghua; He, Ming-Xiong; Wu, Bo; Feng, Hong

    2015-02-01

    The ethanologenic bacterium Zymomonas mobilis is usually tolerant to high concentrations of glucose. The addition of sorbitol decreases the lag phase and increases ethanol yield and productivity of the bacteria in high glucose concentrations. The molecular mechanisms of adaptation to high glucose concentrations and the effect of sorbitol are still unclear. In this study, microarray analysis was used to study the global transcriptional adaptation responses of Z. mobilis to high glucose concentrations. A total of 235 genes were differentially expressed when 220 g/L glucose was added with or without 10 mM sorbitol. These genes are involved in diverse aspects of cell metabolism and regulation, including membrane transporters, nitrogen metabolism, and plasmid-encoded genes. However, most differentially expressed genes were downregulated when sorbitol was added. Notably, the transcription of almost all genes involved in the Entner-Doudoroff and ethanol production pathways was not significantly affected. In addition, a prophage and a nitrogen-fixation cluster were significantly induced. These results revealed that Z. mobilis cells responded to high glucose concentrations by regulating the transcriptional levels of genes related to membrane channels and transporters, stress response mechanisms, and metabolic pathways. These data provide insight into the intracellular adaptation responses to high glucose concentrations and reveal strategies to engineer efficient ethanol fermentation in Z. mobilis.

  20. Transcriptional analysis of adaptation to high glucose concentrations in Zymomonas mobilis.

    PubMed

    Zhang, Kun; Shao, Huanhuan; Cao, Qinghua; He, Ming-Xiong; Wu, Bo; Feng, Hong

    2015-02-01

    The ethanologenic bacterium Zymomonas mobilis is usually tolerant to high concentrations of glucose. The addition of sorbitol decreases the lag phase and increases ethanol yield and productivity of the bacteria in high glucose concentrations. The molecular mechanisms of adaptation to high glucose concentrations and the effect of sorbitol are still unclear. In this study, microarray analysis was used to study the global transcriptional adaptation responses of Z. mobilis to high glucose concentrations. A total of 235 genes were differentially expressed when 220 g/L glucose was added with or without 10 mM sorbitol. These genes are involved in diverse aspects of cell metabolism and regulation, including membrane transporters, nitrogen metabolism, and plasmid-encoded genes. However, most differentially expressed genes were downregulated when sorbitol was added. Notably, the transcription of almost all genes involved in the Entner-Doudoroff and ethanol production pathways was not significantly affected. In addition, a prophage and a nitrogen-fixation cluster were significantly induced. These results revealed that Z. mobilis cells responded to high glucose concentrations by regulating the transcriptional levels of genes related to membrane channels and transporters, stress response mechanisms, and metabolic pathways. These data provide insight into the intracellular adaptation responses to high glucose concentrations and reveal strategies to engineer efficient ethanol fermentation in Z. mobilis. PMID:25582559

  1. Adaptive Responses Limited by Intrinsic Noise

    PubMed Central

    Shankar, Prabhat; Nishikawa, Masatoshi; Shibata, Tatsuo

    2015-01-01

    Sensory systems have mechanisms to respond to the external environment and adapt to them. Such adaptive responses are effective for a wide dynamic range of sensing and perception of temporal change in stimulus. However, noise generated by the adaptation system itself as well as extrinsic noise in sensory inputs may impose a limit on the ability of adaptation systems. The relation between response and noise is well understood for equilibrium systems in the form of fluctuation response relation. However, the relation for nonequilibrium systems, including adaptive systems, are poorly understood. Here, we systematically explore such a relation between response and fluctuation in adaptation systems. We study the two network motifs, incoherent feedforward loops (iFFL) and negative feedback loops (nFBL), that can achieve perfect adaptation. We find that the response magnitude in adaption systems is limited by its intrinsic noise, implying that higher response would have higher noise component as well. Comparing the relation of response and noise in iFFL and nFBL, we show that whereas iFFL exhibits adaptation over a wider parameter range, nFBL offers higher response to noise ratio than iFFL. We also identify the condition that yields the upper limit of response for both network motifs. These results may explain the reason of why nFBL seems to be more abundant in nature for the implementation of adaption systems. PMID:26305221

  2. Frequency Modulated Translocational Oscillations of Nrf2 Mediate the Antioxidant Response Element Cytoprotective Transcriptional Response

    PubMed Central

    Xue, Mingzhan; Momiji, Hiroshi; Rabbani, Naila; Barker, Guy; Bretschneider, Till; Shmygol, Anatoly; Rand, David A.

    2015-01-01

    Abstract Aims: Stress responsive signaling coordinated by nuclear factor erythroid 2-related factor 2 (Nrf2) provides an adaptive response for protection of cells against toxic insults, oxidative stress and metabolic dysfunction. Nrf2 regulates a battery of protective genes by binding to regulatory antioxidant response elements (AREs). The aim of this study was to examine how Nrf2 signals cell stress status and regulates transcription to maintain homeostasis. Results: In live cell microscopy we observed that Nrf2 undergoes autonomous translocational frequency-modulated oscillations between cytoplasm and nucleus. Oscillations occurred in quiescence and when cells were stimulated at physiological levels of activators, they decrease in period and amplitude and then evoke a cytoprotective transcriptional response. We propose a mechanism whereby oscillations are produced by negative feedback involving successive de-phosphorylation and phosphorylation steps. Nrf2 was inactivated in the nucleus and reactivated on return to the cytoplasm. Increased frequency of Nrf2 on return to the cytoplasm with increased reactivation or refresh-rate under stress conditions activated the transcriptional response mediating cytoprotective effects. The serine/threonine-protein phosphatase PGAM5, member of the Nrf2 interactome, was a key regulatory component. Innovation: We found that Nrf2 is activated in cells without change in total cellular Nrf2 protein concentration. Regulation of ARE-linked protective gene transcription occurs rather through translocational oscillations of Nrf2. We discovered cytoplasmic refresh rate of Nrf2 is important in maintaining and regulating the transcriptional response and links stress challenge to increased cytoplasmic surveillance. We found silencing and inhibition of PGAM5 provides potent activation of Nrf2. Conclusion: Frequency modulated translocational oscillations of Nrf2 mediate the ARE-linked cytoprotective transcriptional response. Antioxid. Redox

  3. REST is a hypoxia-responsive transcriptional repressor.

    PubMed

    Cavadas, Miguel A S; Mesnieres, Marion; Crifo, Bianca; Manresa, Mario C; Selfridge, Andrew C; Keogh, Ciara E; Fabian, Zsolt; Scholz, Carsten C; Nolan, Karen A; Rocha, Liliane M A; Tambuwala, Murtaza M; Brown, Stuart; Wdowicz, Anita; Corbett, Danielle; Murphy, Keith J; Godson, Catherine; Cummins, Eoin P; Taylor, Cormac T; Cheong, Alex

    2016-08-17

    Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia.

  4. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants

    PubMed Central

    Phukan, Ujjal J.; Jeena, Gajendra S.; Shukla, Rakesh K.

    2016-01-01

    Plants in their natural habitat have to face multiple stresses simultaneously. Evolutionary adaptation of developmental, physiological, and biochemical parameters give advantage over a single window of stress but not multiple. On the other hand transcription factors like WRKY can regulate diverse responses through a complicated network of genes. So molecular orchestration of WRKYs in plant may provide the most anticipated outcome of simultaneous multiple responses. Activation or repression through W-box and W-box like sequences is regulated at transcriptional, translational, and domain level. Because of the tight regulation involved in specific recognition and binding of WRKYs to downstream promoters, they have become promising candidate for crop improvement. Epigenetic, retrograde and proteasome mediated regulation enable WRKYs to attain the dynamic cellular homeostatic reprograming. Overexpression of several WRKYs face the paradox of having several beneficial affects but with some unwanted traits. These overexpression-associated undesirable phenotypes need to be identified and removed for proper growth, development and yeild. Taken together, we have highlighted the diverse regulation and multiple stress response of WRKYs in plants along with the future prospects in this field of research. PMID:27375634

  5. Niche adaptation by expansion and reprogramming of general transcription factors

    PubMed Central

    Turkarslan, Serdar; Reiss, David J; Gibbins, Goodwin; Su, Wan Lin; Pan, Min; Bare, J Christopher; Plaisier, Christopher L; Baliga, Nitin S

    2011-01-01

    Numerous lineage-specific expansions of the transcription factor B (TFB) family in archaea suggests an important role for expanded TFBs in encoding environment-specific gene regulatory programs. Given the characteristics of hypersaline lakes, the unusually large numbers of TFBs in halophilic archaea further suggests that they might be especially important in rapid adaptation to the challenges of a dynamically changing environment. Motivated by these observations, we have investigated the implications of TFB expansions by correlating sequence variations, regulation, and physical interactions of all seven TFBs in Halobacterium salinarum NRC-1 to their fitness landscapes, functional hierarchies, and genetic interactions across 2488 experiments covering combinatorial variations in salt, pH, temperature, and Cu stress. This systems analysis has revealed an elegant scheme in which completely novel fitness landscapes are generated by gene conversion events that introduce subtle changes to the regulation or physical interactions of duplicated TFBs. Based on these insights, we have introduced a synthetically redesigned TFB and altered the regulation of existing TFBs to illustrate how archaea can rapidly generate novel phenotypes by simply reprogramming their TFB regulatory network. PMID:22108796

  6. Transcriptional responses to complex mixtures: a review.

    PubMed

    Sen, Banalata; Mahadevan, Brinda; DeMarini, David M

    2007-01-01

    Exposure of people to hazardous compounds is primarily through complex environmental mixtures, those that occur through media such as air, soil, water, food, cigarette smoke, and combustion emissions. Microarray technology offers the ability to query the entire genome after exposure to such an array of compounds, permitting a characterization of the biological effects of such exposures. This review summarizes the published literature on the transcriptional profiles resulting from exposure of cells or organisms to complex environmental mixtures such as cigarette smoke, diesel emissions, urban air, motorcycle exhaust, carbon black, jet fuel, and metal ore and fumes. The majority of the mixtures generally up-regulate gene expression, with heme oxygenase 1 and CYP1A1 being up-regulated by all of the mixtures. Most of the mixtures altered the expression of genes involved in oxidative stress response (OH-1, metallothioneins), immune/inflammation response (IL-1b, protein kinase), xenobiotic metabolism (CYP1A1, CYP1B1), coagulation and fibrinolysis (plasminogen activator/inhibitor), proto-oncogenes (FUS1, JUN), heat-shock response (HSP60, HSP70), DNA repair (PCNA, GADD45), structural unit of condensed DNA (Crf15Orf16, DUSP 15), and extracellular matrix degradation (MMP1, 8, 9, 11, 12). Genes involved in aldehyde metabolism, such as ALDH3, appeared to be uniquely modulated by cigarette smoke. Cigarette smoke-exposed populations have been successfully distinguished from control nonexposed populations based on the expression pattern of a subset of genes, thereby demonstrating the utility of this approach in identifying biomarkers of exposure and susceptibility. The analysis of gene-expression data at the pathway and functional level, along with a systems biology approach, will provide a more comprehensive insight into the biological effects of complex mixtures and will improve risk assessment of the same. We suggest critical components of study design and reporting that will

  7. Transcriptional responses to complex mixtures: a review.

    PubMed

    Sen, Banalata; Mahadevan, Brinda; DeMarini, David M

    2007-01-01

    Exposure of people to hazardous compounds is primarily through complex environmental mixtures, those that occur through media such as air, soil, water, food, cigarette smoke, and combustion emissions. Microarray technology offers the ability to query the entire genome after exposure to such an array of compounds, permitting a characterization of the biological effects of such exposures. This review summarizes the published literature on the transcriptional profiles resulting from exposure of cells or organisms to complex environmental mixtures such as cigarette smoke, diesel emissions, urban air, motorcycle exhaust, carbon black, jet fuel, and metal ore and fumes. The majority of the mixtures generally up-regulate gene expression, with heme oxygenase 1 and CYP1A1 being up-regulated by all of the mixtures. Most of the mixtures altered the expression of genes involved in oxidative stress response (OH-1, metallothioneins), immune/inflammation response (IL-1b, protein kinase), xenobiotic metabolism (CYP1A1, CYP1B1), coagulation and fibrinolysis (plasminogen activator/inhibitor), proto-oncogenes (FUS1, JUN), heat-shock response (HSP60, HSP70), DNA repair (PCNA, GADD45), structural unit of condensed DNA (Crf15Orf16, DUSP 15), and extracellular matrix degradation (MMP1, 8, 9, 11, 12). Genes involved in aldehyde metabolism, such as ALDH3, appeared to be uniquely modulated by cigarette smoke. Cigarette smoke-exposed populations have been successfully distinguished from control nonexposed populations based on the expression pattern of a subset of genes, thereby demonstrating the utility of this approach in identifying biomarkers of exposure and susceptibility. The analysis of gene-expression data at the pathway and functional level, along with a systems biology approach, will provide a more comprehensive insight into the biological effects of complex mixtures and will improve risk assessment of the same. We suggest critical components of study design and reporting that will

  8. Transcriptional and Proteomic Responses to Carbon Starvation in Paracoccidioides

    PubMed Central

    Lima, Patrícia de Sousa; Casaletti, Luciana; Bailão, Alexandre Melo; de Vasconcelos, Ana Tereza Ribeiro; Fernandes, Gabriel da Rocha; Soares, Célia Maria de Almeida

    2014-01-01

    Background The genus Paracoccidioides comprises human thermal dimorphic fungi, which cause paracoccidioidomycosis (PCM), an important mycosis in Latin America. Adaptation to environmental conditions is key to fungal survival during human host infection. The adaptability of carbon metabolism is a vital fitness attribute during pathogenesis. Methodology/Principal Findings The fungal pathogen Paracoccidioides spp. is exposed to numerous adverse conditions, such as nutrient deprivation, in the human host. In this study, a comprehensive response of Paracoccidioides, Pb01, under carbon starvation was investigated using high-resolution transcriptomic (RNAseq) and proteomic (NanoUPLC-MSE) approaches. A total of 1,063 transcripts and 421 proteins were differentially regulated, providing a global view of metabolic reprogramming during carbon starvation. The main changes were those related to cells shifting to gluconeogenesis and ethanol production, supported by the degradation of amino acids and fatty acids and by the modulation of the glyoxylate and tricarboxylic cycles. This proposed carbon flow hypothesis was supported by gene and protein expression profiles assessed using qRT-PCR and western blot analysis, respectively, as well as using enzymatic, cell dry weight and fungus-macrophage interaction assays. The carbon source provides a survival advantage to Paracoccidioides inside macrophages. Conclusions/Significance For a complete understanding of the physiological processes in an organism, the integration of approaches addressing different levels of regulation is important. To the best of our knowledge, this report presents the first description of the responses of Paracoccidioides spp. to host-like conditions using large-scale expression approaches. The alternative metabolic pathways that could be adopted by the organism during carbon starvation can be important for a better understanding of the fungal adaptation to the host, because systems for detecting and responding

  9. Transcriptional responses in a Drosophila defensive symbiosis.

    PubMed

    Hamilton, Phineas T; Leong, Jong S; Koop, Ben F; Perlman, Steve J

    2014-03-01

    Inherited symbionts are ubiquitous in insects and can have important consequences for the fitness of their hosts. Many inherited symbionts defend their hosts against parasites or other natural enemies; however, the means by which most symbionts confer protection is virtually unknown. We examine the mechanisms of defence in a recently discovered case of symbiont-mediated protection, where the bacterial symbiont Spiroplasma defends the fly Drosophila neotestacea from a virulent nematode parasite, Howardula aoronymphium. Using quantitative PCR of Spiroplasma infection intensities and whole transcriptome sequencing, we attempt to distinguish between the following modes of defence: symbiont-parasite competition, host immune priming and the production of toxic factors by Spiroplasma. Our findings do not support a model of exploitative competition between Howardula and Spiroplasma to mediate defence, nor do we find strong support for host immune priming during Spiroplasma infection. Interestingly, we recovered sequence for putative toxins encoded by Spiroplasma, including a novel putative ribosome-inactivating protein, transcripts of which are up-regulated in response to nematode exposure. Protection via the production of toxins may be a widely used and important mechanism in heritable defensive symbioses in insects. PMID:24274471

  10. Global Transcriptional Profiling of Diapause and Climatic Adaptation in Drosophila melanogaster.

    PubMed

    Zhao, Xiaqing; Bergland, Alan O; Behrman, Emily L; Gregory, Brian D; Petrov, Dmitri A; Schmidt, Paul S

    2016-03-01

    Wild populations of the model organism Drosophila melanogaster experience highly heterogeneous environments over broad geographical ranges as well as over seasonal and annual timescales. Diapause is a primary adaptation to environmental heterogeneity, and in D. melanogaster the propensity to enter diapause varies predictably with latitude and season. Here we performed global transcriptomic profiling of naturally occurring variation in diapause expression elicited by short day photoperiod and moderately low temperature in two tissue types associated with neuroendocrine and endocrine signaling, heads, and ovaries. We show that diapause in D. melanogaster is an actively regulated phenotype at the transcriptional level, suggesting that diapause is not a simple physiological or reproductive quiescence. Differentially expressed genes and pathways are highly distinct in heads and ovaries, demonstrating that the diapause response is not uniform throughout the soma and suggesting that it may be comprised of functional modules associated with specific tissues. Genes downregulated in heads of diapausing flies are significantly enriched for clinally varying single nucleotide polymorphism (SNPs) and seasonally oscillating SNPs, consistent with the hypothesis that diapause is a driving phenotype of climatic adaptation. We also show that chromosome location-based coregulation of gene expression is present in the transcriptional regulation of diapause. Taken together, these results demonstrate that diapause is a complex phenotype actively regulated in multiple tissues, and support the hypothesis that natural variation in diapause propensity underlies adaptation to spatially and temporally varying selective pressures.

  11. Limited Transcriptional Responses of Rickettsia rickettsii Exposed to Environmental Stimuli

    PubMed Central

    Ellison, Damon W.; Clark, Tina R.; Sturdevant, Daniel E.; Virtaneva, Kimmo; Hackstadt, Ted

    2009-01-01

    Rickettsiae are strict obligate intracellular pathogens that alternate between arthropod and mammalian hosts in a zoonotic cycle. Typically, pathogenic bacteria that cycle between environmental sources and mammalian hosts adapt to the respective environments by coordinately regulating gene expression such that genes essential for survival and virulence are expressed only upon infection of mammals. Temperature is a common environmental signal for upregulation of virulence gene expression although other factors may also play a role. We examined the transcriptional responses of Rickettsia rickettsii, the agent of Rocky Mountain spotted fever, to a variety of environmental signals expected to be encountered during its life cycle. R. rickettsii exposed to differences in growth temperature (25°C vs. 37°C), iron limitation, and host cell species displayed nominal changes in gene expression under any of these conditions with only 0, 5, or 7 genes, respectively, changing more than 3-fold in expression levels. R. rickettsii is not totally devoid of ability to respond to temperature shifts as cold shock (37°C vs. 4°C) induced a change greater than 3-fold in up to 56 genes. Rickettsiae continuously occupy a relatively stable environment which is the cytosol of eukaryotic cells. Because of their obligate intracellular character, rickettsiae are believed to be undergoing reductive evolution to a minimal genome. We propose that their relatively constant environmental niche has led to a minimal requirement for R. rickettsii to respond to environmental changes with a consequent deletion of non-essential transcriptional response regulators. A minimal number of predicted transcriptional regulators in the R. rickettsii genome is consistent with this hypothesis. PMID:19440298

  12. Structure and properties of transcriptional networks driving selenite stress response in yeasts

    PubMed Central

    Salin, Hélène; Fardeau, Vivienne; Piccini, Eugenia; Lelandais, Gaelle; Tanty, Véronique; Lemoine, Sophie; Jacq, Claude; Devaux, Frédéric

    2008-01-01

    Background Stress responses provide valuable models for deciphering the transcriptional networks controlling the adaptation of the cell to its environment. We analyzed the transcriptome response of yeast to toxic concentrations of selenite. We used gene network mapping tools to identify functional pathways and transcription factors involved in this response. We then used chromatin immunoprecipitation and knock-out experiments to investigate the role of some of these regulators and the regulatory connections between them. Results Selenite rapidly activates a battery of transcriptional circuits, including iron deprivation, oxidative stress and protein degradation responses. The mRNA levels of several transcriptional regulators are themselves regulated. We demonstrate the existence of a positive transcriptional loop connecting the regulator of proteasome expression, Rpn4p, to the pleiotropic drug response factor, Pdr1p. We also provide evidence for the involvement of this regulatory module in the oxidative stress response controlled by the Yap1p transcription factor and its conservation in the pathogenic yeast C. glabrata. In addition, we show that the drug resistance regulator gene YRR1 and the iron homeostasis regulator gene AFT2 are both directly regulated by Yap1p. Conclusion This work depicted a highly interconnected and complex transcriptional network involved in the adaptation of yeast genome expression to the presence of selenite in its chemical environment. It revealed the transcriptional regulation of PDR1 by Rpn4p, proposed a new role for the pleiotropic drug resistance network in stress response and demonstrated a direct regulatory connection between oxidative stress response and iron homeostasis. PMID:18627600

  13. Response-Adaptive Allocation for Circular Data.

    PubMed

    Biswas, Atanu; Dutta, Somak; Laha, Arnab Kumar; Bakshi, Partho K

    2015-01-01

    Response-adaptive designs are used in phase III clinical trials to allocate a larger proportion of patients to the better treatment. Circular data is a natural outcome in many clinical trial setup, e.g., some measurements in opthalmologic studies, degrees of rotation of hand or waist, etc. There is no available work on response-adaptive designs for circular data. With reference to a dataset on cataract surgery we provide some response-adaptive designs where the responses are of circular nature and propose some test statistics for treatment comparison under adaptive data allocation procedure. Detailed simulation study and the analysis of the dataset, including redesigning the cataract surgery data, are carried out.

  14. The Cryptococcus neoformans Rim101 Transcription Factor Directly Regulates Genes Required for Adaptation to the Host

    PubMed Central

    O'Meara, Teresa R.; Xu, Wenjie; Selvig, Kyla M.; O'Meara, Matthew J.; Mitchell, Aaron P.

    2014-01-01

    The Rim101 protein is a conserved pH-responsive transcription factor that mediates important interactions between several fungal pathogens and the infected host. In the human fungal pathogen Cryptococcus neoformans, the Rim101 protein retains conserved functions to allow the microorganism to respond to changes in pH and other host stresses. This coordinated cellular response enables this fungus to effectively evade the host immune response. Preliminary studies suggest that this conserved transcription factor is uniquely regulated in C. neoformans both by the canonical pH-sensing pathway and by the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. Here we present comparative transcriptional data that demonstrate a strong concordance between the downstream effectors of PKA and Rim101. To define Rim101-dependent gene expression during a murine lung infection, we used nanoString profiling of lung tissue infected with a wild-type or rim101Δ mutant strain. In this setting, we demonstrated that Rim101 controls the expression of multiple cell wall-biosynthetic genes, likely explaining the enhanced immunogenicity of the rim101Δ mutant. Despite its divergent upstream regulation, the C. neoformans Rim101 protein recognizes a conserved DNA binding motif. Using these data, we identified direct targets of this transcription factor, including genes involved in cell wall regulation. Therefore, the Rim101 protein directly controls cell wall changes required for the adaptation of C. neoformans to its host environment. Moreover, we propose that integration of the cAMP/PKA and pH-sensing pathways allows C. neoformans to respond to a broad range of host-specific signals. PMID:24324006

  15. Adaptation to hydrogen peroxide in Saccharomyces cerevisiae: the role of NADPH-generating systems and the SKN7 transcription factor.

    PubMed

    Ng, Chong-Han; Tan, Shi-Xiong; Perrone, Gabriel G; Thorpe, Geoffrey W; Higgins, Vincent J; Dawes, Ian W

    2008-03-15

    A total of 286 H2O2-sensitive Saccharomyces cerevisiae deletion mutants were screened to identify genes involved in cellular adaptation to H2O2 stress. YAP1, SKN7, GAL11, RPE1, TKL1, IDP1, SLA1, and PET8 were important for adaptation to H2O2. The mutants were divisible into two groups based on their responses to a brief acute dose of H2O2 and to chronic exposure to H2O2. Transcription factors Yap1p, Skn7p, and Gal11p were important for both acute and chronic responses to H2O2. Yap1p and Skn7p were acting in concert for adaptation, which indicates that upregulation of antioxidant functions rather than generation of NADPH or glutathione is important for adaptation. Deletion of GPX3 and YBP1 involved in sensing H2O2 and activating Yap1p affected adaptation but to a lesser extent than YAP1 deletion. NADPH generation was also required for adaptation. RPE1, TKL1, or IDP1 deletants affected in NADPH production were chronically sensitive to H2O2 but resistant to an acute dose, and other mutants affected in NADPH generation tested were similarly affected in adaptation. These mutants overproduced reduced glutathione (GSH) but maintained normal cellular redox homeostasis. This overproduction of GSH was not regulated at transcription of the gene encoding gamma-glutamylcysteine synthetase. PMID:18206664

  16. Transcriptional profiling of Haemophilus parasuis SH0165 response to tilmicosin.

    PubMed

    Liu, Yingyu; Chen, Pin; Wang, Yang; Li, Wentao; Cheng, Shuang; Wang, Chunmei; Zhang, Anding; He, Qigai

    2012-12-01

    The Haemophilus parasuis respiratory tract pathogen poses a severe threat to the swine industry despite available antimicrobial therapies. To gain a more detailed understanding of the molecular mechanisms underlying H. parasuis response to tilmicosin treatment, microarray technology was applied to analyze the variation in gene expression of isolated H. parasuis SH0165 treated in vitro with subinhibitory (0.25 μg/ml) and inhibitory (8 μg/ml) concentrations. Tilmicosin treatment induced differential expression of 405 genes, the encoded products of which are mainly involved in the heat shock response, protein synthesis, and intracellular transportation. The subinhibitory and inhibitory concentrations of tilmicosin induced distinctive gene expression profiles of shared and unique changes, respectively. These changes included 302 genes mainly involved in protein export and the phosphotransferase system to sustain cell growth, and 198 genes mainly related to RNA polymerase, recombination, and repair to inhibit cell growth. In silico analysis of functions related to the differentially expressed genes suggested that adaptation of H. parasuis SH0165 to tilmicosin involves modulation of protein synthesis and membrane transport. Collectively, the genes comprising each transcriptional profile of H. parasuis response to tilmicosin provide novel insights into the physiological functions of this economically significant bacterium and may represent targets of future molecular therapeutic strategies.

  17. Transcriptional variation in response to salt stress in commonly used Arabidopsis thaliana accessions.

    PubMed

    Chan, Zhulong; Loescher, Wayne; Grumet, Rebecca

    2013-12-01

    Transcriptional variation is increasingly recognized as a component of genetic diversity and environmental adaptation. It can also provide insights into stress responsive determinants and underlying adaptive mechanisms. Prior studies showed phenotypic differences in response to salinity stress for two widely used Arabidopsis thaliana accessions, Wassilewskija-2 (Ws) and Columbia-0 (Col). This study examined changes in global gene expression in relation to differences in response to salt stress among Ws, Col, and the glabrous mutant of Col [Col(gl)]. Transcripts most highly affected by accession and salt stress were related to abiotic or biotic stress responses. Approximately 60% of salt-induced changes in Ws overlapped with changes in Col, suggesting common salt stress responses. However, a markedly greater number of genes was altered in the highly salt sensitive Col, likely reflecting both adaptive responses and salt injury. The Col(gl) transcriptome was least affected by salt. Many salt-responsive transcripts observed in Col were altered in Col(gl) prior to salt stress, indicating that even without salt, the gl1-1 mutation induced a suite of stress responsive genes. Regardless of salt stress, there were greater transcriptomic differences between Col and Col(gl) than between Col and Ws. The transcript expression differences between [Ws vs. Col] and [Col(gl) vs. Col] formed largely non-overlapping sets. Thus, although Ws, Col and Col(gl) are commonly and sometimes interchangeably used, here they displayed distinct responses. Collectively, their observed expression differences likely reflect a combination of adaptive traits, response to injury, or phenotypic buffering of mutational effects.

  18. Natural antisense transcripts associated with salinity response in alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural antisense transcripts (NATs) are long non-coding RNAs (lncRNAs) complimentary to the messenger (sense) RNA (Wang et al. 2014). Many of them are involved in regulation of their own sense transcripts thus playing pivotal biological roles in all processes of organismal development and responses...

  19. Defining the microbial transcriptional response to colitis through integrated host and microbiome profiling

    PubMed Central

    Ilott, Nicholas Edward; Bollrath, Julia; Danne, Camille; Schiering, Chris; Shale, Matthew; Adelmann, Krista; Krausgruber, Thomas; Heger, Andreas; Sims, David; Powrie, Fiona

    2016-01-01

    The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess modifications to both bacterial community structure and transcriptional activity in a mouse model of colitis. By using transcriptomic analysis of colonic tissue and luminal RNA derived from the host, we have also characterised how host transcription relates to the microbial transcriptional response in inflammation. In colitis, increased abundance and transcription of diverse microbial gene families involved in responses to nutrient deprivation, antimicrobial peptide production and oxidative stress support an adaptation of multiple commensal genera to withstand a diverse set of environmental stressors in the inflammatory environment. These data are supported by a transcriptional signature of activated macrophages and granulocytes in the gut lumen during colitis, a signature that includes the transcription of the key antimicrobial genes S100a8 and S100a9 (calprotectin). Genes involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase were identified as changing to a greater extent at the level of transcription than would be predicted by DNA abundance changes, implicating a role for increased oxygen tension and/or host-derived reactive oxygen species in driving transcriptional changes in commensal microbes. PMID:27003245

  20. Defining the microbial transcriptional response to colitis through integrated host and microbiome profiling.

    PubMed

    Ilott, Nicholas Edward; Bollrath, Julia; Danne, Camille; Schiering, Chris; Shale, Matthew; Adelmann, Krista; Krausgruber, Thomas; Heger, Andreas; Sims, David; Powrie, Fiona

    2016-10-01

    The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess modifications to both bacterial community structure and transcriptional activity in a mouse model of colitis. By using transcriptomic analysis of colonic tissue and luminal RNA derived from the host, we have also characterised how host transcription relates to the microbial transcriptional response in inflammation. In colitis, increased abundance and transcription of diverse microbial gene families involved in responses to nutrient deprivation, antimicrobial peptide production and oxidative stress support an adaptation of multiple commensal genera to withstand a diverse set of environmental stressors in the inflammatory environment. These data are supported by a transcriptional signature of activated macrophages and granulocytes in the gut lumen during colitis, a signature that includes the transcription of the key antimicrobial genes S100a8 and S100a9 (calprotectin). Genes involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase were identified as changing to a greater extent at the level of transcription than would be predicted by DNA abundance changes, implicating a role for increased oxygen tension and/or host-derived reactive oxygen species in driving transcriptional changes in commensal microbes. PMID:27003245

  1. REST is a hypoxia-responsive transcriptional repressor.

    PubMed

    Cavadas, Miguel A S; Mesnieres, Marion; Crifo, Bianca; Manresa, Mario C; Selfridge, Andrew C; Keogh, Ciara E; Fabian, Zsolt; Scholz, Carsten C; Nolan, Karen A; Rocha, Liliane M A; Tambuwala, Murtaza M; Brown, Stuart; Wdowicz, Anita; Corbett, Danielle; Murphy, Keith J; Godson, Catherine; Cummins, Eoin P; Taylor, Cormac T; Cheong, Alex

    2016-01-01

    Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia. PMID:27531581

  2. Metabolic Context Regulates Distinct Hypothalamic Transcriptional Responses to Antiaging Interventions

    PubMed Central

    Stranahan, Alexis M.; Martin, Bronwen; Chadwick, Wayne; Park, Sung-Soo; Wang, Liyun; Becker, Kevin G.; WoodIII, William H.; Zhang, Yongqing; Maudsley, Stuart

    2012-01-01

    The hypothalamus is an essential relay in the neural circuitry underlying energy metabolism that needs to continually adapt to changes in the energetic environment. The neuroendocrine control of food intake and energy expenditure is associated with, and likely dependent upon, hypothalamic plasticity. Severe disturbances in energy metabolism, such as those that occur in obesity, are therefore likely to be associated with disruption of hypothalamic transcriptomic plasticity. In this paper, we investigated the effects of two well-characterized antiaging interventions, caloric restriction and voluntary wheel running, in two distinct physiological paradigms, that is, diabetic (db/db) and nondiabetic wild-type (C57/Bl/6) animals to investigate the contextual sensitivity of hypothalamic transcriptomic responses. We found that, both quantitatively and qualitatively, caloric restriction and physical exercise were associated with distinct transcriptional signatures that differed significantly between diabetic and non-diabetic mice. This suggests that challenges to metabolic homeostasis regulate distinct hypothalamic gene sets in diabetic and non-diabetic animals. A greater understanding of how genetic background contributes to hypothalamic response mechanisms could pave the way for the development of more nuanced therapeutics for the treatment of metabolic disorders that occur in diverse physiological backgrounds. PMID:22934110

  3. REST is a hypoxia-responsive transcriptional repressor

    PubMed Central

    Cavadas, Miguel A. S.; Mesnieres, Marion; Crifo, Bianca; Manresa, Mario C.; Selfridge, Andrew C.; Keogh, Ciara E.; Fabian, Zsolt; Scholz, Carsten C.; Nolan, Karen A.; Rocha, Liliane M. A.; Tambuwala, Murtaza M.; Brown, Stuart; Wdowicz, Anita; Corbett, Danielle; Murphy, Keith J.; Godson, Catherine; Cummins, Eoin P.; Taylor, Cormac T.; Cheong, Alex

    2016-01-01

    Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia. PMID:27531581

  4. Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+).

    PubMed

    Krug, A K; Gutbier, S; Zhao, L; Pöltl, D; Kullmann, C; Ivanova, V; Förster, S; Jagtap, S; Meiser, J; Leparc, G; Schildknecht, S; Adam, M; Hiller, K; Farhan, H; Brunner, T; Hartung, T; Sachinidis, A; Leist, M

    2014-05-08

    Assessment of the network of toxicity pathways by Omics technologies and bioinformatic data processing paves the road toward a new toxicology for the twenty-first century. Especially, the upstream network of responses, taking place in toxicant-treated cells before a point of no return is reached, is still little explored. We studied the effects of the model neurotoxicant 1-methyl-4-phenylpyridinium (MPP(+)) by a combined metabolomics (mass spectrometry) and transcriptomics (microarrays and deep sequencing) approach to provide unbiased data on earliest cellular adaptations to stress. Neural precursor cells (LUHMES) were differentiated to homogeneous cultures of fully postmitotic human dopaminergic neurons, and then exposed to the mitochondrial respiratory chain inhibitor MPP(+) (5 μM). At 18-24 h after treatment, intracellular ATP and mitochondrial integrity were still close to control levels, but pronounced transcriptome and metabolome changes were seen. Data on altered glucose flux, depletion of phosphocreatine and oxidative stress (e.g., methionine sulfoxide formation) confirmed the validity of the approach. New findings were related to nuclear paraspeckle depletion, as well as an early activation of branches of the transsulfuration pathway to increase glutathione. Bioinformatic analysis of our data identified the transcription factor ATF-4 as an upstream regulator of early responses. Findings on this signaling pathway and on adaptive increases of glutathione production were confirmed biochemically. Metabolic and transcriptional profiling contributed complementary information on multiple primary and secondary changes that contribute to the cellular response to MPP(+). Thus, combined 'Omics' analysis is a new unbiased approach to unravel earliest metabolic changes, whose balance decides on the final cell fate.

  5. Monitoring adaptive genetic responses to environmental change.

    PubMed

    Hansen, Michael M; Olivieri, Isabelle; Waller, Donald M; Nielsen, Einar E

    2012-03-01

    Widespread environmental changes including climate change, selective harvesting and landscape alterations now greatly affect selection regimes for most organisms. How animals and plants can adapt to these altered environments via contemporary evolution is thus of strong interest. We discuss how to use genetic monitoring to study adaptive responses via repeated analysis of the same populations over time, distinguishing between phenotypic and molecular genetics approaches. After describing monitoring designs, we develop explicit criteria for demonstrating adaptive responses, which include testing for selection and establishing clear links between genetic and environmental change. We then review a few exemplary studies that explore adaptive responses to climate change in Drosophila, selective responses to hunting and fishing, and contemporary evolution in Daphnia using resurrected resting eggs. We further review a broader set of 44 studies to assess how well they meet the proposed criteria, and conclude that only 23% fulfill all criteria. Approximately half (43%) of these studies failed to rule out the alternative hypothesis of replacement by a different, better-adapted population. Likewise, 34% of the studies based on phenotypic variation did not test for selection as opposed to drift. These shortcomings can be addressed via improved experimental designs and statistical testing. We foresee monitoring of adaptive responses as a future valuable tool in conservation biology, for identifying populations unable to evolve at sufficiently high rates and for identifying possible donor populations for genetic rescue. Technological advances will further augment the realization of this potential, especially next-generation sequencing technologies that allow for monitoring at the level of whole genomes.

  6. Response-adaptive regression for longitudinal data.

    PubMed

    Wu, Shuang; Müller, Hans-Georg

    2011-09-01

    We propose a response-adaptive model for functional linear regression, which is adapted to sparsely sampled longitudinal responses. Our method aims at predicting response trajectories and models the regression relationship by directly conditioning the sparse and irregular observations of the response on the predictor, which can be of scalar, vector, or functional type. This obliterates the need to model the response trajectories, a task that is challenging for sparse longitudinal data and was previously required for functional regression implementations for longitudinal data. The proposed approach turns out to be superior compared to previous functional regression approaches in terms of prediction error. It encompasses a variety of regression settings that are relevant for the functional modeling of longitudinal data in the life sciences. The improved prediction of response trajectories with the proposed response-adaptive approach is illustrated for a longitudinal study of Kiwi weight growth and by an analysis of the dynamic relationship between viral load and CD4 cell counts observed in AIDS clinical trials. PMID:21133880

  7. Adaptive immune responses to Candida albicans infection.

    PubMed

    Richardson, Jonathan P; Moyes, David L

    2015-01-01

    Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections.

  8. Adaptive neural control of aeroelastic response

    NASA Astrophysics Data System (ADS)

    Lichtenwalner, Peter F.; Little, Gerald R.; Scott, Robert C.

    1996-05-01

    The Adaptive Neural Control of Aeroelastic Response (ANCAR) program is a joint research and development effort conducted by McDonnell Douglas Aerospace (MDA) and the National Aeronautics and Space Administration, Langley Research Center (NASA LaRC) under a Memorandum of Agreement (MOA). The purpose of the MOA is to cooperatively develop the smart structure technologies necessary for alleviating undesirable vibration and aeroelastic response associated with highly flexible structures. Adaptive control can reduce aeroelastic response associated with buffet and atmospheric turbulence, it can increase flutter margins, and it may be able to reduce response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Phase I of the ANCAR program involved development and demonstration of a neural network-based semi-adaptive flutter suppression system which used a neural network for scheduling control laws as a function of Mach number and dynamic pressure. This controller was tested along with a robust fixed-gain control law in NASA's Transonic Dynamics Tunnel (TDT) utilizing the Benchmark Active Controls Testing (BACT) wing. During Phase II, a fully adaptive on-line learning neural network control system has been developed for flutter suppression which will be tested in 1996. This paper presents the results of Phase I testing as well as the development progress of Phase II.

  9. Transcriptional regulation of drought response: a tortuous network of transcriptional factors.

    PubMed

    Singh, Dhriti; Laxmi, Ashverya

    2015-01-01

    Drought is one of the leading factors responsible for the reduction in crop yield worldwide. Due to climate change, in future, more areas are going to be affected by drought and for prolonged periods. Therefore, understanding the mechanisms underlying the drought response is one of the major scientific concerns for improving crop yield. Plants deploy diverse strategies and mechanisms to respond and tolerate drought stress. Expression of numerous genes is modulated in different plants under drought stress that help them to optimize their growth and development. Plant hormone abscisic acid (ABA) plays a major role in plant response and tolerance by regulating the expression of many genes under drought stress. Transcription factors being the major regulator of gene expression play a crucial role in stress response. ABA regulates the expression of most of the target genes through ABA-responsive element (ABRE) binding protein/ABRE binding factor (AREB/ABF) transcription factors. Genes regulated by AREB/ABFs constitute a regulon termed as AREB/ABF regulon. In addition to this, drought responsive genes are also regulated by ABA-independent mechanisms. In ABA-independent regulation, dehydration-responsive element binding protein (DREB), NAM, ATAF, and CUC regulons play an important role by regulating many drought-responsive genes. Apart from these major regulons, MYB/MYC, WRKY, and nuclear factor-Y (NF-Y) transcription factors are also involved in drought response and tolerance. Our understanding about transcriptional regulation of drought is still evolving. Recent reports have suggested the existence of crosstalk between different transcription factors operating under drought stress. In this article, we have reviewed various regulons working under drought stress and their crosstalk with each other. PMID:26579147

  10. Transcriptional regulation of drought response: a tortuous network of transcriptional factors

    PubMed Central

    Singh, Dhriti; Laxmi, Ashverya

    2015-01-01

    Drought is one of the leading factors responsible for the reduction in crop yield worldwide. Due to climate change, in future, more areas are going to be affected by drought and for prolonged periods. Therefore, understanding the mechanisms underlying the drought response is one of the major scientific concerns for improving crop yield. Plants deploy diverse strategies and mechanisms to respond and tolerate drought stress. Expression of numerous genes is modulated in different plants under drought stress that help them to optimize their growth and development. Plant hormone abscisic acid (ABA) plays a major role in plant response and tolerance by regulating the expression of many genes under drought stress. Transcription factors being the major regulator of gene expression play a crucial role in stress response. ABA regulates the expression of most of the target genes through ABA-responsive element (ABRE) binding protein/ABRE binding factor (AREB/ABF) transcription factors. Genes regulated by AREB/ABFs constitute a regulon termed as AREB/ABF regulon. In addition to this, drought responsive genes are also regulated by ABA-independent mechanisms. In ABA-independent regulation, dehydration-responsive element binding protein (DREB), NAM, ATAF, and CUC regulons play an important role by regulating many drought-responsive genes. Apart from these major regulons, MYB/MYC, WRKY, and nuclear factor-Y (NF-Y) transcription factors are also involved in drought response and tolerance. Our understanding about transcriptional regulation of drought is still evolving. Recent reports have suggested the existence of crosstalk between different transcription factors operating under drought stress. In this article, we have reviewed various regulons working under drought stress and their crosstalk with each other. PMID:26579147

  11. Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses

    PubMed Central

    Srinivasan, Karpagam; Friedman, Brad A.; Larson, Jessica L.; Lauffer, Benjamin E.; Goldstein, Leonard D.; Appling, Laurie L.; Borneo, Jovencio; Poon, Chungkee; Ho, Terence; Cai, Fang; Steiner, Pascal; van der Brug, Marcel P.; Modrusan, Zora; Kaminker, Joshua S.; Hansen, David V.

    2016-01-01

    A common approach to understanding neurodegenerative disease is comparing gene expression in diseased versus healthy tissues. We illustrate that expression profiles derived from whole tissue RNA highly reflect the degenerating tissues' altered cellular composition, not necessarily transcriptional regulation. To accurately understand transcriptional changes that accompany neuropathology, we acutely purify neurons, astrocytes and microglia from single adult mouse brains and analyse their transcriptomes by RNA sequencing. Using peripheral endotoxemia to establish the method, we reveal highly specific transcriptional responses and altered RNA processing in each cell type, with Tnfr1 required for the astrocytic response. Extending the method to an Alzheimer's disease model, we confirm that transcriptomic changes observed in whole tissue are driven primarily by cell type composition, not transcriptional regulation, and identify hundreds of cell type-specific changes undetected in whole tissue RNA. Applying similar methods to additional models and patient tissues will transform our understanding of aberrant gene expression in neurological disease. PMID:27097852

  12. Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses.

    PubMed

    Srinivasan, Karpagam; Friedman, Brad A; Larson, Jessica L; Lauffer, Benjamin E; Goldstein, Leonard D; Appling, Laurie L; Borneo, Jovencio; Poon, Chungkee; Ho, Terence; Cai, Fang; Steiner, Pascal; van der Brug, Marcel P; Modrusan, Zora; Kaminker, Joshua S; Hansen, David V

    2016-01-01

    A common approach to understanding neurodegenerative disease is comparing gene expression in diseased versus healthy tissues. We illustrate that expression profiles derived from whole tissue RNA highly reflect the degenerating tissues' altered cellular composition, not necessarily transcriptional regulation. To accurately understand transcriptional changes that accompany neuropathology, we acutely purify neurons, astrocytes and microglia from single adult mouse brains and analyse their transcriptomes by RNA sequencing. Using peripheral endotoxemia to establish the method, we reveal highly specific transcriptional responses and altered RNA processing in each cell type, with Tnfr1 required for the astrocytic response. Extending the method to an Alzheimer's disease model, we confirm that transcriptomic changes observed in whole tissue are driven primarily by cell type composition, not transcriptional regulation, and identify hundreds of cell type-specific changes undetected in whole tissue RNA. Applying similar methods to additional models and patient tissues will transform our understanding of aberrant gene expression in neurological disease. PMID:27097852

  13. Exercise-induced stress response as an adaptive tolerance strategy.

    PubMed Central

    Sonneborn, J S; Barbee, S A

    1998-01-01

    Interaction between the quality of the environment and the health of the exposed population determines the survival response of living organisms. The phenomenon of induced tolerance by exposure to threshold levels of stressors to stimulate natural defense mechanisms has potential therapeutic value. The paucity of information on predictability of individual response and information on the operative fundamental mechanisms limit applicability of the adaptive tolerance strategy. A potential biomarker of the stress response includes members of the stress-inducible ubiquitin gene family. Transcript sizes detected with Northern blot analysis identify different classes of ubiquitin gene family members and the intensity of the radioactive signal allows abundance determinations. Using moderate exercise as the stressor, significant increase (p < 0.028) in abundance of inducible polyubiquitin genes was found in human blood. Both the potential of exercise as a model system of a natural stress inducer and polyubiquitin as a biomarker of stress were established in these studies. Images Figure 1 Figure 2 PMID:9539026

  14. Cohesin modulates transcription of estrogen-responsive genes.

    PubMed

    Antony, Jisha; Dasgupta, Tanushree; Rhodes, Jenny M; McEwan, Miranda V; Print, Cristin G; O'Sullivan, Justin M; Horsfield, Julia A

    2015-03-01

    The cohesin complex has essential roles in cell division, DNA damage repair and gene transcription. The transcriptional function of cohesin is thought to derive from its ability to connect distant regulatory elements with gene promoters. Genome-wide binding of cohesin in breast cancer cells frequently coincides with estrogen receptor alpha (ER), leading to the hypothesis that cohesin facilitates estrogen-dependent gene transcription. We found that cohesin modulates the expression of only a subset of genes in the ER transcription program, either activating or repressing transcription depending on the gene target. Estrogen-responsive genes most significantly influenced by cohesin were enriched in pathways associated with breast cancer progression such as PI3K and ErbB1. In MCF7 breast cancer cells, cohesin depletion enhanced transcription of TFF1 and TFF2, and was associated with increased ER binding and increased interaction between TFF1 and its distal enhancer situated within TMPRSS3. In contrast, cohesin depletion reduced c-MYC mRNA and was accompanied by reduced interaction between a distal enhancer of c-MYC and its promoters. Our data indicates that cohesin is not a universal facilitator of ER-induced transcription and can even restrict enhancer-promoter communication. We propose that cohesin modulates transcription of estrogen-dependent genes to achieve appropriate directionality and amplitude of expression.

  15. Transcriptional response to alcohol exposure in Drosophila melanogaster

    PubMed Central

    Morozova, Tatiana V; Anholt, Robert RH; Mackay, Trudy FC

    2006-01-01

    Background Alcoholism presents widespread social and human health problems. Alcohol sensitivity, the development of tolerance to alcohol and susceptibility to addiction vary in the population. Genetic factors that predispose to alcoholism remain largely unknown due to extensive genetic and environmental variation in human populations. Drosophila, however, allows studies on genetically identical individuals in controlled environments. Although addiction to alcohol has not been demonstrated in Drosophila, flies show responses to alcohol exposure that resemble human intoxication, including hyperactivity, loss of postural control, sedation, and exposure-dependent development of tolerance. Results We assessed whole-genome transcriptional responses following alcohol exposure and demonstrate immediate down-regulation of genes affecting olfaction, rapid upregulation of biotransformation enzymes and, concomitant with development of tolerance, altered transcription of transcriptional regulators, proteases and metabolic enzymes, including biotransformation enzymes and enzymes associated with fatty acid biosynthesis. Functional tests of P-element disrupted alleles corresponding to genes with altered transcription implicated 75% of these in the response to alcohol, two-thirds of which have human orthologues. Conclusion Expression microarray analysis is an efficient method for identifying candidate genes affecting complex behavioral and physiological traits, including alcohol abuse. Drosophila provides a valuable genetic model for comparative genomic analysis, which can inform subsequent studies in human populations. Transcriptional analyses following alcohol exposure in Drosophila implicate biotransformation pathways, transcriptional regulators, proteolysis and enzymes that act as metabolic switches in the regulation of fatty acid metabolism as important targets for future studies of the physiological consequences of human alcohol abuse. PMID:17054780

  16. Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines.

    PubMed

    Banchereau, Romain; Baldwin, Nicole; Cepika, Alma-Martina; Athale, Shruti; Xue, Yaming; Yu, Chun I; Metang, Patrick; Cheruku, Abhilasha; Berthier, Isabelle; Gayet, Ingrid; Wang, Yuanyuan; Ohouo, Marina; Snipes, LuAnn; Xu, Hui; Obermoser, Gerlinde; Blankenship, Derek; Oh, Sangkon; Ramilo, Octavio; Chaussabel, Damien; Banchereau, Jacques; Palucka, Karolina; Pascual, Virginia

    2014-10-22

    The mechanisms by which microbial vaccines interact with human APCs remain elusive. Herein, we describe the transcriptional programs induced in human DCs by pathogens, innate receptor ligands and vaccines. Exposure of DCs to influenza, Salmonella enterica and Staphylococcus aureus allows us to build a modular framework containing 204 transcript clusters. We use this framework to characterize the responses of human monocytes, monocyte-derived DCs and blood DC subsets to 13 vaccines. Different vaccines induce distinct transcriptional programs based on pathogen type, adjuvant formulation and APC targeted. Fluzone, Pneumovax and Gardasil, respectively, activate monocyte-derived DCs, monocytes and CD1c+ blood DCs, highlighting APC specialization in response to vaccines. Finally, the blood signatures from individuals vaccinated with Fluzone or infected with influenza reveal a signature of adaptive immunity activation following vaccination and symptomatic infections, but not asymptomatic infections. These data, offered with a web interface, may guide the development of improved vaccines.

  17. Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines

    PubMed Central

    Banchereau, Romain; Baldwin, Nicole; Cepika, Alma-Martina; Athale, Shruti; Xue, Yaming; Yu, Chun I; Metang, Patrick; Cheruku, Abhilasha; Berthier, Isabelle; Gayet, Ingrid; Wang, Yuanyuan; Ohouo, Marina; Snipes, LuAnn; Xu, Hui; Obermoser, Gerlinde; Blankenship, Derek; Oh, Sangkon; Ramilo, Octavio; Chaussabel, Damien; Banchereau, Jacques; Palucka, Karolina; Pascual, Virginia

    2014-01-01

    The mechanisms by which microbial vaccines interact with human APCs remain elusive. Herein, we describe the transcriptional programs induced in human DCs by pathogens, innate receptor ligands and vaccines. Exposure of DCs to influenza, Salmonella enterica and Staphylococcus aureus allows us to build a modular framework containing 204 transcript clusters. We use this framework to characterize the responses of human monocytes, monocyte-derived DCs and blood DC subsets to 13 vaccines. Different vaccines induce distinct transcriptional programs based on pathogen type, adjuvant formulation and APC targeted. Fluzone, Pneumovax and Gardasil, respectively, activate monocyte-derived DCs, monocytes and CD1c+ blood DCs, highlighting APC specialization in response to vaccines. Finally, the blood signatures from individuals vaccinated with Fluzone or infected with influenza reveal a signature of adaptive immunity activation following vaccination and symptomatic infections, but not asymptomatic infections. These data, offered with a web interface, may guide the development of improved vaccines. PMID:25335753

  18. Age-specific transcriptional response to stroke.

    PubMed

    Sieber, Matthias W; Guenther, Madlen; Jaenisch, Nadine; Albrecht-Eckardt, Daniela; Kohl, Matthias; Witte, Otto W; Frahm, Christiane

    2014-07-01

    Increased age is a major risk factor for stroke incidence and post-ischemic mortality. To develop age-adjusted therapeutic interventions, a clear understanding of the complexity of age-related post-ischemic mechanisms is essential. Transient occlusion of the middle cerebral artery--a model that closely resembles human stroke--was used to induce cerebral infarction in mice of 4 different ages (2, 9, 15, 24 months). By using Illumina cDNA microarrays and quantitative PCR we detected a distinct age-dependent response to stroke involving 350 differentially expressed genes. Our analyses also identified 327 differentially expressed genes that responded to stroke in an age-independent manner. These genes are involved in different aspects of the inflammatory and immune response, oxidative stress, cell cycle activation and/or DNA repair, apoptosis, cytoskeleton reorganization and/or astrogliosis, synaptic plasticity and/or neurotransmission, and depressive disorders and/or dopamine-, serotonin-, GABA-signaling. In agreement with our earlier work, aged brains displayed an attenuated inflammatory and immune response (Sieber et al., 2011) and a reduced impairment of post-stroke synaptic plasticity. Our data also revealed a distinct age-related susceptibility for post-ischemic depression, the most common neuropsychiatric consequence of stroke, which has a major influence on functional outcome.

  19. The Adaptive Calibration Model of stress responsivity

    PubMed Central

    Ellis, Bruce J.; Shirtcliff, Elizabeth A.

    2010-01-01

    This paper presents the Adaptive Calibration Model (ACM), an evolutionary-developmental theory of individual differences in the functioning of the stress response system. The stress response system has three main biological functions: (1) to coordinate the organism’s allostatic response to physical and psychosocial challenges; (2) to encode and filter information about the organism’s social and physical environment, mediating the organism’s openness to environmental inputs; and (3) to regulate the organism’s physiology and behavior in a broad range of fitness-relevant areas including defensive behaviors, competitive risk-taking, learning, attachment, affiliation and reproductive functioning. The information encoded by the system during development feeds back on the long-term calibration of the system itself, resulting in adaptive patterns of responsivity and individual differences in behavior. Drawing on evolutionary life history theory, we build a model of the development of stress responsivity across life stages, describe four prototypical responsivity patterns, and discuss the emergence and meaning of sex differences. The ACM extends the theory of biological sensitivity to context (BSC) and provides an integrative framework for future research in the field. PMID:21145350

  20. A weak adaptive response to alkylation damage in Salmonella typhimurium.

    PubMed Central

    Vaughan, P; Sedgwick, B

    1991-01-01

    An efficient adaptive response to alkylation damage was observed in several enterobacterial species, including Klebsiella aerogenes, Shigella sonnei, Shigella boydii, Escherichia alkalescens, Escherichia hermanii, and Escherichia fergusonii. Increased O6-methylguanine-DNA and methylphosphotriester-DNA methyltransferase activities correlated with the induction of a 39-kDa protein recognized by monoclonal antibodies raised against the Escherichia coli Ada protein. Induced methyltransferase activities were similarly observed in Aerobacter aerogenes and Citrobacter intermedius, although no antigenically cross-reacting material was present. Weak induction of a 39-kDa protein immunologically related to the E. coli Ada protein occurred in Salmonella typhimurium. This protein encoded by the cloned S. typhimurium ada gene was shown to be an active methyltransferase which repaired O6-methylguanine and methylphosphotriesters in DNA as efficiently as did the E. coli Ada protein. However, the mehtyltransferase activity of the weakly induced 39-kDa protein in S. typhimurium was not detected, apparently because it was self-methylated and thus inactivated during the adaptive N-methyl-N-nitro-N-nitrosoguanidine pretreatment. In contrast, the E. coli ada gene on a low-copy-number plasmid was efficiently induced in S. typhimurium, and high methyltransferase activities were observed. We concluded that the inefficient induction of the adaptive response in S. typhimurium results from weak transcriptional activation of its ada gene by the self-methylated protein. Images PMID:2050626

  1. Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30 °C

    PubMed Central

    Caspeta, Luis; Chen, Yun; Nielsen, Jens

    2016-01-01

    Exposure to long-term environmental changes across >100s of generations results in adapted phenotypes, but little is known about how metabolic and transcriptional responses are optimized in these processes. Here, we show that thermotolerant yeast strains selected by adaptive laboratory evolution to grow at increased temperature, activated a constitutive heat stress response when grown at the optimal ancestral temperature, and that this is associated with a reduced growth rate. This preventive response was perfected by additional transcriptional changes activated when the cultivation temperature is increased. Remarkably, the sum of global transcriptional changes activated in the thermotolerant strains when transferred from the optimal to the high temperature, corresponded, in magnitude and direction, to the global changes observed in the ancestral strain exposed to the same transition. This demonstrates robustness of the yeast transcriptional program when exposed to heat, and that the thermotolerant strains streamlined their path to rapidly and optimally reach post-stress transcriptional and metabolic levels. Thus, long-term adaptation to heat improved yeasts ability to rapidly adapt to increased temperatures, but this also causes a trade-off in the growth rate at the optimal ancestral temperature. PMID:27229477

  2. Transcriptional variation associated with cactus host plant adaptation in Drosophila mettleri populations.

    PubMed

    Hoang, Kim; Matzkin, Luciano M; Bono, Jeremy M

    2015-10-01

    Although the importance of host plant chemistry in plant-insect interactions is widely accepted, the genetic basis of adaptation to host plants is not well understood. Here, we investigate transcriptional changes associated with a host plant shift in Drosophila mettleri. While D. mettleri is distributed mainly throughout the Sonoran Desert where it specializes on columnar cacti (Carnegiea gigantea and Pachycereus pringleii), a population on Santa Catalina Island has shifted to chemically divergent coastal prickly pear cactus (Opuntia littoralis). We compared gene expression of larvae from the Sonoran Desert and Santa Catalina Island when reared on saguaro (C. gigantea), coastal prickly pear and laboratory food. Consistent with expectations based on the complexity and toxicity of cactus relative to laboratory food, within-population comparisons between larvae reared on these food sources revealed transcriptional differences in detoxification and other metabolic pathways. The majority of transcriptional differences between populations on the cactus hosts were independent of the rearing environment and included a disproportionate number of genes involved in processes relevant to host plant adaptation (e.g. detoxification, central metabolism and chemosensory pathways). Comparisons of transcriptional reaction norms between the two populations revealed extensive shared plasticity that likely allowed colonization of coastal prickly pear on Santa Catalina Island. We also found that while plasticity may have facilitated subsequent adaptive divergence in gene expression between populations, the majority of genes that differed in expression on the novel host were not transcriptionally plastic in the presumed ancestral state. PMID:26384860

  3. Transcriptional variation associated with cactus host plant adaptation in Drosophila mettleri populations.

    PubMed

    Hoang, Kim; Matzkin, Luciano M; Bono, Jeremy M

    2015-10-01

    Although the importance of host plant chemistry in plant-insect interactions is widely accepted, the genetic basis of adaptation to host plants is not well understood. Here, we investigate transcriptional changes associated with a host plant shift in Drosophila mettleri. While D. mettleri is distributed mainly throughout the Sonoran Desert where it specializes on columnar cacti (Carnegiea gigantea and Pachycereus pringleii), a population on Santa Catalina Island has shifted to chemically divergent coastal prickly pear cactus (Opuntia littoralis). We compared gene expression of larvae from the Sonoran Desert and Santa Catalina Island when reared on saguaro (C. gigantea), coastal prickly pear and laboratory food. Consistent with expectations based on the complexity and toxicity of cactus relative to laboratory food, within-population comparisons between larvae reared on these food sources revealed transcriptional differences in detoxification and other metabolic pathways. The majority of transcriptional differences between populations on the cactus hosts were independent of the rearing environment and included a disproportionate number of genes involved in processes relevant to host plant adaptation (e.g. detoxification, central metabolism and chemosensory pathways). Comparisons of transcriptional reaction norms between the two populations revealed extensive shared plasticity that likely allowed colonization of coastal prickly pear on Santa Catalina Island. We also found that while plasticity may have facilitated subsequent adaptive divergence in gene expression between populations, the majority of genes that differed in expression on the novel host were not transcriptionally plastic in the presumed ancestral state.

  4. Contributions of transcription and mRNA decay to gene expression dynamics of fission yeast in response to oxidative stress

    PubMed Central

    Marguerat, Samuel; Lawler, Katherine; Brazma, Alvis; Bähler, Jürg

    2014-01-01

    The cooperation of transcriptional and post-transcriptional levels of control to shape gene regulation is only partially understood. Here we show that a combination of two simple and non-invasive genomic techniques, coupled with kinetic mathematical modeling, affords insight into the intricate dynamics of RNA regulation in response to oxidative stress in the fission yeast Schizosaccharomyces pombe. This study reveals a dominant role of transcriptional regulation in response to stress, but also points to the first minutes after stress induction as a critical time when the coordinated control of mRNA turnover can support the control of transcription for rapid gene regulation. In addition, we uncover specialized gene expression strategies associated with distinct functional gene groups, such as simultaneous transcriptional repression and mRNA destabilization for genes encoding ribosomal proteins, delayed mRNA destabilization with varying contribution of transcription for ribosome biogenesis genes, dominant roles of mRNA stabilization for genes functioning in protein degradation, and adjustment of both transcription and mRNA turnover during the adaptation to stress. We also show that genes regulated independently of the bZIP transcription factor Atf1p are predominantly controlled by mRNA turnover, and identify putative cis-regulatory sequences that are associated with different gene expression strategies during the stress response. This study highlights the intricate and multi-faceted interplay between transcription and RNA turnover during the dynamic regulatory response to stress. PMID:25007214

  5. Reshuffling transcriptional circuits: how microorganisms adapt to colonize the human body

    PubMed Central

    De, Sonakshi; Pérez, J Christian

    2014-01-01

    Several hundred taxa of microorganisms—including bacteria, archaea and eukaryotes—inhabit the human body. What did it take for these species to become stable residents of humans? Recent reports illustrate how evolutionary changes in transcriptional circuits played a pivotal role in the adaptation of single-celled eukaryotes to colonize mammals. PMID:25483603

  6. Global transcriptional response of Bacillus subtilis to heat shock.

    PubMed

    Helmann, J D; Wu, M F; Kobel, P A; Gamo, F J; Wilson, M; Morshedi, M M; Navre, M; Paddon, C

    2001-12-01

    In response to heat stress, Bacillus subtilis activates the transcription of well over 100 different genes. Many of these genes are members of a general stress response regulon controlled by the secondary sigma factor, sigma(B), while others are under control of the HrcA or CtsR heat shock regulators. We have used DNA microarrays to monitor the global transcriptional response to heat shock. We find strong induction of known sigma(B)-dependent genes with a characteristic rapid induction followed by a return to near prestimulus levels. The HrcA and CtsR regulons are also induced, but with somewhat slower kinetics. Analysis of DNA sequences proximal to newly identified heat-induced genes leads us to propose ~70 additional members of the sigma(B) regulon. We have also identified numerous heat-induced genes that are not members of known heat shock regulons. Notably, we observe very strong induction of arginine biosynthesis and transport operons. Induction of several genes was confirmed by quantitative reverse transcriptase PCR. In addition, the transcriptional responses measured by microarray hybridization compare favorably with the numerous previous studies of heat shock in this organism. Since many different conditions elicit both specific and general stress responses, knowledge of the heat-induced general stress response reported here will be helpful for interpreting future microarray studies of other stress responses. PMID:11717291

  7. TRANSCRIPTIONAL RESPONSES OF MOUSE EMBRYO CULTURES EXPOSED TO BROMOCHLOROACETIC ACID

    EPA Science Inventory

    Transcriptional responses of mouse embryo cultures exposed to bromochloroacetic acid

    Edward D. Karoly?*, Judith E. Schmid* and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and *Reproductive Tox...

