Adaptive scalar quantization without side information.
Ortega, A; Vetterli, M
1997-01-01
In this paper, we introduce a novel technique for adaptive scalar quantization. Adaptivity is useful in applications, including image compression, where the statistics of the source are either not known a priori or will change over time. Our algorithm uses previously quantized samples to estimate the distribution of the source, and does not require that side information be sent in order to adapt to changing source statistics. Our quantization scheme is thus backward adaptive. We propose that an adaptive quantizer can be separated into two building blocks, namely, model estimation and quantizer design. The model estimation produces an estimate of the changing source probability density function, which is then used to redesign the quantizer using standard techniques. We introduce nonparametric estimation techniques that only assume smoothness of the input distribution. We discuss the various sources of error in our estimation and argue that, for a wide class of sources with a smooth probability density function (pdf), we provide a good approximation to a "universal" quantizer, with the approximation becoming better as the rate increases. We study the performance of our scheme and show how the loss due to adaptivity is minimal in typical scenarios. In particular, we provide examples and show how our technique can achieve signal-to-noise ratios within 0.05 dB of the optimal Lloyd-Max quantizer for a memoryless source, while achieving over 1.5 dB gain over a fixed quantizer for a bimodal source.
Visualization of Scalar Adaptive Mesh Refinement Data
VACET; Weber, Gunther; Weber, Gunther H.; Beckner, Vince E.; Childs, Hank; Ligocki, Terry J.; Miller, Mark C.; Van Straalen, Brian; Bethel, E. Wes
2007-12-06
Adaptive Mesh Refinement (AMR) is a highly effective computation method for simulations that span a large range of spatiotemporal scales, such as astrophysical simulations, which must accommodate ranges from interstellar to sub-planetary. Most mainstream visualization tools still lack support for AMR grids as a first class data type and AMR code teams use custom built applications for AMR visualization. The Department of Energy's (DOE's) Science Discovery through Advanced Computing (SciDAC) Visualization and Analytics Center for Enabling Technologies (VACET) is currently working on extending VisIt, which is an open source visualization tool that accommodates AMR as a first-class data type. These efforts will bridge the gap between general-purpose visualization applications and highly specialized AMR visual analysis applications. Here, we give an overview of the state of the art in AMR scalar data visualization research.
Electromagnetic and scalar diffraction by a right-angled wedge with a uniform surface impedance
NASA Technical Reports Server (NTRS)
Hwang, Y. M.
1974-01-01
The diffraction of an electromagnetic wave by a perfectly-conducting right-angled wedge with one surface covered by a dielectric slab or absorber is considered. The effect of the coated surface is approximated by a uniform surface impedance. The solution of the normally incident electromagnetic problem is facilitated by introducing two scalar fields which satisfy a mixed boundary condition on one surface of the wedge and a Neumann of Dirichlet boundary condition on the other. A functional transformation is employed to simplify the boundary conditions so that eigenfunction expansions can be obtained for the resulting Green's functions. The eigenfunction expansions are transformed into the integral representations which then are evaluated asymptotically by the modified Pauli-Clemmow method of steepest descent. A far zone approximation is made to obtain the scattered field from which the diffraction coefficient is found for scalar plane, cylindrical or sperical wave incident on the edge. With the introduction of a ray-fixed coordinate system, the dyadic diffraction coefficient for plane or cylindrical EM waves normally indicent on the edge is reduced to the sum of two dyads which can be written alternatively as a 2 X 2 diagonal matrix.
NASA Astrophysics Data System (ADS)
Iyer, K. P.; Yeung, P. K.
2014-08-01
An extensive direct numerical simulation database over a wide range of Reynolds and Schmidt numbers is used to examine the Schmidt number dependence of the structure function of passive scalars and the applicability of the so-called Yaglom's relation in isotropic turbulence with a uniform mean scalar gradient. For the moderate Reynolds numbers available, the limited range of scales in scalar fields of very low Schmidt numbers (as low as 1/2048) is seen to lead to weaker intermittency, and weaker alignment between velocity gradients and principal strain rates. Strong departures from both Obukhov-Corrsin scaling for second-order structure functions and Yaglom's relation for the mixed velocity-scalar third-order structure function are observed. Evaluation of different terms in the scalar structure function budget equation assuming statistical stationarity in time shows that, if the Schmidt number is very low, at intermediate scales production and diffusion terms (instead of advection) are major contributors in the balance against dissipation.
Adaptive uniform finite-/fixed-time convergent second-order sliding-mode control
NASA Astrophysics Data System (ADS)
Basin, Michael; Bharath Panathula, Chandrasekhara; Shtessel, Yuri
2016-09-01
This paper presents an adaptive gain algorithm for second-order sliding-mode control (2-SMC), specifically a super-twisting (STW)-like controller, with uniform finite/fixed convergence time, that is robust to perturbations with unknown bounds. It is shown that a second-order sliding mode is established as exact finite-time convergence to the origin if the adaptive gain does not have the ability to get reduced and converge to a small vicinity of the origin if the adaptation algorithm does not overestimate the control gain. The estimate of fixed convergence time of the studied adaptive STW-like controller is derived based on the Lyapunov analysis. The efficacy of the proposed adaptive algorithm is illustrated in a tutorial example, where the adaptive STW-like controller with uniform finite/fixed convergence time is compared to the adaptive STW controller with non-uniform finite convergence time.
Algebraic grid adaptation method using non-uniform rational B-spline surface modeling
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, B. K.
1992-01-01
An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.
Sun, Jun; Duan, Yizhou; Li, Jiangtao; Liu, Jiaying; Guo, Zongming
2013-01-01
In the first part of this paper, we derive a source model describing the relationship between the rate, distortion, and quantization steps of the dead-zone plus uniform threshold scalar quantizers with nearly uniform reconstruction quantizers for generalized Gaussian distribution. This source model consists of rate-quantization, distortion-quantization (D-Q), and distortion-rate (D-R) models. In this part, we first rigorously confirm the accuracy of the proposed source model by comparing the calculated results with the coding data of JM 16.0. Efficient parameter estimation strategies are then developed to better employ this source model in our two-pass rate control method for H.264 variable bit rate coding. Based on our D-Q and D-R models, the proposed method is of high stability, low complexity and is easy to implement. Extensive experiments demonstrate that the proposed method achieves: 1) average peak signal-to-noise ratio variance of only 0.0658 dB, compared to 1.8758 dB of JM 16.0's method, with an average rate control error of 1.95% and 2) significant improvement in smoothing the video quality compared with the latest two-pass rate control method.
Kim, B; Wasserman, G S
1998-01-01
The carapaces of horseshoe crabs (Limulus polyphemus) differ. Some individuals have uniform carapaces and clear eyes while others have variegated carapaces and dark eyes. These differences have been reported to be correlated with latency differences in the electroretinogram (ERG) of the lateral eye. Such a result might have had a neural basis in the mechanisms underlying visual transduction but it could also have reflected a visual screening pigment difference. A direct experiment was therefore designed to choose between these two hypotheses by varying the relative state of adaptation. The results were as follows. In uniform animals, dark adaptation had the kind of effect seen in single photoreceptor cells - latencies were longer in dark-adapted eyes and latencies were also longer for dim flashes. However, variegated animals showed a significant adaptation interaction: in light adaptation, dimmer flashes produced the usual effect, namely a longer ERG latency, while in dark adaptation, latencies were close to equilatent, being within experimental error of each other for both flash energies. These data make it unlikely that the photoreceptor transduction mechanism is the locus of the visual differences between the two types of animals. Instead, they are consistent with an interaction of screening pigment effects with photoreceptor transduction effects.
2012-11-08
Comparison between adaptive and uniform discontinuous Galerkin simulations in dry 2D bubble experiments Andreas Müllera,∗, Jörn Behrensb, Francis X...joern.behrens@zmaw.de (Jörn Behrens), fxgirald@nps.edu ( Francis X. Giraldo), vwirth@uni-mainz.de (Volkmar Wirth) Accepted by Journal of Computational...Mon. Weather Rev. 120 (1992) 1675–1706. [3] D. P. Bacon , N. N. Ahmad, Z. Boybeyi, T. J. Dunn, M. S. Hall, P. C. S. Lee, R. A. Sarma, M. D. Turner, K. T
Are uniform regional safety factors an objective of adaptive modeling/remodeling in cortical bone?
Skedros, John G; Dayton, Michael R; Sybrowsky, Christian L; Bloebaum, Roy D; Bachus, Kent N
2003-07-01
It has been hypothesized that a major objective of morphological adaptation in limb-bone diaphyses is the achievement of uniform regional safety factors between discrete cortical locations (e.g. between cranial and caudal cortices at mid-diaphysis). This hypothesis has been tested, and appears to be supported in the diaphyses of ovine and equine radii. The present study more rigorously examined this question using the equine third metacarpal (MC3), which has had functionally generated intracortical strains estimated by a sophisticated finite element model. Mechanical properties of multiple mid-diaphyseal specimens were evaluated in both tension and compression, allowing for testing of habitually tensed or compressed regions in their respective habitual loading mode ("strain-mode-specific" loading). Elastic modulus, and yield and ultimate strength and strain, were correlated with in vivo strain data from a previously published finite element model. Mechanical tests revealed minor variations in elastic modulus, and yield and ultimate strength in both tension and compression loading, while physiological strains varied significantly between the cortices. Contrary to the hypothesis of uniform safety factors, the MC3 has a broad range of tension (caudo-medial, 4.0; cranio-lateral, 37.7) and compression (caudo-medial, 5.7; cranio-lateral, 68.9) safety factors.
Adaptive uniform grayscale coded aperture design for high dynamic range compressive spectral imaging
NASA Astrophysics Data System (ADS)
Diaz, Nelson; Rueda, Hoover; Arguello, Henry
2016-05-01
Imaging spectroscopy is an important area with many applications in surveillance, agriculture and medicine. The disadvantage of conventional spectroscopy techniques is that they collect the whole datacube. In contrast, compressive spectral imaging systems capture snapshot compressive projections, which are the input of reconstruction algorithms to yield the underlying datacube. Common compressive spectral imagers use coded apertures to perform the coded projections. The coded apertures are the key elements in these imagers since they define the sensing matrix of the system. The proper design of the coded aperture entries leads to a good quality in the reconstruction. In addition, the compressive measurements are prone to saturation due to the limited dynamic range of the sensor, hence the design of coded apertures must consider saturation. The saturation errors in compressive measurements are unbounded and compressive sensing recovery algorithms only provide solutions for bounded noise or bounded with high probability. In this paper it is proposed the design of uniform adaptive grayscale coded apertures (UAGCA) to improve the dynamic range of the estimated spectral images by reducing the saturation levels. The saturation is attenuated between snapshots using an adaptive filter which updates the entries of the grayscale coded aperture based on the previous snapshots. The coded apertures are optimized in terms of transmittance and number of grayscale levels. The advantage of the proposed method is the efficient use of the dynamic range of the image sensor. Extensive simulations show improvements in the image reconstruction of the proposed method compared with grayscale coded apertures (UGCA) and adaptive block-unblock coded apertures (ABCA) in up to 10 dB.
The wavelet/scalar quantization compression standard for digital fingerprint images
Bradley, J.N.; Brislawn, C.M.
1994-04-01
A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.
Do common mechanisms of adaptation mediate color discrimination and appearance? Uniform backgrounds.
Hillis, James M; Brainard, David H
2005-10-01
Color vision is useful for detecting surface boundaries and identifying objects. Are the signals used to perform these two functions processed by common mechanisms, or has the visual system optimized its processing separately for each task? We measured the effect of mean chromaticity and luminance on color discriminability and on color appearance under well-matched stimulus conditions. In the discrimination experiments, a pedestal spot was presented in one interval and a pedestal + test in a second. Observers indicated which interval contained the test. In the appearance experiments, observers matched the appearance of test spots across a change in background. We analyzed the data using a variant of Fechner's proposal, that the rate of apparent stimulus change is proportional to visual sensitivity. We found that saturating visual response functions together with a model of adaptation that included multiplicative gain control and a subtractive term accounted for data from both tasks. This result suggests that effects of the contexts we studied on color appearance and discriminability are controlled by the same underlying mechanism.
Do common mechanisms of adaptation mediate color discrimination and appearance? Uniform backgrounds
NASA Astrophysics Data System (ADS)
Hillis, James M.; Brainard, David H.
2005-10-01
Color vision is useful for detecting surface boundaries and identifying objects. Are the signals used to perform these two functions processed by common mechanisms, or has the visual system optimized its processing separately for each task? We measured the effect of mean chromaticity and luminance on color discriminability and on color appearance under well-matched stimulus conditions. In the discrimination experiments, a pedestal spot was presented in one interval and a pedestal + test in a second. Observers indicated which interval contained the test. In the appearance experiments, observers matched the appearance of test spots across a change in background. We analyzed the data using a variant of Fechner's proposal, that the rate of apparent stimulus change is proportional to visual sensitivity. We found that saturating visual response functions together with a model of adaptation that included multiplicative gain control and a subtractive term accounted for data from both tasks. This result suggests that effects of the contexts we studied on color appearance and discriminability are controlled by the same underlying mechanism.
Temme, F P
2004-03-01
The physics of dual group scalar invariants (SIs) as (Lie algebraic) group measures (L-GMs) and its significance to non-Abelian NMR spin systems motivates this overview of uniform general-2n [AX](2n) spin evolution, which represents an extensive addendum to Corio's earlier (essentially restricted) view of Abelian spin system SU(2)-based SI-cardinalities. The [Formula: see text] values in [J. Magn. Reson., 134 (1998) 131] arise from strictly linear recoupled time-reversal invariance (TRI) models. In contrast, here we discuss the physical significance of an alternative polyhedral combinatorics approach to democratic recoupling (DR), a property inherent in both the TRI and statistical sampling. Recognition of spin ensemble SIs as being L-GMs over isomorphic algebras is invaluable in many DR-based NMR problems. Various [AX]n model spin systems, including the [AX]3 bis odd-odd parity spin system, are examined as direct applications of these L-GM- and combinatorial-based SI ideas. Hence in place of /SI/=15 (implied by Corio's [Formula: see text] approach), the bis 3-fold spin system cardinality is seen now as constrained to a single invariant on an isomorphic product algebra under L-GMs, in accord with the subspectral analysis of Jones et al. [Canad. J. Chem., 43 (1965) 683]. The group projective ideas cited here for DR (as cf. to graph theoretic views) apply to highly degenerate non-Abelian problems. Over dual tensorial bases, they define models of spin dynamical evolution whose (SR) quasiparticle superboson carrier (sub)spaces are characterised by SIs acting as explicit auxiliary labels [Physica, A198 (1993) 245; J. Math. Chem., 31 (2002) 281]. A deeper [Formula: see text] network-based view of spin-alone space developed in Balasubramanian's work [J. Chem. Phys., 78 (1983) 6358] is especially important, (e.g.) in the study of spin waves [J. Math. Chem., 31 (2002) 363]. Beyond the specific NMR SIs derived here, there are DR applications where a sporadic, still higher, 2
Wavelet/scalar quantization compression standard for fingerprint images
Brislawn, C.M.
1996-06-12
US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class of potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.
NASA Astrophysics Data System (ADS)
Lasukov, V. V.
2012-06-01
It is shown that negative Scalars can claim to be the object referred to as black holes, therefore observation of black holes means observation of Scalars. In contrast to blackholes, negative Scalars contain no singularity inside. Negative Scalars can be observed from the effect of generation of ordinary matter by the Lemaître primordial atom.
Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade
2013-10-15
Accurate relativistic adapted Gaussian basis sets (RAGBSs) for 87 Fr up to 118 Uuo atoms without variational prolapse were developed here with the use of a polynomial version of the Generator Coordinate Dirac-Fock method. Two finite nuclear models have been used, the Gaussian and uniform sphere models. The largest RAGBS error, with respect to numerical Dirac-Fock results, is 15.4 miliHartree for Ununoctium with a basis set size of 33s30p19d14f functions.
Acevedo, Amarilis; Krueger, Kristin R.; Navarro, Ellen; Ortiz, Freddy; Manly, Jennifer J.; Padilla-Vélez, Margarita M.; Weintraub, Sandra; López, Oscar L.; Mungas, Dan
2010-01-01
Researchers from Alzheimer’s Disease Centers (ADCs) across the United States with expertise in the assessment of Spanish-speaking elderly collaborated to create the official Spanish version of measures in the Uniform Data Set of the National Institute on Aging Alzheimer’s Disease Center Program. The present article describes this project, whose primary goal was to create Spanish instruments with cultural and linguistic equivalence to the English versions. The resulting Spanish versions make provisions for variations among Spanish-speaking groups in the United States of different nationalities, socio-cultural, linguistic, and educational backgrounds. A consensus-based translation and adaptation approach was used, and guiding principles and specific components of this process are summarized. The Spanish translation and adaptation of the Uniform Data Set measures became available online to ADCs in April 2007. Its creation is important, as the resulting effort provides standardized measures for the collection of cross-sectional and longitudinal data on a large cohort of Spanish-speaking elders across the country and facilitates collaborative research among ADCs. PMID:19474568
NASA Astrophysics Data System (ADS)
Bargatze, L. F.
2015-12-01
Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted
NASA Astrophysics Data System (ADS)
Zha, Guofeng; Wang, Hongqiang; Yang, Zhaocheng; Cheng, Yongqiang; Qin, Yuliang
2016-04-01
As a complementary imaging technology, coincidence imaging radar (CIR) achieves high resolution for stationary or low-speed targets under the assumption of ignoring the influence of the original position mismatching. As to high-speed moving targets moving from the original imaging cell to other imaging cells during imaging, it is inaccurate to reconstruct the target using the previous imaging plane. We focus on the recovery problem for high-speed moving targets in the CIR system based on the intrapulse frequency random modulation signal in a single pulse. The effects induced by the motion on the imaging performance are analyzed. Because the basis matrix in the CIR imaging equation is determined by the unknown velocity parameter of the moving target, both the target images and basis matrix should be estimated jointly. We propose an adaptive joint parametric estimation recovery algorithm based on the Tikhonov regularization method to update the target velocity and basis matrix adaptively and recover the target images synchronously. Finally, the target velocity and target images are obtained in an iterative manner. Simulation results are presented to demonstrate the efficiency of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Chen, Haizhou; Wang, Jiaxu; Li, Junyang; Tang, Baoping
2017-03-01
This paper presents a new scheme for rolling bearing fault diagnosis using texture features extracted from the time-frequency representations (TFRs) of the signal. To derive the proposed texture features, firstly adaptive optimal kernel time frequency representation (AOK-TFR) is applied to extract TFRs of the signal which essentially describe the energy distribution characteristics of the signal over time and frequency domain. Since the AOK-TFR uses the signal-dependent radially Gaussian kernel that adapts over time, it can exactly track the minor variations in the signal and provide an excellent time-frequency concentration in noisy environment. Simulation experiments are furthermore performed in comparison with common time-frequency analysis methods under different noisy conditions. Secondly, the uniform local binary pattern (uLBP), which is a computationally simple and noise-resistant texture analysis method, is used to calculate the histograms from the TFRs to characterize rolling bearing fault information. Finally, the obtained histogram feature vectors are input into the multi-SVM classifier for pattern recognition. We validate the effectiveness of the proposed scheme by several experiments, and comparative results demonstrate that the new fault diagnosis technique performs better than most state-of-the-art techniques, and yet we find that the proposed algorithm possess the adaptivity and noise resistance qualities that could be very useful in real industrial applications.
CDSM - A New Scalar Magnetometer
NASA Astrophysics Data System (ADS)
Pollinger, Andreas; Lammegger, Roland; Magnes, Werner; Ellmeier, Michaela; Baumjohann, Wolfgang; Windholz, Laurentius
2010-05-01
There are potential advantages of flying a magnetometer sensor suite combining a vector fluxgate with a scalar absolute sensor. Absolute sensors offer superior stability over temperature and time, lower intrinsic noise and offset-free measurements; the latter is very useful for fluxgate calibration on a 3-axis stabilized spacecraft. A space-adapted design of a new type of scalar magnetometer, called Coupled Dark State Magnetometer (CDSM), is under development jointly by the Institute of Experimental Physics of the Graz University of Technology and the Space Research Institute of the Austrian Academy of Sciences. The CDSM is based on two-photon spectroscopy of free alkali atoms using a multi chromatic laser field. The measurement is made completely independent of the sensor temperature by a clever coupling of several coherent population trapping resonances. The CDSM promises a less resource-demanding instrument design (500g, 1W) compared to previously flown scalar magnetometers. A significant advantage is the fact that the extended measurement range of 7 decades is covered by only one sensor cell filled with Rubidium atoms (and a buffer gas), making the sensor core small and compact. Neither a radio frequency-based excitation at the sensor unit (150g) is needed for the operation, nor is it necessary to implement motor driven moving parts or a double cell unit in order to guarantee isotropic measurements like for other scalar sensors. A noise floor of 70pTrms/√Hz was measured in a first configuration. It is worth to mention that there is no 1/f noise below the implemented corner frequency of 3Hz. By changing from Rubidium D2 to D1 excitation line we are able to reduce the noise by a factor of 10 to 7pT. The technology readiness level of the CDSM is 3 at the moment and it shall reach level 5 (breadboard validation in relevant environment) by beginning of 2011.
A Lagrangian fluctuation-dissipation relation for scalar turbulence
NASA Astrophysics Data System (ADS)
Drivas, Theodore; Eyink, Gregory
2016-11-01
An exact relation is derived between the dissipation of scalar fluctuations and the variance of the scalar inputs (due to initial scalar values, scalar sources, and boundary fluxes) as those are sampled by stochastic Lagrangian trajectories. Previous work on the Kraichnan (1968) model of turbulent scalar advection has shown that anomalous scalar dissipation, non-vanishing in the limit of vanishing viscosity and diffusivity, is in that model due to Lagrangian spontaneous stochasticity, or non-determinism of the Lagrangian particle trajectories in the limit. We here extend this result to scalars advected by any incompressible velocity field. For fluid flows in domains without walls (e.g. periodic boxes) and for insulating/impermeable walls with zero scalar fluxes, we prove that anomalous scalar dissipation and spontaneous stochasticity are completely equivalent. For flows with imposed scalar values or non-vanishing scalar fluxes at the walls, spontaneous stochasticity still implies anomalous scalar dissipation but simple examples show that a distinct mechanism of non-vanishing dissipation can be thin scalar boundary layers near the walls. As an example, we consider turbulent Rayleigh-Benard convection. We here obtain an exact relation between steady-state thermal dissipation and the time for diffusive tracer particles released at the top or bottom wall to mix to their final uniform value near those walls. We show that an "ultimate regime" of turbulent convection as predicted by Kraichnan (1962) will occur at high Rayleigh numbers, unless this near-wall mixing time is asymptotically much longer than the large-scale circulation time.
Liu Yunhu; Shao Jianxin; Wang Xiaogang; Zhang Ziying; Li Demin
2008-02-01
Based on the main assumption that the D{sub sJ}(2860) belongs to the 2{sup 3}P{sub 0} qq multiplet, the masses of the scalar meson nonet are estimated in the framework of the relativistic independent quark model, Regge phenomenology, and meson-meson mixing. We suggest that the a{sub 0}(1005), K{sub 0}*(1062), f{sub 0}(1103), and f{sub 0}(564) constitute the ground scalar meson nonet; it is supposed that these states would likely correspond to the observed states a{sub 0}(980), {kappa}(900), f{sub 0}(980), and f{sub 0}(600)/{sigma}, respectively. Also a{sub 0}(1516), K{sub 0}*(1669), f{sub 0}(1788), and f{sub 0}(1284) constitute the first radial scalar meson nonet, it is supposed that these states would likely correspond to the observed states a{sub 0}(1450), K{sub 0}*(1430), f{sub 0}(1710), and f{sub 0}(1370), respectively. The scalar state f{sub 0}(1500) may be a good candidate for the ground scalar glueball. The agreement between the present findings and those given by other different approaches is satisfactory.
NASA Astrophysics Data System (ADS)
Rejon-Barrera, Fernando; Robbins, Daniel
2016-01-01
We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.
Pragmatic Aspects of Scalar Modifiers
ERIC Educational Resources Information Center
Sawada, Osamu
2010-01-01
This dissertation investigates the pragmatic aspects of scalar modifiers from the standpoint of the interface between semantics and pragmatics, focusing on (i) the (non) parallelism between the truth-conditional scalar modifiers and the non-truth-conditional scalar modifiers, (ii) the compositionality and dimensionality of non-truth-conditional…
Color Uniformity in Navy Uniforms.
1980-05-01
realized in contracting with a specific trouser, skirt, shirt or blouse manufacturer. Uniform items are issued on the basis of size and not on a top...Blue 3346 Spec. No.: MIL-C-29147 End Item: Men’s Winter Shirt Method of Issue: Stock Item - DPSC Procured Optional - NAVRESSO Method of Dyeing: Standard...Polyester Color: Blue 3346 Spec. No.: MIL-C-87051 End Item: Women’s Winter Shirt (new) Method of Issue: Stock Item - DPSC Procured Method of Dyeing: Piece
The joint dissipation rate for multiple scalars in differential diffusion.
NASA Astrophysics Data System (ADS)
Vedula, Prakash; Yeung, P. K.; Fox, R. O.