  8. Arabidopsis transcriptional responses differentiate between O3 and herbicides

    EPA Science Inventory

    Using published data based on Affymetrix ATH1 Gene-Chips we characterized the transcriptional response of Arabidopsis thaliana Columbia to O3 and a few other major environmental stresses including oxidative stress . A set of 101 markers could be extracted which provided a compo...

  9. Recognition of voice commands using adaptation of foreign language speech recognizer via selection of phonetic transcriptions

    NASA Astrophysics Data System (ADS)

    Maskeliunas, Rytis; Rudzionis, Vytautas

    2011-06-01

    In recent years various commercial speech recognizers have become available. These recognizers provide the possibility to develop applications incorporating various speech recognition techniques easily and quickly. All of these commercial recognizers are typically targeted to widely spoken languages having large market potential; however, it may be possible to adapt available commercial recognizers for use in environments where less widely spoken languages are used. Since most commercial recognition engines are closed systems the single avenue for the adaptation is to try set ways for the selection of proper phonetic transcription methods between the two languages. This paper deals with the methods to find the phonetic transcriptions for Lithuanian voice commands to be recognized using English speech engines. The experimental evaluation showed that it is possible to find phonetic transcriptions that will enable the recognition of Lithuanian voice commands with recognition accuracy of over 90%.

  10. Resistance Training: Physiological Responses and Adaptations (Part 3 of 4).

    ERIC Educational Resources Information Center

    Fleck, Steven J.; Kraemer, William J.

    1988-01-01

    The physiological responses and adaptations which occur as a result of resistance training, such as cardiovascular responses, serum lipid count, body composition, and neural adaptations are discussed. Changes in the endocrine system are also described. (JL)

  11. Is the bitter rejection response always adaptive?

    PubMed

    Glendinning, J I

    1994-12-01

    The bitter rejection response consists of a suite of withdrawal reflexes and negative affective responses. It is generally assumed to have evolved as a way to facilitate avoidance of foods that are poisonous because they usually taste bitter to humans. Using previously published studies, the present paper examines the relationship between bitterness and toxicity in mammals, and then assesses the ecological costs and benefits of the bitter rejection response in carnivorous, omnivorous, and herbivorous (grazing and browsing) mammals. If the bitter rejection response accurately predicts the potential toxicity of foods, then one would expect the threshold for the response to be lower for highly toxic compounds than for nontoxic compounds. The data revealed no such relationship. Bitter taste thresholds varied independently of toxicity thresholds, indicating that the bitter rejection response is just as likely to be elicited by a harmless bitter food as it is by a harmful one. Thus, it is not necessarily in an animal's best interest to have an extremely high or low bitter threshold. Based on this observation, it was hypothesized that the adaptiveness of the bitter rejection response depends upon the relative occurrence of bitter and potentially toxic compounds in an animal's diet. Animals with a relatively high occurrence of bitter and potentially toxic compounds in their diet (e.g., browsing herbivores) were predicted to have evolved a high bitter taste threshold and tolerance to dietary poisons. Such an adaptation would be necessary because a browser cannot "afford" to reject all foods that are bitter and potentially toxic without unduly restricting its dietary options. At the other extreme, animals that rarely encounter bitter and potentially toxic compounds in their diet (e.g., carnivores) were predicted to have evolved a low bitter threshold. Carnivores could "afford" to utilize such a stringent rejection mechanism because foods containing bitter and potentially

  12. Is the bitter rejection response always adaptive?

    PubMed

    Glendinning, J I

    1994-12-01

    The bitter rejection response consists of a suite of withdrawal reflexes and negative affective responses. It is generally assumed to have evolved as a way to facilitate avoidance of foods that are poisonous because they usually taste bitter to humans. Using previously published studies, the present paper examines the relationship between bitterness and toxicity in mammals, and then assesses the ecological costs and benefits of the bitter rejection response in carnivorous, omnivorous, and herbivorous (grazing and browsing) mammals. If the bitter rejection response accurately predicts the potential toxicity of foods, then one would expect the threshold for the response to be lower for highly toxic compounds than for nontoxic compounds. The data revealed no such relationship. Bitter taste thresholds varied independently of toxicity thresholds, indicating that the bitter rejection response is just as likely to be elicited by a harmless bitter food as it is by a harmful one. Thus, it is not necessarily in an animal's best interest to have an extremely high or low bitter threshold. Based on this observation, it was hypothesized that the adaptiveness of the bitter rejection response depends upon the relative occurrence of bitter and potentially toxic compounds in an animal's diet. Animals with a relatively high occurrence of bitter and potentially toxic compounds in their diet (e.g., browsing herbivores) were predicted to have evolved a high bitter taste threshold and tolerance to dietary poisons. Such an adaptation would be necessary because a browser cannot "afford" to reject all foods that are bitter and potentially toxic without unduly restricting its dietary options. At the other extreme, animals that rarely encounter bitter and potentially toxic compounds in their diet (e.g., carnivores) were predicted to have evolved a low bitter threshold. Carnivores could "afford" to utilize such a stringent rejection mechanism because foods containing bitter and potentially

  13. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin.

    PubMed

    Ortells, M Carmen; Morancho, Beatriz; Drews-Elger, Katherine; Viollet, Benoit; Laderoute, Keith R; López-Rodríguez, Cristina; Aramburu, Jose

    2012-05-01

    Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses. PMID:22287635

  14. Transcriptional response of the model planctomycete Rhodopirellula baltica SH1T to changing environmental conditions

    PubMed Central

    Wecker, Patricia; Klockow, Christine; Ellrott, Andreas; Quast, Christian; Langhammer, Philipp; Harder, Jens; Glöckner, Frank Oliver

    2009-01-01

    Background The marine model organism Rhodopirellula baltica SH1T was the first Planctomycete to have its genome completely sequenced. The genome analysis predicted a complex lifestyle and a variety of genetic opportunities to adapt to the marine environment. Its adaptation to environmental stressors was studied by transcriptional profiling using a whole genome microarray. Results Stress responses to salinity and temperature shifts were monitored in time series experiments. Chemostat cultures grown in mineral medium at 28°C were compared to cultures that were shifted to either elevated (37°C) or reduced (6°C) temperatures as well as high salinity (59.5‰) and observed over 300 min. Heat shock showed the induction of several known chaperone genes. Cold shock altered the expression of genes in lipid metabolism and stress proteins. High salinity resulted in the modulation of genes coding for compatible solutes, ion transporters and morphology. In summary, over 3000 of the 7325 genes were affected by temperature and/or salinity changes. Conclusion Transcriptional profiling confirmed that R. baltica is highly responsive to its environment. The distinct responses identified here have provided new insights into the complex adaptation machinery of this environmentally relevant marine bacterium. Our transcriptome study and previous proteome data suggest a set of genes of unknown functions that are most probably involved in the global stress response. This work lays the foundation for further bioinformatic and genetic studies which will lead to a comprehensive understanding of the biology of a marine Planctomycete. PMID:19725962

  15. Improving Adaptive Learning Technology through the Use of Response Times

    ERIC Educational Resources Information Center

    Mettler, Everett; Massey, Christine M.; Kellman, Philip J.

    2011-01-01

    Adaptive learning techniques have typically scheduled practice using learners' accuracy and item presentation history. We describe an adaptive learning system (Adaptive Response Time Based Sequencing--ARTS) that uses both accuracy and response time (RT) as direct inputs into sequencing. Response times are used to assess learning strength and…

  16. Transcriptional responses of maize seedling root to phosphorus starvation.

    PubMed

    Lin, Hai-Jian; Gao, Jian; Zhang, Zhi-Ming; Shen, Ya-Ou; Lan, Hai; Liu, Li; Xiang, Kui; Zhao, Maojun; Zhou, Shufeng; Zhang, Yong-Zhong; Gao, Shi-Bin; Pan, Guang-Tang

    2013-09-01

    Maize (Zea mays) is the most widely cultivated crop around the world, however, it is commonly affected by phosphate (Pi) deficiency and the underlying molecular basis of responses mechanism is still unknown. In this study, the transcriptional response of maize roots to Pi starvation at 3 days after the onset of Pi deprivation was assessed. The investigation revealed a total of 283 Pi-responsive genes, of which 199 and 84 genes were found to be either up- or down-regulated respectively, by 2-fold or more. Pi-responsive genes were found to be involved in sugar and nitrogen metabolic pathways, ion transport, signal transduction, transcriptional regulation, and other processes related to growth and development. In addition, the expression patterns of maize inorganic phosphorus transporters, acid phosphatase, phytase, 2-deoxymugineic acid synthase1, POD and MYB transcription factor were validated in 178 roots response to low phosphorus stress. of which, two genes encoding phytase and acid phosphatase were significantly induced by Pi deficiency and may play a pivotal role in the process of absorption and re-utilization of Pi in Maize. These results not only enhance our knowledge about molecular processes associated with Pi deficiency, but also facilitate the identification of key molecular determinants for improving Pi use in maize. Moreover, this work sets a framework to produce Pi-specific maize microarrays to study the changes in global gene expression between Pi-efficient and Pi-inefficient maize genotypes. PMID:23670044

  17. Green light signaling and adaptive response

    PubMed Central

    Zhang, Tingting; Folta, Kevin M.

    2012-01-01

    To a plant, the sun’s light is not exclusively energy for photosynthesis, it also provides a package of data about time and prevailing conditions. The plant’s surroundings may dampen or filter solar energies, altering spectral profiles of their light environment. Plants use this information to adjust form and physiology, tailoring gene expression to best match ambient conditions. Extensive literature exists on how blue, red and far-red light contribute to plant adaptive responses. A growing body of work identifies discrete effects of green light (500–565 nm) that also shape plant biology. Green light responses are known to be either mediated through, or independent of, the cryptochrome blue light receptors. Responses to green light share a general tendency to oppose blue- or red-light-induced responses, including stem growth rate inhibition, anthocyanin accumulation or chloroplast gene expression. Recent evidence demonstrates a role for green light in sensing a shaded environment, independent from far-red shade responses. PMID:22301972

  18. Local adaptation in transgenerational responses to predators.

    PubMed

    Walsh, Matthew R; Castoe, Todd; Holmes, Julian; Packer, Michelle; Biles, Kelsey; Walsh, Melissa; Munch, Stephan B; Post, David M

    2016-01-27

    Environmental signals can induce phenotypic changes that span multiple generations. Along with phenotypic responses that occur during development (i.e. 'within-generation' plasticity), such 'transgenerational plasticity' (TGP) has been documented in a diverse array of taxa spanning many environmental perturbations. New theory predicts that temporal stability is a key driver of the evolution of TGP. We tested this prediction using natural populations of zooplankton from lakes in Connecticut that span a large gradient in the temporal dynamics of predator-induced mortality. We reared more than 120 clones of Daphnia ambigua from nine lakes for multiple generations in the presence/absence of predator cues. We found that temporal variation in mortality selects for within-generation plasticity while consistently strong (or weak) mortality selects for increased TGP. Such results provide us the first evidence for local adaptation in TGP and argue that divergent ecological conditions select for phenotypic responses within and across generations. PMID:26817775

  19. Covariate-adjusted response-adaptive designs for binary response.

    PubMed

    Rosenberger, W F; Vidyashankar, A N; Agarwal, D K

    2001-11-01

    An adaptive allocation design for phase III clinical trials that incorporates covariates is described. The allocation scheme maps the covariate-adjusted odds ratio from a logistic regression model onto [0, 1]. Simulations assume that both staggered entry and time to response are random and follow a known probability distribution that can depend on the treatment assigned, the patient's response, a covariate, or a time trend. Confidence intervals on the covariate-adjusted odds ratio is slightly anticonservative for the adaptive design under the null hypothesis, but power is similar to equal allocation under various alternatives for n = 200. For similar power, the net savings in terms of expected number of treatment failures is modest, but enough to make this design attractive for certain studies where known covariates are expected to be important and stratification is not desired, and treatment failures have a high ethical cost.

  20. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley

    PubMed Central

    Kruszka, Katarzyna; Pacak, Andrzej; Swida-Barteczka, Aleksandra; Nuc, Przemyslaw; Alaba, Sylwia; Wroblewska, Zuzanna; Karlowski, Wojciech; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2014-01-01

    Heat stress is one of the major abiotic factors that can induce severe plant damage, leading to a decrease in crop plant productivity. Despite barley being a cereal of great economic importance, few data are available concerning its thermotolerance mechanisms. In this work microRNAs (miRNAs) involved in heat stress response in barley were investigated. The level of selected barley mature miRNAs was examined by hybridization. Quantitative real-time PCR (RT-qPCR) was used to monitor the changes in the expression profiles of primary miRNA (pri-miRNA) precursors, as well as novel and conserved target genes during heat stress. The miRNA-mediated cleavage sites in the target transcripts were confirmed by degradome analysis and the 5’ RACE (rapid amplification of cDNA ends) approach. Four barley miRNAs (miR160a, 166a, 167h, and 5175a) were found which are heat stress up-regulated at the level of both mature miRNAs and precursor pri-miRNAs. Moreover, the splicing of introns hosting miR160a and miR5175a is also heat induced. The results demonstrate transcriptional and post-transcriptional regulation of heat-responsive miRNAs in barley. The observed induction of miRNA expression is correlated with the down-regulation of the expression level of their experimentally identified new and conservative target genes. PMID:25183744

  1. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley.

    PubMed

    Kruszka, Katarzyna; Pacak, Andrzej; Swida-Barteczka, Aleksandra; Nuc, Przemyslaw; Alaba, Sylwia; Wroblewska, Zuzanna; Karlowski, Wojciech; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2014-11-01

    Heat stress is one of the major abiotic factors that can induce severe plant damage, leading to a decrease in crop plant productivity. Despite barley being a cereal of great economic importance, few data are available concerning its thermotolerance mechanisms. In this work microRNAs (miRNAs) involved in heat stress response in barley were investigated. The level of selected barley mature miRNAs was examined by hybridization. Quantitative real-time PCR (RT-qPCR) was used to monitor the changes in the expression profiles of primary miRNA (pri-miRNA) precursors, as well as novel and conserved target genes during heat stress. The miRNA-mediated cleavage sites in the target transcripts were confirmed by degradome analysis and the 5' RACE (rapid amplification of cDNA ends) approach. Four barley miRNAs (miR160a, 166a, 167h, and 5175a) were found which are heat stress up-regulated at the level of both mature miRNAs and precursor pri-miRNAs. Moreover, the splicing of introns hosting miR160a and miR5175a is also heat induced. The results demonstrate transcriptional and post-transcriptional regulation of heat-responsive miRNAs in barley. The observed induction of miRNA expression is correlated with the down-regulation of the expression level of their experimentally identified new and conservative target genes.

  2. Global transcriptional analysis of the stringent response in Enterococcus faecalis

    PubMed Central

    Gaca, Anthony O.; Abranches, Jacqueline; Kajfasz, Jessica K.

    2012-01-01

    In Enterococcus faecalis, production of guanosine tetraphosphate/guanosine pentaphosphate [(p)ppGpp], the effector molecule of the stringent response, is controlled by the bifunctional synthetase/hydrolase RelA and the monofunctional synthetase RelQ. Previously, the (p)ppGpp profiles of strains lacking relA, relQ or both genes indicated that RelA is the primary enzyme responsible for (p)ppGpp synthesis under stress conditions, while the contributions of RelQ to the stringent response and cell homeostasis remained elusive. Here, survival within the mouse-derived macrophage cell line J774A.1 and killing of Galleria mellonella supported initial evidence that virulence was attenuated in the (p)ppGpp0 ΔrelAΔrelQ strain but not in the ΔrelA or ΔrelQ strains. We performed, for the first time to our knowledge, global transcriptome analysis in a documented (p)ppGpp0 Gram-positive bacterium and provided the first insights into the role of a Gram-positive monofunctional (p)ppGpp synthetase in transcriptional regulation. Transcription profiling after mupirocin treatment confirmed that RelA is the major enzyme responsible for the (p)ppGpp-mediated transcriptional repression of genes associated with macromolecular biosynthesis, but also revealed that RelQ is required for full and timely stringent response induction. The delayed transcriptional response of ΔrelQ could not be correlated with reduced or slower production of (p)ppGpp, in part because RelA-dependent (p)ppGpp accumulation occurred very rapidly. Comparisons of the transcriptional responses of ΔrelA or ΔrelAΔrelQ strains with the parent strain under starvation conditions revealed upregulation of operons involved in energy metabolism in the (p)ppGpp0 strain. Thus, while ΔrelA and ΔrelAΔrelQ cannot use (p)ppGpp to sense and respond to stresses, fitness of ΔrelAΔrelQ may be further impaired due to an unbalanced metabolism. PMID:22653948

  3. Post-transcriptional Regulation of Immunological Responses through Riboclustering.

    PubMed

    Ganguly, Koelina; Giddaluru, Jeevan; August, Avery; Khan, Nooruddin

    2016-01-01

    Immunological programing of immune cells varies in response to changing environmental signals. This process is facilitated by modifiers that regulate the translational fate of mRNAs encoding various immune mediators, including cytokines and chemokines, which in turn determine the rapid activation, tolerance, and plasticity of the immune system. RNA-binding proteins (RBPs) recruited by the specific sequence elements in mRNA transcripts are one such modifiers. These RBPs form RBP-RNA complexes known as "riboclusters." These riboclusters serve as RNA sorting machinery, where depending upon the composition of the ribocluster, translation, degradation, or storage of mRNA is controlled. Recent findings suggest that this regulation of mRNA homeostasis is critical for controlling the immune response. Here, we present the current knowledge of the ribocluster-mediated post-transcriptional regulation of immune mediators and highlight recent findings regarding their implications for the pathogenesis of acute or chronic inflammatory diseases. PMID:27199986

  4. Post-transcriptional Regulation of Immunological Responses through Riboclustering

    PubMed Central

    Ganguly, Koelina; Giddaluru, Jeevan; August, Avery; Khan, Nooruddin

    2016-01-01

    Immunological programing of immune cells varies in response to changing environmental signals. This process is facilitated by modifiers that regulate the translational fate of mRNAs encoding various immune mediators, including cytokines and chemokines, which in turn determine the rapid activation, tolerance, and plasticity of the immune system. RNA-binding proteins (RBPs) recruited by the specific sequence elements in mRNA transcripts are one such modifiers. These RBPs form RBP–RNA complexes known as “riboclusters.” These riboclusters serve as RNA sorting machinery, where depending upon the composition of the ribocluster, translation, degradation, or storage of mRNA is controlled. Recent findings suggest that this regulation of mRNA homeostasis is critical for controlling the immune response. Here, we present the current knowledge of the ribocluster-mediated post-transcriptional regulation of immune mediators and highlight recent findings regarding their implications for the pathogenesis of acute or chronic inflammatory diseases. PMID:27199986

  5. FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation.

    PubMed

    Van Spanning, R J; De Boer, A P; Reijnders, W N; Westerhoff, H V; Stouthamer, A H; Van Der Oost, J

    1997-03-01

    The Paracoccus denitrificans fnrP gene encoding a homologue of the Escherichia coli FNR protein was localized upstream of the gene cluster that encodes the high-affinity cbb3-type oxidase. FnrP harbours the invariant cysteine residues that are supposed to be the ligands of the redox-sensitive [4Fe-4S] cluster in FNR. NNR, another FNR-like transcriptional regulator in P. denitrificans, does not. Analysis of FnrP and NNR single and double mutants revealed that the two regulators each exert exclusive control on the expression of a discrete set of target genes. In FnrP mutants, the expression of cytochrome c peroxidase was blocked, that of membrane-bound nitrate reductase and the cbb3-type oxidase was significantly reduced, whilst the activity of the bb3-type quinol oxidase was increased. The amounts of the nitrite and nitric oxide reductases in these FnrP mutants were the same as in the wild type. NNR mutants, on the other hand, were disturbed exclusively in the concentrations of nitrite reductase and nitric oxide reductase. An FnrP.NNR double mutant combined the phenotypes of the single mutant strains. In all three mutants, the concentrations and/or activities of the aa3-type oxidase, cytochrome C550, cytochrome C552, and nitrous oxide reductase equalled those in the wild type. As the FNR boxes in front of the FnrP- and NNR-regulated genes are highly similar to or even identical to each other, the absence of cross-talk between the regulation by FnrP and NNR implies that as yet unidentified factors are important in the control. It is proposed that the redox state of an intracellular redox couple other than the oxygen/water couple is one of the factors that modulates the activity of FnrP. PMID:9076727

  6. Plant Cell Adaptive Responses to Microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    simulated microgravity and temperature elevation have different effects on the small HSP genes belonging to subfamilies with different subcellular localization: cytosol/nucleus - PsHSP17.1-СІІ and PsHSP18.1-СІ, cloroplasts - PsHSP26.2-Cl, endoplasmatic reticulum - PsHSP22.7-ER and mitochondria - PsHSP22.9-M: unlike high temperature, clinorotation does not cause denaturation of cell proteins, that confirms the sHSP chaperone function. Dynamics of investigated gene expression in pea seedlings growing 5 days after seed germination under clinorotation was similar to that in the stationary control. Similar patterns in dynamics of sHSP gene expression in the stationary control and under clinorotation may be one of mechanisms providing plant adaptation to simulated microgravity. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in cell organelle functional load. Thus, next certain changes in the structure and function of plant cells may be considered as adaptive: 1) an increase in the unsaturated fatty acid content in the plasmalemma, 2) rearrangements of organelle ultrastructure and an increase in their functional load, 3) an increase in cortical F-actin under destabilization of tubulin microtubules, 4) the level of gene expression and synthesis of heat shock proteins, 5) alterations of the enzyme and antioxidant system activity. The dynamics of these patterns demonstrated that the adaptation occurs on the principle of self-regulating systems in the limits of physiological norm reaction. The very importance of changed expression of genes involved in different cellular processes, especially HSP genes, in cell adaptation to altered gravity is discussed.

  7. Radio-Adaptive Responses of Mouse Myocardiocytes

    NASA Technical Reports Server (NTRS)

    Seawright, John W.; Westby, Christian M.

    2011-01-01

    One of the most significant occupational hazards to an astronaut is the frequent exposure to radiation. Commonly associated with increased risk for cancer related morbidity and mortality, radiation is also known to increase the risk for cardiovascular related disorders including: pericarditis, hypertension, and heart failure. It is believed that these radiation-induced disorders are a result of abnormal tissue remodeling. It is unknown whether radiation exposure promotes remodeling through fibrotic changes alone or in combination with programmed cell death. Furthermore, it is not known whether it is possible to mitigate the hazardous effects of radiation exposure. As such, we assessed the expression and mechanisms of radiation-induced tissue remodeling and potential radio-adaptive responses of p53-mediated apoptosis and fibrosis pathways along with markers for oxidative stress and inflammation in mice myocardium. 7 week old, male, C57Bl/6 mice were exposed to 6Gy (H) or 5cGy followed 24hr later with 6Gy (LH) Cs-137 gamma radiation. Mice were sacrificed and their hearts extirpated 4, 24, or 72hr after final irradiation. Real Time - Polymerase Chain Reaction was used to evaluate target genes. Pro-apoptotic genes Bad and Bax, pro-cell survival genes Bcl2 and Bcl2l2, fibrosis gene Vegfa, and oxidative stress genes Sod2 and GPx4 showed a reduced fold regulation change (Bad,-6.18; Bax,-6.94; Bcl2,-5.09; Bcl2l2,-4.03; Vegfa, -11.84; Sod2,-5.97; GPx4*,-28.72; * = Bonferroni adjusted p-value . 0.003) 4hr after H, but not after 4hr LH when compared to control. Other p53-mediated apoptosis genes Casp3, Casp9, Trp53, and Myc exhibited down-regulation but did not achieve a notable level of significance 4hr after H. 24hr after H, genetic down-regulation was no longer present compared to 24hr control. These data suggest a general reduction in genetic expression 4hrs after a high dose of gamma radiation. However, pre-exposure to 5cGy gamma radiation appears to facilitate a radio-adaptive

  8. Transcriptional Analysis of Arabidopsis thaliana Response to Lima Bean Volatiles

    PubMed Central

    Zhang, Sufang; Wei, Jianing; Kang, Le

    2012-01-01

    Background Exposure of plants to herbivore-induced plant volatiles (HIPVs) alters their resistance to herbivores. However, the whole-genome transcriptional responses of treated plants remain unknown, and the signal pathways that produce HIPVs are also unclear. Methodology/Principal Findings Time course patterns of the gene expression of Arabidopsis thaliana exposed to Lima bean volatiles were examined using Affymetrix ATH1 genome arrays. Results showed that A. thaliana received and responded to leafminer-induced volatiles from Lima beans through up-regulation of genes related to the ethylene (ET) and jasmonic acid pathways. Time course analysis revealed strong and partly qualitative differences in the responses between exposure at 24 and that at 48 h. Further experiments using either A. thaliana ET mutant ein2-1 or A. thaliana jasmonic acid mutant coi1-2 indicated that both pathways are involved in the volatile response process but that the ET pathway is indispensable for detecting volatiles. Moreover, transcriptional comparisons showed that plant responses to larval feeding do not merely magnify the volatile response process. Finally, (Z)-3-hexen-ol, ocimene, (3E)-4,8-dimethyl-1,3,7-nonatriene, and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene triggered responses in A. thaliana similar to those induced by the entire suite of Lima bean volatiles after 24 and 48 h. Conclusions/Significance This study shows that the transcriptional responses of plants to HIPVs become stronger as treatment time increases and that ET signals are critical during this process. PMID:22558246

  9. In silico Analysis of Transcription Factor Repertoire and Prediction of Stress Responsive Transcription Factors in Soybean

    PubMed Central

    Mochida, Keiichi; Yoshida, Takuhiro; Sakurai, Tetsuya; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2009-01-01

    Sequence-specific DNA-binding transcription factors (TFs) are often termed as ‘master regulators’ which bind to DNA and either activate or repress gene transcription. We have computationally analysed the soybean genome sequence data and constructed a proper set of TFs based on the Hidden Markov Model profiles of DNA-binding domain families. Within the soybean genome, we identified 4342 loci encoding 5035 TF models which grouped into 61 families. We constructed a database named SoybeanTFDB (http://soybeantfdb.psc.riken.jp) containing the full compilation of soybean TFs and significant information such as: functional motifs, full-length cDNAs, domain alignments, promoter regions, genomic organization and putative regulatory functions based on annotations of gene ontology (GO) inferred by comparative analysis with Arabidopsis. With particular interest in abiotic stress signalling, we analysed the promoter regions for all of the TF encoding genes as a means to identify abiotic stress responsive cis-elements as well as all types of cis-motifs provided by the PLACE database. SoybeanTFDB enables scientists to easily access cis-element and GO annotations to aid in the prediction of TF function and selection of TFs with functions of interest. This study provides a basic framework and an important user-friendly public information resource which enables analyses of transcriptional regulation in soybean. PMID:19884168

  10. Transcript changes in Vibrio cholerae in response to salt stress.

    PubMed

    Fu, Xiuping; Liang, Weili; Du, Pengcheng; Yan, Meiying; Kan, Biao

    2014-01-01

    Vibrio cholerae, which is a serious human intestinal pathogen, often resides and thrives in estuaries but requires major self-regulation to overcome intestinal hyperosmotic stress or high salt stress in water and food. In the present study, we selected multiple O1 and O139 group V. cholerae strains that were isolated from different regions and during different years to study their salt tolerance. Based on the mechanisms that other bacteria use to respond to high salt stress, we selected salt stress-response related genes to study the mechanisms which V. cholerae responds to high salt stress. V. cholerae strains showed salt-resistance characteristics that varied in salt concentrations from 4% to 6%. However, group O1 and group O139 showed no significant difference in the degree of salt tolerance. The primary responses of bacteria to salt stress, including Na(+) exclusion, K(+) uptake and glutamate biosynthesis, were observed in V. cholerae strains. In addition, some sigma factors were up-regulated in V. cholerae strains, suggesting that V. cholerae may recruit common sigma factors to achieve an active salt stress response. However, some changes in gene transcript levels in response to salt stress in V. cholerae were strain-specific. In particular, hierarchical clustering of differentially expressed genes indicated that transcript levels of these genes were correlated with the degree of salt tolerance. Therefore, elevated transcript levels of some genes, including sigma factors and genes involved in peptidoglycan biosynthesis, may be due to the salt tolerance of strains. In addition, high salt-tolerant strains may recruit common as well as additional sigma factors to activate the salt stress response. PMID:25589902

  11. Adaptation of health care for migrants: whose responsibility?

    PubMed Central

    2014-01-01

    Background In a context of increasing ethnic diversity, culturally competent strategies have been recommended to improve care quality and access to health care for ethnic minorities and migrants; their implementation by health professionals, however, has remained patchy. Most programs of cultural competence assume that health professionals accept that they have a responsibility to adapt to migrants, but this assumption has often remained at the level of theory. In this paper, we surveyed health professionals’ views on their responsibility to adapt. Methods Five hundred-and-sixty-nine health professionals from twenty-four inpatient and outpatient health services were selected according to their geographic location. All health care professionals were requested to complete a questionnaire about who should adapt to ethnic diversity: health professionals or patients. After a factorial analysis to identify the underlying responsibility dimensions, we performed a multilevel regression model in order to investigate individual and service covariates of responsibility attribution. Results Three dimensions emerged from the factor analysis: responsibility for the adaptation of communication, responsibility for the adaptation to the negotiation of values, and responsibility for the adaptation to health beliefs. Our results showed that the sense of responsibility for the adaptation of health care depended on the nature of the adaptation required: when the adaptation directly concerned communication with the patient, health professionals declared that they should be the ones to adapt; in relation to cultural preferences, however, the responsibility felt on the patient’s shoulders. Most respondents were unclear in relation to adaptation to health beliefs. Regression indicated that being Belgian, not being a physician, and working in a primary-care service were associated with placing the burden of responsibility on the patient. Conclusions Health care professionals do not

  12. Role of Estrogen Response Element in the Human Prolactin Gene: Transcriptional Response and Timing

    PubMed Central

    McNamara, Anne V.; Adamson, Antony D.; Dunham, Lee S. S.; Semprini, Sabrina; Spiller, David G.; McNeilly, Alan S.; Mullins, John J.

    2016-01-01

    The use of bacterial artificial chromosome (BAC) reporter constructs in molecular physiology enables the inclusion of large sections of flanking DNA, likely to contain regulatory elements and enhancers regions that contribute to the transcriptional output of a gene. Using BAC recombineering, we have manipulated a 160-kb human prolactin luciferase (hPRL-Luc) BAC construct and mutated the previously defined proximal estrogen response element (ERE) located −1189 bp relative to the transcription start site, to assess its involvement in the estrogen responsiveness of the entire hPRL locus. We found that GH3 cell lines stably expressing Luc under control of the ERE-mutated hPRL promoter (ERE-Mut) displayed a dramatically reduced transcriptional response to 17β-estradiol (E2) treatment compared with cells expressing Luc from the wild-type (WT) ERE hPRL-Luc promoter (ERE-WT). The −1189 ERE controls not only the response to E2 treatment but also the acute transcriptional response to TNFα, which was abolished in ERE-Mut cells. ERE-WT cells displayed a biphasic transcriptional response after TNFα treatment, the acute phase of which was blocked after treatment with the estrogen receptor antagonist 4-hydroxy-tamoxifen. Unexpectedly, we show the oscillatory characteristics of hPRL promoter activity in individual living cells were unaffected by disruption of this crucial response element, real-time bioluminescence imaging showed that transcription cycles were maintained, with similar cycle lengths, in ERE-WT and ERE-Mut cells. These data suggest the −1189 ERE is the dominant response element involved in the hPRL transcriptional response to both E2 and TNFα and, crucially, that cycles of hPRL promoter activity are independent of estrogen receptor binding. PMID:26691151

  13. Developmental-stage-dependent transcriptional response to leukaemic oncogene expression

    PubMed Central

    Regha, Kakkad; Assi, Salam A.; Tsoulaki, Olga; Gilmour, Jane; Lacaud, Georges; Bonifer, Constanze

    2015-01-01

    Acute myeloid leukaemia (AML) is characterized by a block in myeloid differentiation the stage of which is dependent on the nature of the transforming oncogene and the developmental stage of the oncogenic hit. This is also true for the t(8;21) translocation that gives rise to the RUNX1-ETO fusion protein and initiates the most common form of human AML. Here we study the differentiation of mouse embryonic stem cells expressing an inducible RUNX1-ETO gene into blood cells as a model, combined with genome-wide analyses of transcription factor binding and gene expression. RUNX1-ETO interferes with both the activating and repressive function of its normal counterpart, RUNX1, at early and late stages of blood cell development. However, the response of the transcriptional network to RUNX1-ETO expression is developmental stage specific, highlighting the molecular mechanisms determining specific target cell expansion after an oncogenic hit. PMID:26018585

  14. Proteasome function shapes innate and adaptive immune responses.

    PubMed

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  15. Proteasome function shapes innate and adaptive immune responses.

    PubMed

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively.

  16. NAC transcription factors in plant abiotic stress responses.

    PubMed

    Nakashima, Kazuo; Takasaki, Hironori; Mizoi, Junya; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2012-02-01

    Abiotic stresses such as drought and high salinity adversely affect the growth and productivity of plants, including crops. The development of stress-tolerant crops will be greatly advantageous for modern agriculture in areas that are prone to such stresses. In recent years, several advances have been made towards identifying potential stress related genes which are capable of increasing the tolerance of plants to abiotic stress. NAC proteins are plant-specific transcription factors and more than 100 NAC genes have been identified in Arabidopsis and rice to date. Phylogenetic analyses indicate that the six major groups were already established at least in an ancient moss lineage. NAC transcription factors have a variety of important functions not only in plant development but also in abiotic stress responses. Stress-inducible NAC genes have been shown to be involved in abiotic stress tolerance. Transgenic Arabidopsis and rice plants overexpressing stress-responsive NAC (SNAC) genes have exhibited improved drought tolerance. These studies indicate that SNAC factors have important roles for the control of abiotic stress tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. Although these transcription factors can bind to the same core NAC recognition sequence, recent studies have demonstrated that the effects of NAC factors for growth are different. Moreover, the NAC proteins are capable of functioning as homo- or hetero-dimer forms. Thus, SNAC factors can be useful for improving stress tolerance in transgenic plants, although the mechanism for mediating the stress tolerance of these homologous factors is complex in plants. Recent studies also suggest that crosstalk may exist between stress responses and plant growth. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.

  17. Transcription Profiling of the Stringent Response in Escherichia coli▿ †

    PubMed Central

    Durfee, Tim; Hansen, Anne-Marie; Zhi, Huijun; Blattner, Frederick R.; Jin, Ding Jun

    2008-01-01

    The bacterial stringent response serves as a paradigm for understanding global regulatory processes. It can be triggered by nutrient downshifts or starvation and is characterized by a rapid RelA-dependent increase in the alarmone (p)ppGpp. One hallmark of the response is the switch from maximum-growth-promoting to biosynthesis-related gene expression. However, the global transcription patterns accompanying the stringent response in Escherichia coli have not been analyzed comprehensively. Here, we present a time series of gene expression profiles for two serine hydroxymate-treated cultures: (i) MG1655, a wild-type E. coli K-12 strain, and (ii) an isogenic relAΔ251 derivative defective in the stringent response. The stringent response in MG1655 develops in a hierarchical manner, ultimately involving almost 500 differentially expressed genes, while the relAΔ251 mutant response is both delayed and limited in scope. We show that in addition to the down-regulation of stable RNA-encoding genes, flagellar and chemotaxis gene expression is also under stringent control. Reduced transcription of these systems, as well as metabolic and transporter-encoding genes, constitutes much of the down-regulated expression pattern. Conversely, a significantly larger number of genes are up-regulated. Under the conditions used, induction of amino acid biosynthetic genes is limited to the leader sequences of attenuator-regulated operons. Instead, up-regulated genes with known functions, including both regulators (e.g., rpoE, rpoH, and rpoS) and effectors, are largely involved in stress responses. However, one-half of the up-regulated genes have unknown functions. How these results are correlated with the various effects of (p)ppGpp (in particular, RNA polymerase redistribution) is discussed. PMID:18039766

  18. Genome-Wide Transcriptional Responses to Carbon Starvation in Nongrowing Lactococcus lactis

    PubMed Central

    Ercan, Onur; Wels, Michiel; Smid, Eddy J.

    2015-01-01

    This paper describes the transcriptional adaptations of nongrowing, retentostat cultures of Lactococcus lactis to starvation. Near-zero-growth cultures (μ = 0.0001 h−1) obtained by extended retentostat cultivation were exposed to starvation by termination of the medium supply for 24 h, followed by a recovery period of another 24 h by reinitiating the medium supply to the retentostat culture. During starvation, the viability of the culture was largely retained, and the expression of genes involved in transcription and translational machineries, cell division, and cell membrane energy metabolism was strongly repressed. Expression of these genes was largely recovered following the reinitiation of the medium supply. Starvation triggered the elevated expression of genes associated with synthesis of branched-chain amino acids, histidine, purine, and riboflavin. The expression of these biosynthesis genes was found to remain at an elevated level after reinitiation of the medium supply. In addition, starvation induced the complete gene set predicted to be involved in natural competence in L. lactis KF147, and the elevated expression of these genes was sustained during the subsequent recovery period, but our attempts to experimentally demonstrate natural transformation in these cells failed. Mining the starvation response gene set identified a conserved cis-acting element that resembles the lactococcal CodY motif in the upstream regions of genes associated with transcription and translational machineries, purine biosynthesis, and natural transformation in L. lactis, suggesting a role for CodY in the observed transcriptome adaptations to starvation in nongrowing cells. PMID:25636846

  19. A transcriptional reference map of defence hormone responses in potato

    PubMed Central

    Wiesel, Lea; Davis, Jayne L.; Milne, Linda; Redondo Fernandez, Vanesa; Herold, Miriam B.; Middlefell Williams, Jill; Morris, Jenny; Hedley, Pete E.; Harrower, Brian; Newton, Adrian C.; Birch, Paul R. J.; Gilroy, Eleanor M.; Hein, Ingo

    2015-01-01

    Phytohormones are involved in diverse aspects of plant life including the regulation of plant growth, development and reproduction, as well as governing biotic and abiotic stress responses. We have generated a comprehensive transcriptional reference map of the early potato responses to exogenous application of the defence hormones abscisic acid, brassinolides (applied as epibrassinolide), ethylene (applied as the ethylene precursor aminocyclopropanecarboxylic acid), salicylic acid and jasmonic acid (applied as methyl jasmonate). Of the 39000 predicted genes on the microarray, a total of 2677 and 2473 genes were significantly differentially expressed at 1 h and 6 h after hormone treatment, respectively. Specific marker genes newly identified for the early hormone responses in potato include: a homeodomain 20 transcription factor (DMG400000248) for abscisic acid; a SAUR gene (DMG400016561) induced in epibrassinolide treated plants; an osmotin gene (DMG400003057) specifically enhanced by aminocyclopropanecarboxylic acid; a gene weakly similar to AtWRKY40 (DMG402007388) that was induced by salicylic acid; and a jasmonate ZIM-domain protein 1 (DMG400002930) which was specifically activated by methyl jasmonate. An online database has been set up to query the expression patterns of potato genes represented on the microarray that can also incorporate future microarray or RNAseq-based expression studies. PMID:26477733

  20. Linear ubiquitination signals in adaptive immune responses

    PubMed Central

    Ikeda, Fumiyo

    2015-01-01

    Summary Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage-type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized Tumor Necrosis Factor (TNF) -induced canonical nuclear factor-kappa B (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways. PMID:26085218

  1. Bayesian response adaptive randomization using longitudinal outcomes.

    PubMed

    Hatayama, Tomoyoshi; Morita, Satoshi; Sakamaki, Kentaro

    2015-01-01

    The response adaptive randomization (RAR) method is used to increase the number of patients assigned to more efficacious treatment arms in clinical trials. In many trials evaluating longitudinal patient outcomes, RAR methods based only on the final measurement may not benefit significantly from RAR because of its delayed initiation. We propose a Bayesian RAR method to improve RAR performance by accounting for longitudinal patient outcomes (longitudinal RAR). We use a Bayesian linear mixed effects model to analyze longitudinal continuous patient outcomes for calculating a patient allocation probability. In addition, we aim to mitigate the loss of statistical power because of large patient allocation imbalances by embedding adjusters into the patient allocation probability calculation. Using extensive simulation we compared the operating characteristics of our proposed longitudinal RAR method with those of the RAR method based only on the final measurement and with an equal randomization method. Simulation results showed that our proposed longitudinal RAR method assigned more patients to the presumably superior treatment arm compared with the other two methods. In addition, the embedded adjuster effectively worked to prevent extreme patient allocation imbalances. However, our proposed method may not function adequately when the treatment effect difference is moderate or less, and still needs to be modified to deal with unexpectedly large departures from the presumed longitudinal data model.

  2. Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites

    PubMed Central

    Yu, Xilan; Lund, Steven P.; Scott, Russell A.; Greenwald, Jessica W.; Records, Angela H.; Nettleton, Dan; Lindow, Steven E.; Gross, Dennis C.; Beattie, Gwyn A.

    2013-01-01

    Some strains of the foliar pathogen Pseudomonas syringae are adapted for growth and survival on leaf surfaces and in the leaf interior. Global transcriptome profiling was used to evaluate if these two habitats offer distinct environments for bacteria and thus present distinct driving forces for adaptation. The transcript profiles of Pseudomonas syringae pv. syringae B728a support a model in which leaf surface, or epiphytic, sites specifically favor flagellar motility, swarming motility based on 3-(3-hydroxyalkanoyloxy)alkanoic acid surfactant production, chemosensing, and chemotaxis, indicating active relocation primarily on the leaf surface. Epiphytic sites also promote high transcript levels for phenylalanine degradation, which may help counteract phenylpropanoid-based defenses before leaf entry. In contrast, intercellular, or apoplastic, sites favor the high-level expression of genes for GABA metabolism (degradation of these genes would attenuate GABA repression of virulence) and the synthesis of phytotoxins, two additional secondary metabolites, and syringolin A. These findings support roles for these compounds in virulence, including a role for syringolin A in suppressing defense responses beyond stomatal closure. A comparison of the transcriptomes from in planta cells and from cells exposed to osmotic stress, oxidative stress, and iron and nitrogen limitation indicated that water availability, in particular, was limited in both leaf habitats but was more severely limited in the apoplast than on the leaf surface under the conditions tested. These findings contribute to a coherent model of the adaptations of this widespread bacterial phytopathogen to distinct habitats within its host. PMID:23319638

  3. Where does transcription start? 5'-RACE adapted to next-generation sequencing.

    PubMed

    Leenen, Fleur A D; Vernocchi, Sara; Hunewald, Oliver E; Schmitz, Stephanie; Molitor, Anne M; Muller, Claude P; Turner, Jonathan D

    2016-04-01

    The variability and complexity of the transcription initiation process was examined by adapting RNA ligase-mediated rapid amplification of 5' cDNA ends (5'-RACE) to Next-Generation Sequencing (NGS). We oligo-labelled 5'-m(7)G-capped mRNA from two genes, the simple mono-exonic Beta-2-Adrenoceptor (ADRB2R)and the complex multi-exonic Glucocorticoid Receptor (GR, NR3C1), and detected a variability in TSS location that has received little attention up to now. Transcription was not initiated at a fixed TSS, but from loci of 4 to 10 adjacent nucleotides. Individual TSSs had frequencies from <0.001% to 38.5% of the total gene-specific 5' m(7)G-capped transcripts. ADRB2R used a single locus consisting of 4 adjacent TSSs. Unstimulated, the GR used a total of 358 TSSs distributed throughout 38 loci, that were principally in the 5' UTRs and were spliced using established donor and acceptor sites. Complete demethylation of the epigenetically sensitive GR promoter with 5-azacytidine induced one new locus and 127 TSSs, 12 of which were unique. We induced GR transcription with dexamethasone and Interferon-γ, adding one new locus and 185 additional TSSs distributed throughout the promoter region. In-vitro the TSS microvariability regulated mRNA translation efficiency and the relative abundance of the different GRN-terminal protein isoform levels. PMID:26615195

  4. Where does transcription start? 5′-RACE adapted to next-generation sequencing

    PubMed Central

    Leenen, Fleur A.D.; Vernocchi, Sara; Hunewald, Oliver E.; Schmitz, Stephanie; Molitor, Anne M.; Muller, Claude P.; Turner, Jonathan D.

    2016-01-01

    The variability and complexity of the transcription initiation process was examined by adapting RNA ligase-mediated rapid amplification of 5′ cDNA ends (5′-RACE) to Next-Generation Sequencing (NGS). We oligo-labelled 5′-m7G-capped mRNA from two genes, the simple mono-exonic Beta-2-Adrenoceptor (ADRB2R) and the complex multi-exonic Glucocorticoid Receptor (GR, NR3C1), and detected a variability in TSS location that has received little attention up to now. Transcription was not initiated at a fixed TSS, but from loci of 4 to 10 adjacent nucleotides. Individual TSSs had frequencies from <0.001% to 38.5% of the total gene-specific 5′ m7G-capped transcripts. ADRB2R used a single locus consisting of 4 adjacent TSSs. Unstimulated, the GR used a total of 358 TSSs distributed throughout 38 loci, that were principally in the 5′ UTRs and were spliced using established donor and acceptor sites. Complete demethylation of the epigenetically sensitive GR promoter with 5-azacytidine induced one new locus and 127 TSSs, 12 of which were unique. We induced GR transcription with dexamethasone and Interferon-γ, adding one new locus and 185 additional TSSs distributed throughout the promoter region. In-vitro the TSS microvariability regulated mRNA translation efficiency and the relative abundance of the different GR N-terminal protein isoform levels. PMID:26615195

  5. VTA neurons show a potentially protective transcriptional response to MPTP.

    PubMed

    Phani, Sudarshan; Gonye, Gregory; Iacovitti, Lorraine

    2010-07-01

    Parkinson's disease and its characteristic symptoms are thought to arise from the progressive degeneration of specific midbrain dopamine (DA) neurons. In humans, DA neurons of the substantia nigra (SN) and their projections to the striatum show selective vulnerability, while neighboring DA neurons of the ventral tegmental area (VTA) are relatively spared from degeneration. This pattern of cell loss is mimicked in humans, primates, and certain rodents by the neurotoxin MPTP. In this study, we aimed to test the hypothesis that there are factors in the VTA that are potentially neuroprotective against MPTP and that these factors change over time. We have found a dynamic transcriptional response within the cells of the VTA to sustained exposure to a low dose of MPTP. Specifically, the VTA has increased expression of 148 genes as an early response to MPTP and 113 genes as a late response to MPTP toxicity. This response encompasses many areas of cellular function, including protein regulation (Phf6) and ion/metal regulation (PANK2 and Car4). Notably, these responses were largely absent from the cells of the SN. Our data show a clear dynamic response in maintaining the homeostasis and viability of the neurons in the VTA that is lacking in the SN after neurotoxin challenge.

  6. Early Transcriptional Response of Soybean Contrasting Accessions to Root Dehydration

    PubMed Central

    Ferreira Neto, José Ribamar Costa; Pandolfi, Valesca; Guimaraes, Francismar Corrêa Marcelino; Benko-Iseppon, Ana Maria; Romero, Cynara; Silva, Roberta Lane de Oliveira; Rodrigues, Fabiana Aparecida; Abdelnoor, Ricardo Vilela; Nepomuceno, Alexandre Lima; Kido, Ederson Akio

    2013-01-01

    Drought is a significant constraint to yield increase in soybean. The early perception of water deprivation is critical for recruitment of genes that promote plant tolerance. DeepSuperSAGE libraries, including one control and a bulk of six stress times imposed (from 25 to 150 min of root dehydration) for drought-tolerant and sensitive soybean accessions, allowed to identify new molecular targets for drought tolerance. The survey uncovered 120,770 unique transcripts expressed by the contrasting accessions. Of these, 57,610 aligned with known cDNA sequences, allowing the annotation of 32,373 unitags. A total of 1,127 unitags were up-regulated only in the tolerant accession, whereas 1,557 were up-regulated in both as compared to their controls. An expression profile concerning the most representative Gene Ontology (GO) categories for the tolerant accession revealed the expression “protein binding” as the most represented for “Molecular Function”, whereas CDPK and CBL were the most up-regulated protein families in this category. Furthermore, particular genes expressed different isoforms according to the accession, showing the potential to operate in the distinction of physiological behaviors. Besides, heat maps comprising GO categories related to abiotic stress response and the unitags regulation observed in the expression contrasts covering tolerant and sensitive accessions, revealed the unitags potential for plant breeding. Candidate genes related to “hormone response” (LOX, ERF1b, XET), “water response” (PUB, BMY), “salt stress response” (WRKY, MYB) and “oxidative stress response” (PER) figured among the most promising molecular targets. Additionally, nine transcripts (HMGR, XET, WRKY20, RAP2-4, EREBP, NAC3, PER, GPX5 and BMY) validated by RT-qPCR (four different time points) confirmed their differential expression and pointed that already after 25 minutes a transcriptional reorganization started in response to the new condition, with

  7. Transcriptional Response of Saccharomyces cerevisiae to Desiccation and Rehydration†

    PubMed Central

    Singh, Jatinder; Kumar, Deept; Ramakrishnan, Naren; Singhal, Vibha; Jervis, Jody; Garst, James F.; Slaughter, Stephen M.; DeSantis, Andrea M.; Potts, Malcolm; Helm, Richard F.

    2005-01-01

    A transcriptional analysis of the response of Saccharomyces cerevisiae strain BY4743 to controlled air-drying (desiccation) and subsequent rehydration under minimal glucose conditions was performed. Expression of genes involved in fatty acid oxidation and the glyoxylate cycle was observed to increase during drying and remained in this state during the rehydration phase. When the BY4743 expression profile for the dried sample was compared to that of a commercially prepared dry active yeast, strikingly similar expression changes were observed. The fact that these two samples, dried by different means, possessed very similar transcriptional profiles supports the hypothesis that the response to desiccation is a coordinated event independent of the particular conditions involved in water removal. Similarities between “stationary-phase-essential genes” and those upregulated during desiccation were also noted, suggesting commonalities in different routes to reduced metabolic states. Trends in extracellular and intracellular glucose and trehalose levels suggested that the cells were in a “holding pattern” during the rehydration phase, a concept that was reinforced by cell cycle analyses. Application of a “redescription mining” algorithm suggested that sulfur metabolism is important for cell survival during desiccation and rehydration. PMID:16332871

  8. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    PubMed Central

    2011-01-01

    Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants. PMID:21718548

  9. How Language Supports Adaptive Teaching through a Responsive Learning Culture

    ERIC Educational Resources Information Center

    Johnston, Peter; Dozier, Cheryl; Smit, Julie

    2016-01-01

    For students to learn optimally, teachers must design classrooms that are responsive to the full range of student development. The teacher must be adaptive, but so must each student and the learning culture itself. In other words, adaptive teaching means constructing a responsive learning culture that accommodates and even capitalizes on diversity…

  10. Transcription Factors in the Cellular Response to Charged Particle Exposure

    PubMed Central

    Hellweg, Christine E.; Spitta, Luis F.; Henschenmacher, Bernd; Diegeler, Sebastian; Baumstark-Khan, Christa

    2016-01-01

    Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor’s p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles’ LET, with a maximal activation in the LET range of 90–300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  11. Transcription Factors in the Cellular Response to Charged Particle Exposure.

    PubMed

    Hellweg, Christine E; Spitta, Luis F; Henschenmacher, Bernd; Diegeler, Sebastian; Baumstark-Khan, Christa

    2016-01-01

    Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor's p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles' LET, with a maximal activation in the LET range of 90-300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  12. MicroRNA as Type I Interferon-Regulated Transcripts and Modulators of the Innate Immune Response

    PubMed Central

    Forster, Samuel C.; Tate, Michelle D.; Hertzog, Paul J.

    2015-01-01

    Type I interferons (IFNs) are an important family of cytokines that regulate innate and adaptive immune responses to pathogens, in cancer and inflammatory diseases. While the regulation and role of protein-coding genes involved in these responses are well characterized, the role of non-coding microRNAs in the IFN responses is less developed. We review the emerging picture of microRNA regulation of the IFN response at the transcriptional and post-transcriptional level. This response forms an important regulatory loop; several microRNAs target transcripts encoding components at many steps of the type I IFN response, both production and action, at the receptor, signaling, transcription factor, and regulated gene level. Not only do IFNs regulate positive signaling molecules but also negative regulators such as SOCS1. In total, 36 microRNA are reported as IFN regulated. Given this apparent multipronged targeting of the IFN response by microRNAs and their well-characterized capacity to “buffer” responses in other situations, the prospects of improved sequencing and microRNA targeting technologies will facilitate the elucidation of the broader regulatory networks of microRNA in this important biological context, and their therapeutic and diagnostic potential. PMID:26217335

  13. Transcriptional Adaptation of Drug-tolerant Mycobacterium tuberculosis During Treatment of Human Tuberculosis

    PubMed Central

    Walter, Nicholas D.; Dolganov, Gregory M.; Garcia, Benjamin J.; Worodria, William; Andama, Alfred; Musisi, Emmanuel; Ayakaka, Irene; Van, Tran T.; Voskuil, Martin I.; de Jong, Bouke C.; Davidson, Rebecca M.; Fingerlin, Tasha E.; Kechris, Katerina; Palmer, Claire; Nahid, Payam; Daley, Charles L.; Geraci, Mark; Huang, Laurence; Cattamanchi, Adithya; Strong, Michael; Schoolnik, Gary K.; Davis, John Lucian

    2015-01-01

    Background. Treatment initiation rapidly kills most drug-susceptible Mycobacterium tuberculosis, but a bacterial subpopulation tolerates prolonged drug exposure. We evaluated drug-tolerant bacilli in human sputum by comparing messenger RNA (mRNA) expression of drug-tolerant bacilli that survive the early bactericidal phase with treatment-naive bacilli. Methods. M. tuberculosis gene expression was quantified via reverse-transcription polymerase chain reaction in serial sputa from 17 Ugandans treated for drug-susceptible pulmonary tuberculosis. Results. Within 4 days, bacterial mRNA abundance declined >98%, indicating rapid killing. Thereafter, the rate of decline slowed >94%, indicating drug tolerance. After 14 days, 16S ribosomal RNA transcripts/genome declined 96%, indicating slow growth. Drug-tolerant bacilli displayed marked downregulation of genes associated with growth, metabolism, and lipid synthesis and upregulation in stress responses and key regulatory categories—including stress-associated sigma factors, transcription factors, and toxin-antitoxin genes. Drug efflux pumps were upregulated. The isoniazid stress signature was induced by initial drug exposure, then disappeared after 4 days. Conclusions. Transcriptional patterns suggest that drug-tolerant bacilli in sputum are in a slow-growing, metabolically and synthetically downregulated state. Absence of the isoniazid stress signature in drug-tolerant bacilli indicates that physiological state influences drug responsiveness in vivo. These results identify novel drug targets that should aid in development of novel shorter tuberculosis treatment regimens. PMID:25762787

  14. Dissecting the Transcriptional Response to Elicitors in Vitis vinifera Cells

    PubMed Central

    Belchí-Navarro, Sarai; Bru, Roque; Martínez-Zapater, José M.; Lijavetzky, Diego; Pedreño, María A.

    2014-01-01

    The high effectiveness of cyclic oligosaccharides like cyclodextrins in the production of trans-resveratrol in Vitis vinifera cell cultures is enhanced in the presence of methyl jasmonate. In order to dissect the basis of the interactions among the elicitation responses triggered by these two compounds, a transcriptional analysis of grapevine cell cultures treated with cyclodextrins and methyl jasmonate separately or in combination was carried out. The results showed that the activation of genes encoding enzymes from phenylpropanoid and stilbene biosynthesis induced by cyclodextrins alone was partially enhanced in the presence of methyl jasmonate, which correlated with their effects on trans-resveratrol production. In addition, protein translation and cell cycle regulation were more highly repressed in cells treated with cyclodextrins than in those treated with methyl jasmonate, and this response was enhanced in the combined treatment. Ethylene signalling was activated by all treatments, while jasmonate signalling and salicylic acid conjugation were activated only in the presence of methyl jasmonate and cyclodextrins, respectively. Moreover, the combined treatment resulted in a crosstalk between the signalling cascades activated by cyclodextrins and methyl jasmonate, which, in turn, provoked the activation of additional regulatory pathways involving the up-regulation of MYB15, NAC and WRKY transcription factors, protein kinases and calcium signal transducers. All these results suggest that both elicitors cause an activation of the secondary metabolism in detriment of basic cell processes like the primary metabolism or cell division. Crosstalk between cyclodextrins and methyl jasmonate-induced signalling provokes an intensification of these responses resulting in a greater trans-resveratrol production. PMID:25314001

  15. De novo cholesterol synthesis at the crossroads of adaptive response to extracellular stress through SREBP.

    PubMed

    Robichon, Céline; Dugail, Isabelle

    2007-02-01

    Cell sterol supply is subjected to tight negative feedback regulation through the SREBP pathway. Upon cholesterol depletion, SREBP transcription factors become activated by cleavage of a membrane bound precursor form, which stimulates the expression of the genes encoding proteins of the cholesterol synthesis pathway. In this paper, we discuss two situations of extracellular stress (hypoxia and heat shock) in which the cholesterol synthesis pathway and SREBPs are directly impacted to generate an adaptive response to cell damage. On one hand, the lack of oxygen in fission yeast Saccharomyces pombe induces a drop in cholesterol synthesis which in turn activates SREBP-mediated transcription. The presence of genes involved in the anaerobic growth program among SREBP target genes in fission yeast, indicates that SREBP behaves as an oxygen sensor, required for adaptive growth in low oxygen. On the other hand, upon heat shock in mammalian cells, SREBP-responsive heat shock proteins have been characterized, which were able to upregulate sterol synthesis by targeting the activity of HMG-CoA reductase, the rate limiting enzyme in this pathway. Although not yet proven, high rates of sterol synthesis can be viewed as an adaptive response to correct structural membrane damage and bilayer fluidification induced by thermal stress. Together these situations illustrate how the highly regulated SREBP pathway for the control of sterol synthesis can be used to achieve cell adaptive responses to extracellular stresses.

  16. Computational Discovery of Transcription Factors Associated With Drug Response

    PubMed Central

    Hanson, Casey; Cairns, Junmei; Wang, Liewei; Sinha, Saurabh

    2015-01-01

    This study integrates gene expression, genotype, and drug response data in lymphoblastoid cell lines with transcription factor (TF) binding sites from ENCODE, in a novel methodology that elucidates regulatory contexts associated with cytotoxicity. The method, GENMi, postulates that SNPs within TF binding sites putatively modulate its regulatory activity, and the resulting variation in gene expression leads to variation in drug response. Analysis of 161 TFs and 24 treatments revealed 334 significantly associated TF-treatment pairs. Investigation of 20 selected pairs yielded literature support for 13 of these associations, often from studies where perturbation of the TF’s expression changes drug response. Experimental validation of significant GENMi associations in taxanes and anthracyclines across two triple negative breast cancer cell lines corroborates our findings. The method is shown to be more sensitive than an alternative, GWAS-based approach that does not use gene expression. These results demonstrate GENMi’s utility in identifying TFs that influence drug response and provide a number of candidates for further testing. PMID:26503816

  17. Early Transcriptional Signatures of the Immune Response to a Live Attenuated Tetravalent Dengue Vaccine Candidate in Non-human Primates

    PubMed Central

    Strouts, Fiona R.; Popper, Stephen J.; Partidos, Charalambos D.; Stinchcomb, Dan T.; Osorio, Jorge E.; Relman, David A.

    2016-01-01

    Background The development of a vaccine against dengue faces unique challenges, including the complexity of the immune responses to the four antigenically distinct serotypes. Genome-wide transcriptional profiling provides insight into the pathways and molecular features that underlie responses to immune system stimulation, and may facilitate predictions of immune protection. Methodology/Principal Findings In this study, we measured early transcriptional responses in the peripheral blood of cynomolgus macaques following vaccination with a live, attenuated tetravalent dengue vaccine candidate, TDV, which is based on a DENV-2 backbone. Different doses and routes of vaccine administration were used, and viral load and neutralizing antibody titers were measured at different time-points following vaccination. All 30 vaccinated animals developed a neutralizing antibody response to each of the four dengue serotypes, and only 3 of these animals had detectable serum viral RNA after challenge with wild-type dengue virus (DENV), suggesting protection of vaccinated animals to DENV infection. The vaccine induced statistically significant changes in 595 gene transcripts on days 1, 3, 5 and 7 as compared with baseline and placebo-treated animals. Genes involved in the type I interferon (IFN) response, including IFI44, DDX58, MX1 and OASL, exhibited the highest fold-change in transcript abundance, and this response was strongest following double dose and subcutaneous (versus intradermal) vaccine administration. In addition, modules of genes involved in antigen presentation, dendritic cell activation, and T cell activation and signaling were enriched following vaccination. Increased abundance of gene transcripts related to T cell activation on day 5, and the type I IFN response on day 7, were significantly correlated with the development of high neutralizing antibody titers on day 30. Conclusions/Significance These results suggest that early transcriptional responses may be

  18. Arginine transcriptional response does not require inositol phosphate synthesis.

    PubMed

    Bosch, Daniel; Saiardi, Adolfo

    2012-11-01

    Inositol phosphates are key signaling molecules affecting a large variety of cellular processes. Inositol-polyphosphate multikinase (IPMK) is a central component of the inositol phosphate biosynthetic routes, playing essential roles during development. IPMK phosphorylates inositol 1,4,5-trisphosphate to inositol tetrakisphosphate and subsequently to inositol pentakisphosphate and has also been described to function as a lipid kinase. Recently, a catalytically inactive mammalian IPMK was reported to be involved in nutrient signaling by way of mammalian target of rapamycin and AMP-activated protein kinase. In yeast, the IPMK homologue, Arg82, is the sole inositol-trisphosphate kinase. Arg82 has been extensively studied as part of the transcriptional complex regulating nitrogen sensing, in particular arginine metabolism. Whether this role requires Arg82 catalytic activity has long been a matter of contention. In this study, we developed a novel method for the real time study of promoter strength in vivo and used it to demonstrate that catalytically inactive Arg82 fully restored the arginine-dependent transcriptional response. We also showed that expression in yeast of catalytically active, but structurally very different, mammalian or plant IPMK homologue failed to restore arginine regulation. Our work indicates that inositol phosphates do not regulate arginine-dependent gene expression. PMID:22992733

  19. The transcriptional response to tumorigenic polarity loss in Drosophila.

    PubMed

    Bunker, Brandon D; Nellimoottil, Tittu T; Boileau, Ryan M; Classen, Anne K; Bilder, David

    2015-01-01

    Loss of polarity correlates with progression of epithelial cancers, but how plasma membrane misorganization drives oncogenic transcriptional events remains unclear. The polarity regulators of the Drosophila Scribble (Scrib) module are potent tumor suppressors and provide a model for mechanistic investigation. RNA profiling of Scrib mutant tumors reveals multiple signatures of neoplasia, including altered metabolism and dedifferentiation. Prominent among these is upregulation of cytokine-like Unpaired (Upd) ligands, which drive tumor overgrowth. We identified a polarity-responsive enhancer in upd3, which is activated in a coincident manner by both JNK-dependent Fos and aPKC-mediated Yki transcription. This enhancer, and Scrib mutant overgrowth in general, are also sensitive to activity of the Polycomb Group (PcG), suggesting that PcG attenuation upon polarity loss potentiates select targets for activation by JNK and Yki. Our results link epithelial organization to signaling and epigenetic regulators that control tissue repair programs, and provide insight into why epithelial polarity is tumor-suppressive.

  20. Binding of Transcription Factors Adapts to Resolve Information-Energy Tradeoff

    NASA Astrophysics Data System (ADS)

    Savir, Yonatan; Kagan, Jacob; Tlusty, Tsvi

    2016-03-01

    We examine the binding of transcription factors to DNA in terms of an information transfer problem. The input of the noisy channel is the biophysical signal of a factor bound to a DNA site, and the output is a distribution of probable DNA sequences at this site. This task involves an inherent tradeoff between the information gain and the energetics of the binding interaction—high binding energies provide higher information gain but hinder the dynamics of the system as factors are bound too tightly. We show that adaptation of the binding interaction towards increasing information transfer under a general energy constraint implies that the information gain per specific binding energy at each base-pair is maximized. We analyze hundreds of prokaryote and eukaryote transcription factors from various organisms to evaluate the discrimination energies. We find that, in accordance with our theoretical argument, binding energies nearly maximize the information gain per energy. This work suggests the adaptation of information gain as a generic design principle of molecular recognition systems.

  1. Transcriptional response to petiole heat girdling in cassava.

    PubMed

    Zhang, Yang; Ding, Zehong; Ma, Fangfang; Chauhan, Raj Deepika; Allen, Doug K; Brutnell, Thomas P; Wang, Wenquan; Peng, Ming; Li, Pinghua

    2015-01-01

    To examine the interactions of starch and sugar metabolism on photosynthesis in cassava, a heat-girdling treatment was applied to petioles of cassava leaves at the end of the light cycle to inhibit starch remobilization during the night. The inhibition of starch remobilization caused significant starch accumulation at the beginning of the light cycle, inhibited photosynthesis, and affected intracellular sugar levels. RNA-seq analysis of heat-treated and control plants revealed significantly decreased expression of genes related to photosynthesis, as well as N-metabolism and chlorophyll biosynthesis. However, expression of genes encoding TCA cycle enzymes and mitochondria electron transport components, and flavonoid biosynthetic pathway enzymes were induced. These studies reveal a dynamic transcriptional response to perturbation of sink demand in a single leaf, and provide useful information for understanding the regulations of cassava under sink or source limitation.

  2. Transcriptional response to petiole heat girdling in cassava

    PubMed Central

    Zhang, Yang; Ding, Zehong; Ma, Fangfang; Chauhan, Raj Deepika; Allen, Doug K.; Brutnell, Thomas P.; Wang, Wenquan; Peng, Ming; Li, Pinghua

    2015-01-01

    To examine the interactions of starch and sugar metabolism on photosynthesis in cassava, a heat-girdling treatment was applied to petioles of cassava leaves at the end of the light cycle to inhibit starch remobilization during the night. The inhibition of starch remobilization caused significant starch accumulation at the beginning of the light cycle, inhibited photosynthesis, and affected intracellular sugar levels. RNA-seq analysis of heat-treated and control plants revealed significantly decreased expression of genes related to photosynthesis, as well as N-metabolism and chlorophyll biosynthesis. However, expression of genes encoding TCA cycle enzymes and mitochondria electron transport components, and flavonoid biosynthetic pathway enzymes were induced. These studies reveal a dynamic transcriptional response to perturbation of sink demand in a single leaf, and provide useful information for understanding the regulations of cassava under sink or source limitation. PMID:25672661

  3. MHC class II transcription is associated with inflammatory responses in a wild marine mammal.

    PubMed

    Montano-Frías, Jorge E; Vera-Massieu, Camila; Álvarez-Martínez, Roberto; Flores-Morán, Adriana; Acevedo-Whitehouse, Karina

    2016-08-01

    Inflammation is one of the most important non-specific and rapid responses that a vertebrate can elicit in response to damage or a foreign insult. To date, despite increasing evidence that the innate and adaptive branches of immunity are more intricately related than previously thought, few have examined interactions between the Major Histocompatibility Complex (MHC, a polymorphic region of the vertebrate genome that is involved with antigen presentation) and inflammation, and even less is known about these interactions in an eco-immunological context. Here, we examined the effect of MHC class II DRB gene multiplicity and transcription on phytohemagglutinin (PHA)-induced inflammation during the early stages of development of California sea lions. Neither constitutive nor expressed ZacaDRB diversity was found to be associated with pup responses to PHA at any of the stages of pup development. However, for two-month-old pups, those with a specific MHC-DRB locus (ZacaDRB-A) tended to have less efficient responsive inflammation. Transcription of distinct MHC-DRB loci was also linked to PHA-induced inflammation, with patterns that varied markedly between ages, and that suggested that ongoing infectious processes could limit the capacity to respond to a secondary challenge. Life history constraints and physiological processes associated with development of California sea lions, in conjunction with their changing pathogenic environment could explain the observed effects of MHC class II transcription on PHA-induced inflammation. To our knowledge, ours is the first study to examine the importance of expressed vs. constitutive MHC loci on inflammation in a natural population. PMID:27137083

  4. Transcriptional Responses of Uropathogenic Escherichia coli to Increased Environmental Osmolality Caused by Salt or Urea

    PubMed Central

    Withman, Benjamin; Gunasekera, Thusitha S.; Beesetty, Pavani; Agans, Richard

    2013-01-01

    Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infections in humans. The majority of urinary infections develop via ascending route through the urethra, where bacterial cells come in contact with human urine prior to reaching the bladder or kidneys. Since urine contains significant amounts of inorganic ions and urea, it imposes osmotic and denaturing stresses on bacterial cells. In this study, we determined the transcriptional adaptive responses of UPEC strain CFT073 to the presence of 0.3 M NaCl or 0.6 M urea in the growth medium. The cell responses to these two osmolytes were drastically different. Although most of the genes of the osmotically inducible regulon were overexpressed in medium with salt, urea failed to stimulate osmotic stress response. At the same time, UPEC colonization genes encoding type 1 and F1C fimbriae and capsule biosynthesis were transcriptionally induced in the presence of urea but did not respond to increased salt concentration. We speculate that urea can potentially be sensed by uropathogenic bacteria to initiate infection program. In addition, several molecular chaperone genes were overexpressed in the presence of urea, whereas adding NaCl to the medium led to an upregulation of a number of anaerobic metabolism pathways. PMID:23090957

  5. Genome-Wide Transcriptional Response of Saccharomyces cerevisiae to Stress-Induced Perturbations

    PubMed Central

    Taymaz-Nikerel, Hilal; Cankorur-Cetinkaya, Ayca; Kirdar, Betul

    2016-01-01

    Cells respond to environmental and/or genetic perturbations in order to survive and proliferate. Characterization of the changes after various stimuli at different -omics levels is crucial to comprehend the adaptation of cells to the changing conditions. Genome-wide quantification and analysis of transcript levels, the genes affected by perturbations, extends our understanding of cellular metabolism by pointing out the mechanisms that play role in sensing the stress caused by those perturbations and related signaling pathways, and in this way guides us to achieve endeavors, such as rational engineering of cells or interpretation of disease mechanisms. Saccharomyces cerevisiae as a model system has been studied in response to different perturbations and corresponding transcriptional profiles were followed either statically or/and dynamically, short and long term. This review focuses on response of yeast cells to diverse stress inducing perturbations, including nutritional changes, ionic stress, salt stress, oxidative stress, osmotic shock, and to genetic interventions such as deletion and overexpression of genes. It is aimed to conclude on common regulatory phenomena that allow yeast to organize its transcriptomic response after any perturbation under different external conditions. PMID:26925399

  6. Transcriptional profiling of Petunia seedlings reveals candidate regulators of the cold stress response

    PubMed Central

    Li, Bei; Ning, Luyun; Zhang, Junwei; Bao, Manzhu; Zhang, Wei

    2015-01-01

    Petunias are important ornamentals with the capacity for cold acclimation. So far, there is limited information concerning gene regulation and signaling pathways associated with the cold stress response in petunias. A custom-designed petunia microarray representing 24816 genes was used to perform transcriptome profiling in petunia seedlings subjected to cold at 2°C for 0.5 h, 2 h, 24 h, and 5 d. A total of 2071 transcripts displayed differential expression patterns under cold stress, of which 1149 were up-regulated and 922 were down-regulated. Gene ontology enrichment analysis demarcated related biological processes, suggesting a possible link between flavonoid metabolism and plant adaptation to low temperatures. Many novel stress-responsive regulators were revealed, suggesting that diverse regulatory pathways may exist in petunias in addition to the well-characterized CBF pathway. The expression changes of selected genes under cold and other abiotic stress conditions were confirmed by real-time RT-PCR. Furthermore, weighted gene co-expression network analysis divided the petunia genes on the array into 65 modules that showed high co-expression and identified stress-specific hub genes with high connectivity. Our identification of these transcriptional responses and groups of differentially expressed regulators will facilitate the functional dissection of the molecular mechanism in petunias responding to environment stresses and extend our ability to improve cold tolerance in plants. PMID:25784921

  7. Transcriptional profiling of foam cells in response to hypercholesterolemia.

    PubMed

    Goo, Young-Hwa; Yechoor, Vijay K; Paul, Antoni

    2016-09-01

    Hypercholesterolemia is a main risk factor for atherosclerosis development. Arterial macrophages, or foam cells, take-up and process lipoprotein particles deposited in arteries, and store much of the cholesterol carried by these particles in their cytoplasm. However, the effects of exposure to different cholesterol levels on foam cells remain poorly understood. Given the remarkable plasticity of macrophages in response to environmental variables, studies on macrophage biology should ideally be performed in the environment where they exert their physiological functions, namely atherosclerotic lesions in the case of foam cells. We used a mouse model of atherosclerosis, the apolipoprotein E-deficient mouse, to study in vivo the transcriptional response of foam cells to short- and long-term elevations in plasma cholesterol, induced by feeding mice a western type diet. The microarray data sets from this study have been deposited in NCBI's Gene Expression Omnibus under the accession number GSE70619. Here we provide detailed information on the experimental set-up, on the isolation of RNA by laser capture microdissection, and on the methodology used for RNA amplification and analysis by microarray and quantitative real-time PCR. PMID:27408807

  8. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    PubMed

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.

  9. Transcriptional profiling of foam cells in response to hypercholesterolemia.

    PubMed

    Goo, Young-Hwa; Yechoor, Vijay K; Paul, Antoni

    2016-09-01

    Hypercholesterolemia is a main risk factor for atherosclerosis development. Arterial macrophages, or foam cells, take-up and process lipoprotein particles deposited in arteries, and store much of the cholesterol carried by these particles in their cytoplasm. However, the effects of exposure to different cholesterol levels on foam cells remain poorly understood. Given the remarkable plasticity of macrophages in response to environmental variables, studies on macrophage biology should ideally be performed in the environment where they exert their physiological functions, namely atherosclerotic lesions in the case of foam cells. We used a mouse model of atherosclerosis, the apolipoprotein E-deficient mouse, to study in vivo the transcriptional response of foam cells to short- and long-term elevations in plasma cholesterol, induced by feeding mice a western type diet. The microarray data sets from this study have been deposited in NCBI's Gene Expression Omnibus under the accession number GSE70619. Here we provide detailed information on the experimental set-up, on the isolation of RNA by laser capture microdissection, and on the methodology used for RNA amplification and analysis by microarray and quantitative real-time PCR.

  10. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    PubMed

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam. PMID:22974124

  11. A Sharing Item Response Theory Model for Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Segall, Daniel O.

    2004-01-01

    A new sharing item response theory (SIRT) model is presented that explicitly models the effects of sharing item content between informants and test takers. This model is used to construct adaptive item selection and scoring rules that provide increased precision and reduced score gains in instances where sharing occurs. The adaptive item selection…

  12. Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress.

    PubMed

    Huang, Renhui; Pan, Mingfang; Wan, Cuixiang; Shah, Nagendra P; Tao, Xueying; Wei, Hua

    2016-02-01

    Acid tolerance responses (ATR) in Lactobacillus plantarum ZDY2013 were investigated at physiological and molecular levels. A comparison of composition of cell membrane fatty acids (CMFA) between acid-challenged and unchallenged cells showed that acid adaptation evoked a significantly higher percentage of saturated fatty acids and cyclopropane fatty acids in acid-challenged than in unchallenged cells. In addition, reverse transcription-quantitative PCR analysis in acid-adapted cells at different pH values (ranging from 3.0 to 4.0) indicated that several genes were differently regulated, including those related to proton pumps, amino acid metabolism, sugar metabolism, and class I and class III stress response pathways. Expression of genes involved in fatty acid synthesis and production of alkali was significantly upregulated. Upon exposure to pH 4.5 for 2 h, a higher survival rate (higher viable cell count) of Lactobacillus plantarum ZDY2013 was achieved following an additional challenge to 40 mM hydrogen peroxide for 60 min, but no difference in survival rate of cells was found with further challenge to heat, ethanol, or salt. Therefore, we concluded that the physiological and metabolic changes of acid-treated cells of Lactobacillus plantarum ZDY2013 help the cells resist damage caused by acid, and further initiated global response signals to bring the whole cell into a state of defense to other stress factors, especially hydrogen peroxide.

  13. Using Response Times for Item Selection in Adaptive Testing

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2008-01-01

    Response times on items can be used to improve item selection in adaptive testing provided that a probabilistic model for their distribution is available. In this research, the author used a hierarchical modeling framework with separate first-level models for the responses and response times and a second-level model for the distribution of the…

  14. Dynamic Mechanism for the Transcription Apparatus Orchestrating Reliable Responses to Activators

    NASA Astrophysics Data System (ADS)

    Wang, Yaolai; Liu, Feng; Wang, Wei

    2012-05-01

    The transcription apparatus (TA) is a huge molecular machine. It detects the time-varying concentrations of transcriptional activators and initiates mRNA transcripts at appropriate rates. Based on the general structural organizations of the TA, we propose how the TA dynamically orchestrates transcriptional responses. The activators rapidly cycle in and out of a clamp-like space temporarily formed between the enhancer and the Mediator, with the concentration of activators encoded as their temporal occupancy rate (RTOR) within the space. The entry of activators into this space induces allostery in the Mediator, resulting in a facilitated circumstance for transcriptional reinitiation. The reinitiation rate is much larger than the cycling rate of activators, thereby RTOR guiding the amount of transcripts. Based on this mechanism, stochastic simulations can qualitatively reproduce and interpret multiple features of gene expression, e.g., transcriptional bursting is not mere noise as traditionally believed, but rather the basis of reliable transcriptional responses.

  15. Transcriptional response of yellow perch to changes in ambient metal concentrations-A reciprocal field transplantation experiment.

    PubMed

    Bougas, Bérénice; Normandeau, Eric; Grasset, Julie; Defo, Michel A; Campbell, Peter G C; Couture, Patrice; Bernatchez, Louis

    2016-04-01

    Recent local adaptation to pollution has been evidenced in several organisms inhabiting environments heavily contaminated by metals. Nevertheless, the molecular mechanisms underlying adaptation to high metal concentrations are poorly understood, especially in fishes. Yellow perch (Perca flavescens) populations from lakes in the mining area of Rouyn-Noranda (QC, Canada) have been faced with metal contamination for about 90 years. Here, we examine gene transcription patterns of fish reciprocally transplanted between a reference and a metal-contaminated lake and also fish caged in their native lake. After four weeks, 111 genes were differentially transcribed in metal-naïve fish transferred to the metal-contaminated lake, revealing a plastic response to metal exposure. Genes involved in the citric cycle and beta-oxidation pathways were under-transcribed, suggesting a potential strategy to mitigate the effects of metal stress by reducing energy turnover. However, metal-contaminated fish transplanted to the reference lake did not show any transcriptomic response, indicating a reduced plastic response capability to sudden reduction in metal concentrations. Moreover, the transcription of other genes, especially ones involved in energy metabolism, was affected by caging. Overall, our results highlight environmental stress response mechanisms in yellow perch at the transcriptomic level and support a rapid adaptive response to metal exposure through genetic assimilation. PMID:26867186

  16. Transcriptional response of yellow perch to changes in ambient metal concentrations-A reciprocal field transplantation experiment.

    PubMed

    Bougas, Bérénice; Normandeau, Eric; Grasset, Julie; Defo, Michel A; Campbell, Peter G C; Couture, Patrice; Bernatchez, Louis

    2016-04-01

    Recent local adaptation to pollution has been evidenced in several organisms inhabiting environments heavily contaminated by metals. Nevertheless, the molecular mechanisms underlying adaptation to high metal concentrations are poorly understood, especially in fishes. Yellow perch (Perca flavescens) populations from lakes in the mining area of Rouyn-Noranda (QC, Canada) have been faced with metal contamination for about 90 years. Here, we examine gene transcription patterns of fish reciprocally transplanted between a reference and a metal-contaminated lake and also fish caged in their native lake. After four weeks, 111 genes were differentially transcribed in metal-naïve fish transferred to the metal-contaminated lake, revealing a plastic response to metal exposure. Genes involved in the citric cycle and beta-oxidation pathways were under-transcribed, suggesting a potential strategy to mitigate the effects of metal stress by reducing energy turnover. However, metal-contaminated fish transplanted to the reference lake did not show any transcriptomic response, indicating a reduced plastic response capability to sudden reduction in metal concentrations. Moreover, the transcription of other genes, especially ones involved in energy metabolism, was affected by caging. Overall, our results highlight environmental stress response mechanisms in yellow perch at the transcriptomic level and support a rapid adaptive response to metal exposure through genetic assimilation.

  17. Exposure to stressful environments - Strategy of adaptive responses

    NASA Technical Reports Server (NTRS)

    Farhi, Leon E.

    1991-01-01

    Stresses such as hypoxia, water lack, and heat exposure can produce strains in more than a single organ system, in turn stimulating the body to adapt in multiple ways. Nevertheless, a general strategy of the various adaptive responses emerges when the challenges are divided into three groups: (1) conditions that affect the supply of essential molecules, (2) stresses that prevent the body from regulating properly the output of waste products such as CO2 and heat, and (3) environments that disrupt body transport systems. Problems may arise when there is a conflict between two stresses requiring conflicting adaptive changes. An alternative to adaptation, creation of microenvironment, is often favored by the animal.

  18. Transcriptional Responses of Olive Flounder (Paralichthys olivaceus) to Low Temperature

    PubMed Central

    Hu, Jinwei; You, Feng; Wang, Qian; Weng, Shenda; Liu, Hui; Wang, Lijuan; Zhang, Pei-Jun; Tan, Xungang

    2014-01-01

    The olive flounder (Paralichthys olivaceus) is an economically important flatfish in marine aquaculture with a broad thermal tolerance ranging from 14 to 23°C. Cold-tolerant flounder that can survive during the winter season at a temperature of less than 14°C might facilitate the understanding of the mechanisms underlying the response to cold stress. In this study, the transcriptional response of flounder to cold stress (0.7±0.05°C) was characterized using RNA sequencing. Transcriptome sequencing was performed using the Illumina MiSeq platform for the cold-tolerant (CT) group, which survived under the cold stress; the cold-sensitive (CS) group, which could barely survive at the low temperature; and control group, which was not subjected to cold treatment. In all, 29,021 unigenes were generated. Compared with the unigene expression profile of the control group, 410 unigenes were up-regulated and 255 unigenes were down-regulated in the CT group, whereas 593 unigenes were up-regulated and 289 unigenes were down-regulated in the CS group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that signal transduction, lipid metabolism, digestive system, and signaling molecules and interaction were the most highly enriched pathways for the genes that were differentially expressed under cold stress. All these pathways could be assigned to the following four biological functions for flounder that can survive under cold stress: signal response to cold stress, cell repair/regeneration, energy production, and cell membrane construction and fluidity. PMID:25279944

  19. Transcriptional reprogramming and phenotypic switching associated with the adaptation of Lactobacillus plantarum C2 to plant niches.

    PubMed

    Filannino, Pasquale; Di Cagno, Raffaella; Crecchio, Carmine; De Virgilio, Caterina; De Angelis, Maria; Gobbetti, Marco

    2016-01-01

    Lactobacillus plantarum has been isolated from a large variety of ecological niches, thus highlighting its remarkable environmental adaptability as a generalist. Plant fermentation conditions markedly affect the functional features of L. plantarum strains. We investigated the plant niche-specific traits of L. plantarum through whole-transcriptome and phenotypic microarray profiles. Carrot (CJ) and pineapple (PJ) juices were chosen as model systems, and MRS broth was used as a control. A set of 3,122 genes was expressed, and 21 to 31% of genes were differentially expressed depending on the plant niche and cell physiological state. L. plantarum C2 seemed to specifically respond to plant media conditions. When L. plantarum was cultured in CJ, useful pathways were activated, which were aimed to sense the environment, save energy and adopt alternative routes for NAD(+) regeneration. In PJ the acidic environment caused a transcriptional switching, which was network-linked to an acid tolerance response involving carbohydrate flow, amino acid and protein metabolism, pH homeostasis and membrane fluidity. The most prominent phenotypic dissimilarities observed in cells grown in CJ and PJ were related to carbon and nitrogen metabolism, respectively. Summarising, a snapshot of a carrot and pineapple sensing and adaptive regulation model for L. plantarum C2 was proposed. PMID:27273017

  20. Transcriptional reprogramming and phenotypic switching associated with the adaptation of Lactobacillus plantarum C2 to plant niches

    PubMed Central

    Filannino, Pasquale; Di Cagno, Raffaella; Crecchio, Carmine; De Virgilio, Caterina; De Angelis, Maria; Gobbetti, Marco

    2016-01-01

    Lactobacillus plantarum has been isolated from a large variety of ecological niches, thus highlighting its remarkable environmental adaptability as a generalist. Plant fermentation conditions markedly affect the functional features of L. plantarum strains. We investigated the plant niche-specific traits of L. plantarum through whole-transcriptome and phenotypic microarray profiles. Carrot (CJ) and pineapple (PJ) juices were chosen as model systems, and MRS broth was used as a control. A set of 3,122 genes was expressed, and 21 to 31% of genes were differentially expressed depending on the plant niche and cell physiological state. L. plantarum C2 seemed to specifically respond to plant media conditions. When L. plantarum was cultured in CJ, useful pathways were activated, which were aimed to sense the environment, save energy and adopt alternative routes for NAD+ regeneration. In PJ the acidic environment caused a transcriptional switching, which was network-linked to an acid tolerance response involving carbohydrate flow, amino acid and protein metabolism, pH homeostasis and membrane fluidity. The most prominent phenotypic dissimilarities observed in cells grown in CJ and PJ were related to carbon and nitrogen metabolism, respectively. Summarising, a snapshot of a carrot and pineapple sensing and adaptive regulation model for L. plantarum C2 was proposed. PMID:27273017

  1. MULTIPASS, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways.

    PubMed

    Schmidt, Romy; Schippers, Jos H M; Mieulet, Delphine; Obata, Toshihiro; Fernie, Alisdair R; Guiderdoni, Emmanuel; Mueller-Roeber, Bernd

    2013-10-01

    Growth regulation is an important aspect of plant adaptation during environmental perturbations. Here, the role of MULTIPASS (OsMPS), an R2R3-type MYB transcription factor of rice, was explored. OsMPS is induced by salt stress and expressed in vegetative and reproductive tissues. Over-expression of OsMPS reduces growth under non-stress conditions, while knockdown plants display increased biomass. OsMPS expression is induced by abscisic acid and cytokinin, but is repressed by auxin, gibberellin and brassinolide. Growth retardation caused by OsMPS over-expression is partially restored by auxin application. Expression profiling revealed that OsMPS negatively regulates the expression of EXPANSIN (EXP) and cell-wall biosynthesis as well as phytohormone signaling genes. Furthermore, the expression of OsMPS-dependent genes is regulated by auxin, cytokinin and abscisic acid. Moreover, we show that OsMPS is a direct upstream regulator of OsEXPA4, OsEXPA8, OsEXPB2, OsEXPB3, OsEXPB6 and the endoglucanase genes OsGLU5 and OsGLU14. The multiple responses of OsMPS and its target genes to various hormones suggest an integrative function of OsMPS in the cross-talk between phytohormones and the environment to regulate adaptive growth.

  2. E. coli 6S RNA: a universal transcriptional regulator within the centre of growth adaptation.

    PubMed

    Geissen, René; Steuten, Benedikt; Polen, Tino; Wagner, Rolf

    2010-01-01

    Bacterial 6S RNA has been shown to bind with high affinity to σ(70)-containing RNA polymerase, suppressing σ(70)-dependent transcription during stationary phase, when 6S RNA concentrations are highest. We recently reported a genome-wide transcriptional comparison of wild-type and 6S RNA deficient E. coli strains. Contrary to the expected σ(70)- and stationary phase-specific regulatory effect of 6S RNA it turned out that mRNA levels derived from many alternative sigma factors, including σ(38) or σ(32), were affected during exponential and stationary growth. Among the most noticeably down-regulated genes at stationary growth are ribosomal proteins and factors involved in translation. In addition, a striking number of mRNA levels coding for enzymes involved in the purine metabolism, for transporters and stress regulators are altered both during log- and stationary phase. During the study we discovered a link between 6S RNA and the general stress alarmone ppGpp, which has a higher basal level in cells deficient in 6S RNA. This finding points to a functional interrelation of 6S RNA and the global network of stress and growth adaptation. PMID:20930516

  3. A Horizontally Acquired Transcription Factor Coordinates Salmonella Adaptations to Host Microenvironments

    PubMed Central

    Rogers, Lindsay D.; Sanderson, Kristy L.; Gouw, Joost W.; Hartland, Elizabeth L.; Foster, Leonard J.

    2014-01-01

    ABSTRACT The transcription factors HilA and SsrB activate expression of two type III secretion systems (T3SSs) and cognate effectors that reprogram host cell functions to benefit infecting Salmonella in the host. These transcription factors, the secretion systems, and the effectors are all encoded by horizontally acquired genes. Using quantitative proteomics, we quantified the abundance of 2,149 proteins from hilA or ssrB Salmonella in vitro. Our results suggest that the HilA regulon does not extend significantly beyond proteins known to be involved in direct interactions with intestinal epithelium. On the other hand, SsrB influences the expression of a diverse range of proteins, many of which are ancestral to the acquisition of ssrB. In addition to the known regulon of T3SS-related proteins, we show that, through SodCI and bacterioferritin, SsrB controls resistance to reactive oxygen species and that SsrB down-regulates flagella and motility. This indicates that SsrB-controlled proteins not only redirect host cell membrane traffic to establish a supportive niche within host cells but also have adapted to the chemistry and physical constraints of that niche. PMID:25249283

  4. A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative stress adaptation in mammals, Caenorhabditis elegans and Drosophila melanogaster

    PubMed Central

    Pickering, Andrew M.; Staab, Trisha A.; Tower, John; Sieburth, Derek; Davies, Kelvin J. A.

    2013-01-01

    SUMMARY In mammalian cells, hydrogen peroxide (H2O2)-induced adaptation to oxidative stress is strongly dependent on an Nrf2 transcription factor-mediated increase in the 20S proteasome. Here, we report that both Caenorhabditis elegans nematode worms and Drosophila melanogaster fruit flies are also capable of adapting to oxidative stress with H2O2 pre-treatment. As in mammalian cells, this adaptive response in worms and flies involves an increase in proteolytic activity and increased expression of the 20S proteasome, but not of the 26S proteasome. We also found that the increase in 20S proteasome expression in both worms and flies, as in mammalian cells, is important for the adaptive response, and that it is mediated by the SKN-1 and CNC-C orthologs of the mammalian Nrf2 transcription factor, respectively. These studies demonstrate that stress mechanisms operative in cell culture also apply in disparate intact organisms across a wide biological diversity. PMID:23038734

  5. Post-transcriptional methylation of transfer and ribosomal RNA in stress response pathways, cell differentiation and cancer

    PubMed Central

    Frye, Michaela

    2016-01-01

    Purpose of the review Significant advances have been made in understanding the functional roles of evolutionary conserved chemical modifications in RNA. By focusing on cytosine-5 methylation, we will highlight the latest insight into the mechanisms how post-transcriptional methylation contributes cell fate decisions, with implications for cancer development. Recent findings Several mutations in RNA-modifying enzymes have been identified to cause complex human diseases, and linked post-transcriptional modifications to fundamental cellular processes. Distinct post-transcriptional modifications are implicated in the regulation of stem cell maintenance and cellular differentiation. The dynamic deposition of a methyl mark into non-coding RNAs modulates the adaptive cellular responses to stress and alterations of methylation levels may lead to cancer. PMID:26599292

  6. How Neutrophils Shape Adaptive Immune Responses

    PubMed Central

    Leliefeld, Pieter H. C.; Koenderman, Leo; Pillay, Janesh

    2015-01-01

    Neutrophils are classically considered as cells pivotal for the first line of defense against invading pathogens. In recent years, evidence has accumulated that they are also important in the orchestration of adaptive immunity. Neutrophils rapidly migrate in high numbers to sites of inflammation (e.g., infection, tissue damage, and cancer) and are subsequently able to migrate to draining lymph nodes (LNs). Both at the site of inflammation as well as in the LNs, neutrophils can engage with lymphocytes and antigen-presenting cells. This crosstalk occurs either directly via cell–cell contact or via mediators, such as proteases, cytokines, and radical oxygen species. In this review, we will discuss the current knowledge regarding locations and mechanisms of interaction between neutrophils and lymphocytes in the context of homeostasis and various pathological conditions. In addition, we will highlight the complexity of the microenvironment that is involved in the generation of suppressive or stimulatory neutrophil phenotypes. PMID:26441976

  7. How Neutrophils Shape Adaptive Immune Responses.

    PubMed

    Leliefeld, Pieter H C; Koenderman, Leo; Pillay, Janesh

    2015-01-01

    Neutrophils are classically considered as cells pivotal for the first line of defense against invading pathogens. In recent years, evidence has accumulated that they are also important in the orchestration of adaptive immunity. Neutrophils rapidly migrate in high numbers to sites of inflammation (e.g., infection, tissue damage, and cancer) and are subsequently able to migrate to draining lymph nodes (LNs). Both at the site of inflammation as well as in the LNs, neutrophils can engage with lymphocytes and antigen-presenting cells. This crosstalk occurs either directly via cell-cell contact or via mediators, such as proteases, cytokines, and radical oxygen species. In this review, we will discuss the current knowledge regarding locations and mechanisms of interaction between neutrophils and lymphocytes in the context of homeostasis and various pathological conditions. In addition, we will highlight the complexity of the microenvironment that is involved in the generation of suppressive or stimulatory neutrophil phenotypes. PMID:26441976

  8. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress

    PubMed Central

    Picard, Martin; McManus, Meagan J.; Gray, Jason D.; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K.; Seifert, Erin L.; McEwen, Bruce S.; Wallace, Douglas C.

    2015-01-01

    The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism’s multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic–pituitary–adrenal axis, sympathetic adrenal–medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253

  9. Transcriptional response of Musca domestica larvae to bacterial infection.

    PubMed

    Tang, Ting; Li, Xiang; Yang, Xue; Yu, Xue; Wang, Jianhui; Liu, Fengsong; Huang, Dawei

    2014-01-01

    The house fly Musca domestica, a cosmopolitan dipteran insect, is a significant vector for human and animal bacterial pathogens, but little is known about its immune response to these pathogens. To address this issue, we inoculated the larvae with a mixture of Escherichia coli and Staphylococcus aureus and profiled the transcriptome 6, 24, and 48 h thereafter. Many genes known to controlling innate immunity in insects were induced following infection, including genes encoding pattern recognition proteins (PGRPs), various components of the Toll and IMD signaling pathways and of the proPO-activating and redox systems, and multiple antimicrobial peptides. Interestingly, we also uncovered a large set of novel immune response genes including two broad-spectrum antimicrobial peptides (muscin and domesticin), which might have evolved to adapt to house-fly's unique ecological environments. Finally, genes mediating oxidative phosphorylation were repressed at 48 h post-infection, suggesting disruption of energy homeostasis and mitochondrial function at the late stages of infection. Collectively, our data reveal dynamic changes in gene expression following bacterial infection in the house fly, paving the way for future in-depth analysis of M. domestica's immune system.

  10. Transcriptional responses to thermal acclimation in the eurythermal fish Gillichthys mirabilis (Cooper 1864).

    PubMed

    Logan, Cheryl A; Somero, George N

    2010-09-01

    Thermal acclimation (acclimatization) capacity may be critical for determining how successfully an ectotherm can respond to temperature change, and adaptive shifts in gene expression may be pivotal for mediating these acclimatory responses. Using a cDNA microarray, we examined transcriptional profiles in gill tissue of a highly eurythermal goby fish, Gillichthys mirabilis, following 4 wk of acclimation to 9 degrees C, 19 degrees C, or 28 degrees C. Overall, gill transcriptomes were not strikingly different among acclimation groups. Of the 1,607 unique annotated genes on the array, only 150 of these genes (9%) were significantly different in expression among the three acclimation groups (ANOVA, false discovery rate < 0.05). Principal component analysis revealed that 59% of the variation in expression among these genes was described by an expression profile that is upregulated with increasing acclimation temperature. Gene ontology analysis of these genes identified protein biosynthesis, transport, and several metabolic categories as processes showing the greatest change in expression. Our results suggest that energetic costs of macromolecular turnover and membrane-localized transport rise with acclimation temperature. The upregulation of several classes of stress-related proteins, e.g., heat shock proteins, seen in the species' response to acute thermal stress was not observed in the long-term 28 degrees C-acclimated fish. The transcriptional differences found among the acclimation groups thus may reflect an acclimation process that has largely remedied the effects of acute thermal stress and established a new steady-state condition involving changes in relative energy costs for different processes. This pattern of transcriptional alteration in steady-state acclimated fish may be a signature of eurythermy.

  11. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana.

    PubMed

    Lasky, Jesse R; Des Marais, David L; Lowry, David B; Povolotskaya, Inna; McKay, John K; Richards, James H; Keitt, Timothy H; Juenger, Thomas E

    2014-09-01

    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients.

  12. Natural Variation in Abiotic Stress Responsive Gene Expression and Local Adaptation to Climate in Arabidopsis thaliana

    PubMed Central

    Lasky, Jesse R.; Des Marais, David L.; Lowry, David B.; Povolotskaya, Inna; McKay, John K.; Richards, James H.; Keitt, Timothy H.; Juenger, Thomas E.

    2014-01-01

    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, “eSR”) to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, “eGEI”). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients. PMID:24850899

  13. Incorporating adaptive responses into future projections of coral bleaching.

    PubMed

    Logan, Cheryl A; Dunne, John P; Eakin, C Mark; Donner, Simon D

    2014-01-01

    Climate warming threatens to increase mass coral bleaching events, and several studies have projected the demise of tropical coral reefs this century. However, recent evidence indicates corals may be able to respond to thermal stress though adaptive processes (e.g., genetic adaptation, acclimatization, and symbiont shuffling). How these mechanisms might influence warming-induced bleaching remains largely unknown. This study compared how different adaptive processes could affect coral bleaching projections. We used the latest bias-corrected global sea surface temperature (SST) output from the NOAA/GFDL Earth System Model 2 (ESM2M) for the preindustrial period through 2100 to project coral bleaching trajectories. Initial results showed that, in the absence of adaptive processes, application of a preindustrial climatology to the NOAA Coral Reef Watch bleaching prediction method overpredicts the present-day bleaching frequency. This suggests that corals may have already responded adaptively to some warming over the industrial period. We then modified the prediction method so that the bleaching threshold either permanently increased in response to thermal history (e.g., simulating directional genetic selection) or temporarily increased for 2-10 years in response to a bleaching event (e.g., simulating symbiont shuffling). A bleaching threshold that changes relative to the preceding 60 years of thermal history reduced the frequency of mass bleaching events by 20-80% compared with the 'no adaptive response' prediction model by 2100, depending on the emissions scenario. When both types of adaptive responses were applied, up to 14% more reef cells avoided high-frequency bleaching by 2100. However, temporary increases in bleaching thresholds alone only delayed the occurrence of high-frequency bleaching by ca. 10 years in all but the lowest emissions scenario. Future research should test the rate and limit of different adaptive responses for coral species across latitudes and

  14. Plasticity versus Adaptation of Ambient-Temperature Flowering Response.

    PubMed

    Pajoro, Alice; Verhage, Leonie; Immink, Richard G H

    2016-01-01

    It is challenging to understand how plants adapt flowering time to novel environmental conditions, such as global warming, while maintaining plasticity in response to daily fluctuating temperatures. A recent study shows a role for transposons and highlights the need to investigate how these different responses evolved. PMID:26698930

  15. Plasticity versus Adaptation of Ambient-Temperature Flowering Response.

    PubMed

    Pajoro, Alice; Verhage, Leonie; Immink, Richard G H

    2016-01-01

    It is challenging to understand how plants adapt flowering time to novel environmental conditions, such as global warming, while maintaining plasticity in response to daily fluctuating temperatures. A recent study shows a role for transposons and highlights the need to investigate how these different responses evolved.

  16. Patterns of Transcriptional Response to 1,25-Dihydroxyvitamin D3 and Bacterial Lipopolysaccharide in Primary Human Monocytes

    PubMed Central

    Kariuki, Silvia N.; Blischak, John D.; Nakagome, Shigeki; Witonsky, David B.; Di Rienzo, Anna

    2016-01-01

    The active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D), plays an important immunomodulatory role, regulating transcription of genes in the innate and adaptive immune system. The present study examines patterns of transcriptome-wide response to 1,25D, and the bacterial lipopolysaccharide (LPS) in primary human monocytes, to elucidate pathways underlying the effects of 1,25D on the immune system. Monocytes obtained from healthy individuals of African-American and European-American ancestry were treated with 1,25D, LPS, or both, simultaneously. The addition of 1,25D during stimulation with LPS induced significant upregulation of genes in the antimicrobial and autophagy pathways, and downregulation of proinflammatory response genes compared to LPS treatment alone. A joint Bayesian analysis enabled clustering of genes into patterns of shared transcriptional response across treatments. The biological pathways enriched within these expression patterns highlighted several mechanisms through which 1,25D could exert its immunomodulatory role. Pathways such as mTOR signaling, EIF2 signaling, IL-8 signaling, and Tec Kinase signaling were enriched among genes with opposite transcriptional responses to 1,25D and LPS, respectively, highlighting the important roles of these pathways in mediating the immunomodulatory activity of 1,25D. Furthermore, a subset of genes with evidence of interethnic differences in transcriptional response was also identified, suggesting that in addition to the well-established interethnic variation in circulating levels of vitamin D, the intensity of transcriptional response to 1,25D and LPS also varies between ethnic groups. We propose that dysregulation of the pathways identified in this study could contribute to immune-mediated disease risk. PMID:26976439

  17. MLX Is a Transcriptional Repressor of the Mammalian Golgi Stress Response.

    PubMed

    Taniguchi, Mai; Sasaki-Osugi, Kanae; Oku, Masaya; Sawaguchi, Shogo; Tanakura, Soichiro; Kawai, Yumeto; Wakabayashi, Sadao; Yoshida, Hiderou

    2016-07-30

    The Golgi stress response is a homeostatic mechanism that controls the capacity of the Golgi apparatus in accordance with cellular demands. When the capacity of the Golgi apparatus becomes insufficient (Golgi stress), transcription levels of Golgi-related genes encoding glycosylation enzymes, a Golgi structural protein, and components of vesicular transport are upregulated through a common cis-acting enhancer-the Golgi apparatus stress response element (GASE). Here, we identified the transcription factor MLX as a GASE-binding protein. MLX resides in the cytoplasm and does not bind to GASE in normal growth conditions, whereas MLX translocates into the nucleus and specifically binds to GASE in response to Golgi stress. Suppression of MLX expression increased transcriptional induction of target genes of the Golgi stress response, whereas overexpression of MLX reduced GASE-binding of TFE3 as well as transcriptional induction from GASE, suggesting that MLX is a transcriptional repressor of the mammalian Golgi stress response.

  18. Intracellular recordings of rod responses during dark-adaptation.

    PubMed Central

    Grabowski, S R; Pak, W L

    1975-01-01

    1. Dark-adaptation of rod photoreceptors has been studied in the isolated axolotl (Ambystoma mexicanum) retina by intracellular recordings. Rod responsiveness was greatly reduced immediately after a 30 sec partial bleach, but partially recovered with time in the dark. 2. In parallel spectrophotometric measurements using isolated retinas, regeneration of the rod pigment could not be detected after a 30 sec bleach. 3. During rod dark-adaptation, the response of a rod to a given stimulus increased in amplitude, duration, and rate of rise but did not recover completely to the dark-adapted values. Response latency was lengthened immediately after a bleach but ultimately returned to the dark-adapted level. 4. The time courses of dark-adaptation determined on the basis of the intensity of a stimulus needed to evoke a response having a criterion amplitude, a criterion duration, or a criterion rate of rise were similar. On the other hand changes in latency of the response and magnitude of the saturated amplitude followed different time courses. Change in log threshold was found to be related to change in saturated amplitude by an exponential function during dark-adaptation. 5. After bleaching 10% or less of the rod pigment, the kinetics of both recovery of log threshold and decrease in absorbance at 400 nm (metarhodopsin II+free retinal) could be described by two concurrent first-order processes having similar time constants. However, after bleaching more than 10% of the rod pigment, changes in sensitivity and absorbance did not follow parallel time courses. 6. Metarhodopsin III cannot be solely responsible for setting the axolotl rod sensitivity since rod thresholds decrease monotonically during dark-adaptation whereas meta III concentration reaches a peak 3 min after the bleach and decreases thereafter. PMID:1151778

  19. Exposure to Stressful Environments: Strategy of Adaptive Responses

    NASA Technical Reports Server (NTRS)

    Farhi, Leon E.

    1991-01-01

    Any new natural environment may generate a number of stresses (such as hypoxia, water lack, and heat exposure), each of which can produce strains in more than a single organ system. Every strain may in turn stimulate the body to adapt in multiple ways. Nevertheless, a general strategy of the various adaptive responses emerges when the challenges are divided into three groups. The first category includes conditions that affect the supply of essential molecules, while the second is made up by those stresses that prevent the body from regulating properly the output of waste products, such as CO2 and heat. In both classes, there is a small number of responses, similar in principle, regardless of the specific situation. The third unit is created by environments that disrupt body transport systems. Problems may arise when there is a conflict between two stresses requiring conflicting adaptive changes. An alternative to adaptation, creation of micro-environment, is often favored by the animal.

  20. Transcriptional and antioxidative responses to endogenous polyunsaturated fatty acid accumulation in yeast.

    PubMed

    Andrisic, Luka; Collinson, Emma J; Tehlivets, Oksana; Perak, Eleonora; Zarkovic, Tomislav; Dawes, Ian W; Zarkovic, Neven; Cipak Gasparovic, Ana

    2015-01-01

    Pathophysiology of polyunsaturated fatty acids (PUFAs) is associated with aberrant lipid and oxygen metabolism. In particular, under oxidative stress, PUFAs are prone to autocatalytic degradation via peroxidation, leading to formation of reactive aldehydes with numerous potentially harmful effects. However, the pathological and compensatory mechanisms induced by lipid peroxidation are very complex and not sufficiently understood. In our study, we have used yeast capable of endogenous PUFA synthesis in order to understand the effects triggered by PUFA accumulation on cellular physiology of a eukaryotic organism. The mechanisms induced by PUFA accumulation in S. cerevisiae expressing Hevea brasiliensis Δ12-fatty acid desaturase include down-regulation of components of electron transport chain in mitochondria as well as up-regulation of pentose-phosphate pathway and fatty acid β-oxidation at the transcriptional level. Interestingly, while no changes were observed at the transcriptional level, activities of two important enzymatic antioxidants, catalase and glutathione-S-transferase, were altered in response to PUFA accumulation. Increased intracellular glutathione levels further suggest an endogenous oxidative stress and activation of antioxidative defense mechanisms under conditions of PUFA accumulation. Finally, our data suggest that PUFA in cell membrane causes metabolic changes which in turn lead to adaptation to endogenous oxidative stress. PMID:25280400

  1. Extensive Adaptive Changes Occur in the Transcriptome of Streptococcus agalactiae (Group B Streptococcus) in Response to Incubation with Human Blood

    PubMed Central

    Mereghetti, Laurent; Sitkiewicz, Izabela; Green, Nicole M.; Musser, James M.

    2008-01-01

    To enhance understanding of how Streptococcus agalactiae (group B streptococcus, GBS) adapts during invasive infection, we performed a whole-genome transcriptome analysis after incubation with whole human blood. Global changes occurred in the GBS transcriptome rapidly in response to blood contact following shift from growth in a rich laboratory medium. Most (83%) of the significantly altered transcripts were down-regulated after 30 minutes of incubation in blood, and all functional categories of genes were abundantly represented. We observed complex dynamic changes in the expression of transcriptional regulators and stress response genes that allow GBS to rapidly adapt to blood. The transcripts of relatively few proven virulence genes were up-regulated during the first 90 minutes. However, a key discovery was that genes encoding proteins involved in interaction with the host coagulation/fibrinolysis system and bacterial-host interactions were rapidly up-regulated. Extensive transcript changes also occurred for genes involved in carbohydrate metabolism, including multi-functional proteins and regulators putatively involved in pathogenesis. Finally, we discovered that an incubation temperature closer to that occurring in patients with severe infection and high fever (40°C) induced additional differences in the GBS transcriptome relative to normal body temperature (37°C). Taken together, the data provide extensive new information about transcriptional adaptation of GBS exposed to human blood, a crucial step during GBS pathogenesis in invasive diseases, and identify many new leads for molecular pathogenesis research. PMID:18769548

  2. The Transcriptional Cascade in the Heat Stress Response of Arabidopsis Is Strictly Regulated at the Level of Transcription Factor Expression.

    PubMed

    Ohama, Naohiko; Kusakabe, Kazuya; Mizoi, Junya; Zhao, Huimei; Kidokoro, Satoshi; Koizumi, Shinya; Takahashi, Fuminori; Ishida, Tetsuya; Yanagisawa, Shuichi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2016-01-01

    Group A1 heat shock transcription factors (HsfA1s) are the master regulators of the heat stress response (HSR) in plants. Upon heat shock, HsfA1s trigger a transcriptional cascade that is composed of many transcription factors. Despite the importance of HsfA1s and their downstream transcriptional cascade in the acquisition of thermotolerance in plants, the molecular basis of their activation remains poorly understood. Here, domain analysis of HsfA1d, one of several HsfA1s in Arabidopsis thaliana, demonstrated that the central region of HsfA1d is a key regulatory domain that represses HsfA1d transactivation activity through interaction with HEAT SHOCK PROTEIN70 (HSP70) and HSP90. We designated this region as the temperature-dependent repression (TDR) domain. We found that HSP70 dissociates from HsfA1d in response to heat shock and that the dissociation is likely regulated by an as yet unknown activation mechanism, such as HsfA1d phosphorylation. Overexpression of constitutively active HsfA1d that lacked the TDR domain induced expression of heat shock proteins in the absence of heat stress, thereby conferring potent thermotolerance on the overexpressors. However, transcriptome analysis of the overexpressors demonstrated that the constitutively active HsfA1d could not trigger the complete transcriptional cascade under normal conditions, thereby indicating that other factors are necessary to fully induce the HSR. These complex regulatory mechanisms related to the transcriptional cascade may enable plants to respond resiliently to various heat stress conditions. PMID:26715648

  3. Transcriptional analysis of different stress response genes in Escherichia coli strains subjected to sodium chloride and lactic acid stress.

    PubMed

    Peng, Silvio; Stephan, Roger; Hummerjohann, Jörg; Tasara, Taurai

    2014-12-01

    Survival of Escherichia coli in food depends on its ability to adapt against encountered stress typically involving induction of stress response genes. In this study, the transcriptional induction of selected acid (cadA, speF) and salt (kdpA, proP, proW, otsA, betA) stress response genes was investigated among five E. coli strains, including three Shiga toxin-producing strains, exposed to sodium chloride or lactic acid stress. Transcriptional induction upon lactic acid stress exposure was similar in all but one E. coli strain, which lacked the lysine decarboxylase gene cadA. In response to sodium chloride stress exposure, proW and otsA were similarly induced, while significant differences were observed between the E. coli strains in induction of kdpA, proP and betA. The kdpA and betA genes were significantly induced in four and three strains, respectively, whereas one strain did not induce these genes. The proP gene was only induced in two E. coli strains. Interestingly, transcriptional induction differences in response to sodium chloride stress exposure were associated with survival phenotypes observed for the E. coli strains in cheese as the E. coli strain lacking significant induction in three salt stress response genes investigated also survived poorly compared to the other E. coli strains in cheese.

  4. An adaptive response surface method for crashworthiness optimization

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Yang, Ren-Jye; Zhu, Ping

    2013-11-01

    Response surface-based design optimization has been commonly used for optimizing large-scale design problems in the automotive industry. However, most response surface models are built by a limited number of design points without considering data uncertainty. In addition, the selection of a response surface in the literature is often arbitrary. This article uses a Bayesian metric to systematically select the best available response surface among several candidates in a library while considering data uncertainty. An adaptive, efficient response surface strategy, which minimizes the number of computationally intensive simulations, was developed for design optimization of large-scale complex problems. This methodology was demonstrated by a crashworthiness optimization example.

  5. Common bean (Phaseolus vulgaris L.) PvTIFY orchestrates global changes in transcript profile response to jasmonate and phosphorus deficiency

    PubMed Central

    2013-01-01

    Background TIFY is a large plant-specific transcription factor gene family. A subgroup of TIFY genes named JAZ (Jasmonate-ZIM domain) has been identified as repressors of jasmonate (JA)-regulated transcription in Arabidopsis and other plants. JA signaling is involved in many aspects of plant growth/development and in defense responses to biotic and abiotic stresses. Here, we identified the TIFY genes (designated PvTIFY) from the legume common bean (Phaseolus vulgaris) and functionally characterized PvTIFY10C as a transcriptional regulator. Results Nineteen genes from the PvTIFY gene family were identified through whole-genome sequence analysis. Most of these were induced upon methyl-JA elicitation. We selected PvTIFY10C as a representative JA-responsive PvTIFY gene for further functional analysis. Transcriptome analysis via microarray hybridization using the newly designed Bean Custom Array 90 K was performed on transgenic roots of composite plants with modulated (RNAi-silencing or over-expression) PvTIFY10C gene expression. Data were interpreted using Gene Ontology and MapMan adapted to common bean. Microarray differential gene expression data were validated by real-time qRT-PCR expression analysis. Comparative global gene expression analysis revealed opposite regulatory changes in processes such as RNA and protein regulation, stress responses and metabolism in PvTIFY10C silenced vs. over-expressing roots. These data point to transcript reprogramming (mainly repression) orchestrated by PvTIFY10C. In addition, we found that several PvTIFY genes, as well as genes from the JA biosynthetic pathway, responded to P-deficiency. Relevant P-responsive genes that participate in carbon metabolic pathways, cell wall synthesis, lipid metabolism, transport, DNA, RNA and protein regulation, and signaling were oppositely-regulated in control vs. PvTIFY10C-silenced roots of composite plants under P-stress. These data indicate that PvTIFY10C regulates, directly or indirectly, the

  6. Adaptation responses of crops to climate change

    SciTech Connect

    Seino, Hiroshi

    1993-12-31

    Appreciable global climatic responses to increasing levels of atmospheric CO{sub 2} and other trace gases are expected to take place over the next 50 to 80 years. Increasing atmospheric concentrations of carbon dioxide and other greenhouse gases are producing or will produce changes in the climate of the Earth. In particular, numerous efforts of climate modeling project very substantial increase of surface air temperature. In addition to a general warming of the atmosphere, the possibility of increased summer dryness in the continental mid-latitudes has been suggested on the basis of both historical analogues and some General Circulation Model (GCM) studies. There are three types of effect of climatic change on agriculture: (1) the physiological (direct) effect of elevated levels of atmospheric CO{sub 2} on crop plants and weeds, (2) the effect of changes in parameters of climate (e.g., temperature, precipitation, and solar radiation) on plants and animals, and (3) the effects of climate-related rises in sea-level on land use. The direct effects of elevated CO{sub 2} are on photosynthesis and respiration and thereby on growth, and there are additional effects of increased CO{sub 2} on development, yield quality and stomatal aperture and water use. A doubling of CO{sub 2} increases the instantaneous photosynthetic rate by 30% to 100%, depending on the other environmental conditions, and reduce water requirements of plants by reducing transpiration (per unit leaf area) through reductions in stomatal aperture. A doubling of CO{sub 2} causes partial stomatal closure on both C{sub 3} and C{sub 4} plants (approximately a 40% decrease in aperture). In many experiments this results in reductions of transpiration of about 23% to 46%. However. there is considerable uncertainty over the magnitude of this in natural conditions.

  7. Lactase gene transcription is activated in response to hypoxia in intestinal epithelial cells.

    PubMed

    Lee, So Young; Madan, Ashima; Furuta, Glenn T; Colgan, Sean P; Sibley, Eric

    2002-01-01

    Lactase-phlorizin hydrolase, a brush-border membrane disaccharidase, is a marker of intestinal epithelial cell differentiation and digestive function. The intestine is susceptible to conditions of hypoxia resulting from vascular perfusion deficits. We hypothesized that lactase gene induction may provide a mechanism to efficiently increase nutrient energy substrates during gut hypoxia. These studies sought to characterize expression of the lactase gene in response to hypoxia and to characterize a role for hypoxia-inducible factor (HIF-1) in mediating the hypoxic response. Microarray analysis and confirmatory RT-PCR identified a 4-fold induction of lactase mRNA abundance in intestinal epithelial Caco-2 cells exposed to hypoxia. Lactase promoter activity was similarly induced by hypoxia in cells stably transfected with a 2.0-kb 5' flanking region of the rat lactase gene linked to a reporter gene. Transient cotransfection with HIF-1alpha and beta stimulated lactase promoter activity 2.4- and 3.5-fold under conditions of normoxia and hypoxia, respectively. We conclude that HIF-1 can activate the lactase promoter in intestinal epithelial cells exposed to hypoxia. Induction of lactase transcription may represent an adaptive response to gut hypoxia.

  8. Comparative Transcriptional Analysis of Clinically Relevant Heat Stress Response in Clostridium difficile Strain 630

    PubMed Central

    Ternan, Nigel G.; Jain, Shailesh; Srivastava, Malay; McMullan, Geoff

    2012-01-01

    Clostridium difficile is considered to be one of the most important causes of health care-associated infections worldwide. In order to understand more fully the adaptive response of the organism to stressful conditions, we examined transcriptional changes resulting from a clinically relevant heat stress (41°C versus 37°C) in C. difficile strain 630 and identified 341 differentially expressed genes encompassing multiple cellular functional categories. While the transcriptome was relatively resilient to the applied heat stress, we noted upregulation of classical heat shock genes including the groEL and dnaK operons in addition to other stress-responsive genes. Interestingly, the flagellin gene (fliC) was downregulated, yet genes encoding the cell-wall associated flagellar components were upregulated suggesting that while motility may be reduced, adherence – to mucus or epithelial cells – could be enhanced during infection. We also observed that a number of phage associated genes were downregulated, as were genes associated with the conjugative transposon Tn5397 including a group II intron, thus highlighting a potential decrease in retromobility during heat stress. These data suggest that maintenance of lysogeny and genome wide stabilisation of mobile elements could be a global response to heat stress in this pathogen. PMID:22860125

  9. Adaptation of Musca domestica L. Field Population to Laboratory Breeding Causes Transcriptional Alterations

    PubMed Central

    Højland, Dorte H.; Jensen, Karl-Martin Vagn; Kristensen, Michael

    2014-01-01

    Background The housefly, Musca domestica, has developed resistance to most insecticides applied for its control. Expression of genes coding for detoxification enzymes play a role in the response of the housefly when encountered by a xenobiotic. The highest level of constitutive gene expression of nine P450 genes was previously found in a newly-collected susceptible field population in comparison to three insecticide-resistant laboratory strains and a laboratory reference strain. Results We compared gene expression of five P450s by qPCR as well as global gene expression by RNAseq in the newly-acquired field population (845b) in generation F1, F13 and F29 to test how gene expression changes following laboratory adaption. Four (CYP6A1, CYP6A36, CYP6D3, CYP6G4) of five investigated P450 genes adapted to breeding by decreasing expression. CYP6D1 showed higher female expression in F29 than in F1. For males, about half of the genes accessed in the global gene expression were up-regulated in F13 and F29 in comparison with the F1 population. In females, 60% of the genes were up-regulated in F13 in comparison with F1, while 33% were up-regulated in F29. Forty potential P450 genes were identified. In most cases, P450 gene expression was decreased in F13 flies in comparison with F1. Gene expression then increased from F13 to F29 in males and decreased further in females. Conclusion The global gene expression changes massively during adaptation to laboratory breeding. In general, global expression decreased as a result of laboratory adaption in males, while female expression was not unidirectional. Expression of P450 genes was in general down-regulated as a result of laboratory adaption. Expression of hexamerin, coding for a storage protein was increased, while gene expression of genes coding for amylases decreased. This suggests a major impact of the surrounding environment on gene response to xenobiotics and genetic composition of housefly strains. PMID:24489682

  10. Stimuli-Responsive Mechanically Adaptive Polymer Nanocomposites

    PubMed Central

    Shanmuganathan, Kadhiravan; Capadona, Jeffrey R.; Rowan, Stuart J.; Weder, Christoph

    2010-01-01

    A new series of biomimetic stimuli-responsive nanocomposites, which change their mechanical properties upon exposure to physiological conditions, was prepared and investigated. The materials were produced by introducing percolating networks of cellulose nanofibers or “whiskers” derived from tunicates into poly(vinyl acetate) (PVAc), poly(butyl methacrylate) (PBMA), and blends of these polymers, with the objective of determining how the hydrophobicity and glass-transition temperature (Tg) of the polymer matrix affect the water-induced mechanically dynamic behavior. Below the Tg (~60–70 °C), the incorporation of whiskers (15.1 – 16.5% v/v) modestly increased the tensile storage moduli (E′) of the neat polymers from 0.6 to 3.8 GPa (PBMA) and from 2 to 5.2 GPa (PVAc). The reinforcement was much more dramatic above Tg, where E′ increased from 1.2 to 690 MPa (PVAc) and ~1 to 1.1 GPa (PBMA). Upon exposure to physiological conditions (immersion in artificial cerebrospinal fluid, ACSF, at 37 °C) all materials displayed a decrease of E′. The most significant contrast was seen in PVAc; for example the E′ of a 16.5% v/v PVAc/whisker nanocomposite decreased from 5.2 GPa to 12.7 MPa. Only a modest modulus decrease was measured for PBMA/whisker nanocomposite; here the E′ of a 15.1% v/v PBMA/whisker nanocomposite decreased from 3.8 to 1.2 GPa. A systematic investigation revealed that the magnitude of the mechanical contrast was related to the degree of swelling with ACSF, which was shown to increase with whisker content, temperature, and polarity of the matrix (PVAc > PBMA). The mechanical morphing of the new materials can be described in the framework of both the percolation and Halpin-Kardos models for nanocomposite reinforcement, and is the result of changing interactions among the nanoparticles and plasticization of the matrix upon swelling. PMID:20305827

  11. Transcriptional attenuation in colon carcinoma cells in response to butyrate.

    PubMed

    Daroqui, Maria C; Augenlicht, Leonard H

    2010-10-01

    The short-chain fatty acid sodium butyrate (NaB), produced in the colonic lumen, induces cell cycle arrest, differentiation, and/or apoptosis in colorectal carcinoma cells in vitro, establishing a potential role for NaB in colon cancer prevention. We have previously shown that butyrate decreases cyclin D1 and c-myc expression, each essential for intestinal tumor development, by transcriptional attenuation. Here, we determined that butyrate-induced transcriptional attenuation of the cyclin D1 and c-myc genes in SW837 human colorectal adenocarcinoma cells occurs at ∼100 nucleotides downstream of the transcription start site, with a similar positioning in Caco-2 cells. A concomitant decrease in RNA polymerase II occupancy at the 5' end of each gene was observed. Because transcriptional regulation is associated with chromatin remodeling, we investigated by chromatin immunoprecipitation whether the histone deacetylase inhibitory activity of butyrate altered chromatin structure at the attenuated loci. Although the distributions of histone H3 trimethylated on K4 and K36 along the cyclin D1 and c-myc genes were consistent with current models, butyrate induced only modest decreases in these modifications, with a similar effect on acetylated H3 and a modest increase in histone H3 trimethylated on K27. Finally, transcriptome analysis using novel microarrays showed that butyrate-induced attenuation is widespread throughout the genome, likely independent of transcriptional initiation. We identified 42 loci potentially paused by butyrate and showed that the transcription patterns are gene specific. The biological functions of these loci encompass a number of effects of butyrate on the physiology of intestinal epithelial cells.

  12. Genetic erosion impedes adaptive responses to stressful environments

    PubMed Central

    Bijlsma, R; Loeschcke, Volker

    2012-01-01

    Biodiversity is increasingly subjected to human-induced changes of the environment. To persist, populations continually have to adapt to these often stressful changes including pollution and climate change. Genetic erosion in small populations, owing to fragmentation of natural habitats, is expected to obstruct such adaptive responses: (i) genetic drift will cause a decrease in the level of adaptive genetic variation, thereby limiting evolutionary responses; (ii) inbreeding and the concomitant inbreeding depression will reduce individual fitness and, consequently, the tolerance of populations to environmental stress. Importantly, inbreeding generally increases the sensitivity of a population to stress, thereby increasing the amount of inbreeding depression. As adaptation to stress is most often accompanied by increased mortality (cost of selection), the increase in the ‘cost of inbreeding’ under stress is expected to severely hamper evolutionary adaptive processes. Inbreeding thus plays a pivotal role in this process and is expected to limit the probability of genetically eroded populations to successfully adapt to stressful environmental conditions. Consequently, the dynamics of small fragmented populations may differ considerably from large nonfragmented populations. The resilience of fragmented populations to changing and deteriorating environments is expected to be greatly decreased. Alleviating inbreeding depression, therefore, is crucial to ensure population persistence. PMID:25568035

  13. Beyond Adapting to Climate Change: Embedding Adaptation in Responses to Multiple Threats and Stresses

    SciTech Connect

    Wilbanks, Thomas J; Kates, Dr. Robert W.