1999-11-01
We continue recent numerical studies of scalar dissipation fluctuations in turbulent mixing, with current emphasis on modeling and extension to differential diffusion for scalars with different molecular diffusivities. Data are taken from high-resolution direct numerical simulations for homogeneous scalar fields with uniform mean gradient. Amplification of scalar gradients by strain rate fluctuations in principal axes is of greatest interest, with a nearly universal time scale slightly less than 2 Kolmogorov time scales. Preferential alignment of scalar gradients with the most compressive strain rate conditioned upon the energy dissipation is observed in studies of both the dissipation rate of each scalar and their joint dissipation rate (which appears in the covariance equation). The gradient correlation between scalars with Schmidt numbers 1/8 to 1 is strongest in the most compressive strain direction. The Lagrangian PDF model for the joint dissipation (Fox 1999, Phys. Fluids 11, 1550) contains closures for each of the terms in the conditional joint dissipation rate balance equation. The DNS data are used to validate and improve the conditional closures, as well as to check for Reynolds and Schmidt number dependencies.
Second-order accurate nonoscillatory schemes for scalar conservation laws
NASA Technical Reports Server (NTRS)
Huynh, Hung T.
1989-01-01
Explicit finite difference schemes for the computation of weak solutions of nonlinear scalar conservation laws is presented and analyzed. These schemes are uniformly second-order accurate and nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time.
Broom, Donald M
2006-01-01
The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and
Conformal scalar field wormholes
NASA Technical Reports Server (NTRS)
Halliwell, Jonathan J.; Laflamme, Raymond
1989-01-01
The Euclidian Einstein equations with a cosmological constant and a conformally coupled scalar field are solved, taking the metric to be of the Robertson-Walker type. In the case Lambda = 0, solutions are found which represent a wormhole connecting two asymptotically flat Euclidian regions. In the case Lambda greater than 0, the solutions represent tunneling from a small Tolman-like universe to a large Robertson-Walker universe.
NASA Astrophysics Data System (ADS)
Bittencourt, E.; Moschella, U.; Novello, M.; Toniato, J. D.
2016-06-01
We discuss a class of models for gravity based on a scalar field. The models include and generalize the old approach by Nordström which predated and, in some ways, inspired general relativity. The class include also a model that we have recently introduced and discussed in terms of its cosmological aspects (GSG). We present here a complete characterization of the Schwarschild geometry as a vacuum solution of GSG and sketch a discussion of the first post-Newtonian approximation.
Scalar and Pseudoscalar Glueballs
NASA Astrophysics Data System (ADS)
Cheng, Hai-Yang
We employ two simple and robust results to constrain the mixing matrix of the isosinglet scalar mesons f0(1710), f0(1500), f0(1370): one is the approximate SU(3) symmetry empirically observed in the scalar sector above 1 GeV and confirmed by lattice QCD, and the other is the scalar glueball mass at 1710 MeV in the quenched approximation. In the SU(3) symmetry limit, f0(1500) becomes a pure SU(3) octet and is degenerate with a0(1450), while f0(1370) is mainly an SU(3) singlet with a slight mixing with the scalar glueball which is the primary component of f0(1710). These features remain essentially unchanged even when SU(3) breaking is taken into account. The observed enhancement of ωf0(1710) production over ɸf0(1710) in hadronic J/ψ decays and the copious f0(1710) production in radiative J/ψ decays lend further support to the prominent glueball nature of f0(1710). We deduce the mass of the pseudoscalar glueball G from an η-η‧-G mixing formalism based on the anomalous Ward identity for transition matrix elements. With the inputs from the recent KLOE experiment, we find a solution for the pseudoscalar glueball mass around (1.4±0.1) GeV, which is fairly insensitive to a range of inputs with or without Okubo-Zweig-Iizuka-rule violating effects. This affirms that η(1405), having a large production rate in the radiative J/ψ decay and not seen in γγ reactions, is indeed a leading candidate for the pseudoscalar glueball. It is much lower than the results from quenched lattice QCD (> 2.0 GeV) due to the dynamic fermion effect. It is thus urgent to have a full QCD lattice calculation of pseudoscalar glueball masses.
NASA Astrophysics Data System (ADS)
Egorov, A. I.; Kashargin, P. E.; Sushkov, Sergey V.
2016-09-01
In 1921 Bach and Weyl derived the method of superposition to construct new axially symmetric vacuum solutions of general relativity. In this paper we extend the Bach-Weyl approach to non-vacuum configurations with massless scalar fields. Considering a phantom scalar field with the negative kinetic energy, we construct a multi-wormhole solution describing an axially symmetric superposition of N wormholes. The solution found is static, everywhere regular and has no event horizons. These features drastically tell the multi-wormhole configuration from other axially symmetric vacuum solutions which inevitably contain gravitationally inert singular structures, such as ‘struts’ and ‘membranes’, that keep the two bodies apart making a stable configuration. However, the multi-wormholes are static without any singular struts. Instead, the stationarity of the multi-wormhole configuration is provided by the phantom scalar field with the negative kinetic energy. Anther unusual property is that the multi-wormhole spacetime has a complicated topological structure. Namely, in the spacetime there exist 2 N asymptotically flat regions connected by throats.
A kinetic equation with kinetic entropy functions for scalar conservation laws
NASA Technical Reports Server (NTRS)
Perthame, Benoit; Tadmor, Eitan
1990-01-01
A nonlinear kinetic equation is constructed and proved to be well-adapted to describe general multidimensional scalar conservation laws. In particular, it is proved to be well-posed uniformly in epsilon - the microscopic scale. It is also shown that the proposed kinetic equation is equipped with a family of kinetic entropy functions - analogous to Boltzmann's microscopic H-function, such that they recover Krushkov-type entropy inequality on the macroscopic scale. Finally, it is proved by both - BV compactness arguments in the one-dimensional case, that the local density of kinetic particles admits a continuum limit, as it converges strongly with epsilon below 0 to the unique entropy solution of the corresponding conservation law.
Geometric scalar theory of gravity
Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D.; Moschella, U. E-mail: eduhsb@cbpf.br E-mail: egoulart@cbpf.br E-mail: toniato@cbpf.br
2013-06-01
We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.
Fermion-scalar conformal blocks
Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran
2016-04-13
In this study, we compute the conformal blocks associated with scalar-scalar-fermionfermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called ‘seed blocks’ in three dimensions. In addition, conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.
Bremer, P. -T.
2014-08-26
ADAPT is a topological analysis code that allow to compute local threshold, in particular relevance based thresholds for features defined in scalar fields. The initial target application is vortex detection but the software is more generally applicable to all threshold based feature definitions.
Electroweak Baryogenesis and Colored Scalars
Cohen, Timothy; Pierce, Aaron; /Michigan U., MCTP
2012-02-15
We consider the 2-loop finite temperature effective potential for a Standard Model-like Higgs boson, allowing Higgs boson couplings to additional scalars. If the scalars transform under color, they contribute 2-loop diagrams to the effective potential that include gluons. These 2-loop effects are perhaps stronger than previously appreciated. For a Higgs boson mass of 115 GeV, they can increase the strength of the phase transition by as much as a factor of 3.5. It is this effect that is responsible for the survival of the tenuous electroweak baryogenesis window of the Minimal Supersymmetric Standard Model. We further illuminate the importance of these 2-loop diagrams by contrasting models with colored scalars to models with singlet scalars. We conclude that baryogenesis favors models with light colored scalars. This motivates searches for pair-produced di-jet resonances or jet(s) + = E{sub T}.
Scalar Aharonov-Bohm effect with longitudinally polarized neutrons
Allman, B. E.; Lee, W.-T.; Motrunich, O. I.; Werner, S. A.
1999-12-01
In the scalar Aharonov-Bohm effect, a charged particle (electron) interacts with the scalar electrostatic potential U in the field-free (i.e., force-free) region inside an electrostatic cylinder (Faraday cage). Using a perfect single-crystal neutron interferometer we have performed a ''dual'' scalar Aharonov-Bohm experiment by subjecting polarized thermal neutrons to a pulsed magnetic field. The pulsed magnetic field was spatially uniform, precluding any force on the neutrons. Aligning the direction of the pulsed magnetic field to the neutron magnetic moment also rules out any classical torque acting to change the neutron polarization. The observed phase shift is purely quantum mechanical in origin. A detailed description of the experiment, performed at the University of Missouri Research Reactor, and its interpretation is given in this paper. (c) 1999 The American Physical Society.
Scalar graviton as dark matter
NASA Astrophysics Data System (ADS)
Pirogov, Yu. F.
2015-06-01
The basics of the theory of unimodular bimode gravity built on the principles of unimodular gauge invariance/relativity and general covariance are exposed. Besides the massless tensor graviton of General Relativity, the theory includes an (almost) massless scalar graviton treated as the gravitational dark matter. A spherically symmetric vacuum solution describing the coherent scalar-graviton field for the soft-core dark halos, with the asymptotically flat rotation curves, is demonstrated as an example.
Gravitational scalar-tensor theory
NASA Astrophysics Data System (ADS)
Naruko, Atsushi; Yoshida, Daisuke; Mukohyama, Shinji
2016-05-01
We consider a new form of gravity theories in which the action is written in terms of the Ricci scalar and its first and second derivatives. Despite the higher derivative nature of the action, the theory is ghost-free under an appropriate choice of the functional form of the Lagrangian. This model possesses 2 + 2 physical degrees of freedom, namely 2 scalar degrees and 2 tensor degrees. We exhaust all such theories with the Lagrangian of the form f(R,{({{\
Noncommutativity and scalar field cosmology
Guzman, W.; Sabido, M.; Socorro, J.
2007-10-15
In this work we extend and apply a previous proposal to study noncommutative cosmology to the Friedmann-Robertson-Walker cosmological background coupled to a scalar field. This is done in classical and quantum scenarios. In both cases noncommutativity is introduced in the gravitational field as well as in the scalar field through a deformation of minisuperspace, and we are able to find exact solutions. Finally, the effects of noncommutativity on the classical evolution are analyzed.
Scalar graviton as dark matter
Pirogov, Yu. F.
2015-06-15
The basics of the theory of unimodular bimode gravity built on the principles of unimodular gauge invariance/relativity and general covariance are exposed. Besides the massless tensor graviton of General Relativity, the theory includes an (almost) massless scalar graviton treated as the gravitational dark matter. A spherically symmetric vacuum solution describing the coherent scalar-graviton field for the soft-core dark halos, with the asymptotically flat rotation curves, is demonstrated as an example.
Inflation and the Higgs Scalar
Green, Dan
2014-12-05
This note makes a self-contained exposition of the basic facts of big bang cosmology as they relate to inflation. The fundamental problems with that model are then explored. A simple scalar model of inflation is evaluated which provides the solution of those problems and makes predictions which will soon be definitively tested. The possibility that the recently discovered fundamental Higgs scalar field drives inflation is explored.
Spontaneous Scalarization: Dead or Alive?
NASA Astrophysics Data System (ADS)
Berti, Emanuele; Crispino, Luis; Gerosa, Davide; Gualtieri, Leonardo; Horbatsch, Michael; Macedo, Caio; Okada da Silva, Hector; Pani, Paolo; Sotani, Hajime; Sperhake, Ulrich
2015-04-01
In 1993, Damour and Esposito-Farese showed that a wide class of scalar-tensor theories can pass weak-field gravitational tests and exhibit nonperturbative strong-field deviations away from General Relativity in systems involving neutron stars. These deviations are possible in the presence of ``spontaneous scalarization,'' a phase transition similar in nature to spontaneous magnetization in ferromagnets. More than twenty years after the original proposal, binary pulsar experiments have severely constrained the possibility of spontaneous scalarization occurring in nature. I will show that these experimental constraints have important implications for the torsional oscillation frequencies of neutron stars and for the so-called ``I-Love-Q'' relations in scalar-tensor theories. I will also argue that there is still hope to observe strong scalarization effects, despite the strong experimental bounds on the original mechanism. In particular, I will discuss two mechanisms that could produce strong scalarization in neutron stars: anisotropy and multiscalarization. This work was supported by NSF CAREER Award PHY-1055103.
Color Sextet Scalars in Early LHC Experiments
Berger, Edmond L.; Cao Qinghong; Chen, Chuan-Ren; Shaughnessy, Gabe; Zhang Hao
2010-10-29
We explore the potential for discovery of an exotic color sextet scalar in same-sign top quark pair production in early running at the LHC. We present the first phenomenological analysis at colliders of color sextet scalars with full top quark spin correlations included. We demonstrate that one can measure the scalar mass, the top quark polarization, and confirm the scalar resonance with 1 fb{sup -1} of integrated luminosity. The top quark polarization can distinguish gauge triplet and singlet scalars.
Towards understanding turbulent scalar mixing
NASA Technical Reports Server (NTRS)
Girimaji, Sharath S.
1992-01-01
In an effort towards understanding turbulent scalar mixing, we study the effect of molecular mixing, first in isolation and then by accounting for the effects of the velocity field. The chief motivation for this approach stems from the strong resemblance of the scalar probability density function (PDF) obtained from the scalar field evolving from the heat conduction equation that arises in a turbulent velocity field. However, the evolution of the scalar dissipation is different for the two cases. We attempt to account for these differences, which are due to the velocity field, using a Lagrangian frame analysis. After establishing the usefulness of this approach, we use the heat-conduction simulations (HCS), in lieu of the more expensive direct numerical simulations (DNS), to study many of the less understood aspects of turbulent mixing. Comparison between the HCS data and available models are made whenever possible. It is established that the beta PDF characterizes the evolution of the scalar PDF during mixing from all types of non-premixed initial conditions.
Expanding and collapsing scalar field thin shell
NASA Astrophysics Data System (ADS)
Sharif, M.; Abbas, G.
2012-09-01
This paper deals with the dynamics of scalar field thin shell in the Reissner-Nordstr öm geometry. The Israel junction conditions between Reissner-Nordstr öm spacetimes are derived, which lead to the equation of motion of scalar field shell and Klien-Gordon equation. These equations are solved numerically by taking scalar field model with the quadratic scalar potential. It is found that solution represents the expanding and collapsing scalar field shell. For the better understanding of this problem, we investigate the case of massless scalar field (by taking the scalar field potential zero). Also, we evaluate the scalar field potential when p is an explicit function of R. We conclude that both massless as well as massive scalar field shell can expand to infinity at constant rate or collapse to zero size forming a curvature singularity or bounce under suitable conditions.
Scalar transport by planktonic swarms
NASA Astrophysics Data System (ADS)
Martinez-Ortiz, Monica; Dabiri, John O.
2012-11-01
Nutrient and energy transport in the ocean is primarily governed by the action of physical phenomena. In previous studies it has been suggested that aquatic fauna may significantly contribute to this process through the action of the induced drift mechanism. In this investigation, the role of planktonic swarms as ecosystem engineers is assessed through the analysis of scalar transport within a stratified water column. The vertical migration of Artemia salina is controlled via luminescent signals on the top and bottom of the column. The scalar transport of fluorescent dye is visualized and quantified through planar laser induced fluorescence (PLIF). Preliminary results show that the vertical movement of these organisms enhances scalar transport relative to control cases in which only buoyancy forces and diffusion are present. Funded by the BSF program (2011553).
The emergence of scalar meanings
Etxeberria, Urtzi; Irurtzun, Aritz
2015-01-01
This paper analyzes the emergence of scalar additive meanings. We show that in Basque the same particle ere can obtain both the “simple additive” reading (akin to English too) and the “scalar additive” reading (akin to English even) but we argue that we do not have to distinguish two types of ere. We provide evidence, by means of a production and a perception experiment, that the reading is disambiguated by means of prosody (the placement of nuclear stress), which is a correlate of focus. We argue that the scalarity effect is generated by the combination of two presuppositions (a focus-induced one and a lexical one) and the assertion of the sentence. PMID:25745405
ERIC Educational Resources Information Center
White, Kerry A.
2000-01-01
In 1994, Long Beach (California) Unified School District began requiring uniforms in all elementary and middle schools. Now, half of all urban school systems and many suburban schools have uniform policies. Research on uniforms' effectiveness is mixed. Tightened dress codes may be just as effective and less litigious. (MLH)
ERIC Educational Resources Information Center
Dowling-Sendor, Benjamin
2002-01-01
Reviews a recent decision in "Littlefield" by the 5th Circuit upholding a school uniform policy. Advises board member who wish to adopt a school uniform policy to solicit input from parents and students, research the experiences of other school districts with uniform policies, and articulate the interests they wish to promote through uniform…
Should Students Wear Uniforms?
ERIC Educational Resources Information Center
Cohn, Carol A.; Siegel, Loren
1996-01-01
Two essays present opposing viewpoints on school uniforms. One suggests that uniforms make safer schools and better students. The other states that teenagers will rebel, and the uniform debate is a diversion from more pressing problems in education. The article includes brief opinion statements from teachers and other professionals. (SM)
Huijbregts, Mark A J; Geelen, Loes M J; Hertwich, Edgar G; McKone, Thomas E; van de Meent, Dik
2005-02-01
In life-cycle assessment (LCA) and comparative risk assessment, potential human exposure to toxic pollutants can be expressed as the population intake fraction (iF), which represents the fraction of the quantity emitted that enters the human population. To assess the influence of model differences in the calculation of the population iF ingestion and inhalation iFs of 365 substances emitted to air, freshwater, and soil were calculated with two commonly applied multimedia fate and exposure models, CalTOX and the uniform system for evaluation of substances adapted for life-cycle assessment (USES-LCA). The model comparison showed that differences in the iFs due to model choices were the lowest after emission to air and the highest after emission to soil. Inhalation iFs were more sensitive to model differences compared to ingestion iFs. The choice for a continental seawater compartment, vertical stratification of the soil compartment, rain and no-rain scenarios, and drinking water purification mainly clarify the relevant model differences found in population iFs. Furthermore, pH correction of chemical properties and aerosol-associated deposition on plants appeared to be important for dissociative organics and metals emitted to air, respectively. Finally, it was found that quantitative structure-activity relationship estimates for superhydrophobics may introduce considerable uncertainty in the calculation of population intake fractions.
Noncommutative Quantum Scalar Field Cosmology
Diaz Barron, L. R.; Lopez-Dominguez, J. C.; Sabido, M.; Yee, C.
2010-07-12
In this work we study noncommutative Friedmann-Robertson-Walker (FRW) cosmology coupled to a scalar field endowed with an exponential potential. The quantum scenario is analyzed in the Bohmian formalism of quantum trajectories to investigate the effects of noncommutativity in the evolution of the universe.
Scalar fields and particle accelerators
NASA Astrophysics Data System (ADS)
Sultana, Joseph; Bose, Benjamin
2015-06-01
The phenomenon discovered in 2009 by Bañados, Silk and West where particle collisions can achieve arbitrary high center-of-mass (c.m.) energies close to the event horizon of an extreme Kerr black hole, has generated a lot of interest. Although rotation seemed to be an essential requirement, it was later shown that arbitrary high energies can also be achieved for collisions between radially moving particles near the horizon of the electrically charged extreme Reissner-Nordström black hole. Recently Patil and Joshi claimed that instead of spinning up the black hole one can also crank up the c.m. energy of particle collisions by "charging up" a static black hole with a massless scalar field. In this regard they showed that infinite energies can be attained in the vicinity of the naked singularity of the Janis-Newman-Wincour (JNW) spacetime, which contains a massless scalar field that also becomes infinite at the position of the curvature singularity. In this study we show that Patil and Joshi's claim does not apply for other static black hole systems endowed with a massless scalar field. In particular we consider the well-known Bekenstein black hole and the recently discovered Martínez-Troncoso-Zanelli black hole, and show that the expression of the c.m. energy for particle collisions near the event horizons of these black holes is no different than the corresponding case with vanishing scalar field represented by the Schwarzschild solution. Moreover by studying the motion of scalar test charges that interact with the background scalar field in these black hole spacetimes we show that the resulting c.m. energies are even smaller than in the case of free particles. This shows that the infinite energies obtained by Patil and Joshi may not be due to the fact that the black hole contains a massless scalar field, but may be instead related to the geometry of the naked singularity in the JNW spacetime. An analogous case of infinite c.m. energy in the vicinity of a naked
The influence of coherent structures on the turbulent dispersion of a passive scalar plume
NASA Astrophysics Data System (ADS)
Vanderwel, Christina; Tavoularis, Stavros
2014-11-01
We investigated the influence of coherent structures on the dispersion of a passive scalar by studying instantaneous measurements of a plume of dye released in uniformly sheared flow generated in a water tunnel. Measurements were performed using simultaneous stereo particle image velocimetry and planar laser-induced fluorescence to obtain instantaneous concentration and velocity maps in cross-sections normal to the flow direction. Coherent vortices were observed to effectuate scalar transport by inducing motions which displaced dyed fluid. Dye was observed to preferentially congregate within vortex cores and far away from vortices, whereas regions adjacent to vortices were less likely to contain dye. A conditional eddy analysis demonstrated that counter-rotating vortex pairs associated with hairpin vortices were responsible for both large Reynolds stress events and large scalar flux events. This observation was supported by the fact that the Reynolds stress was found to be correlated with the scalar flux. Supported by NSERC.
NASA Astrophysics Data System (ADS)
Gotoh, Toshiyuki
2012-11-01
Spectrum of passive scalar variance at very high Schmidt number up to 1000 in isotropic steady turbulence has been studied by using very high resolution DNS. Gaussian random force and scalar source which are isotropic and white in time are applied at low wavenumber band. Since the Schmidt number is very large, the system was integrated for 72 large eddy turn over time for the system to forgot the initial state. It is found that the scalar spectrum attains the asymptotic k-1 spectrum in the viscous-convective range and the constant CB is found to be 5.7 which is larger than 4.9 obtained by DNS under the uniform mean scalar gradient. Reasons for the difference are inferred as the Reynolds number effect, anisotropy, difference in the scalar injection, duration of time average, and the universality of the constant is discussed. The constant CB is also compared with the prediction by the Lagrangian statistical theory for the passive scalar. The scalar spectrum in the far diffusive range is found to be exponential, which is consistent with the Kraichnan's spectrum. However, the Kraichnan spectrum was derived under the assumption that the velocity field is white in time, therefore theoretical explanation of the agreement needs to be explored. Grant-in-Aid for Scientific Research No. 21360082, Ministry of Education, Culture, Sports, Science and Technology of Japan.
Scattering and bound states of spinless particles in a mixed vector-scalar smooth step potential
Garcia, M.G.; Castro, A.S. de
2009-11-15
Scattering and bound states for a spinless particle in the background of a kink-like smooth step potential, added with a scalar uniform background, are considered with a general mixing of vector and scalar Lorentz structures. The problem is mapped into the Schroedinger-like equation with an effective Rosen-Morse potential. It is shown that the scalar uniform background present subtle and trick effects for the scattering states and reveals itself a high-handed element for formation of bound states. In that process, it is shown that the problem of solving a differential equation for the eigenenergies is transmuted into the simpler and more efficient problem of solving an irrational algebraic equation.
ACTIVE TURBULENCE AND SCALAR TRANSPORT NEAR THE FOREST-ATMOSPHERE INTERFACE
Turbulent velocity, temperature, water vapor concentration, and other scalars were measured at the canopy-atmosphere interface of a 13–14-m-tall uniform pine forest and a 33-m-tall nonuniform hardwood forest. These measurements were used to investigate whether the mixing la...
NASA Astrophysics Data System (ADS)
Beneduci, Roberto
2014-10-01
Recently a characterization of uniformly continuous POVMs and a necessary condition for a uniformly continuous POVM F to have the norm-1 property have been provided. Moreover it was proved that in the commutative case, uniform continuity corresponds to the existence of a Feller Markov kernel. We apply such results to the analysis of some relevant physical examples; i.e., the phase space localization observables, the unsharp phase observable and the unsharp number observable of which we study the uniform continuity, the norm-1 property and the existence of a Feller Markov kernel.
Constrained inflaton due to a complex scalar
Budhi, Romy H. S.; Kashiwase, Shoichi; Suematsu, Daijiro
2015-09-14
We reexamine inflation due to a constrained inflaton in the model of a complex scalar. Inflaton evolves along a spiral-like valley of special scalar potential in the scalar field space just like single field inflation. Sub-Planckian inflaton can induce sufficient e-foldings because of a long slow-roll path. In a special limit, the scalar spectral index and the tensor-to-scalar ratio has equivalent expressions to the inflation with monomial potential φ{sup n}. The favorable values for them could be obtained by varying parameters in the potential. This model could be embedded in a certain radiative neutrino mass model.
CP violating scalar Dark Matter
NASA Astrophysics Data System (ADS)
Cordero-Cid, A.; Hernández-Sánchez, J.; Keus, V.; King, S. F.; Moretti, S.; Rojas, D.; Sokołowska, D.
2016-12-01
We study an extension of the Standard Model (SM) in which two copies of the SM scalar SU(2) doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are inert, are added to the scalar sector. We allow for CP-violation in the inert sector, where the lightest inert state is protected from decaying to SM particles through the conservation of a Z 2 symmetry. The lightest neutral particle from the inert sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.
Scalar-tensor linear inflation
NASA Astrophysics Data System (ADS)
Artymowski, Michał; Racioppi, Antonio
2017-04-01
We investigate two approaches to non-minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for a non-minimal coupling to gravity of the form of f(varphi)R/2; b) the particle physics approach, where we motivate the form of the Jordan frame potential by loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced gravity inflationary scenario, but instead of the Starobinsky attractor they lead to linear inflation in the strong coupling limit.
Johnson, W.M.
1989-01-01
A super-scalar processor is one that is capable of sustaining an instruction-execution rate of more than one instruction per clock cycle. Maintaining this execution rate is primarily a problem of scheduling processor resources (such as functional units) for high utilization. This study uses trace-driven simulation to evaluate many different super-scalar hardware organizations. It uses general-purpose bench-mark programs executed with a typical RISC instruction set. Highly-optimized versions of the benchmark programs are used, to avoid measuring concurrency that is due to a lack of compiler optimization. In contrast to previous studies, this study examines a wide range of cost and performance tradeoffs, rather than focusing on one specific processor organization or scheduling algorithm. Furthermore, the results are not based on idealizations; for example, they include the effects of realistic functional-unit latencies, instruction and data caches, and multi-tasking. Within this framework, super-scalar performance is limited primarily by instruction-fetch inefficiencies caused by both branch delays and instruction misalignment. Because of this instruction-fetch limitation, it is not worthwhile to explore highly-concurrent execution hardware. Rather, it is more appropriate to explore economical execution hardware that more closely matches the instruction throughout provided by the instruction fetcher. This study examines techniques for reducing the instruction-fetch inefficiencies and explores the resulting hardware organizations.