    2010-01-01

    Climate change impacts are already being experienced in every region of the United States and every part of the world most severely in Arctic regions and adaptation is needed now. Although climate change adaptation research is still in its infancy, significant adaptation planning in the United States has already begun in a number of localities. This article seeks to broaden the adaptation effort by integrating it with broader frameworks of hazards research, sustainability science, and community and regional resilience. To extend the range of experience, we draw from ongoing case studies in the Southeastern United States and the environmental history of New Orleans to consider the multiple threats and stresses that all communities and regions experience. Embedding climate adaptation in responses to multiple threats and stresses helps us to understand climate change impacts, themselves often products of multiple stresses, to achieve community acceptance of needed adaptations as co-benefits of addressing multiple threats, and to mainstream the process of climate adaptation through the larger envelope of social relationships, communication channels, and broad-based awareness of needs for risk management that accompany community resilience.

  14. Adaptation responses to climate change differ between global megacities

    NASA Astrophysics Data System (ADS)

    Georgeson, Lucien; Maslin, Mark; Poessinouw, Martyn; Howard, Steve

    2016-06-01

    Urban areas are increasingly at risk from climate change, with negative impacts predicted for human health, the economy and ecosystems. These risks require responses from cities to improve their resilience. Policymakers need to understand current adaptation spend to plan comprehensively and effectively. Through the measurement of spend in the newly defined `adaptation economy', we analyse current climate change adaptation efforts in ten megacities. In all cases, the adaptation economy remains a small part of the overall economy, representing a maximum of 0.33% of a city's gross domestic product (here referred to as GDPc). Differences in total spend are significant between cities in developed, emerging and developing countries, ranging from #15 million to #1,600 million. Comparing key subsectors, we demonstrate the differences in adaptation profiles. Developing cities have higher proportional spend on health and agriculture, whereas developed cities have higher spend on energy and water. Spend per capita and percentage of GDPc comparisons more clearly show disparities between cities. Developing country cities spend half the proportion of GDPc and significantly less per capita, suggesting that adaptation spend is driven by wealth rather than the number of vulnerable people. This indicates that current adaptation activities are insufficient in major population centres in developing and emerging economies.

  15. The Pupillary Orienting Response Predicts Adaptive Behavioral Adjustment after Errors

    PubMed Central

    Murphy, Peter R.; van Moort, Marianne L.; Nieuwenhuis, Sander

    2016-01-01

    Reaction time (RT) is commonly observed to slow down after an error. This post-error slowing (PES) has been thought to arise from the strategic adoption of a more cautious response mode following deployment of cognitive control. Recently, an alternative account has suggested that PES results from interference due to an error-evoked orienting response. We investigated whether error-related orienting may in fact be a pre-cursor to adaptive post-error behavioral adjustment when the orienting response resolves before subsequent trial onset. We measured pupil dilation, a prototypical measure of autonomic orienting, during performance of a choice RT task with long inter-stimulus intervals, and found that the trial-by-trial magnitude of the error-evoked pupil response positively predicted both PES magnitude and the likelihood that the following response would be correct. These combined findings suggest that the magnitude of the error-related orienting response predicts an adaptive change of response strategy following errors, and thereby promote a reconciliation of the orienting and adaptive control accounts of PES. PMID:27010472

  16. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    PubMed Central

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  17. ATF1 modulates the heat shock response by regulating the stress-inducible heat shock factor 1 transcription complex.

    PubMed

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko; Nakai, Akira

    2015-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation.

  18. Cloning and characterization of aquaglyceroporin genes from rainbow smelt (Osmerus mordax) and transcript expression in response to cold temperature.

    PubMed

    Hall, Jennifer R; Clow, Kathy A; Rise, Matthew L; Driedzic, William R

    2015-09-01

    Aquaglyceroporins (GLPs) are integral membrane proteins that facilitate passive movement of water, glycerol and urea across cellular membranes. In this study, GLP-encoding genes were characterized in rainbow smelt (Osmerus mordax mordax), an anadromous teleost that accumulates high glycerol and modest urea levels in plasma and tissues as an adaptive cryoprotectant mechanism in sub-zero temperatures. We report the gene and promoter sequences for two aqp10b paralogs (aqp10ba, aqp10bb) that are 82% identical at the predicted amino acid level, and aqp9b. Aqp10bb and aqp9b have the 6 exon structure common to vertebrate GLPs. Aqp10ba has 8 exons; there are two additional exons at the 5' end, and the promoter sequence is different from aqp10bb. Molecular phylogenetic analysis suggests that the aqp10b paralogs arose from a gene duplication event specific to the smelt lineage. Smelt GLP transcripts are ubiquitously expressed; however, aqp10ba transcripts were highest in kidney, aqp10bb transcripts were highest in kidney, intestine, pyloric caeca and brain, and aqp9b transcripts were highest in spleen, liver, red blood cells and kidney. In cold-temperature challenge experiments, plasma glycerol and urea levels were significantly higher in cold- compared to warm-acclimated smelt; however, GLP transcript levels were generally either significantly lower or remained constant. The exception was significantly higher aqp10ba transcript levels in kidney. High aqp10ba transcripts in smelt kidney that increase significantly in response to cold temperature in congruence with plasma urea suggest that this gene duplicate may have evolved to allow the re-absorption of urea to concomitantly conserve nitrogen and prevent freezing. PMID:25981700

  19. Cloning and characterization of aquaglyceroporin genes from rainbow smelt (Osmerus mordax) and transcript expression in response to cold temperature.

    PubMed

    Hall, Jennifer R; Clow, Kathy A; Rise, Matthew L; Driedzic, William R

    2015-09-01

    Aquaglyceroporins (GLPs) are integral membrane proteins that facilitate passive movement of water, glycerol and urea across cellular membranes. In this study, GLP-encoding genes were characterized in rainbow smelt (Osmerus mordax mordax), an anadromous teleost that accumulates high glycerol and modest urea levels in plasma and tissues as an adaptive cryoprotectant mechanism in sub-zero temperatures. We report the gene and promoter sequences for two aqp10b paralogs (aqp10ba, aqp10bb) that are 82% identical at the predicted amino acid level, and aqp9b. Aqp10bb and aqp9b have the 6 exon structure common to vertebrate GLPs. Aqp10ba has 8 exons; there are two additional exons at the 5' end, and the promoter sequence is different from aqp10bb. Molecular phylogenetic analysis suggests that the aqp10b paralogs arose from a gene duplication event specific to the smelt lineage. Smelt GLP transcripts are ubiquitously expressed; however, aqp10ba transcripts were highest in kidney, aqp10bb transcripts were highest in kidney, intestine, pyloric caeca and brain, and aqp9b transcripts were highest in spleen, liver, red blood cells and kidney. In cold-temperature challenge experiments, plasma glycerol and urea levels were significantly higher in cold- compared to warm-acclimated smelt; however, GLP transcript levels were generally either significantly lower or remained constant. The exception was significantly higher aqp10ba transcript levels in kidney. High aqp10ba transcripts in smelt kidney that increase significantly in response to cold temperature in congruence with plasma urea suggest that this gene duplicate may have evolved to allow the re-absorption of urea to concomitantly conserve nitrogen and prevent freezing.

  20. Neural Basis of Adaptive Response Time Adjustment during Saccade Countermanding

    PubMed Central

    Pouget, Pierre; Logan, Gordon D.; Palmeri, Thomas J.; Boucher, Leanne; Paré, Martin; Schall, Jeffrey D.

    2011-01-01

    Humans and macaque monkeys adjust their response time adaptively in stop signal (countermanding) tasks, responding slower after stop-signal trials than after control trials with no stop signal. We investigated the neural mechanism underlying this adaptive response time adjustment in macaque monkeys performing a saccade countermanding task. Earlier research showed that movements are initiated when the random accumulation of presaccadic movement-related activity reaches a fixed threshold. We found that a systematic delay in response time after stop signal trials was accomplished not through a change of threshold, baseline, or accumulation rate, but instead through a change in the time when activity first began to accumulate. The neurons underlying movement initiation have been identified with mathematical accumulator models of response time performance. Therefore, this new result provides surprising new insights into the neural instantiation of stochastic accumulator models and the mechanisms through which executive control can be exerted. PMID:21880921

  1. Transcriptional and functional studies of a Cd(II)/Pb(II)-responsive transcriptional regulator(CmtR) from Acidithiobacillus ferrooxidans ATCC 23270.

    PubMed

    Zheng, Chunli; Li, Yanjun; Nie, Li; Qian, Lin; Cai, Lu; Liu, Jianshe

    2012-08-01

    The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high cadmium (Cd) concentrations. This property is important for its use in biomining processes, where Cd and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of that a Cd(II)/Pb(II)-responsive transcriptional regulator (CmtR) was possibly related to Cd homeostasis. The expression of the CmtR was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cd. The putative A. ferrooxidans Cd resistance determinant was found to be upregulated when this bacterium was exposed to Cd in the range of 15-30 mM. The CmtR from A. ferrooxidans was cloned and expressed in Escherichia coli, the soluble protein was purified by one-step affinity chromatography to apparent homogeneity. UV-Vis spectroscopic measurements showed that the reconstruction CmtR was able to bind Cd(II) forming Cd(II)-CmtR complex in vitro. The sequence alignment and molecular modeling showed that the crucial residues for CmtR binding were likely to be Cys77, Cys112, and Cys121. The results reported here strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cd including the Cd(II)/Pb(II)-responsive transcriptional regulator. PMID:22555344

  2. Adaptive Patterns of Stress Responsivity: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Del Giudice, Marco; Hinnant, J. Benjamin; Ellis, Bruce J.; El-Sheikh, Mona

    2012-01-01

    The adaptive calibration model (ACM) is an evolutionary-developmental theory of individual differences in stress responsivity. In this article, we tested some key predictions of the ACM in a middle childhood sample (N = 256). Measures of autonomic nervous system activity across the sympathetic and parasympathetic branches validated the 4-pattern…

  3. Physiological and proteomic analysis of Lactobacillus casei in response to acid adaptation.

    PubMed

    Wu, Chongde; He, Guiqiang; Zhang, Juan

    2014-10-01

    The aim of this study was to investigate the acid tolerance response (ATR) in Lactobacillus casei by a combined physiological and proteomic analysis. To optimize the ATR induction, cells were acid adapted for 1 h at different pHs, and then acid challenged at pH 3.5. The result showed that acid adaptation improved acid tolerance, and the highest survival was observed in cells adapted at pH 4.5 for 1 h. Analysis of the physiological data showed that the acid-adapted cells exhibited higher intracellular pH (pHi), intracellular NH4 (+) content, and lower inner permeability compared with the cells without adaptation. Proteomic analysis was performed upon acid adaptation to different pHs (pH 6.5 vs. pH 4.5) using two-dimensional electrophoresis. A total of 24 proteins that exhibited at least 1.5-fold differential expression were identified. Four proteins (Pgk, LacD, Hpr, and Galm) involved in carbohydrate catabolism and five classic stress response proteins (GroEL, GrpE, Dnak, Hspl, and LCAZH_2811) were up-regulated after acid adaptation at pH 4.5 for 1 h. Validation of the proteomic data was performed by quantitative RT-PCR, and transcriptional regulation of all selected genes showed a positive correlation with the proteomic patterns of the identified proteins. Results presented in this study may be useful for further elucidating the acid tolerance mechanisms and may help in formulating new strategies to improve the industrial performance of this species during acid stress. PMID:25062817

  4. The human milk oligosaccharide 2'-fucosyllactose augments the adaptive response to extensive intestinal.

    PubMed

    Mezoff, Ethan A; Hawkins, Jennifer A; Ollberding, Nicholas J; Karns, Rebekah; Morrow, Ardythe L; Helmrath, Michael A

    2016-03-15

    Intestinal resection resulting in short bowel syndrome (SBS) carries a heavy burden of long-term morbidity, mortality, and cost of care, which can be attenuated with strategies that improve intestinal adaptation. SBS infants fed human milk, compared with formula, have more rapid intestinal adaptation. We tested the hypothesis that the major noncaloric human milk oligosaccharide 2'-fucosyllactose (2'-FL) contributes to the adaptive response after intestinal resection. Using a previously described murine model of intestinal adaptation, we demonstrated increased weight gain from 21 to 56 days (P < 0.001) and crypt depth at 56 days (P < 0.0095) with 2'-FL supplementation after ileocecal resection. Furthermore, 2'-FL increased small bowel luminal content microbial alpha diversity following resection (P < 0.005) and stimulated a bloom in organisms of the genus Parabacteroides (log2-fold = 4.1, P = 0.035). Finally, transcriptional analysis of the intestine revealed enriched ontologies and pathways related to antimicrobial peptides, metabolism, and energy processing. We conclude that 2'-FL supplementation following ileocecal resection increases weight gain, energy availability through microbial community modulation, and histological changes consistent with improved adaptation.

  5. Previous history of chronic stress changes the transcriptional response to glucocorticoid challenge in the dentate gyrus region of the male rat hippocampus.

    PubMed

    Datson, Nicole A; van den Oever, Jessica M E; Korobko, Oksana B; Magarinos, Ana Maria; de Kloet, E Ronald; McEwen, Bruce S

    2013-09-01

    Chronic stress is a risk factor for several neuropsychiatric diseases, such as depression and psychosis. In response to stress glucocorticoids (GCs) are secreted that bind to mineralocorticoid and glucocorticoid receptors, ligand-activated transcription factors that regulate the transcription of gene networks in the brain necessary for coping with stress, recovery, and adaptation. Chronic stress particularly affects the dentate gyrus (DG) subregion of the hippocampus, causing several functional and morphological changes with consequences for learning and memory, which are likely adaptive but at the same time make DG neurons more vulnerable to subsequent challenges. The aim of this study was to investigate the transcriptional response of DG neurons to a GC challenge in male rats previously exposed to chronic restraint stress (CRS). An intriguing finding of the current study was that having a history of CRS had profound consequences for the subsequent response to acute GC challenge, differentially affecting the expression of several hundreds of genes in the DG compared with challenged nonstressed control animals. This enduring effect of previous stress exposure suggests that epigenetic processes may be involved. In line with this, CRS indeed affected the expression of several genes involved in chromatin structure and epigenetic processes, including Asf1, Ash1l, Hist1h3f, and Tp63. The data presented here indicate that CRS alters the transcriptional response to a subsequent GC injection. We propose that this altered transcriptional potential forms part of the molecular mechanism underlying the enhanced vulnerability for stress-related disorders like depression caused by chronic stress.

  6. The purine repressor of Bacillus subtilis: a novel combination of domains adapted for transcription regulation.

    PubMed

    Sinha, Sangita C; Krahn, Joseph; Shin, Byung Sik; Tomchick, Diana R; Zalkin, Howard; Smith, Janet L

    2003-07-01

    The purine repressor from Bacillus subtilis, PurR, represses transcription from a number of genes with functions in the synthesis, transport, and metabolism of purines. The 2.2-A crystal structure of PurR reveals a two-domain protein organized as a dimer. The larger C-terminal domain belongs to the PRT structural family, in accord with a sequence motif for binding the inducer phosphoribosylpyrophosphate (PRPP). The PRT domain is fused to a smaller N-terminal domain that belongs to the winged-helix family of DNA binding proteins. A positively charged surface on the winged-helix domain likely binds specific DNA sequences in the recognition site. A second positively charged surface surrounds the PRPP site at the opposite end of the PurR dimer. Conserved amino acids in the sequences of PurR homologs in 21 gram-positive bacteria cluster on the proposed recognition surface of the winged-helix domain and around the PRPP binding site at the opposite end of the molecule, supporting a common function of DNA and PRPP binding for all of the proteins. The structure supports a binding mechanism in which extended regions of DNA interact with extensive protein surface. Unlike most PRT proteins, which are phosphoribosyltransferases (PRTases), PurR lacks catalytic activity. This is explained by a tyrosine side chain that blocks the site for a nucleophile cosubstrate in PRTases. Thus, B. subtilis has adapted an enzyme fold to serve as an effector-binding domain and has used it in a novel combination with the DNA-binding winged-helix domain as a repressor of purine genes.

  7. Identification of brassinosteroid-related genes by means of transcript co-response analyses

    PubMed Central

    Lisso, Janina; Steinhauser, Dirk; Altmann, Thomas; Kopka, Joachim; Müssig, Carsten

    2005-01-01

    The comprehensive systems-biology database (CSB.DB) was used to reveal brassinosteroid (BR)-related genes from expression profiles based on co-response analyses. Genes exhibiting simultaneous changes in transcript levels are candidates of common transcriptional regulation. Combining numerous different experiments in data matrices allows ruling out outliers and conditional changes of transcript levels. CSB.DB was queried for transcriptional co-responses with the BR-signalling components BRI1 and BAK1: 301 out of 9694 genes represented in the nasc0271 database showed co-responses with both genes. As expected, these genes comprised pathway-involved genes (e.g. 72 BR-induced genes), because the BRI1 and BAK1 proteins are required for BR-responses. But transcript co-response takes the analysis a step further compared with direct approaches because BR-related non BR-responsive genes were identified. Insights into networks and the functional context of genes are provided, because factors determining expression patterns are reflected in correlations. Our findings demonstrate that transcript co-response analysis presents a valuable resource to uncover common regulatory patterns of genes. Different data matrices in CSB.DB allow examination of specific biological questions. All matrices are publicly available through CSB.DB. This work presents one possible roadmap to use the CSB.DB resources. PMID:15891113

  8. Analysis of global transcriptional responses of chicken following primary and secondary Eimeria acervulina infections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterization of host transcriptional responses during coccidia infections can provide new clues for the development of alternative disease control strategies against these complex protozoan pathogens. In the current study, we compared chicken duodenal transcriptome profiles following primary and...

  9. Arabidopsis transcriptional responses differentiating closely related chemicals (herbicides) and cross-species extrapolation to Brassica

    EPA Science Inventory

    Using whole genome Affymetrix ATH1 GeneChips we characterized the transcriptional response of Arabidopsis thaliana Columbia 24 hours after treatment with five different herbicides. Four of them (chloransulam, imazapyr, primisulfuron, sulfometuron) inhibit acetolactate synthase (A...

  10. Adaptation of extrapulmonary responses to ozone exposure in conscious rats.

    PubMed

    Iwasaki, T; Takahashi, M; Saito, H; Arito, H

    1998-01-01

    The adaptation of cardiovascular and thermoregulatory responses to ozone (O3) was examined by repeated exposure of electrocardiographic (ECG) electrode- and thermistor sensor-implanted rats to O3 for 4 consecutive days (8 hrs/day). Circadian rhythms of heart rate (HR) and abdominal core temperature (Tco) were disrupted on the first and second O3 exposure days in a concentration dependent manner. The 8-hr and 12-hr averaged values of HR and Tco during the exposure period and the dark post-exposure period, respectively, decreased significantly on the first and second exposure days. The decreased HR and Tco recovered to respective control values after small but significant rebound increases on the third and fourth days of O3 exposure. The adaptation of the extrapulmonary responses to O3 exposure was discussed in light of the previously reported time periods required to abolish the spontaneous breathing, biochemical, cellular, and morphological responses to O3.

  11. [Adaptive immune response of people living near chemically hazardous object].

    PubMed

    Petlenko, S V; Ivanov, M B; Goverdovskiĭ, Iu B; Bogdanova, E G; Golubkov, A V

    2011-10-01

    The article presents data dynamics of adaptive immune responses of people for a long time living in adverse environmental conditions caused by pollution of the environment by industrial toxic waste. It is shown that in the process of adaptation to adverse environmental factors, changes in the immune system are in the phase fluctuations of immunological parameters that are accompanied by changes in the structure of immunodependent pathology. Most sensitive to prolonged exposure to toxic compounds are the cellular mechanisms of immune protection. Violations of the structural and quantitative and functional parameters of the link of the immune system are leading to the formation of immunopathological processes.

  12. Infinite impulse response modal filtering in visible adaptive optics

    NASA Astrophysics Data System (ADS)

    Agapito, G.; Arcidiacono, C.; Quirós-Pacheco, F.; Puglisi, A.; Esposito, S.

    2012-07-01

    Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors.

  13. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence.

    PubMed

    de Zélicourt, Axel; Diet, Anouck; Marion, Jessica; Laffont, Carole; Ariel, Federico; Moison, Michaël; Zahaf, Ons; Crespi, Martin; Gruber, Véronique; Frugier, Florian

    2012-04-01

    Legume crops related to the model plant Medicago truncatula can adapt their root architecture to environmental conditions, both by branching and by establishing a symbiosis with rhizobial bacteria to form nitrogen-fixing nodules. Soil salinity is a major abiotic stress affecting plant yield and root growth. Previous transcriptomic analyses identified several transcription factors linked to the M. truncatula response to salt stress in roots, including NAC (NAM/ATAF/CUC)-encoding genes. Over-expression of one of these transcription factors, MtNAC969, induced formation of a shorter and less-branched root system, whereas RNAi-mediated MtNAC969 inactivation promoted lateral root formation. The altered root system of over-expressing plants was able to maintain its growth under high salinity, and roots in which MtNAC969 was down-regulated showed improved growth under salt stress. Accordingly, expression of salt stress markers was decreased or induced in MtNAC969 over-expressing or RNAi roots, respectively, suggesting a repressive function for this transcription factor in the salt-stress response. Expression of MtNAC969 in central symbiotic nodule tissues was induced by nitrate treatment, and antagonistically affected by salt in roots and nodules, similarly to senescence markers. MtNAC969 RNAi nodules accumulated amyloplasts in the nitrogen-fixing zone, and were prematurely senescent. Therefore, the MtNAC969 transcription factor, which is differentially affected by environmental cues in root and nodules, participates in several pathways controlling adaptation of the M. truncatula root system to the environment.

  14. Systems Analysis of Adaptive Responses to MAP Kinase Pathway Blockade in BRAF Mutant Melanoma

    PubMed Central

    Capaldo, Brian J.; Roller, Devin; Axelrod, Mark J.; Koeppel, Alex F.; Petricoin, Emanuel F.; Slingluff, Craig L.; Weber, Michael J.; Mackey, Aaron J.; Gioeli, Daniel; Bekiranov, Stefan

    2015-01-01

    Fifty percent of cutaneous melanomas are driven by activated BRAFV600E, but tumors treated with RAF inhibitors, even when they respond dramatically, rapidly adapt and develop resistance. Thus, there is a pressing need to identify the major mechanisms of intrinsic and adaptive resistance and develop drug combinations that target these resistance mechanisms. In a combinatorial drug screen on a panel of 12 treatment-naïve BRAFV600E mutant melanoma cell lines of varying levels of resistance to mitogen-activated protein kinase (MAPK) pathway inhibition, we identified the combination of PLX4720, a targeted inhibitor of mutated BRaf, and lapatinib, an inhibitor of the ErbB family of receptor tyrosine kinases, as synergistically cytotoxic in the subset of cell lines that displayed the most resistance to PLX4720. To identify potential mechanisms of resistance to PLX4720 treatment and synergy with lapatinib treatment, we performed a multi-platform functional genomics analysis to profile the genome as well as the transcriptional and proteomic responses of these cell lines to treatment with PLX4720. We found modest levels of resistance correlated with the zygosity of the BRAF V600E allele and receptor tyrosine kinase (RTK) mutational status. Layered over base-line resistance was substantial upregulation of many ErbB pathway genes in response to BRaf inhibition, thus generating the vulnerability to combination with lapatinib. The transcriptional responses of ErbB pathway genes are associated with a number of transcription factors, including ETS2 and its associated cofactors that represent a convergent regulatory mechanism conferring synergistic drug susceptibility in the context of diverse mutational landscapes. PMID:26405815

  15. Transcriptomic Analysis Reveals Adaptive Responses of an Enterobacteriaceae Strain LSJC7 to Arsenic Exposure.

    PubMed

    Zhang, Yingjiao; Chen, Songcan; Hao, Xiuli; Su, Jian-Qiang; Xue, Ximei; Yan, Yu; Zhu, Yong-Guan; Ye, Jun

    2016-01-01

    Arsenic (As) resistance determinant ars operon is present in many bacteria and has been demonstrated to enhance As(V) resistance of bacteria. However, whole molecular mechanism adaptations of bacteria in response to As(V) stress remain largely unknown. In this study, transcriptional profiles of Enterobacteriaceae strain LSJC7 responding to As(V) stress were analyzed using RNA-seq and qRT-PCR. As expected, genes involved in As(V) uptake were down-regulated, those involved in As(V) reduction and As(III) efflux were up-regulated, which avoided cellular As accumulation. Reactive oxygen species and nitric oxide (NO) were induced, which caused cellular damages including DNA, protein, and Fe-S cluster damage in LSJC7. The expression of specific genes encoding transcriptional regulators, such as nsrR and soxRS were also induced. NsrR and SoxRS modulated many critical metabolic activities in As(V) stressed LSJC7 cells, including reactive species scavenging and repairing damaged DNA, proteins, and Fe-S clusters. Therefore, besides As uptake, reduction, and efflux; oxidative stress defense and damage repair were the main cellular adaptive responses of LSJC7 to As(V) stress. PMID:27199962

  16. Transcriptomic Analysis Reveals Adaptive Responses of an Enterobacteriaceae Strain LSJC7 to Arsenic Exposure.

    PubMed

    Zhang, Yingjiao; Chen, Songcan; Hao, Xiuli; Su, Jian-Qiang; Xue, Ximei; Yan, Yu; Zhu, Yong-Guan; Ye, Jun

    2016-01-01

    Arsenic (As) resistance determinant ars operon is present in many bacteria and has been demonstrated to enhance As(V) resistance of bacteria. However, whole molecular mechanism adaptations of bacteria in response to As(V) stress remain largely unknown. In this study, transcriptional profiles of Enterobacteriaceae strain LSJC7 responding to As(V) stress were analyzed using RNA-seq and qRT-PCR. As expected, genes involved in As(V) uptake were down-regulated, those involved in As(V) reduction and As(III) efflux were up-regulated, which avoided cellular As accumulation. Reactive oxygen species and nitric oxide (NO) were induced, which caused cellular damages including DNA, protein, and Fe-S cluster damage in LSJC7. The expression of specific genes encoding transcriptional regulators, such as nsrR and soxRS were also induced. NsrR and SoxRS modulated many critical metabolic activities in As(V) stressed LSJC7 cells, including reactive species scavenging and repairing damaged DNA, proteins, and Fe-S clusters. Therefore, besides As uptake, reduction, and efflux; oxidative stress defense and damage repair were the main cellular adaptive responses of LSJC7 to As(V) stress.

  17. Transcriptomic Analysis Reveals Adaptive Responses of an Enterobacteriaceae Strain LSJC7 to Arsenic Exposure

    PubMed Central

    Zhang, Yingjiao; Chen, Songcan; Hao, Xiuli; Su, Jian-Qiang; Xue, Ximei; Yan, Yu; Zhu, Yong-Guan; Ye, Jun

    2016-01-01

    Arsenic (As) resistance determinant ars operon is present in many bacteria and has been demonstrated to enhance As(V) resistance of bacteria. However, whole molecular mechanism adaptations of bacteria in response to As(V) stress remain largely unknown. In this study, transcriptional profiles of Enterobacteriaceae strain LSJC7 responding to As(V) stress were analyzed using RNA-seq and qRT-PCR. As expected, genes involved in As(V) uptake were down-regulated, those involved in As(V) reduction and As(III) efflux were up-regulated, which avoided cellular As accumulation. Reactive oxygen species and nitric oxide (NO) were induced, which caused cellular damages including DNA, protein, and Fe–S cluster damage in LSJC7. The expression of specific genes encoding transcriptional regulators, such as nsrR and soxRS were also induced. NsrR and SoxRS modulated many critical metabolic activities in As(V) stressed LSJC7 cells, including reactive species scavenging and repairing damaged DNA, proteins, and Fe–S clusters. Therefore, besides As uptake, reduction, and efflux; oxidative stress defense and damage repair were the main cellular adaptive responses of LSJC7 to As(V) stress. PMID:27199962

  18. The Evolution and Adaptive Potential of Transcriptional Variation in Sticklebacks—Signatures of Selection and Widespread Heritability

    PubMed Central

    Leder, Erica H.; McCairns, R.J. Scott; Leinonen, Tuomas; Cano, José M.; Viitaniemi, Heidi M.; Nikinmaa, Mikko; Primmer, Craig R.; Merilä, Juha

    2015-01-01

    Evidence implicating differential gene expression as a significant driver of evolutionary novelty continues to accumulate, but our understanding of the underlying sources of variation in expression, both environmental and genetic, is wanting. Heritability in particular may be underestimated when inferred from genetic mapping studies, the predominant “genetical genomics” approach to the study of expression variation. Such uncertainty represents a fundamental limitation to testing for adaptive evolution at the transcriptomic level. By studying the inheritance of expression levels in 10,495 genes (10,527 splice variants) in a threespine stickleback pedigree consisting of 563 individuals, half of which were subjected to a thermal treatment, we show that 74–98% of transcripts exhibit significant additive genetic variance. Dominance variance is also prevalent (41–99% of transcripts), and genetic sources of variation seem to play a more significant role in expression variance in the liver than a key environmental variable, temperature. Among-population comparisons suggest that the majority of differential expression in the liver is likely due to neutral divergence; however, we also show that signatures of directional selection may be more prevalent than those of stabilizing selection. This predominantly aligns with the neutral model of evolution for gene expression but also suggests that natural selection may still act on transcriptional variation in the wild. As genetic variation both within- and among-populations ultimately defines adaptive potential, these results indicate that broad adaptive potential may be found within the transcriptome. PMID:25429004

  19. Transcriptional profile of Paracoccidioides spp. in response to itraconazole

    PubMed Central

    2014-01-01

    Background Itraconazole is currently used to treat paracoccidioidomycosis. The mechanism of action of azoles has been elucidated in some fungi, although little is known regarding its mechanism of action in Paracoccidioides spp. The present work focused on identification of regulated transcripts using representational difference analysis of Paracoccidioides spp. yeast cells treated with itraconazole for 1 and 2 h. Results Paracoccidioides Pb01 genes up-regulated by itraconazole included genes involved in cellular transport, metabolism/energy, transcription, cell rescue, defense and virulence. ERG11, ERG6, ERG3, ERG5 and ERG25 were up-regulated at multiple time points. In vivo infection experiments in mice corroborated the in vitro results. Ergosterol levels and distribution were evaluated in Paracoccidioides Pb18 yeast cells, and the results demonstrate that both factors were changed in the fungus treated with itraconazole. Conclusion To our knowledge, this is the first transcriptional analysis of Paracoccidioides spp. exposed to a triazole drug. Here acetyl seems to be intensively produced from different metabolic pathways to produce ergosterol by the action of ergosterol synthesis related enzymes, which were also affected in other fungi. Among the genes affected, we identified genes in common with other fungi, as well as genes unique to Paracoccidioides Pb01. Those genes could be considered target to new drugs. Voltage-gated Ca2+ alpha subunit (CAV), Tetracycline resistance protein (TETA) and Hemolisyn-iii channel protein (HLYiii) were found only here and a probably involvement with resistence to itraconazole could be investigated in the future. However our findings do not permit inference to current clinical practice. PMID:24690401

  20. Transcriptional responses to teflubenzuron exposure in European lobster (Homarus gammarus).

    PubMed

    Olsvik, Pål A; Samuelsen, Ole B; Agnalt, Ann-Lisbeth; Lunestad, Bjørn T

    2015-10-01

    Increasing use of pharmaceutical drugs to delouse farmed salmon raises environmental concerns. This study describes an experiment carried out to elucidate the molecular mechanisms of the antiparasitic drug teflubenzuron on a non-target species, the European lobster. Juvenile lobsters (10.3±0.9 mm carapace length) were fed two environmentally relevant doses of teflubenzuron, corresponding to 5 and 20% of a standard salmon medication (10 mg/kg day), termed low and high dose in this study. After 114 days of dietary exposure, whole-animal accumulation of teflubenzuron was determined. One claw from each animal was collected for transcriptional analysis. Overall, exposed animals showed low cumulative mortality. Six animals, two from the low dose treatment and four from the high dose, showed exoskeletal abnormalities (claw deformities or stiff walking legs). Residual levels of teflubenzuron in juvenile lobster were 2.7-fold higher in the high dose (282 ng/g) compared to the low dose treatment (103 ng/g). The transcriptional examination showed significant effects of teflubenzuron on 21 out of 39 studied genes. At the transcriptional level, environmentally relevant levels of the anti-salmon lice drug impacted genes linked to drug detoxification (cyp3a, cyp6a2, cyp302a, sult1b1, abcc4), cellular stress (hsp70, hsp90, chh), oxidative stress (cat, gpx3) and DNA damage (p53), as well as molting and exoskeleton regulation (chi3l1, ecr, jhl1, chs1, ctbs, gap65, jhel-ces1) in claw tissue (muscle and exoskeleton). In conclusion, teflubenzuron at sub-lethal levels can affect many molecular mechanisms in European lobster claws.

  1. Transcriptional responses to teflubenzuron exposure in European lobster (Homarus gammarus).

    PubMed

    Olsvik, Pål A; Samuelsen, Ole B; Agnalt, Ann-Lisbeth; Lunestad, Bjørn T

    2015-10-01

    Increasing use of pharmaceutical drugs to delouse farmed salmon raises environmental concerns. This study describes an experiment carried out to elucidate the molecular mechanisms of the antiparasitic drug teflubenzuron on a non-target species, the European lobster. Juvenile lobsters (10.3±0.9 mm carapace length) were fed two environmentally relevant doses of teflubenzuron, corresponding to 5 and 20% of a standard salmon medication (10 mg/kg day), termed low and high dose in this study. After 114 days of dietary exposure, whole-animal accumulation of teflubenzuron was determined. One claw from each animal was collected for transcriptional analysis. Overall, exposed animals showed low cumulative mortality. Six animals, two from the low dose treatment and four from the high dose, showed exoskeletal abnormalities (claw deformities or stiff walking legs). Residual levels of teflubenzuron in juvenile lobster were 2.7-fold higher in the high dose (282 ng/g) compared to the low dose treatment (103 ng/g). The transcriptional examination showed significant effects of teflubenzuron on 21 out of 39 studied genes. At the transcriptional level, environmentally relevant levels of the anti-salmon lice drug impacted genes linked to drug detoxification (cyp3a, cyp6a2, cyp302a, sult1b1, abcc4), cellular stress (hsp70, hsp90, chh), oxidative stress (cat, gpx3) and DNA damage (p53), as well as molting and exoskeleton regulation (chi3l1, ecr, jhl1, chs1, ctbs, gap65, jhel-ces1) in claw tissue (muscle and exoskeleton). In conclusion, teflubenzuron at sub-lethal levels can affect many molecular mechanisms in European lobster claws. PMID:26318677

  2. Adaptive optics and phase diversity imaging for responsive space applications.

    SciTech Connect

    Smith, Mark William; Wick, David Victor

    2004-11-01

    The combination of phase diversity and adaptive optics offers great flexibility. Phase diverse images can be used to diagnose aberrations and then provide feedback control to the optics to correct the aberrations. Alternatively, phase diversity can be used to partially compensate for aberrations during post-detection image processing. The adaptive optic can produce simple defocus or more complex types of phase diversity. This report presents an analysis, based on numerical simulations, of the efficiency of different modes of phase diversity with respect to compensating for specific aberrations during post-processing. It also comments on the efficiency of post-processing versus direct aberration correction. The construction of a bench top optical system that uses a membrane mirror as an active optic is described. The results of characterization tests performed on the bench top optical system are presented. The work described in this report was conducted to explore the use of adaptive optics and phase diversity imaging for responsive space applications.

  3. BYSTANDERS, ADAPTIVE RESPONSES AND GENOMIC INSTABILITY - POTENTIAL MODIFIERS OF LOW-DOSE CANCER RESPONSES.

    EPA Science Inventory

    Bystanders, Adaptive Responses and Genomic Instability -Potential Modifiers ofLow-Dose
    Cancer Responses
    .
    There has been a concerted effort in the field of radiation biology to better understand cellular
    responses that could have an impact on the estin1ation of cancer...

  4. Seed Pubescence and Shape Modulate Adaptive Responses to Fire Cues

    PubMed Central

    Gómez-González, Susana; Ojeda, Fernando; Torres-Morales, Patricio; Palma, Jazmín E.

    2016-01-01

    Post-fire recruitment by seeds is regarded as an adaptive response in fire-prone ecosystems. Nevertheless, little is known about which heritable seed traits are functional to the main signals of fire (heat and smoke), thus having the potential to evolve. Here, we explored whether three seed traits (pubescence, dormancy and shape) and fire regime modulate seed response to fire cues(heat and smoke). As a model study system, we used Helenium aromaticum (Asteraceae), a native annual forb from the Chilean matorral, where fires are anthropogenic. We related seed trait values with fitness responses (germination and survival) after exposure to heat-shock and smoke experimental treatments on seeds from 10 H. aromaticum wild populations. We performed a phenotypic selection experiment to examine the relationship of seed traits with post-treatment fitness within a population (adaptive hypothesis). We then explored whether fire frequency in natural habitats was associated with trait expression across populations, and with germination and survival responses to experimental fire-cues. We found that populations subjected to higher fire frequency had, in average, more rounded and pubescent seeds than populations from rarely burned areas. Populations with more rounded and pubescent seeds were more resistant to 80°C heat-shock and smoke treatments.There was correlated selection on seed traits: pubescent-rounded or glabrouscent-elongated seeds had the highest probability of germinating after heat-shock treatments. Seed pubescence and shape in H. aromaticum are heritable traits that modulate adaptive responses to fire. Our results provide new insights into the process of plant adaptation to fire and highlight the relevance of human-made fires as a strong evolutionary agent in the Anthropocene. PMID:27438267

  5. Seed Pubescence and Shape Modulate Adaptive Responses to Fire Cues.

    PubMed

    Gómez-González, Susana; Ojeda, Fernando; Torres-Morales, Patricio; Palma, Jazmín E

    2016-01-01

    Post-fire recruitment by seeds is regarded as an adaptive response in fire-prone ecosystems. Nevertheless, little is known about which heritable seed traits are functional to the main signals of fire (heat and smoke), thus having the potential to evolve. Here, we explored whether three seed traits (pubescence, dormancy and shape) and fire regime modulate seed response to fire cues(heat and smoke). As a model study system, we used Helenium aromaticum (Asteraceae), a native annual forb from the Chilean matorral, where fires are anthropogenic. We related seed trait values with fitness responses (germination and survival) after exposure to heat-shock and smoke experimental treatments on seeds from 10 H. aromaticum wild populations. We performed a phenotypic selection experiment to examine the relationship of seed traits with post-treatment fitness within a population (adaptive hypothesis). We then explored whether fire frequency in natural habitats was associated with trait expression across populations, and with germination and survival responses to experimental fire-cues. We found that populations subjected to higher fire frequency had, in average, more rounded and pubescent seeds than populations from rarely burned areas. Populations with more rounded and pubescent seeds were more resistant to 80°C heat-shock and smoke treatments.There was correlated selection on seed traits: pubescent-rounded or glabrouscent-elongated seeds had the highest probability of germinating after heat-shock treatments. Seed pubescence and shape in H. aromaticum are heritable traits that modulate adaptive responses to fire. Our results provide new insights into the process of plant adaptation to fire and highlight the relevance of human-made fires as a strong evolutionary agent in the Anthropocene. PMID:27438267

  6. Adaptive thermoregulation in endotherms may alter responses to climate change.

    PubMed

    Boyles, Justin G; Seebacher, Frank; Smit, Ben; McKechnie, Andrew E

    2011-11-01

    Climate change is one of the major issues facing natural populations and thus a focus of recent research has been to predict the responses of organisms to these changes. Models are becoming more complex and now commonly include physiological traits of the organisms of interest. However, endothermic species have received less attention than have ectotherms in these mechanistic models. Further, it is not clear whether responses of endotherms to climate change are modified by variation in thermoregulatory characteristics associated with phenotypic plasticity and/or adaptation to past selective pressures. Here, we review the empirical data on thermal adaptation and acclimatization in endotherms and discuss how those factors may be important in models of responses to climate change. We begin with a discussion of why thermoregulation and thermal sensitivity at high body temperatures should be co-adapted. Importantly, we show that there is, in fact, considerable variation in the ability of endotherms to tolerate high body temperatures and/or high environmental temperatures, but a better understanding of this variation will likely be critical for predicting responses to future climatic scenarios. Next, we discuss why variation in thermoregulatory characteristics should be considered when modeling the effects of climate change on heterothermic endotherms. Finally, we review some biophysical and biochemical factors that will limit adaptation and acclimation in endotherms. We consider both long-term, directional climate change and short-term (but increasingly common) anomalies in climate such as extreme heat waves and we suggest areas of important future research relating to both our basic understanding of endothermic thermoregulation and the responses of endotherms to climate change.

  7. A transcription factor links growth rate and metabolism in the hypersaline adapted archaeon Halobacterium salinarum.

    PubMed

    Todor, Horia; Dulmage, Keely; Gillum, Nicholas; Bain, James R; Muehlbauer, Michael J; Schmid, Amy K

    2014-09-01

    Co-ordinating metabolism and growth is a key challenge for all organisms. Despite fluctuating environments, cells must produce the same metabolic outputs to thrive. The mechanisms underlying this 'growth homeostasis' are known in bacteria and eukaryotes, but remain unexplored in archaea. In the model archaeon Halobacterium salinarum, the transcription factor TrmB regulates enzyme-coding genes in diverse metabolic pathways in response to glucose. However, H. salinarum is thought not to catabolize glucose. To resolve this discrepancy, we demonstrate that TrmB regulates the gluconeogenic production of sugars incorporated into the cell surface S-layer glycoprotein. Additionally, we show that TrmB-DNA binding correlates with instantaneous growth rate, likely because S-layer glycosylation is proportional to growth. This suggests that TrmB transduces a growth rate signal to co-regulated metabolic pathways including amino acid, purine, and cobalamin biosynthesis. Remarkably, the topology and function of this growth homeostatic network appear conserved across domains despite extensive alterations in protein components.

  8. Global transcriptional responses to triclosan exposure in Pseudomonas aeruginosa.

    PubMed

    Chuanchuen, Rungtip; Schweizer, Herbert P

    2012-08-01

    Global gene transcription was assessed by microarray experiments following treatment of a triclosan-susceptible Δ(mexAB-oprM) Pseudomonas aeruginosa strain with subinhibitory concentrations of triclosan. Expression patterns of selected genes were verified by quantitative real-time PCR analysis. The results showed that triclosan exposure had a profound effect on gene expression, affecting 44% of the genes present on the Affymetrix GeneChip(®), with 28% of genes being significantly upregulated and 16% being significantly downregulated in triclosan-treated cells. Genes encoding membrane proteins, transporters of small molecules, aspects of amino acid metabolism, and transcriptional regulators were significantly over-represented among the more strongly upregulated or downregulated genes in triclosan-treated cells. Quorum sensing-regulated genes were among the most strongly downregulated genes, presumably because of decreased acyl-acyl carrier protein pools and the resulting reduced acyl-homoserine lactone molecule synthesis. Surprisingly, iron homeostasis was completed perturbed in triclosan-exposed cells, with iron acquisition systems being strongly downregulated and iron storage systems significantly upregulated, thus mimicking conditions of excess iron. The profound perturbations of cellular metabolism via specific and global mechanisms may explain why triclosan is such a potent antimicrobial in susceptible bacteria.

  9. Adaptive response to cold temperatures in Vibrio vulnificus.

    PubMed

    Bryan, P J; Steffan, R J; DePaola, A; Foster, J W; Bej, A K

    1999-03-01

    The effectiveness of rapid chilling or freezing of oysters to reduce Vibrio vulnificus levels in shellfish may be compromised by product handling procedures that permit cold adaptation. When a V. vulnificus culture was shifted from 35 degrees C to 6 degrees C conditions, it underwent transition to a non-culturable state. Cells adapted to 15 degrees C prior to change to 6 degrees C condition, however, remain viable and culturable. In addition, cultures adapted to 15 degrees C were able to survive better upon freezing at -78 degrees C compared with cultures frozen directly from 35 degrees C. Inhibition of protein synthesis by addition of chloramphenicol in a V. vulnificus culture immediately prior to the exposure to the adaptive temperature eliminated inducible cold tolerance. These results suggest that cold-adaptive "protective" proteins may enhance survival and tolerance at cold temperatures. In addition, removal of iron from the growth medium by adding 2,2'-Dipyridyl prior to cold adaptation decreased the viability by approximately 2 logarithm levels. This suggests that iron plays an important role in adaptation at cold temperatures. Analysis of total cellular proteins on an SDS polyacrylamide gel electrophoresis, labeled with 35S-methionine during exposure at 15 degrees C, showed elevated expressions of a 6-kDa and a 40-kDa protein and decreased expression of an 80-kDa protein. These results suggest that, for V. vulnificus, survival and tolerance at cold temperatures could be due to the expression of cold-adaptive proteins other than previously documented major cold shock proteins such as CS7.4 and CsdA. In this study, for the first time we have shown that exposure to an intermediate cold temperature (15 degrees C) causes a cold adaptive response, helping this pathogen remain in culturable state when exposed to a much colder temperature (6 degrees C). This adaptive nature to cold temperatures could be important for shellfish industry efforts to reduce the risk of

  10. A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation1[OPEN

    PubMed Central

    Pareek, Ashwani; Singla-Pareek, Sneh Lata

    2016-01-01

    Modulation of gene expression is one of the most significant molecular mechanisms of abiotic stress response in plants. Via altering DNA accessibility, histone chaperones affect the transcriptional competence of genomic loci. However, in contrast to other factors affecting chromatin dynamics, the role of plant histone chaperones in abiotic stress response and adaptation remains elusive. Here, we studied the physiological function of a stress-responsive putative rice (Oryza sativa) histone chaperone of the NAP superfamily: OsNAPL6. We show that OsNAPL6 is a nuclear-localized H3/H4 histone chaperone capable of assembling a nucleosome-like structure. Utilizing overexpression and knockdown approaches, we found a positive correlation between OsNAPL6 expression levels and adaptation to multiple abiotic stresses. Results of comparative transcriptome profiling and promoter-recruitment studies indicate that OsNAPL6 functions during stress response via modulation of expression of various genes involved in diverse functions. For instance, we show that OsNAPL6 is recruited to OsRad51 promoter, activating its expression and leading to more efficient DNA repair and abrogation of programmed cell death under salinity and genotoxic stress conditions. These results suggest that the histone chaperone OsNAPL6 may serve a regulatory role in abiotic stress physiology possibly via modulating nucleosome dynamics at various stress-associated genomic loci. Taken together, our findings establish a hitherto unknown link between histone chaperones and abiotic stress response in plants. PMID:27342307

  11. Membrane vesicle production by Chlamydia trachomatis as an adaptive response

    PubMed Central

    Frohlich, Kyla M.; Hua, Ziyu; Quayle, Alison J.; Wang, Jin; Lewis, Maria E.; Chou, Chau-wen; Luo, Miao; Buckner, Lyndsey R.; Shen, Li

    2014-01-01

    Bacteria have evolved specific adaptive responses to cope with changing environments. These adaptations include stress response phenotypes with dynamic modifications of the bacterial cell envelope and generation of membrane vesicles (MVs). The obligate intracellular bacterium, Chlamydia trachomatis, typically has a biphasic lifestyle, but can enter into an altered growth state typified by morphologically aberrant chlamydial forms, termed persistent growth forms, when induced by stress in vitro. How C. trachomatis can adapt to a persistent growth state in host epithelial cells in vivo is not well understood, but is an important question, since it extends the host-bacterial relationship in vitro and has thus been indicated as a survival mechanism in chronic chlamydial infections. Here, we review recent findings on the mechanistic aspects of bacterial adaptation to stress with a focus on how C. trachomatis remodels its envelope, produces MVs, and the potential important consequences of MV production with respect to host-pathogen interactions. Emerging data suggest that the generation of MVs may be an important mechanism for C. trachomatis intracellular survival of stress, and thus may aid in the establishment of a chronic infection in human genital epithelial cells. PMID:24959424

  12. Global relationships in fluctuation and response in adaptive evolution.

    PubMed

    Furusawa, Chikara; Kaneko, Kunihiko

    2015-08-01

    Cells change their internal state to adapt to environmental changes, and evolve in response to the new conditions. The phenotype changes first via adaptation in response to environmental changes, and then through mutational changes in the genomic sequence, followed by selection in evolution. Here, we analysed simulated adaptive evolution using a simple cell model consisting of thousands of intracellular components, and found that the changes in their concentrations by adaptation are proportional to those by evolution across all the components, where the proportion coefficient between the two agreed well with the change in the growth rate of a cell. Furthermore, we demonstrate that the phenotypic variance in concentrations of cellular components due to (non-genetic) noise and to genomic alternations is proportional across all components. This implies that the specific phenotypes that are highly evolvable were already given by non-genetic fluctuations. These global relationships in cellular states were also supported by phenomenological theory based on steady reproduction and transcriptome analysis of laboratory evolution in Escherichia coli. These findings demonstrate that a possible evolutionary change in phenotypic state is highly restricted. Our results provide a basis for the development of a quantitative theory of plasticity and robustness in phenotypic evolution.

  13. Global relationships in fluctuation and response in adaptive evolution

    PubMed Central

    Furusawa, Chikara; Kaneko, Kunihiko

    2015-01-01

    Cells change their internal state to adapt to environmental changes, and evolve in response to the new conditions. The phenotype changes first via adaptation in response to environmental changes, and then through mutational changes in the genomic sequence, followed by selection in evolution. Here, we analysed simulated adaptive evolution using a simple cell model consisting of thousands of intracellular components, and found that the changes in their concentrations by adaptation are proportional to those by evolution across all the components, where the proportion coefficient between the two agreed well with the change in the growth rate of a cell. Furthermore, we demonstrate that the phenotypic variance in concentrations of cellular components due to (non-genetic) noise and to genomic alternations is proportional across all components. This implies that the specific phenotypes that are highly evolvable were already given by non-genetic fluctuations. These global relationships in cellular states were also supported by phenomenological theory based on steady reproduction and transcriptome analysis of laboratory evolution in Escherichia coli. These findings demonstrate that a possible evolutionary change in phenotypic state is highly restricted. Our results provide a basis for the development of a quantitative theory of plasticity and robustness in phenotypic evolution. PMID:26202686

  14. Heat Shock Response in Yeast Involves Changes in Both Transcription Rates and mRNA Stabilities

    PubMed Central

    Castells-Roca, Laia; García-Martínez, José; Moreno, Joaquín; Herrero, Enrique; Bellí, Gemma; Pérez-Ortín, José E.

    2011-01-01

    We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25°C to 37°C. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of the yeast genes and it is particularly important in shaping the mRNA profile of the genes belonging to the environmental stress response. In most cases, changes in transcription rates and mRNA stabilities are homodirectional for both parameters, although some interesting cases of antagonist behavior are found. The statistical analysis of gene targets and sequence motifs within the clusters of genes with similar behaviors shows that both transcriptional and post-transcriptional regulons apparently contribute to the general heat stress response by means of transcriptional factors and RNA binding proteins. PMID:21364882

  15. Landowner response to wildfire risk: Adaptation, mitigation or doing nothing.

    PubMed

    Gan, Jianbang; Jarrett, Adam; Johnson Gaither, Cassandra

    2015-08-15

    Wildfire has brought about ecological, economic, and social consequences that engender human responses in many parts of the world. How to respond to wildfire risk is a common challenge across the globe particularly in areas where lands are controlled by many small private owners because effective wildfire prevention and protection require coordinated efforts of neighboring stakeholders. We explore (i) wildfire response strategies adopted by family forestland owners in the southern United States, one of the most important and productive forest regions in the world, through a landowner survey; and (ii) linkages between the responses of these landowners and their characteristics via multinomial logistic regression. We find that landowners used diverse strategies to respond to wildfire risk, with the most popular responses being "doing nothing" and combined adaptation and mitigation, followed by adaptation or mitigation alone. Landowners who had lost properties to wildfire, lived on their forestlands, had a forest management plan, and were better educated were more likely to proactively respond to wildfire risk. Our results indicate the possibility to enhance the effectiveness of collective action of wildfire risk response by private forestland owners and to coordinate wildfire response with forest conservation and certification efforts. These findings shed new light on engaging private landowners in wildfire management in the study region and beyond.

  16. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha.

    PubMed

    Dolan, Brian P; Fisher, Kathleen M; Colvin, Michael E; Benda, Susan E; Peterson, James T; Kent, Michael L; Schreck, Carl B

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  17. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha.

    PubMed

    Dolan, Brian P; Fisher, Kathleen M; Colvin, Michael E; Benda, Susan E; Peterson, James T; Kent, Michael L; Schreck, Carl B

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning. PMID:26581919

  18. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  19. Constraint to adaptive evolution in response to global warming.

    PubMed

    Etterson, J R; Shaw, R G

    2001-10-01

    We characterized the genetic architecture of three populations of a native North American prairie plant in field conditions that simulate the warmer and more arid climates predicted by global climate models. Despite genetic variance for traits under selection, among-trait genetic correlations that are antagonistic to the direction of selection limit adaptive evolution within these populations. Predicted rates of evolutionary response are much slower than the predicted rate of climate change.

  20. The transcription factor, the Cdk, its cyclin and their regulator: directing the transcriptional response to a nutritional signal.

    PubMed Central

    Hirst, K; Fisher, F; McAndrew, P C; Goding, C R

    1994-01-01

    The Pho80-Pho85 cyclin-cdk complex prevents transcription of PHO5 by inhibiting the ability of the basic-helix-loop-helix transcription factor Pho4 to activate transcription in response to high phosphate conditions. In low phosphate the Pho80-Pho85 complex is inactivated and Pho4 is then able to activate the acid phosphatase gene PHO5. We show here that Pho4 and the homeobox protein Pho2 interact in vivo and act cooperatively to activate the PHO5 UAS, with interaction being regulated by the phosphate switch. In addition, we also demonstrate that an additional factor, Pho81, interacts in high phosphate with both the Pho80 cyclin and with Pho4. In low phosphate, Pho80 and Pho81 dissociate from Pho4, but retain the ability to interact with each other. The evidence presented here supports the idea that Pho81 acts as a phosphate-sensitive trigger that regulates the ability of the Pho80-Pho85 cyclin-cdk complex to bind Pho4, while DNA binding by Pho4 is dependent on the phosphate-sensitive interaction with Pho2. Images PMID:7957107

  1. Transcriptional control and hormonal response of thermogenic fat

    PubMed Central

    Emont, Margo P.; Yu, Hui; Wu, Jun

    2015-01-01

    Obesity and its associated metabolic diseases present a major public health problem around the world. The discovery that thermogenic fat is active in adult humans has sparked a renewal of interest in the study of its development and function and in the feasibility of using modulators of thermogenesis to work against obesity. In recent years it has been shown that there are at least two distinct types of thermogenic fat cells; brown and beige fat. In this review we discuss the transcriptional mediators of thermogenesis and the signaling molecules that regulate thermogenic cells. We also review the effects of thermogenic fat activation on whole body metabolic parameters and evaluate the increasing evidence that activating thermogenesis in humans can be a viable method of ameliorating obesity. In these discussions we highlight targets that can potentially be stimulated or modified in anti-obesity treatments. PMID:25804606

  2. Transcriptional profile of immediate response to ionizing radiation exposure.

    PubMed

    Rouchka, Eric C; Flight, Robert M; Fasciotto, Brigitte H; Estrada, Rosendo; Eaton, John W; Patibandla, Phani K; Waigel, Sabine J; Li, Dazhuo; Kirtley, John K; Sethu, Palaniappan; Keynton, Robert S

    2016-03-01

    Astronauts participating in long duration space missions are likely to be exposed to ionizing radiation associated with highly energetic and charged heavy particles. Previously proposed gene biomarkers for radiation exposure include phosphorylated H2A Histone Family, Member X (γH2AX), Tumor Protein 53 (TP53), and Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A). However, transcripts of these genes may not be the most suitable biomarkers for radiation exposure due to a lack of sensitivity or specificity. As part of a larger effort to develop lab-on-a-chip methods for detecting radiation exposure events using blood samples, we designed a dose-course microarray study in order to determine coding and non-coding RNA transcripts undergoing differential expression immediately following radiation exposure. The main goal was to elicit a small set of sensitive and specific radiation exposure biomarkers at low, medium, and high levels of ionizing radiation exposure. Four separate levels of radiation were considered: 0 Gray (Gy) control; 0.3 Gy; 1.5 Gy; and 3.0 Gy with four replicates at each radiation level. This report includes raw gene expression data files from the resulting microarray experiments from all three radiation levels ranging from a lower, typical exposure than an astronaut might see (0.3 Gy) to high, potentially lethal, levels of radiation (3.0 Gy). The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE64375.

  3. Transcriptional profile of immediate response to ionizing radiation exposure.

    PubMed

    Rouchka, Eric C; Flight, Robert M; Fasciotto, Brigitte H; Estrada, Rosendo; Eaton, John W; Patibandla, Phani K; Waigel, Sabine J; Li, Dazhuo; Kirtley, John K; Sethu, Palaniappan; Keynton, Robert S

    2016-03-01

    Astronauts participating in long duration space missions are likely to be exposed to ionizing radiation associated with highly energetic and charged heavy particles. Previously proposed gene biomarkers for radiation exposure include phosphorylated H2A Histone Family, Member X (γH2AX), Tumor Protein 53 (TP53), and Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A). However, transcripts of these genes may not be the most suitable biomarkers for radiation exposure due to a lack of sensitivity or specificity. As part of a larger effort to develop lab-on-a-chip methods for detecting radiation exposure events using blood samples, we designed a dose-course microarray study in order to determine coding and non-coding RNA transcripts undergoing differential expression immediately following radiation exposure. The main goal was to elicit a small set of sensitive and specific radiation exposure biomarkers at low, medium, and high levels of ionizing radiation exposure. Four separate levels of radiation were considered: 0 Gray (Gy) control; 0.3 Gy; 1.5 Gy; and 3.0 Gy with four replicates at each radiation level. This report includes raw gene expression data files from the resulting microarray experiments from all three radiation levels ranging from a lower, typical exposure than an astronaut might see (0.3 Gy) to high, potentially lethal, levels of radiation (3.0 Gy). The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE64375. PMID:26981369

  4. Transcriptional profile of immediate response to ionizing radiation exposure

    PubMed Central

    Rouchka, Eric C.; Flight, Robert M.; Fasciotto, Brigitte H.; Estrada, Rosendo; Eaton, John W.; Patibandla, Phani K.; Waigel, Sabine J.; Li, Dazhuo; Kirtley, John K.; Sethu, Palaniappan; Keynton, Robert S.

    2015-01-01

    Astronauts participating in long duration space missions are likely to be exposed to ionizing radiation associated with highly energetic and charged heavy particles. Previously proposed gene biomarkers for radiation exposure include phosphorylated H2A Histone Family, Member X (γH2AX), Tumor Protein 53 (TP53), and Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A). However, transcripts of these genes may not be the most suitable biomarkers for radiation exposure due to a lack of sensitivity or specificity. As part of a larger effort to develop lab-on-a-chip methods for detecting radiation exposure events using blood samples, we designed a dose–course microarray study in order to determine coding and non-coding RNA transcripts undergoing differential expression immediately following radiation exposure. The main goal was to elicit a small set of sensitive and specific radiation exposure biomarkers at low, medium, and high levels of ionizing radiation exposure. Four separate levels of radiation were considered: 0 Gray (Gy) control; 0.3 Gy; 1.5 Gy; and 3.0 Gy with four replicates at each radiation level. This report includes raw gene expression data files from the resulting microarray experiments from all three radiation levels ranging from a lower, typical exposure than an astronaut might see (0.3 Gy) to high, potentially lethal, levels of radiation (3.0 Gy). The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE64375. PMID:26981369

  5. Evaluation of the Adaptive Immune Response to Respiratory Syncytial Virus.

    PubMed

    Knudson, Cory J; Weiss, Kayla A; Stoley, Megan E; Varga, Steven M

    2016-01-01

    Evaluation of the adaptive immune response is critical to the advancement of our basic knowledge and understanding of respiratory syncytial virus (RSV). The cellular composition in the lung following RSV infection is often evaluated using flow cytometry. However, a limitation of this approach has been the inability to readily distinguish cells that are within the lung parenchyma from cells that remain in the pulmonary blood vessels. Herein, we detail a procedure to evaluate the adaptive immune response via flow cytometric analysis that incorporates an in vivo intravascular staining technique. This technique allows for discrimination of immune cells in the lung tissue from cells that remain in the pulmonary vasculature following perfusion. Therefore at any given time point following an RSV infection, the leukocytic populations in the lung parenchyma can be quantified and phenotypically assessed with high resolution. While we focus on the T lymphocyte response in the lung, this technique can be readily adapted to examine various leukocytic cell types in the lung following RSV infection. PMID:27464699

  6. Adaptive response of pulmonary arterial smooth muscle to length change.

    PubMed

    Syyong, Harley; Cheung, Christine; Solomon, Dennis; Seow, Chun Y; Kuo, Kuo H

    2008-04-01

    Hypervasoconstriction is associated with pulmonary hypertension and dysfunction of the pulmonary arterial smooth muscle (PASM) is implicated. However, relatively little is known about the mechanical properties of PASM. Recent advances in our understanding of plastic adaptation in smooth muscle may shed light on the disease mechanism. In this study, we determined whether PASM is capable of adapting to length changes (especially shortening) and regain its contractile force. We examined the time course of length adaptation in PASM in response to step changes in length and to length oscillations mimicking the periodic stretches due to pulsatile arterial pressure. Rings from sheep pulmonary artery were mounted on myograph and stimulated using electrical field stimulation (12-16 s, 20 V, 60 Hz). The length-force relationship was determined at L(ref) to 0.6 L(ref), where L(ref) was a reference length close to the in situ length of PASM. The response to length oscillations was determined at L(ref), after the muscle was subjected to length oscillation of various amplitudes for 200 s at 1.5 Hz. Release (or stretch) of resting PASM from L(ref) to 0.6 (and vice versa) was followed by a significant force recovery (73 and 63%, respectively), characteristic of length adaptation. All recoveries of force followed a monoexponential time course. Length oscillations with amplitudes ranging from 5 to 20% L(ref) caused no significant change in force generation in subsequent contractions. It is concluded that, like many smooth muscles, PASM possesses substantial capability to adapt to changes in length. Under pathological conditions, this could contribute to hypervasoconstriction in pulmonary hypertension. PMID:18218913

  7. Rpb1 sumoylation in response to UV radiation or transcriptional impairment in yeast.

    PubMed

    Chen, Xuefeng; Ding, Baojin; LeJeune, Danielle; Ruggiero, Christine; Li, Shisheng

    2009-01-01

    Covalent modifications of proteins by ubiquitin and the Small Ubiquitin-like MOdifier (SUMO) have been revealed to be involved in a plethora of cellular processes, including transcription, DNA repair and DNA damage responses. It has been well known that in response to DNA damage that blocks transcription elongation, Rpb1, the largest subunit of RNA polymerase II (Pol II), is ubiquitylated and subsequently degraded in mammalian and yeast cells. However, it is still an enigma regarding how Pol II responds to damaged DNA and conveys signal(s) for DNA damage-related cellular processes. We found that Rpb1 is also sumoylated in yeast cells upon UV radiation or impairment of transcription elongation, and this modification is independent of DNA damage checkpoint activation. Ubc9, an E2 SUMO conjugase, and Siz1, an E3 SUMO ligase, play important roles in Rpb1 sumoylation. K1487, which is located in the acidic linker region between the C-terminal domain and the globular domain of Rpb1, is the major sumoylation site. Rpb1 sumoylation is not affected by its ubiquitylation, and vice versa, indicating that the two processes do not crosstalk. Abolishment of Rpb1 sumoylation at K1487 does not affect transcription elongation or transcription coupled repair (TCR) of UV-induced DNA damage. However, deficiency in TCR enhances UV-induced Rpb1 sumoylation, presumably due to the persistence of transcription-blocking DNA lesions in the transcribed strand of a gene. Remarkably, abolishment of Rpb1 sumoylation at K1487 causes enhanced and prolonged UV-induced phosphorylation of Rad53, especially in TCR-deficient cells, suggesting that the sumoylation plays a role in restraining the DNA damage checkpoint response caused by transcription-blocking lesions. Our results demonstrate a novel covalent modification of Rpb1 in response to UV induced DNA damage or transcriptional impairment, and unravel an important link between the modification and the DNA damage checkpoint response. PMID:19384408

  8. Transcriptional responses to fluctuating thermal regimes underpinning differences in survival in the solitary bee Megachile rotundata.