ERIC Educational Resources Information Center
Lumsden, Linda; Miller, Gabriel
2002-01-01
Students do not always make choices that adults agree with in their choice of school dress. Dress-code issues are explored in this Research Roundup, and guidance is offered to principals seeking to maintain a positive school climate. In "Do School Uniforms Fit?" Kerry White discusses arguments for and against school uniforms and summarizes the…
Uniform magnesium oxide adsorbents
NASA Technical Reports Server (NTRS)
Dash, J. G.; Ecke, R.; Stoltenberg, J.; Vilches, O. E.; Whittemore, O. J., Jr.
1978-01-01
Kr adsorption on MgO is used to characterize the surface uniformity of MgO smoke and thermally decomposed Mg(OH)2. It is found that initially heterogeneous samples develop progressively sharper stepwise isotherms with increasingly-high-temperature heat treatment, apparently due to the removal of imperfections and high-energy facets, leaving surfaces of highly uniform (100) planes.
School Uniforms. Research Brief
ERIC Educational Resources Information Center
Walker, Karen
2007-01-01
Does clothing make the person or does the person make the clothing? How does what attire a student wears to school affect their academic achievement? In 1996, President Clinton cited examples of school violence and discipline issues that might have been avoided had the students been wearing uniforms ("School uniforms: Prevention or suppression?").…
ERIC Educational Resources Information Center
Department of Justice, Washington, DC.
In response to growing levels of violence in American schools, many communities are deciding to adopt school-uniform policies as part of an overall program to improve school safety and discipline. This document provides the following guidelines for parents, teachers, and school leaders who may consider adopting a school-uniform policy: (1) Get…
Maiani, L; Piccinini, F; Polosa, A D; Riquer, V
2004-11-19
Light scalar mesons are found to fit rather well a diquark-antidiquark description. The resulting nonet obeys mass formulas which respect, to a good extent, the Okubo-Zweig-Iizuka (OZI) rule. OZI allowed strong decays are reasonably reproduced by a single amplitude describing the switch of a qq pair, which transforms the state into two colorless pseudoscalar mesons. Predicted heavy states with one or more quarks replaced by charm or beauty are briefly described; they should give rise to narrow states with exotic quantum numbers.
Entropic quantization of scalar fields
Ipek, Selman; Caticha, Ariel
2015-01-13
Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.
NASA Astrophysics Data System (ADS)
Maiani, L.; Piccinini, F.; Polosa, A. D.; Riquer, V.
2004-11-01
Light scalar mesons are found to fit rather well a diquark-antidiquark description. The resulting nonet obeys mass formulas which respect, to a good extent, the Okubo-Zweig-Iizuka (OZI) rule. OZI allowed strong decays are reasonably reproduced by a single amplitude describing the switch of a qq¯ pair, which transforms the state into two colorless pseudoscalar mesons. Predicted heavy states with one or more quarks replaced by charm or beauty are briefly described; they should give rise to narrow states with exotic quantum numbers.
Glueball-QQ¯ mixings in the scalars
NASA Astrophysics Data System (ADS)
Zhao, Qiang
2006-02-01
Possibly significant Okuba-Zweig-Iizuka (OZI) rule violation is found important for the scalar meson production in J / ψ hadronic decays. Its correlation with the glueball-QQ¯ mixings provides a natural explanation for the "scalar puzzle" arising from the data for J / ψ → V f0 at BES. Nevertheless, such a correlation can be examined at different energy scales and other heavy quarkonium hadronic decays, where insights into the scalar meson structures can be gained.
Scalar excursions in large-eddy simulations
NASA Astrophysics Data System (ADS)
Matheou, Georgios; Dimotakis, Paul E.
2016-12-01
The range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods for diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size
Schwarzschild black holes can wear scalar wigs.
Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier
2012-08-24
We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.
Visualization of scalar topology for structural enhancement
Bajaj, C.L.; Pascucci, V.; Schikore, D.R.
1998-09-22
Scalar fields arise in every scientific application. Existing scalar visualization techniques require that the user infer the global scalar structure from what is frequently an insufficient display of information. We present a visualization technique which numerically detects the structure at all scales, removing from the user the responsibility of extracting information implicit in the data, and presenting the structure explicitly for analysis. We further demonstrate how scalar topology detection proves useful for correct visualization and image processing applications such as image co-registration, isocontouring, and mesh compression.
Absorption of a Massive Scalar Field by Wormhole Space-Times
NASA Astrophysics Data System (ADS)
Huang, Hai; Chen, Juhua; Wang, Yongjiu; Jin, Yao
2017-04-01
In this paper we consider the problem of the test massive scalar field propagating in the background of a class of wormhole space-times. Basing on the quantum scattering theory, we analyze the Schrödinger-type scalar wave equation and compute transmission coefficients for arbitrary coupling of the field to the background geometry with the WKB approximation. We numerically investigate its absorption cross section and analyze them in the high frequency regime. We find that the absorption cross section oscillates about the geometric optical value and the limit of absorption cross section is uniform in the high frequency regime.
Absorption of a Massive Scalar Field by Wormhole Space-Times
NASA Astrophysics Data System (ADS)
Huang, Hai; Chen, Juhua; Wang, Yongjiu; Jin, Yao
2017-01-01
In this paper we consider the problem of the test massive scalar field propagating in the background of a class of wormhole space-times. Basing on the quantum scattering theory, we analyze the Schrödinger-type scalar wave equation and compute transmission coefficients for arbitrary coupling of the field to the background geometry with the WKB approximation. We numerically investigate its absorption cross section and analyze them in the high frequency regime. We find that the absorption cross section oscillates about the geometric optical value and the limit of absorption cross section is uniform in the high frequency regime.
Otten, Marte; Pinto, Yair; Paffen, Chris L E; Seth, Anil K; Kanai, Ryota
2017-01-01
Vision in the fovea, the center of the visual field, is much more accurate and detailed than vision in the periphery. This is not in line with the rich phenomenology of peripheral vision. Here, we investigated a visual illusion that shows that detailed peripheral visual experience is partially based on a reconstruction of reality. Participants fixated on the center of a visual display in which central stimuli differed from peripheral stimuli. Over time, participants perceived that the peripheral stimuli changed to match the central stimuli, so that the display seemed uniform. We showed that a wide range of visual features, including shape, orientation, motion, luminance, pattern, and identity, are susceptible to this uniformity illusion. We argue that the uniformity illusion is the result of a reconstruction of sparse visual information (from the periphery) based on more readily available detailed visual information (from the fovea), which gives rise to a rich, but illusory, experience of peripheral vision.
Cross Sections From Scalar Field Theory
NASA Technical Reports Server (NTRS)
Norbury, John W.; Dick, Frank; Norman, Ryan B.; Nasto, Rachel
2008-01-01
A one pion exchange scalar model is used to calculate differential and total cross sections for pion production through nucleon- nucleon collisions. The collisions involve intermediate delta particle production and decay to nucleons and a pion. The model provides the basic theoretical framework for scalar field theory and can be applied to particle production processes where the effects of spin can be neglected.
Scalar gain interpretation of large order filters
NASA Technical Reports Server (NTRS)
Mason, Paul A. C.; Mook, D. Joseph
1993-01-01
A technique is developed which demonstrates how to interpret a large fully-populated filter gain matrix as a set of scalar gains. The inverse problem is also solved, namely, how to develop a large-order filter gain matrix from a specified set of scalar gains. Examples are given to illustrate the method.
Horndeski scalar-tensor black hole geodesics
NASA Astrophysics Data System (ADS)
Tretyakova, Darya; Melkoserov, Dmitry; Adyev, Timur
2016-10-01
We examine massive particles and null geodesics for the scalar-tensor black hole in the Horndeski-Galileon framework. Our analysis shows that first kind relativistic orbits, corresponding to circular and elliptic orbits, are absent for the black hole solution with the static scalar field. This is a highly pathological behavior contradicting to the black hole accretion and Solar System observations.
Scalar Quantum Electrodynamics: Perturbation Theory and Beyond
Bashir, A.; Gutierrez-Guerrero, L. X.; Concha-Sanchez, Y.
2006-09-25
In this article, we calculate scalar propagator in arbitrary dimensions and gauge and the three-point scalar-photon vertex in arbitrary dimensions and Feynman gauge, both at the one loop level. We also discuss constraints on their non perturbative structure imposed by requirements of gauge invariance and perturbation theory.
Radially uniform electron source
NASA Technical Reports Server (NTRS)
Mccomas, D.; Bame, S. J.
1982-01-01
A thermionic electron source capable of producing uniform count rates in a number of channel electron multipliers simultaneously was required for conditioning multipliers for an extended space mission. It was found that a straight tungsten filament in the center of a cylindrically symmetric geometry surrounded by an array of multipliers emits a radially asymmetric distribution of electrons that changes with time. A source was developed which successfully produces a time-independent radially uniform distribution of electrons by moving the filament out of the direct line of sight and replacing it with a centrally located electron 'cloud.'
Gravitational radiation from compact binaries in scalar-tensor gravity
NASA Astrophysics Data System (ADS)
Lang, R. N.
2015-05-01
General relativity (GR) has been extensively tested in the solar system and in binary pulsars, but never in the strong-field, dynamical regime. Soon, gravitational-wave (GW) detectors like Advanced LIGO and eLISA will be able to probe this regime by measuring GWs from inspiraling and merging compact binaries. One particularly interesting alternative to GR is scalar-tensor gravity. We present progress in the calculation of second post-Newtonian (2PN) gravitational waveforms for inspiraling compact binaries in a general class of scalar- tensor theories. The waveforms are constructed using a standard GR method known as “direct integration of the relaxed Einstein equations,” appropriately adapted to the scalar-tensor case. We find that differences from general relativity can be characterized by a reasonably small number of parameters. Among the differences are new hereditary terms which depend on the past history of the source. In one special case, binary black hole systems, we find that the waveform is indistinguishable from that of general relativity. In another, mixed black hole- neutron star systems, all differences from GR can be characterized by only a single parameter.
Gravitational radiation from compact binaries in scalar-tensor gravity
NASA Astrophysics Data System (ADS)
Lang, Ryan
2014-03-01
General relativity (GR) has been extensively tested in the solar system and in binary pulsars, but never in the strong-field, dynamical regime. Soon, gravitational-wave (GW) detectors like Advanced LIGO will be able to probe this regime by measuring GWs from inspiraling and merging compact binaries. One particularly interesting alternative to GR is scalar-tensor gravity. We present the calculation of second post-Newtonian (2PN) gravitational waveforms for inspiraling compact binaries in a general class of scalar-tensor theories. The waveforms are constructed using a standard GR method known as ``Direct Integration of the Relaxed Einstein equations,'' appropriately adapted to the scalar-tensor case. We find that differences from general relativity can be characterized by a reasonably small number of parameters. Among the differences are new hereditary terms which depend on the past history of the source. In one special case, mixed black hole-neutron star systems, all differences from GR can be characterized by only a single parameter. In another, binary black hole systems, we find that the waveform is indistinguishable from that of general relativity.
Improved Prediction of Momentum and Scalar Fluxes Using MODIS Imagery
NASA Technical Reports Server (NTRS)
Crago, Richard D.; Jasinski, Michael F.
2003-01-01
There are remote sensing and science objectives. The remote sensing objectives are: To develop and test a theoretical method for estimating local momentum aerodynamic roughness length, z(sub 0m), using satellite multispectral imagery. To adapt the method to the MODIS imagery. To develop a high-resolution (approx. 1km) gridded dataset of local momentum roughness for the continental United States and southern Canada, using MODIS imagery and other MODIS derived products. The science objective is: To determine the sensitivity of improved satellite-derived (MODIS-) estimates of surface roughness on the momentum and scalar fluxes, within the context of 3-D atmospheric modeling.
Uniformity in Tetrahedral Hohlraums
NASA Astrophysics Data System (ADS)
Craxton, R. S.; Schnittman, J. D.; Pollaine, S. M.
1996-11-01
Tetrahedral hohlraums, i.e., spherical hohlraums with four laser entrance holes (LEH's), offer an alternative means of obtaining good time-independent capsule irradiation uniformity. Since the laser spots are spread fairly uniformly over the hohlraum wall, time-dependent uniformity swings are minimized. Using the 3-D view-factor code BUTTERCUP we have found, for both OMEGA and the NIF, that the uniformity is typically ~2% rms at all times, mainly in the Y_32 mode, but can be reduced to ~1% by independently varying the power in each beam. We have investigated the sensitivity of tetrahedral hohlraums to errors in beam-energy balance and pointing, and we have examined how large the LEH's must be to allow the beams to go through without refraction or absorption. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460. *Also Lawrence Livermore National Laboratory.
NASA Technical Reports Server (NTRS)
Balcom, John L.
1994-01-01
The purpose and scope of this final report is to provide information on the Custom Uniform Source System (CSTM-USS-4000). The report includes documentation and summaries of the results for the work performed under the contract. The Annex contain laboratory test findings, photographs, and drawings of the sphere system.
Refining inflation using non-canonical scalars
Unnikrishnan, Sanil; Sahni, Varun; Toporensky, Aleksey E-mail: varun@iucaa.ernet.in
2012-08-01
This paper revisits the Inflationary scenario within the framework of scalar field models possessing a non-canonical kinetic term. We obtain closed form solutions for all essential quantities associated with chaotic inflation including slow roll parameters, scalar and tensor power spectra, spectral indices, the tensor-to-scalar ratio, etc. We also examine the Hamilton-Jacobi equation and demonstrate the existence of an inflationary attractor. Our results highlight the fact that non-canonical scalars can significantly improve the viability of inflationary models. They accomplish this by decreasing the tensor-to-scalar ratio while simultaneously increasing the value of the scalar spectral index, thereby redeeming models which are incompatible with the cosmic microwave background (CMB) in their canonical version. For instance, the non-canonical version of the chaotic inflationary potential, V(φ) ∼ λφ{sup 4}, is found to agree with observations for values of λ as large as unity! The exponential potential can also provide a reasonable fit to CMB observations. A central result of this paper is that steep potentials (such as V∝φ{sup −n}) usually associated with dark energy, can drive inflation in the non-canonical setting. Interestingly, non-canonical scalars violate the consistency relation r = −8n{sub T}, which emerges as a smoking gun test for this class of models.
NASA Astrophysics Data System (ADS)
Levin, A.; Rubakov, V.
We consider Friedberg-Lee-Sirlin Q-balls in a (3+1)-dimensional model with vanishing scalar potential of one of the fields. We show that, unlike in (2+1) and (1+1) dimensions, the Q-ball is stabilized by the gradient energy of this field and carries scalar charge, over and beyond the global charge. The latter property is also inherent in a model with the scalar potential that does not vanish in a finite field region near the origin.
Searching for the Scalar Glueball
Ochs, Wolfgang
2008-08-31
Existence of gluonic resonances is among the early expectations of QCD. Today, QCD calculations predict the lightest glueball to be a scalar state with mass within a range of about 900-1700 MeV but there is no consensus about its experimental evidence. In a re-analysis of the phase shifts for {pi}{pi} scattering up to 1800 MeV where such states should show up we find the broad resonance f{sub 0}(600)/{sigma} contributing to the full mass range and the narrow f{sub 0}(980) and f{sub 0}(1500) but no evidence for f{sub 0}(1370). Phenomenological arguments for the broad state to be a glueball are recalled. It is argued that the large radiative width of f{sub 0}(600)/{sigma} reported recently is not in contradiction to this hypothesis but is mainly due to {pi}{pi}-rescattering. The small 'direct' radiative component is consistent with QCD sum rule predictions for the light glueball.
Searching for the Scalar Glueball
NASA Astrophysics Data System (ADS)
Ochs, Wolfgang
2008-08-01
Existence of gluonic resonances is among the early expectations of QCD. Today, QCD calculations predict the lightest glueball to be a scalar state with mass within a range of about 900-1700 MeV but there is no consensus about its experimental evidence. In a re-analysis of the phase shifts for ππ scattering up to 1800 MeV where such states should show up we find the broad resonance f0(600)/σ contributing to the full mass range and the narrow f0(980) and f0(1500) but no evidence for f0(1370). Phenomenological arguments for the broad state to be a glueball are recalled. It is argued that the large radiative width of f0(600)/σ reported recently is not in contradiction to this hypothesis but is mainly due to ππ-rescattering. The small "direct" radiative component is consistent with QCD sum rule predictions for the light glueball.
Purely radiating and nonradiating scalar, electromagnetic and weak gravitational sources
NASA Astrophysics Data System (ADS)
Marengo, Edwin A.; Ziolkowski, Richard W.
2000-03-01
It has been known for some time that localized sources to the scalar wave equation and Maxwell's equations exist which do not radiate. Such sources, referred to as non-radiating (NR) sources, generate vanishing fields outside their spatial support which prevents them from interacting with nearby objects by means of their fields. Work on NR sources dates back to Sommerfeld, Herglotz, Hertz, Ehrenfest and Schott who studied these objects in connection with electron and atom models. NR sources have also appeared extensively in inverse source/scattering theories as members of the null space of the source-to-field mapping. In this presentation, we provide a new description of scalar, vector or tensor NR sources and of a complementary class of sources, namely, sources that lack a NR part, i.e., `purely radiating' sources. We show that the class of square-integrable localized purely radiating scalar, electromagnetic or weak gravitational sources is exactly the class of solutions - within the source's support - of the homogeneous form of the associated partial differential equation relating the sources to their fields, i.e., purely radiating sources are themselves fields. As a consequence of this result, NR sources are shown to be inseparable components of a broad class of physically relevant sources, thereby having a physical significance that transcends their use in wave-theoretic inversion models. Localized NR sources are characterized in connection with the concept of reciprocity as non-interactors. The role of NR sources in absorption of radiation and energy storage is addressed. The general theoretical results are illustrated with the aid of a one-dimensional (1D) electromagnetic example corresponding to a transmission line system (equivalently, a 1D plane wave system) with uniformly distributed sources/loads.
Entangled scalar and tensor fluctuations during inflation
NASA Astrophysics Data System (ADS)
Collins, Hael; Vardanyan, Tereza
2016-11-01
We show how the choice of an inflationary state that entangles scalar and tensor fluctuations affects the angular two-point correlation functions of the T, E, and B modes of the cosmic microwave background. The propagators for a state starting with some general quadratic entanglement are solved exactly, leading to predictions for the primordial scalar-scalar, tensor-tensor, and scalar-tensor power spectra. These power spectra are expressed in terms of general functions that describe the entangling structure of the initial state relative to the standard Bunch-Davies vacuum. We illustrate how such a state would modify the angular correlations in the CMB with a simple example where the initial state is a small perturbation away from the Bunch-Davies state. Because the state breaks some of the rotational symmetries, the angular power spectra no longer need be strictly diagonal.
Subfemtotesla scalar atomic magnetometry using multipass cells.
Sheng, D; Li, S; Dural, N; Romalis, M V
2013-04-19
Scalar atomic magnetometers have many attractive features but their sensitivity has been relatively poor. We describe a Rb scalar gradiometer using two multipass optical cells. We use a pump-probe measurement scheme to suppress spin-exchange relaxation and two probe pulses to find the spin precession zero crossing times with a resolution of 1 psec. We realize a magnetic field sensitivity of 0.54 fT/Hz(1/2), which improves by an order of magnitude the best scalar magnetometer sensitivity and exceeds, for example, the quantum limit set by the spin-exchange collisions for a scalar magnetometer with the same measurement volume operating in a continuous regime.
Entangled scalar and tensor fluctuations during inflation
Collins, Hael; Vardanyan, Tereza
2016-11-29
We show how the choice of an inflationary state that entangles scalar and tensor fluctuations affects the angular two-point correlation functions of the T, E, and B modes of the cosmic microwave background. The propagators for a state starting with some general quadratic entanglement are solved exactly, leading to predictions for the primordial scalar-scalar, tensor-tensor, and scalar-tensor power spectra. These power spectra are expressed in terms of general functions that describe the entangling structure of the initial state relative to the standard Bunch-Davies vacuum. We illustrate how such a state would modify the angular correlations in the CMB with a simple example where the initial state is a small perturbation away from the Bunch-Davies state. Because the state breaks some of the rotational symmetries, the angular power spectra no longer need be strictly diagonal.
Intermediate inflation driven by DBI scalar field
NASA Astrophysics Data System (ADS)
Nazavari, N.; Mohammadi, A.; Ossoulian, Z.; Saaidi, Kh.
2016-06-01
Picking out a DBI scalar field as inflation, the slow-rolling inflationary scenario is studied by attributing an exponential time function to scale factor, known as intermediate inflation. The perturbation parameters of the model are estimated numerically for two different cases, and the final result is compared with Planck data. The diagram of tensor-to-scalar ratio r versus scalar spectra index ns is illustrated, and it is found that they are within an acceptable range as suggested by Planck. In addition, the acquired values for amplitude of scalar perturbation reveal the ability of the model to depict a good picture of the Universe in one of its earliest stages. As a further argument, the non-Gaussianity is investigated, displaying that the model prediction stands in a 68% C.L. regime according to the latest Planck data.
Line segments in homogeneous scalar turbulence
NASA Astrophysics Data System (ADS)
Gauding, Michael; Goebbert, Jens Henrik; Hasse, Christian; Peters, Norbert
2015-09-01
The local structure of a turbulent scalar field in homogeneous isotropic turbulence is analyzed by direct numerical simulations (DNS) with different Taylor micro-scale based Reynolds numbers between 119 and 529. A novel signal decomposition approach is introduced where the signal of the scalar along a straight line is partitioned into segments based on the local extremal points of the scalar field. These segments are then parameterized by the distance ℓ between adjacent extremal points and the scalar difference Δϕ at the extrema. Both variables are statistical quantities and a joint distribution function of these quantities contains most information to statistically describe the scalar field. It is highlighted that the marginal distribution function of the length becomes independent of Reynolds number when normalized by the mean length ℓm. From a statistical approach, it is further shown that the mean length scales with the Kolmogorov length, which is also confirmed by DNS. For turbulent mixing, the scalar gradient plays a paramount role. Turbulent scalar fields are characterized by cliff-ramp-like structures manifesting the occurrence of localized large scalar gradients. To study turbulent mixing, a segment-based gradient is defined as Δϕ/ℓ. Joint statistics of the length and the segment-based gradient provide novel understanding of cliff-ramp-like structures. Ramp-like structures are unveiled by the asymmetry of the joint distribution function of the segment-based gradient and the length. Cliff-like structures are further analyzed by conditional statistics and it is shown from DNS that the width of cliffs scales with the Kolmogorov length scale.
Cellular automaton formulation of passive scalar dynamics
NASA Technical Reports Server (NTRS)
Chen, Hudong; Matthaeus, William H.
1987-01-01
Cellular automata modeling of the advection of a passive scalar in a two-dimensional flow is examined in the context of discrete lattice kinetic theory. It is shown that if the passive scalar is represented by tagging or 'coloring' automation particles a passive advection-diffusion equation emerges without use of perturbation expansions. For the specific case of the hydrodynamic lattice gas model of Frisch et al. (1986), the diffusion coefficient is calculated by perturbation.
Inflation in anisotropic scalar-tensor theories
NASA Technical Reports Server (NTRS)
Pimentel, Luis O.; Stein-Schabes, Jaime
1988-01-01
The existence of an inflationary phase in anisotropic Scalar-Tensor Theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a nontrivial potential. The explicit form of the potential is then used and the No Hair Theorem concludes that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.
Passive scalar transport mediated by laminar vortex rings
NASA Astrophysics Data System (ADS)
Hernández, R. H.; Rodríguez, G.
2017-04-01
Numerical simulations were used to study the dynamics of a passive conserved scalar quantity entrained by a self-propelling viscous vortex ring. The transport and mixing process of the passive scalar variable were studied considering two initial scalar distributions: (i) The scalar substance was introduced into the ring during its formation, further focusing in the shedding into the wake of the ring; (ii) A disk-like scalar layer was placed in the ring’s path where the entrainment of the scalar substance into the ring bubble was studied as a function of the ring strength. In both cases, the scalar concentration inside the vortex bubble exhibits a steady decay with time. In the second case, it was shown that the entrained scalar mass grows with both the Reynolds number of the ring and the thickness of the scalar layer in the propagation direction. The ring can be viewed as a mechanism for scalar transportation along important distances.
Calculation of scalar structure functions from a vortex model of turbulent passive scalar transport
NASA Astrophysics Data System (ADS)
Higgins, Keith; Ooi, Andrew; Chong, M. S.
2008-02-01
A Saffman and Pullin [Phys. Fluids 8, 3072 (1996)] type vortex model for passive scalar structure functions is formulated. The intermittent turbulent fine-scale dynamics in the model is represented by numerical solutions of the advection-diffusion and Navier-Stokes equations in the form of axially strained vortex-scalar structures. The use of these structures is motivated by Pullin and Lundgren's [Phys. Fluids 13, 2553 (2001)] asymptotic strained spiral vortex model of turbulent passive scalar transport. Ensemble-averaged scalar structure functions, of even orders 2-10, are calculated from a range of vortex-scalar structures using Monte Carlo integration. For axisymmetric strained scalar fields, acceptable agreement of the second-order structure function with experimental data reported by Antonia and Van Atta [J. Fluid Mech. 84, 561 (1978)] is obtained. Structure functions are also calculated for a range of passive scalar spiral structures. These are generated by the winding of single and double scalar patches in single strained vortex patches and in merging strained vortices. Power-law scaling of the second- and higher-order structure functions is obtained from cases involving the winding of single scalar patches in an axisymmetric strained vortex patch. The second-order scaling exponents from these cases are in reasonable agreement with Kolmogorov-Oboukhov-Corrsin scaling and the experimental results of Antonia et al. [Phys. Rev. A 30, 2704 (1984)] and Gylfason and Warhaft [Phys. Fluids 16, 4012 (2004)]. However, the higher-order scaling exponents from these cases fall below theoretical predictions and experimental results. Higher-order moments are sensitive to the composition of the vortex-scalar structures, and various improvements are suggested that could enhance the performance of the model. The present approach is promising, and it is the first demonstration that a vortex model using simplified Navier-Stokes dynamics can produce some scalar structure
A p-adaptive LCP formulation for the compressible Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Cagnone, J. S.; Vermeire, B. C.; Nadarajah, S.
2013-01-01
This paper presents a polynomial-adaptive lifting collocation penalty (LCP) formulation for the compressible Navier-Stokes equations. The LCP formulation is a high-order nodal scheme in differential form. This format, although computationally efficient, complicates the treatment of non-uniform polynomial approximations. In Cagnone and Nadarajah (2012) [9], we proposed to circumvent this difficulty by employing specially designed elements inserted at the interface where the interpolation degree varies. In the present study we examine the applicability of this approach to the discretization of the Navier-Stokes equations, with focus put on the treatment of the viscous fluxes. The stability of the scheme is analyzed with the scalar diffusion equation and the merits of the approach are demonstrated with various p-adaptive simulations.
The scalar-scalar-tensor inflationary three-point function in the axion monodromy model
NASA Astrophysics Data System (ADS)
Chowdhury, Debika; Sreenath, V.; Sriramkumar, L.
2016-11-01
The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.
Should School Nurses Wear Uniforms?
ERIC Educational Resources Information Center
Journal of School Health, 2001
2001-01-01
This 1958 paper questions whether school nurses should wear uniforms (specifically, white uniforms). It concludes that white uniforms are often associated with the treatment of ill people, and since many people have a fear reaction to them, they are not necessary and are even undesirable. Since school nurses are school staff members, they should…
The fields of uniformly accelerated charges in de Sitter spacetime.
Bicák, Jirí; Krtous, Pavel
2002-05-27
The scalar and electromagnetic fields of charges uniformly accelerated in de Sitter spacetime are constructed. They represent the generalization of the Born solutions describing fields of two particles with hyperbolic motion in flat spacetime. In the limit Lambda-->0, the Born solutions are retrieved. Since in the de Sitter universe the infinities I+/- are spacelike, the radiative properties of the fields depend on the way in which a given point of I+/- is approached. The fields must involve both retarded and advanced effects: Purely retarded fields do not satisfy the constraints at the past infinity I-.
Einstein-Podolsky-Rosen correlations between two uniformly accelerated oscillators
Massar, Serge; Spindel, Philippe
2006-10-15
We consider the quantum correlations, i.e. the entanglement, between two systems uniformly accelerated with identical acceleration a in opposite Rindler quadrants which have reached thermal equilibrium with the Unruh heat bath. To this end we study an exactly soluble model consisting of two oscillators coupled to a massless scalar field in 1+1 dimensions. We find that for some values of the parameters the oscillators get entangled shortly after the moment of closest approach. Because of boost invariance there are an infinite set of pairs of positions where the oscillators are entangled. The maximal entanglement between the oscillators is found to be approximately 1.4 entanglement bits.
Uniform guidelines improve client care.
Barnett, B
1994-12-01
Uniform national guidelines on the delivery of family planning methods and services improve client care, assuming these guidelines are based on current scientific information. Compliance with these guidelines yields safe and efficient delivery of family planning services. Service providers need information, training, supplies, and guidelines to deliver quality services. Guidelines contribute to consistency among family planning programs in different settings. Even though clinics may not provide the same services, the guidelines allow them to provide the same standards of care. Specifically, eligibility criteria, contraindications, and follow-up schedules are the same regardless of the service delivery point. Various international health organizations (such as World Health Organization, USAID, Program for International Training in Health, International Planned Parenthood Federation, and Association for Voluntary Surgical Contraception) have developed guidelines for family planning service delivery. Governments can use these documents to develop national family planning guidelines and policies. They should adapt the guidelines to local needs and consider program resources. After development of the national guidelines, training, workshops, and dissemination of written materials should be provided for policymakers, physicians, nurses, and other health providers. Countries that have either developed or are working to draft their own national guidelines are Cameroon, Ghana, Mexico, and Nepal.
Failure of Anisotropic Unstructured Mesh Adaption Based on Multidimensional Residual Minimization
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
2003-01-01
An automated anisotropic unstructured mesh adaptation strategy is proposed, implemented, and assessed for the discretization of viscous flows. The adaption criteria is based upon the minimization of the residual fluctuations of a multidimensional upwind viscous flow solver. For scalar advection, this adaption strategy has been shown to use fewer grid points than gradient based adaption, naturally aligning mesh edges with discontinuities and characteristic lines. The adaption utilizes a compact stencil and is local in scope, with four fundamental operations: point insertion, point deletion, edge swapping, and nodal displacement. Evaluation of the solution-adaptive strategy is performed for a two-dimensional blunt body laminar wind tunnel case at Mach 10. The results demonstrate that the strategy suffers from a lack of robustness, particularly with regard to alignment of the bow shock in the vicinity of the stagnation streamline. In general, constraining the adaption to such a degree as to maintain robustness results in negligible improvement to the solution. Because the present method fails to consistently or significantly improve the flow solution, it is rejected in favor of simple uniform mesh refinement.
Uniform quantized electron gas
NASA Astrophysics Data System (ADS)
Høye, Johan S.; Lomba, Enrique
2016-10-01
In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T = 0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies.
NASA Astrophysics Data System (ADS)
Bonnivard, Matthieu; Bucur, Dorin
2012-06-01
Relying on the effect of microscopic asperities, one can mathematically justify that viscous fluids adhere completely on the boundary of an impermeable domain. The rugosity effect accounts asymptotically for the transformation of complete slip boundary conditions on a rough surface in total adherence boundary conditions, as the amplitude of the rugosities vanishes. The decreasing rate (average velocity divided by the amplitude of the rugosities) computed on close flat layers is definitely influenced by the geometry. Recent results prove that this ratio has a uniform upper bound for certain geometries, like periodical and "almost Lipschitz" boundaries. The purpose of this paper is to prove that such a result holds for arbitrary (non-periodical) crystalline boundaries and general (non-smooth) periodical boundaries.
Scalar Implicatures: The Psychological Reality of Scales.
de Carvalho, Alex; Reboul, Anne C; Van der Henst, Jean-Baptiste; Cheylus, Anne; Nazir, Tatjana
2016-01-01
Scalar implicatures, the phenomena where a sentence like "The pianist played some Mozart sonatas" is interpreted, as "The pianist did not play all Mozart sonatas" have been given two different analyses. Neo-Griceans (NG) claim that this interpretation is based on lexical scales (e.g.,
Scalar transport in plane mixing layers
NASA Astrophysics Data System (ADS)
Vanormelingen, J.; Van den Bulck, E.
This paper describes the application of the Eulerian, single-point, single-time joint-scalar probability density function (PDF) equation for predicting the scalar transport in mixing layer with a high-speed and a low-speed stream. A finite-volume procedure is applied to obtain the velocity field with the k-ɛ closure being used to describe turbulent transport. The scalar field is represented through the modelled evolution equation for the scalar PDF and is solved using a Monte Carlo simulation. The PDF equation employs gradient transport modelling to represent the turbulent diffusion, and the molecular mixing term is modelled by the LMSE closure. There is no source term for chemical reaction as only an inert mixing layer is considered here. The experimental shear layer data published by Batt is used to validate the computational results despite the fact that comparisons between experiments and computational results are difficult because of the high sensitivity of the shear layer to initial conditions and free stream turbulence phenomena. However, the bimodal shape of the RMS scalar fluctuation as was measured by Batt can be reproduced with this model, whereas standard gradient diffusion calculations do not predict the dip in this profile. In this work for the first time an explanation is given for this phenomenon and the importance of a micromixing model is stressed. Also it is shown that the prediction of the PDF shape by the LMSE model is very satisfactory.
Extended scalar-tensor theories of gravity
Crisostomi, Marco; Koyama, Kazuya; Tasinato, Gianmassimo
2016-04-21
We study new consistent scalar-tensor theories of gravity recently introduced by Langlois and Noui with potentially interesting cosmological applications. We derive the conditions for the existence of a primary constraint that prevents the propagation of an additional dangerous mode associated with higher order equations of motion. We then classify the most general, consistent scalar-tensor theories that are at most quadratic in the second derivatives of the scalar field. In addition, we investigate the possible connection between these theories and (beyond) Horndeski through conformal and disformal transformations. Finally, we point out that these theories can be associated with new operators in the effective field theory of dark energy, which might open up new possibilities to test dark energy models in future surveys.
Neutrino masses and scalar singlet dark matter
NASA Astrophysics Data System (ADS)
Bhattacharya, Subhaditya; Jana, Sudip; Nandi, S.
2017-03-01
We propose a simple extension of the Standard Model (SM) which has a viable dark matter (DM) candidate and can explain the generation of tiny neutrino masses. The DM is an electroweak (EW) singlet scalar S , odd under an imposed exact Z2 symmetry, that interacts with the SM through the "Higgs portal" coupling, while all other particles are even under Z2. The model also has an EW isospin 3 /2 scalar Δ and a pair of EW isospin vectors Σ and Σ ¯, which are responsible for generating tiny neutrino mass via the effective dimension-seven operator. Thanks to the additional interactions with Δ , the scalar singlet DM S survives a large region of parameter space by relic density constraints from WMAP/Planck and direct search bounds from updated LUX data. Constraints on the model from the LHC are also discussed.
Entanglement from longitudinal and scalar photons
Franson, J. D
2011-09-15
The covariant quantization of the electromagnetic field in the Lorentz gauge gives rise to longitudinal and scalar photons in addition to the usual transverse photons. It is shown here that the exchange of longitudinal and scalar photons can produce entanglement between two distant atoms or harmonic oscillators. The form of the entangled states produced in this way is very different from that obtained in the Coulomb gauge, where the longitudinal and scalar photons do not exist. A generalized gauge transformation is used to show that all physically observable effects are the same in the two gauges, despite the differences in the form of the entangled states. An approach of this kind may be useful for a covariant description of the dynamics of quantum information processing.
Passive scalar mixing in vortex rings
NASA Astrophysics Data System (ADS)
Sau, Rajes; Mahesh, Krishnan
2006-11-01
Direct numerical simulations of passive scalar mixing in vortex rings are performed, with and without crossflow. The simulation results without crossflow agree well with experimental data for `formation number', total circulation, trajectory and entrainment fraction. Scalar profiles, mixedness and volume of scalar carrying fluid are used to quantify mixing, whose characteristics are quite different in the formation and propagation phases of the ring. These results are explained in terms of entrainment by the ring. The simulations with crossflow show that the ring tilts and deforms. When the stroke ratio is greater than formation number, the ring tilts in the direction of the crossflow. On the other hand, when the stroke ratio is less than formation number, the ring tilts in the opposite direction, such that its induced velocity opposes the crossflow. The Magnus effect may be used to provide a simple explanation. The impact of this behavior on mixing will be discussed.
The Neural Computation of Scalar Implicature
Hartshorne, Joshua K.; Snedeker, Jesse; Azar, Stephanie Yen-Mun Liem; Kim, Albert E.
2014-01-01
Language comprehension involves not only constructing the literal meaning of a sentence but also going beyond the literal meaning to infer what was meant but not said. One widely-studied test case is scalar implicature: The inference that, e.g., Sally ate some of the cookies implies she did not eat all of them. Research is mixed on whether this is due to a rote, grammaticalized procedure or instead a complex, contextualized inference. We find that in sentences like If Sally ate some of the cookies, then the rest are on the counter, that the rest triggers a late, sustained positivity relative to Sally ate some of the cookies, and the rest are on the counter. This is consistent with behavioral results and linguistic theory suggesting that the former sentence does not trigger a scalar implicature. This motivates a view on which scalar implicature is contextualized but dependent on grammatical structure. PMID:25914890
Extended scalar-tensor theories of gravity
NASA Astrophysics Data System (ADS)
Crisostomi, Marco; Koyama, Kazuya; Tasinato, Gianmassimo
2016-04-01
We study new consistent scalar-tensor theories of gravity recently introduced by Langlois and Noui with potentially interesting cosmological applications. We derive the conditions for the existence of a primary constraint that prevents the propagation of an additional dangerous mode associated with higher order equations of motion. We then classify the most general, consistent scalar-tensor theories that are at most quadratic in the second derivatives of the scalar field. In addition, we investigate the possible connection between these theories and (beyond) Horndeski through conformal and disformal transformations. Finally, we point out that these theories can be associated with new operators in the effective field theory of dark energy, which might open up new possibilities to test dark energy models in future surveys.
Scalar field, nonminimal coupling, and cosmology
Demianski, M. International Center for Relativistic Astrophysics, Dipartimento di Fisica, Universita di Roma La Sapienza,'' Rome ); de Ritis, R.; Marmo, G.; Platania, G.; Rubano, C.; Scudellaro, P.; Stornaiolo, C. Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Mostra d'Oltremare, pad. 19, 80125 Napoli )
1991-11-15
We study the dynamics of a flat Friedmann-Robertson-Walker universe filled with a self-interacting scalar field nonminimally coupled to the gravitational field. Dynamical equations for the system can be derived from a pointlike Lagrangian. For this system an additional Noether symmetry exists provided that the coupling constant {xi} is equal to 0 or 1/6. When {xi}=1/6 the scalar potential has to be constant. In this case we obtain an exact solution. We also analyze the behavior of the scalar field when {xi}{ne}0, 1/6. Most of the considered solutions are unphysical but there exists a very interesting case in which the effective cosmological constant is rapidly changing, which might lead to inflation.
Exploring scalar field dynamics with Gaussian processes
Nair, Remya; Jhingan, Sanjay; Jain, Deepak E-mail: sanjay.jhingan@gmail.com
2014-01-01
The origin of the accelerated expansion of the Universe remains an unsolved mystery in Cosmology. In this work we consider a spatially flat Friedmann-Robertson-Walker (FRW) Universe with non-relativistic matter and a single scalar field contributing to the energy density of the Universe. Properties of this scalar field, like potential, kinetic energy, equation of state etc. are reconstructed from Supernovae and BAO data using Gaussian processes. We also reconstruct energy conditions and kinematic variables of expansion, such as the jerk and the slow roll parameter. We find that the reconstructed scalar field variables and the kinematic quantities are consistent with a flat ΛCDM Universe. Further, we find that the null energy condition is satisfied for the redshift range of the Supernovae data considered in the paper, but the strong energy condition is violated.
Recent progress on light scalar mesons
Peláez, J. R.
2014-07-23
This is a brief account of the recent developments on the determination of the mass and widths of the much debated scalar mesons, paying particular attention to the causes of major revision of the σ or f{sub 0}(500) meson in the last edition of the Review of Particle Physics, which has finally acknowledged that the situation concerning the mass and width of this controversial state has been settled, although this was already well-known to scalar meson practitioners for about a decade. I will briefly comment on the dispersive approach, followed by several groups, which seems to have been the most decisive in support of the existence and precise determinations of scalar meson properties.
Scalar operators in solid-state NMR
Sun, Boqin
1991-11-01
Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.
Self tuning scalar tensor black holes
NASA Astrophysics Data System (ADS)
Charmousis, Christos; Iosifidis, Damianos
2015-04-01
Studying a certain sub class of higher order Horndeski (scalar-tensor) theories we discuss a method discovered recently permitting analytic black hole solutions with a non trivial and regular scalar field. One of the solutions found has de Sitter asymptotics and self tunes the bulk cosmological constant. Using the aforementioned method we find and analyse new black hole solutions which can also have de Sitter asymptotics. By looking at small deviations of the integration constant responsible for self tuning we discuss the robustness of the self tuning mechanism. We find that neighboring solutions to the one previously found present also self tuning properties with unaltered effective cosmological constant.
Scalar discrete nonlinear multipoint boundary value problems
NASA Astrophysics Data System (ADS)
Rodriguez, Jesus; Taylor, Padraic
2007-06-01
In this paper we provide sufficient conditions for the existence of solutions to scalar discrete nonlinear multipoint boundary value problems. By allowing more general boundary conditions and by imposing less restrictions on the nonlinearities, we obtain results that extend previous work in the area of discrete boundary value problems [Debra L. Etheridge, Jesus Rodriguez, Periodic solutions of nonlinear discrete-time systems, Appl. Anal. 62 (1996) 119-137; Debra L. Etheridge, Jesus Rodriguez, Scalar discrete nonlinear two-point boundary value problems, J. Difference Equ. Appl. 4 (1998) 127-144].
Halos of unified dark matter scalar field
Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino E-mail: nicola.bartolo@pd.infn.it
2008-05-15
We investigate the static and spherically symmetric solutions of Einstein's equations for a scalar field with a non-canonical kinetic term, assumed to provide both the dark matter and dark energy components of the Universe. In particular, we give a prescription to obtain solutions (dark halos) whose rotation curve v{sub c}(r) is in good agreement with observational data. We show that there exist suitable scalar field Lagrangians that allow us to describe the cosmological background evolution and the static solutions with a single dark fluid.
A Search for Scalar Chameleons with ADMX
Rybka, G.; Hotz, M.; Rosenberg, L.J.; Asztalos, S.J.; Carosi, G.; Hagmann, C.; Kinion, D.; van Bibber, K.; Hoskins, J.; Martin, C.; Sikivie, P.; Tanner, D.B.; Bradley, R.; Clarke, J.
2010-04-26
Scalar fields with a"chameleon" property, in which the effective particle mass is a function of its local environment, are common to many theories beyond the standard model and could be responsible for dark energy. If these fields couple weakly to the photon, they could be detectable through the afterglow effect of photon-chameleon-photon transitions. The ADMX experiment was used in the first chameleon search with a microwave cavity to set a new limit on scalar chameleon-photon coupling beta_gamma excluding values between 2x109 and 5x1014 for effective chameleon masses between 1.9510 and 1:9525 micro eV.
The nonlinear large-eddy simulation method applied to Sc ≈1 and Sc ≫1 passive-scalar mixing
NASA Astrophysics Data System (ADS)
Burton, Gregory C.
2008-03-01
The nonlinear large-eddy simulation (nLES) method is extended here to simulations of Sc ≈1 and Sc ≫1 turbulent mixing of passive-scalar fields. These are the first LES studies to reproduce the instantaneous structure of the scalar-energy field ϕ¯2(x,t) at viscous-convective scales in the high Schmidt-number regime. The simulations employ a refinement of the nLES method with multifractal modeling first proposed by G. C. Burton and W. J. A. Dahm [Phys. Fluids 17, 075111 (2005)]. In this approach, the nonlinear inertial stresses uiuj¯ in the filtered Navier-Stokes equation and the nonlinear scalar fluxes ujϕ¯ in the filtered advection-diffusion equation are calculated directly, using multifractal models for the subgrid velocity and scalar fields, ujsgs and ϕsgs. Resolved energy levels are controlled by a new adaptive backscatter limiter that adjusts locally to changing flow conditions consistent with the mechanism governing energy transfer in actual hydrodynamic turbulence. No artificial viscosity or diffusivity closures are applied and no explicit de-aliasing is performed. The nLES approach is shown to simulate accurately Sc ≈1 mixing for flows between Reλ≈35 and 4100, the highest Reλ tested. Characteristics of the resulting scalar field are examined, including the turbulence-to-scalar time-scale ratio and total scalar variance ⟨ϕ'2⟩, indicating good agreement with prior studies. Simulations between Sc =8 and 8192 produce the first scalar-energy spectra from an LES that exhibit k-1 scaling in the viscous-convective range, consistent with the analytical prediction of G. K. Batchelor [J. Fluid Mech. 5, 113 (1959)]. The simulations indicate decreasing scalar anisotropy and increasing intermittency with increasing Schmidt number, also consistent with prior studies.
Passive scalar transport to and from the surface of a Pocillopora coral colony
NASA Astrophysics Data System (ADS)
Hossain, Md Monir; Staples, Anne
2016-11-01
Three-dimensional simulations of flow through a single Pocillopora coral colony were performed to examine the interaction between the flow conditions and scalar transport near a coral colony. With corals currently undergoing a third global bleaching event, a fuller understanding of the transport of nutrients, weak temperature gradients, and other passive scalars to and from the coral polyp tissue is more important than ever. The complex geometry of a coral colony poses a significant challenge for numerical simulation. To simplify grid generation and minimize computational cost, the immersed boundary method was implemented. Large eddy simulation was chosen as the framework to capture the turbulent flow field in the range of realistic Reynolds numbers of 5,000 to 30,000 and turbulent Schmidt numbers of up to 1,000. Both uniform and oscillatory flows through the colony were investigated. Significant differences were found between the cases when the scalar originated at the edge of the flow domain and was transported into the colony, versus when the scalar originated on the surface of the colony and was transported away from the coral. The domain-to-colony transport rates were found to be orders of magnitude higher than the colony-to-domain rates.
Scalar and tensor perturbations in loop quantum cosmology: high-order corrections
NASA Astrophysics Data System (ADS)
Zhu, Tao; Wang, Anzhong; Cleaver, Gerald; Kirsten, Klaus; Sheng, Qin; Wu, Qiang
2015-10-01
Loop quantum cosmology (LQC) provides promising resolutions to the trans-Planckian issue and initial singularity arising in the inflationary models of general relativity. In general, due to different quantization approaches, LQC involves two types of quantum corrections, the holonomy and inverse-volume, to both of the cosmological background evolution and perturbations. In this paper, using the third-order uniform asymptotic approximations, we derive explicitly the observational quantities of the slow-roll inflation in the framework of LQC with these quantum corrections. We calculate the power spectra, spectral indices, and running of the spectral indices for both scalar and tensor perturbations, whereby the tensor-to-scalar ratio is obtained. We expand all the observables at the time when the inflationary mode crosses the Hubble horizon. As the upper error bounds for the uniform asymptotic approximation at the third-order are lesssim 0.15%, these results represent the most accurate results obtained so far in the literature. It is also shown that with the inverse-volume corrections, both scalar and tensor spectra exhibit a deviation from the usual shape at large scales. Then, using the Planck, BAO and SN data we obtain new constraints on quantum gravitational effects from LQC corrections, and find that such effects could be within the detection of the forthcoming experiments.
Scalar and tensor perturbations in loop quantum cosmology: high-order corrections
Zhu, Tao; Wang, Anzhong; Wu, Qiang; Cleaver, Gerald; Kirsten, Klaus; Sheng, Qin E-mail: anzhong_wang@baylor.edu E-mail: klaus_kirsten@baylor.edu E-mail: wuq@zjut.edu.cn
2015-10-01
Loop quantum cosmology (LQC) provides promising resolutions to the trans-Planckian issue and initial singularity arising in the inflationary models of general relativity. In general, due to different quantization approaches, LQC involves two types of quantum corrections, the holonomy and inverse-volume, to both of the cosmological background evolution and perturbations. In this paper, using the third-order uniform asymptotic approximations, we derive explicitly the observational quantities of the slow-roll inflation in the framework of LQC with these quantum corrections. We calculate the power spectra, spectral indices, and running of the spectral indices for both scalar and tensor perturbations, whereby the tensor-to-scalar ratio is obtained. We expand all the observables at the time when the inflationary mode crosses the Hubble horizon. As the upper error bounds for the uniform asymptotic approximation at the third-order are ∼< 0.15%, these results represent the most accurate results obtained so far in the literature. It is also shown that with the inverse-volume corrections, both scalar and tensor spectra exhibit a deviation from the usual shape at large scales. Then, using the Planck, BAO and SN data we obtain new constraints on quantum gravitational effects from LQC corrections, and find that such effects could be within the detection of the forthcoming experiments.
Kerr black holes with scalar hair.
Herdeiro, Carlos A R; Radu, Eugen
2014-06-06
We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions.
NASA Astrophysics Data System (ADS)
Minkowski, Peter; Ochs, Wolfgang
2006-02-01
We summarize some persistent problems in scalar spectroscopy and discuss what could be learned here from charmless B-decays. Recent experimental results are discussed in comparison with theoretical expectations: a simple model based on penguin dominance leads to various symmetry relations in good agreement with recent data; a factorisation approach yields absolute predictions of rates. For more details, see [1].
Helmholtz Hodge decomposition of scalar optical fields.
Bahl, Monika; Senthilkumaran, P
2012-11-01
It is shown that the vector field decomposition method, namely, the Helmholtz Hodge decomposition, can also be applied to analyze scalar optical fields that are ubiquitously present in interference and diffraction optics. A phase gradient field that depicts the propagation and Poynting vector directions can hence be separated into solenoidal and irrotational components.
Minkowski, Peter; Ochs, Wolfgang
2006-02-11
We summarize some persistent problems in scalar spectroscopy and discuss what could be learned here from charmless B-decays. Recent experimental results are discussed in comparison with theoretical expectations: a simple model based on penguin dominance leads to various symmetry relations in good agreement with recent data; a factorisation approach yields absolute predictions of rates.