    PubMed

    Torson, Alex S; Yocum, George D; Rinehart, Joseph P; Kemp, William P; Bowsher, Julia H

    2015-04-01

    The transcriptional responses of insects to long-term, ecologically relevant temperature stress are poorly understood. Long-term exposure to low temperatures, commonly referred to as chilling, can lead to physiological effects collectively known as chill injury. Periodically increasing temperatures during long-term chilling has been shown to increase survival in many insects. However, the transcripts responsible for this increase in survival have never been characterized. Here, we present the first transcriptome-level analysis of increased longevity under fluctuating temperatures during chilling. Overwintering post-diapause quiescent alfalfa leafcutting bees (Megachile rotundata) were exposed to a constant temperature of 6°C, or 6°C with a daily fluctuation to 20°C. RNA was collected at two different time points, before and after mortality rates began to diverge between temperature treatments. Expression analysis identified differentially regulated transcripts between pairwise comparisons of both treatments and time points. Transcripts functioning in ion homeostasis, metabolic pathways and oxidative stress response were up-regulated in individuals exposed to periodic temperature fluctuations during chilling. The differential expression of these transcripts provides support for the hypotheses that fluctuating temperatures protect against chill injury by reducing oxidative stress and returning ion concentrations and metabolic function to more favorable levels. Additionally, exposure to fluctuating temperatures leads to increased expression of transcripts functioning in the immune response and neurogenesis, providing evidence for additional mechanisms associated with increased survival during chilling in M. rotundata. PMID:25657206

  9. Overlapping Podospora anserina Transcriptional Responses to Bacterial and Fungal Non Self Indicate a Multilayered Innate Immune Response

    PubMed Central

    Lamacchia, Marina; Dyrka, Witold; Breton, Annick; Saupe, Sven J.; Paoletti, Mathieu

    2016-01-01

    Recognition and response to non self is essential to development and survival of all organisms. It can occur between individuals of the same species or between different organisms. Fungi are established models for conspecific non self recognition in the form of vegetative incompatibility (VI), a genetically controlled process initiating a programmed cell death (PCD) leading to the rejection of a fusion cell between genetically different isolates of the same species. In Podospora anserina VI is controlled by members of the hnwd gene family encoding for proteins analogous to NOD Like Receptors (NLR) immune receptors in eukaryotes. It was hypothesized that the hnwd controlled VI reaction was derived from the fungal innate immune response. Here we analyze the P. anserina transcriptional responses to two bacterial species, Serratia fonticola to which P. anserina survives and S. marcescens to which P. anserina succumbs, and compare these to the transcriptional response induced under VI conditions. Transcriptional responses to both bacteria largely overlap, however the number of genes regulated and magnitude of regulation is more important when P. anserina survives. Transcriptional responses to bacteria also overlap with the VI reaction for both up or down regulated gene sets. Genes up regulated tend to be clustered in the genome, and display limited phylogenetic distribution. In all three responses we observed genes related to autophagy to be up-regulated. Autophagy contributes to the fungal survival in all three conditions. Genes encoding for secondary metabolites and histidine kinase signaling are also up regulated in all three conditions. Transcriptional responses also display differences. Genes involved in response to oxidative stress, or encoding small secreted proteins are essentially expressed in response to bacteria, while genes encoding NLR proteins are expressed during VI. Most functions encoded in response to bacteria favor survival of the fungus while most

  10. Mechanical Strain Causes Adaptive Change in Bronchial Fibroblasts Enhancing Profibrotic and Inflammatory Responses

    PubMed Central

    Manuyakorn, Wiparat; Smart, David E.; Noto, Antonio; Bucchieri, Fabio; Haitchi, Hans Michael; Holgate, Stephen T.; Howarth, Peter H.; Davies, Donna E.

    2016-01-01

    Asthma is characterized by periodic episodes of bronchoconstriction and reversible airway obstruction; these symptoms are attributable to a number of factors including increased mass and reactivity of bronchial smooth muscle and extracellular matrix (ECM) in asthmatic airways. Literature has suggested changes in cell responses and signaling can be elicited via modulation of mechanical stress acting upon them, potentially affecting the microenvironment of the cell. In this study, we hypothesized that mechanical strain directly affects the (myo)fibroblast phenotype in asthma. Therefore, we characterized responses of bronchial fibroblasts, from 6 normal and 11 asthmatic non-smoking volunteers, exposed to cyclical mechanical strain using flexible silastic membranes. Samples were analyzed for proteoglycans, α-smooth muscle actin (αSMA), collagens I and III, matrix metalloproteinase (MMP) 2 & 9 and interleukin-8 (IL-8) by qRT-PCR, Western blot, zymography and ELISA. Mechanical strain caused a decrease in αSMA mRNA but no change in either αSMA protein or proteoglycan expression. In contrast the inflammatory mediator IL-8, MMPs and interstitial collagens were increased at both the transcriptional and protein level. The results demonstrate an adaptive response of bronchial fibroblasts to mechanical strain, irrespective of donor. The adaptation involves cytoskeletal rearrangement, matrix remodelling and inflammatory cytokine release. These results suggest that mechanical strain could contribute to disease progression in asthma by promoting inflammation and remodelling responses. PMID:27101406

  11. Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves

    PubMed Central

    Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco

    2015-01-01

    Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequenced by Illumina HiSeq 1000 paired-end technique. We also assembled a new olive transcriptome comprising 157,799 unigenes and found 6,309 unigenes differentially expressed in response to cold. Three types of response that led to cold acclimation were found: short-term transient response, early long-term response, and late long-term response. These subsets of unigenes were related to different biological processes. Early responses involved many cold-stress-responsive genes coding for, among many other things, C-repeat binding factor transcription factors, fatty acid desaturases, wax synthesis, and oligosaccharide metabolism. After long-term exposure to cold, a large proportion of gene down-regulation was found, including photosynthesis and plant growth genes. Up-regulated genes after long-term cold exposure were related to organelle fusion, nucleus organization, and DNA integration, including retrotransposons. PMID:25324298

  12. Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves.

    PubMed

    Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco

    2015-02-01

    Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequenced by Illumina HiSeq 1000 paired-end technique. We also assembled a new olive transcriptome comprising 157,799 unigenes and found 6,309 unigenes differentially expressed in response to cold. Three types of response that led to cold acclimation were found: short-term transient response, early long-term response, and late long-term response. These subsets of unigenes were related to different biological processes. Early responses involved many cold-stress-responsive genes coding for, among many other things, C-repeat binding factor transcription factors, fatty acid desaturases, wax synthesis, and oligosaccharide metabolism. After long-term exposure to cold, a large proportion of gene down-regulation was found, including photosynthesis and plant growth genes. Up-regulated genes after long-term cold exposure were related to organelle fusion, nucleus organization, and DNA integration, including retrotransposons.

  13. Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves.

    PubMed

    Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco

    2015-02-01

    Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequenced by Illumina HiSeq 1000 paired-end technique. We also assembled a new olive transcriptome comprising 157,799 unigenes and found 6,309 unigenes differentially expressed in response to cold. Three types of response that led to cold acclimation were found: short-term transient response, early long-term response, and late long-term response. These subsets of unigenes were related to different biological processes. Early responses involved many cold-stress-responsive genes coding for, among many other things, C-repeat binding factor transcription factors, fatty acid desaturases, wax synthesis, and oligosaccharide metabolism. After long-term exposure to cold, a large proportion of gene down-regulation was found, including photosynthesis and plant growth genes. Up-regulated genes after long-term cold exposure were related to organelle fusion, nucleus organization, and DNA integration, including retrotransposons. PMID:25324298

  14. Genome Wide Binding Site Analysis Reveals Transcriptional Coactivation of Cytokinin-Responsive Genes by DELLA Proteins

    PubMed Central

    Marín-de la Rosa, Nora; Pfeiffer, Anne; Hill, Kristine; Locascio, Antonella; Bhalerao, Rishikesh P.; Miskolczi, Pal; Grønlund, Anne L.; Wanchoo-Kohli, Aakriti; Thomas, Stephen G.; Bennett, Malcolm J.; Lohmann, Jan U.; Blázquez, Miguel A.; Alabadí, David

    2015-01-01

    The ability of plants to provide a plastic response to environmental cues relies on the connectivity between signaling pathways. DELLA proteins act as hubs that relay environmental information to the multiple transcriptional circuits that control growth and development through physical interaction with transcription factors from different families. We have analyzed the presence of one DELLA protein at the Arabidopsis genome by chromatin immunoprecipitation coupled to large-scale sequencing and we find that it binds at the promoters of multiple genes. Enrichment analysis shows a strong preference for cis elements recognized by specific transcription factor families. In particular, we demonstrate that DELLA proteins are recruited by type-B ARABIDOPSIS RESPONSE REGULATORS (ARR) to the promoters of cytokinin-regulated genes, where they act as transcriptional co-activators. The biological relevance of this mechanism is underpinned by the necessity of simultaneous presence of DELLAs and ARRs to restrict root meristem growth and to promote photomorphogenesis. PMID:26134422

  15. Conserved enhancer and silencer elements responsible for differential Adh transcription in Drosophila cell lines.

    PubMed Central

    Ayer, S; Benyajati, C

    1990-01-01

    The distal promoter of Adh is differentially expressed in Drosophila tissue culture cell lines. After transfection with an exogenous Adh gene, there was a specific increase in distal alcohol dehydrogenase (ADH) transcripts in ADH-expressing (ADH+) cells above the levels observed in transfected ADH-nonexpressing (ADH-) cells. We used deletion mutations and a comparative transient-expression assay to identify the cis-acting elements responsible for enhanced Adh distal transcription in ADH+ cells. DNA sequences controlling high levels of distal transcription were localized to a 15-base-pair (bp) region nearly 500 bp upstream of the distal RNA start site. In addition, a 61-bp negative cis-acting element was found upstream from and adjacent to the enhancer. When this silencer element was deleted, distal transcription increased only in the ADH+ cell line. These distant upstream elements must interact with the promoter elements, the Adf-1-binding site and the TATA box, as they only influenced transcription when at least one of these two positive distal promoter elements was present. Internal deletions targeted to the Adf-1-binding site or the TATA box reduced transcription in both cell types but did not affect the transcription initiation site. Distal transcription in transfected ADH- cells appears to be controlled primarily through these promoter elements and does not involve the upstream regulatory elements. Evolutionary conservation in distantly related Drosophila species suggests the importance of these upstream elements in correct developmental and tissue-specific expression of ADH. Images PMID:1694013

  16. Universal response-adaptation relation in bacterial chemotaxis.

    PubMed

    Krembel, Anna K; Neumann, Silke; Sourjik, Victor

    2015-01-01

    The bacterial strategy of chemotaxis relies on temporal comparisons of chemical concentrations, where the probability of maintaining the current direction of swimming is modulated by changes in stimulation experienced during the recent past. A short-term memory required for such comparisons is provided by the adaptation system, which operates through the activity-dependent methylation of chemotaxis receptors. Previous theoretical studies have suggested that efficient navigation in gradients requires a well-defined adaptation rate, because the memory time scale needs to match the duration of straight runs made by bacteria. Here we demonstrate that the chemotaxis pathway of Escherichia coli does indeed exhibit a universal relation between the response magnitude and adaptation time which does not depend on the type of chemical ligand. Our results suggest that this alignment of adaptation rates for different ligands is achieved through cooperative interactions among chemoreceptors rather than through fine-tuning of methylation rates for individual receptors. This observation illustrates a yet-unrecognized function of receptor clustering in bacterial chemotaxis.

  17. Stress and adaptation responses to repeated acute acceleration.

    NASA Technical Reports Server (NTRS)

    Burton, R. R.; Smith, A. H.

    1972-01-01

    Study in which groups of adult male chickens (single-comb white leghorn) were exposed daily to acceleration (centrifugation) of 2 or 3 G for 10 min, 1, 4, 8, 12, 16, and 24 hr (continuously), or 0 time (controls). After approximately five months of this intermittent treatment (training), the birds were exposed to continuous accelerations of the same G force (intensity). The degree of stress and adaptation of each bird was determined by survival and relative lymphocyte count criteria. Intermittent training exposures of 2 G developed levels of adaptation in birds directly proportional to the duration of their daily exposure. Intermittent training periods at 3 G, however, produced a physiological deterioration in birds receiving daily exposures of 8 hr or more. Adaptive benefits were found only in the 1- and 4-hr-daily intermittent 3-G exposure groups. Exposure to 3 G produced an immediate stress response as indicated by a low relative lymphocyte count which returned to control (preexposed) values prior to the next daily acceleration period in the 10-min, 1-hr, and 4-hr groups. This daily recovery period from stress appeared to be necessary for adaptation as opposed to deterioration for the more severe environmental (3 G) alteration.

  18. Role of Hog1 and Yaf9 in the transcriptional response of Saccharomyces cerevisiae to cesium chloride.

    PubMed

    Del Vescovo, Valerio; Casagrande, Viviana; Bianchi, Michele M; Piccinni, Eugenia; Frontali, Laura; Militti, Cristina; Fardeau, Vivienne; Devaux, Frédéric; Di Sanza, Claudio; Presutti, Carlo; Negri, Rodolfo

    2008-03-14

    We analyzed the global transcriptional response of Saccharomyces cerevisiae cells exposed to different concentrations of CsCl in the growth medium and at different times after addition. Early responsive genes were mainly involved in cell wall structure and biosynthesis. About half of the induced genes were previously shown to respond to other alkali metal cations in a Hog1-dependent fashion. Western blot analysis confirmed that cesium concentrations as low as 100 mM activate Hog1 phosphorylation. Another important fraction of the cesium-modulated genes requires Yaf9p for full responsiveness as shown by the transcriptome of a yaf9-deleted strain in the presence of cesium. We showed that a cell wall-restructuring process promptly occurs in response to cesium addition, which is dependent on the presence of both Hog1 and Yaf9 proteins. Moreover, the sensitivity to low concentration of cesium of the yaf9-deleted strain is not observed in a strain carrying the hog1/yaf9 double deletion. We conclude that the observed early transcriptional modulation of cell wall genes has a crucial role in S. cerevisiae adaptation to cesium.

  19. Abiotic and biotic stressors causing equivalent mortality induce highly variable transcriptional responses in the soybean aphid.

    PubMed

    Enders, Laramy S; Bickel, Ryan D; Brisson, Jennifer A; Heng-Moss, Tiffany M; Siegfried, Blair D; Zera, Anthony J; Miller, Nicholas J

    2015-02-01

    Environmental stress affects basic organismal functioning and can cause physiological, developmental, and reproductive impairment. However, in many nonmodel organisms, the core molecular stress response remains poorly characterized and the extent to which stress-induced transcriptional changes differ across qualitatively different stress types is largely unexplored. The current study examines the molecular stress response of the soybean aphid (Aphis glycines) using RNA sequencing and compares transcriptional responses to multiple stressors (heat, starvation, and plant defenses) at a standardized stress level (27% adult mortality). Stress-induced transcriptional changes showed remarkable variation, with starvation, heat, and plant defensive stress altering the expression of 3985, 510, and 12 genes, respectively. Molecular responses showed little overlap across all three stressors. However, a common transcriptional stress response was identified under heat and starvation, involved with up-regulation of glycogen biosynthesis and molecular chaperones and down-regulation of bacterial endosymbiont cellular and insect cuticular components. Stressor-specific responses indicated heat affected expression of heat shock proteins and cuticular components, whereas starvation altered a diverse set of genes involved in primary metabolism, oxidative reductive processes, nucleosome and histone assembly, and the regulation of DNA repair and replication. Exposure to host plant defenses elicited the weakest response, of which half of the genes were of unknown function. This study highlights the need for standardizing stress levels when comparing across stress types and provides a basis for understanding the role of general vs. stressor specific molecular responses in aphids.

  20. Dynamic Transcriptional Response of Escherichia coli to Inclusion Body Formation

    PubMed Central

    Baig, Faraz; Fernando, Lawrence P.; Salazar, Mary Alice; Powell, Rhonda R.; Bruce, Terri F.; Harcum, Sarah W.

    2014-01-01

    Escherichia coli is used intensively for recombinant protein production, but one key challenge with recombinant E. coli is the tendency of recombinant proteins to misfold and aggregate into insoluble inclusion bodies (IBs). IBs contain high concentrations of inactive recombinant protein that require recovery steps to salvage a functional recombinant protein. Currently, no universally effective method exists to prevent IB formation in recombinant E. coli. In this study, DNA microarrays were used to compare the E. coli gene expression response dynamics to soluble and insoluble recombinant protein production. As expected and previously reported, the classical heat-shock genes had increased expression due to IB formation, including protein folding chaperones and proteases. Gene expression levels for protein synthesis-related and energy-synthesis pathways were also increased. Many transmembrane transporter and corresponding catabolic pathways genes had decreased expression for substrates not present in the culture medium. Additionally, putative genes represented over one-third of the genes identified to have significant expression changes due to IB formation, indicating many important cellular responses to IB formation still need to be characterized. Interestingly, cells grown in 3% ethanol had significantly reduced gene expression responses due to IB formation. Taken together, these results indicate that IB formation is complex, stimulates the heat-shock response, increases protein and energy synthesis needs, and streamlines transport and catabolic processes, while ethanol diminished all of these responses. PMID:24338599

  1. Stress Response and Perinatal Reprogramming: Unraveling (Mal)adaptive Strategies

    PubMed Central

    Musazzi, Laura; Marrocco, Jordan

    2016-01-01

    Environmental stressors induce coping strategies in the majority of individuals. The stress response, involving the activation of the hypothalamic-pituitary-adrenocortical axis and the consequent release of corticosteroid hormones, is indeed aimed at promoting metabolic, functional, and behavioral adaptations. However, behavioral stress is also associated with fast and long-lasting neurochemical, structural, and behavioral changes, leading to long-term remodeling of glutamate transmission, and increased susceptibility to neuropsychiatric disorders. Of note, early-life events, both in utero and during the early postnatal life, trigger reprogramming of the stress response, which is often associated with loss of stress resilience and ensuing neurobehavioral (mal)adaptations. Indeed, adverse experiences in early life are known to induce long-term stress-related neuropsychiatric disorders in vulnerable individuals. Here, we discuss recent findings about stress remodeling of excitatory neurotransmission and brain morphology in animal models of behavioral stress. These changes are likely driven by epigenetic factors that lie at the core of the stress-response reprogramming in individuals with a history of perinatal stress. We propose that reprogramming mechanisms may underlie the reorganization of excitatory neurotransmission in the short- and long-term response to stressful stimuli. PMID:27057367

  2. Adaptive Responses to Prochloraz Exposure That Alter Dose-Response and Time-Course Behaviors

    EPA Science Inventory

    Dose response and time-course (DRTC) are, along with exposure, the major determinants of health risk. Adaptive changes within exposed organisms in response to environmental stress are common, and alter DRTC behaviors to minimize the effects caused by stressors. In this project, ...

  3. Senataxin suppresses the antiviral transcriptional response and controls viral biogenesis.

    PubMed

    Miller, Matthew S; Rialdi, Alexander; Ho, Jessica Sook Yuin; Tilove, Micah; Martinez-Gil, Luis; Moshkina, Natasha P; Peralta, Zuleyma; Noel, Justine; Melegari, Camilla; Maestre, Ana M; Mitsopoulos, Panagiotis; Madrenas, Joaquín; Heinz, Sven; Benner, Chris; Young, John A T; Feagins, Alicia R; Basler, Christopher F; Fernandez-Sesma, Ana; Becherel, Olivier J; Lavin, Martin F; van Bakel, Harm; Marazzi, Ivan

    2015-05-01

    The human helicase senataxin (SETX) has been linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS4) and ataxia with oculomotor apraxia (AOA2). Here we identified a role for SETX in controlling the antiviral response. Cells that had undergone depletion of SETX and SETX-deficient cells derived from patients with AOA2 had higher expression of antiviral mediators in response to infection than did wild-type cells. Mechanistically, we propose a model whereby SETX attenuates the activity of RNA polymerase II (RNAPII) at genes stimulated after a virus is sensed and thus controls the magnitude of the host response to pathogens and the biogenesis of various RNA viruses (e.g., influenza A virus and West Nile virus). Our data indicate a potentially causal link among inborn errors in SETX, susceptibility to infection and the development of neurologic disorders.

  4. Misregulation of an adaptive metabolic response contributes to the age-related disruption of lipid homeostasis in Drosophila.

    PubMed

    Karpac, Jason; Biteau, Benoit; Jasper, Heinrich

    2013-09-26

    Loss of metabolic homeostasis is a hallmark of aging and is commonly characterized by the deregulation of adaptive signaling interactions that coordinate energy metabolism with dietary changes. The mechanisms driving age-related changes in these adaptive responses remain unclear. Here, we characterize the deregulation of an adaptive metabolic response and the development of metabolic dysfunction in the aging intestine of Drosophila. We find that activation of the insulin-responsive transcription factor Foxo in intestinal enterocytes is required to inhibit the expression of evolutionarily conserved lipases as part of a metabolic response to dietary changes. This adaptive mechanism becomes chronically activated in the aging intestine, mediated by changes in Jun-N-terminal kinase (JNK) signaling. Age-related chronic JNK/Foxo activation in enterocytes is deleterious, leading to sustained repression of intestinal lipase expression and the disruption of lipid homeostasis. Changes in the regulation of Foxo-mediated adaptive responses thus contribute to the age-associated breakdown of metabolic homeostasis.

  5. Involvement of plant C(2)H(2)-type zinc finger transcription factors in stress responses.

    PubMed

    Kiełbowicz-Matuk, Agnieszka

    2012-04-01

    Abiotic and biotic stresses frequently impose constraints on plant distribution and affect agricultural productivity. Various aspects of the multiplicity and the complexity of stress responsive gene networks have been previously studied. Many of individual transcription factors in plants and their family classes that regulate the expression of several genes in responses to environmental stresses have been identified. One such class of transcription regulators is the C(2)H(2) class of zinc finger proteins. Numerous members of the C(2)H(2)-type zinc finger family have been shown to play diverse roles in the plant stress response and the hormone signal transduction. Transcription profiling analyses have demonstrated that the transcript level of many C(2)H(2)-type zinc finger proteins is elevated under different abiotic stress conditions such as low temperature, salt, drought, osmotic stress and oxidative stress. Some C(2)H(2)-type proteins are additionally involved in the biotic stress signaling pathway. Moreover, it has been reported that overexpression of some C(2)H(2)-type zinc finger protein genes resulted in both the activation of some stress-related genes and enhanced tolerance to various stresses. Current genetic studies have focused on possible interactions between different zinc finger transcription factors during stresses to regulate transcription. This review highlights the role of the C(2)H(2) class of the zinc finger proteins in regulating abiotic and biotic stress tolerance in the plants.

  6. The genomewide transcriptional response underlying the pea aphid wing polyphenism.

    PubMed

    Vellichirammal, Neetha N; Madayiputhiya, Nandakumar; Brisson, Jennifer A

    2016-09-01

    Phenotypic plasticity is a key life history strategy used by many plants and animals living in heterogeneous environments. A multitude of studies have investigated the costs and limits of plasticity, as well as the conditions under which it evolves. Much less well understood are the molecular genetic mechanisms that enable an organism to sense its environment and respond in a plastic manner. The pea aphid wing polyphenism is a compelling laboratory model to study these mechanisms. In this polyphenism, environmental stressors like high density cause asexual, viviparous adult female aphids to change the development of their embryos from wingless to winged morphs. The life history trade-offs between the two morphs have been intensively studied, but the molecular mechanisms underlying this process remain largely unknown. We therefore performed a genomewide study of the maternal transcriptome at two time points with and without a crowding stress to discover the maternal molecular changes that lead to the development of winged vs. wingless offspring. We observed significant transcriptional changes in genes associated with odorant binding, neurotransmitter transport, hormonal activity and chromatin remodelling in the maternal transcriptome. We also found that titres of serotonin, dopamine and octopamine were higher in solitary compared to crowded aphids. We use these results to posit a model for how maternal signals inform a developing embryo to be winged or wingless. Our findings add significant insights into the identity of the molecular mechanisms that underlie environmentally induced morph determination and suggest a possible role for biogenic amine regulation in polyphenisms generally. PMID:27393739

  7. Response and adaptation of bone cells to simulated microgravity

    NASA Astrophysics Data System (ADS)

    Hu, Lifang; Li, Runzhi; Su, Peihong; Arfat, Yasir; Zhang, Ge; Shang, Peng; Qian, Airong

    2014-11-01

    Bone loss induced by microgravity during space flight is one of the most deleterious factors on astronaut's health and is mainly attributed to an unbalance in the process of bone remodeling. Studies from the space microgravity have demonstrated that the disruption of bone remodeling is associated with the changes of four main functional bone cells, including osteoblast, osteoclast, osteocyte, and mesenchymal stem cells. For the limited availability, expensive costs and confined experiment conditions for conducting space microgravity studies, the mechanism of bone cells response and adaptation to microgravity is still unclear. Therefore, some ground-based simulated microgravity methods have been developed to investigate the bioeffects of microgravity and the mechanisms. Here, based on our studies and others, we review how bone cells (osteoblasts, osteoclasts, osteocytes and mesenchymal stem cells) respond and adapt to simulated microgravity.

  8. Analysis of Cryptococcus neoformans sexual development reveals rewiring of the pheromone-response network by a change in transcription factor identity.

    PubMed

    Kruzel, Emilia K; Giles, Steven S; Hull, Christina M

    2012-06-01

    The fundamental mechanisms that control eukaryotic development include extensive regulation at the level of transcription. Gene regulatory networks, composed of transcription factors, their binding sites in DNA, and their target genes, are responsible for executing transcriptional programs. While divergence of these control networks drives species-specific gene expression that contributes to biological diversity, little is known about the mechanisms by which these networks evolve. To investigate how network evolution has occurred in fungi, we used a combination of microarray expression profiling, cis-element identification, and transcription-factor characterization during sexual development of the human fungal pathogen Cryptococcus neoformans. We first defined the major gene expression changes that occur over time throughout sexual development. Through subsequent bioinformatic and molecular genetic analyses, we identified and functionally characterized the C. neoformans pheromone-response element (PRE). We then discovered that transcriptional activation via the PRE requires direct binding of the high-mobility transcription factor Mat2, which we conclude functions as the elusive C. neoformans pheromone-response factor. This function of Mat2 distinguishes the mechanism of regulation through the PRE of C. neoformans from all other fungal systems studied to date and reveals species-specific adaptations of a fungal transcription factor that defies predictions on the basis of sequence alone. Overall, our findings reveal that pheromone-response network rewiring has occurred at the level of transcription factor identity, despite the strong conservation of upstream and downstream components, and serve as a model for how selection pressures act differently on signaling vs. gene regulatory components during eukaryotic evolution.

  9. MOF maintains transcriptional programs regulating cellular stress response.

    PubMed

    Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A

    2016-05-01

    MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes. PMID:26387537

  10. MOF maintains transcriptional programs regulating cellular stress response

    PubMed Central

    Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A

    2016-01-01

    MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes. PMID:26387537

  11. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    SciTech Connect

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-21

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Lastly, targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.

  12. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    DOE PAGES

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-21

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involvedmore » in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Lastly, targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.« less

  13. Transcriptional Responses to Sucrose Mimic the Plant-Associated Life Style of the Plant Growth Promoting Endophyte Enterobacter sp. 638

    PubMed Central

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-01

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g. flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability. PMID:25607953

  14. Negative control of CSL gene transcription by stress/DNA damage response and p53.

    PubMed

    Menietti, Elena; Xu, Xiaoying; Ostano, Paola; Joseph, Jean-Marc; Lefort, Karine; Dotto, G Paolo

    2016-07-01

    CSL is a key transcriptional repressor and mediator of Notch signaling. Despite wide interest in CSL, mechanisms responsible for its own regulation are little studied. CSL down-modulation in human dermal fibroblasts (HDFs) leads to conversion into cancer associated fibroblasts (CAF), promoting keratinocyte tumors. We show here that CSL transcript levels differ among HDF strains from different individuals, with negative correlation with genes involved in DNA damage/repair. CSL expression is negatively regulated by stress/DNA damage caused by UVA, Reactive Oxygen Species (ROS), smoke extract, and doxorubicin treatment. P53, a key effector of the DNA damage response, negatively controls CSL gene transcription, through suppression of CSL promoter activity and, indirectly, by increased p21 expression. CSL was previously shown to bind p53 suppressing its activity. The present findings indicate that p53, in turn, decreases CSL expression, which can serve to enhance p53 activity in acute DNA damage response of cells.

  15. Plant adaptation to low atmospheric pressures: potential molecular responses

    NASA Technical Reports Server (NTRS)

    Ferl, Robert J.; Schuerger, Andrew C.; Paul, Anna-Lisa; Gurley, William B.; Corey, Kenneth; Bucklin, Ray

    2002-01-01

    There is an increasing realization that it may be impossible to attain Earth normal atmospheric pressures in orbital, lunar, or Martian greenhouses, simply because the construction materials do not exist to meet the extraordinary constraints imposed by balancing high engineering requirements against high lift costs. This equation essentially dictates that NASA have in place the capability to grow plants at reduced atmospheric pressure. Yet current understanding of plant growth at low pressures is limited to just a few experiments and relatively rudimentary assessments of plant vigor and growth. The tools now exist, however, to make rapid progress toward understanding the fundamental nature of plant responses and adaptations to low pressures, and to develop strategies for mitigating detrimental effects by engineering the growth conditions or by engineering the plants themselves. The genomes of rice and the model plant Arabidopsis thaliana have recently been sequenced in their entirety, and public sector and commercial DNA chips are becoming available such that thousands of genes can be assayed at once. A fundamental understanding of plant responses and adaptation to low pressures can now be approached and translated into procedures and engineering considerations to enhance plant growth at low atmospheric pressures. In anticipation of such studies, we present here the background arguments supporting these contentions, as well as informed speculation about the kinds of molecular physiological responses that might be expected of plants in low-pressure environments.

  16. Plant adaptation to low atmospheric pressures: potential molecular responses.

    PubMed

    Ferl, Robert J; Schuerger, Andrew C; Paul, Anna-Lisa; Gurley, William B; Corey, Kenneth; Bucklin, Ray

    2002-01-01

    There is an increasing realization that it may be impossible to attain Earth normal atmospheric pressures in orbital, lunar, or Martian greenhouses, simply because the construction materials do not exist to meet the extraordinary constraints imposed by balancing high engineering requirements against high lift costs. This equation essentially dictates that NASA have in place the capability to grow plants at reduced atmospheric pressure. Yet current understanding of plant growth at low pressures is limited to just a few experiments and relatively rudimentary assessments of plant vigor and growth. The tools now exist, however, to make rapid progress toward understanding the fundamental nature of plant responses and adaptations to low pressures, and to develop strategies for mitigating detrimental effects by engineering the growth conditions or by engineering the plants themselves. The genomes of rice and the model plant Arabidopsis thaliana have recently been sequenced in their entirety, and public sector and commercial DNA chips are becoming available such that thousands of genes can be assayed at once. A fundamental understanding of plant responses and adaptation to low pressures can now be approached and translated into procedures and engineering considerations to enhance plant growth at low atmospheric pressures. In anticipation of such studies, we present here the background arguments supporting these contentions, as well as informed speculation about the kinds of molecular physiological responses that might be expected of plants in low-pressure environments. PMID:11987308

  17. Epithelium: At the interface of innate and adaptive immune responses

    PubMed Central

    Schleimer, Robert P.; Kato, Atsushi; Kern, Robert; Kuperman, Douglas; Avila, Pedro C.

    2009-01-01

    Several diseases of the airways have a strong component of allergic inflammation in their cause, including allergic rhinitis, asthma, polypoid chronic rhinosinusitis, eosinophilic bronchitis, and others. Although the roles played by antigens and pathogens vary, these diseases have in common a pathology that includes marked activation of epithelial cells in the upper airways, the lower airways, or both. Substantial new evidence indicates an important role of epithelial cells as both mediators and regulators of innate immune responses and adaptive immune responses, as well as the transition from innate immunity to adaptive immunity. The purpose of this review is to discuss recent studies that bear on the molecular and cellular mechanisms by which epithelial cells help to shape the responses of dendritic cells, T cells, and B cells and inflammatory cell recruitment in the context of human disease. Evidence will be discussed that suggests that secreted products of epithelial cells and molecules expressed on their cell surfaces can profoundly influence both immunity and inflammation in the airways. PMID:17949801

  18. Transcriptional responses of Arabidopsis thaliana to chewing and sucking insect herbivores

    SciTech Connect

    Appel, Heidi M.; Fescemyer, Howard; Ehlting, Juergen; Weston, David; Rehrig, Erin; Joshi, Trupti; Xu, Dong; Bohlmann, Joerg; Schultz, Jack

    2014-11-14

    We tested the hypothesis that Arabidopsis can recognize and respond differentially to insect species at the transcriptional level using a genome wide microarray. Transcriptional reprogramming was characterized using co-expression analysis in damaged and undamaged leaves at two times in response to mechanical wounding and four insect species. In all, 2778 (10.6%) of annotated genes on the array were differentially expressed in at least one treatment. Responses differed mainly between aphid and caterpillar and sampling times. Responses to aphids and caterpillars shared only 10% of up-regulated and 8% of down-regulated genes. Responses to two caterpillars shared 21 and 12% of up- and down-regulated genes, whereas responses to the two aphids shared only 7 and 4% of up-regulated and down-regulated genes. Overlap in genes expressed between 6 and 24 h was 3–15%, and depended on the insect species. Responses in attacked and unattacked leaves differed at 6 h but converged by 24 h. Genes responding to the insects are also responsive to many stressors and included primary metabolism. Aphids down-regulated amino acid catabolism; caterpillars stimulated production of amino acids involved in glucosinolate synthesis. Co-expression analysis revealed 17 response networks. Transcription factors were a major portion of differentially expressed genes throughout and responsive genes shared most of the known or postulated binding sites. However, cis-element composition of genes down regulated by the aphid M. persicae was unique, as were those of genes down-regulated by caterpillars. As many as 20 cis-elements were over-represented in one or more treatments, including some from well-characterized classes and others as yet uncharacterized. We suggest that transcriptional changes elicited by wounding and insects are heavily influenced by transcription factors and involve both enrichment of a common set of cis-elements and a unique enrichment of a few cis-elements in responding genes.

  19. Transcriptional responses of Arabidopsis thaliana to chewing and sucking insect herbivores

    DOE PAGES

    Appel, Heidi M.; Fescemyer, Howard; Ehlting, Juergen; Weston, David; Rehrig, Erin; Joshi, Trupti; Xu, Dong; Bohlmann, Joerg; Schultz, Jack

    2014-11-14

    We tested the hypothesis that Arabidopsis can recognize and respond differentially to insect species at the transcriptional level using a genome wide microarray. Transcriptional reprogramming was characterized using co-expression analysis in damaged and undamaged leaves at two times in response to mechanical wounding and four insect species. In all, 2778 (10.6%) of annotated genes on the array were differentially expressed in at least one treatment. Responses differed mainly between aphid and caterpillar and sampling times. Responses to aphids and caterpillars shared only 10% of up-regulated and 8% of down-regulated genes. Responses to two caterpillars shared 21 and 12% of up-more » and down-regulated genes, whereas responses to the two aphids shared only 7 and 4% of up-regulated and down-regulated genes. Overlap in genes expressed between 6 and 24 h was 3–15%, and depended on the insect species. Responses in attacked and unattacked leaves differed at 6 h but converged by 24 h. Genes responding to the insects are also responsive to many stressors and included primary metabolism. Aphids down-regulated amino acid catabolism; caterpillars stimulated production of amino acids involved in glucosinolate synthesis. Co-expression analysis revealed 17 response networks. Transcription factors were a major portion of differentially expressed genes throughout and responsive genes shared most of the known or postulated binding sites. However, cis-element composition of genes down regulated by the aphid M. persicae was unique, as were those of genes down-regulated by caterpillars. As many as 20 cis-elements were over-represented in one or more treatments, including some from well-characterized classes and others as yet uncharacterized. We suggest that transcriptional changes elicited by wounding and insects are heavily influenced by transcription factors and involve both enrichment of a common set of cis-elements and a unique enrichment of a few cis-elements in responding

  20. Transcriptional responses of Arabidopsis thaliana to chewing and sucking insect herbivores

    PubMed Central

    Appel, Heidi M.; Fescemyer, Howard; Ehlting, Juergen; Weston, David; Rehrig, Erin; Joshi, Trupti; Xu, Dong; Bohlmann, Joerg; Schultz, Jack

    2014-01-01

    We tested the hypothesis that Arabidopsis can recognize and respond differentially to insect species at the transcriptional level using a genome wide microarray. Transcriptional reprogramming was characterized using co-expression analysis in damaged and undamaged leaves at two times in response to mechanical wounding and four insect species. In all, 2778 (10.6%) of annotated genes on the array were differentially expressed in at least one treatment. Responses differed mainly between aphid and caterpillar and sampling times. Responses to aphids and caterpillars shared only 10% of up-regulated and 8% of down-regulated genes. Responses to two caterpillars shared 21 and 12% of up- and down-regulated genes, whereas responses to the two aphids shared only 7 and 4% of up-regulated and down-regulated genes. Overlap in genes expressed between 6 and 24 h was 3–15%, and depended on the insect species. Responses in attacked and unattacked leaves differed at 6 h but converged by 24 h. Genes responding to the insects are also responsive to many stressors and included primary metabolism. Aphids down-regulated amino acid catabolism; caterpillars stimulated production of amino acids involved in glucosinolate synthesis. Co-expression analysis revealed 17 response networks. Transcription factors were a major portion of differentially expressed genes throughout and responsive genes shared most of the known or postulated binding sites. However, cis-element composition of genes down regulated by the aphid M. persicae was unique, as were those of genes down-regulated by caterpillars. As many as 20 cis-elements were over-represented in one or more treatments, including some from well-characterized classes and others as yet uncharacterized. We suggest that transcriptional changes elicited by wounding and insects are heavily influenced by transcription factors and involve both enrichment of a common set of cis-elements and a unique enrichment of a few cis-elements in responding genes

  1. Aeroelastic Response of the Adaptive Compliant Trailing Edge Transtition Section

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat

    2016-01-01

    The Adaptive Compliant Trailing Edge demonstrator was a joint task under the Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan), chartered by the National Aeronautics and Space Administration to develop advanced technologies that enable environmentally friendly aircraft, such as continuous mold-line technologies. The Adaptive Compliant Trailing Edge demonstrator encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys, Inc., a pair of uniquely-designed, unconventional flaps to be used as lifting surfaces during flight-testing to substantiate their structural effectiveness. The unconventional flaps consisted of a main flap section and two transition sections, inboard and outboard, which demonstrated the continuous mold-line technology. Unique characteristics of the transition sections provided a challenge to the airworthiness assessment for this part of the structure. A series of build-up tests and analyses were conducted to ensure the data required to support the airworthiness assessment were acquired and applied accurately. The transition sections were analyzed both as individual components and as part of the flight-test article assembly. Instrumentation was installed in the transition sections based on the analysis to best capture the in-flight aeroelastic response. Flight-testing was conducted and flight data were acquired to validate the analyses. This paper documents the details of the aeroelastic assessment and in-flight response of the transition sections of the unconventional Adaptive Compliant Trailing Edge flaps.

  2. Transcriptional Responses of Glutathione Transferase Genes in Ruditapes philippinarum Exposed to Microcystin-LR

    PubMed Central

    Reis, Bruno; Carneiro, Mariana; Machado, João; Azevedo, Joana; Vasconcelos, Vitor; Martins, José Carlos

    2015-01-01

    Glutathione Transferases (GSTs) are phase II detoxification enzymes known to be involved in the molecular response against microcystins (MCs) induced toxicity. However, the individual role of the several GST isoforms in the MC detoxification process is still unknown. In this study, the time-dependent changes on gene expression of several GST isoforms (pi, mu, sigma 1, sigma 2) in parallel with enzymatic activity of total GST were investigated in gills and hepatopancreas of the bivalve Ruditapes philippinarum exposed to pure MC-LR (10 and 100 µg/L). No significant changes in GST enzyme activities were found on both organs. In contrast, MC-LR affected the transcriptional activities of these detoxification enzymes both in gills and hepatopancreas. GST transcriptional changes in gills promoted by MC-LR were characterized by an early (12 h) induction of mu and sigma 1 transcripts. On the other hand, the GST transcriptional changes in hepatopancreas were characterized by a later induction (48 h) of mu transcript, but also by an early inhibition (6 h) of the four transcripts. The different transcription patterns obtained for the tested GST isoforms in this study highlight the potential divergent physiological roles played by these isoenzymes during the detoxification of MC-LR. PMID:25884330

  3. Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes.

    PubMed

    Mohammadi, Mohsen; Kav, Nat N V; Deyholos, Michael K

    2007-05-01

    We used a long-oligonucleotide microarray to identify transcripts that increased or decreased in abundance in roots of dehydration-tolerant hexaploid bread wheat, in response to withholding of water. We observed that the major classes of dehydration-responsive genes (e.g. osmoprotectants, compatible solutes, proteases, glycosyltransferases/hydrolases, signal transducers components, ion transporters) were generally similar to those observed previously in other species and osmotic stresses. More specifically, we highlighted increases in transcript expression for specific genes including those putatively related to the synthesis of asparagine, trehalose, oligopeptide transporters, metal-binding proteins, the gamma-aminobutyric acid (GABA) shunt and transcription factors. Conversely, we noted a decrease in transcript abundance for diverse classes of glutathione and sulphur-related enzymes, specific amino acids, as well as MATE-efflux carrier proteins. From these data, we identified a novel, dehydration-induced putative AP2/ERF transcription factor, which we predict to function as a transcriptional repressor. We also identified a dehydration-induced 'little protein' (LitP; predicted mass: 8 kDa) that is highly conserved across spermatophytes. Using qRT-PCR, we compared the expression patterns of selected genes between two related wheat genotypes that differed in their susceptibility to dehydration, and confirmed that these novel genes were highly inducible by water limitation in both genotypes, although the magnitude of induction differed.

  4. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants

    PubMed Central

    Nuruzzaman, Mohammed; Sharoni, Akhter M.; Kikuchi, Shoshi

    2013-01-01

    NAC transcription factors are one of the largest families of transcriptional regulators in plants, and members of the NAC gene family have been suggested to play important roles in the regulation of the transcriptional reprogramming associated with plant stress responses. A phylogenetic analysis of NAC genes, with a focus on rice and Arabidopsis, was performed. Herein, we present an overview of the regulation of the stress responsive NAC SNAC/(IX) group of genes that are implicated in the resistance to different stresses. SNAC factors have important roles for the control of biotic and abiotic stresses tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. We also review the recent progress in elucidating the roles of NAC transcription factors in plant biotic and abiotic stresses. Modification of the expression pattern of transcription factor genes and/or changes in their activity contribute to the elaboration of various signaling pathways and regulatory networks. However, a single NAC gene often responds to several stress factors, and their protein products may participate in the regulation of several seemingly disparate processes as negative or positive regulators. Additionally, the NAC proteins function via auto-regulation or cross-regulation is extensively found among NAC genes. These observations assist in the understanding of the complex mechanisms of signaling and transcriptional reprogramming controlled by NAC proteins. PMID:24058359

  5. Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo

    PubMed Central

    Saunders, Abbie; Wilcockson, Scott G.; Zeef, Leo A. H.; Donaldson, Ian J.; Ashe, Hilary L.

    2016-01-01

    The BMP signaling pathway has a conserved role in dorsal-ventral axis patterning during embryonic development. In Drosophila, graded BMP signaling is transduced by the Mad transcription factor and opposed by the Brinker repressor. In this study, using the Drosophila embryo as a model, we combine RNA-seq with Mad and Brinker ChIP-seq to decipher the BMP-responsive transcriptional network underpinning differentiation of the dorsal ectoderm during dorsal-ventral axis patterning. We identify multiple new BMP target genes, including positive and negative regulators of EGF signaling. Manipulation of EGF signaling levels by loss- and gain-of-function studies reveals that EGF signaling negatively regulates embryonic BMP-responsive transcription. Therefore, the BMP gene network has a self-regulating property in that it establishes a balance between its activity and that of the antagonistic EGF signaling pathway to facilitate correct patterning. In terms of BMP-dependent transcription, we identify key roles for the Zelda and Zerknüllt transcription factors in establishing the resulting expression domain, and find widespread binding of insulator proteins to the Mad and Brinker-bound genomic regions. Analysis of embryos lacking the BEAF-32 insulator protein shows reduced transcription of a peak BMP target gene and a reduction in the number of amnioserosa cells, the fate specified by peak BMP signaling. We incorporate our findings into a model for Mad-dependent activation, and discuss its relevance to BMP signal interpretation in vertebrates. PMID:27379389

  6. PTRF/Cavin-1 promotes efficient ribosomal RNA transcription in response to metabolic challenges

    PubMed Central

    Liu, Libin; Pilch, Paul F

    2016-01-01

    Ribosomal RNA transcription mediated by RNA polymerase I represents the rate-limiting step in ribosome biogenesis. In eukaryotic cells, nutrients and growth factors regulate ribosomal RNA transcription through various key factors coupled to cell growth. We show here in mature adipocytes, ribosomal transcription can be acutely regulated in response to metabolic challenges. This acute response is mediated by PTRF (polymerase I transcription and release factor, also known as cavin-1), which has previously been shown to play a critical role in caveolae formation. The caveolae–independent rDNA transcriptional role of PTRF not only explains the lipodystrophy phenotype observed in PTRF deficient mice and humans, but also highlights its crucial physiological role in maintaining adipocyte allostasis. Multiple post-translational modifications of PTRF provide mechanistic bases for its regulation. The role of PTRF in ribosomal transcriptional efficiency is likely relevant to many additional physiological situations of cell growth and organismal metabolism. DOI: http://dx.doi.org/10.7554/eLife.17508.001 PMID:27528195

  7. Divergent Transcriptional Responses to Physiological and Xenobiotic Stress in Giardia duodenalis.

    PubMed

    Ansell, Brendan R E; McConville, Malcolm J; Baker, Louise; Korhonen, Pasi K; Emery, Samantha J; Svärd, Staffan G; Gasser, Robin B; Jex, Aaron R

    2016-10-01

    Understanding how parasites respond to stress can help to identify essential biological processes. Giardia duodenalis is a parasitic protist that infects the human gastrointestinal tract and causes 200 to 300 million cases of diarrhea annually. Metronidazole, a major antigiardial drug, is thought to cause oxidative damage within the infective trophozoite form. However, treatment efficacy is suboptimal, due partly to metronidazole-resistant infections. To elucidate conserved and stress-specific responses, we calibrated sublethal metronidazole, hydrogen peroxide, and thermal stresses to exert approximately equal pressure on trophozoite growth and compared transcriptional responses after 24 h of exposure. We identified 252 genes that were differentially transcribed in response to all three stressors, including glycolytic and DNA repair enzymes, a mitogen-activated protein (MAP) kinase, high-cysteine membrane proteins, flavin adenine dinucleotide (FAD) synthetase, and histone modification enzymes. Transcriptional responses appeared to diverge according to physiological or xenobiotic stress. Downregulation of the antioxidant system and α-giardins was observed only under metronidazole-induced stress, whereas upregulation of GARP-like transcription factors and their subordinate genes was observed in response to hydrogen peroxide and thermal stressors. Limited evidence was found in support of stress-specific response elements upstream of differentially transcribed genes; however, antisense derepression and differential regulation of RNA interference machinery suggest multiple epigenetic mechanisms of transcriptional control. PMID:27458219

  8. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels.

    PubMed

    Calderon-Vazquez, Carlos; Ibarra-Laclette, Enrique; Caballero-Perez, Juan; Herrera-Estrella, Luis

    2008-01-01

    Maize (Zea mays) is the most widely cultivated crop around the world; however, it is commonly affected by phosphate (Pi) deficiency in many regions, particularly in acid and alkaline soils of developing countries. To cope with Pi deficiency, plants have evolved a large number of developmental and biochemical adaptations; however, for maize, the underlying molecular basis of these responses is still unknown. In this work, the transcriptional response of maize roots to Pi starvation at 1, 3, 6, and 10 d after the onset of Pi deprivation was assessed. The investigation revealed a total of 1179 Pi-responsive genes, of which 820 and 363 genes were found to be either up- or down-regulated, respectively, by 2-fold or more. Pi-responsive genes were found to be involved in various metabolic, signal transduction, and developmental gene networks. A large set of transcription factors, which may be potential targets for crop breeding, was identified. In addition, gene expression profiles and changes in specific metabolites were also correlated. The results show that several dicotyledonous plant responses to Pi starvation are conserved in maize, but that some genetic responses appear to be more specific and that Pi deficiency leads to a shift in the recycling of internal Pi in maize roots. Ultimately, this work provides a more comprehensive view of Pi-responses in a model for economically important cereals and also sets a framework to produce Pi-specific maize microarrays to study the changes in global gene expression between Pi-efficient and Pi-inefficient maize genotypes. PMID:18503042

  9. The role of transcriptional coactivator ADA2b in Arabidopsis abiotic stress responses

    PubMed Central

    Kaldis, Athanasios; Nikoloudi, Adriana; Tsementzi, Despoina

    2011-01-01

    Plant growth and crop production can be greatly affected by common environmental stresses such as drought, high salinity and low temperatures. Gene expression is affected by several abiotic stresses. Stress-inducible genes are regulated by transcription factors and epigenetic mechanisms such as histone modifications. In this mini-review, we have explored the role of transcriptional adaptor ADA2b in Arabidopsis responses to abiotic stress. ADA2b is required for the expression of genes involved in abiotic stress either by controlling H3 and H4 acetylation in the case of salt stress or affecting nucleosome occupancy in low temperatures response. PMID:21897124

  10. The role of transcriptional coactivator ADA2b in Arabidopsis abiotic stress responses.

    PubMed

    Vlachonasios, Konstantinos E; Kaldis, Athanasios; Nikoloudi, Adriana; Tsementzi, Despoina

    2011-10-01

    Plant growth and crop production can be greatly affected by common environmental stresses such as drought, high salinity and low temperatures. Gene expression is affected by several abiotic stresses. Stress-inducible genes are regulated by transcription factors and epigenetic mechanisms such as histone modifications. In this Mini-Review, we have explored the role of transcriptional adaptor ADA2b in Arabidopsis responses to abiotic stress. ADA2b is required for the expression of genes involved in abiotic stress either by controlling H3 and H4 acetylation in the case of salt stress or affecting nucleosome occupancy in low temperatures response.

  11. Mycobacterium tuberculosis Lsr2 Is a Global Transcriptional Regulator Required for Adaptation to Changing Oxygen Levels and Virulence

    PubMed Central

    Bartek, I. L.; Woolhiser, L. K.; Baughn, A. D.; Basaraba, R. J.; Jacobs, W. R.; Lenaerts, A. J.

    2014-01-01

    ABSTRACT To survive a dynamic host environment, Mycobacterium tuberculosis must endure a series of challenges, from reactive oxygen and nitrogen stress to drastic shifts in oxygen availability. The mycobacterial Lsr2 protein has been implicated in reactive oxygen defense via direct protection of DNA. To examine the role of Lsr2 in pathogenesis and physiology of M. tuberculosis, we generated a strain deleted for lsr2. Analysis of the M. tuberculosis Δlsr2 strain demonstrated that Lsr2 is not required for DNA protection, as this strain was equally susceptible as the wild type to DNA-damaging agents. The lsr2 mutant did display severe growth defects under normoxic and hyperoxic conditions, but it was not required for growth under low-oxygen conditions. However, it was also required for adaptation to anaerobiosis. The defect in anaerobic adaptation led to a marked decrease in viability during anaerobiosis, as well as a lag in recovery from it. Gene expression profiling of the Δlsr2 mutant under aerobic and anaerobic conditions in conjunction with published DNA binding-site data indicates that Lsr2 is a global transcriptional regulator controlling adaptation to changing oxygen levels. The Δlsr2 strain was capable of establishing an early infection in the BALB/c mouse model; however, it was severely defective in persisting in the lungs and caused no discernible lung pathology. These findings demonstrate M. tuberculosis Lsr2 is a global transcriptional regulator required for control of genes involved in adaptation to extremes in oxygen availability and is required for persistent infection. PMID:24895305

  12. Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition.

    PubMed

    Liu, Tao; Li, Yingjun; Wang, Xiaodi; Ye, Qing; Li, Huan; Liang, Yunxiang; She, Qunxin; Peng, Nan

    2015-01-01

    Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I-A of Sulfolobus islandicus REY15A. Csa3a, a MarR-like transcription factor encoded by the gene located adjacent to csa1, cas1, cas2 and cas4 cluster, but on the reverse strand, was demonstrated to specifically bind to the csa1 and cas1 promoters with the imperfect palindromic sequence. Importantly, it was demonstrated that the transcription level of csa1, cas1, cas2 and cas4 was significantly enhanced in a csa3a-overexpression strain and, moreover, the Csa1 and Cas1 protein levels were increased in this strain. Furthermore, we demonstrated the hyperactive uptake of unique spacers within both CRISPR loci in the presence of the csa3a overexpression vector. The spacer acquisition process is dependent on the CCN PAM sequence and protospacer selection is random and non-directional. These results suggested a regulation mechanism of CRISPR spacer acquisition where a single transcriptional regulator senses the presence of an invading element and then activates spacer acquisition gene expression which leads to de novo spacer uptake from the invading element.

  13. Repeatability of cortisol stress response in the European sea bass (Dicentrarchus labrax) and transcription differences between individuals with divergent responses

    PubMed Central

    Samaras, A.; Dimitroglou, A.; Sarropoulou, E.; Papaharisis, L.; Kottaras, L.; Pavlidis, M.

    2016-01-01

    Understanding the stress responses of organisms is of importance in the performance and welfare of farmed animals, including fish. Especially fish in aquaculture commonly face stressors, and better knowledge of their responses may assist in proper husbandry and selection of breeding stocks. European sea bass (Dicentrarchus labrax), a species with high cortisol concentrations, is of major importance in this respect. The main objectives of the present study were to assess the repeatability and consistency of cortisol stress response and to identify differences in liver transcription profiles of European sea bass individuals, showing a consistent low (LR) or high (HR) cortisol response. The progeny of six full sib families was used, and sampled for plasma cortisol after an acute stress challenge once per month, for four consecutive months. Results suggest that cortisol responsiveness was a repeatable trait with LR and HR fish showing low or high resting, free and post-stress cortisol concentrations respectively. Finally, the liver transcription profiles of LR and HR fish showed some important differences, indicating differential hepatic regulation between these divergent phenotypes. These transcription differences were related to various metabolic and immunological processes, with 169 transcripts being transcribed exclusively in LR fish and 161 exclusively in HR fish. PMID:27703277

  14. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Earl, David J.; Deem, Michael W.

    2005-09-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self-antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely, gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system’s search for antibodies, a balance has evolved between binding affinity and specificity.

  15. Innate and adaptive immune responses in neurodegeneration and repair.

    PubMed

    Amor, Sandra; Woodroofe, M Nicola

    2014-03-01

    Emerging evidence suggests important roles of the innate and adaptive immune responses in the central nervous system (CNS) in neurodegenerative diseases. In this special review issue, five leading researchers discuss the evidence for the beneficial as well as the detrimental impact of the immune system in the CNS in disorders including Alzheimer's disease, multiple sclerosis and CNS injury. Several common pathological mechanisms emerge indicating that these pathways could provide important targets for manipulating the immune reposes in neurodegenerative disorders. The articles highlight the role of the traditional resident immune cell of the CNS - the microglia - as well as the role of other glia astrocytes and oligodendrocytes in immune responses and their interplay with other immune cells including, mast cells, T cells and B cells. Future research should lead to new discoveries which highlight targets for therapeutic interventions which may be applicable to a range of neurodegenerative diseases.

  16. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses

    PubMed Central

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention. PMID:26904076

  17. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses.

    PubMed

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  18. A systems biology perspective on the role of WRKY transcription factors in drought responses in plants.

    PubMed

    Tripathi, Prateek; Rabara, Roel C; Rushton, Paul J

    2014-02-01

    Drought is one of the major challenges affecting crop productivity and yield. However, water stress responses are notoriously multigenic and quantitative with strong environmental effects on phenotypes. It is also clear that water stress often does not occur alone under field conditions but rather in conjunction with other abiotic stresses such as high temperature and high light intensities. A multidisciplinary approach with successful integration of a whole range of -omics technologies will not only define the system, but also provide new gene targets for both transgenic approaches and marker-assisted selection. Transcription factors are major players in water stress signaling and some constitute major hubs in the signaling webs. The main transcription factors in this network include MYB, bHLH, bZIP, ERF, NAC, and WRKY transcription factors. The role of WRKY transcription factors in abiotic stress signaling networks is just becoming apparent and systems biology approaches are starting to define their places in the signaling network. Using systems biology approaches, there are now many transcriptomic analyses and promoter analyses that concern WRKY transcription factors. In addition, reports on nuclear proteomics have identified WRKY proteins that are up-regulated at the protein level by water stress. Interactomics has started to identify different classes of WRKY-interacting proteins. What are often lacking are connections between metabolomics, WRKY transcription factors, promoters, biosynthetic pathways, fluxes and downstream responses. As more levels of the system are characterized, a more detailed understanding of the roles of WRKY transcription factors in drought responses in crops will be obtained.

  19. Radio-Adaptive Response to Environmental Exposures at Chernobyl

    PubMed Central

    Rodgers, Brenda E.; Holmes, Kristen M.

    2008-01-01

    The genetic consequences resulting from environmental exposure to ionizing radiation have a significant impact on both radiation regulatory policies and the comprehension of the human health risks associated with radiation exposure. The primary objectives of the study were to assess 1) genotoxicity of exposure to radiation as a function of absorbed dose and dose rate, and 2) induction of a radio-adaptive response following a priming dose at varying dose rates. Results demonstrated that sub-acute environmental exposures of 10cGy gamma radiation resulted in indistinguishable levels of chromosomal damage as compared to controls. A radio-adaptive response was observed in all experimental groups, exposed to a subsequent acute challenge dose of 1.5 Gy, demonstrating that low dose rates of low energy transfer (LET) radiation are effective in reducing genetic damage from a subsequent acute low-LET radiation exposure. Furthermore, the data presented herein demonstrate a potential beneficial effect of sub-chronic exposure to low levels of low-LET radiation in an environmental setting and do not support the Linear No Threshold (LNT) hypothesis. PMID:18648577

  20. Innate and Adaptive Immune Response to Fungal Products and Allergens.

    PubMed

    Williams, P Brock; Barnes, Charles S; Portnoy, Jay M

    2016-01-01

    Exposure to fungi and their products is practically ubiquitous, yet most of this is of little consequence to most healthy individuals. This is because there are a number of elaborate mechanisms to deal with these exposures. Most of these mechanisms are designed to recognize and neutralize such exposures. However, in understanding these mechanisms it has become clear that many of them overlap with our ability to respond to disruptions in tissue function caused by trauma or deterioration. These responses involve the innate and adaptive immune systems usually through the activation of nuclear factor kappa B and the production of cytokines that are considered inflammatory accompanied by other factors that can moderate these reactivities. Depending on different genetic backgrounds and the extent of activation of these mechanisms, various pathologies with resulting symptoms can ensue. Complicating this is the fact that these mechanisms can bias toward type 2 innate and adaptive immune responses. Thus, to understand what we refer to as allergens from fungal sources, we must first understand how they influence these innate mechanisms. In doing so it has become clear that many of the proteins that are described as fungal allergens are essentially homologues of our own proteins that signal or cause tissue disruptions.

  1. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi.

    PubMed

    Buffen, Kathrin; Oosting, Marije; Li, Yang; Kanneganti, Thirumala-Devi; Netea, Mihai G; Joosten, Leo A B

    2016-09-01

    We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known regarding the effect of autophagy on in vivo models of Borrelia infection. Here, we showed that ATG7-deficient mice that were intra-articular injected with Borrelia spirochetes displayed increased joint swelling, cell influx, and enhanced interleukin-1β and interleukin-6 production by inflamed synovial tissue. Because both interleukin-1β and interleukin-6 are linked to the development of adaptive immune responses, we examine the function of autophagy on Borrelia induced adaptive immunity. Human peripheral blood mononuclear cells treated with autophagy inhibitors showed an increase in interleukin-17, interleukin-22, and interferon-γ production in response to exposure to Borrelia burgdorferi. Increased IL-17 production was dependent on IL-1β release but, interestingly, not on interleukin-23 production. In addition, cytokine quantitative trait loci in ATG9B modulate the Borrelia induced interleukin-17 production. Because high levels of IL-17 have been found in patients with confirmed, severe, chronic borreliosis, we propose that the modulation of autophagy may be a potential target for anti-inflammatory therapy in patients with persistent Lyme disease. PMID:27101991

  2. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view.

    PubMed

    Mira, Nuno P; Teixeira, Miguel Cacho; Sá-Correia, Isabel

    2010-10-01

    Weak acids are widely used as food preservatives (e.g., acetic, propionic, benzoic, and sorbic acids), herbicides (e.g., 2,4-dichlorophenoxyacetic acid), and as antimalarial (e.g., artesunic and artemisinic acids), anticancer (e.g., artesunic acid), and immunosuppressive (e.g., mycophenolic acid) drugs, among other possible applications. The understanding of the mechanisms underlying the adaptive response and resistance to these weak acids is a prerequisite to develop more effective strategies to control spoilage yeasts, and the emergence of resistant weeds, drug resistant parasites or cancer cells. Furthermore, the identification of toxicity mechanisms and resistance determinants to weak acid-based pharmaceuticals increases current knowledge on their cytotoxic effects and may lead to the identification of new drug targets. This review integrates current knowledge on the mechanisms of toxicity and tolerance to weak acid stress obtained in the model eukaryote Saccharomyces cerevisiae using genome-wide approaches and more detailed gene-by-gene analysis. The major features of the yeast response to weak acids in general, and the more specific responses and resistance mechanisms towards a specific weak acid or a group of weak acids, depending on the chemical nature of the side chain R group (R-COOH), are highlighted. The involvement of several transcriptional regulatory networks in the genomic response to different weak acids is discussed, focusing on the regulatory pathways controlled by the transcription factors Msn2p/Msn4p, War1p, Haa1p, Rim101p, and Pdr1p/Pdr3p, which are known to orchestrate weak acid stress response in yeast. The extrapolation of the knowledge gathered in yeast to other eukaryotes is also attempted.