Chiral scalars from an extended system
Kim, W.; Kim, J. ); Park, Y. )
1991-07-15
We propose a new action with a modified linear chiral constraint, which contains a chiral boson (a single self-dual theory) or left-right chiral bosons (free scalar field theory) according to the parameter {alpha}, and discuss the constraint algebra between the two theories.
Scalar Implicatures: The Psychological Reality of Scales
de Carvalho, Alex; Reboul, Anne C.; Van der Henst, Jean-Baptiste; Cheylus, Anne; Nazir, Tatjana
2016-01-01
Scalar implicatures, the phenomena where a sentence like “The pianist played some Mozart sonatas” is interpreted, as “The pianist did not play all Mozart sonatas” have been given two different analyses. Neo-Griceans (NG) claim that this interpretation is based on lexical scales (e.g.,
Black holes with surrounding matter in scalar-tensor theories.
Cardoso, Vitor; Carucci, Isabella P; Pani, Paolo; Sotiriou, Thomas P
2013-09-13
We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an effective mass for the scalar. Our results highlight the importance of understanding the structure of spacetime in realistic, astrophysical black holes in scalar-tensor theories.
Unphysical scalar excursions in large-eddy simulations
NASA Astrophysics Data System (ADS)
Matheou, Georgios; Dimotakis, Paul
2016-11-01
The range of physically realizable values of passive scalar fields in any flow is bounded by their boundary values. The current investigation focuses on the local conservation of passive scalar concentration fields in turbulent flows and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a turbulent shear flow and examines methods for error diagnosis. Typically, scalar-excursion errors are diagnosed as violations of global boundedness, i.e., detecting scalar-concentration values outside boundary/initial condition bounds. To quantify errors in mixed-fluid regions, a local scalar excursion error metric is defined with respect to the local non-diffusive limit. Analysis of such errors shows that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. Local scalar excursion errors are found not to be correlated with the local scalar-gradient magnitude. This work is supported by AFOSR, DOE, and Caltech.
Transport Of Passive Scalars In A Turbulent Channel Flow
NASA Technical Reports Server (NTRS)
Kim, John; Moin, Parviz
1990-01-01
Computer simulation of transport of passive scalars in turbulent channel flow described in report. Shows flow structures and statistical properties. As used here, "passive scalars" means scalar quantities like fluctuations in temperature or concentrations of contaminants that do not disturb flow appreciably. Examples include transport of heat in heat exchangers, gas turbines, and nuclear reactors and dispersal of pollution in atmosphere.
School Uniforms: Esprit de Corps.
ERIC Educational Resources Information Center
Ryan, Rosemary P.; Ryan, Thomas E.
1998-01-01
The benefits of school uniforms far outweigh their short-term costs. School uniforms not only keep students safe, but they increase their self-esteem, promote a more positive attitude toward school, lead to improved student behavior, and help blur social-class distinctions. Students are allowed to wear their own political or religious messages,…
Stationary charged scalar clouds around black holes in string theory
NASA Astrophysics Data System (ADS)
Bernard, Canisius
2016-10-01
It was reported that Kerr-Newman black holes can support linear charged scalar fields in their exterior regions. These stationary massive charged scalar fields can form bound states, which are called stationary scalar clouds. In this paper, we show that Kerr-Sen black holes can also support stationary massive charged scalar clouds by matching the near- and far-region solutions of the radial part of the Klein-Gordon wave equation. We also review stationary scalar clouds within the background of static electrically charged black hole solutions in the low-energy limit of heterotic string field theory, namely, the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black holes.
NASA Astrophysics Data System (ADS)
Mendes, Raissa F. P.; Ortiz, Néstor
2016-06-01
Scalar-tensor theories of gravity are extensions of general relativity (GR) including an extra, nonminimally coupled scalar degree of freedom. A wide class of these theories, albeit indistinguishable from GR in the weak field regime, predicts a radically different phenomenology for neutron stars, due to a nonperturbative, strong-field effect referred to as spontaneous scalarization. This effect is known to occur in theories where the effective linear coupling β0 between the scalar and matter fields is sufficiently negative, i.e. β0≲-4.35 , and has been strongly constrained by pulsar timing observations. In the test-field approximation, spontaneous scalarization manifests itself as a tachyonic-like instability. Recently, it was argued that, in theories where β0>0 , a similar instability would be triggered by sufficiently compact neutron stars obeying realistic equations of state. In this work we investigate the end state of this instability for some representative coupling functions with β0>0 . This is done both through an energy balance analysis of the existing equilibrium configurations, and by numerically determining the nonlinear Cauchy development of unstable initial data. We find that, contrary to the β0<0 case, the final state of the instability is highly sensitive to the details of the coupling function, varying from gravitational collapse to spontaneous scalarization. In particular, we show, for the first time, that spontaneous scalarization can happen in theories with β0>0 , which could give rise to novel astrophysical tests of the theory of gravity.
Singularities in a scalar field quantum cosmology
NASA Astrophysics Data System (ADS)
Lemos, Nivaldo A.
1996-04-01
The quantum theory of a spatially flat Friedmann-Robertson-Walker universe with a massless scalar field as the source is further investigated. The classical model is singular and in the framework of a genuine canonical quantization (Arnowitt-Deser-Misner formalism) a discussion is made of the cosmic evolution, particularly of the quantum gravitational collapse problem. It is shown that in a matter-time gauge such that time is identified with the scalar field the classical model is singular either at t=-∞ or at t=+∞, but the quantum model is nonsingular. The latter behavior disproves a conjecture according to which quantum cosmological singularities are predetermined on the classical level by the choice of time.
New stability results for Einstein scalar gravity
NASA Astrophysics Data System (ADS)
Faulkner, Thomas; Horowitz, Gary T.; Roberts, Matthew M.
2010-10-01
We consider asymptotically anti de Sitter gravity coupled to a scalar field with mass slightly above the Breitenlohner-Freedman bound. This theory admits a large class of consistent boundary conditions characterized by an arbitrary function W. An important open question is to determine which W admit stable ground states. It has previously been shown that the total energy is bounded from below if W is bounded from below, and the bulk scalar potential V(phi) admits a suitable superpotential. We extend this result and show that the energy remains bounded even in some cases where W can become arbitrarily negative. As one application, this leads to the possibility that in gauge/gravity duality, one can add a double trace operator with negative coefficient to the dual field theory and still have a stable vacuum.
Scalar field cosmologies with inverted potentials
Boisseau, B.; Giacomini, H.
2015-10-01
Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF.
Compton scattering vertex for massive scalar QED
Bashir, A.; Concha-Sanchez, Y.; Delbourgo, R.; Tejeda-Yeomans, M. E.
2009-08-15
We investigate the Compton scattering vertex of charged scalars and photons in scalar quantum electrodynamics (SQED). We carry out its nonperturbative construction consistent with Ward-Fradkin-Green-Takahashi identity which relates 3-point vertices to the 4-point ones. There is an undetermined part which is transverse to one or both the external photons, and needs to be evaluated through perturbation theory. We present in detail how the transverse part at the 1-loop order can be evaluated for completely general kinematics of momenta involved in covariant gauges and dimensions. This involves the calculation of genuine 4-point functions with three massive propagators, the most nontrivial integrals reported in this paper. We also discuss possible applications of our results.
NASA Astrophysics Data System (ADS)
Yeung, P. K.; Sreenivasan, K. R.
2014-01-01
In a recent direct numerical simulation (DNS) study [P. K. Yeung and K. R. Sreenivasan, "Spectrum of passive scalars of high molecular diffusivity in turbulent mixing," J. Fluid Mech. 716, R14 (2013)] with Schmidt number as low as 1/2048, we verified the essential physical content of the theory of Batchelor, Howells, and Townsend ["Small-scale variation of convected quantities like temperature in turbulent fluid. 2. The case of large conductivity," J. Fluid Mech. 5, 134 (1959)] for turbulent passive scalar fields with very strong diffusivity, decaying in the absence of any production mechanism. In particular, we confirmed the existence of the -17/3 power of the scalar spectral density in the so-called inertial-diffusive range. In the present paper, we consider the DNS of the same problem, but in the presence of a uniform mean gradient, which leads to the production of scalar fluctuations at (primarily) the large scales. For the parameters of the simulations, the presence of the mean gradient alters the physics of mixing fundamentally at low Peclet numbers. While the spectrum still follows a -17/3 power law in the inertial-diffusive range, the pre-factor is non-universal and depends on the magnitude of the mean scalar gradient. Spectral transfer is greatly reduced in comparison with those for moderately and weakly diffusive scalars, leading to several distinctive features such as the absence of dissipative anomaly and a new balance of terms in the spectral transfer equation for the scalar variance, differing from the case of zero gradient. We use the DNS results to present an alternative explanation for the observed scaling behavior, and discuss a few spectral characteristics in detail.
Noncommutative scalar fields from symplectic deformation
Daoud, M.; Hamama, A.
2008-02-15
This paper is concerned with the quantum theory of noncommutative scalar fields in two dimensional space-time. It is shown that the noncommutativity originates from the the deformation of symplectic structures. The quantization is performed and the modes expansions of the fields, in the presence of an electromagnetic background, are derived. The Hamiltonian of the theory is given and the degeneracies lifting, induced by the deformation, is also discussed.
Self-similar scalar field collapse
NASA Astrophysics Data System (ADS)
Banerjee, Narayan; Chakrabarti, Soumya
2017-01-01
A spherically symmetric collapsing scalar field model is discussed with a dissipative fluid which includes a heat flux. This vastly general matter distribution is analyzed at the expense of a high degree of symmetry in the space-time, that of conformal flatness and self-similarity. Indeed collapsing models terminating into a curvature singularity can be obtained. The formation of black holes or the occurrence of naked singularities depends on the initial collapsing profiles.
Statistics and geometry of passive scalars in turbulence
NASA Astrophysics Data System (ADS)
Schumacher, Jörg; Sreenivasan, Katepalli R.
2005-12-01
We present direct numerical simulations of the mixing of the passive scalar at modest Taylor microscale (10<=Rλ<=42) and Schmidt numbers larger than unity (2<=Sc<=32). The simulations resolve below the Batchelor scale up to a factor of 4. The advecting turbulence is homogeneous and isotropic, and is maintained stationary by stochastic forcing at low wave numbers. The passive scalar is rendered stationary by a mean scalar gradient in one direction. The relation between geometrical and statistical properties of scalar field and its gradients is examined. The Reynolds numbers and Schmidt numbers are not large enough for either the Kolmogorov scaling or the Batchelor scaling to develop and, not surprisingly, we find no fractal scaling of scalar level sets, or isosurfaces, in the intermediate viscous range. The area-to-volume ratio of isosurfaces reflects the nearly Gaussian statistics of the scalar fluctuations. The scalar flux across the isosurfaces, which is determined by the conditional probability density function (PDF) of the scalar gradient magnitude, has a stretched exponential distribution towards the tails. The PDF of the scalar dissipation departs distinctly, for both small and large amplitudes, from the log-normal distribution for all cases considered. The joint statistics of the scalar and its dissipation rate, and the mean conditional moment of the scalar dissipation, are studied as well. We examine the effects of coarse-graining on the probability density to simulate the effects of poor probe-resolution in measurements.
Uniform acceleration in general relativity
NASA Astrophysics Data System (ADS)
Friedman, Yaakov; Scarr, Tzvi
2015-10-01
We extend de la Fuente and Romero's (Gen Relativ Gravit 47:33, 2015) defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.
Scalar meson spectroscopy with lattice staggered fermions
Bernard, Claude; DeTar, Carleton; Fu Ziwen; Prelovsek, Sasa
2007-11-01
With sufficiently light up and down quarks the isovector (a{sub 0}) and isosinglet (f{sub 0}) scalar meson propagators are dominated at large distance by two-meson states. In the staggered-fermion formulation of lattice quantum chromodynamics, taste-symmetry breaking causes a proliferation of two-meson states that further complicates the analysis of these channels. Many of them are unphysical artifacts of the lattice approximation. They are expected to disappear in the continuum limit. The staggered-fermion fourth-root procedure has its purported counterpart in rooted staggered chiral perturbation theory (rS{chi}PT). Fortunately, the rooted theory provides a strict framework that permits the analysis of scalar meson correlators in terms of only a small number of low-energy couplings. Thus the analysis of the point-to-point scalar meson correlators in this context gives a useful consistency check of the fourth-root procedure and its proposed chiral realization. Through numerical simulation we have measured correlators for both the a{sub 0} and f{sub 0} channels in the 'Asqtad' improved staggered-fermion formulation in a lattice ensemble with lattice spacing a=0.12 fm. We analyze those correlators in the context of rS{chi}PT and obtain values of the low-energy chiral couplings that are reasonably consistent with previous determinations.
Swarm's Absolute Scalar Magnetometers Burst Mode Results
NASA Astrophysics Data System (ADS)
Coisson, P.; Vigneron, P.; Hulot, G.; Crespo Grau, R.; Brocco, L.; Lalanne, X.; Sirol, O.; Leger, J. M.; Jager, T.; Bertrand, F.; Boness, A.; Fratter, I.
2014-12-01
Each of the three Swarm satellites embarks an Absolute Scalar Magnetometer (ASM) to provide absolute scalar measurements of the magnetic field with high accuracy and stability. Nominal data acquisition of these ASMs is 1 Hz. But they can also run in a so-called "burst mode" and provide data at 250 Hz. During the commissioning phase of the mission, seven burst mode acquisition campaigns have been run simultaneously for all satellites, obtaining a total of ten days of burs-mode data. These campaigns allowed the identification of issues related to the operations of the piezo-electric motor and the heaters connected to the ASM, that do not impact the nominal 1 Hz scalar data. We analyze the burst mode data to identify high frequency geomagnetic signals, focusing the analysis in two regions: the low latitudes, where we seek signatures of ionospheric irregularities, and the high latitudes, to identify high frequency signals related to polar region currents. Since these campaigns have been conducted during the initial months of the mission, the three satellites where still close to each other, allowing to analyze the spatial coherency of the signals. Wavelet analysis have revealed 31 Hz signals appearing in the night-side in the equatorial region.
Atomic precision tests and light scalar couplings
Brax, Philippe; Burrage, Clare
2011-02-01
We calculate the shift in the atomic energy levels induced by the presence of a scalar field which couples to matter and photons. We find that a combination of atomic measurements can be used to probe both these couplings independently. A new and stringent bound on the matter coupling springs from the precise measurement of the 1s to 2s energy level difference in the hydrogen atom, while the coupling to photons is essentially constrained by the Lamb shift. For a range of masses these constraints are not as stringent as those from fifth force experiments or optical astrophysical and laboratory measurements. However, they have the advantage that they are universal, applying to all scalars, even those that hide their effects dynamically from fifth force searches, such as the chameleon and Galileon models. Combining these constraints with current particle physics bounds we find that the contribution of a scalar field to the recently claimed discrepancy in the proton radius measured using electronic and muonic atoms is negligible.
FESDIF -- Finite Element Scalar Diffraction theory code
Kraus, H.G.
1992-09-01
This document describes the theory and use of a powerful scalar diffraction theory based computer code for calculation of intensity fields due to diffraction of optical waves by two-dimensional planar apertures and lenses. This code is called FESDIF (Finite Element Scalar Diffraction). It is based upon both Fraunhofer and Kirchhoff scalar diffraction theories. Simplified routines for circular apertures are included. However, the real power of the code comes from its basis in finite element methods. These methods allow the diffracting aperture to be virtually any geometric shape, including the various secondary aperture obstructions present in telescope systems. Aperture functions, with virtually any phase and amplitude variations, are allowed in the aperture openings. Step change aperture functions are accommodated. The incident waves are considered to be monochromatic. Plane waves, spherical waves, or Gaussian laser beams may be incident upon the apertures. Both area and line integral transformations were developed for the finite element based diffraction transformations. There is some loss of aperture function generality in the line integral transformations which are typically many times more computationally efficient than the area integral transformations when applicable to a particular problem.
The Uniformly Accelerated Reference Frame
ERIC Educational Resources Information Center
Hamilton, J. Dwayne
1978-01-01
The observations that would be made by a uniformly accelerated observer, including the observer's event horizon, the variation of clock rates with position, and the effects of following a freely falling object are considered in detail. (SL)
Instability of coherent states of a real scalar field
Koutvitsky, Vladimir A.; Maslov, Eugene M.
2006-02-15
We investigate stability of both localized time-periodic coherent states (pulsons) and uniformly distributed coherent states (oscillating condensate) of a real scalar field satisfying the Klein-Gordon equation with a logarithmic nonlinearity. The linear analysis of time-dependent parts of perturbations leads to the Hill equation with a singular coefficient. To evaluate the characteristic exponent we extend the Lindemann-Stieltjes method, usually applied to the Mathieu and Lame equations, to the case that the periodic coefficient in the general Hill equation is an unbounded function of time. As a result, we derive the formula for the characteristic exponent and calculate the stability-instability chart. Then we analyze the spatial structure of the perturbations. Using these results we show that the pulsons of any amplitudes, remaining well-localized objects, lose their coherence with time. This means that, strictly speaking, all pulsons of the model considered are unstable. Nevertheless, for the nodeless pulsons the rate of the coherence breaking in narrow ranges of amplitudes is found to be very small, so that such pulsons can be long-lived. Further, we use the obtained stability-instability chart to examine the Affleck-Dine-type condensate. We conclude the oscillating condensate can decay into an ensemble of the nodeless pulsons.
Spectral viscosity approximations to multidimensional scalar conservation laws
Chen, Gui-Qiang ); Du, Qiang ); Tadmor, E. )
1993-10-01
The authors study the spectral viscosity (SV) method in the context of multidimensional scalar conservation laws with periodic boundary conditions. They show that the spectral viscosity, which is sufficiently small to retain the formal spectral accuracy of the underlying Fourier approximation, is large enough to enforce the correct amount of entropy dissipation (which is otherwise missing in the standard Fourier method). Moreover, they prove that because of the presence of the spectral viscosity, the truncation error in this case becomes spectrally small, independent of whether the underlying solution is smooth or not. Consequently, the SV approximation remains uniformly bounded and converges to a measure-valued solution satisfying the entropy condition, that is, the unique entropy solution. They also show that the SV solution has a bounded total variation, provided that the total variation of the initial data is bounded, thus confirming its strong convergence to the entropy solution. They obtain an L[sup 1] convergence rate of the usual optimal order one-half. 22 refs.
The scalar-photon 3-point vertex in massless quenched scalar QED
NASA Astrophysics Data System (ADS)
Concha-Sánchez, Y.; Gutiérrez-Guerrero, L. X.; Fernández-Rangel, L. A.
2016-10-01
Non perturbative studies of Schwinger-Dyson equations (SDEs) require their infinite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the scalar-photon three point vertex can be expressed in terms of only two independent form factors, longitudinal and transverse. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green- Takahashi identity (WFGTI), while the transverse vertex remains undetermined. In massless quenched sQED, we propose the transverse part of the non perturbative scalar-photon vertex.
Armenta Salas, Michelle; Helms Tillery, Stephen I.
2016-01-01
The neural mechanisms that take place during learning and adaptation can be directly probed with brain-machine interfaces (BMIs). We developed a BMI controlled paradigm that enabled us to enforce learning by introducing perturbations which changed the relationship between neural activity and the BMI's output. We introduced a uniform perturbation to the system, through a visuomotor rotation (VMR), and a non-uniform perturbation, through a decorrelation task. The controller in the VMR was essentially unchanged, but produced an output rotated at 30° from the neurally specified output. The controller in the decorrelation trials decoupled the activity of neurons that were highly correlated in the BMI task by selectively forcing the preferred directions of these cell pairs to be orthogonal. We report that movement errors were larger in the decorrelation task, and subjects needed more trials to restore performance back to baseline. During learning, we measured decreasing trends in preferred direction changes and cross-correlation coefficients regardless of task type. Conversely, final adaptations in neural tunings were dependent on the type controller used (VMR or decorrelation). These results hint to the similar process the neural population might engage while adapting to new tasks, and how, through a global process, the neural system can arrive to individual solutions. PMID:27601981
Plasmon effects in light scalar and pseudo-scalar emission from a supernova.
NASA Astrophysics Data System (ADS)
Altherr, T.
1991-05-01
The emission of light scalars and pseudo-scalars (axion-like particles) coupled to the chromo/electric field from a QCD/AED plasma at high temperature and very high density is studied in detail. The calculation is then applied to the SN 1987A event for which new bounds on the Peccei-Quinn symmetry breaking scale fa are derived, fa ⪆ 3×109GeV in presence of a quark-gluon core and fa ⪆ 107GeV, which is the same bound as the one obtained from red giant stars, by considering axion emission from the electron gas.
Scaling properties of the mean equation for passive scalar in turbulent channel flow
NASA Astrophysics Data System (ADS)
Zhou, Ang; Pirozzoli, Sergio; Klewicki, Joseph
2016-11-01
Data from numerical simulations of fully developed turbulent channel flows subjected to a uniform and constant heat generation are used to explore the scaling behaviors admitted by the mean equation for passive scalar transport. The analysis proceeds in a manner similar to previous studies of mean momentum transport. Based on the relative magnitude of terms, the leading order balances in the equation organize into a four layer structure. The wall-normal widths of the layers exhibit significant dependencies both on Reynolds and Prandtl number, and these dependencies are analytically surmised and empirically validated. The passive scalar equation also admits an invariant form on each of a hierarchy of scaling layers. As with the momentum case, this hierarchy is quantified by its inner-normalized widths. The present findings indicate that the layer width distribution is increasingly approximated by a linear function of wall normal position with increasing ratio of Reynolds number to Prandtl number on a domain of the hierarchy where the molecular diffusion effect loses leading order. The analysis indicates that across this domain the square of the slope of the width distribution function is equivalent to the scalar Karman constant as Reynolds number goes to infinity. The data provide convincing evidence in support of this finding.
Kakita, Veera Mohana Rao; Kupče, Eriks; Bharatam, Jagadeesh
2015-02-01
Unambiguous measurement of homonuclear scalar couplings (J) in multi-spin scalar network systems is not straightforward. Further, the direct measurement of J-couplings is obscured in solid-state samples due to the dipolar and chemical shift anisotropy (CSA)-dominated line broadening, even under the magic angle spinning (MAS). We present a new multiple frequency selective spin-echo method based on Hadamard matrix encoding, for simultaneous measurement of multiple homonuclear scalar couplings (J) in the solid-state. In contrast to the Hadamard encoded selective excitation schemes known for the solution-state, herein the selectivity is achieved during refocusing period. The Hadamard encoded refocusing scheme concurrently allows to create the spin-spin commutation property between number of spin-pairs of choice in uniformly labelled molecules, which, therefore avoids (1) the repetition of the double selective refocusing experiments for each spin-pair and (2) the synthesis of expensive selective labelled molecules. The experimental scheme is exemplified for determining (1)JCC and (3)JCC values in (13)C6l-Histidine.HCl molecule, which are found to be in excellent agreement with those measured in conventional double frequency selective refocusing mode as well as in the solution-state. This method can be simply extended to 2D/3D pulse schemes and be applied to small bio-molecular solids.
A minimum dissipation scalar transport model for large-eddy simulation of turbulent flows
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Bae, Hyun J.; Moin, Parviz
2016-11-01
Minimum-dissipation models are a simple alternative to the Smagorinsky-type approaches to parameterize the sub-filter scale turbulent fluxes in large-eddy simulation. A recently derived minimum-dissipation model for sub-filter stress tensor is the AMD model and has many desirable properties. It is more cost effective than the dynamic Smagorinsky model, it appropriately switches off in laminar and transitional flows, and it is consistent with the theoretic sub-filter stress tensor on both isotropic and anisotropic grids. In this study, an extension of this approach to modeling the sub-filter scalar flux is proposed. The performance of the AMD model is tested in the simulation of a high Reynolds number, rough wall, boundary layer flow with a constant and uniform surface scalar flux. The simulation results obtained from the AMD model show good agreement with well-established empirical correlations and theoretical predictions of the resolved flow statistics. In particular, the AMD model is capable to accurately predict the expected surface-layer similarity profiles and power spectra for both velocity and scalar concentration.
Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Bae, Hyun J.; Moin, Parviz
2016-08-01
Minimum-dissipation models are a simple alternative to the Smagorinsky-type approaches to parametrize the subfilter turbulent fluxes in large-eddy simulation. A recently derived model of this type for subfilter stress tensor is the anisotropic minimum-dissipation (AMD) model [Rozema et al., Phys. Fluids 27, 085107 (2015), 10.1063/1.4928700], which has many desirable properties. It is more cost effective than the dynamic Smagorinsky model, it appropriately switches off in laminar and transitional flows, and it is consistent with the exact subfilter stress tensor on both isotropic and anisotropic grids. In this study, an extension of this approach to modeling the subfilter scalar flux is proposed. The performance of the AMD model is tested in the simulation of a high-Reynolds-number rough-wall boundary-layer flow with a constant and uniform surface scalar flux. The simulation results obtained from the AMD model show good agreement with well-established empirical correlations and theoretical predictions of the resolved flow statistics. In particular, the AMD model is capable of accurately predicting the expected surface-layer similarity profiles and power spectra for both velocity and scalar concentration.
On the prior dependence of constraints on the tensor-to-scalar ratio
Cortês, Marina; Liddle, Andrew R.; Parkinson, David E-mail: a.liddle@sussex.ac.uk
2011-09-01
We investigate the prior dependence of constraints on cosmic tensor perturbations. Commonly imposed is the strong prior of the single-field inflationary consistency equation, relating the tensor spectral index n{sub T} to the tensor-to-scalar ratio r. Dropping it leads to significantly different constraints on n{sub T}, with both positive and negative values allowed with comparable likelihood, and substantially increases the upper limit on r on scales k = 0.01 Mpc{sup -1} to 0.05 Mpc{sup -1}, by a factor of ten or more. Even if the consistency equation is adopted, a uniform prior on r on one scale does not correspond to a uniform one on another; constraints therefore depend on the pivot scale chosen. We assess the size of this effect and determine the optimal scale for constraining the tensor amplitude, both with and without the consistency relation.