  3. Glucose, Nitrogen, and Phosphate Repletion in Saccharomyces cerevisiae: Common Transcriptional Responses to Different Nutrient Signals

    PubMed Central

    Conway, Michael K.; Grunwald, Douglas; Heideman, Warren

    2012-01-01

    Saccharomyces cerevisiae are able to control growth in response to changes in nutrient availability. The limitation for single macronutrients, including nitrogen (N) and phosphate (P), produces stable arrest in G1/G0. Restoration of the limiting nutrient quickly restores growth. It has been shown that glucose (G) depletion/repletion very rapidly alters the levels of more than 2000 transcripts by at least 2-fold, a large portion of which are involved with either protein production in growth or stress responses in starvation. Although the signals generated by G, N, and P are thought to be quite distinct, we tested the hypothesis that depletion and repletion of any of these three nutrients would affect a common core set of genes as part of a generalized response to conditions that promote growth and quiescence. We found that the response to depletion of G, N, or P produced similar quiescent states with largely similar transcriptomes. As we predicted, repletion of each of the nutrients G, N, or P induced a large (501) common core set of genes and repressed a large (616) common gene set. Each nutrient also produced nutrient-specific transcript changes. The transcriptional responses to each of the three nutrients depended on cAMP and, to a lesser extent, the TOR pathway. All three nutrients stimulated cAMP production within minutes of repletion, and artificially increasing cAMP levels was sufficient to replicate much of the core transcriptional response. The recently identified transceptors Gap1, Mep1, Mep2, and Mep3, as well as Pho84, all played some role in the core transcriptional responses to N or P. As expected, we found some evidence of cross talk between nutrient signals, yet each nutrient sends distinct signals. PMID:22973537

  4. The Janus transcription factor HapX controls fungal adaptation to both iron starvation and iron excess

    PubMed Central

    Gsaller, Fabio; Hortschansky, Peter; Beattie, Sarah R; Klammer, Veronika; Tuppatsch, Katja; Lechner, Beatrix E; Rietzschel, Nicole; Werner, Ernst R; Vogan, Aaron A; Chung, Dawoon; Mühlenhoff, Ulrich; Kato, Masashi; Cramer, Robert A; Brakhage, Axel A; Haas, Hubertus

    2014-01-01

    Balance of physiological levels of iron is essential for every organism. In Aspergillus fumigatus and other fungal pathogens, the transcription factor HapX mediates adaptation to iron limitation and consequently virulence by repressing iron consumption and activating iron uptake. Here, we demonstrate that HapX is also essential for iron resistance via activating vacuolar iron storage. We identified HapX protein domains that are essential for HapX functions during either iron starvation or high-iron conditions. The evolutionary conservation of these domains indicates their wide-spread role in iron sensing. We further demonstrate that a HapX homodimer and the CCAAT-binding complex (CBC) cooperatively bind an evolutionary conserved DNA motif in a target promoter. The latter reveals the mode of discrimination between general CBC and specific HapX/CBC target genes. Collectively, our study uncovers a novel regulatory mechanism mediating both iron resistance and adaptation to iron starvation by the same transcription factor complex with activating and repressing functions depending on ambient iron availability. PMID:25092765

  5. Using graphical adaptive lasso approach to construct transcription factor and microRNA's combinatorial regulatory network in breast cancer.

    PubMed

    Su, Naifang; Dai, Ding; Deng, Chao; Qian, Minping; Deng, Minghua

    2014-06-01

    Discovering the regulation of cancer-related gene is of great importance in cancer biology. Transcription factors and microRNAs are two kinds of crucial regulators in gene expression, and they compose a combinatorial regulatory network with their target genes. Revealing the structure of this network could improve the authors' understanding of gene regulation, and further explore the molecular pathway in cancer. In this article, the authors propose a novel approach graphical adaptive lasso (GALASSO) to construct the regulatory network in breast cancer. GALASSO use a Gaussian graphical model with adaptive lasso penalties to integrate the sequence information as well as gene expression profiles. The simulation study and the experimental profiles verify the accuracy of the authors' approach. The authors further reveal the structure of the regulatory network, and explore the role of feedforward loops in gene regulation. In addition, the authors discuss the combinatorial regulatory effect between transcription factors and microRNAs, and select miR-155 for detailed analysis of microRNA's role in cancer. The proposed GALASSO approach is an efficient method to construct the combinatorial regulatory network. It also provides a new way to integrate different data sources and could find more applications in meta-analysis problem.

  6. Contrasting Transcriptional Responses of a Virulent and an Attenuated Strain of Mycobacterium tuberculosis Infecting Macrophages

    PubMed Central

    Hinds, Jason; Malloff, Chad A.; Bains, Manjeet; Hancock, Robert E.; Lam, Wan L.

    2010-01-01

    Background H37Rv and H37Ra are well-described laboratory strains of Mycobacterium tuberculosis derived from the same parental strain, H37, that show dramatically different pathogenic phenotypes. Methodology/Principal Findings In this study, the transcriptomes of the two strains during axenic growth in broth and during intracellular growth within murine bone-marrow macrophages were compared by whole genome expression profiling. We identified and compared adaptations of either strain upon encountering an intracellular environment, and also contrasted the transcriptomes of the two strains while inside macrophages. In the former comparison, both strains induced genes that would facilitate intracellular survival including those involved in mycobactin synthesis and fatty acid metabolism. However, this response was stronger and more extensive for H37Rv than for H37Ra. This was manifested as the differential expression of a greater number of genes and an increased magnitude of expression for these genes in H37Rv. In comparing intracellular transcriptional signatures, fifty genes were found to be differentially expressed between the strains. Of these fifty, twelve were under control of the PhoPR regulon. Further differences between strains included genes whose products were members of the ESAT-6 family of proteins, or were associated with their secretion. Conclusions/Significance Along with the recent identification of single nucleotide polymorphisms in H37Ra when compared to H37Rv, our demonstration of differential expression of PhoP-regulated and ESX-1 region-related genes during macrophage infection further highlights the significance of these genes in the attenuation of H37Ra. PMID:20548782

  7. Transcript-specific translational regulation in the unfolded protein response of Saccharomyces cerevisiae.

    PubMed

    Payne, Tom; Hanfrey, Colin; Bishop, Amy L; Michael, Anthony J; Avery, Simon V; Archer, David B

    2008-02-20

    Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes stress and induces the unfolded protein response (UPR). Genome-wide analysis of translational regulation in response to the UPR-inducing agent dithiothreitol in Saccharomyces cerevisiae is reported. Microarray analysis, confirmed using qRT-PCR, identified transcript-specific translational regulation. Transcripts with functions in ribosomal biogenesis and assembly were translationally repressed. In contrast, mRNAs from known UPR genes, encoding the UPR transcription factor Hac1p, the ER-oxidoreductase Ero1p and the ER-associated protein degradation (ERAD) protein Der1p, were enriched in polysomal fractions, indicating translational up-regulation. Splicing of HAC1 mRNA is shown to be required for efficient ribosomal loading.

  8. [Kinetics of heat shock response upon disfunction of general transcription factor (HSF)].

    PubMed

    Funikov, S Iu; Garbuz, D G; Zatsepina, O G

    2014-01-01

    The heat shock transcription factor (HSF) is a universal activator of hsp gene expression in eukaryotes. A temperature sensitive Drosophila melanogaster strain (hsf4) with a mutation in the hsfgene was originally described as a strain lacking the transcription of hsp genes in response to heat shock. Our results demonstrated that physiological function of HSF4 is not fully abrogated after heat exposure and is able to recover even after severe heat stress, causing the induction of hsp gene expression. We have studied the kinetics of accumulation and degradation of hsp gene products at transcriptional and translational levels and shown that induction of hsp genes, particularly hsp68, in mutant strain is weaker than that in the wild type. Thus, despite the fact that the HSF4 causes a delayed ac- tivation of hsp, response to heat shock in hsf4 strain remains defective.

  9. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome

    PubMed Central

    Roy, Sujit

    2016-01-01

    ABSTRACT Plants have developed highly efficient and remarkable mechanisms to survive under frequent and extreme environmental stress conditions. Exposure of plants to various stress factors is associated with coordinated changes in gene expression at the transcriptional level and hence transcription factors, such as those belonging to the MYB family play a central role in triggering the right responses. MYB transcription factors have been extensively studied in regard of their involvement in the regulation of a number of such stress responses in plants. Genetic and molecular biological studies, primarily in Arabidopsis, have also begun to unravel the role of MYB transcription factors in the epigenetic regulation of stress responses in plants. This review focuses on the role of MYB transcription factors in the regulation of various stress responses in general, highlighting on recent advances in our understanding of the involvement of this class of transcription factors in epigenetic regulation of stress response in plant genome. PMID:26636625

  10. MUTATIONAL AND TRANSCRIPTIONAL RESPONSE OF SALMONELLA TO MX: CORRELATION OF MUTATIONAL DOSE RESPONSE TO CHANGES IN GENE EXPRESSION

    EPA Science Inventory

    We measured the mutational and transcriptional response of Salmonella TA100 to 3 concentrations of the drinking water mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy2(5H)-furanone (MX). The mutagenicity of MX in strain TA100 was evaluated in a 30min suspension assay, and the mutage...

  11. MUTATIONAL AND TRANSCRIPTIONAL RESPONSES OF SAMMONELLA TO MX: CORRELATION OF MUTATIONAL DOSE RESPONSE TO CHANGES IN GENE EXPRESSION

    EPA Science Inventory

    We measured the mutational and transcriptional response of Salmonella TA 100 to 3 concentrations of a drinking water mutagen -chloro-4-(dichloromethyl)-5-hydroxy2(5H)-furanone (MX). The mutagenicity of MX in strain TA100 was evaluated in a 30min suspension assay, and the mutageni...

  12. [Adaptive immune response and associated trigger factors in atopic dermatitis].

    PubMed

    Heratizadeh, A; Werfel, T; Rösner, L M

    2015-02-01

    Due to a broad variety of extrinsic trigger factors, patients with atopic dermatitis (AD) are characterized by complex response mechanisms of the adaptive immune system. Notably, skin colonization with Staphylococcus aureus seems to be of particular interest since not only exotoxins, but also other proteins of S. aureus can induce specific humoral and cellular immune responses which partially also correlate with the severity of AD. In a subgroup of AD patients Malassezia species induce specific IgE- and T cell-responses which has been demonstrated by atopy patch tests. Moreover, Mala s 13 is characterized by high cross-reactivity to the human corresponding protein (thioredoxin). Induction of a potential autoallergy due to molecular mimicry seems therefore to be relevant for Malassezia-sensitized AD patients. In addition, sensitization mechanisms to autoallergens aside from cross-reactivity are under current investigation. Regarding inhalant allergens, research projects are in progress with the aim to elucidate allergen-specific immune response mechanisms in more depth. For grass-pollen allergens a flare-up of AD following controlled exposure has been observed while for house dust mite-allergens a polarization towards Th2 and Th2/Th17 T cell phenotypes can be observed. These and further findings might finally contribute to the development of specific and effective treatments for aeroallergen-sensitized AD patients. PMID:25532900

  13. Response of pulmonary rapidly adapting receptors during lung inflation.

    PubMed

    Pack, A I; DeLaney, R G

    1983-09-01

    Studies were conducted to establish the factors that determine the response of canine pulmonary rapidly adapting receptors (RAR) during lung inflation. Inflations of the lung were performed at several constant rates during which the activity of individual RAR was counted. At each rate of inflation tested multiple identical tests were performed. The volume of each test inflation was controlled. Data obtained in all tests at each flow rate were averaged to give the mean response of the receptor at that rate of inflation. These studies indicate the major response characteristics of RAR during lung inflation in conditions of relatively constant lung mechanics. First, at a constant rate of inflation, the activity of RAR augments increasingly as the lung is expanded. Second, their activity is influenced markedly by the rate of inflation. However, this sensitivity is nonlinear. Specifically, at low rates of inflation increases in flow rate produce more marked augmentation of RAR firing than do identical increases in flow at higher rates of inflation. The major difference between receptors is in their threshold; however, this too is a function of flow rate. With increasing flow rate the threshold, whether measured as the inflation volume or transpulmonary pressure at which receptors begin to fire, declines. The response of receptors, however, with thresholds over the entire range show the major features discussed above. The present results provide quantitative information which are necessary to begin to eludicate the transduction properties of this receptor type.

  14. Transcriptional dynamics reveal critical roles for non-coding RNAs in the immediate-early response.

    PubMed

    Aitken, Stuart; Magi, Shigeyuki; Alhendi, Ahmad M N; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Daub, Carsten O; Arner, Erik; Carninci, Piero; Forrest, Alistair R R; Hayashizaki, Yoshihide; Khachigian, Levon M; Okada-Hatakeyama, Mariko; Semple, Colin A

    2015-04-01

    The immediate-early response mediates cell fate in response to a variety of extracellular stimuli and is dysregulated in many cancers. However, the specificity of the response across stimuli and cell types, and the roles of non-coding RNAs are not well understood. Using a large collection of densely-sampled time series expression data we have examined the induction of the immediate-early response in unparalleled detail, across cell types and stimuli. We exploit cap analysis of gene expression (CAGE) time series datasets to directly measure promoter activities over time. Using a novel analysis method for time series data we identify transcripts with expression patterns that closely resemble the dynamics of known immediate-early genes (IEGs) and this enables a comprehensive comparative study of these genes and their chromatin state. Surprisingly, these data suggest that the earliest transcriptional responses often involve promoters generating non-coding RNAs, many of which are produced in advance of canonical protein-coding IEGs. IEGs are known to be capable of induction without de novo protein synthesis. Consistent with this, we find that the response of both protein-coding and non-coding RNA IEGs can be explained by their transcriptionally poised, permissive chromatin state prior to stimulation. We also explore the function of non-coding RNAs in the attenuation of the immediate early response in a small RNA sequencing dataset matched to the CAGE data: We identify a novel set of microRNAs responsible for the attenuation of the IEG response in an estrogen receptor positive cancer cell line. Our computational statistical method is well suited to meta-analyses as there is no requirement for transcripts to pass thresholds for significant differential expression between time points, and it is agnostic to the number of time points per dataset. PMID:25885578

  15. Transcriptional dynamics reveal critical roles for non-coding RNAs in the immediate-early response.

    PubMed

    Aitken, Stuart; Magi, Shigeyuki; Alhendi, Ahmad M N; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Daub, Carsten O; Arner, Erik; Carninci, Piero; Forrest, Alistair R R; Hayashizaki, Yoshihide; Khachigian, Levon M; Okada-Hatakeyama, Mariko; Semple, Colin A

    2015-04-01

    The immediate-early response mediates cell fate in response to a variety of extracellular stimuli and is dysregulated in many cancers. However, the specificity of the response across stimuli and cell types, and the roles of non-coding RNAs are not well understood. Using a large collection of densely-sampled time series expression data we have examined the induction of the immediate-early response in unparalleled detail, across cell types and stimuli. We exploit cap analysis of gene expression (CAGE) time series datasets to directly measure promoter activities over time. Using a novel analysis method for time series data we identify transcripts with expression patterns that closely resemble the dynamics of known immediate-early genes (IEGs) and this enables a comprehensive comparative study of these genes and their chromatin state. Surprisingly, these data suggest that the earliest transcriptional responses often involve promoters generating non-coding RNAs, many of which are produced in advance of canonical protein-coding IEGs. IEGs are known to be capable of induction without de novo protein synthesis. Consistent with this, we find that the response of both protein-coding and non-coding RNA IEGs can be explained by their transcriptionally poised, permissive chromatin state prior to stimulation. We also explore the function of non-coding RNAs in the attenuation of the immediate early response in a small RNA sequencing dataset matched to the CAGE data: We identify a novel set of microRNAs responsible for the attenuation of the IEG response in an estrogen receptor positive cancer cell line. Our computational statistical method is well suited to meta-analyses as there is no requirement for transcripts to pass thresholds for significant differential expression between time points, and it is agnostic to the number of time points per dataset.

  16. Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response

    PubMed Central

    Aitken, Stuart; Magi, Shigeyuki; Alhendi, Ahmad M. N.; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Daub, Carsten O.; Arner, Erik; Carninci, Piero; Forrest, Alistair R. R.; Hayashizaki, Yoshihide; Khachigian, Levon M.; Okada-Hatakeyama, Mariko; Semple, Colin A.

    2015-01-01

    The immediate-early response mediates cell fate in response to a variety of extracellular stimuli and is dysregulated in many cancers. However, the specificity of the response across stimuli and cell types, and the roles of non-coding RNAs are not well understood. Using a large collection of densely-sampled time series expression data we have examined the induction of the immediate-early response in unparalleled detail, across cell types and stimuli. We exploit cap analysis of gene expression (CAGE) time series datasets to directly measure promoter activities over time. Using a novel analysis method for time series data we identify transcripts with expression patterns that closely resemble the dynamics of known immediate-early genes (IEGs) and this enables a comprehensive comparative study of these genes and their chromatin state. Surprisingly, these data suggest that the earliest transcriptional responses often involve promoters generating non-coding RNAs, many of which are produced in advance of canonical protein-coding IEGs. IEGs are known to be capable of induction without de novo protein synthesis. Consistent with this, we find that the response of both protein-coding and non-coding RNA IEGs can be explained by their transcriptionally poised, permissive chromatin state prior to stimulation. We also explore the function of non-coding RNAs in the attenuation of the immediate early response in a small RNA sequencing dataset matched to the CAGE data: We identify a novel set of microRNAs responsible for the attenuation of the IEG response in an estrogen receptor positive cancer cell line. Our computational statistical method is well suited to meta-analyses as there is no requirement for transcripts to pass thresholds for significant differential expression between time points, and it is agnostic to the number of time points per dataset. PMID:25885578

  17. The transcriptional response of microbial communities in thawing Alaskan permafrost soils

    PubMed Central

    Coolen, Marco J. L.; Orsi, William D.

    2015-01-01

    Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw. PMID:25852660

  18. The transcriptional response of microbial communities in thawing Alaskan permafrost soils.

    PubMed

    Coolen, Marco J L; Orsi, William D

    2015-01-01

    Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw.

  19. The transcriptional stress response of Candida albicans to weak organic acids.

    PubMed

    Cottier, Fabien; Tan, Alrina Shin Min; Chen, Jinmiao; Lum, Josephine; Zolezzi, Francesca; Poidinger, Michael; Pavelka, Norman

    2015-04-01

    Candida albicans is the most important fungal pathogen of humans, causing severe infections, especially in nosocomial and immunocompromised settings. However, it is also the most prevalent fungus of the normal human microbiome, where it shares its habitat with hundreds of trillions of other microbial cells. Despite weak organic acids (WOAs) being among the most abundant metabolites produced by bacterial microbiota, little is known about their effect on C. albicans. Here we used a sequencing-based profiling strategy to systematically investigate the transcriptional stress response of C. albicans to lactic, acetic, propionic, and butyric acid at several time points after treatment. Our data reveal a complex transcriptional response, with individual WOAs triggering unique gene expression profiles and with important differences between acute and chronic exposure. Despite these dissimilarities, we found significant overlaps between the gene expression changes induced by each WOA, which led us to uncover a core transcriptional response that was largely unrelated to other previously published C. albicans transcriptional stress responses. Genes commonly up-regulated by WOAs were enriched in several iron transporters, which was associated with an overall decrease in intracellular iron concentrations. Moreover, chronic exposure to any WOA lead to down-regulation of RNA synthesis and ribosome biogenesis genes, which resulted in significant reduction of total RNA levels and of ribosomal RNA in particular. In conclusion, this study suggests that gastrointestinal microbiota might directly influence C. albicans physiology via production of WOAs, with possible implications of how this fungus interacts with its host in both health and disease. PMID:25636313

  20. A Regulatory Hierarchy Controls the Dynamic Transcriptional Response to Extreme Oxidative Stress in Archaea

    PubMed Central

    Gulli, Jordan G.; Sharma, Kriti; Schmid, Amy K.

    2015-01-01

    Networks of interacting transcription factors are central to the regulation of cellular responses to abiotic stress. Although the architecture of many such networks has been mapped, their dynamic function remains unclear. Here we address this challenge in archaea, microorganisms possessing transcription factors that resemble those of both eukaryotes and bacteria. Using genome-wide DNA binding location analysis integrated with gene expression and cell physiological data, we demonstrate that a bacterial-type transcription factor (TF), called RosR, and five TFIIB proteins, homologs of eukaryotic TFs, combinatorially regulate over 100 target genes important for the response to extremely high levels of peroxide. These genes include 20 other transcription factors and oxidative damage repair genes. RosR promoter occupancy is surprisingly dynamic, with the pattern of target gene expression during the transition from rapid growth to stress correlating strongly with the pattern of dynamic binding. We conclude that a hierarchical regulatory network orchestrated by TFs of hybrid lineage enables dynamic response and survival under extreme stress in archaea. This raises questions regarding the evolutionary trajectory of gene networks in response to stress. PMID:25569531

  1. Transcriptional analysis of the innate immune response using the avian innate immunity microarray

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The avian innate immunity microarray (AIIM) is a genomics tool designed to study the transcriptional activity of the avian immune response (Cytogenet. Genome Res. 117:139-145, 2007). It is an avian cDNA microarray representing 4,959 avian genes spotted in triplicate. The AIIM contains 25 avian int...

  2. Transcriptional responses to fluctuating thermal regimes underpinning differences in survival in the solitary bee Megachile rotundata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transcriptional responses of insects to long-term, ecologically relevant temperature stress are poorly understood. Long-term exposure to low temperatures, commonly referred to as chilling, can lead to physiological effects collectively known as chill injury. Periodically increasing temperatures ...

  3. Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated salinity imposes osmotic and ion toxicity stresses on living cells and requires a multitude of responses in order to enable plant survival. Building on earlier work profiling transcript levels in rice (Oryza sativa) shoots of FL478, a salt-tolerant indica recombinant inbred line, and IR29, ...

  4. ALTERED TRANSCRIPTIONAL RESPONSES OF MOUSE EMBRYO CULTURES EXPOSED TO BISINDOLYLMALEIMIDE (BIS L)

    EPA Science Inventory

    Altered transcriptional responses in mouse embryos exposed to bisindolylmaleimide I (Bis I) in whole embryo culture

    Edward D. Karoly?*, Judith E. Schmid*, Maria R. Blanton*and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, ...

  5. Transcription of interferon stimulated genes in response to Porcine rubulavirus infection in vitro

    PubMed Central

    Flores-Ocelotl, María del Rosario; Rosas-Murrieta, Nora Hilda; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio; Herrera-Camacho, Irma; Santos-López, Gerardo

    2011-01-01

    Porcine rubulavirus (PoRV) is an emerging virus causing meningo-encephalitis and reproductive failures in pigs. Little is known about the pathogenesis and immune evasion of this virus; therefore research on the mechanisms underlying tissue damage during infection is essential. To explore these mechanisms, the effect of PoRV on the transcription of interferon (IFN) pathway members was analyzed in vitro by semi-quantitative RT-PCR. Ten TCID50 of PoRV stimulated transcription of IFNα, IFNβ, STAT1, STAT2, p48 and OAS genes in neuroblastoma cells, whereas infection with 100 TCID50 did not stimulate transcription levels more than non-infected cells. When the cells were primed with IFNα, infection with 1 TCDI50 of PoRV sufficed to stimulate the transcription of the same genes, but 10 and 100 TCID50 did not modify the transcription level of those genes as compared with non-infected and primed controls. MxA gene transcription was observed only when the cells were primed with IFNα and stimulated with 10 TCID50, whereas 100 TCID50 of PoRV did not modify the MxA transcription level as compared to non-infected and primed cells. Our results show that PoRV replication at low titers stimulates the expression of IFN-responsive genes in neuroblastoma cells, and suggest that replication of PoRV at higher titers inhibits the transcription of several members of the IFN pathway. These findings may contribute to the understanding of the pathogenesis of PoRV. PMID:24031738

  6. Adaptive response of bacteria: Multiple hurdles, cross-tolerance and tools to illustrate underlying mechanisms

    NASA Astrophysics Data System (ADS)

    Paramythiotis, Spyridon; Skandamis, Panagiotis N.

    2015-01-01

    A basic principle in the bacterial resistance against lethal stresses is that exposure of microbial cells to a sublethal hurdle (e.g., pH 5.0, 3% NaCl, or 48°C) may induce resistance to lethal level of the same or different stress. The latter is called "cross-tolerance" and the bacteria experiencing such situations are termed "stress-hardened". The majority of scientific reports on the adaptive responses of bacteria to stresses have recently addressed the need to elucidate the underlying mechanisms controlling bacterial stress response. This in turn, will assist in the efficient application of the multiple hurdle approach, e.g., by selecting specific sanitizers, combining stress treatments or antimicrobials, especially in mild processing, against specific cellular targets, eliminating the possibility of the development of stress adapted cells. Common scientific approaches for studying the link between phenotype (e.g., inactivation, survival, or growth) and physiology is the assessment of global transcriptional changes (up- or down-regulation) or those of certain genes, as well as of proteins involved in certain metabolic pathways, occurring during exposure to stress. This may also be performed in parallel to comparative evaluation of the phenotypic response of wild and mutant strains. The post-genomics research on foodborne pathogens has extended our knowledge beyond their phenotypic behavior and may offer mechanistic insights in the following: (i) the top-down approach (induction), which is the search of the underlying mechanisms (low level) responsible for a specific phenotype based on "-omic" studies; and (ii) the bottom-up approach (deduction), which starts from intracellular level and forms a mechanistic (functional) basis for the cellular response. All these may eventually enable the development of mechanistic microbial models and efficient strategies for controlling survival and growth of pathogens in foods.

  7. Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism.

    PubMed

    Garapati, Prashanth; Feil, Regina; Lunn, John Edward; Van Dijck, Patrick; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-09-01

    Plants respond to low carbon supply by massive reprogramming of the transcriptome and metabolome. We show here that the carbon starvation-induced NAC (for NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) transcription factor Arabidopsis (Arabidopsis thaliana) Transcription Activation Factor1 (ATAF1) plays an important role in this physiological process. We identified TREHALASE1, the only trehalase-encoding gene in Arabidopsis, as a direct downstream target of ATAF1. Overexpression of ATAF1 activates TREHALASE1 expression and leads to reduced trehalose-6-phosphate levels and a sugar starvation metabolome. In accordance with changes in expression of starch biosynthesis- and breakdown-related genes, starch levels are generally reduced in ATAF1 overexpressors but elevated in ataf1 knockout plants. At the global transcriptome level, genes affected by ATAF1 are broadly associated with energy and carbon starvation responses. Furthermore, transcriptional responses triggered by ATAF1 largely overlap with expression patterns observed in plants starved for carbon or energy supply. Collectively, our data highlight the existence of a positively acting feedforward loop between ATAF1 expression, which is induced by carbon starvation, and the depletion of cellular carbon/energy pools that is triggered by the transcriptional regulation of downstream gene regulatory networks by ATAF1.

  8. The elongation factor Spt5 facilitates transcription initiation for rapid induction of inflammatory-response genes

    PubMed Central

    Diamant, Gil; Bahat, Anat; Dikstein, Rivka

    2016-01-01

    A subset of inflammatory-response NF-κB target genes is activated immediately following pro-inflammatory signal. Here we followed the kinetics of primary transcript accumulation after NF-κB activation when the elongation factor Spt5 is knocked down. While elongation rate is unchanged, the transcript synthesis at the 5′-end and at the earliest time points is delayed and reduced, suggesting an unexpected role in early transcription. Investigating the underlying mechanism reveals that the induced TFIID–promoter association is practically abolished by Spt5 depletion. This effect is associated with a decrease in promoter-proximal H3K4me3 and H4K5Ac histone modifications that are differentially required for rapid transcriptional induction. In contrast, the displacement of TFIIE and Mediator, which occurs during promoter escape, is attenuated in the absence of Spt5. Our findings are consistent with a central role of Spt5 in maintenance of TFIID–promoter association and promoter escape to support rapid transcriptional induction and re-initiation of inflammatory-response genes. PMID:27180651

  9. Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism1[OPEN

    PubMed Central

    Garapati, Prashanth; Feil, Regina; Lunn, John Edward; Van Dijck, Patrick; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-01-01

    Plants respond to low carbon supply by massive reprogramming of the transcriptome and metabolome. We show here that the carbon starvation-induced NAC (for NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) transcription factor Arabidopsis (Arabidopsis thaliana) Transcription Activation Factor1 (ATAF1) plays an important role in this physiological process. We identified TREHALASE1, the only trehalase-encoding gene in Arabidopsis, as a direct downstream target of ATAF1. Overexpression of ATAF1 activates TREHALASE1 expression and leads to reduced trehalose-6-phosphate levels and a sugar starvation metabolome. In accordance with changes in expression of starch biosynthesis- and breakdown-related genes, starch levels are generally reduced in ATAF1 overexpressors but elevated in ataf1 knockout plants. At the global transcriptome level, genes affected by ATAF1 are broadly associated with energy and carbon starvation responses. Furthermore, transcriptional responses triggered by ATAF1 largely overlap with expression patterns observed in plants starved for carbon or energy supply. Collectively, our data highlight the existence of a positively acting feedforward loop between ATAF1 expression, which is induced by carbon starvation, and the depletion of cellular carbon/energy pools that is triggered by the transcriptional regulation of downstream gene regulatory networks by ATAF1. PMID:26149570

  10. Coordinate Transcriptional and Translational Repression of p53 by TGFβ1 Impairs the Stress Response

    PubMed Central

    López-Díaz, Fernando J.; Gascard, Philippe; Balakrishnan, Sri Kripa; Zhao, Jianxin; del Rincon, Sonia V.; Spruck, Charles; Tlsty, Thea D.; Emerson, Beverly M.

    2013-01-01

    Summary Cellular stress results in profound changes in RNA and protein synthesis. How cells integrate this intrinsic, p53-centered program with extracellular signals is largely unknown. We demonstrate that TGFβ1 signaling interferes with the stress response through coordinate transcriptional and translational repression of p53 levels, which reduces p53-activated transcription, and apoptosis in precancerous cells. Mechanistically, E2F4 binds constitutively to the TP53 gene and induces transcription. TGFβ1-activated Smads are recruited to a composite Smad/E2F4 element by an E2F4/p107 complex that switches to a Smad co-repressor, which represses TP53 transcription. TGFβ1 also causes dissociation of ribosomal protein RPL26 and elongation factor eEF1A from p53 mRNA, thereby reducing p53 mRNA association with polyribosomes and p53 translation. TGFβ1-signalling is dominant over stress-induced transcription and translation of p53 and prevents stress-imposed downregulation of Smad proteins. Thus, crosstalk between the TGFβ and p53 pathways defines a major node of regulation in the cellular stress response, enhancing drug resistance. PMID:23706820

  11. Developing a Gene Biomarker at the Tipping Point of Adaptive and Adverse Responses in Human Bronchial Epithelial Cells.

    PubMed

    Currier, Jenna M; Cheng, Wan-Yun; Menendez, Daniel; Conolly, Rory; Chorley, Brian N

    2016-01-01

    Determining mechanism-based biomarkers that distinguish adaptive and adverse cellular processes is critical to understanding the health effects of environmental exposures. Shifting from in vivo, low-throughput toxicity studies to high-throughput screening (HTS) paradigms and risk assessment based on in vitro and in silico testing requires utilizing toxicity pathway information to distinguish adverse outcomes from recoverable adaptive events. Little work has focused on oxidative stresses in human airway for the purposes of predicting adverse responses. We hypothesize that early gene expression-mediated molecular changes could be used to delineate adaptive and adverse responses to environmentally-based perturbations. Here, we examined cellular responses of the tracheobronchial airway to zinc (Zn) exposure, a model oxidant. Airway derived BEAS-2B cells exposed to 2-10 μM Zn2+ elicited concentration- and time-dependent cytotoxicity. Normal, adaptive, and cytotoxic Zn2+ exposure conditions were determined with traditional apical endpoints, and differences in global gene expression around the tipping point of the responses were used to delineate underlying molecular mechanisms. Bioinformatic analyses of differentially expressed genes indicate early enrichment of stress signaling pathways, including those mediated by the transcription factors p53 and NRF2. After 4 h, 154 genes were differentially expressed (p < 0.01) between the adaptive and cytotoxic Zn2+ concentrations. Nearly 40% of the biomarker genes were related to the p53 signaling pathway with 30 genes identified as likely direct targets using a database of p53 ChIP-seq studies. Despite similar p53 activation profiles, these data revealed widespread dampening of p53 and NRF2-related genes as early as 4 h after exposure at higher, unrecoverable Zn2+ exposures. Thus, in our model early increased activation of stress response pathways indicated a recoverable adaptive event. Overall, this study highlights the

  12. Developing a Gene Biomarker at the Tipping Point of Adaptive and Adverse Responses in Human Bronchial Epithelial Cells

    PubMed Central

    Currier, Jenna M.; Cheng, Wan-Yun; Menendez, Daniel; Conolly, Rory; Chorley, Brian N.

    2016-01-01

    Determining mechanism-based biomarkers that distinguish adaptive and adverse cellular processes is critical to understanding the health effects of environmental exposures. Shifting from in vivo, low-throughput toxicity studies to high-throughput screening (HTS) paradigms and risk assessment based on in vitro and in silico testing requires utilizing toxicity pathway information to distinguish adverse outcomes from recoverable adaptive events. Little work has focused on oxidative stresses in human airway for the purposes of predicting adverse responses. We hypothesize that early gene expression-mediated molecular changes could be used to delineate adaptive and adverse responses to environmentally-based perturbations. Here, we examined cellular responses of the tracheobronchial airway to zinc (Zn) exposure, a model oxidant. Airway derived BEAS-2B cells exposed to 2–10 μM Zn2+ elicited concentration- and time-dependent cytotoxicity. Normal, adaptive, and cytotoxic Zn2+ exposure conditions were determined with traditional apical endpoints, and differences in global gene expression around the tipping point of the responses were used to delineate underlying molecular mechanisms. Bioinformatic analyses of differentially expressed genes indicate early enrichment of stress signaling pathways, including those mediated by the transcription factors p53 and NRF2. After 4 h, 154 genes were differentially expressed (p < 0.01) between the adaptive and cytotoxic Zn2+ concentrations. Nearly 40% of the biomarker genes were related to the p53 signaling pathway with 30 genes identified as likely direct targets using a database of p53 ChIP-seq studies. Despite similar p53 activation profiles, these data revealed widespread dampening of p53 and NRF2-related genes as early as 4 h after exposure at higher, unrecoverable Zn2+ exposures. Thus, in our model early increased activation of stress response pathways indicated a recoverable adaptive event. Overall, this study highlights the

  13. Development and Standardization of the Diagnostic Adaptive Behavior Scale: Application of Item Response Theory to the Assessment of Adaptive Behavior

    ERIC Educational Resources Information Center

    Tassé, Marc J.; Schalock, Robert L.; Thissen, David; Balboni, Giulia; Bersani, Henry, Jr.; Borthwick-Duffy, Sharon A.; Spreat, Scott; Widaman, Keith F.; Zhang, Dalun; Navas, Patricia

    2016-01-01

    The Diagnostic Adaptive Behavior Scale (DABS) was developed using item response theory (IRT) methods and was constructed to provide the most precise and valid adaptive behavior information at or near the cutoff point of making a decision regarding a diagnosis of intellectual disability. The DABS initial item pool consisted of 260 items. Using IRT…

  14. Previous History of Chronic Stress Changes the Transcriptional Response to Glucocorticoid Challenge in the Dentate Gyrus Region of the Male Rat Hippocampus

    PubMed Central

    van den Oever, Jessica M.E.; Korobko, Oksana B.; Magarinos, Ana Maria; de Kloet, E. Ronald; McEwen, Bruce S.

    2013-01-01

    Chronic stress is a risk factor for several neuropsychiatric diseases, such as depression and psychosis. In response to stress glucocorticoids (GCs) are secreted that bind to mineralocorticoid and glucocorticoid receptors, ligand-activated transcription factors that regulate the transcription of gene networks in the brain necessary for coping with stress, recovery, and adaptation. Chronic stress particularly affects the dentate gyrus (DG) subregion of the hippocampus, causing several functional and morphological changes with consequences for learning and memory, which are likely adaptive but at the same time make DG neurons more vulnerable to subsequent challenges. The aim of this study was to investigate the transcriptional response of DG neurons to a GC challenge in male rats previously exposed to chronic restraint stress (CRS). An intriguing finding of the current study was that having a history of CRS had profound consequences for the subsequent response to acute GC challenge, differentially affecting the expression of several hundreds of genes in the DG compared with challenged nonstressed control animals. This enduring effect of previous stress exposure suggests that epigenetic processes may be involved. In line with this, CRS indeed affected the expression of several genes involved in chromatin structure and epigenetic processes, including Asf1, Ash1l, Hist1h3f, and Tp63. The data presented here indicate that CRS alters the transcriptional response to a subsequent GC injection. We propose that this altered transcriptional potential forms part of the molecular mechanism underlying the enhanced vulnerability for stress-related disorders like depression caused by chronic stress. PMID:23633533

  15. SYSTEMS ANALYSIS OF TRANSCRIPTIONAL DATA PROVIDES INSIGHTS INTO MUSCLE’S BIOLOGICAL RESPONSE TO BOTULINUM TOXIN

    PubMed Central

    MUKUND, KAVITHA; MATHEWSON, MARGIE; MINAMOTO, VIVIANE; WARD, SAMUEL R.; SUBRAMANIAM, SHANKAR; LIEBER, RICHARD L.

    2014-01-01

    Introduction In this study we provide global transcriptomic profiling and analysis of botulinum toxin A (BoNT-A)–treated muscle over a 1-year period. Methods Microarray analysis was performed on rat tibialis anterior muscles from 4 groups (n =4/group) at 1, 4, 12, and 52 weeks after BoNT-A injection compared with saline-injected rats at 12 weeks. Results Dramatic transcriptional adaptation occurred at 1 week with a paradoxical increase in expression of slow and immature isoforms, activation of genes in competing pathways of repair and atrophy, impaired mitochondrial biogenesis, and increased metal ion imbalance. Adaptations of the basal lamina and fibrillar extracellular matrix (ECM) occurred by 4 weeks. The muscle transcriptome returned to its unperturbed state 12 weeks after injection. Conclusion Acute transcriptional adaptations resemble denervated muscle with some subtle differences, but resolved more quickly compared with denervation. Overall, gene expression, across time, correlates with the generally accepted BoNT-A time course and suggests that the direct action of BoNT-A in skeletal muscle is relatively rapid. PMID:24536034

  16. Transcriptional response of hepatic largemouth bass (Micropterus salmoides) mRNA upon exposure to environmental contaminants.

    PubMed

    Sanchez, Brian C; Carter, Barbara; Hammers, Heather R; Sepúlveda, María S

    2011-03-01

    Microarrays enable gene transcript expression changes in near-whole genomes to be assessed in response to environmental stimuli. We utilized oligonucleotide microarrays and subsequent gene set enrichment analysis (GSEA) to assess patterns of gene expression changes in male largemouth bass (Micropterus salmoides) hepatic tissues after a 96 h exposure to common environmental contaminants. Fish were exposed to atrazine, cadmium chloride, PCB 126, phenanthrene and toxaphene via intraperitoneal injection with target body burdens of 3.0, 0.00067, 2.5, 50 and 100 µg g(-1), respectively. This was conducted in an effort to identify potential biomarkers of exposure. The expressions of 4, 126, 118, 137 and 58 mRNA transcripts were significantly (P ≤ 0.001, fold change ≥2×) affected by exposure to atrazine, cadmium chloride, PCB 126, phenanthrene and toxaphene exposures, respectively. GSEA revealed that none, four, five, five and three biological function gene ontology categories were significantly influenced by exposure to these chemicals, respectively. We observed that cadmium chloride elicited ethanol metabolism responses, and along with PCB 126 and phenanthrene affected transcripts associated with protein biosynthesis. PCB 126, phenanthrene and toxaphene also influenced one-carbon compound metabolism while PCB 126 and phenanthrene affected mRNA transcription and mRNA export from the nucleus and may have induced an antiestrogenic response. Atrazine was found to alter the expression of few hepatic transcripts. This work has highlighted several biological processes of interest that may be helpful in the development of gene transcript biomarkers of chemical exposure in fish.

  17. Methyl jasmonate-elicited transcriptional responses and pentacyclic triterpene biosynthesis in sweet basil.

    PubMed

    Misra, Rajesh Chandra; Maiti, Protiti; Chanotiya, Chandan Singh; Shanker, Karuna; Ghosh, Sumit

    2014-02-01

    Sweet basil (Ocimum basilicum) is well known for its diverse pharmacological properties and has been widely used in traditional medicine for the treatment of various ailments. Although a variety of secondary metabolites with potent biological activities are identified, our understanding of the biosynthetic pathways that produce them has remained largely incomplete. We studied transcriptional changes in sweet basil after methyl jasmonate (MeJA) treatment, which is considered an elicitor of secondary metabolites, and identified 388 candidate MeJA-responsive unique transcripts. Transcript analysis suggests that in addition to controlling its own biosynthesis and stress responses, MeJA up-regulates transcripts of the various secondary metabolic pathways, including terpenoids and phenylpropanoids/flavonoids. Furthermore, combined transcript and metabolite analysis revealed MeJA-induced biosynthesis of the medicinally important ursane-type and oleanane-type pentacyclic triterpenes. Two MeJA-responsive oxidosqualene cyclases (ObAS1 and ObAS2) that encode for 761- and 765-amino acid proteins, respectively, were identified and characterized. Functional expressions of ObAS1 and ObAS2 in Saccharomyces cerevisiae led to the production of β-amyrin and α-amyrin, the direct precursors of oleanane-type and ursane-type pentacyclic triterpenes, respectively. ObAS1 was identified as a β-amyrin synthase, whereas ObAS2 was a mixed amyrin synthase that produced both α-amyrin and β-amyrin but had a product preference for α-amyrin. Moreover, transcript and metabolite analysis shed light on the spatiotemporal regulation of pentacyclic triterpene biosynthesis in sweet basil. Taken together, these results will be helpful in elucidating the secondary metabolic pathways of sweet basil and developing metabolic engineering strategies for enhanced production of pentacyclic triterpenes. PMID:24367017

  18. Transcriptome Analysis of Enterococcus faecalis during Mammalian Infection Shows Cells Undergo Adaptation and Exist in a Stringent Response State

    PubMed Central

    Frank, Kristi L.; Colomer-Winter, Cristina; Grindle, Suzanne M.; Lemos, José A.; Schlievert, Patrick M.; Dunny, Gary M.

    2014-01-01

    As both a commensal and a major cause of healthcare-associated infections in humans, Enterococcus faecalis is a remarkably adaptable organism. We investigated how E. faecalis adapts in a mammalian host as a pathogen by characterizing changes in the transcriptome during infection in a rabbit model of subdermal abscess formation using transcriptional microarrays. The microarray experiments detected 222 and 291 differentially regulated genes in E. faecalis OG1RF at two and eight hours after subdermal chamber inoculation, respectively. The profile of significantly regulated genes at two hours post-inoculation included genes involved in stress response, metabolism, nutrient acquisition, and cell surface components, suggesting genome-wide adaptation to growth in an altered environment. At eight hours post-inoculation, 88% of the differentially expressed genes were down-regulated and matched a transcriptional profile consistent with a (p)ppGpp-mediated stringent response. Subsequent subdermal abscess infections with E. faecalis mutants lacking the (p)ppGpp synthetase/hydrolase RSH, the small synthetase RelQ, or both enzymes, suggest that intracellular (p)ppGpp levels, but not stringent response activation, influence persistence in the model. The ability of cells to synthesize (p)ppGpp was also found to be important for growth in human serum and whole blood. The data presented in this report provide the first genome-wide insights on E. faecalis in vivo gene expression and regulation measured by transcriptional profiling during infection in a mammalian host and show that (p)ppGpp levels affect viability of E. faecalis in multiple conditions relevant to mammalian infection. The subdermal abscess model can serve as a novel experimental system for studying the E. faecalis stringent response in the context of the mammalian immune system. PMID:25545155

  19. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework.

    PubMed

    Calabrese, Edward J; Bachmann, Kenneth A; Bailer, A John; Bolger, P Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M George; Chiueh, Chuang C; Clarkson, Thomas W; Cook, Ralph R; Diamond, David M; Doolittle, David J; Dorato, Michael A; Duke, Stephen O; Feinendegen, Ludwig; Gardner, Donald E; Hart, Ronald W; Hastings, Kenneth L; Hayes, A Wallace; Hoffmann, George R; Ives, John A; Jaworowski, Zbigniew; Johnson, Thomas E; Jonas, Wayne B; Kaminski, Norbert E; Keller, John G; Klaunig, James E; Knudsen, Thomas B; Kozumbo, Walter J; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I; Masoro, Edward J; McClellan, Roger O; Mehendale, Harihara M; Mothersill, Carmel; Newlin, David B; Nigg, Herbert N; Oehme, Frederick W; Phalen, Robert F; Philbert, Martin A; Rattan, Suresh I S; Riviere, Jim E; Rodricks, Joseph; Sapolsky, Robert M; Scott, Bobby R; Seymour, Colin; Sinclair, David A; Smith-Sonneborn, Joan; Snow, Elizabeth T; Spear, Linda; Stevenson, Donald E; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M; Mattson, Mark P

    2007-07-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines.

  20. Offspring's hydromineral adaptive responses to maternal undernutrition during lactation.

    PubMed

    Nuñez, P; Arguelles, J; Perillan, C

    2015-12-01

    Early development, throughout gestation and lactation, represents a period of extreme vulnerability during which susceptibility to later metabolic and cardiovascular injuries increases. Maternal diet is a major determinant of the foetal and newborn developmental environment; maternal undernutrition may result in adaptive responses leading to structural and molecular alterations in various organs and tissues, such as the brain and kidney. New nephron anlages appear in the renal cortex up to postnatal day 4 and the last anlages to be formed develop into functional nephrons by postnatal day 10 in rodents. We used a model of undernutrition in rat dams that were food-restricted during the first half of the lactation period in order to study the long-term effects of maternal diet on renal development, behaviour and neural hydromineral control mechanisms. The study showed that after 40% food restriction in maternal dietary intake, the dipsogenic responses for both water and salt intake were not altered; Fos expression in brain areas investigated involved in hydromineral homeostasis control was always higher in the offspring in response to isoproterenol. This was accompanied by normal plasma osmolality changes and typical renal histology. These results suggest that the mechanisms for the control of hydromineral balance were unaffected in the offspring of these 40% food-restricted mothers. Undernutrition of the pups may not be as drastic as suggested by dams' restriction. PMID:26234469

  1. Growth responses and adaptations of Fraxinus pennsylvanica seedlings to flooding

    SciTech Connect

    Sena Gomes, A.R.; Kozlowski, T.T.

    1980-01-01

    Flooding induced several physiological and morphological changes in Fraxinus pennsylvanica seedlings, with stomatal closure among the earliest responses. Subsequent changes included: reduction in dry weight increment of roots, stems, and leaves; formation of hypertrophied lenticles and production of adventitious roots on submerged portions of the stem above the soil line; leaf necrosis; and leaf abscission. After 15 days of stomatal closure as a results of flooding, stomata began to reopen progressively until stomata aperture was similar in flooded and unflooded plants. Adventitious roots began to form at about the time stomatal reopening began. As more adventitious roots formed, elongated, and branched, the stomata opened further. The formation of adventitious roots was in important adaptation for flooding tolerance as shown by the high efficiency of adventitious roots in absorption of water and in high correlation between the production of adventitious roots and stomatal reopening. 6 figures, 2 tables.

  2. Plant Heat Adaptation: priming in response to heat stress

    PubMed Central

    Bäurle, Isabel

    2016-01-01

    Abiotic stress is a major threat to crop yield stability. Plants can be primed by heat stress, which enables them to subsequently survive temperatures that are lethal to a plant in the naïve state. This is a rapid response that has been known for many years and that is highly conserved across kingdoms. Interestingly, recent studies in Arabidopsis and rice show that this thermo-priming lasts for several days at normal growth temperatures and that it is an active process that is genetically separable from the priming itself. This is referred to as maintenance of acquired thermotolerance or heat stress memory. Such a memory conceivably has adaptive advantages under natural conditions, where heat stress often is chronic or recurring. In this review, I will focus on recent advances in the mechanistic understanding of heat stress memory. PMID:27134736

  3. Chk2 regulates transcription-independent p53-mediated apoptosis in response to DNA damage

    SciTech Connect

    Chen Chen; Shimizu, Shigeomi; Tsujimoto, Yoshihide; Motoyama, Noboru . E-mail: motoyama@nils.go.jp

    2005-07-29

    The tumor suppressor protein p53 plays a central role in the induction of apoptosis in response to genotoxic stress. The protein kinase Chk2 is an important regulator of p53 function in mammalian cells exposed to ionizing radiation (IR). Cells derived from Chk2-deficient mice are resistant to the induction of apoptosis by IR, and this resistance has been thought to be a result of the defective transcriptional activation of p53 target genes. It was recently shown, however, that p53 itself and histone H1.2 translocate to mitochondria and thereby induces apoptosis in a transcription-independent manner in response to IR. We have now examined whether Chk2 also regulates the transcription-independent induction of apoptosis by p53 and histone H1.2. The reduced ability of IR to induce p53 stabilization in Chk2-deficient thymocytes was associated with a marked impairment of p53 and histone H1 translocation to mitochondria. These results suggest that Chk2 regulates the transcription-independent mechanism of p53-mediated apoptosis by inducing stabilization of p53 in response to IR.

  4. c-Abl modulates AICD dependent cellular responses: transcriptional induction and apoptosis.

    PubMed

    Vázquez, Mary C; Vargas, Lina M; Inestrosa, Nibaldo C; Alvarez, Alejandra R

    2009-07-01

    APP intracellular domain (AICD) has been proposed as a transcriptional inductor that moves to the nucleus with the adaptor protein Fe65 and regulates transcription. The two proteins, APP and Fe65, can be phosphorylated by c-Abl kinase. Neprilysin has been proposed as a target gene for AICD. We found that AICD expression is decreased by treatment with STI-571, a c-Abl inhibitor, suggesting a modulation of AICD transcription by c-Abl kinase. We observed interaction between c-Abl kinase, the AICD fragment and the Fe65 adaptor protein. In addition, STI-571 reduces apoptosis in APPSw, and the apoptotic response induced by Fe65 over-expression was inhibited by with the expression of a kinase dead (KD) c-Abl and enhanced by over-expression of WT-c-Abl. However, in the APPSw cells, the ability of the KD-c-Abl to protect against Fe65 was reduced. Finally, in APPSw clone, we detected higher trans-activation of the pro-apoptotic p73 isoform, TAp73 promoter. Our results show that c-Abl modulates AICD dependent cellular responses, transcriptional induction as well as the apoptotic response, which could participate in the onset and progression of the neurodegenerative pathology, observed in Alzheimer's disease (AD).

  5. Genetic control of estrogen-regulated transcriptional and cellular responses in mouse uterus

    PubMed Central

    Wall, Emma H.; Hewitt, Sylvia C.; Liu, Liwen; del Rio, Roxana; Case, Laure K.; Lin, Chin-Yo; Korach, Kenneth S.; Teuscher, Cory

    2013-01-01

    The uterotropic response of the uterus to 17β-estradiol (E2) is genetically controlled, with marked variation observed depending on the mouse strain studied. Previous genetic studies from our laboratory using inbred mice that are high [C57BL/6J (B6)] or low [C3H/HeJ (C3H)] responders to E2 led to the identification of quantitative trait (QT) loci associated with phenotypic variation in uterine growth and leukocyte infiltration. The mechanisms underlying differential responsiveness to E2, and the genes involved, are unknown. Therefore, we used a microarray approach to show association of distinct E2-regulated transcriptional signatures with genetically controlled high and low responses to E2 and their segregation in (C57BL/6J×C3H/HeJ) F1 hybrids. Among the 6664 E2-regulated transcripts, analysis of cellular functions of those that were strain specific indicated C3H-selective enrichment of apoptosis, consistent with a 7-fold increase in the apoptosis indicator CASP3, and a 2.4-fold decrease in the apoptosis inhibitor Naip1 (Birc1a) in C3H vs. B6 following treatment with E2. In addition, several differentially expressed transcripts reside within our previously identified QT loci, including the ERα-tethering factor Runx1, demonstrated to enhance E2-mediated transcript regulation. The level of RUNX1 in uterine epithelial cells was shown to be 3.5-fold greater in B6 compared to C3H. Our novel insights into the mechanisms underlying the genetic control of tissue sensitivity to estrogen have great potential to advance understanding of individualized effects in physiological and disease states.—Wall, E. H., Hewitt, S. C., Liu, L., del Rio, R., Case, L. K., Lin, C.-Y., Korach, K. S., Teuscher, C. Genetic control of estrogen-regulated transcriptional and cellular responses in mouse uterus. PMID:23371066

  6. Transcriptional responses in Atlantic salmon (Salmo salar) exposed to deltamethrin, alone or in combination with azamethiphos.

    PubMed

    Olsvik, Pål A; Ørnsrud, Robin; Lunestad, Bjørn Tore; Steine, Nils; Fredriksen, Børge Nilsen

    2014-05-01

    Recently, Atlantic salmon (Salmo salar) fish farmers have applied a combination of deltamethrin and azamethiphos in high-concentration and short-duration immersion treatment to improve protection against sea-lice (Lepeophtheirus sp.). In this work we aimed to study the effects of deltamethrin, alone or in combination with azamethiphos, on the transcription of stress and detoxification marker genes. Atlantic salmon kept at 12°C (one group was also kept at 4-5°C) were treated with deltamethrin alone or in combination with azamethiphos for a total of 40min, and gill and liver tissue harvested for transcriptional analysis 2 and 24h post treatment. No lethality was observed during the experiment. The result showed that deltamethrin, alone or in combination with azamethiphos, affected the transcriptional levels of several oxidative stress markers, including MnSOD (SOD2) and HSP70 (HSPA8) in the liver, and GPX1, CAT, MnSOD, HSP70 and GSTP1 in the gills. Significant responses for CASP3B, BCLX, IGFBP1B and ATP1A1 (Na-K-ATPase a1b) by some of the treatments suggest that the pharmaceutical drugs may affect apoptosis, growth and ion regulation mechanisms. In fish kept at 4-5°C, different effects were observed, suggesting a temperature-dependent response. In conclusion, the observed responses indicate that short-term exposure to deltamethrin has a profound effect on transcription of the evaluated markers in gills and liver of fish. Co-treatment with azamethiphos appears to have small mitigating effects on the transcriptional response caused by deltamethrin exposure alone.

  7. The trichomonad cysteine proteinase TVCP4 transcript contains an iron-responsive element.

    PubMed

    Solano-González, Eduardo; Burrola-Barraza, Eduviges; León-Sicairos, Claudia; Avila-González, Leticia; Gutiérrez-Escolano, Lorena; Ortega-López, Jaime; Arroyo, Rossana

    2007-06-26

    The differential expression of the Trichomonas vaginalis cysteine proteinase TVCP4 by iron at the protein synthesis level and the prediction of an iron-responsive element (IRE)-like stem-loop structure at the 5'-region of the T. vaginalis cysteine proteinase 4 gene (tvcp4) mRNA suggest a post-transcriptional mechanism of iron regulation in trichomonads mediated by an IRE/IRP-like system. Gel-shifting, UV cross-linking and competition experiments demonstrated that this IRE-like structure specifically bound to human iron regulatory protein-1. IRP-like cytoplasmic proteins that bound human ferritin IRE sequence transcripts at low-iron conditions were also found in trichomonads. Thus, a post-transcriptional regulatory mechanism by iron for tvcp4 mediated by IRE/IRP-like interactions was found. PMID:17553495

  8. The trichomonad cysteine proteinase TVCP4 transcript contains an iron-responsive element.

    PubMed

    Solano-González, Eduardo; Burrola-Barraza, Eduviges; León-Sicairos, Claudia; Avila-González, Leticia; Gutiérrez-Escolano, Lorena; Ortega-López, Jaime; Arroyo, Rossana

    2007-06-26

    The differential expression of the Trichomonas vaginalis cysteine proteinase TVCP4 by iron at the protein synthesis level and the prediction of an iron-responsive element (IRE)-like stem-loop structure at the 5'-region of the T. vaginalis cysteine proteinase 4 gene (tvcp4) mRNA suggest a post-transcriptional mechanism of iron regulation in trichomonads mediated by an IRE/IRP-like system. Gel-shifting, UV cross-linking and competition experiments demonstrated that this IRE-like structure specifically bound to human iron regulatory protein-1. IRP-like cytoplasmic proteins that bound human ferritin IRE sequence transcripts at low-iron conditions were also found in trichomonads. Thus, a post-transcriptional regulatory mechanism by iron for tvcp4 mediated by IRE/IRP-like interactions was found.

  9. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection.

    PubMed

    Huh, Sung Un; Choi, La Mee; Lee, Gil-Je; Kim, Young Jin; Paek, Kyung-Hee

    2012-12-01

    WRKY transcription factors regulate biotic, abiotic, and developmental processes. In terms of plant defense, WRKY factors have important roles as positive and negative regulators via transcriptional regulation or protein-protein interaction. Here, we report the characterization of the gene encoding Capsicum annuum WRKY transcription factor d (CaWRKYd) isolated from microarray analysis in the Tobacco mosaic virus (TMV)-P(0)-inoculated hot pepper plants. CaWRKYd belongs to the WRKY IIa group, a very small clade in the WRKY subfamily, and WRKY IIa group has positive/negative regulatory roles in Arabidopsis and rice. CaWRKYd transcripts were induced by various plant defense-related hormone treatments and TMV-P(0) inoculation. Silencing of CaWRKYd affected TMV-P(0)-mediated hypersensitive response (HR) cell death and accumulation of TMV-P(0) coat protein in local and systemic leaves. Furthermore, expression of some pathogenesis-related (PR) genes and HR-related genes was reduced in the CaWRKYd-silenced plants compared with TRV2 vector control plants upon TMV-P(0) inoculation. CaWRKYd was confirmed to bind to the W-box. Thus CaWRKYd is a newly identified Capsicum annuum WRKY transcription factor that appears to be involved in TMV-P(0)-mediated HR cell death by regulating downstream gene expression.

  10. The Unfolded Protein Response in the Protozoan Parasite Toxoplasma gondii Features Translational and Transcriptional Control

    PubMed Central

    Joyce, Bradley R.; Tampaki, Zoi; Kim, Kami

    2013-01-01

    The unfolded protein response (UPR) is an important regulatory network that responds to perturbations in protein homeostasis in the endoplasmic reticulum (ER). In mammalian cells, the UPR features translational and transcriptional mechanisms of gene expression aimed at restoring proteostatic control. A central feature of the UPR is phosphorylation of the α subunit of eukaryotic initiation factor-2 (eIF2) by PERK (EIF2AK3/PEK), which reduces the influx of nascent proteins into the ER by lowering global protein synthesis, coincident with preferential translation of key transcription activators of genes that function to expand the processing capacity of this secretory organelle. Upon ER stress, the apicomplexan parasite Toxoplasma gondii is known to induce phosphorylation of Toxoplasma eIF2α and lower translation initiation. To characterize the nature of the ensuing UPR in this parasite, we carried out microarray analyses to measure the changes in the transcriptome and in translational control during ER stress. We determined that a collection of transcripts linked with the secretory process are induced in response to ER stress, supporting the idea that a transcriptional induction phase of the UPR occurs in Toxoplasma. Furthermore, we determined that about 500 gene transcripts showed enhanced association with translating ribosomes during ER stress. Many of these target genes are suggested to be involved in gene expression, including JmjC5, which continues to be actively translated during ER stress. This study indicates that Toxoplasma triggers a UPR during ER stress that features both translational and transcriptional regulatory mechanisms, which is likely to be important for parasite invasion and development. PMID:23666622

  11. A non canonical subtilase attenuates the transcriptional activation of defence responses in Arabidopsis thaliana

    PubMed Central

    Serrano, Irene; Buscaill, Pierre; Audran, Corinne; Pouzet, Cécile; Jauneau, Alain; Rivas, Susana

    2016-01-01

    Proteases play crucial physiological functions in all organisms by controlling the lifetime of proteins. Here, we identified an atypical protease of the subtilase family [SBT5.2(b)] that attenuates the transcriptional activation of plant defence independently of its protease activity. The SBT5.2 gene produces two distinct transcripts encoding a canonical secreted subtilase [SBT5.2(a)] and an intracellular protein [SBT5.2(b)]. Concomitant to SBT5.2(a) downregulation, SBT5.2(b) expression is induced after bacterial inoculation. SBT5.2(b) localizes to endosomes where it interacts with and retains the defence-related transcription factor MYB30. Nuclear exclusion of MYB30 results in its reduced transcriptional activation and, thus, suppressed resistance. sbt5.2 mutants, with abolished SBT5.2(a) and SBT5.2(b) expression, display enhanced defence that is suppressed in a myb30 mutant background. Moreover, overexpression of SBT5.2(b), but not SBT5.2(a), in sbt5.2 plants reverts the phenotypes displayed by sbt5.2 mutants. Overall, we uncover a regulatory mode of the transcriptional activation of defence responses previously undescribed in eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.19755.001 PMID:27685353

  12. Transcriptional Responses in the Hemiparasitic Plant Triphysaria versicolor to Host Plant Signals1[w

    PubMed Central

    Matvienko, Marta; Torres, Manuel J.; Yoder, John I.