The glueball among the light scalar mesons
NASA Astrophysics Data System (ADS)
Minkowski, Peter; Ochs, Wolfgang
2003-06-01
In our phenomenological analysis of the spectroscopy of light scalar mesons we do not find compelling evidence for the existence of the low mass κ(900) or σ(600) states nor for ƒ 0(1370) as single resonance. If the ƒ 0(980) and and ƒ 0(1500) are taken as members of the q overlineq nonet there remains a broad object formed by ƒ 0(400 - 1200) and ƒ 0(1370) which is a glueball candidate gb(1000).
Scattering matrix theory for stochastic scalar fields.
Korotkova, Olga; Wolf, Emil
2007-05-01
We consider scattering of stochastic scalar fields on deterministic as well as on random media, occupying a finite domain. The scattering is characterized by a generalized scattering matrix which transforms the angular correlation function of the incident field into the angular correlation function of the scattered field. Within the accuracy of the first Born approximation this matrix can be expressed in a simple manner in terms of the scattering potential of the scatterer. Apart from determining the angular distribution of the spectral intensity of the scattered field, the scattering matrix makes it possible also to determine the changes in the state of coherence of the field produced on scattering.
Scalar resonances in axially symmetric spacetimes
NASA Astrophysics Data System (ADS)
Ranea-Sandoval, Ignacio F.; Vucetich, Héctor
2015-03-01
We study properties of resonant solutions to the scalar wave equation in several axially symmetric spacetimes. We prove that nonaxial resonant modes do not exist neither in the Lanczos dust cylinder, the extreme (2 + 1) dimensional Bañados-Taitelboim-Zanelli (BTZ) spacetime nor in a class of simple rotating wormhole solutions. Moreover, we find unstable solutions to the wave equation in the Lanczos dust cylinder and in the r2 < 0 region of the extreme (2 + 1) dimensional BTZ spacetime, two solutions that possess closed timelike curves. Similarities with previous results obtained for the Kerr spacetime are explored.
Study of Several Potentials as Scalar Field Dark Matter Candidates
Matos, Tonatiuh; Vazquez-Gonzalez, Alberto; Magan a, Juan
2008-12-04
In this work we study several scalar field potentials as a plausible candidate to be the dark matter in the universe. The main idea is the following; if the scalar field is an ultralight boson particle, it condensates like a Bose-Einstein system at very early times and forms the basic structure of the Universe. Real scalar fields collapse in equilibrium configurations which oscillate in space-time (oscillatons). The cosmological behavior of the field equations are solved using the dynamical system formalism. We use the current cosmological parameters as constraints for the free parameters of the scalar field potentials. We are able to reproduce very well the cosmological predictions of the standard {lambda}CDM model with some scalar field potentials. Therefore, scalar field dark matter seems to be a good alternative to be the nature of the dark matter of the universe.
Interactions between uniformly magnetized spheres
NASA Astrophysics Data System (ADS)
Edwards, Boyd F.; Riffe, D. M.; Ji, Jeong-Young; Booth, William A.
2017-02-01
We use simple symmetry arguments suitable for undergraduate students to demonstrate that the magnetic energy, forces, and torques between two uniformly magnetized spheres are identical to those between two point magnetic dipoles. These arguments exploit the equivalence of the field outside of a uniformly magnetized sphere with that of a point magnetic dipole, and pertain to spheres of arbitrary sizes, positions, and magnetizations. The point dipole/sphere equivalence for magnetic interactions may be useful in teaching and research, where dipolar approximations for uniformly magnetized spheres can now be considered to be exact. The work was originally motivated by interest in the interactions between collections of small neodymium magnetic spheres used as desk toys.
Hohenberg-Kohn theorems in electrostatic and uniform magnetostatic fields
Pan, Xiao-Yin; Sahni, Viraht
2015-11-07
The Hohenberg-Kohn (HK) theorems of bijectivity between the external scalar potential and the gauge invariant nondegenerate ground state density, and the consequent Euler variational principle for the density, are proved for arbitrary electrostatic field and the constraint of fixed electron number. The HK theorems are generalized for spinless electrons to the added presence of an external uniform magnetostatic field by introducing the new constraint of fixed canonical orbital angular momentum. Thereby, a bijective relationship between the external scalar and vector potentials, and the gauge invariant nondegenerate ground state density and physical current density, is proved. A corresponding Euler variational principle in terms of these densities is also developed. These theorems are further generalized to electrons with spin by imposing the added constraint of fixed canonical orbital and spin angular momenta. The proofs differ from the original HK proof and explicitly account for the many-to-one relationship between the potentials and the nondegenerate ground state wave function. A Percus-Levy-Lieb constrained-search proof expanding the domain of validity to N-representable functions, and to degenerate states, again for fixed electron number and angular momentum, is also provided.
Dynamical scalar hair formation around a Schwarzschild black hole
NASA Astrophysics Data System (ADS)
Benkel, Robert; Sotiriou, Thomas P.; Witek, Helvi
2016-12-01
Scalar fields coupled to the Gauss-Bonnet invariant evade the known no-hair theorems and have nontrivial configurations around black holes. We focus on a scalar field that couples linearly to the Gauss-Bonnet invariant and hence exhibits shift symmetry. We study its dynamical evolution and the formation of scalar hair in a Schwarzschild background. We show that the evolution eventually settles to the known static hairy solutions in the appropriate limit.
Scalar dissipation rate statistics in turbulent swirling jets
NASA Astrophysics Data System (ADS)
Stetsyuk, V.; Soulopoulos, N.; Hardalupas, Y.; Taylor, A. M. K. P.
2016-07-01
The scalar dissipation rate statistics were measured in an isothermal flow formed by discharging a central jet in an annular stream of swirling air flow. This is a typical geometry used in swirl-stabilised burners, where the central jet is the fuel. The flow Reynolds number was 29 000, based on the area-averaged velocity of 8.46 m/s at the exit and the diameter of 50.8 mm. The scalar dissipation rate and its statistics were computed from two-dimensional imaging of the mixture fraction fields obtained with planar laser induced fluorescence of acetone. Three swirl numbers, S, of 0.3, 0.58, and 1.07 of the annular swirling stream were considered. The influence of the swirl number on scalar mixing, unconditional, and conditional scalar dissipation rate statistics were quantified. A procedure, based on a Wiener filter approach, was used to de-noise the raw mixture fraction images. The filtering errors on the scalar dissipation rate measurements were up to 15%, depending on downstream positions from the burner exit. The maximum of instantaneous scalar dissipation rate was found to be up to 35 s-1, while the mean dissipation rate was 10 times smaller. The probability density functions of the logarithm of the scalar dissipation rate fluctuations were found to be slightly negatively skewed at low swirl numbers and almost symmetrical when the swirl number increased. The assumption of statistical independence between the scalar and its dissipation rate was valid for higher swirl numbers at locations with low scalar fluctuations and less valid for low swirl numbers. The deviations from the assumption of statistical independence were quantified. The conditional mean of the scalar dissipation rate, the standard deviation of the scalar dissipation rate fluctuations, the weighted probability of occurrence of the mean conditional scalar dissipation rate, and the conditional probability are reported.
Black hole accretion discs and screened scalar hair
NASA Astrophysics Data System (ADS)
Davis, Anne-Christine; Gregory, Ruth; Jha, Rahul
2016-10-01
We present a novel way to investigate scalar field profiles around black holes with an accretion disc for a range of models where the Compton wavelength of the scalar is large compared to other length scales. By analysing the problem in ``Weyl" coordinates, we are able to calculate the scalar profiles for accretion discs in the static Schwarzschild, as well as rotating Kerr, black holes. We comment on observational effects.
Massive basketball diagram for a thermal scalar field theory
NASA Astrophysics Data System (ADS)
Andersen, Jens O.; Braaten, Eric; Strickland, Michael
2000-08-01
The ``basketball diagram'' is a three-loop vacuum diagram for a scalar field theory that cannot be expressed in terms of one-loop diagrams. We calculate this diagram for a massive scalar field at nonzero temperature, reducing it to expressions involving three-dimensional integrals that can be easily evaluated numerically. We use this result to calculate the free energy for a massive scalar field with a φ4 interaction to three-loop order.
B meson decays into charmless pseudoscalar scalar mesons
Delepine, D.; Lucio M, J. L.; Ramirez, Carlos A.; Mendoza S, J. A.
2007-06-19
The nonleptonic weak decays of meson B into a scalar and pseudoscalar meson are studied. The scalar mesons under consideration are {sigma} (or f0(600)), f0(980), a0(980) and K{sub 0}{sup *}(1430). We calculate the Branching ratios in the Naive Factorization approximation. Scalars are assumed to be qq-bar bounded sates, but an estimation can be obtained in the case they are four bounded states.
Designing divertor targets for uniform power load
NASA Astrophysics Data System (ADS)
Dekeyser, W.; Reiter, D.; Baelmans, M.
2015-08-01
Divertor design for next step fusion reactors heavily relies on 2D edge plasma modeling with codes as e.g. B2-EIRENE. While these codes are typically used in a design-by-analysis approach, in previous work we have shown that divertor design can alternatively be posed as a mathematical optimization problem, and solved very efficiently using adjoint methods adapted from computational aerodynamics. This approach has been applied successfully to divertor target shape design for more uniform power load. In this paper, the concept is further extended to include all contributions to the target power load, with particular focus on radiation. In a simplified test problem, we show the potential benefits of fully including the radiation load in the design cycle as compared to only assessing this load in a post-processing step.
k Spectrum of Passive Scalars in Lagrangian Chaotic Fluid Flows
NASA Astrophysics Data System (ADS)
Antonsen, Thomas M., Jr.; Fan, Zhencan Frank; Ott, Edward
1995-08-01
An eikonal-type description for the evolution of k spectra of passive scalars convected in a Lagrangian chaotic fluid flow is shown to accurately reproduce results from orders of magnitude more time consuming computations based on the full passive scalar partial differential equation. Furthermore, the validity of the reduced description, combined with concepts from chaotic dynamics, allows new theoretical results on passive scalar k spectra to be obtained. Illustrative applications are presented to long-time passive scalar decay, and to Batchelor's law k spectrum and its diffusive cutoff.
Self-interacting complex scalar field as dark matter
Briscese, F.
2011-10-14
We study the viability of a a complex scalar field {chi} with self-interacting potential V = m{sub 0}{sup {chi}/}2|{chi}|{sup 2}+h|{chi}|{sup 4} as dark matter. Due to the self interaction, the scalar field forms a Bose-Einstein condensate at early times that represents dark matter. The self interaction is also responsible of quantum corrections to the scalar field mass that naturally give the dark matter domination at late times without any fine tuning on the energy density of the scalar field at early times. Finally the properties of the spherically symmetric dark matter halos are also discussed.
Kerr-Newman black holes with scalar hair
NASA Astrophysics Data System (ADS)
Delgado, Jorge F. M.; Herdeiro, Carlos A. R.; Radu, Eugen; Rúnarsson, Helgi
2016-10-01
We construct electrically charged Kerr black holes (BHs) with scalar hair. Firstly, we take an uncharged scalar field, interacting with the electromagnetic field only indirectly, via the background metric. The corresponding family of solutions, dubbed Kerr-Newman BHs with ungauged scalar hair, reduces to (a sub-family of) Kerr-Newman BHs in the limit of vanishing scalar hair and to uncharged rotating boson stars in the limit of vanishing horizon. It adds one extra parameter to the uncharged solutions: the total electric charge. This leading electromagnetic multipole moment is unaffected by the scalar hair and can be computed by using Gauss's law on any closed 2-surface surrounding (a spatial section of) the event horizon. By contrast, the first sub-leading electromagnetic multipole - the magnetic dipole moment -, gets suppressed by the scalar hair, such that the gyromagnetic ratio is always smaller than the Kerr-Newman value (g = 2). Secondly, we consider a gauged scalar field and obtain a family of Kerr-Newman BHs with gauged scalar hair. The electrically charged scalar field now stores a part of the total electric charge, which can only be computed by applying Gauss' law at spatial infinity and introduces a new solitonic limit - electrically charged rotating boson stars. In both cases, we analyze some physical properties of the solutions.
Structure scalars and evolution equations in f( G) cosmology
NASA Astrophysics Data System (ADS)
Sharif, M.; Fatima, H. Ismat
2017-01-01
In this paper, we study the dynamics of self-gravitating fluid using structure scalars for spherical geometry in the context of f( G) cosmology. We construct structure scalars through orthogonal splitting of the Riemann tensor and deduce a complete set of equations governing the evolution of dissipative anisotropic fluid in terms of these scalars. We explore different causes of density inhomogeneity which turns out to be a necessary condition for viable models. It is explicitly shown that anisotropic inhomogeneous static spherically symmetric solutions can be expressed in terms of these scalar functions.
Scalar self-interactions loosen constraints from fifth force searches
Gubser, Steven S.; Khoury, Justin
2004-11-15
The mass of a scalar field mediating a fifth force is tightly constrained by experiments. We show, however, that adding a quartic self-interaction for such a scalar makes most tests much less constraining: the nonlinear equation of motion masks the coupling of the scalar to matter through the chameleon mechanism. We discuss consequences for fifth force experiments. In particular, we find that, with quartic coupling of order unity, a gravitational strength interaction with matter is allowed by current constraints. We show that our chameleon scalar field results in experimental signatures that could be detected through modest improvements of current laboratory set-ups.
Invariant slow-roll parameters in scalar-tensor theories
NASA Astrophysics Data System (ADS)
Kuusk, Piret; Rünkla, Mihkel; Saal, Margus; Vilson, Ott
2016-10-01
A general scalar-tensor theory can be formulated in different parametrizations that are related by a conformal rescaling of the metric and a scalar field redefinition. We compare formulations of slow-roll regimes in the Einstein and Jordan frames using quantities that are invariant under the conformal rescaling of the metric and transform as scalar functions under the reparametrization of the scalar field. By comparing spectral indices, calculated up to second order, we find that the frames are equivalent up to this order, due to the underlying assumptions.
Scalar field theory on noncommutative Snyder spacetime
Battisti, Marco Valerio; Meljanac, Stjepan
2010-07-15
We construct a scalar field theory on the Snyder noncommutative space-time. The symmetry underlying the Snyder geometry is deformed at the co-algebraic level only, while its Poincare algebra is undeformed. The Lorentz sector is undeformed at both the algebraic and co-algebraic level, but the coproduct for momenta (defining the star product) is non-coassociative. The Snyder-deformed Poincare group is described by a non-coassociative Hopf algebra. The definition of the interacting theory in terms of a nonassociative star product is thus questionable. We avoid the nonassociativity by the use of a space-time picture based on the concept of the realization of a noncommutative geometry. The two main results we obtain are (i) the generic (namely, for any realization) construction of the co-algebraic sector underlying the Snyder geometry and (ii) the definition of a nonambiguous self-interacting scalar field theory on this space-time. The first-order correction terms of the corresponding Lagrangian are explicitly computed. The possibility to derive Noether charges for the Snyder space-time is also discussed.
Searching for Chameleon-Like Scalar Fields
NASA Astrophysics Data System (ADS)
Levshakov, S. A.; Molaro, P.; Kozlov, M. G.; Lapinov, A. V.; Henkel, Ch.; Reimersi, D.; Sakai, T.; Agafonova, I. I.
Using the 32-m Medicina, 45-m Nobeyama, and 100-m Effelsberg telescopes we found a statistically significant velocity offset ΔV ≈ 27 ± 3 m s - 1 (1σ) between the inversion transition in NH3(1,1) and low-J rotational transitions in N2H + (1-0) and HC3N(2-1) arising in cold and dense molecular cores in the Milky Way. Systematic shifts of the line centers caused by turbulent motions and velocity gradients, possible non-thermal hyperfine structure populations, pressure and optical depth effects are shown to be lower than or about 1 m s - 1 and thus can be neglected in the total error budget. The reproducibility of ΔV at the same facility (Effelsberg telescope) on a year-to-year basis is found to be very good. Since the frequencies of the inversion and rotational transitions have different sensitivities to variations in μ ≡ m e / m p, the revealed non-zero ΔV may imply that μ changes when measured at high (terrestrial) and low (interstellar) matter densities as predicted by chameleon-like scalar field models - candidates to the dark energy carrier. Thus we are testing whether scalar field models have chameleon-type interactions with ordinary matter. The measured velocity offset corresponds to the ratio Δμ / μ ≡ (μspace - μlab) / μlab of (26 ± 3) ×10 - 9 (1σ).
SuperDARN scalar radar equations
NASA Astrophysics Data System (ADS)
Berngardt, O. I.; Kutelev, K. A.; Potekhin, A. P.
2016-10-01
The quadratic scalar radar equations are obtained for Super Dual Auroral Radar Network (SuperDARN) radars that are suitable for the analysis and interpretation of experimental data. The paper is based on a unified approach to obtaining the radar equations for the monostatic and bistatic sounding with the use of Hamiltonian optics and ray representation of scalar Green's function and without taking into account the polarization effects. The radar equation obtained is the sum of several terms corresponding to the propagation and scattering over the different kinds of trajectories, depending on their smoothness and the possibility of reflection from the ionosphere. It is shown that the monostatic sounding in the media with significant refraction, unlike the case of refraction-free media, should be analyzed as a combination of monostatic and bistatic scattering. This leads to strong dependence of scattering amplitude on background ionospheric density due to focusing mechanism and appearance of new (bistatic) areas of effective scattering with significant distortion of the scattered signal spectrum. Selective properties of the scattering have been demonstrated as well.
An adaptive multiresolution gradient-augmented level set method for advection problems
NASA Astrophysics Data System (ADS)
Schneider, Kai; Kolomenskiy, Dmitry; Nave, Jean-Chtristophe
2014-11-01
Advection problems are encountered in many applications, such as transport of passive scalars modeling pollution or mixing in chemical engineering. In some problems, the solution develops small-scale features localized in a part of the computational domain. If the location of these features changes in time, the efficiency of the numerical method can be significantly improved by adapting the partition dynamically to the solution. We present a space-time adaptive scheme for solving advection equations in two space dimensions. The third order accurate gradient-augmented level set method using a semi-Lagrangian formulation with backward time integration is coupled with a point value multiresolution analysis using Hermite interpolation. Thus locally refined dyadic spatial grids are introduced which are efficiently implemented with dynamic quad-tree data structures. For adaptive time integration, an embedded Runge-Kutta method is employed. The precision of the new fully adaptive method is analysed and speed up of CPU time and memory compression with respect to the uniform grid discretization are reported.
School Uniforms: Guidelines for Principals.
ERIC Educational Resources Information Center
Essex, Nathan L.
2001-01-01
Principals desiring to develop a school-uniform policy should involve parents, teachers, community leaders, and student representatives; beware restrictions on religious and political expression; provide flexibility and assistance for low-income families; implement a pilot program; align the policy with school-safety issues; and consider legal…
Uniform peanut performance test 2015
Technology Transfer Automated Retrieval System (TEKTRAN)
The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, 2 controls and 13 entries were evaluated at 9 locations....
Uniform peanut performance test 2013
Technology Transfer Automated Retrieval System (TEKTRAN)
The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, 2 controls and 13 entries were evaluated at 9 locations....
Uniform Peanut Performance Tests 2012
Technology Transfer Automated Retrieval System (TEKTRAN)
The Uniform Peanut Performance Tests (UPPT) were established in 1973 through an informal arrangement among cooperating scientists involving seven major peanut-producing states. In 1995, plant material transfer agreements were also accepted among all cooperators in the UPPT. The year 2012 completed...
ERIC Educational Resources Information Center
Paliokas, Kathleen L.; And Others
1996-01-01
Public school uniforms are a recent development. Legal trends suggest that the courts are willing to defer to school authorities regarding dress codes--provided a clear link is established between the dress regulations and furtherance of the educational mission. Lists a range of options for a dress-code policy and how each of the available options…
No-scalar-hair theorem for spherically symmetric reflecting stars
NASA Astrophysics Data System (ADS)
Hod, Shahar
2016-11-01
It is proved that spherically symmetric compact reflecting objects cannot support static bound-state configurations made of scalar fields whose self-interaction potential V (ψ2) is a monotonically increasing function of its argument. Our theorem rules out, in particular, the existence of massive scalar hair outside the surface of a spherically symmetric compact reflecting star.
Scalar clouds in charged stringy black hole-mirror system
NASA Astrophysics Data System (ADS)
Li, Ran; Zhao, Junkun; Wu, Xinghua; Zhang, Yanming
2015-04-01
It was reported that massive scalar fields can form bound states around Kerr black holes (Herdeiro and Radu, Phys. Rev. Lett. 112:221101, 2014). These bound states are called scalar clouds; they have a real frequency , where is the azimuthal index and is the horizon angular velocity of Kerr black hole. In this paper, we study scalar clouds in a spherically symmetric background, i.e. charged stringy black holes, with the mirror-like boundary condition. These bound states satisfy the superradiant critical frequency condition for a charged scalar field, where is the charge of the scalar field, and is the horizon's electrostatic potential. We show that, for the specific set of black hole and scalar field parameters, the clouds are only possible for specific mirror locations . It is shown that analytical results of the mirror location for the clouds perfectly coincide with numerical results in the regime. We also show that the scalar clouds are also possible when the mirror locations are close to the horizon. Finally, we provide an analytical calculation of the specific mirror locations for the scalar clouds in the regime.
Renormalization group analysis in nonrelativistic QCD for colored scalars
Hoang, Andre H.; Ruiz-Femenia, Pedro
2006-01-01
The velocity nonrelativistic QCD Lagrangian for colored heavy scalar fields in the fundamental representation of QCD and the renormalization group analysis of the corresponding operators are presented. The results are an important ingredient for renormalization group improved computations of scalar-antiscalar bound state energies and production rates at next-to-next-to-leading-logarithmic (NNLL) order.
A Comparison of Scalar and Root Harmonic Aural Perception Techniques.
ERIC Educational Resources Information Center
Alvarez, Manuel
1980-01-01
Seventy-two junior high general music students were taught to identify primary harmonic functions by using either a scalar or root harmonic aural perception technique. Students were then tested with an aural identification battery. The scalar technique appeared to be the more effective procedure for teaching primary harmonic functions. (Author/SJL)
A geometrical approach to degenerate scalar-tensor theories
NASA Astrophysics Data System (ADS)
Chagoya, Javier; Tasinato, Gianmassimo
2017-02-01
Degenerate scalar-tensor theories are recently proposed covariant theories of gravity coupled with a scalar field. Despite being characterised by higher order equations of motion, they do not propagate more than three degrees of freedom, thanks to the existence of constraints. We discuss a geometrical approach to degenerate scalar-tensor systems, and analyse its consequences. We show that some of these theories emerge as a certain limit of DBI Galileons. In absence of dynamical gravity, these systems correspond to scalar theories enjoying a symmetry which is different from Galileon invariance. The scalar theories have however problems concerning the propagation of fluctuations around a time dependent background. These issues can be tamed by breaking the symmetry by hand, or by minimally coupling the scalar with dynamical gravity in a way that leads to degenerate scalar-tensor systems. We show that distinct theories can be connected by a relation which generalizes Galileon duality, in certain cases also when gravity is dynamical. We discuss some implications of our results in concrete examples. Our findings can be helpful for assessing stability properties and understanding the non-perturbative structure of systems based on degenerate scalar-tensor systems.
Bose-Einstein condensates from scalar field dark matter
Urena-Lopez, L. Arturo
2010-12-07
We review the properties of astrophysical and cosmological relevance that may arise from the bosonic nature of scalar field dark matter models. The key property is the formation of Bose-Einstein condensates, but we also consider the presence of non-empty excited states that may be relevant for the description of scalar field galaxy halos and the properties of rotation curves.
46 CFR 310.11 - Cadet uniforms.
Code of Federal Regulations, 2010 CFR
2010-10-01
... for State, Territorial or Regional Maritime Academies and Colleges § 310.11 Cadet uniforms. Cadet uniforms shall be supplied at the school in accordance with the uniform regulations of the School. Those... 46 Shipping 8 2010-10-01 2010-10-01 false Cadet uniforms. 310.11 Section 310.11 Shipping...
46 CFR 310.11 - Cadet uniforms.
Code of Federal Regulations, 2011 CFR
2011-10-01
... for State, Territorial or Regional Maritime Academies and Colleges § 310.11 Cadet uniforms. Cadet uniforms shall be supplied at the school in accordance with the uniform regulations of the School. Those... 46 Shipping 8 2011-10-01 2011-10-01 false Cadet uniforms. 310.11 Section 310.11 Shipping...
46 CFR 310.11 - Cadet uniforms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... for State, Territorial or Regional Maritime Academies and Colleges § 310.11 Cadet uniforms. Cadet uniforms shall be supplied at the school in accordance with the uniform regulations of the School. Those... 46 Shipping 8 2013-10-01 2013-10-01 false Cadet uniforms. 310.11 Section 310.11 Shipping...
46 CFR 310.11 - Cadet uniforms.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for State, Territorial or Regional Maritime Academies and Colleges § 310.11 Cadet uniforms. Cadet uniforms shall be supplied at the school in accordance with the uniform regulations of the School. Those... 46 Shipping 8 2014-10-01 2014-10-01 false Cadet uniforms. 310.11 Section 310.11 Shipping...
46 CFR 310.11 - Cadet uniforms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... for State, Territorial or Regional Maritime Academies and Colleges § 310.11 Cadet uniforms. Cadet uniforms shall be supplied at the school in accordance with the uniform regulations of the School. Those... 46 Shipping 8 2012-10-01 2012-10-01 false Cadet uniforms. 310.11 Section 310.11 Shipping...
Small Arms: Treated Uniforms for Personal Protection
Technology Transfer Automated Retrieval System (TEKTRAN)
Permethrin-treatment of field-worn U.S. Military uniforms has been standard practice since 1991. The uniform fabric composition has changed significantly from 100% cotton to 50:50 nylon:cotton Battle Dress Uniforms (BDUs), to 50:50 nylon:cotton Army Combat Uniforms (ACUs) with wrinkle-free finish, a...
Gastric cryptosporidiosis in freshwater angelfish (Pterophyllum scalare)
Murphy, B.G.; Bradway, D.; Walsh, T.; Sanders, G.E.; Snekvik, K.
2009-01-01
A freshwater angelfish (Pterophyllum scalare) hatchery experienced variable levels of emaciation, poor growth rates, swollen coelomic cavities, anorexia, listlessness, and increased mortality within their fish. Multiple chemotherapeutic trials had been attempted without success. In affected fish, large numbers of protozoa were identified both histologically and ultrastructurally associated with the gastric mucosa. The youngest cohort of parasitized fish was the most severely affected and demonstrated the greatest morbidity and mortality. The protozoa were morphologically most consistent with Cryptosporidium. All of the protozoan life stages were identified ultrastructurally and protozoal genomic DNA was isolated from parasitized tissue viscera and sequenced. Histological, ultrastructural, genetic, and phylogenetic analyses confirmed this protozoal organism to be a novel species of Cryptosporidium.
Free □ k scalar conformal field theory
NASA Astrophysics Data System (ADS)
Brust, Christopher; Hinterbichler, Kurt
2017-02-01
We consider the generalizations of the free U( N ) and O( N ) scalar conformal field theories to actions with higher powers of the Laplacian □ k , in general dimension d. We study the spectra, Verma modules, anomalies and OPE of these theories. We argue that in certain d and k, the spectrum contains zero norm operators which are both primary and descendant, as well as extension operators which are neither primary nor descendant. In addition, we argue that in even dimensions d ≤ 2 k, there are well-defined operator algebras which are related to the □ k theories and are novel in that they have a finite number of single-trace states.
Light scalar susceptibilities and isospin breaking
Andres, R. Torres; Nicola, A. Gomez
2010-12-28
Making a thermal analysis in the context of NLO SU(3) Chiral Perturbation Theory we see that isospin breaking (IB) corrections (both electromagnetic and QCD ones) to quark condensates are of order O(e{sup 2}) and O({epsilon}), with {epsilon} the {pi}{sup 0}-{eta} mixing angle. However the combination {chi}{sub uu}-{chi}{sub ud} of flavour breaking susceptibilities, which vanishes in the isospin limit and can be identified essentially with the connected susceptibility, has an order O(1) contribution enhanced with T because of the {pi}{sup 0}-{eta}) mixing. Finally we present a thermal sum rule that relates quark condensate ratios and the light scalar susceptibility without IB, {chi}(T)-{chi}(0).
Electromagnetic fields with vanishing scalar invariants
NASA Astrophysics Data System (ADS)
Ortaggio, Marcello; Pravda, Vojtěch
2016-06-01
We determine the class of p-forms {\\boldsymbol{F}} that possess vanishing scalar invariants (VSIs) at arbitrary order in an n-dimensional spacetime. Namely, we prove that {\\boldsymbol{F}} is a VSI if and only if if it is of type N, its multiple null direction {\\boldsymbol{\\ell }} is ‘degenerate Kundt’, and {\\pounds }{\\boldsymbol{\\ell }}{\\boldsymbol{F}}=0. The result is theory-independent. Next, we discuss the special case of Maxwell fields, both at the level of test fields and of the full Einstein-Maxwell equations. These describe electromagnetic non-expanding waves propagating in various Kundt spacetimes. We further point out that a subset of these solutions possesses a universal property, i.e. they also solve (virtually) any generalized (non-linear and with higher derivatives) electrodynamics, possibly also coupled to Einstein’s gravity.
Scalar boundary conditions in Lifshitz spacetimes
NASA Astrophysics Data System (ADS)
Keeler, Cynthia
2014-01-01
We investigate the conditions imposable on a scalar field at the boundary of the so-called Lifshitz spacetime which has been proposed as the dual to Lifshitz field theories. For effective mass squared between -( d + z - 1)2 /4 and z 2 - ( d + z - 1)2 /4, we find a one-parameter choice of boundary condition type. The bottom end of this range corresponds to a Breitenlohner-Freedman bound; below it, the Klein-Gordon operator need not be positive, so we cannot make sense of the dynamics. Above the top end of the range, only one boundary condition type is available; here we expect compact initial data will remain compact in the future.
Reactor for making uniform capsules
NASA Technical Reports Server (NTRS)
Wang, Taylor G. (Inventor); Anikumar, Amrutur V. (Inventor); Lacik, Igor (Inventor)
1999-01-01
The present invention provides a novel reactor for making capsules with uniform membrane. The reactor includes a source for providing a continuous flow of a first liquid through the reactor; a source for delivering a steady stream of drops of a second liquid to the entrance of the reactor; a main tube portion having at least one loop, and an exit opening, where the exit opening is at a height substantially equal to the entrance. In addition, a method for using the novel reactor is provided. This method involves providing a continuous stream of a first liquid; introducing uniformly-sized drops of the second liquid into the stream of the first liquid; allowing the drops to react in the stream for a pre-determined period of time; and collecting the capsules.
Method for uniformly bending conduits
Dekanich, S.J.
1984-04-27
The present invention is directed to a method for bending metal tubing through various radii while maintaining uniform cross section of the tubing. The present invention is practical by filling the tubing to a sufficient level with water, freezing the water to ice and bending the ice-filled tubing in a cooled die to the desired radius. The use of the ice as a filler material provides uniform cross-sectional bends of the tubing and upon removal of the ice provides an uncontaminated interior of the tubing which will enable it to be used in its intended application without encountering residual contaminants in the tubing due to the presence of the filler material.
Interactive Reference Point Procedure Based on the Conic Scalarizing Function
2014-01-01
In multiobjective optimization methods, multiple conflicting objectives are typically converted into a single objective optimization problem with the help of scalarizing functions. The conic scalarizing function is a general characterization of Benson proper efficient solutions of non-convex multiobjective problems in terms of saddle points of scalar Lagrangian functions. This approach preserves convexity. The conic scalarizing function, as a part of a posteriori or a priori methods, has successfully been applied to several real-life problems. In this paper, we propose a conic scalarizing function based interactive reference point procedure where the decision maker actively takes part in the solution process and directs the search according to her or his preferences. An algorithmic framework for the interactive solution of multiple objective optimization problems is presented and is utilized for solving some illustrative examples. PMID:24723795
Involvement of prefrontal cortex in scalar implicatures: evidence from magnetoencephalography
Politzer-Ahles, Stephen; Gwilliams, Laura
2015-01-01
The present study investigated the neural correlates of the realisation of scalar inferences, i.e., the interpretation of some as meaning some but not all. We used magnetoencephalography, which has high temporal resolution, to measure neural activity while participants heard stories that included the scalar inference trigger some in contexts that either provide strong cues for a scalar inference or provide weaker cues. The middle portion of the lateral prefrontal cortex (Brodmann area 46) showed an increased response to some in contexts with fewer cues to the inference, suggesting that this condition elicited greater effort. While the results are not predicted by traditional all-or-nothing accounts of scalar inferencing that assume the process is always automatic or always effortful, they are consistent with more recent gradient accounts which predict that the speed and effort of scalar inferences is strongly modulated by numerous contextual factors. PMID:26247054
Phenomenology of a pseudo-scalar inflaton: naturally large nongaussianity
Barnaby, Neil; Namba, Ryo; Peloso, Marco E-mail: namba@physics.umn.edu
2011-04-01
Many controlled realizations of chaotic inflation employ pseudo-scalar axions. Pseudo-scalars φ are naturally coupled to gauge fields through cφF F-tilde . In the presence of this coupling, gauge field quanta are copiously produced by the rolling inflaton. The produced gauge quanta, in turn, source inflaton fluctuations via inverse decay. These new cosmological perturbations add incoherently with the ''vacuum'' perturbations, and are highly nongaussian. This provides a natural mechanism to generate large nongaussianity in single or multi field slow-roll inflation. The resulting phenomenological signatures are highly distinctive: large nongaussianity of (nearly) equilateral shape, in addition to detectably large values of both the scalar spectral tilt and tensor-to-scalar ratio (both being typical of large field inflation). The WMAP bound on nongaussianity implies that the coupling c of the pseudo-scalar inflaton to any gauge field must be smaller than about 10{sup 2} M{sub p}{sup −1}.
Gravitational collapse of massless scalar field in f (R ) gravity
NASA Astrophysics Data System (ADS)
Zhang, Cheng-Yong; Tang, Zi-Yu; Wang, Bin
2016-11-01
We study the spherically symmetric gravitational collapse of massless scalar matter field in asymptotic flat spacetime in the Starobinsky R2 gravity, one specific model in the f (R ) gravity. In the Einstein frame of f (R ) gravity, an additional scalar field arises due to the conformal transformation. We find that in addition to the usual competition between gravitational energy and kinetic energy in the process of gravitational collapse, the new scalar field brought by the conformal transformation adds one more competing force in the dynamical system. The dynamical competition can be controlled by tuning the amplitudes of the initial perturbations of the new scalar field and the matter field. To understand the physical reasons behind these phenomena, we analyze the gravitational potential behavior and calculate the Ricci scalar at center with the change of initial amplitudes of perturbations. We find rich physics on the formation of black holes through gravitational collapse in f (R ) gravity.
Interactive reference point procedure based on the conic scalarizing function.
Ustun, Ozden
2014-01-01
In multiobjective optimization methods, multiple conflicting objectives are typically converted into a single objective optimization problem with the help of scalarizing functions. The conic scalarizing function is a general characterization of Benson proper efficient solutions of non-convex multiobjective problems in terms of saddle points of scalar Lagrangian functions. This approach preserves convexity. The conic scalarizing function, as a part of a posteriori or a priori methods, has successfully been applied to several real-life problems. In this paper, we propose a conic scalarizing function based interactive reference point procedure where the decision maker actively takes part in the solution process and directs the search according to her or his preferences. An algorithmic framework for the interactive solution of multiple objective optimization problems is presented and is utilized for solving some illustrative examples.
Uniform batch processing using microwaves
NASA Technical Reports Server (NTRS)
Barmatz, Martin B. (Inventor); Jackson, Henry W. (Inventor)
2000-01-01
A microwave oven and microwave heating method generates microwaves within a cavity in a predetermined mode such that there is a known region of uniform microwave field. Samples placed in the region will then be heated in a relatively identical manner. Where perturbations induced by the samples are significant, samples are arranged in a symmetrical distribution so that the cumulative perturbation at each sample location is the same.
Blue, C.A.; Sikka, V.K.; Chun, Jung-Hoon; Ando, T.
1997-04-01
The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets that can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.
Entanglement dynamics for uniformly accelerated two-level atoms
NASA Astrophysics Data System (ADS)
Hu, Jiawei; Yu, Hongwei
2015-01-01
We study, in the paradigm of open quantum systems, the entanglement dynamics of two uniformly accelerated atoms with the same acceleration perpendicular to the separation. The two-atom system is treated as an open system coupled with a bath of fluctuating massless scalar fields in the Minkowski vacuum, and the master equation that governs its evolution is derived. It has been found that, for accelerated atoms with a nonvanishing separation, entanglement sudden death is a general feature when the initial state is entangled, while for those in a separable initial state, entanglement sudden birth only happens for atoms with an appropriate interatomic separation and sufficiently small acceleration. Remarkably, accelerated atoms can get entangled in certain circumstances while the inertial ones in the Minkowski vacuum cannot. A comparison between the results of accelerated atoms and those of static ones in a thermal bath shows that uniformly accelerated atoms exhibit features distinct from those immersed in a thermal bath at the Unruh temperature in terms of entanglement dynamics.
The Impact of Source Distribution on Scalar Transport over Forested Hills
NASA Astrophysics Data System (ADS)
Ross, Andrew N.; Harman, Ian N.
2015-08-01
Numerical simulations of neutral flow over a two-dimensional, isolated, forested ridge are conducted to study the effects of scalar source distribution on scalar concentrations and fluxes over forested hills. Three different constant-flux sources are considered that span a range of idealized but ecologically important source distributions: a source at the ground, one uniformly distributed through the canopy, and one decaying with depth in the canopy. A fourth source type, where the in-canopy source depends on both the wind speed and the difference in concentration between the canopy and a reference concentration on the leaf, designed to mimic deposition, is also considered. The simulations show that the topographically-induced perturbations to the scalar concentration and fluxes are quantitatively dependent on the source distribution. The net impact is a balance of different processes affecting both advection and turbulent mixing, and can be significant even for moderate topography. Sources that have significant input in the deep canopy or at the ground exhibit a larger magnitude advection and turbulent flux-divergence terms in the canopy. The flows have identical velocity fields and so the differences are entirely due to the different tracer concentration fields resulting from the different source distributions. These in-canopy differences lead to larger spatial variations in above-canopy scalar fluxes for sources near the ground compared to cases where the source is predominantly located near the canopy top. Sensitivity tests show that the most significant impacts are often seen near to or slightly downstream of the flow separation or reattachment points within the canopy flow. The qualitative similarities to previous studies using periodic hills suggest that important processes occurring over isolated and periodic hills are not fundamentally different. The work has important implications for the interpretation of flux measurements over forests, even in
NASA Technical Reports Server (NTRS)
Selle, L. C.; Bellan, Josette
2006-01-01
Transitional databases from Direct Numerical Simulation (DNS) of three-dimensional mixing layers for single-phase flows and two-phase flows with evaporation are analyzed and used to examine the typical hypothesis that the scalar dissipation Probability Distribution Function (PDF) may be modeled as a Gaussian. The databases encompass a single-component fuel and four multicomponent fuels, two initial Reynolds numbers (Re), two mass loadings for two-phase flows and two free-stream gas temperatures. Using the DNS calculated moments of the scalar-dissipation PDF, it is shown, consistent with existing experimental information on single-phase flows, that the Gaussian is a modest approximation of the DNS-extracted PDF, particularly poor in the range of the high scalar-dissipation values, which are significant for turbulent reaction rate modeling in non-premixed flows using flamelet models. With the same DNS calculated moments of the scalar-dissipation PDF and making a change of variables, a model of this PDF is proposed in the form of the (beta)-PDF which is shown to approximate much better the DNS-extracted PDF, particularly in the regime of the high scalar-dissipation values. Several types of statistical measures are calculated over the ensemble of the fourteen databases. For each statistical measure, the proposed (beta)-PDF model is shown to be much superior to the Gaussian in approximating the DNS-extracted PDF. Additionally, the agreement between the DNS-extracted PDF and the (beta)-PDF even improves when the comparison is performed for higher initial Re layers, whereas the comparison with the Gaussian is independent of the initial Re values. For two-phase flows, the comparison between the DNS-extracted PDF and the (beta)-PDF also improves with increasing free-stream gas temperature and mass loading. The higher fidelity approximation of the DNS-extracted PDF by the (beta)-PDF with increasing Re, gas temperature and mass loading bodes well for turbulent reaction rate
Christiansen Revisited: Rethinking Quantification of Uniformity in Rainfall Simulator Studies
NASA Astrophysics Data System (ADS)
Green, Daniel; Pattison, Ian
2016-04-01
Rainfall simulators, whether based within a laboratory or field setting are used extensively within a number of fields of research, including plot-scale runoff, infiltration and erosion studies, irrigation and crop management and scaled investigations into urban flooding. Rainfall simulators offer a number of benefits, including the ability to create regulated and repeatable rainfall characteristics (e.g. intensity, duration, drop size distribution and kinetic energy) without relying on unpredictable natural precipitation regimes. Ensuring and quantifying spatially uniform simulated rainfall across the entirety of the plot area is of particular importance to researchers undertaking rainfall simulation. As a result, numerous studies have focused on the quantification and improvement of uniformity values. Several statistical methods for the assessment of rainfall simulator uniformity have been developed. However, the Christiansen Uniformity Coefficient (CUC) suggested by Christiansen (1942) is most frequently used. Despite this, there is no set methodology and researchers can adapt or alter factors such as the quantity, as well as the spacing, distance and location of the measuring beakers used to derive CUC values. Because CUC values are highly sensitive to the resolution of the data, i.e. the number of observations taken, many densely distributed measuring containers subjected to the same experimental conditions may generate a significantly lower CUC value than fewer, more sparsely distributed measuring containers. Thus, the simulated rainfall under a higher resolution sampling method could appear less uniform than when using a coarser resolution sampling method, despite being derived from the same initial rainfall conditions. Expressing entire plot uniformity as a single, simplified percentage value disregards valuable qualitative information about plot uniformity, such as the small-scale spatial distribution of rainfall over the plot surface and whether these
Reaction enhancement of initially distant scalars by Lagrangian coherent structures
Pratt, Kenneth R. Crimaldi, John P.; Meiss, James D.
2015-03-15
Turbulent fluid flows have long been recognized as a superior means of diluting initial concentrations of scalars due to rapid stirring. Conversely, experiments have shown that the structures responsible for this rapid dilution can also aggregate initially distant reactive scalars and thereby greatly enhance reaction rates. Indeed, chaotic flows not only enhance dilution by shearing and stretching but also organize initially distant scalars along transiently attracting regions in the flow. To show the robustness of this phenomenon, a hierarchical set of three numerical flows is used: the periodic wake downstream of a stationary cylinder, a chaotic double gyre flow, and a chaotic, aperiodic flow consisting of interacting Taylor vortices. We demonstrate that Lagrangian coherent structures (LCS), as identified by ridges in finite time Lyapunov exponents, are directly responsible for this coalescence of reactive scalar filaments. When highly concentrated filaments coalesce, reaction rates can be orders of magnitude greater than would be predicted in a well-mixed system. This is further supported by an idealized, analytical model that was developed to quantify the competing effects of scalar dilution and coalescence. Chaotic flows, known for their ability to efficiently dilute scalars, therefore have the competing effect of organizing initially distant scalars along the LCS at timescales shorter than that required for dilution, resulting in reaction enhancement.
Self-accelerating solutions of scalar-tensor gravity
Barenboim, Gabriela; Lykken, Joseph D E-mail: lykken@fnal.gov
2008-03-15
Scalar-tensor gravity is the simplest and best understood modification of general relativity, consisting of a real scalar field coupled directly to the Ricci scalar curvature. Models of this type have self-accelerating solutions. In an example inspired by string dilaton couplings, scalar-tensor gravity coupled to ordinary matter exhibits a de Sitter type expansion, even in the presence of a negative cosmological constant whose magnitude exceeds that of the matter density. This unusual behavior does not require phantoms, ghosts or other exotic sources. More generally, we show that any expansion history can be interpreted as arising partly or entirely from scalar-tensor gravity. To distinguish any quintessence or inflation model from its scalar-tensor variants, we use the fact that scalar-tensor models imply deviations of the post-Newtonian parameters of general relativity and time variation of Newton's gravitational coupling G. We emphasize that next-generation probes of modified GR and the time variation of G are an essential complement to dark energy probes based on luminosity-distance measurements.
Contrasts Between Momentum and Scalar Exchanges Over Very Rough Surfaces
NASA Astrophysics Data System (ADS)
Bou-Zeid, Elie; Li, Qi
2016-11-01
Understanding of the physical processes modulating transport of momentum and scalars over very rough walls is essential in a large range of engineering and environmental applications. Since passive scalars are advected with the flow, broad similarity is expected between momentum and scalar transport. However, unlike momentum, which is dominated by form drag over very rough walls, scalar transport must occur through the viscous exchanges at the solid-fluid interface, which might result in transport dissimilarity. To examine these similarities and differences of momentum and passive scalar exchanges over large three-dimensional roughness elements, a suite of large-eddy simulations is conducted. The turbulent components of the transport of momentum and scalars within the canopy and roughness sublayers are found to be similar. However, strong dissimilarity is noted between the dispersive fluxes. The dispersive components are also found to be a significant fraction of the total fluxes within and below the roughness sublayer. Increasing frontal density induces a general transition in the flow from a rough boundary layer type to a mixed-layer-like type, which is found to have contrasting effects on momentum and scalar transport. This study was funded by the US National Science Foundation's Sustainability Research Network Cooperative Agreement number 1444758 and Water Sustainability and Climate program Grant Number CBET-1058027.
Modified f( R, T) gravity theory and scalar field cosmology
NASA Astrophysics Data System (ADS)
Singh, Vijay; Singh, C. P.
2015-03-01
In this paper, we explore the behaviors of scalar field in modified f( R, T) gravity theory within the framework of a flat Friedmann-Robertson-Walker cosmological model. The universe is assumed to be filled with two non-interacting matter sources, scalar field (normal or phantom) with scalar potential and matter contribution due to f( R, T) action. We first explore a model where the potential is a constant, and the universe evolves as a de Sitter type. This model is compatible with phantom scalar field only which gives fine tuning with the recent observations. The model exhibits a wide variety of early time physical phenomena that eventually behaves like a cosmological constant at late times. The model shows transition from decelerated to accelerated expansion of the universe. We also explore a model where the scalar field potential and the scale factor evolve exponentially as a scalar field. This model is compatible with normal scalar field only and describes transition from inflationary to the decelerated phase at early times and quintessence to phantom phase at late times. We constraint our results with the recent observational data and find that some values of parameters are consistent with SNe Ia and H( z)+SNe Ia data to describe accelerated expansion only whereas some one give decelerated and accelerated expansions with H( z), WMAP7 and WMAP7+BAO+ H( z) observational data.
Adaptive Force Control in Compliant Motion
NASA Technical Reports Server (NTRS)
Seraji, H.
1994-01-01
This paper addresses the problem of controlling a manipulator in compliant motion while in contact with an environment having an unknown stiffness. Two classes of solutions are discussed: adaptive admittance control and adaptive compliance control. In both admittance and compliance control schemes, compensator adaptation is used to ensure a stable and uniform system performance.
Black holes and a scalar field in an expanding universe
NASA Astrophysics Data System (ADS)
Saida, Hiromi; Soda, Jiro
2000-12-01
We consider a model of an inhomogeneous universe with the presence of a massless scalar field, where the inhomogeneity is assumed to consist of many black holes. This model can be constructed by following Lindquist and Wheeler, which has already been investigated without the presence of a scalar field to show that an averaged scale factor coincides with that of the Friedmann model in Einstein gravity. In this paper we construct the inhomogeneous universe with a massless scalar field, where it is assumed that the averaged scale factor and scalar field are given by those of the Friedmann model including the scalar field. All of our calculations are carried out within the framework of Brans-Dicke gravity. In constructing the model of an inhomogeneous universe, we define the mass of a black hole in the Brans-Dicke expanding universe which is equivalent to the ADM mass in the epoch of the adiabatic time evolution of the mass, and obtain an equation relating our mass with the averaged scalar field and scale factor. We find that the mass has an adiabatic time dependence in a sufficiently late stage of the expansion of the universe; that is our mass is equivalent to the ADM mass. The other result is that its time dependence is qualitatively different according to the sign of the curvature of the universe: the mass increases (decelerating) in the closed universe case, is constant in the flat case and decreases (decelerating) in the open case. It is also noted that the mass in the Einstein frame depends on time. Our results that the mass has a time dependence should be retained even in the general scalar-tensor gravities with a scalar field potential. Furthermore, we discuss the relation of our model of the inhomogeneous universe to the uniqueness theorem of black hole spacetime and the gravitational memory effect of black holes in scalar-tensor gravities.
Dynamics of a scalar field in Robertson-Walker spacetimes
NASA Astrophysics Data System (ADS)
Copeland, Edmund J.; Mizuno, Shuntaro; Shaeri, Maryam
2009-05-01
We analyze the dynamics of a single scalar field in Friedmann-Robertson-Walker universes with spatial curvature. We obtain the fixed point solutions which are shown to be late time attractors. In particular, we determine the corresponding scalar field potentials which correspond to these stable solutions. The analysis is quite general and incorporates expanding and contracting universes with both positive and negative scalar potentials. We demonstrate that the known power law, exponential, and de Sitter solutions are certain limits of our general set of solutions.
Einstein-scalar-Yang-Mills black holes: a thermodynamical approach
NASA Astrophysics Data System (ADS)
Biswas, Ritabrata
2013-12-01
We try to find out the nature of different thermodynamical parameters for a black hole solution drawn for a special case in Einstein-Scalar-Yang-Mills gravity. Whether a phase transition occurs for the solution or not is a matter of interest. The nature of the phase transition is tried to understand. Ruppeiner metric and the corresponding Ricci scalar is constructed. It is noticed that the metric is not of positive Ricci for all the parametric values and there exist(s) point(s) in thermodynamic space where the Ricci scalar becomes zero.
Noncommutative scalar field minimally coupled to nonsymmetric gravity
Kouadik, S.; Sefai, D.
2012-06-27
We construct a non-commutative non symmetric gravity minimally coupled model (the star product only couples matter). We introduce the action for the system considered namely a non-commutative scalar field propagating in a nontrivial gravitational background. We expand the action in powers of the anti-symmetric field and the graviton to second order adopting the assumption that the scalar is weekly coupled to the graviton. We compute the one loop radiative corrections to the self-energy of a scalar particle.