    2001-01-01

    Parasitic plants in the Scrophulariaceae use chemicals released by host plant roots to signal developmental processes critical for heterotrophy. Haustoria, parasitic plant structures that attach to and invade host roots, develop on roots of the hemiparasitic plant Triphysaria versicolor within a few hours of exposure to either maize (Zea mays) root exudate or purified haustoria-inducing factors. We prepared a normalized, subtractive cDNA library enriched for transcripts differentially abundant in T. versicolor root tips treated with the allelopathic quinone 2,6-dimethoxybenzoquinone (DMBQ). Northern analyses estimated that about 10% of the cDNAs represent transcripts strongly up-regulated in roots exposed to DMBQ. Northern and reverse northern analyses demonstrated that most DMBQ-responsive messages were similarly up-regulated in T. versicolor roots exposed to maize root exudates. From the cDNA sequences we assembled a unigene set of 137 distinct transcripts and assigned functions by homology comparisons. Many of the proteins encoded by the transcripts are predicted to function in quinone detoxification, whereas others are more likely associated with haustorium development. The identification of genes transcriptionally regulated by haustorium-inducing factors provides a framework for dissecting genetic pathways recruited by parasitic plants during the transition to heterotrophic growth. PMID:11553755

  13. A Network of Paralogous Stress Response Transcription Factors in the Human Pathogen Candida glabrata

    PubMed Central

    Merhej, Jawad; Thiebaut, Antonin; Blugeon, Corinne; Pouch, Juliette; Ali Chaouche, Mohammed El Amine; Camadro, Jean-Michel; Le Crom, Stéphane; Lelandais, Gaëlle; Devaux, Frédéric

    2016-01-01

    The yeast Candida glabrata has become the second cause of systemic candidemia in humans. However, relatively few genome-wide studies have been conducted in this organism and our knowledge of its transcriptional regulatory network is quite limited. In the present work, we combined genome-wide chromatin immunoprecipitation (ChIP-seq), transcriptome analyses, and DNA binding motif predictions to describe the regulatory interactions of the seven Yap (Yeast AP1) transcription factors of C. glabrata. We described a transcriptional network containing 255 regulatory interactions and 309 potential target genes. We predicted with high confidence the preferred DNA binding sites for 5 of the 7 CgYaps and showed a strong conservation of the Yap DNA binding properties between S. cerevisiae and C. glabrata. We provided reliable functional annotation for 3 of the 7 Yaps and identified for Yap1 and Yap5 a core regulon which is conserved in S. cerevisiae, C. glabrata, and C. albicans. We uncovered new roles for CgYap7 in the regulation of iron-sulfur cluster biogenesis, for CgYap1 in the regulation of heme biosynthesis and for CgYap5 in the repression of GRX4 in response to iron starvation. These transcription factors define an interconnected transcriptional network at the cross-roads between redox homeostasis, oxygen consumption, and iron metabolism. PMID:27242683

  14. A LysR-Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut.

    PubMed

    Vadyvaloo, Viveka; Hinz, Angela K

    2015-01-01

    Yersinia pestis has evolved as a clonal variant of Yersinia pseudotuberculosis to cause flea-borne biofilm-mediated transmission of the bubonic plague. The LysR-type transcriptional regulator, RovM, is highly induced only during Y. pestis infection of the flea host. RovM homologs in other pathogens regulate biofilm formation, nutrient sensing, and virulence; including in Y. pseudotuberculosis, where RovM represses the major virulence factor, RovA. Here the role that RovM plays during flea infection was investigated using a Y. pestis KIM6+ strain deleted of rovM, ΔrovM. The ΔrovM mutant strain was not affected in characteristic biofilm gut blockage, growth, or survival during single infection of fleas. Nonetheless, during a co-infection of fleas, the ΔrovM mutant exhibited a significant competitive fitness defect relative to the wild type strain. This competitive fitness defect was restored as a fitness advantage relative to the wild type in a ΔrovM mutant complemented in trans to over-express rovM. Consistent with this, Y. pestis strains, producing elevated transcriptional levels of rovM, displayed higher growth rates, and differential ability to form biofilm in response to specific nutrients in comparison to the wild type. In addition, we demonstrated that rovA was not repressed by RovM in fleas, but that elevated transcriptional levels of rovM in vitro correlated with repression of rovA under specific nutritional conditions. Collectively, these findings suggest that RovM likely senses specific nutrient cues in the flea gut environment, and accordingly directs metabolic adaptation to enhance flea gut colonization by Y. pestis.

  15. A LysR-Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut

    PubMed Central

    Vadyvaloo, Viveka; Hinz, Angela K.

    2015-01-01

    Yersinia pestis has evolved as a clonal variant of Yersinia pseudotuberculosis to cause flea-borne biofilm–mediated transmission of the bubonic plague. The LysR-type transcriptional regulator, RovM, is highly induced only during Y. pestis infection of the flea host. RovM homologs in other pathogens regulate biofilm formation, nutrient sensing, and virulence; including in Y. pseudotuberculosis, where RovM represses the major virulence factor, RovA. Here the role that RovM plays during flea infection was investigated using a Y. pestis KIM6+ strain deleted of rovM, ΔrovM. The ΔrovM mutant strain was not affected in characteristic biofilm gut blockage, growth, or survival during single infection of fleas. Nonetheless, during a co-infection of fleas, the ΔrovM mutant exhibited a significant competitive fitness defect relative to the wild type strain. This competitive fitness defect was restored as a fitness advantage relative to the wild type in a ΔrovM mutant complemented in trans to over-express rovM. Consistent with this, Y. pestis strains, producing elevated transcriptional levels of rovM, displayed higher growth rates, and differential ability to form biofilm in response to specific nutrients in comparison to the wild type. In addition, we demonstrated that rovA was not repressed by RovM in fleas, but that elevated transcriptional levels of rovM in vitro correlated with repression of rovA under specific nutritional conditions. Collectively, these findings suggest that RovM likely senses specific nutrient cues in the flea gut environment, and accordingly directs metabolic adaptation to enhance flea gut colonization by Y. pestis. PMID:26348850

  16. A trihelix DNA binding protein counterbalances hypoxia-responsive transcriptional activation in Arabidopsis.

    PubMed

    Giuntoli, Beatrice; Lee, Seung Cho; Licausi, Francesco; Kosmacz, Monika; Oosumi, Teruko; van Dongen, Joost T; Bailey-Serres, Julia; Perata, Pierdomenico

    2014-09-01

    Transcriptional activation in response to hypoxia in plants is orchestrated by ethylene-responsive factor group VII (ERF-VII) transcription factors, which are stable during hypoxia but destabilized during normoxia through their targeting to the N-end rule pathway of selective proteolysis. Whereas the conditionally expressed ERF-VII genes enable effective flooding survival strategies in rice, the constitutive accumulation of N-end-rule-insensitive versions of the Arabidopsis thaliana ERF-VII factor RAP2.12 is maladaptive. This suggests that transcriptional activation under hypoxia that leads to anaerobic metabolism may need to be fine-tuned. However, it is presently unknown whether a counterbalance of RAP2.12 exists. Genome-wide transcriptome analyses identified an uncharacterized trihelix transcription factor gene, which we named HYPOXIA RESPONSE ATTENUATOR1 (HRA1), as highly up-regulated by hypoxia. HRA1 counteracts the induction of core low oxygen-responsive genes and transcriptional activation of hypoxia-responsive promoters by RAP2.12. By yeast-two-hybrid assays and chromatin immunoprecipitation we demonstrated that HRA1 interacts with the RAP2.12 protein but with only a few genomic DNA regions from hypoxia-regulated genes, indicating that HRA1 modulates RAP2.12 through protein-protein interaction. Comparison of the low oxygen response of tissues characterized by different levels of metabolic hypoxia (i.e., the shoot apical zone versus mature rosette leaves) revealed that the antagonistic interplay between RAP2.12 and HRA1 enables a flexible response to fluctuating hypoxia and is of importance to stress survival. In Arabidopsis, an effective low oxygen-sensing response requires RAP2.12 stabilization followed by HRA1 induction to modulate the extent of the anaerobic response by negative feedback regulation of RAP2.12. This mechanism is crucial for plant survival under suboptimal oxygenation conditions. The discovery of the feedback loop regulating the oxygen

  17. Adaptation of Organisms by Resonance of RNA Transcription with the Cellular Redox Cycle

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor

    2012-01-01

    Sequence variation in organisms differs across the genome and the majority of mutations are caused by oxidation, yet its origin is not fully understood. It has also been shown that the reduction-oxidation reaction cycle is the fundamental biochemical cycle that coordinates the timing of all biochemical processes in that cell, including energy production, DNA replication, and RNA transcription. It is shown that the temporal resonance of transcriptome biosynthesis with the oscillating binary state of the reduction-oxidation reaction cycle serves as a basis for non-random sequence variation at specific genome-wide coordinates that change faster than by accumulation of chance mutations. This work demonstrates evidence for a universal, persistent and iterative feedback mechanism between the environment and heredity, whereby acquired variation between cell divisions can outweigh inherited variation.

  18. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  19. Control of the Adaptive Immune Response by Tumor Vasculature

    PubMed Central

    Mauge, Laetitia; Terme, Magali; Tartour, Eric; Helley, Dominique

    2014-01-01

    The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by an abnormal vessel structure and permeability, and by a specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intra-tumoral immune responses and contribute to the development of intra-tumoral immunosuppression, which is a major mechanism for promoting the development, progression, and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of anti-tumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy. PMID:24734218

  20. Administration of DNA Encoding the Interleukin-27 Gene Augments Antitumour Responses through Non-adaptive Immunity.

    PubMed

    Li, Q; Sato, A; Shimozato, O; Shingyoji, M; Tada, Y; Tatsumi, K; Shimada, H; Hiroshima, K; Tagawa, M

    2015-10-01

    DNA-mediated immunization of a tumour antigen is a possible immunotherapy for cancer, and interleukin (IL)-27 has diverse functions in adaptive immunity. In this study, we examined whether IL-27 DNA administration enhanced antitumour effects in mice vaccinated with DNA encoding a putative tumour antigen, β-galactosidase (β-gal). An intramuscular injection of cardiotoxin before DNA administration facilitated the exogenous gene expression. In mice received β-gal and IL-27 DNA, growth of β-gal-positive P815 tumours was retarded and survival of the mice was prolonged. Development of β-gal-positive Colon 26 tumours was suppressed by vaccination of β-gal DNA and further inhibited by additional IL-27 DNA administration or IL-12 family cytokines. Nevertheless, a population of β-gal-specific CD8(+) T cells did not increase, and production of anti-β-gal antibody was not enhanced by IL-27 DNA administration. Spleen cells from mice bearing IL-27-expressing Colon 26 tumours showed greater YAC-1-targeted cytotoxicity although CD3(-)/DX5(+) natural killer (NK) cell numbers remained unchanged. Recombinant IL-27 enhanced YAC-1-targeted cytotoxicity of IL-2-primed splenic NK cells and augmented a phosphorylation of signal transducer and activator of transcription 3 and an expression of perforin. These data collectively indicate that IL-27 DNA administration activates NK cells and augments vaccination effects of DNA encoding a tumour antigen through non-adaptive immune responses. PMID:26095954

  1. Physiologically responsive, mechanically adaptive polymer optical fibers for optogenetics.

    PubMed

    Jorfi, Mehdi; Voirin, Guy; Foster, E Johan; Weder, Christoph

    2014-05-15

    The capability to deliver light to specific locations within the brain using optogenetic tools has opened up new possibilities in the field of neural interfacing. In this context, optical fibers are commonly inserted into the brain to activate or mute neurons using photosensitive proteins. While chronic optogenetic stimulation studies are just beginning to emerge, knowledge gathered in connection with electrophysiological implants suggests that the mechanical mismatch of conventional optical fibers and the cortical tissue may be a significant contributor to neuroinflammatory response. Here, we present the design and fabrication of physiologically responsive, mechanically adaptive optical fibers made of poly(vinyl alcohol) (PVA) that may mitigate this problem. Produced by a one-step wet-spinning process, the fibers display a tensile storage modulus E' of ∼7000  MPa in the dry state at 25°C and can thus readily be inserted into cortical tissue. Exposure to water causes a drastic reduction of E' to ∼35  MPa on account of modest swelling with the water. The optical properties at 470 and 590 were comparable with losses of 0.7±0.04  dB/cm at 470 nm and 0.6±0.1  dB/cm at 590 nm in the dry state and 1.1±0.1  dB/cm at 470 nm and 0.9±0.3  dB/cm at 590 nm in the wet state. The dry end of a partially switched fiber with a length of 10 cm was coupled with a light-emitting diode with an output of 10.1 mW to deliver light with a power density of >500  mW/cm2 from the wet end, which is more than sufficient to stimulate neurons in vivo. Thus, even without a low-refractive index cladding, the physiologically responsive, mechanically adaptive optical fibers presented here appear to be a very useful new tool for future optogenetic studies.

  2. Firefly luciferase as the reporter for transcriptional response to the environment in Escherichia coli.

    PubMed

    Ryo, Masashi; Oshikoshi, Yuta; Doi, Shosei; Motoki, Shogo; Niimi, Atsuko; Aoki, Setsuyuki

    2013-12-15

    We demonstrate that firefly luciferase is a good reporter in Escherichia coli for transcription dynamics in response to the environment. E. coli strains, carrying a fusion of the promoter of the ycgZ gene and the coding region of the luciferase gene, showed transient bioluminescence on receiving blue light. This response was compromised in mutants lacking known regulators in manners consistent with each regulator's function. We also show that relA, a gene encoding a (p)ppGpp synthetase, affects ycgZ dynamics when nullified. Moreover, two unstable luciferase variants showed improved response dynamics and should be useful to study quick changes of gene expression.

  3. Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis

    PubMed Central

    2012-01-01

    Background Drought is one of the main environmental factors limiting tree growth and productivity of plantation forests worldwide. Populus hopeiensis Hu et Chow is one of the most important commercial plantation tree species in China. However, the genes controlling drought tolerance in this species have not been identified or characterized. Here, we conducted differential expression analyses and identified a number of genes that were up- or downregulated in P. hopeiensis during water stress. To the best of our knowledge, this is the first comprehensive study of differentially expressed genes in water-stressed P. hopeiensis. Results Using the cDNA-AFLP detection technique, we used 256 primer combinations to identify differentially expressed genes in P. hopeiensis during water stress. In total, 415 transcript derived-fragments (TDFs) were obtained from 10× deep sequencing of 473 selected TDFs. Of the 415 TDFs, 412 were annotated by BLAST searches against various databases. The majority of these genes encoded products involved in ion transport and compartmentalization, cell division, metabolism, and protein synthesis. The TDFs were clustered into 12 groups on the basis of their expression patterns. Of the 415 reliable TDFs, the sequences of 35 were homologous to genes that play roles in short or long-term resistance to drought stress. Some genes were further selected for validation of cDNA-AFLP expression patterns using real-time PCR analyses. The results confirmed the expression patterns that were detected using the cDNA-AFLP technique. Conclusion The cDNA-AFLP technique is an effective and powerful tool for identifying candidate genes that are differentially expressed under water stress. We demonstrated that 415 TDFs were differentially expressed in water-stressed poplar. The products of these genes are involved in various biological processes in the drought response of poplar. The results of this study will aid in the identification of candidate genes of future

  4. Cyclic AMP Receptor Protein Acts as a Transcription Regulator in Response to Stresses in Deinococcus radiodurans

    PubMed Central

    Wang, Jiali; Liu, Chengzhi; Lu, Huizhi; Liu, Mengjia; Zhao, Ye; Tian, Bing; Wang, Liangyan; Hua, Yuejin

    2016-01-01

    The cyclic AMP receptor protein family of transcription factors regulates various metabolic pathways in bacteria, and also play roles in response to environmental changes. Here, we identify four homologs of the CRP family in Deinococcus radiodurans, one of which tolerates extremely high levels of oxidative stress and DNA-damaging reagents. Transcriptional levels of CRP were increased under hydrogen peroxide (H2O2) treatment during the stationary growth phase, indicating that CRPs function in response to oxidative stress. By constructing all CRP single knockout mutants, we found that the dr0997 mutant showed the lowest tolerance toward H2O2, ultraviolet radiation, ionizing radiation, and mitomycin C, while the phenotypes of the dr2362, dr0834, and dr1646 mutants showed slight or no significant differences from those of the wild-type strain. Taking advantage of the conservation of the CRP-binding site in many bacteria, we found that transcription of 18 genes, including genes encoding chromosome-partitioning protein (dr0998), Lon proteases (dr0349 and dr1974), NADH-quinone oxidoreductase (dr1506), thiosulfate sulfurtransferase (dr2531), the DNA repair protein UvsE (dr1819), PprA (dra0346), and RecN (dr1447), are directly regulated by DR0997. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses showed that certain genes involved in anti-oxidative responses, DNA repair, and various cellular pathways are transcriptionally attenuated in the dr0997 mutant. Interestingly, DR0997 also regulate the transcriptional levels of all CRP genes in this bacterium. These data suggest that DR0997 contributes to the extreme stress resistance of D. radiodurans via its regulatory role in multiple cellular pathways, such as anti-oxidation and DNA repair pathways. PMID:27182600

  5. Glucocorticoids and protein kinase A coordinately modulate transcription factor recruitment at a glucocorticoid-responsive unit.

    PubMed Central

    Espinás, M L; Roux, J; Pictet, R; Grange, T

    1995-01-01

    The rat tyrosine aminotransferase gene is a model system to study transcriptional regulation by glucocorticoid hormones. We analyzed transcription factor binding to the tyrosine aminotransferase gene glucocorticoid-responsive unit (GRU) at kb -2.5, using in vivo footprinting studies with both dimethyl sulfate and DNase I. At this GRU, glucocorticoid activation triggers a disruption of the nucleosomal structure. We show here that various regulatory pathways affect transcription factor binding to this GRU. The binding differs in two closely related glucocorticoid-responsive hepatoma cell lines. In line H4II, glucocorticoid induction promotes the recruitment of hepatocyte nuclear factor 3 (HNF3), presumably through the nucleosomal disruption. However, the footprint of the glucocorticoid receptor (GR) is not visible, even though a regular but transient interaction of the GR is necessary to maintain HNF3 binding. In contrast, in line FTO2B, HNF3 binds to the GRU in the absence of glucocorticoids and nucleosomal disruption, showing that a "closed" chromatin conformation does not repress the binding of certain transcription factors in a uniform manner. In FTO2B cells, the footprint of the GR is detectable, but this requires the activation of protein kinase A. In addition, protein kinase A stimulation also improves the recruitment of HNF3 independently of glucocorticoids and enhances the glucocorticoid response mediated by this GRU in an HNF3-dependent manner. In conclusion, the differences in the behavior of this regulatory sequence in the two cell lines show that various regulatory pathways are integrated at this GRU through modulation of interrelated events: transcription factor binding to DNA and nucleosomal disruption. PMID:7565684

  6. Fus3-triggered Tec1 degradation modulates mating transcriptional output during the pheromone response.

    PubMed

    Chou, Song; Zhao, Su; Song, You; Liu, Haoping; Nie, Qing

    2008-01-01

    The yeast transcription factor Ste12 controls both mating and filamentation pathways. Upon pheromone induction, the mitogen-activated protein kinases, Fus3 and Kss1, activate Ste12 by relieving the repression of two functionally redundant Ste12 inhibitors, Dig1 and Dig2. Mating genes are controlled by the Ste12/Dig1/Dig2 complex through Ste12-binding sites, whereas filamentation genes are regulated by the Tec1/Ste12/Dig1 complex through Tec1-binding sites. The two Ste12 complexes are mutually exclusive. During pheromone response, Tec1 is degraded upon phosphorylation by Fus3, preventing cross-activation of the filamentation pathway. Here, we show that a stable Tec1 also impairs the induction of mating genes. A mathematical model is developed to capture the dynamic formation of the two Ste12 complexes and their interactions with pathway-specific promoters. By model simulations and experimentation, we show that excess Tec1 can impair the mating transcriptional output because of its ability to sequester Ste12, and because of a novel function of Dig2 for the transcription of mating genes. We suggest that Fus3-triggered Tec1 degradation is an important part of the transcriptional induction of mating genes during the pheromone response. PMID:18682702

  7. Adaptive Physiological Response to Perceived Scarcity as a Mechanism of Sensory Modulation of Life Span

    PubMed Central

    Waterson, Michael J.; Chan, Tammy P.

    2015-01-01

    Chemosensation is a potent modulator of organismal physiology and longevity. In Drosophila, loss of recognition of diverse tastants has significant and bidirectional life-span effects. Recently published results revealed that when flies were unable to taste water, they increased its internal generation, which may have subsequently altered life span. To determine whether similar adaptive responses occur in other contexts, we explored the impact of sensory deficiency of other metabolically important molecules. Trehalose is a major circulating carbohydrate in the fly that is recognized by the gustatory receptor Gr5a. Gr5a mutant flies are short lived, and we found that they specifically increased whole-body and circulating levels of trehalose, but not other carbohydrates, likely through upregulation of de novo synthesis. dILP2 transcript levels were increased in Gr5a mutants, a possible response intended to reduce hypertrehalosemia, and likely a contributing factor to their reduced life span. Together, these data suggest that compensatory physiological responses to perceived environmental scarcity, which are designed to alleviate the ostensive shortage, may be a common outcome of sensory manipulation. We suggest that future investigations into the mechanisms underlying sensory modulation of aging may benefit by focusing on direct or indirect consequences of physiological changes that are designed to correct perceived disparity with the environment. PMID:25878032

  8. Adaptive Physiological Response to Perceived Scarcity as a Mechanism of Sensory Modulation of Life Span.

    PubMed

    Waterson, Michael J; Chan, Tammy P; Pletcher, Scott D

    2015-09-01

    Chemosensation is a potent modulator of organismal physiology and longevity. In Drosophila, loss of recognition of diverse tastants has significant and bidirectional life-span effects. Recently published results revealed that when flies were unable to taste water, they increased its internal generation, which may have subsequently altered life span. To determine whether similar adaptive responses occur in other contexts, we explored the impact of sensory deficiency of other metabolically important molecules. Trehalose is a major circulating carbohydrate in the fly that is recognized by the gustatory receptor Gr5a. Gr5a mutant flies are short lived, and we found that they specifically increased whole-body and circulating levels of trehalose, but not other carbohydrates, likely through upregulation of de novo synthesis. dILP2 transcript levels were increased in Gr5a mutants, a possible response intended to reduce hypertrehalosemia, and likely a contributing factor to their reduced life span. Together, these data suggest that compensatory physiological responses to perceived environmental scarcity, which are designed to alleviate the ostensive shortage, may be a common outcome of sensory manipulation. We suggest that future investigations into the mechanisms underlying sensory modulation of aging may benefit by focusing on direct or indirect consequences of physiological changes that are designed to correct perceived disparity with the environment. PMID:25878032

  9. Extratropical Transitions in Atlantic Canada: Impacts and Adaptive Responses

    NASA Astrophysics Data System (ADS)

    Masson, Athena; Catto, Norm

    2013-04-01

    . Storm surge damage occurred along the north shore of the Bonavista Peninsula. Similar effects, differing only in the size of the affected areas, have resulted from several extratropical transitions which have impacted Atlantic Canada since July 1989. Extratropical transition "Leslie" impacted Newfoundland on 10-11 September 2012. Although the area affected was comparable to "Igor", wind velocities and rainfall totals were less, fortunately limiting damage. Preparation, advance warning to the population, proaction, and response efforts all showed significant improvement, however, indicating that the experience gained from coping with "Igor" had been successfully applied in adaptation to "Leslie". Extratropical transitions pose a significantly different set of challenges for adaptation in comparison to purely tropical hurricanes, and responses and adaptation strategies should be tailored to address these specific events. Calculating the frequency, magnitude and intensity of potential shifts is important for accurate forecasting and public awareness, safety management, preparedness, and adaptation. Available data indicate an increase in extratropical frequency and severity in Atlantic Canada since 1991, but there are difficulties in establishing the extent and nature of transition for previous storm events. A cautionary policy would assume no significant changes in extratropical transition frequency for Atlantic Canada, but would also acknowledge that large events remain probable.

  10. iTRAQ-based proteomic analysis of adaptive response in the regenerating limb of the Cynops orientalis newt.

    PubMed

    Geng, Xiao-Fang; Guo, Jian-Lin; Zang, Xia-Yan; Sun, Jing-Yan; Li, Peng-Fei; Zhang, Fu-Chun; Xu, Cun-Shuan

    2015-01-01

    The newt has the powerful capacity to regenerate lost limbs following amputation, and represents an excellent model organism to study regenerative processes. However, the molecular basis of the adaptive response in the regenerating limb of the Chinese fire-bellied newt Cynops orientalis immediately after amputation remains unclear. To better understand the adaptive response immediately after limb amputation at the protein level, we used isobaric tags for relative and absolute quantitation (iTRAQ) coupled with LC-MS/MS methods to analyze changes in the proteome of the regenerating newt limb that occurred 2 h and 8 h after amputation. We identified 152 proteins with more than 1.5-fold change in expression compared to control. GO annotation analysis classified these proteins into several categories such as signaling, Ca(2+) binding and translocation, transcription and translation, immune response, cell death, cytoskeleton, metabolism, etc. Further ingenuity pathway analysis (IPA) showed that several signaling pathways were significantly changed at 2 h and 8 h after amputation, including EIF2 signaling, acute phase response signaling, tight junction signaling and calcium signaling, suggesting these pathways may be closely related to the adaptive response immediately after limb amputation. This work provides novel insights into understanding the molecular processes related to newt limb regeneration immediately after amputation, and a basis for further study of regenerative medicine. PMID:26864489

  11. Plant bZIP Transcription Factors Responsive to Pathogens: A Review

    PubMed Central

    Alves, Murilo S.; Dadalto, Silvana P.; Gonçalves, Amanda B.; De Souza, Gilza B.; Barros, Vanessa A.; Fietto, Luciano G.

    2013-01-01

    Transcription factors of the basic leucine zipper (bZIP) family control important processes in all eukaryotes. In plants, bZIPs are master regulators of many central developmental and physiological processes, including morphogenesis, seed formation, abiotic and biotic stress responses. Modulation of the expression patterns of bZIP genes and changes in their activity often contribute to the activation of various signaling pathways and regulatory networks of different physiological processes. However, most advances in the study of plant bZIP transcription factors are related to their involvement in abiotic stress and development. In contrast, there are few examples of functional research with regard to biotic stress, particularly in the defense against pathogens. In this review, we summarize the recent progress revealing the role of bZIP transcription factors in the biotic stress responses of several plant species, from Arabidopsis to cotton. Moreover, we summarize the interacting partners of bZIP proteins in molecular responses during pathogen attack and the key components of the signal transduction pathways with which they physically interact during plant defense responses. Lastly, we focus on the recent advances regarding research on the functional role of bZIPs in major agricultural cultivars and examine the studies performed in this field. PMID:23574941

  12. Transcriptional response of Saccharomyces cerevisiae to low temperature during wine fermentation.

    PubMed

    Deed, Rebecca C; Deed, Nathan K; Gardner, Richard C

    2015-04-01

    Although the yeast response to low temperature has industrial significance for baking, lager brewing and white wine fermentation, the molecular response of yeast cells to low temperature remains poorly characterised. Transcriptional changes were quantified in a commercial wine yeast, Enoferm M2, fermented at optimal (25 °C) and low temperature (12.5 °C), at two time points during fermentation of Sauvignon blanc grape juice. The transition from early to mid-late fermentation was notably less severe in the cold than at 25 °C, and the Rim15p-Gis1p pathway was involved in effecting this transition. Genes for three key nutrients were strongly influenced by low temperature fermentation: nitrogen, sulfur and iron/copper, along with changes in the cell wall and stress response. Transcriptional analyses during wine fermentation at 12.5 °C in four F1 hybrids of M2 also highlighted the importance of genes involved in nutrient utilisation and the stress response. We identified transcription factors that may be important for these differences between genetic backgrounds. Since low fermentation temperatures cause fundamental changes in membrane kinetics and cellular metabolism, an understanding of the physiological and genetic limitations on cellular performance will assist breeding of improved industrial strains.

  13. CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response.

    PubMed

    Bancerek, Joanna; Poss, Zachary C; Steinparzer, Iris; Sedlyarov, Vitaly; Pfaffenwimmer, Thaddäus; Mikulic, Ivana; Dölken, Lars; Strobl, Birgit; Müller, Mathias; Taatjes, Dylan J; Kovarik, Pavel

    2013-02-21

    Gene regulation by cytokine-activated transcription factors of the signal transducer and activator of transcription (STAT) family requires serine phosphorylation within the transactivation domain (TAD). STAT1 and STAT3 TAD phosphorylation occurs upon promoter binding by an unknown kinase. Here, we show that the cyclin-dependent kinase 8 (CDK8) module of the Mediator complex phosphorylated regulatory sites within the TADs of STAT1, STAT3, and STAT5, including S727 within the STAT1 TAD in the interferon (IFN) signaling pathway. We also observed a CDK8 requirement for IFN-γ-inducible antiviral responses. Microarray analyses revealed that CDK8-mediated STAT1 phosphorylation positively or negatively regulated over 40% of IFN-γ-responsive genes, and RNA polymerase II occupancy correlated with gene expression changes. This divergent regulation occurred despite similar CDK8 occupancy at both S727 phosphorylation-dependent and -independent genes. These data identify CDK8 as a key regulator of STAT1 and antiviral responses and suggest a general role for CDK8 in STAT-mediated transcription. As such, CDK8 represents a promising target for therapeutic manipulation of cytokine responses.

  14. The MarR family transcription factor Rv1404 coordinates adaptation of Mycobacterium tuberculosis to acid stress via controlled expression of Rv1405c, a virulence-associated methyltransferase.

    PubMed

    Healy, Claire; Golby, Paul; MacHugh, David E; Gordon, Stephen V

    2016-03-01

    Coordinated regulation of gene expression is essential for pathogen adaptation in vivo. Understanding the control of these virulence circuits in the TB pathogen Mycobacterium tuberculosis is a key challenge if we are to increase our basic understanding of how this organism establishes infection. In this study we focused on the transcriptional regulator Rv1404 that shows similarity to the MarR family of transcriptional repressors. Rv1404 derepresses a set of genes in vivo that have been implicated in virulence and may therefore allow adaptation of M. tuberculosis to the intracellular environment. We used a combination of ChIP-qPCR and Electromobility Band Shift Assays (EMSA) to show that Rv1404 coordinates gene expression in response to stresses such as low pH in M. tuberculosis. Two genes regulated by Rv1404, rv1403c and rv1405c, encode putative SAM-dependent methyltransferases. To elucidate gene function, M. tuberculosis rv1403c and rv1405c mutants were constructed. The mutants showed attenuated growth in response to in vitro stress conditions that mimic the intracellular milieu. Our data sheds new light on the function of a novel regulon controlled by Rv1404 that coordinates adaptation of M. tuberculosis to the in vivo environment and reveals the Rv1405c and Rv1403c methyltransferases as playing a role in this adaptive process.

  15. Sex-related differences in murine hepatic transcriptional and proteomic responses to TCDD

    SciTech Connect

    Prokopec, Stephenie D.; Watson, John D.; Lee, Jamie; Pohjanvirta, Raimo; Boutros, Paul C.

    2015-04-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant that produces myriad toxicities in most mammals. In rodents alone, there is a huge divergence in the toxicological response across species, as well as among different strains within a species. But there are also significant differences between males and females animals of a single strain. These differences are inconsistent across model systems: the severity of toxicity is greater in female rats than males, while male mice and guinea pigs are more sensitive than females. Because the specific events that underlie this difference remain unclear, we characterized the hepatic transcriptional response of adult male and female C57BL/6 mice to 500 μg/kg TCDD at multiple time-points. The transcriptional profile diverged significantly between the sexes. Female mice demonstrated a large number of altered transcripts as early as 6 h following treatment, suggesting a large primary response. Conversely, male animals showed the greatest TCDD-mediated response 144 h following exposure, potentially implicating significant secondary responses. Nr1i3 was statistically significantly induced at all time-points in the sensitive male animals. This mRNA encodes the constitutive androstane receptor (CAR), a transcription factor involved in the regulation of xenobiotic metabolism, lipid metabolism, cell cycle and apoptosis. Surprisingly though, changes at the protein level (aside from the positive control, CYP1A1) were modest, with only FMO3 showing clear induction, and no genes with sex-differences. Thus, while male and female mice show transcriptional differences in their response to TCDD, their association with TCDD-induced toxicities remains unclear. - Highlights: • Differences exist between the toxicity phenotypes to TCDD in male and female mice. • TCDD-mediated transcriptomic differences were identified between the sexes. • Resistant female mice displayed a large, early-onset, transcriptomic response.

  16. Airway goblet cells: responsive and adaptable front-line defenders.

    PubMed

    Rogers, D F

    1994-09-01

    development of a hypersecretory epithelium include excessive discharge of mucus and increased expression of airway mucin messenger ribonucleic acid (mRNA). Cessation of chronic airway stress rapidly reverses the increased number of goblet cells. Irritant-induced increases in number of goblet cells can be inhibited by a variety of drugs with anti-inflammatory and mucoregulatory properties, and the reversal to normal numbers after cessation of the irritation is speeded by these drugs. The ability of goblet cells to be progenitors of ciliated cells, to rapidly produce vast quantities of mucus in response to acute airway insult, and to change in number according to variations in chronic insult indicates that these cells are vitally important responsive and adaptable front-line defenders of the airways. PMID:7995400

  17. Microarray analysis reveals overlapping and specific transcriptional responses to different plant hormones in rice.

    PubMed

    Garg, Rohini; Tyagi, Akhilesh K; Jain, Mukesh

    2012-08-01

    Hormones exert pleiotropic effects on plant growth and development throughout the life cycle. Many of these effects are mediated at molecular level via altering gene expression. In this study, we investigated the exogenous effect of plant hormones, including auxin, cytokinin, abscisic acid, ethylene, salicylic acid and jasmonic acid, on the transcription of rice genes at whole genome level using microarray. Our analysis identified a total of 4171 genes involved in several biological processes, whose expression was altered significantly in the presence of different hormones. Further, 28% of these genes exhibited overlapping transcriptional responses in the presence of any two hormones, indicating crosstalk among plant hormones. In addition, we identified genes showing only a particular hormone-specific response, which can be used as hormone-specific markers. The results of this study will facilitate further studies in hormone biology in rice.

  18. Functional analysis of a growth factor-responsive transcription factor complex.

    PubMed

    Hill, C S; Marais, R; John, S; Wynne, J; Dalton, S; Treisman, R

    1993-04-23

    Serum response factor (SRF) forms a ternary complex at the c-fos serum response element (SRE) with an accessory factor, Elk-1. We constructed altered-binding specificity derivatives of SRF and Elk-1 that form a ternary complex at a mutated, inactive SRE; like Elk-1, the Elk-1 variant only binds its target as part of a ternary complex with SRF. Simultaneous expression of these SRF and Elk-1 derivatives restores serum-regulated activity to the mutated SRE in transfected cells. Efficient transcriptional activation is dependent on the regulated phosphorylation of Elk-1 C-terminal MAP kinase sites and requires the C-terminal sequences of SRF as well as SRF sequences that mediate ternary complex formation. These experiments provide direct evidence that SRF and Elk-1 functionally cooperate in the ternary complex at the SRE to regulate transcription.

  19. Transcriptional Response of the Sulfur Chemolithoautotroph Thiomicrospira crunogena to Dissolved Inorganic Carbon Limitation

    PubMed Central

    Dobrinski, Kimberly P.; Enkemann, Steven A.; Yoder, Sean J.; Haller, Edward

    2012-01-01

    The hydrothermal vent gammaproteobacterium Thiomicrospira crunogena inhabits an unstable environment and must endure dramatic changes in habitat chemistry. This sulfur chemolithoautotroph responds to changes in dissolved inorganic carbon (DIC) (DIC = CO2 + HCO3− + CO3−2) availability with a carbon-concentrating mechanism (CCM) in which whole-cell affinity for DIC, as well as the intracellular DIC concentration, increases substantially under DIC limitation. To determine whether this CCM is regulated at the level of transcription, we resuspended cells that were cultivated under high-DIC conditions in chemostats in growth medium with low concentrations of DIC and tracked CCM development in the presence and absence of the RNA polymerase inhibitor rifampin. Induction of the CCM, as measured by silicone oil centrifugation, was hindered in the presence of rifampin. Similar results were observed for carboxysome gene transcription and assembly, as assayed by quantitative reverse transcription-PCR (qRT-PCR) and transmission electron microscopy, respectively. Genome-wide transcription patterns for cells grown under DIC limitation and those grown under ammonia limitation were assayed via microarrays and compared. In addition to carboxysome genes, two novel genes (Tcr_1019 and Tcr_1315) present in other organisms, including chemolithoautotrophs, but whose function(s) has not been elucidated in any organism were found to be upregulated under low-DIC conditions. Likewise, under ammonia limitation, in addition to the expected enhancement of ammonia transporter and PII gene transcription, the transcription of two novel genes (Tcr_0466 and Tcr_2018) was measurably enhanced. Upregulation of all four genes (Tcr_1019, 4-fold; Tcr_131, ∼7-fold; Tcr_0466, >200-fold; Tcr_2018, 7-fold), which suggests that novel components are part of the response to nutrient limitation by this organism, was verified via qRT-PCR. PMID:22328671

  20. Modular Transcriptional Networks of the Host Pulmonary Response during Early and Late Pneumococcal Pneumonia

    PubMed Central

    Scicluna, Brendon P; van Lieshout, Miriam H; Blok, Dana C; Florquin, Sandrine; van der Poll, Tom

    2015-01-01

    Streptococcus pneumoniae (Spneu) remains the most lethal bacterial pathogen and the dominant agent of community-acquired pneumonia. Treatment has perennially focused on the use of antibiotics, albeit scrutinized due to the occurrence of antibiotic-resistant Spneu strains. Immunomodulatory strategies have emerged as potential treatment options. Although promising, immunomodulation can lead to improper tissue functions either at steady state or upon infectious challenge. This argues for the availability of tools to enable a detailed assessment of whole pulmonary functions during the course of infection, not only those functions biased to the defense response. Thus, through the use of an unbiased tissue microarray and bioinformatics approach, we aimed to construct a comprehensive map of whole-lung transcriptional activity and cellular pathways during the course of pneumococcal pneumonia. We performed genome-wide transcriptional analysis of whole lungs before and 6 and 48 h after Spneu infection in mice. The 4,000 most variable transcripts across all samples were used to assemble a gene coexpression network comprising 13 intercorrelating modules (clusters of genes). Fifty-four percent of this whole-lung transcriptional network was altered 6 and 48 h after Spneu infection. Canonical signaling pathway analysis uncovered known pathways imparting protection, including IL17A/IL17F signaling and previously undetected mechanisms that included lipid metabolism. Through in silico prediction of cell types, pathways were observed to enrich for distinct cell types such as a novel stromal cell lipid metabolism pathway. These cellular mechanisms were furthermore anchored at functional hub genes of cellular fate, differentiation, growth and transcription. Collectively, we provide a benchmark unsupervised map of whole-lung transcriptional relationships and cellular activity during early and late pneumococcal pneumonia. PMID:25998510

  1. The roles of RelA/(p)ppGpp in glucose-starvation induced adaptive response in the zoonotic Streptococcus suis.

    PubMed

    Zhang, Tengfei; Zhu, Jiawen; Wei, Shun; Luo, Qingping; Li, Lu; Li, Shengqing; Tucker, Alexander; Shao, Huabin; Zhou, Rui

    2016-06-03

    The (p)ppGpp signal molecules play a central role in the stringent response (SR) to adapt to nutrient starvation in bacteria, yet the carbohydrate starvation induced adaptive response and the roles of SR in this response is not well characterized, especially in Gram-positives. Here, two (p)ppGpp synthetases RelA and RelQ are identified in Streptococcus suis, an important emerging zoonotic Gram-positive bacterium, while only RelA is functional under glucose starvation. To characterize the roles of RelA/(p)ppGpp in glucose starvation response in S. suis, the growth curves and transcriptional profiles were compared between the mutant strain ΔrelA [a (p)ppGpp(0) strain under glucose starvation] and its parental strain SC-19 [(p)ppGpp(+)]. The results showed great difference between SC-19 and ΔrelA on adaptive responses when suffering glucose starvation, and demonstrated that RelA/(p)ppGpp plays important roles in adaptation to glucose starvation. Besides the classic SR including inhibition of growth and related macromolecular synthesis, the extended adaptive response also includes inhibited glycolysis, and carbon catabolite repression (CCR)-mediated carbohydrate-dependent metabolic switches. Collectively, the pheno- and genotypic characterization of the glucose starvation induced adaptive response in S. suis makes a great contribution to understanding better the mechanism of SR.

  2. The roles of RelA/(p)ppGpp in glucose-starvation induced adaptive response in the zoonotic Streptococcus suis

    PubMed Central

    Zhang, Tengfei; Zhu, Jiawen; Wei, Shun; Luo, Qingping; Li, Lu; Li, Shengqing; Tucker, Alexander; Shao, Huabin; Zhou, Rui

    2016-01-01

    The (p)ppGpp signal molecules play a central role in the stringent response (SR) to adapt to nutrient starvation in bacteria, yet the carbohydrate starvation induced adaptive response and the roles of SR in this response is not well characterized, especially in Gram-positives. Here, two (p)ppGpp synthetases RelA and RelQ are identified in Streptococcus suis, an important emerging zoonotic Gram-positive bacterium, while only RelA is functional under glucose starvation. To characterize the roles of RelA/(p)ppGpp in glucose starvation response in S. suis, the growth curves and transcriptional profiles were compared between the mutant strain ΔrelA [a (p)ppGpp0 strain under glucose starvation] and its parental strain SC-19 [(p)ppGpp+]. The results showed great difference between SC-19 and ΔrelA on adaptive responses when suffering glucose starvation, and demonstrated that RelA/(p)ppGpp plays important roles in adaptation to glucose starvation. Besides the classic SR including inhibition of growth and related macromolecular synthesis, the extended adaptive response also includes inhibited glycolysis, and carbon catabolite repression (CCR)-mediated carbohydrate-dependent metabolic switches. Collectively, the pheno- and genotypic characterization of the glucose starvation induced adaptive response in S. suis makes a great contribution to understanding better the mechanism of SR. PMID:27255540

  3. A Semi-Supervised Approach for Refining Transcriptional Signatures of Drug Response and Repositioning Predictions

    PubMed Central

    Iorio, Francesco; Shrestha, Roshan L.; Levin, Nicolas; Boilot, Viviane; Garnett, Mathew J.; Saez-Rodriguez, Julio; Draviam, Viji M.

    2015-01-01

    We present a novel strategy to identify drug-repositioning opportunities. The starting point of our method is the generation of a signature summarising the consensual transcriptional response of multiple human cell lines to a compound of interest (namely the seed compound). This signature can be derived from data in existing databases, such as the connectivity-map, and it is used at first instance to query a network interlinking all the connectivity-map compounds, based on the similarity of their transcriptional responses. This provides a drug neighbourhood, composed of compounds predicted to share some effects with the seed one. The original signature is then refined by systematically reducing its overlap with the transcriptional responses induced by drugs in this neighbourhood that are known to share a secondary effect with the seed compound. Finally, the drug network is queried again with the resulting refined signatures and the whole process is carried on for a number of iterations. Drugs in the final refined neighbourhood are then predicted to exert the principal mode of action of the seed compound. We illustrate our approach using paclitaxel (a microtubule stabilising agent) as seed compound. Our method predicts that glipizide and splitomicin perturb microtubule function in human cells: a result that could not be obtained through standard signature matching methods. In agreement, we find that glipizide and splitomicin reduce interphase microtubule growth rates and transiently increase the percentage of mitotic cells–consistent with our prediction. Finally, we validated the refined signatures of paclitaxel response by mining a large drug screening dataset, showing that human cancer cell lines whose basal transcriptional profile is anti-correlated to them are significantly more sensitive to paclitaxel and docetaxel. PMID:26452147

  4. A Simple Auxin Transcriptional Response System Regulates Multiple Morphogenetic Processes in the Liverwort Marchantia polymorpha.

    PubMed

    Flores-Sandoval, Eduardo; Eklund, D Magnus; Bowman, John L

    2015-05-01

    In land plants comparative genomics has revealed that members of basal lineages share a common set of transcription factors with the derived flowering plants, despite sharing few homologous structures. The plant hormone auxin has been implicated in many facets of development in both basal and derived lineages of land plants. We functionally characterized the auxin transcriptional response machinery in the liverwort Marchantia polymorpha, a member of the basal lineage of extant land plants. All components known from flowering plant systems are present in M. polymorpha, but they exist as single orthologs: a single MpTOPLESS (TPL) corepressor, a single MpTRANSPORT inhibitor response 1 auxin receptor, single orthologs of each class of auxin response factor (ARF; MpARF1, MpARF2, MpARF3), and a single negative regulator auxin/indole-3-acetic acid (MpIAA). Phylogenetic analyses suggest this simple system is the ancestral condition for land plants. We experimentally demonstrate that these genes act in an auxin response pathway--chimeric fusions of the MpTPL corepressor with heterodimerization domains of MpARF1, MpARF2, or their negative regulator, MpIAA, generate auxin insensitive plants that lack the capacity to pattern and transition into mature stages of development. Our results indicate auxin mediated transcriptional regulation acts as a facilitator of branching, differentiation and growth, rather than acting to determine or specify tissues during the haploid stage of the M. polymorpha life cycle. We hypothesize that the ancestral role of auxin is to modulate a balance of differentiated and pluri- or totipotent cell states, whose fates are determined by interactions with combinations of unrelated transcription factors.

  5. A Simple Auxin Transcriptional Response System Regulates Multiple Morphogenetic Processes in the Liverwort Marchantia polymorpha.

    PubMed

    Flores-Sandoval, Eduardo; Eklund, D Magnus; Bowman, John L

    2015-05-01

    In land plants comparative genomics has revealed that members of basal lineages share a common set of transcription factors with the derived flowering plants, despite sharing few homologous structures. The plant hormone auxin has been implicated in many facets of development in both basal and derived lineages of land plants. We functionally characterized the auxin transcriptional response machinery in the liverwort Marchantia polymorpha, a member of the basal lineage of extant land plants. All components known from flowering plant systems are present in M. polymorpha, but they exist as single orthologs: a single MpTOPLESS (TPL) corepressor, a single MpTRANSPORT inhibitor response 1 auxin receptor, single orthologs of each class of auxin response factor (ARF; MpARF1, MpARF2, MpARF3), and a single negative regulator auxin/indole-3-acetic acid (MpIAA). Phylogenetic analyses suggest this simple system is the ancestral condition for land plants. We experimentally demonstrate that these genes act in an auxin response pathway--chimeric fusions of the MpTPL corepressor with heterodimerization domains of MpARF1, MpARF2, or their negative regulator, MpIAA, generate auxin insensitive plants that lack the capacity to pattern and transition into mature stages of development. Our results indicate auxin mediated transcriptional regulation acts as a facilitator of branching, differentiation and growth, rather than acting to determine or specify tissues during the haploid stage of the M. polymorpha life cycle. We hypothesize that the ancestral role of auxin is to modulate a balance of differentiated and pluri- or totipotent cell states, whose fates are determined by interactions with combinations of unrelated transcription factors. PMID:26020649

  6. A Simple Auxin Transcriptional Response System Regulates Multiple Morphogenetic Processes in the Liverwort Marchantia polymorpha

    PubMed Central

    Flores-Sandoval, Eduardo; Eklund, D. Magnus; Bowman, John L.

    2015-01-01

    In land plants comparative genomics has revealed that members of basal lineages share a common set of transcription factors with the derived flowering plants, despite sharing few homologous structures. The plant hormone auxin has been implicated in many facets of development in both basal and derived lineages of land plants. We functionally characterized the auxin transcriptional response machinery in the liverwort Marchantia polymorpha, a member of the basal lineage of extant land plants. All components known from flowering plant systems are present in M. polymorpha, but they exist as single orthologs: a single MpTOPLESS (TPL) corepressor, a single MpTRANSPORT INHIBITOR RESPONSE 1 auxin receptor, single orthologs of each class of AUXIN RESPONSE FACTOR (ARF; MpARF1, MpARF2, MpARF3), and a single negative regulator AUXIN/INDOLE-3-ACETIC ACID (MpIAA). Phylogenetic analyses suggest this simple system is the ancestral condition for land plants. We experimentally demonstrate that these genes act in an auxin response pathway — chimeric fusions of the MpTPL corepressor with heterodimerization domains of MpARF1, MpARF2, or their negative regulator, MpIAA, generate auxin insensitive plants that lack the capacity to pattern and transition into mature stages of development. Our results indicate auxin mediated transcriptional regulation acts as a facilitator of branching, differentiation and growth, rather than acting to determine or specify tissues during the haploid stage of the M. polymorpha life cycle. We hypothesize that the ancestral role of auxin is to modulate a balance of differentiated and pluri- or totipotent cell states, whose fates are determined by interactions with combinations of unrelated transcription factors. PMID:26020649

  7. Impaired Transcriptional Response of the Murine Heart to Cigarette Smoke in the Setting of High Fat Diet and Obesity

    SciTech Connect

    Tilton, Susan C.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Mikheev, Vladimir B.; Lee, K. M.; Corley, Richard A.; Pounds, Joel G.; Bigelow, Diana J.

    2013-07-01

    Smoking and obesity are each well-established risk factors for cardiovascular heart disease, which together impose earlier onset and greater severity of disease. To identify early signaling events in the response of the heart to cigarette smoke exposure within the setting of obesity, we exposed normal weight and high fat diet-induced obese (DIO) C57BL/6 mice to repeated inhaled doses of mainstream (MS) or sidestream (SS) cigarette smoke administered over a two week period, monitoring effects on both cardiac and pulmonary transcriptomes. MS smoke (250 μg wet total particulate matter (WTPM)/L, 5 h/day) exposures elicited robust cellular and molecular inflammatory responses in the lung with 1466 differentially expressed pulmonary genes (p < 0.01) in normal weight animals and a much-attenuated response (463 genes) in the hearts of the same animals. In contrast, exposures to SS smoke (85 μg WTPM/L) with a CO concentration equivalent to that of MS smoke (250 CO ppm) induced a weak pulmonary response (328 genes) but an extensive cardiac response (1590 genes). SS smoke and to a lesser extent MS smoke preferentially elicited hypoxia- and stress-responsive genes as well as genes predicting early changes of vascular smooth muscle and endothelium, precursors of cardiovascular disease. The most sensitive smoke-induced cardiac transcriptional changes of normal weight mice were largely absent in DIO mice after smoke exposure, while genes involved in fatty acid utilization were unaffected. At the same time, smoke exposure suppressed multiple proteome maintenance genes induced in the hearts of DIO mice. Together, these results underscore the sensitivity of the heart to SS smoke and reveal adaptive responses in healthy individuals that are absent in the setting of high fat diet and obesity.

  8. Gene switching rate determines response to extrinsic perturbations in the self-activation transcriptional network motif.

    PubMed

    de Franciscis, Sebastiano; Caravagna, Giulio; Mauri, Giancarlo; d'Onofrio, Alberto

    2016-01-01

    Gene switching dynamics is a major source of randomness in genetic networks, also in the case of large concentrations of the transcription factors. In this work, we consider a common network motif - the positive feedback of a transcription factor on its own synthesis - and assess its response to extrinsic noises perturbing gene deactivation in a variety of settings where the network might operate. These settings are representative of distinct cellular types, abundance of transcription factors and ratio between gene switching and protein synthesis rates. By investigating noise-induced transitions among the different network operative states, our results suggest that gene switching rates are key parameters to shape network response to external perturbations, and that such response depends on the particular biological setting, i.e. the characteristic time scales and protein abundance. These results might have implications on our understanding of irreversible transitions for noise-related phenomena such as cellular differentiation. In addition these evidences suggest to adopt the appropriate mathematical model of the network in order to analyze the system consistently to the reference biological setting. PMID:27256916

  9. Gene switching rate determines response to extrinsic perturbations in the self-activation transcriptional network motif

    PubMed Central

    de Franciscis, Sebastiano; Caravagna, Giulio; Mauri, Giancarlo; d’Onofrio, Alberto

    2016-01-01

    Gene switching dynamics is a major source of randomness in genetic networks, also in the case of large concentrations of the transcription factors. In this work, we consider a common network motif - the positive feedback of a transcription factor on its own synthesis - and assess its response to extrinsic noises perturbing gene deactivation in a variety of settings where the network might operate. These settings are representative of distinct cellular types, abundance of transcription factors and ratio between gene switching and protein synthesis rates. By investigating noise-induced transitions among the different network operative states, our results suggest that gene switching rates are key parameters to shape network response to external perturbations, and that such response depends on the particular biological setting, i.e. the characteristic time scales and protein abundance. These results might have implications on our understanding of irreversible transitions for noise-related phenomena such as cellular differentiation. In addition these evidences suggest to adopt the appropriate mathematical model of the network in order to analyze the system consistently to the reference biological setting. PMID:27256916

  10. Physiological and Transcriptional Responses of Saccharomyces cerevisiae to Zinc Limitation in Chemostat Cultures †

    PubMed Central

    De Nicola, Raffaele; Hazelwood, Lucie A.; De Hulster, Erik A. F.; Walsh, Michael C.; Knijnenburg, Theo A.; Reinders, Marcel J. T.; Walker, Graeme M.; Pronk, Jack T.; Daran, Jean-Marc; Daran-Lapujade, Pascale

    2007-01-01

    Transcriptional responses of the yeast Saccharomyces cerevisiae to Zn availability were investigated at a fixed specific growth rate under limiting and abundant Zn concentrations in chemostat culture. To investigate the context dependency of this transcriptional response and eliminate growth rate-dependent variations in transcription, yeast was grown under several chemostat regimens, resulting in various carbon (glucose), nitrogen (ammonium), zinc, and oxygen supplies. A robust set of genes that responded consistently to Zn limitation was identified, and the set enabled the definition of the Zn-specific Zap1p regulon, comprised of 26 genes and characterized by a broader zinc-responsive element consensus (MHHAACCBYNMRGGT) than so far described. Most surprising was the Zn-dependent regulation of genes involved in storage carbohydrate metabolism. Their concerted down-regulation was physiologically relevant as revealed by a substantial decrease in glycogen and trehalose cellular content under Zn limitation. An unexpectedly large number of genes were synergistically or antagonistically regulated by oxygen and Zn availability. This combinatorial regulation suggested a more prominent involvement of Zn in mitochondrial biogenesis and function than hitherto identified. PMID:17933919

  11. Prolyl 4-hydroxylase activity-responsive transcription factors: From hydroxylation to gene expression and neuroprotection

    PubMed Central

    Siddiq, Ambreena; Aminova, Leila R; Ratan, Rajiv R

    2008-01-01

    Most homeostatic processes including gene transcription occur as a result of deviations in physiological tone that threatens the survival of the organism. A prototypical homeostatic stress response includes changes in gene expression following alterations in oxygen, iron or 2-oxoglutarate levels. Each of these cofactors plays an important role in cellular metabolism. Accordingly, a family of enzymes known as the Prolyl 4-hydroxylase (PHD) enzymes are a group of dioxygenases that have evolved to sense changes in 2-oxoglutarate, oxygen and iron via changes in enzyme activity. Indeed, PHDs are a part of an established oxygen sensor system that regulates transcriptional regulation of hypoxia/stress-regulated genes and thus are an important component of events leading to cellular rescue from oxygen, iron or 2-oxoglutarate deprivations. The ability of PHD activity to regulate homeostatic responses to oxygen, iron or 2-oxoglutarate metabolism has led to the development of small molecule inhibitors of the PHDs as a strategy for activating or augmenting cellular stress responses. These small molecules are proving effective in preclinical models of stroke and Parkinson's disease. However the precise protective pathways engaged by PHD inhibition are only beginning to be defined. In the current review, we summarize the role of iron, 2-oxoglutarate and oxygen in the PHD catalyzed hydroxylation reaction and provide a brief discussion of some of the transcription factors that play an effective role in neuroprotection against oxidative stress as a result of changes in PHD activity. PMID:17981760

  12. The Streptococcus suis transcriptional landscape reveals adaptation mechanisms in pig blood and cerebrospinal fluid

    PubMed Central

    Wu, Zongfu; Wu, Chunyan; Shao, Jing; Zhu, Zhenzhen; Wang, Weixue; Zhang, Wenwei; Tang, Min; Pei, Na; Fan, Hongjie; Li, Jiguang; Yao, Huochun; Gu, Hongwei; Xu, Xun; Lu, Chengping

    2014-01-01

    Streptococcus suis (SS) is an important pathogen of pigs, and it is also recognized as a zoonotic agent for humans. SS infection may result in septicemia or meningitis in the host. However, little is known about genes that contribute to the virulence process and survival within host blood or cerebrospinal fluid (CSF). Small RNAs (sRNA) have emerged as key regulators of virulence in several bacteria, but they have not been investigated in SS. Here, using a differential RNA-sequencing approach and RNAs from SS strain P1/7 grown in rich medium, pig blood, or CSF, we present the SS genome-wide map of 793 transcriptional start sites and 370 operons. In addition to identifying 29 sRNAs, we show that five sRNA deletion mutants attenuate SS virulence in a zebrafish infection model. Homology searches revealed that 10 sRNAs were predicted to be present in other pathogenic Streptococcus species. Compared with wild-type strain P1/7, sRNAs rss03, rss05, and rss06 deletion mutants were significantly more sensitive to killing by pig blood. It is possible that rss06 contributes to SS virulence by indirectly activating expression of SSU0308, a virulence gene encoding a zinc-binding lipoprotein. In blood, genes involved in the synthesis of capsular polysaccharide (CPS) and subversion of host defenses were up-regulated. In contrast, in CSF, genes for CPS synthesis were down-regulated. Our study is the first analysis of SS sRNAs involved in virulence and has both improved our understanding of SS pathogenesis and increased the number of sRNAs known to play definitive roles in bacterial virulence. PMID:24759092

  13. Distributed adaptive diagnosis of sensor faults using structural response data

    NASA Astrophysics Data System (ADS)

    Dragos, Kosmas; Smarsly, Kay

    2016-10-01

    The reliability and consistency of wireless structural health monitoring (SHM) systems can be compromised by sensor faults, leading to miscalibrations, corrupted data, or even data loss. Several research approaches towards fault diagnosis, referred to as ‘analytical redundancy’, have been proposed that analyze the correlations between different sensor outputs. In wireless SHM, most analytical redundancy approaches require centralized data storage on a server for data analysis, while other approaches exploit the on-board computing capabilities of wireless sensor nodes, analyzing the raw sensor data directly on board. However, using raw sensor data poses an operational constraint due to the limited power resources of wireless sensor nodes. In this paper, a new distributed autonomous approach towards sensor fault diagnosis based on processed structural response data is presented. The inherent correlations among Fourier amplitudes of acceleration response data, at peaks corresponding to the eigenfrequencies of the structure, are used for diagnosis of abnormal sensor outputs at a given structural condition. Representing an entirely data-driven analytical redundancy approach that does not require any a priori knowledge of the monitored structure or of the SHM system, artificial neural networks (ANN) are embedded into the sensor nodes enabling cooperative fault diagnosis in a fully decentralized manner. The distributed analytical redundancy approach is implemented into a wireless SHM system and validated in laboratory experiments, demonstrating the ability of wireless sensor nodes to self-diagnose sensor faults accurately and efficiently with minimal data traffic. Besides enabling distributed autonomous fault diagnosis, the embedded ANNs are able to adapt to the actual condition of the structure, thus ensuring accurate and efficient fault diagnosis even in case of structural changes.

  14. Cardiac adaptations of bullfrog tadpoles in response to chytrid infection.

    PubMed

    Salla, Raquel Fernanda; Gamero, Fernando Urban; Ribeiro, Larissa Rodrigues; Rizzi, Gisele Miglioranza; Medico, Samuel Espinosa Dal; Rissoli, Rafael Zanelli; Vieira, Conrado Augusto; Silva-Zacarin, Elaine Cristina Mathias; Leite, Domingos Silva; Abdalla, Fábio Camargo; Toledo, Luis Felipe; Costa, Monica Jones

    2015-08-01

    The chytrid fungus Batrachochytrium dendrobatidis (Bd) can result in heart failure in Bd-susceptible species. Since Bd infection generally does not cause mortality in North American bullfrogs, the aim of this work was to verify whether this species presents any cardiac adaptation that could improve the tolerance to the fungus. Thus, we analyzed tadpoles' activity level, relative ventricular mass, ventricle morphology, in loco heart frequency, and in vitro cardiac function. The results indicate that infected animals present an increase in both ventricular relative mass and in myofibrils' incidence, which accompanied the increase in myocytes' diameter. Such morphological alterations enabled an increase in the in vitro twitch force that, in vivo, would result in elevation of the cardiac stroke volume. This response requires much less energy expenditure than an elevation in heart frequency, but still enables the heart to pump a higher volume of blood per minute (i.e., an increase in cardiac output). As a consequence, the energy saved in the regulation of the cardiac function of Bd-infected tadpoles can be employed in other homeostatic adjustments to avoid the lethal effect of the fungus. Whether other species present this ability, and to what extent, remains uncertain, but such possible interspecific variability might explain different mortality rates among different species of Bd-infected amphibians. PMID:26055358

  15. Adaptive Response of T and B Cells in Atherosclerosis.

    PubMed

    Ketelhuth, Daniel F J; Hansson, Göran K

    2016-02-19

    Atherosclerosis is a chronic inflammatory disease that is initiated by the retention and accumulation of cholesterol-containing lipoproteins, particularly low-density lipoprotein, in the artery wall. In the arterial intima, lipoprotein components that are generated through oxidative, lipolytic, and proteolytic activities lead to the formation of several danger-associated molecular patterns, which can activate innate immune cells as well as vascular cells. Moreover, self- and non-self-antigens, such as apolipoprotein B-100 and heat shock proteins, can contribute to vascular inflammation by triggering the response of T and B cells locally. This process can influence the initiation, progression, and stability of plaques. Substantial clinical and experimental data support that the modulation of adaptive immune system may be used for treating and preventing atherosclerosis. This may lead to the development of more selective and less harmful interventions, while keeping host defense mechanisms against infections and tumors intact. Approaches such as vaccination might become a realistic option for cardiovascular disease, especially if they can elicit regulatory T and B cells and the secretion of atheroprotective antibodies. Nevertheless, difficulties in translating certain experimental data into new clinical therapies remain a challenge. In this review, we discuss important studies on the function of T- and B-cell immunity in atherosclerosis and their manipulation to develop novel therapeutic strategies against cardiovascular disease.

  16. Mitochondrial role in adaptive response to stress conditions in preeclampsia

    PubMed Central

    Vishnyakova, Polina A.; Volodina, Maria A.; Tarasova, Nadezhda V.; Marey, Maria V.; Tsvirkun, Daria V.; Vavina, Olga V.; Khodzhaeva, Zulfiya S.; Kan, Natalya E.; Menon, Ramkumar; Vysokikh, Mikhail Yu.; Sukhikh, Gennady T.

    2016-01-01

    Preeclampsia (PE) is a pregnancy-specific syndrome, characterized in general by hypertension with proteinuria or other systemic disturbances. PE is the major cause of maternal and fetal morbidity and mortality worldwide. However, the etiology of PE still remains unclear. Our study involved 38 patients: 14 with uncomplicated pregnancy; 13 with early-onset PE (eoPE); and 11 with late-onset PE (loPE). We characterized the immunophenotype of cells isolated from the placenta and all biopsy samples were stained positive for Cytokeratin 7, SOX2, Nestin, Vimentin, and CD44. We obtained a significant increase in OPA1 mRNA and protein expression in the eoPE placentas. Moreover, TFAM expression was down-regulated in comparison to the control (p < 0.01). Mitochondrial DNA copy number in eoPE placentas was significantly higher than in samples from normal pregnancies. We observed an increase of maximum coupled state 3 respiration rate in mitochondria isolated from the placenta in the presence of complex I substrates in the eoPE group and an increase of P/O ratio, citrate synthase activity and decrease of Ca2+-induced depolarization rate in both PE groups. Our results suggest an essential role of mitochondrial activity changes in an adaptive response to the development of PE. PMID:27573305

  17. Distributed reinforcement learning for adaptive and robust network intrusion response

    NASA Astrophysics Data System (ADS)

    Malialis, Kleanthis; Devlin, Sam; Kudenko, Daniel

    2015-07-01

    Distributed denial of service (DDoS) attacks constitute a rapidly evolving threat in the current Internet. Multiagent Router Throttling is a novel approach to defend against DDoS attacks where multiple reinforcement learning agents are installed on a set of routers and learn to rate-limit or throttle traffic towards a victim server. The focus of this paper is on online learning and scalability. We propose an approach that incorporates task decomposition, team rewards and a form of reward shaping called difference rewards. One of the novel characteristics of the proposed system is that it provides a decentralised coordinated response to the DDoS problem, thus being resilient to DDoS attacks themselves. The proposed system learns remarkably fast, thus being suitable for online learning. Furthermore, its scalability is successfully demonstrated in experiments involving 1000 learning agents. We compare our approach against a baseline and a popular state-of-the-art throttling technique from the network security literature and show that the proposed approach is more effective, adaptive to sophisticated attack rate dynamics and robust to agent failures.

  18. Cardiac adaptations of bullfrog tadpoles in response to chytrid infection.

    PubMed

    Salla, Raquel Fernanda; Gamero, Fernando Urban; Ribeiro, Larissa Rodrigues; Rizzi, Gisele Miglioranza; Medico, Samuel Espinosa Dal; Rissoli, Rafael Zanelli; Vieira, Conrado Augusto; Silva-Zacarin, Elaine Cristina Mathias; Leite, Domingos Silva; Abdalla, Fábio Camargo; Toledo, Luis Felipe; Costa, Monica Jones

    2015-08-01

    The chytrid fungus Batrachochytrium dendrobatidis (Bd) can result in heart failure in Bd-susceptible species. Since Bd infection generally does not cause mortality in North American bullfrogs, the aim of this work was to verify whether this species presents any cardiac adaptation that could improve the tolerance to the fungus. Thus, we analyzed tadpoles' activity level, relative ventricular mass, ventricle morphology, in loco heart frequency, and in vitro cardiac function. The results indicate that infected animals present an increase in both ventricular relative mass and in myofibrils' incidence, which accompanied the increase in myocytes' diameter. Such morphological alterations enabled an increase in the in vitro twitch force that, in vivo, would result in elevation of the cardiac stroke volume. This response requires much less energy expenditure than an elevation in heart frequency, but still enables the heart to pump a higher volume of blood per minute (i.e., an increase in cardiac output). As a consequence, the energy saved in the regulation of the cardiac function of Bd-infected tadpoles can be employed in other homeostatic adjustments to avoid the lethal effect of the fungus. Whether other species present this ability, and to what extent, remains uncertain, but such possible interspecific variability might explain different mortality rates among different species of Bd-infected amphibians.

  19. Mitochondrial role in adaptive response to stress conditions in preeclampsia.

    PubMed

    Vishnyakova, Polina A; Volodina, Maria A; Tarasova, Nadezhda V; Marey, Maria V; Tsvirkun, Daria V; Vavina, Olga V; Khodzhaeva, Zulfiya S; Kan, Natalya E; Menon, Ramkumar; Vysokikh, Mikhail Yu; Sukhikh, Gennady T

    2016-01-01

    Preeclampsia (PE) is a pregnancy-specific syndrome, characterized in general by hypertension with proteinuria or other systemic disturbances. PE is the major cause of maternal and fetal morbidity and mortality worldwide. However, the etiology of PE still remains unclear. Our study involved 38 patients: 14 with uncomplicated pregnancy; 13 with early-onset PE (eoPE); and 11 with late-onset PE (loPE). We characterized the immunophenotype of cells isolated from the placenta and all biopsy samples were stained positive for Cytokeratin 7, SOX2, Nestin, Vimentin, and CD44. We obtained a significant increase in OPA1 mRNA and protein expression in the eoPE placentas. Moreover, TFAM expression was down-regulated in comparison to the control (p < 0.01). Mitochondrial DNA copy number in eoPE placentas was significantly higher than in samples from normal pregnancies. We observed an increase of maximum coupled state 3 respiration rate in mitochondria isolated from the placenta in the presence of complex I substrates in the eoPE group and an increase of P/O ratio, citrate synthase activity and decrease of Ca(2+)-induced depolarization rate in both PE groups. Our results suggest an essential role of mitochondrial activity changes in an adaptive response to the development of PE. PMID:27573305

  20. A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4

    PubMed Central

    Alsina, L; Israelsson, E; Altman, MC; Dang, KK; Ghandil, P; Israel, L; von Bernuth, H; Baldwin, N; Qin, H; Jin, Z; Banchereau, R; Anguiano, E; Ionan, A; Abel, L; Puel, A; Picard, C; Pascual, V; Casanova, JL; Chaussabel, D

    2014-01-01

    Loss of function in the kinase IRAK-4 or the adapter MyD88 in humans interrupts a pathway critical for pathogen sensing and ignition of inflammation. Yet patients with loss of function mutations are surprisingly only susceptible to a limited range of pathogens. We employed a systems approach to investigate transcriptome responses following in vitro exposure of patients’ blood to Toll-like receptor and interleukin-1 receptor agonists, and whole pathogens. Responses to purified agonists were globally abolished but variable residual responses were present following exposure to whole pathogens. Further dissection of the latter responses identified a narrow repertoire of immune transcriptional programs affected by loss of MyD88 or IRAK-4 function. This work introduces the use of a systems approach for the global assessment of innate immune responses, and the characterization of human primary immunodeficiencies. PMID:25344726

  1. The Arabidopsis Transcription Factor NAC016 Promotes Drought Stress Responses by Repressing AREB1 Transcription through a Trifurcate Feed-Forward Regulatory Loop Involving NAP.

    PubMed

    Sakuraba, Yasuhito; Kim, Ye-Sol; Han, Su-Hyun; Lee, Byoung-Doo; Paek, Nam-Chon

    2015-06-01

    Drought and other abiotic stresses negatively affect plant growth and development and thus reduce productivity. The plant-specific NAM/ATAF1/2/CUC2 (NAC) transcription factors have important roles in abiotic stress-responsive signaling. Here, we show that Arabidopsis thaliana NAC016 is involved in drought stress responses; nac016 mutants have high drought tolerance, and NAC016-overexpressing (NAC016-OX) plants have low drought tolerance. Using genome-wide gene expression microarray analysis and MEME motif searches, we identified the NAC016-specific binding motif (NAC16BM), GATTGGAT[AT]CA, in the promoters of genes downregulated in nac016-1 mutants. The NAC16BM sequence does not contain the core NAC binding motif CACG (or its reverse complement CGTG). NAC016 directly binds to the NAC16BM in the promoter of ABSCISIC ACID-RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1), which encodes a central transcription factor in the stress-responsive abscisic acid signaling pathway and represses AREB1 transcription. We found that knockout mutants of the NAC016 target gene NAC-LIKE, ACTIVATED BY AP3/PI (NAP) also exhibited strong drought tolerance; moreover, NAP binds to the AREB1 promoter and suppresses AREB1 transcription. Taking these results together, we propose that a trifurcate feed-forward pathway involving NAC016, NAP, and AREB1 functions in the drought stress response, in addition to affecting leaf senescence in Arabidopsis. PMID:26059204

  2. CREM: a master-switch in the transcriptional response to cAMP.

    PubMed

    Lamas, M; Monaco, L; Zazopoulos, E; Lalli, E; Tamai, K; Penna, L; Mazzucchelli, C; Nantel, F; Foulkes, N S; Sassone-Corsi, P

    1996-04-29

    The CREM gene encodes both repressors and activators of cAMP-dependent transcription in a tissue and developmentally regulated manner. In addition, multiple and cooperative phosphorylation events regulate the function of the CREM proteins. CREM plays a key physiological and developmental role within the hypothalamic-pituitary axis. There is a functional switch in CREM expression during the development of male germ cells which is directed by the pituitary hormone FSH. The CREM protein in germ cells is a powerful activator which appears to function as a master-switch in the regulation of postmeiotic genes. CREM is inducible by activation of the cAMP signalling pathway with the kinetics of an early response gene. The induction is transient, cell-specific, does not involve increased transcript stability and does not require protein synthesis. The subsequent decline in CREM expression requires de novo protein synthesis. The induced transcript encodes ICER and is generated from an alternative, intronic promoter. ICER functions as a powerful repressor of cAMP-induced transcription, and represses the activity of its own promoter, thus constituting a negative autoregulatory loop.

  3. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    SciTech Connect

    Miyata, Ryohei; Eeden, Stephan F. van

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  4. Transcriptional control of the inflammatory response: a role for the CREB-binding protein (CBP).

    PubMed

    Matt, Theresia

    2002-01-01

    The cellular pathophysiology of septic shock is characterized by the activation of genes in response to exposure of cells to bacterial lipopolysaccharide. Tumour necrosis factor-alpha (TNF-alpha) or endotoxin induce the activation of two major transcription factors, NF-kappa B (nuclear factor-kappaB) and AP-1 (activating protein-1), which in turn induce genes involved in chronic and acute inflammatory responses. The activity of both of them is regulated by phosphorylation and subsequent interaction with the coactivator protein CBP (CREB-binding protein). Thus, the limiting CBP may play an important role in the development of critical illness.

  5. Tomato Whole Genome Transcriptional Response to Tetranychus urticae Identifies Divergence of Spider Mite-Induced Responses Between Tomato and Arabidopsis.

    PubMed

    Martel, Catherine; Zhurov, Vladimir; Navarro, Marie; Martinez, Manuel; Cazaux, Marc; Auger, Philippe; Migeon, Alain; Santamaria, M Estrella; Wybouw, Nicky; Diaz, Isabel; Van Leeuwen, Thomas; Navajas, Maria; Grbic, Miodrag; Grbic, Vojislava

    2015-03-01

    The two-spotted spider mite Tetranychus urticae is one of the most significant mite pests in agriculture, feeding on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. Here, we describe timecourse tomato transcriptional responses to spider mite feeding and compare them with Arabidopsis in order to determine conserved and divergent defense responses to this pest. To refine the involvement of jasmonic acid (JA) in mite-induced responses and to improve tomato Gene Ontology annotations, we analyzed transcriptional changes in the tomato JA-signaling mutant defenseless1 (def-1) upon JA treatment and spider mite herbivory. Overlay of differentially expressed genes (DEG) identified in def-1 onto those from the timecourse experiment established that JA controls expression of the majority of genes differentially regulated by herbivory. Comparison of defense responses between tomato and Arabidopsis highlighted 96 orthologous genes (of 2,133 DEG) that were recruited for defense against spider mites in both species. These genes, involved in biosynthesis of JA, phenylpropanoids, flavonoids, and terpenoids, represent the conserved core of induced defenses. The remaining tomato DEG support the establishment of tomato-specific defenses, indicating profound divergence of spider mite-induced responses between tomato and Arabidopsis.

  6. Lytic infection of Lactococcus lactis by bacteriophages Tuc2009 and c2 triggers alternative transcriptional host responses.

    PubMed

    Ainsworth, Stuart; Zomer, Aldert; Mahony, Jennifer; van Sinderen, Douwe

    2013-08-01

    Here we present an entire temporal transcriptional profile of Lactococcus lactis subsp. cremoris UC509.9 undergoing lytic infection with two distinct bacteriophages, Tuc2009 and c2. Furthermore, corresponding high-resolution whole-phage genome tiling arrays of both bacteriophages were performed throughout lytic infection. Whole-genome microarrays performed at various time points postinfection demonstrated a rather modest impact on host transcription. The majority of changes in the host transcriptome occur during late infection stages; few changes in host gene transcription occur during the immediate and early infection stages. Alterations in the L. lactis UC509.9 transcriptome during lytic infection appear to be phage specific, with relatively few differentially transcribed genes shared between cells infected with Tuc2009 and those infected with c2. Despite the apparent lack of a coordinated general phage response, three themes common to both infections were noted: alternative transcription of genes involved in catabolic flux and energy production, differential transcription of genes involved in cell wall modification, and differential transcription of genes involved in the conversion of ribonucleotides to deoxyribonucleotides. The transcriptional profiles of both bacteriophages during lytic infection generally correlated with the findings of previous studies and allowed the confirmation of previously predicted promoter sequences. In addition, the host transcriptional response to lysogenization with Tuc2009 was monitored along with tiling array analysis of Tuc2009 in the lysogenic state. Analysis identified 44 host genes with altered transcription during lysogeny, 36 of which displayed levels of transcription significantly reduced from those for uninfected cells.

  7. The Adaptive Significance of Natural Genetic Variation in the DNA Damage Response of Drosophila melanogaster

    PubMed Central

    Svetec, Nicolas; Cridland, Julie M.; Zhao, Li; Begun, David J.

    2016-01-01

    Despite decades of work, our understanding of the distribution of fitness effects of segregating genetic variants in natural populations remains largely incomplete. One form of selection that can maintain genetic variation is spatially varying selection, such as that leading to latitudinal clines. While the introduction of population genomic approaches to understanding spatially varying selection has generated much excitement, little successful effort has been devoted to moving beyond genome scans for selection to experimental analysis of the relevant biology and the development of experimentally motivated hypotheses regarding the agents of selection; it remains an interesting question as to whether the vast majority of population genomic work will lead to satisfying biological insights. Here, motivated by population genomic results, we investigate how spatially varying selection in the genetic model system, Drosophila melanogaster, has led to genetic differences between populations in several components of the DNA damage response. UVB incidence, which is negatively correlated with latitude, is an important agent of DNA damage. We show that sensitivity of early embryos to UVB exposure is strongly correlated with latitude such that low latitude populations show much lower sensitivity to UVB. We then show that lines with lower embryo UVB sensitivity also exhibit increased capacity for repair of damaged sperm DNA by the oocyte. A comparison of the early embryo transcriptome in high and low latitude embryos provides evidence that one mechanism of adaptive DNA repair differences between populations is the greater abundance of DNA repair transcripts in the eggs of low latitude females. Finally, we use population genomic comparisons of high and low latitude samples to reveal evidence that multiple components of the DNA damage response and both coding and non-coding variation likely contribute to adaptive differences in DNA repair between populations. PMID:26950216

  8. The Adaptive Significance of Natural Genetic Variation in the DNA Damage Response of Drosophila melanogaster.

    PubMed

    Svetec, Nicolas; Cridland, Julie M; Zhao, Li; Begun, David J

    2016-03-01

    Despite decades of work, our understanding of the distribution of fitness effects of segregating genetic variants in natural populations remains largely incomplete. One form of selection that can maintain genetic variation is spatially varying selection, such as that leading to latitudinal clines. While the introduction of population genomic approaches to understanding spatially varying selection has generated much excitement, little successful effort has been devoted to moving beyond genome scans for selection to experimental analysis of the relevant biology and the development of experimentally motivated hypotheses regarding the agents of selection; it remains an interesting question as to whether the vast majority of population genomic work will lead to satisfying biological insights. Here, motivated by population genomic results, we investigate how spatially varying selection in the genetic model system, Drosophila melanogaster, has led to genetic differences between populations in several components of the DNA damage response. UVB incidence, which is negatively correlated with latitude, is an important agent of DNA damage. We show that sensitivity of early embryos to UVB exposure is strongly correlated with latitude such that low latitude populations show much lower sensitivity to UVB. We then show that lines with lower embryo UVB sensitivity also exhibit increased capacity for repair of damaged sperm DNA by the oocyte. A comparison of the early embryo transcriptome in high and low latitude embryos provides evidence that one mechanism of adaptive DNA repair differences between populations is the greater abundance of DNA repair transcripts in the eggs of low latitude females. Finally, we use population genomic comparisons of high and low latitude samples to reveal evidence that multiple components of the DNA damage response and both coding and non-coding variation likely contribute to adaptive differences in DNA repair between populations. PMID:26950216

  9. Comprehensive analysis suggests overlapping expression of rice ONAC transcription factors in abiotic and biotic stress responses.

    PubMed

    Sun, Lijun; Huang, Lei; Hong, Yongbo; Zhang, Huijuan; Song, Fengming; Li, Dayong

    2015-01-01

    NAC (NAM/ATAF/CUC) transcription factors comprise a large plant-specific gene family that contains more than 149 members in rice. Extensive studies have revealed that NAC transcription factors not only play important roles in plant growth and development, but also have functions in regulation of responses to biotic and abiotic stresses. However, biological functions for most of the members in the NAC family remain unknown. In this study, microarray data analyses revealed that a total of 63 ONAC genes exhibited overlapping expression patterns in rice under various abiotic (salt, drought, and cold) and biotic (infection by fungal, bacterial, viral pathogens, and parasitic plants) stresses. Thirty-eight ONAC genes exhibited overlapping expression in response to any two abiotic stresses, among which 16 of 30 selected ONAC genes were upregulated in response to exogenous ABA. Sixty-five ONAC genes showed overlapping expression patterns in response to any two biotic stresses. Results from the present study suggested that members of the ONAC genes with overlapping expression pattern may have pleiotropic biological functions in regulation of defense response against different abiotic and biotic stresses, which provide clues for further functional analysis of the ONAC genes in stress tolerance and pathogen resistance. PMID:25690040

  10. Tomato Genome-Wide Transcriptional Responses to Fusarium Wilt and Tomato Mosaic Virus

    PubMed Central

    Andolfo, Giuseppe; Ferriello, Francesca; Tardella, Luca; Ferrarini, Alberto; Sigillo, Loredana; Frusciante, Luigi; Ercolano, Maria Raffaella

    2014-01-01

    Since gene expression approaches constitute a starting point for investigating plant–pathogen systems, we performed a transcriptional analysis to identify a set of genes of interest in tomato plants infected with F. oxysporum f. sp. lycopersici (Fol) and Tomato Mosaic Virus (ToMV). Differentially expressed tomato genes upon inoculation with Fol and ToMV were identified at two days post-inoculation. A large overlap was found in differentially expressed genes throughout the two incompatible interactions. However, Gene Ontology enrichment analysis evidenced specific categories in both interactions. Response to ToMV seems more multifaceted, since more than 70 specific categories were enriched versus the 30 detected in Fol interaction. In particular, the virus stimulated the production of an invertase enzyme that is able to redirect the flux of carbohydrates, whereas Fol induced a homeostatic response to prevent the fungus from killing cells. Genomic mapping of transcripts suggested that specific genomic regions are involved in resistance response to pathogen. Coordinated machinery could play an important role in prompting the response, since 60% of pathogen receptor genes (NB-ARC-LRR, RLP, RLK) were differentially regulated during both interactions. Assessment of genomic gene expression patterns could help in building up models of mediated resistance responses. PMID:24804963

  11. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress

    PubMed Central

    Servant, Géraldine; Pinson, Benoit; Tchalikian-Cosson, Aurélie; Coulpier, Fanny; Lemoine, Sophie; Pennetier, Carole; Bridier-Nahmias, Antoine; Todeschini, Anne Laure; Fayol, Hélène; Daignan-Fornier, Bertrand; Lesage, Pascale

    2012-01-01

    Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages. PMID:22379133

  12. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress.

    PubMed

    Servant, Géraldine; Pinson, Benoit; Tchalikian-Cosson, Aurélie; Coulpier, Fanny; Lemoine, Sophie; Pennetier, Carole; Bridier-Nahmias, Antoine; Todeschini, Anne Laure; Fayol, Hélène; Daignan-Fornier, Bertrand; Lesage, Pascale

    2012-07-01

    Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages. PMID:22379133

  13. Dynamic antagonism between phytochromes and PIF family basic helix-loop-helix factors induces selective reciprocal responses to light and shade in a rapidly responsive transcriptional network in Arabidopsis.

    PubMed

    Leivar, Pablo; Tepperman, James M; Cohn, Megan M; Monte, Elena; Al-Sady, Bassem; Erickson, Erika; Quail, Peter H

    2012-04-01

    Plants respond to shade-modulated light signals via phytochrome (phy)-induced adaptive changes, termed shade avoidance. To examine the roles of Phytochrome-Interacting basic helix-loop-helix Factors, PIF1, 3, 4, and 5, in relaying such signals to the transcriptional network, we compared the shade-responsive transcriptome profiles of wild-type and quadruple pif (pifq) mutants. We identify a subset of genes, enriched in transcription factor-encoding loci, that respond rapidly to shade, in a PIF-dependent manner, and contain promoter G-box motifs, known to bind PIFs. These genes are potential direct targets of phy-PIF signaling that regulate the primary downstream transcriptional circuitry. A second subset of PIF-dependent, early response genes, lacking G-box motifs, are enriched for auxin-responsive loci, and are thus potentially indirect targets of phy-PIF signaling, mediating the rapid cell expansion induced by shade. Comparing deetiolation- and shade-responsive transcriptomes identifies another subset of G-box-containing genes that reciprocally display rapid repression and induction in response to light and shade signals. These data define a core set of transcriptional and hormonal processes that appear to be dynamically poised to react rapidly to light-environment changes via perturbations in the mutually antagonistic actions of the phys and PIFs. Comparing the responsiveness of the pifq and triple pif mutants to light and shade confirms that the PIFs act with overlapping redundancy on seedling morphogenesis and transcriptional regulation but that each PIF contributes differentially to these responses.

  14. Endothelial Inflammatory Transcriptional Responses Induced by Plasma Following Inhalation of Diesel Emissions

    PubMed Central

    Schisler, Jonathan C.; Ronnebaum, Sarah M.; Madden, Michael; Channell, Meghan M.; Campen, Matthew J.; Willis, Monte S.

    2016-01-01

    Background Air pollution, especially emissions derived from traffic sources, is associated with adverse cardiovascular outcomes. However, it remains unclear how inhaled factors drive extrapulmonary pathology. Objectives Previously, we found that canonical inflammatory response transcripts were elevated in cultured endothelial cells treated with plasma obtained after exposure compared with pre-exposure samples or filtered air (sham) exposures. While the findings confirmed the presence of bioactive factor(s) in the plasma after diesel inhalation, we wanted to better examine the complete genomic response to investigate 1) major responsive transcripts and 2) collected response pathways and ontogeny that may help to refine this method and inform the pathogenesis. Methods We assayed endothelial RNA with gene expression microarrays, examining the responses of cultured endothelial cells to plasma obtained from 6 healthy human subjects exposed to 100 μg/m3 diesel exhaust or filtered air for 2 h on separate occasions. In addition to pre-exposure baseline samples, we investigated samples obtained immediately-post and 24h-post exposure. Results Microarray analysis of the coronary artery endothelial cells challenged with plasma identified 855 probes that changed over time following diesel exhaust exposure. Over-representation analysis identified inflammatory cytokine pathways were upregulated both at the 2 and 24 h condition. Novel pathways related to FOX transcription factors and secreted extracellular factors were also identified in the microarray analysis. Conclusions These outcomes are consistent with our recent findings that plasma contains bioactive and inflammatory factors following pollutant inhalation. The specific study design implicates a novel pathway related to inflammatory blood borne components that may drive the extrapulmonary toxicity of ambient air pollutants. PMID:25942053

  15. Physiological and transcriptional responses to high temperature in Arthrospira (Spirulina) platensis C1.

    PubMed

    Panyakampol, Jaruta; Cheevadhanarak, Supapon; Sutheeworapong, Sawannee; Chaijaruwanich, Jeerayut; Senachak, Jittisak; Siangdung, Wipawan; Jeamton, Wattana; Tanticharoen, Morakot; Paithoonrangsarid, Kalyanee

    2015-03-01

    Arthrospira (Spirulina) platensis is a well-known commercial cyanobacterium that is used as a food and in feed supplements. In this study, we examined the physiological changes and whole-genome expression in A. platensis C1 exposed to high temperature. We found that photosynthetic activity was significantly decreased after the temperature was shifted from 35°C to 42°C for 2 h. A reduction in biomass production and protein content, concomitant with the accumulation of carbohydrate content, was observed after prolonged exposure to high temperatures for 24 h. Moreover, the results of the expression profiling in response to high temperature at the designated time points (8 h) revealed two distinct phases of the responses. The first was the immediate response phase, in which the transcript levels of genes involved in different mechanisms, including genes for heat shock proteins; genes involved in signal transduction and carbon and nitrogen metabolism; and genes encoding inorganic ion transporters for magnesium, nitrite and nitrate, were either transiently induced or repressed by the high temperature. In the second phase, the long-term response phase, both the induction and repression of the expression of genes with important roles in translation and photosynthesis were observed. Taken together, the results of our physiological and transcriptional studies suggest that dynamic changes in the transcriptional profiles of these thermal-responsive genes might play a role in maintaining cell homeostasis under high temperatures, as reflected in the growth and biochemical composition, particularly the protein and carbohydrate content, of A. platensis C1. PMID:25524069

  16. Adaptive Posttranslational Control in Cellular Stress Response Pathways and Its Relationship to Toxicity Testing and Safety Assessment.

    PubMed

    Zhang, Qiang; Bhattacharya, Sudin; Pi, Jingbo; Clewell, Rebecca A; Carmichael, Paul L; Andersen, Melvin E

    2015-10-01

    Although transcriptional induction of stress genes constitutes a major cellular defense program against a variety of stressors, posttranslational control directly regulating the activities of preexisting stress proteins provides a faster-acting alternative response. We propose that posttranslational control is a general adaptive mechanism operating in many stress pathways. Here with the aid of computational models, we first show that posttranslational control fulfills two roles: (1) handling small, transient stresses quickly and (2) stabilizing the negative feedback transcriptional network. We then review the posttranslational control pathways for major stress responses-oxidative stress, metal stress, hyperosmotic stress, DNA damage, heat shock, and hypoxia. Posttranslational regulation of stress protein activities occurs by reversible covalent modifications, allosteric or non-allosteric enzymatic regulations, and physically induced protein structural changes. Acting in feedback or feedforward networks, posttranslational control may establish a threshold level of cellular stress. Sub-threshold stresses are handled adequately by posttranslational control without invoking gene transcription. With supra-threshold stress levels, cellular homeostasis cannot be maintained and transcriptional induction of stress genes and other gene programs, eg, those regulating cell metabolism, proliferation, and apoptosis, takes place. The loss of homeostasis with consequent changes in cellular function may lead to adverse cellular outcomes. Overall, posttranslational and transcriptional control pathways constitute a stratified cellular defense system, handling stresses coherently across time and intensity. As cell-based assays become a focus for chemical testing anchored on toxicity pathways, examination of proteomic and metabolomic changes as a result of posttranslational control occurring in the absence of transcriptomic alterations deserves more attention.

  17. Evolutionary responses of innate Immunity to adaptive immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Innate immunity is present in all metazoans, whereas the evolutionarily more novel adaptive immunity is limited to jawed fishes and their descendants (gnathostomes). We observe that the organisms that possess adaptive immunity lack diversity in their innate pattern recognition receptors (PRRs), rais...

  18. Transcriptional and functional adaptations of human endothelial cells to physiological chronic low oxygen.

    PubMed

    Jiang, Yi-Zhou; Wang, Kai; Li, Yan; Dai, Cai-Feng; Wang, Ping; Kendziorski, Christina; Chen, Dong-Bao; Zheng, Jing

    2013-05-01

    Endothelial cells chronically reside in low-O2 environments in vivo (2%-13% O2), which are believed to be critical for cell homeostasis. To elucidate the roles of this physiological chronic normoxia in human endothelial cells, we examined transcriptomes of human umbilical vein endothelial cells (HUVECs), proliferation and migration of HUVECs in response to fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA), and underlying signaling mechanisms under physiological chronic normoxia. Immediately after isolation, HUVECs were cultured steadily under standard cell culture normoxia (SCN; 21% O2) or physiological chronic normoxia (PCN; 3% O2) up to 25 days. We found that PCN up-regulated 41 genes and down-regulated 21 genes, 90% of which differed from those previously reported from HUVECs cultured under SCN and exposed to acute low O2. Gene ontology analysis indicated that PCN-regulated genes were highly related to cell proliferation and migration, consistent with the results from benchtop assays that showed that PCN significantly enhanced FGF2- and VEGFA-stimulated cell proliferation and migration. Interestingly, preexposing the PCN cells to 21% O2 up to 5 days did not completely diminish PCN-enhanced cell proliferation and migration. These PCN-enhanced cell proliferations and migrations were mediated via augmented activation of MEK1/MEK2/ERK1/ERK2 and/or PI3K/AKT1. Importantly, these PCN-enhanced cellular responses were associated with an increase in activation of VEGFR2 but not FGFR1, without altering their expression. Thus, PCN programs endothelial cells to undergo dramatic changes in transcriptomes and sensitizes cellular proliferative and migratory responses to FGF2 and VEGFA. These PCN cells may offer a unique endothelial model, more closely mimicking the in vivo states.

  19. The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development.

    PubMed

    Chardin, Camille; Girin, Thomas; Roudier, François; Meyer, Christian; Krapp, Anne

    2014-10-01

    The plant specific RWP-RK family of transcription factors, initially identified in legumes and Chlamydomonas, are found in all vascular plants, green algae, and slime molds. These proteins possess a characteristic RWP-RK motif, which mediates DNA binding. Based on phylogenetic and domain analyses, we classified the RWP-RK proteins of six different species in two subfamilies: the NIN-like proteins (NLPs), which carry an additional PB1 domain at their C-terminus, and the RWP-RK domain proteins (RKDs), which are divided into three subgroups. Although, the functional analysis of this family is still in its infancy, several RWP-RK proteins have a key role in regulating responses to nitrogen availability. The nodulation-specific NIN proteins are involved in nodule organogenesis and rhizobial infection under nitrogen starvation conditions. Arabidopsis NLP7 in particular is a major player in the primary nitrate response. Several RKDs act as transcription factors involved in egg cell specification and differentiation or gametogenesis in algae, the latter modulated by nitrogen availability. Further studies are required to extend the general picture of the functional role of these exciting transcription factors.

  20. A Conserved Structural Module Regulates Transcriptional Responses to Diverse Stress Signals in Eubacteria

    SciTech Connect

    Campbell,E.; Greenwell, R.; Anthony, J.; Wang, S.; Lim, L.; Das, K.; Sofia, H.; Donohue, T.; Darst, S.

    2007-01-01

    A transcriptional response to singlet oxygen in Rhodobacter sphaeroides is controlled by the group IV {sigma} factor {sigma}{sup E} and its cognate anti-{sigma} ChrR. Crystal structures of the {sigma}{sup E}/ChrR complex reveal a modular, two-domain architecture for ChrR. The ChrR N-terminal anti-{sigma} domain (ASD) binds a Zn{sup 2+} ion, contacts {sigma}{sup E}, and is sufficient to inhibit {sigma}{sup E}-dependent transcription. The ChrR C-terminal domain adopts a cupin fold, can coordinate an additional Zn{sup 2+}, and is required for the transcriptional response to singlet oxygen. Structure-based sequence analyses predict that the ASD defines a common structural fold among predicted group IV anti-{sigma}s. These ASDs are fused to diverse C-terminal domains that are likely involved in responding to specific environmental signals that control the activity of their cognate {sigma} factor.

  1. Cold tolerance in thiourea primed capsicum seedlings is associated with transcript regulation of stress responsive genes.

    PubMed

    Patade, Vikas Yadav; Khatri, Deepti; Manoj, Kamble; Kumari, Maya; Ahmed, Zakwan

    2012-12-01

    Benefits of seed priming in seedling establishment and tolerance to subsequent stress exposure are well reported. However, the molecular mechanisms underlying the priming mediated benefits are not much discovered. Results of our earlier experiments established that thiourea (TU) seed priming imparts cold tolerance to capsicum seedlings. Therefore, to understand molecular mechanisms underlying priming mediated cold stress tolerance, quantitative transcript expression of stress responsive genes involved in transcript regulation (CaCBF1A, CaCBF1B, Zinc Finger protein, CaWRKY30), osmotic adjustment (PROX1, P5CS, Osmotin), antioxidant defence (CAT2, APX, GST, GR1, Cu/Zn SOD, Mn SOD, Fe SOD), signaling (Annexin), movement of solutes and water (CaPIP1), and metabolite biosynthesis through phenylpropanoid pathway (CAH) was studied in response to cold (4 °C; 4 and 24 h) stress in seedlings grown from the TU primed, hydroprimed and unsoaked seeds. The transcript expression of CaWRKY30, PROX1, Osmotin, Cu/Zn SOD and CAH genes was either higher or induced earlier on cold exposure in thiourea priming than that of hydroprimed and unsoaked over the respective unstressed controls. The results thus suggest that the TU priming modulate expression of these genes thereby imparting cold tolerance in capsicum seedlings.

  2. The Arabidopsis Transcription Factor ANAC032 Represses Anthocyanin Biosynthesis in Response to High Sucrose and Oxidative and Abiotic Stresses

    PubMed Central

    Mahmood, Kashif; Xu, Zhenhua; El-Kereamy, Ashraf; Casaretto, José A.; Rothstein, Steven J.

    2016-01-01

    Production of anthocyanins is one of the adaptive responses employed by plants during stress conditions. During stress, anthocyanin biosynthesis is mainly regulated at the transcriptional level via a complex interplay between activators and repressors of anthocyanin biosynthesis genes. In this study, we investigated the role of a NAC transcription factor, ANAC032, in the regulation of anthocyanin biosynthesis during stress conditions. ANAC032 expression was found to be induced by exogenous sucrose as well as high light (HL) stress. Using biochemical, molecular and transgenic approaches, we show that ANAC032 represses anthocyanin biosynthesis in response to sucrose treatment, HL and oxidative stress. ANAC032 was found to negatively affect anthocyanin accumulation and the expression of anthocyanin biosynthesis (DFR, ANS/LDOX) and positive regulatory (TT8) genes as demonstrated in overexpression line (35S:ANAC032) compared to wild-type under HL stress. The chimeric repressor line (35S:ANAC032-SRDX) exhibited the opposite expression patterns for these genes. The negative impact of ANAC032 on the expression of DFR, ANS/LDOX and TT8 was found to be correlated with the altered expression of negative regulators of anthocyanin biosynthesis, AtMYBL2 and SPL9. In addition to this, ANAC032 also repressed the MeJA- and ABA-induced anthocyanin biosynthesis. As a result, transgenic lines overexpressing ANAC032 (35S:ANAC032) produced drastically reduced levels of anthocyanin pigment compared to wild-type when challenged with salinity stress. However, transgenic chimeric repressor lines (35S:ANAC032-SRDX) exhibited the opposite phenotype. Our results suggest that ANAC032 functions as a negative regulator of anthocyanin biosynthesis in Arabidopsis thaliana during stress conditions. PMID:27790239

  3. Acetylation of the response regulator RcsB controls transcription from a small RNA promoter.

    PubMed

    Hu, Linda I; Chi, Bui Khanh; Kuhn, Misty L; Filippova, Ekaterina V; Walker-Peddakotla, Arti J; Bäsell, Katrin; Becher, Dörte; Anderson, Wayne F; Antelmann, Haike; Wolfe, Alan J

    2013-09-01

    Nε-lysine acetylation was recently discovered on many bacterial proteins that function in diverse cellular processes. Thus, many questions remain unanswered. For example, what mechanisms regulate lysine acetylation? Does acetylation affect physiology? To help answer these questions, we studied the Escherichia coli response regulator and transcription factor RcsB, which is reported to be acetylated in vitro. To characterize RcsB acetylation, we monitored transcription from the rprA promoter, which requires RcsB. The conventional view is that RcsB is activated by phosphorylation through either the Rcs phosphorelay or acetyl phosphate. We affirmed that rprA transcription requires phosphorylated RcsB and showed that acetyl-phosphate (AcP) is a phosphoryl group donor to RcsB. However, a mutant that accumulates AcP (ackA) exhibited a reduction in rprA transcription instead of the predicted increase. rprA transcription also diminished in the cobB mutant, which lacks the only known E. coli protein deacetylase. This suggests the existence of an inhibitory mechanism that involves lysine acetylation, a supposition supported by the observation that RcsB isolated from the ackA or cobB mutant was hyperacetylated. Finally, we used a genetic approach to identify an AckA- and CobB-sensitive lysine (Lys-154) that controls RcsB activity. We propose that acetylation inhibits RcsB activity and that some of this inhibition acts through the acetylation of Lys-154. PMID:23852870

  4. Acetylation of the Response Regulator RcsB Controls Transcription from a Small RNA Promoter

    PubMed Central

    Hu, Linda I.; Chi, Bui Khanh; Kuhn, Misty L.; Filippova, Ekaterina V.; Walker-Peddakotla, Arti J.; Bäsell, Katrin; Becher, Dörte; Anderson, Wayne F.; Antelmann, Haike

    2013-01-01

    Nε-lysine acetylation was recently discovered on many bacterial proteins that function in diverse cellular processes. Thus, many questions remain unanswered. For example, what mechanisms regulate lysine acetylation? Does acetylation affect physiology? To help answer these questions, we studied the Escherichia coli response regulator and transcription factor RcsB, which is reported to be acetylated in vitro. To characterize RcsB acetylation, we monitored transcription from the rprA promoter, which requires RcsB. The conventional view is that RcsB is activated by phosphorylation through either the Rcs phosphorelay or acetyl phosphate. We affirmed that rprA transcription requires phosphorylated RcsB and showed that acetyl-phosphate (AcP) is a phosphoryl group donor to RcsB. However, a mutant that accumulates AcP (ackA) exhibited a reduction in rprA transcription instead of the predicted increase. rprA transcription also diminished in the cobB mutant, which lacks the only known E. coli protein deacetylase. This suggests the existence of an inhibitory mechanism that involves lysine acetylation, a supposition supported by the observation that RcsB isolated from the ackA or cobB mutant was hyperacetylated. Finally, we used a genetic approach to identify an AckA- and CobB-sensitive lysine (Lys-154) that controls RcsB activity. We propose that acetylation inhibits RcsB activity and that some of this inhibition acts through the acetylation of Lys-154. PMID:23852870

  5. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress.

    PubMed

    Wu, Zhi-Jun; Li, Xing-Hui; Liu, Zhi-Wei; Li, Hui; Wang, Yong-Xin; Zhuang, Jing

    2016-02-01

    Tea plant [Camellia sinensis (L.) O. Kuntze] is a leaf-type healthy non-alcoholic beverage crop, which has been widely introduced worldwide. Tea is rich in various secondary metabolites, which are important for human health. However, varied climate and complex geography have posed challenges for tea plant survival. The WRKY gene family in plants is a large transcription factor family that is involved in biological processes related to stress defenses, development, and metabolite synthesis. Therefore, identification and analysis of WRKY family transcription factors in tea plant have a profound significance. In the present study, 50 putative C. sinensis WRKY proteins (CsWRKYs) with complete WRKY domain were identified and divided into three Groups (Group I-III) on the basis of phylogenetic analysis results. The distribution of WRKY family transcription factors among plantae, fungi, and protozoa showed that the number of WRKY genes increased in higher plant, whereas the number of these genes did not correspond to the evolutionary relationships of different species. Structural feature and annotation analysis results showed that CsWRKY proteins contained WRKYGQK/WRKYGKK domains and C2H2/C2HC-type zinc-finger structure: D-X18-R-X1-Y-X2-C-X4-7-C-X23-H motif; CsWRKY proteins may be associated with the biological processes of abiotic and biotic stresses, tissue development, and hormone and secondary metabolite biosynthesis. Temperature stresses suggested that the candidate CsWRKY genes were involved in responses to extreme temperatures. The current study established an extensive overview of the WRKY family transcription factors in tea plant. This study also provided a global survey of CsWRKY transcription factors and a foundation of future functional identification and molecular breeding.

  6. Standardized Whole-Blood Transcriptional Profiling Enables the Deconvolution of Complex Induced Immune Responses.

    PubMed

    Urrutia, Alejandra; Duffy, Darragh; Rouilly, Vincent; Posseme, Céline; Djebali, Raouf; Illanes, Gabriel; Libri, Valentina; Albaud, Benoit; Gentien, David; Piasecka, Barbara; Hasan, Milena; Fontes, Magnus; Quintana-Murci, Lluis; Albert, Matthew L

    2016-09-01

    Systems approaches for the study of immune signaling pathways have been traditionally based on purified cells or cultured lines. However, in vivo responses involve the coordinated action of multiple cell types, which interact to establish an inflammatory microenvironment. We employed standardized whole-blood stimulation systems to test the hypothesis that responses to Toll-like receptor ligands or whole microbes can be defined by the transcriptional signatures of key cytokines. We found 44 genes, identified using Support Vector Machine learning, that captured the diversity of complex innate immune responses with improved segregation between distinct stimuli. Furthermore, we used donor variability to identify shared inter-cellular pathways and trace cytokine loops involved in gene expression. This provides strategies for dimension reduction of large datasets and deconvolution of innate immune responses applicable for characterizing immunomodulatory molecules. Moreover, we provide an interactive R-Shiny application with healthy donor reference values for induced inflammatory genes. PMID:27568558

  7. Human Adaptation Genetic Response Suites: Toward New Interventions and Countermeasures for Spaceflight

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Pellis, N. R.

    2005-01-01

    Genetic response suites in human lymphocytes in response to microgravity are important to identify and further study in order to augment human physiological adaptation to novel environments. Emerging technologies, such as DNA micro array profiling, have the potential to identify novel genes that are involved in mediating adaptation to these environments. These genes may prove to be therapeutically valuable as new targets for countermeasures, or as predictive biomarkers of response to these new environments. Human lymphocytes cultured in lg and microgravity analog culture were analyzed for their differential gene expression response. Different groups of genes related to the immune response, cardiovascular system and stress response were then analyzed. Analysis of cells from multiple donors reveals a small shared set that are likely to be essential to adaptation. These three groups focus on human adaptation to new environments. The shared set contains genes related to T cell activation, immune response and stress response to analog microgravity.

  8. A Novel Peroxisome Proliferator Response Element Modulates Hepatic Low Density Lipoprotein Receptor Gene Transcription in Response to PPARδ Activation

    PubMed Central

    Shende, Vikram R.; Singh, Amar Bahadur; Liu, Jingwen

    2016-01-01

    The hepatic expression of LDLR gene is regulated primarily at the transcriptional level by a sterol-regulatory element (SRE) in its proximal promoter region which is the site of action of SRE-binding protein 2 (SREBP2). However whether additional cis-regulatory elements contribute to LDLR transcription has not been fully explored. We investigated the function of a putative PPAR-response element (PPRE) sequence motif located at −768 to −752 bases upstream of the transcription start site of human LDLR gene in response to PPARδ activation. Promoter luciferase reporter analyses showed that treating HepG2 cells with PPARδ agonist L165041 markedly increased the activity of a full-length LDLR promoter construct (pLDLR-1192) without any effects on the shorter promoter reporter pLDLR-234 that contains only the core regulatory elements SRE-1 and SP1 sites. Importantly, mutation of the PPRE sequence greatly attenuated the induction of the full-length LDLR promoter activity by L165041 without affecting rosuvastatin mediated transactivation. Electrophoretic mobility shift and chromatin immunoprecipitation assays further confirmed the binding of PPARδ to the LDLR-PPRE site. Treating HepG2 cells with L165041 elevated the mRNA and protein expressions of LDLR without affecting the LDLR mRNA decay rate. The induction of LDLR expression by PPARδ agonist was further observed in liver tissue of mice and hamsters treated with L165041. Altogether, our studies identify a novel PPRE-mediated regulatory mechanism for LDLR transcription and suggest that combined treatment of statin with PPARδ agonists may have advantageous effects on LDLR expression. PMID:26443862

  9. Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis.

    PubMed

    Galon, Yael; Nave, Roy; Boyce, Joy M; Nachmias, Dikla; Knight, Marc R; Fromm, Hillel

    2008-03-19

    Calmodulin-binding transcription activator (CAMTA) 3 (also called SR1) is a calmodulin-binding transcription factor in Arabidopsis. Two homozygous T-DNA insertion mutants (camta3-1, camta3-2) showed enhanced spontaneous lesions. Transcriptome analysis of both mutants revealed 6 genes with attenuated expression and 99 genes with elevated expression. Of the latter, 32 genes are related to defense against pathogens (e.g. WRKY33, PR1 and chitinase). Propagation of a virulent strain of the bacterial pathogen Pseudomonas syringae and the fungal pathogen Botrytis cinerea were attenuated in both mutants. Moreover, both mutants accumulated high levels of H2O2. We suggest that CAMTA3 regulates the expression of a set of genes involved in biotic defense responses.

  10. Histone Ubiquitination and Deubiquitination in Transcription, DNA Damage Response, and Cancer

    PubMed Central

    Cao, Jian; Yan, Qin

    2012-01-01

    Histone post-transcriptional modifications play essential roles in regulation of all DNA related processes. Among them, histone ubiquitination has been discovered for more than three decades. However, its functions are still less well understood than other histone modifications such as methylation and acetylation. In this review, we will summarize our current understanding of histone ubiquitination and deubiquitination. In particular, we will focus on how they are regulated by histone ubiquitin ligases and deubiquitinating enzymes. We will then discuss the roles of histone ubiquitination in transcription and DNA damage response and the crosstalk between histone ubiquitination and other histone modifications. Finally, we will review the important roles of histone ubiquitination in stem cell biology and cancer. PMID:22649782

  11. Tactile response adaptation to whisker stimulation in the lemniscal somatosensory pathway of rats.

    PubMed

    Martin-Cortecero, Jesus; Nuñez, Angel

    2014-12-01

    Response adaptation is associated with attenuation of neural responses as the result of different mechanisms. However, the main function of adaptation may be to enhance the flow of relevant information transmission in sensory pathways. To study tactile response adaptation in the somatosensory pathway, unit recordings were performed in the principal trigeminal nucleus, ventro postero-medial thalamic nucleus and barrel cortex by means of tungsten microelectrodes in urethane anesthetized rats. Tactile stimuli consisted in 20 ms duration whisker deflections at different frequencies (0.5-10 Hz). Presumably pyramidal cortical neurons showed response adaptation at frequencies >2 Hz while putative inhibitory cortical neurons did not show response adaptation at 0.5, 5 or 10 Hz. Inhibitory activity was increased by muscimol application into the cortex (8mM, 0.1 µl); in this condition cortical adaptation was not affected, suggesting that adaptation was not due to an increase of inhibitory mechanisms. Adaptation was also observed in subcortical structures although the response attenuation was lesser than in the barrel cortex. Adaptation remained in subcortical structures after reversible cortical inactivation by cooling the barrel cortex. Acetylcholine application (10 μM; 0.1 μl) into the barrel cortex reduced response adaptation through the activation of muscarinic receptors because the effect was blocked by intraperitoneal injection of atropine (1mg/kg), suggesting that adaptation may change according to the cortical Ach level. Results indicate that response adaptation increases along the somatosensory pathway probably to alter the sensitivity of neurons in order to encode sensory stimuli more efficiently and to enhance the detectability of rare stimuli.

  12. Identification and prediction of abiotic stress responsive transcription factors involved in abiotic stress signaling in soybean.

    PubMed

    Tran, Lam-Son Phan; Mochida, Keiichi

    2010-03-01

    Abiotic stresses such as extreme temperature, drought, high salinity, cold and waterlogging often result in significant losses to the yields of economically important crops such as soybean (Glycine max L.). Transcription factors (TFs) which bind to DNA through specific cis-regulatory sequences either activate or repress gene transcription have been reported to act as control switches in stress signaling. Recent completion of the soybean genomic sequence has open wide opportunities for large-scale identification and annotations of regulatory TFs in soybean for functional studies. Within the soybean genome, we identified 5,035 TF models which grouped into 61 families. Detailed annotations of soybean TF genes can be accessed at SoybeanTFDB (soybeantfdb.psc.riken.jp). Moreover, we have reported a new idea of high throughput prediction and selection of abiotic stress responsive TFs based on the existence of known stress responsive cis-element(s) located in the promoter regions of respective TFs and GO annotations. We, therefore, have provided a basic platform for the genome-wide analysis of regulatory mechanisms underlying abiotic stress responses and a reliable tool for prediction and selection of stress responsive TFs for further functional studies and genetic engineering.

  13. The Pho4 transcription factor mediates the response to arsenate and arsenite in Candida albicans.

    PubMed

    Urrialde, Verónica; Prieto, Daniel; Pla, Jesús; Alonso-Monge, Rebeca

    2015-01-01

    Arsenate (As (V)) is the dominant form of the toxic metalloid arsenic (As). Microorganisms have consequently developed mechanisms to detoxify and tolerate this kind of compounds. In the present work, we have explored the arsenate sensing and signaling mechanisms in the pathogenic fungus Candida albicans. Although mutants impaired in the Hog1 or Mkc1-mediated pathways did not show significant sensitivity to this compound, both Hog1 and Mkc1 became phosphorylated upon addition of sodium arsenate to growing cells. Hog1 phosphorylation upon arsenate challenge was shown to be Ssk1-dependent. A screening designed for the identification of transcription factors involved in the arsenate response identified Pho4, a transcription factor of the myc-family, as pho4 mutants were susceptible to As (V). The expression of PHO4 was shortly induced in the presence of sodium arsenate in a Hog1-independent manner. Pho4 level affects Hog1 phosphorylation upon As (V) challenge, suggesting an indirect relationship between Pho4 activity and signaling in C. albicans. Pho4 also mediates the response to arsenite as revealed by the fact that pho4 defective mutants are sensitive to arsenite and Pho4 becomes phosphorylated upon sodium arsenite addition. Arsenite also triggers Hog1 phosphorylation by a process that is, in this case, independent of the Ssk1 kinase. These results indicate that the HOG pathway mediates the response to arsenate and arsenite in C. albicans and that the Pho4 transcription factor can differentiate among As (III), As (V) and Pi, triggering presumably specific responses. PMID:25717325

  14. Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors.

    PubMed

    Garbeva, Paolina; Silby, Mark W; Raaijmakers, Jos M; Levy, Stuart B; Boer, Wietse de

    2011-06-01

    The ability of soil bacteria to successfully compete with a range of other microbial species is crucial for their growth and survival in the nutrient-limited soil environment. In the present work, we studied the behavior and transcriptional responses of soil-inhabiting Pseudomonas fluorescens strain Pf0-1 on nutrient-poor agar to confrontation with strains of three phylogenetically different bacterial genera, that is, Bacillus, Brevundimonas and Pedobacter. Competition for nutrients was apparent as all three bacterial genera had a negative effect on the density of P. fluorescens Pf0-1; this effect was most strong during the interaction with Bacillus. Microarray-based analyses indicated strong differences in the transcriptional responses of Pf0-1 to the different competitors. There was higher similarity in the gene expression response of P. fluorescens Pf0-1 to the Gram-negative bacteria as compared with the Gram-positive strain. The Gram-negative strains did also trigger the production of an unknown broad-spectrum antibiotic in Pf0-1. More detailed analysis indicated that expression of specific Pf0-1 genes involved in signal transduction and secondary metabolite production was strongly affected by the competitors' identity, suggesting that Pf0-1 can distinguish among different competitors and fine-tune its competitive strategies. The results presented here demonstrate that P. fluorescens Pf0-1 shows a species-specific transcriptional and metabolic response to bacterial competitors and provide new leads in the identification of specific cues in bacteria-bacteria interactions and of novel competitive strategies, antimicrobial traits and genes.

  15. The Pho4 transcription factor mediates the response to arsenate and arsenite in Candida albicans

    PubMed Central

    Urrialde, Verónica; Prieto, Daniel; Pla, Jesús; Alonso-Monge, Rebeca

    2015-01-01

    Arsenate (As (V)) is the dominant form of the toxic metalloid arsenic (As). Microorganisms have consequently developed mechanisms to detoxify and tolerate this kind of compounds. In the present work, we have explored the arsenate sensing and signaling mechanisms in the pathogenic fungus Candida albicans. Although mutants impaired in the Hog1 or Mkc1-mediated pathways did not show significant sensitivity to this compound, both Hog1 and Mkc1 became phosphorylated upon addition of sodium arsenate to growing cells. Hog1 phosphorylation upon arsenate challenge was shown to be Ssk1-dependent. A screening designed for the identification of transcription factors involved in the arsenate response identified Pho4, a transcription factor of the myc-family, as pho4 mutants were susceptible to As (V). The expression of PHO4 was shortly induced in the presence of sodium arsenate in a Hog1-independent manner. Pho4 level affects Hog1 phosphorylation upon As (V) challenge, suggesting an indirect relationship between Pho4 activity and signaling in C. albicans. Pho4 also mediates the response to arsenite as revealed by the fact that pho4 defective mutants are sensitive to arsenite and Pho4 becomes phosphorylated upon sodium arsenite addition. Arsenite also triggers Hog1 phosphorylation by a process that is, in this case, independent of the Ssk1 kinase. These results indicate that the HOG pathway mediates the response to arsenate and arsenite in C. albicans and that the Pho4 transcription factor can differentiate among As (III), As (V) and Pi, triggering presumably specific responses. PMID:25717325

  16. MAPK specificity in the yeast pheromone response independent of transcriptional activation.

    PubMed

    Breitkreutz, A; Boucher, L; Tyers, M

    2001-08-21

    The mechanisms whereby different external cues stimulate the same mitogen-activated protein kinase (MAPK) cascade, yet trigger an appropriately distinct biological response, epitomize the conundrum of specificity in cell signaling. In yeast, shared upstream components of the mating pheromone and filamentous growth pathways activate two related MAPKs, Fus3 and Kss1, which in turn regulate programs of gene expression via the transcription factor Ste12. As fus3, but not kss1, strains are impaired for mating, Fus3 exhibits specificity for the pheromone response. To account for this specificity, it has been suggested that Fus3 physically occludes Kss1 from pheromone-activated signaling complexes, which are formed on the scaffold protein Ste5. However, we find that genome-wide expression profiles of pheromone-treated wild-type, fus3, and kss1 deletion strains are highly correlated for all induced genes and, further, that two catalytically inactive versions of Fus3 fail to abrogate the pheromone-induced transcriptional response. Consistently, Fus3 and Kss1 kinase activity is induced to an equivalent extent in pheromone-treated cells. In contrast, both in vivo and in an in vitro-reconstituted MAPK system, Fus3, but not Kss1, exhibits strong substrate selectivity toward Far1, a bifunctional protein required for polarization and G(1) arrest. This effect accounts for the failure to repress G(1)-S specific transcription in fus3 strains and, in part, explains the mating defect of such strains. MAPK specificity in the pheromone response evidently occurs primarily at the substrate level, as opposed to specific kinase activation by dedicated signaling complexes. PMID:11525741

  17. Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress.

    PubMed

    Okay, Sezer; Derelli, Ebru; Unver, Turgay

    2014-10-01

    The WRKY superfamily of transcription factors was shown to be involved in biotic and abiotic stress responses in plants such as wheat (Triticum aestivum L.), one of the major crops largely cultivated and consumed all over the world. Drought is an important abiotic stress resulting in a considerable amount of loss in agronomical yield. Therefore, identification of drought responsive WRKY members in wheat has a profound significance. Here, a total of 160 TaWRKY proteins were characterized according to sequence similarity, motif varieties, and their phylogenetic relationships. The conserved sequences of the TaWRKYs were aligned and classified into three main groups and five subgroups. A novel motif in wheat, WRKYGQR, was identified. To putatively determine the drought responsive TaWRKY members, publicly available RNA-Seq data were analyzed for the first time in this study. Through in silico searches, 35 transcripts were detected having an identity to ten known TaWRKY genes. Furthermore, relative expression levels of TaWRKY16/TaWRKY16-A, TaWRKY17, TaWRKY19-C, TaWRKY24, TaWRKY59, TaWRKY61, and TaWRKY82 were measured in root and leaf tissues of drought-tolerant Sivas 111/33 and susceptible Atay 85 cultivars. All of the quantified TaWRKY transcripts were found to be up-regulated in root tissue of Sivas 111/33. Differential expression of TaWRKY16, TaWRKY24, TaWRKY59, TaWRKY61 and TaWRKY82 genes was discovered for the first time upon drought stress in wheat. These comprehensive analyses bestow a better understanding about the WRKY TFs in bread wheat under water deficit, and increased number of drought responsive WRKYs would contribute to the molecular breeding of tolerant wheat cultivars.

  18. Adhesin competence repressor (AdcR) from Streptococcus pyogenes controls adaptive responses to zinc limitation and contributes to virulence

    PubMed Central

    Sanson, Misu; Makthal, Nishanth; Flores, Anthony R.; Olsen, Randall J.; Musser, James M.; Kumaraswami, Muthiah

    2015-01-01

    Altering zinc bioavailability to bacterial pathogens is a key component of host innate immunity. Thus, the ability to sense and adapt to the alterations in zinc concentrations is critical for bacterial survival and pathogenesis. To understand the adaptive responses of group A Streptococcus (GAS) to zinc limitation and its regulation by AdcR, we characterized gene regulation by AdcR. AdcR regulates the expression of 70 genes involved in zinc acquisition and virulence. Zinc-bound AdcR interacts with operator sequences in the negatively regulated promoters and mediates differential regulation of target genes in response to zinc deficiency. Genes involved in zinc mobilization and conservation are derepressed during mild zinc deficiency, whereas the energy-dependent zinc importers are upregulated during severe zinc deficiency. Further, we demonstrated that transcription activation by AdcR occurs by direct binding to the promoter. However, the repression and activation by AdcR is mediated by its interactions with two distinct operator sequences. Finally, mutational analysis of the metal ligands of AdcR caused impaired DNA binding and attenuated virulence, indicating that zinc sensing by AdcR is critical for GAS pathogenesis. Together, we demonstrate that AdcR regulates GAS adaptive responses to zinc limitation and identify molecular components required for GAS survival during zinc deficiency. PMID:25510500

  19. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat

    PubMed Central

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2014-01-01

    Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field. PMID:24904597

  20. Genome-wide analysis of Dof transcription factors reveals functional characteristics during development and response to biotic stresses in pepper

    PubMed Central

    Kang, Won-Hee; Kim, Seungill; Lee, Hyun-Ah; Choi, Doil; Yeom, Seon-In

    2016-01-01

    The DNA-binding with one zinc finger proteins (Dofs) are a plant-specific family of transcription factors. The Dofs are involved in a variety of biological processes such as phytohormone production, seed development, and environmental adaptation. Dofs have been previously identified in several plants, but not in pepper. We identified 33 putative Dof genes in pepper (CaDofs). To gain an overview of the CaDofs, we analyzed phylogenetic relationships, protein motifs, and evolutionary history. We divided the 33 CaDofs, containing 25 motifs, into four major groups distributed on eight chromosomes. We discovered an expansion of the CaDofs dated to a recent duplication event. Segmental duplication that occurred before the speciation of the Solanaceae lineages was predominant among the CaDofs. The global gene-expression profiling of the CaDofs by RNA-seq analysis showed distinct temporal and pathogen-specific variation during development and response to biotic stresses (two TMV strains, PepMoV, and Phytophthora capsici), suggesting functional diversity among the CaDofs. These results will provide the useful clues into the responses of Dofs in biotic stresses and promote a better understanding of their multiple function in pepper and other species. PMID:27653666

  1. Comparative Genomics of NAC Transcriptional Factors in Angiosperms: Implications for the Adaptation and Diversification of Flowering Plants.

    PubMed

    Pereira-Santana, Alejandro; Alcaraz, Luis David; Castaño, Enrique; Sanchez-Calderon, Lenin; Sanchez-Teyer, Felipe; Rodriguez-Zapata, Luis

    2015-01-01

    NAC proteins constitute one of the largest groups of plant-specific transcription factors and are known to play essential roles in various developmental processes. They are also important in plant responses to stresses such as drought, soil salinity, cold, and heat, which adversely affect growth. The current knowledge regarding the distribution of NAC proteins in plant lineages comes from relatively small samplings from the available data. In the present study, we broadened the number of plant species containing the NAC family origin and evolution to shed new light on the evolutionary history of this family in angiosperms. A comparative genome analysis was performed on 24 land plant species, and NAC ortholog groups were identified by means of bidirectional BLAST hits. Large NAC gene families are found in those species that have experienced more whole-genome duplication events, pointing to an expansion of the NAC family with divergent functions in flowering plants. A total of 3,187 NAC transcription factors that clustered into six major groups were used in the phylogenetic analysis. Many orthologous groups were found in the monocot and eudicot lineages, but only five orthologous groups were found between P. patens and each representative taxa of flowering plants. These groups were called basal orthologous groups and likely expanded into more recent taxa to cope with their environmental needs. This analysis on the angiosperm NAC family represents an effort to grasp the evolutionary and functional diversity within this gene family while providing a basis for further functional research on vascular plant gene families.

  2. The transcriptional response of Saccharomyces cerevisiae to proapoptotic concentrations of Pichia membranifaciens killer toxin.

    PubMed

    Santos, A; Marquina, D

    2011-10-01

    PMKT (Pichia membranifaciens killer toxin) reportedly has antimicrobial activity against yeasts and filamentous fungi. In previous research we posited that high PMKT concentrations pose a serious challenge for cell survival by disrupting plasma membrane electrochemical gradients, inducing a transcriptional response similar to that of certain stimuli such as hyperosmotic shock. This response was related to the HOG-pathway with Hog1p phosphorylation and a transitional increase in intracellular glycerol accumulation. Such a response was consistent with the notion that the effect induced by high PMKT concentrations lies in an alteration to the ionic homeostasis of the sensitive cell. By contrast, the evidence presented here shows that low PMKT doses lead to a cell death process in Saccharomyces cerevisiae accompanied by cytological and biochemical indicators of apoptotic programmed cell death, namely, the production of reactive oxygen species, DNA strand breaks, metacaspase activation and cytochrome c release. Furthermore, dying cells progressed from an apoptotic state to a secondary necrotic state, and the rate at which this change occurred was proportional to the intensity of the stimulus. We have explored the global gene expression response of S. cerevisiae during that stimulus. The results obtained from DNA microarrays indicate that genes related with an oxidative stress response were induced in response to proapoptotic concentrations of PMKT, showing that the coordinated transcriptional response is not coincident with that obtained when ionophoric concentrations of PMKT are used. By contrast, cwp2Δ mutants showed no signs of apoptosis, indicating that the initial steps of the killer mechanism coincide when proapoptotic (low) or ionophoric (high) PMKT concentrations are used. Additionally, low dosages of PMKT promoted Hog1p phosphorylation and glycerol accumulation. PMID:21801845

  3. Deciphering Adaptation Strategies of the Epidemic Clostridium difficile 027 Strain during Infection through In Vivo Transcriptional Analysis

    PubMed Central

    Kansau, Imad; Barketi-Klai, Amira; Monot, Marc; Hoys, Sandra; Dupuy, Bruno; Janoir, Claire; Collignon, Anne

    2016-01-01

    Clostridium difficile is responsible for a wide spectrum of infection from asymptomatic carriage to severe, relapsing colitis. Since 2003, C. difficile infections have increased with a higher morbidity and mortality due to the emergence of epidemic and hypervirulent C. difficile strains such as those of the epidemic lineage 027/BI/NAP1. To decipher the hypervirulence and epidemicity of 027 strains, we analyzed gene expression profiles of the R20291 027 strain using a monoxenic mouse model during the first 38h of infection. A total of 741 genes were differentially expressed during the course of infection. They are mainly distributed in functional categories involved in host adaptation. Several genes of PTS and ABC transporters were significantly regulated during the infection, underlying the ability of strain R20291 to adapt its metabolism according to nutrient availability in the digestive tract. In this animal model, despite the early sporulation process, sporulation efficiency seems to indicate that growth of R20291 vegetative cells versus spores were favored during i