Generalized gravitational entropy of interacting scalar field and Maxwell field
NASA Astrophysics Data System (ADS)
Huang, Wung-Hong
2014-12-01
The generalized gravitational entropy proposed recently by Lewkowycz and Maldacena is extended to the interacting real scalar field and Maxwell field system. Using the BTZ geometry we first investigate the case of free real scalar field and then show a possible way to calculate the entropy of the interacting scalar field. Next, we investigate the Maxwell field system. We exactly solve the wave equation and calculate the analytic value of the generalized gravitational entropy. We also use the Einstein equation to find the effect of backreaction of the Maxwell field on the area of horizon. The associated modified area law is consistent with the generalized gravitational entropy.
Analysis and modeling of subgrid scalar mixing using numerical data
NASA Technical Reports Server (NTRS)
Girimaji, Sharath S.; Zhou, YE
1995-01-01
Direct numerical simulations (DNS) of passive scalar mixing in isotropic turbulence is used to study, analyze and, subsequently, model the role of small (subgrid) scales in the mixing process. In particular, we attempt to model the dissipation of the large scale (supergrid) scalar fluctuations caused by the subgrid scales by decomposing it into two parts: (1) the effect due to the interaction among the subgrid scales; and (2) the effect due to interaction between the supergrid and the subgrid scales. Model comparisons with DNS data show good agreement. This model is expected to be useful in the large eddy simulations of scalar mixing and reaction.
Scalar/Vector potential formulation for compressible viscous unsteady flows
NASA Technical Reports Server (NTRS)
Morino, L.
1985-01-01
A scalar/vector potential formulation for unsteady viscous compressible flows is presented. The scalar/vector potential formulation is based on the classical Helmholtz decomposition of any vector field into the sum of an irrotational and a solenoidal field. The formulation is derived from fundamental principles of mechanics and thermodynamics. The governing equations for the scalar potential and vector potential are obtained, without restrictive assumptions on either the equation of state or the constitutive relations or the stress tensor and the heat flux vector.
Massive basketball diagram for a thermal scalar field theory
Andersen, Jens O.; Braaten, Eric; Strickland, Michael
2000-08-15
The ''basketball diagram'' is a three-loop vacuum diagram for a scalar field theory that cannot be expressed in terms of one-loop diagrams. We calculate this diagram for a massive scalar field at nonzero temperature, reducing it to expressions involving three-dimensional integrals that can be easily evaluated numerically. We use this result to calculate the free energy for a massive scalar field with a {phi}{sup 4} interaction to three-loop order. (c) 2000 The American Physical Society.
Willow: a uniform search interface.
Ketchell, D S; Freedman, M M; Jordan, W E; Lightfoot, E M; Heyano, S; Libbey, P A
1996-01-01
The objective of the Willow Project is to develop a uniform search interface that allows a diverse community of users to retrieve information from heterogeneous network-based information resources. Willow separates the user interface from the database management or information retrieval system. It provides a graphic user interface to a variety of information resources residing on diverse hosts, and using different search engines and idiomatic query languages through networked-based client-server and Transmission Control Protocol/Internet Protocol (TCP/IP) protocols. It is based on a "database driver'' model, which allows new database hosts to be added without altering Willow itself. Willow employs a multimedia extension mechanism to launch external viewers to handle data in almost any form. Drivers are currently available for a local BRS/SEARCH system and the Z39.50 protocol. Students, faculty, clinicians, and researchers at the University of Washington are currently offered 30 local and remote databases via Willow. They conduct more than 250,000 sessions a month in libraries, medical centers and clinics, laboratories, and offices, and from home. The Massachusetts Institute of Technology is implementing Willow as its uniform search interface to Z39.50 hosts. PMID:8750388
DBI scalar field theory for QGP hydrodynamics
NASA Astrophysics Data System (ADS)
Nastase, Horatiu
2016-07-01
A way to describe the hydrodynamics of the quark-gluon plasma using a Dirac-Born-Infeld (DBI) action is proposed, based on the model found by Heisenberg for high energy scattering of nucleons. The expanding plasma is described as a shockwave in a DBI model for a real scalar standing in for the pion, and I show that one obtains a fluid description in terms of a relativistic fluid that near the shock is approximately ideal (η ≃0 ) and conformal. One can introduce an extra term inside the square root of the DBI action that generates a shear viscosity term in the energy-momentum tensor near the shock, as well as a bulk viscosity, and regulates the behavior of the energy density at the shock, making it finite. The resulting fluid satisfies the relativistic Navier-Stokes equation with uμ,ρ ,P ,η defined in terms of ϕ and its derivatives. One finds a relation between the parameters of the theory and the quark-gluon plasma thermodynamics, α /β2=η /(s T ), and by fixing α and β from usual (low multiplicity) particle scattering, one finds T ∝mπ.
Transverse relaxation of scalar-coupled protons.
Segawa, Takuya F; Baishya, Bikash; Bodenhausen, Geoffrey
2010-10-25
In a preliminary communication (B. Baishya, T. F. Segawa, G. Bodenhausen, J. Am. Chem. Soc. 2009, 131, 17538-17539), we recently demonstrated that it is possible to obtain clean echo decays of protons in biomolecules despite the presence of homonuclear scalar couplings. These unmodulated decays allow one to determine apparent transverse relaxation rates R(2) (app) of individual protons. Herein, we report the observation of R(2) (app) for three methyl protons, four amide H(N) protons, and all 11 backbone H(α) protons in cyclosporin A. If the proton resonances overlap, their R(2) (app) rates can be measured by transferring their magnetization to neighboring (13)C nuclei, which are less prone to overlap. The R(2) (app) rates of protons attached to (13)C are faster than those attached to (12)C because of (13)C-(1)H dipolar interactions. The differences of these rates allow the determination of local correlation functions. Backbone H(N) and H(α) protons that have fast decay rates R(2) (app) also feature fast longitudinal relaxation rates R(1) and intense NOESY cross peaks that are typical of crowded environments. Variations of R(2) (app) rates of backbone H(α) protons in similar amino acids reflect differences in local environments.
A search for third generation scalar leptoquarks
Zatserklyaniy, Andriy
2006-08-01
Leptoquarks (LQ) are particles with both color and lepton number predicted in some gauge theories and composite models. Current theory suggests that leptoquarks would come in three different generations. We report on a search for charge 1/3 third generation leptoquarks produced in p$\\bar{p}$ collisions at √s = 1.96 TeV using data collected by the D0 detector at Fermilab. Such leptoquarks would decay into a tau-neutrino plus a b-quark with branching fraction B. We present preliminary results on an analysis where both leptoquarks decay into neutrinos giving a final state with missing energy and two b-jets. Using 425(recorded) pb^{-1} of data, we place limits on σ(p$\\bar{p}$ → LQ$\\bar{LQ}$)B^{2} as a function of the leptoquark mass. Assuming B = 1, we excluded at the 95% confidence level scalar third generation leptoquarks with M_{LQ} < 219 GeV.
RNA structure and scalar coupling constants
Tinoco, I. Jr.; Cai, Z.; Hines, J.V.; Landry, S.M.; SantaLucia, J. Jr.; Shen, L.X.; Varani, G.
1994-12-01
Signs and magnitudes of scalar coupling constants-spin-spin splittings-comprise a very large amount of data that can be used to establish the conformations of RNA molecules. Proton-proton and proton-phosphorus splittings have been used the most, but the availability of {sup 13}C-and {sup 15}N-labeled molecules allow many more coupling constants to be used for determining conformation. We will systematically consider the torsion angles that characterize a nucleotide unit and the coupling constants that depend on the values of these torsion angles. Karplus-type equations have been established relating many three-bond coupling constants to torsion angles. However, one- and two-bond coupling constants can also depend on conformation. Serianni and coworkers measured carbon-proton coupling constants in ribonucleosides and have calculated their values as a function of conformation. The signs of two-bond coupling can be very useful because it is easier to measure a sign than an accurate magnitude.
Exotic colored scalars at the LHC
NASA Astrophysics Data System (ADS)
Blum, Kfir; Efrati, Aielet; Frugiuele, Claudia; Nir, Yosef
2017-02-01
We study the phenomenology of exotic color-triplet scalar particles X with charge | Q| = 2 /3 , 4 /3 , 5 /3 , 7 /3 , 8 /3 and 10 /3. If X is an SU(2) W -non-singlet, mass splitting within the multiplet allows for cascade decays of the members into the lightest state. We study examples where the lightest state, in turn, decays into a three-body W ± jj final state, and show that in such case the entire multiplet is compatible with indirect precision tests and with direct collider searches for continuum pair production of X down to m X ˜ 250 GeV. However, bound states S, made of XX † pairs at m S ≈ 2 m X , form under rather generic conditions and their decay to diphoton can be the first discovery channel of the model. Furthermore, for SU(2) W -non-singlets, the mode S → W + W - may be observable and the width of S → γγ and S → jj may appear large as a consequence of mass splittings within the X-multiplet. As an example we study in detail the case of an SU(2) W -quartet, finding that m X ≃ 450 GeV is allowed by all current searches.
Chameleon scalar fields in relativistic gravitational backgrounds
Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza E-mail: tamaki@gravity.phys.waseda.ac.jp
2009-05-15
We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}
NASA Astrophysics Data System (ADS)
Lang, Ryan N.
2014-04-01
We derive the tensor gravitational waveform generated by a binary of nonspinning compact objects (black holes or neutron stars) in a general class of scalar-tensor theories of gravity. The waveform is accurate to second post-Newtonian order beyond the leading order quadrupole approximation. We use the direct integration of the relaxed Einstein equations formalism, appropriately adapted to scalar-tensor theories, along with previous results for the equations of motion in these theories. The self-gravity of the compact objects is treated with an approach developed by Eardley. The scalar field causes deviations from the general relativistic waveform that depend only on a small number of parameters. Among the effects of the scalar field are new hereditary terms which depend on the past history of the source. One of these, a dipole-dipole coupling, produces a zero-frequency "gravitational-wave memory" equivalent to the Christodoulou memory of general relativity. In the special case of two black holes, the waveform reduces to the general relativistic waveform. For a mixed (black hole-neutron star) system, the waveform is identical to that of Einstein's theory to first post-Newtonian order, with deviations at higher order depending only on a single parameter. The behavior in these cases matches that found for the equations of motion.
Wormholes, the weak energy condition, and scalar-tensor gravity
NASA Astrophysics Data System (ADS)
Shaikh, Rajibul; Kar, Sayan
2016-07-01
We obtain a large class of Lorentzian wormhole spacetimes in scalar-tensor gravity, for which the matter stress energy does satisfy the weak energy condition. Our constructions have zero Ricci scalar and an everywhere finite, nonzero scalar field profile. Interpreting the scalar-tensor gravity as an effective on-brane theory resulting from a two-brane Randall-Sundrum model of warped extra dimensions, it is possible to link wormhole existence with that of extra dimensions. We study the geometry, matter content, gravitational redshift and circular orbits in such wormholes and argue that our examples are perhaps among those which may have some observational relevance in astrophysics in the future. We also study traversability and find that our wormholes are indeed traversable for values of the metric parameters satisfying the weak energy condition.
Velocity, scalar and transfer spectra in numerical turbulence
NASA Astrophysics Data System (ADS)
Kerr, Robert M.
1990-02-01
Velocity and passive-scalar spectra for turbulent fields generated by a forced three-dimensional simulation with 128-cubed grid points and Taylor-microscale Reynolds numbers up to 83 are shown to have convective and diffusive spectral regimes. One- and three-dimensional spectra are compared with experiment and theory. If normalized by the Kolmogorov dissipation scales and scalar dissipation, velocity spectra and scalar spectra for given Prandtl numbers collapse to single curves in the dissipation regime with exponentail tails. If multiplied by k exp 5/3, the velocity spectra show an anomalously high Kolmogorov constant that is consistent with low Reynolds number experiments. When normalized by the Batchelor scales, the scalar spectra show a universal dissipation regime that is independent of Prandtl numbers from 0.1 to 1.0. The time development of velocity spectra is illustrated by energy-transfer spectra in which distinct pulses propagate to high wavenumbers.
Bianchi type-I models with conformally invariant scalar field
Accioly, A.J.; Vaidya, A.N.; Som, M.M.
1983-05-15
The solutions of the Einstein equations with the trace-free energy-momentum tensor of conformally invariant scalar field as source are obtained in a spatially homogeneous anisotropic space-time. Some interesting features of the solutions are discussed.
A nonlinear dynamics for the scalar field in Randers spacetime
NASA Astrophysics Data System (ADS)
Silva, J. E. G.; Maluf, R. V.; Almeida, C. A. S.
2017-03-01
We investigate the properties of a real scalar field in the Finslerian Randers spacetime, where the local Lorentz violation is driven by a geometrical background vector. We propose a dynamics for the scalar field by a minimal coupling of the scalar field and the Finsler metric. The coupling is intrinsically defined on the Randers spacetime, and it leads to a non-canonical kinetic term for the scalar field. The nonlinear dynamics can be split into a linear and nonlinear regimes, which depend perturbatively on the even and odd powers of the Lorentz-violating parameter, respectively. We analyze the plane-waves solutions and the modified dispersion relations, and it turns out that the spectrum is free of tachyons up to second-order.
Nonlinear scalar field equations involving the fractional Laplacian
NASA Astrophysics Data System (ADS)
Byeon, Jaeyoung; Kwon, Ohsang; Seok, Jinmyoung
2017-04-01
In this paper we study the existence, regularity, radial symmetry and decay property of a mountain pass solution for nonlinear scalar field equations involving the fractional Laplacian under an almost optimal class of continuous nonlinearities.
Scalar mesons and the search for the 0{sup ++} Glueball
Ulrike Thoma
2002-10-01
The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6 GeV, which corresponds to the mass region where the scalar qq[bar]-mesons are expected. Therefore mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But, still many questions remain.
Scalar-tensor extension of the ΛCDM model
NASA Astrophysics Data System (ADS)
Algoner, W. C.; Velten, H. E. S.; Zimdahl, W.
2016-11-01
We construct a cosmological scalar-tensor-theory model in which the Brans-Dicke type scalar Φ enters the effective (Jordan-frame) Hubble rate as a simple modification of the Hubble rate of the ΛCDM model. This allows us to quantify differences between the background dynamics of scalar-tensor theories and general relativity (GR) in a transparent and observationally testable manner in terms of one single parameter. Problems of the mapping of the scalar-field degrees of freedom on an effective fluid description in a GR context are discused. Data from supernovae, the differential age of old galaxies and baryon acoustic oscillations are shown to strongly limit potential deviations from the standard model.
Transport of passive scalars in a turbulent channel flow
NASA Technical Reports Server (NTRS)
Kim, John; Moin, Parviz
1987-01-01
A direct numerical simulation of a turbulent channel flow with three passive scalars at different molecular Prandtl numbers is performed. Computed statistics including the turbulent Prandtl numbers are compared with existing experimental data. The computed fields are also examined to investigate the spatial structure of the scalar fields. The scalar fields are highly correlated with the streamwise velocity; the correlation coefficient between the temperature and the streamwise velocity is as high as 0.95 in the wall region. The joint probability distributions between the temperature and velocity fluctuations are also examined; they suggest that it might be possible to model the scalar fluxes in the wall region in a manner similar to the Reynolds stresses.
Inequalities for scalar curvature of pseudo-Riemannian submanifolds
NASA Astrophysics Data System (ADS)
Tripathi, Mukut Mani; Gülbahar, Mehmet; Kılıç, Erol; Keleş, Sadık
2017-02-01
Some basic inequalities, involving the scalar curvature and the mean curvature, for a pseudo-Riemannian submanifold of a pseudo-Riemannian manifold are obtained. We also find inequalities for spacelike submanifolds. Equality cases are also discussed.
Scalar mesons in three-flavor linear sigma models
Deirdre Black; Amir H. Fariborz; Sherif Moussa; Salah Nasri; Joseph Schrechter
2001-09-01
The three flavor linear sigma model is studied in order to understand the role of possible light scalar mesons in the pi-pi, pi-K and pi-eta elastic scattering channels. The K-matrix prescription is used to unitarize tree-level amplitudes and, with a sufficiently general model, we obtain reasonable ts to the experimental data. The effect of unitarization is very important and leads to the emergence of a nonet of light scalars, with masses below 1 GeV. We compare with a scattering treatment using a more general non-linear sigma model approach and also comment upon how our results t in with the scalar meson puzzle. The latter involves a preliminary investigation of possible mixing between scalar nonets.
Properties of Robinson-Trautman solution with scalar hair
NASA Astrophysics Data System (ADS)
Tahamtan, T.; Svítek, O.
2016-09-01
An explicit Robinson-Trautman solution with a minimally coupled free scalar field was derived and analyzed recently. It was shown that this solution possesses a curvature singularity which is initially naked but later enveloped by a horizon. However, this study concentrated on the general branch of the solution where all free constants are nonzero. Interesting special cases arise when some of the parameters are set to zero. In most of these cases, the scalar field is still present. One of the cases is a static solution which represents a parametric limit of the Janis-Newman-Winicour scalar field spacetime. Additionally, we provide a calculation of the Bondi mass which clarifies the interpretation of the general solution. Finally, by a complex rotation of a parameter describing the strength of the scalar field, we obtain a dynamical wormhole solution.
Relativistic stars in scalar-tensor theories with disformal coupling
NASA Astrophysics Data System (ADS)
Silva, Hector O.; Minamitsuji, Masato
2017-01-01
We discuss a general formulation to study the structure of slowly-rotating relativistic stars in a broad class of scalar-tensor theories including disformal coupling to matter. Our approach includes as particular cases theories with generalized kinetic terms and generic scalar field potentials, and contains theories with conformal coupling as particular limits. We propose a minimal model to investigate the role of the disformal coupling on the non-perturbative effect known as spontaneous scalarization, which causes relativistic star solutions in certain classes of scalar-tensor theories to differ dramatically from their general relativistic counterparts. Moreover, we show that the moment of inertia and compactness of stars are equation of state independent, which can potentially be used to constrain the model observationally.
A new approach to the formulation of scalar flux closure
NASA Technical Reports Server (NTRS)
Shabany, Y.; Durbin, P.
1995-01-01
This report shows that if a stochastic differential equation (Langevin equation) for velocity fluctuation vector is known, it is possible to derive the equations for scalar flux transport. Durbin and Speziale (1994) showed that the second moment of this stochastic differential equation gives an equation for the evolution of Reynolds stress tensor. Similarly, the stochastic equation will give an equation for scalar flux. Therefore, a coupling between these two is present. The basis for the present work is that there should be Langevin equations that can produce acceptable models for both the Reynolds stress tensor and the scalar flux vector. Having found this basic Langevin equation, the amount of work needed to model the second order closure problems is reduced; using the well developed models for Reynolds stress equations, it will be possible to derive corresponding models for scalar flux equation.
Learning from a Higgs-like scalar resonance
NASA Astrophysics Data System (ADS)
Bauer, Martin; Butter, Anja; Gonzalez-Fraile, J.; Plehn, Tilman; Rauch, Michael
2017-03-01
Motivated by a diphoton anomaly observed by ATLAS and CMS we develop an SFitter analysis for a combined electroweak-Higgs sector, and a scalar portal at the LHC. The theoretical description is based on the linear effective Lagrangian for the Higgs and gauge fields, combined with an additional singlet scalar. The key target is the extraction of reliable information on the portal structure of the combined scalar potential. For the specific diphoton anomaly we find that the new state might well form such a Higgs portal. To obtain more conclusive results we define and test the connection of the Wilson coefficients in the Higgs and heavy scalar sectors, as suggested by a portal setup.
Relating spectral indices to tensor and scalar amplitudes in inflation
Kolb, Edward W.; Vadas, Sharon L.
1994-02-01
Within an expansion in slow-roll inflation parameters, we derive the complete second-order expressions relating the ratio of tensor to scalar density perturbations and the spectral index of the scalar spectrum. We find that ``corrections'' to previously derived formulae can dominate if the tensor to scalar ratio is small. For instance, if VV"/(V')^{2}≠1 or if [mPI^{2}/(4π)]||V'"/V'|| ≳ 1, where V(Φ) is the inflaton potential and m_{Pl}is the Planck mass, then the previously used simple relations between the indices and the tensor to scalar ratio fails. This failure occurs in particular for natural inflation, Coleman--Weinberg inflation, and ``chaotic'' inflation.
Kasner solutions, climbing scalars and big-bang singularity
Condeescu, Cezar; Dudas, Emilian E-mail: emilian.dudas@cpht.polytechnique.fr
2013-08-01
We elaborate on a recently discovered phenomenon where a scalar field close to big-bang is forced to climb a steep potential by its dynamics. We analyze the phenomenon in more general terms by writing the leading order equations of motion near the singularity. We formulate the conditions for climbing to exist in the case of several scalars and after inclusion of higher-derivative corrections and we apply our results to some models of moduli stabilization. We analyze an example with steep stabilizing potential and notice again a related critical behavior: for a potential steepness above a critical value, going backwards towards big-bang, the scalar undergoes wilder oscillations, with the steep potential pushing it back at every passage and not allowing the scalar to escape to infinity. Whereas it was pointed out earlier that there are possible implications of the climbing phase to CMB, we point out here another potential application, to the issue of initial conditions in inflation.
Attitudes of Parents about School Uniforms.
ERIC Educational Resources Information Center
West, Charles K.; Tidwell, Diane K.; Bomba, Anne K.; Elmore, Patsy Alexander
1999-01-01
Responses from 144 parents of fourth graders showed that 56% favored uniforms in public schools; most agreed that uniforms contributed to a conducive learning environment, promoted school spirit, and discouraged violence; and most disagreed that uniforms cost more than other types of clothing. (SK)
Lp stability for entropy solutions of scalar conservation laws with strict convex flux
NASA Astrophysics Data System (ADS)
Adimurthi; Ghoshal, Shyam Sundar; Veerappa Gowda, G. D.
Here we consider the scalar convex conservation laws in one space dimension with strictly convex flux which is in C1. Existence, uniqueness and L1 contractivity were proved by Kružkov [14]. Using the relative entropy method, Leger showed that for a uniformly convex flux and for the shock wave solutions, the L2 norm of a perturbed solution relative to the shock wave is bounded by the L2 norm of the initial perturbation. Here we generalize the result to Lp norm for all 1⩽p<∞. Also we show that for the non-shock wave solution, Lp norm of the perturbed solution relative to the modified N-wave is bounded by the Lp norm of the initial perturbation for all 1⩽p<∞.
Renormalizable Electrodynamics of Scalar and Vector Mesons. Part II
DOE R&D Accomplishments Database
Salam, Abdus; Delbourgo, Robert
1964-01-01
The "gauge" technique" for solving theories introduced in an earlier paper is applied to scalar and vector electrodynamics. It is shown that for scalar electrodynamics, there is no {lambda}φ*2φ2 infinity in the theory, while with conventional subtractions vector electrodynamics is completely finite. The essential ideas of the gauge technique are explained in section 3, and a preliminary set of rules for finite computation in vector electrodynamics is set out in Eqs. (7.28) - (7.34).
Perfect focusing of scalar wave fields in three dimensions.
Benítez, Pablo; Miñano, Juan C; González, Juan C
2010-04-12
A method to design isotropic inhomogeneous refractive index distribution is presented, in which the scalar wave field solutions propagate exactly on an eikonal function (i.e., remaining constant on the Geometrical Optics wavefronts). This method is applied to the design of "dipole lenses", which perfectly focus a scalar wave field emitted from a point source onto a point absorber, in both two and three dimensions. Also, the Maxwell fish-eye lens in two and three dimensions is analysed.
Extending chiral perturbation theory with an isosinglet scalar
NASA Astrophysics Data System (ADS)
Hansen, Martin; Langæble, Kasper; Sannino, Francesco
2017-02-01
We augment the chiral Lagrangian by an isosinglet scalar and compute the one-loop radiative corrections to the pion mass and decay constant, as well as the scalar mass. The calculations are carried out for different patterns of chiral symmetry breaking of immediate relevance for phenomenology and lattice investigations. By construction our results encompass several interesting limits, ranging from the dilaton to the linear sigma model.
Aharonov-Casher and scalar Aharonov-Bohm topological effects.
Dulat, Sayipjamal; Ma, Kai
2012-02-17
We reexamine the topological and nonlocal natures of the Aharonov-Casher and scalar Aharonov-Bohm phase effects. The underlying U(1) gauge structure is exhibited explicitly. And the conditions for developing topological Aharonov-Casher and scalar Aharonov-Bohm phases are clarified. We analyze the arguments of M. Peshkin and H. J. Lipkin [Phys. Rev. Lett. 74, 2847 (1995)] in detail and show that they are based on the wrong Hamiltonian which yields their conclusion incorrect.
The Construction of Compton Tensors in Scalar QED
NASA Astrophysics Data System (ADS)
Bakker, Bernard L. G.; Ji, Chueng-Ryong
2017-01-01
Current conservation is a vital condition in electrodynamics. We review the literature concerning the ways to ensure that the formalism used in calculating amplitudes for the scattering of charged particles is in compliance with current conservation. For the case of electron scattering off a scalar and a spin-1/2 target as well as Compton scattering on a scalar target, we present some novelties besides reviewing the literature.
Search for scalar top and bottom quarks at the Tevatron
Calfayan, Philippe; /Munich U.
2009-01-01
This document reviews recent results on the search for scalar top and scalar bottom quarks in p{bar p} collisions at {radical}s = 1.96 TeV. The analyses presented are based on data samples with integrated luminosities from 1.0 to 1.9 fb{sup -1} recorded at the Tevatron with the D0 and CDF detectors.
Uniformly dense polymeric foam body
Whinnery, Jr., Leroy
2003-07-15
A method for providing a uniformly dense polymer foam body having a density between about 0.013 g/cm.sup.3 to about 0.5 g/cm.sup.3 is disclosed. The method utilizes a thermally expandable polymer microsphere material wherein some of the microspheres are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.
STRUCTURE OF UNIFORMLY ROTATING STARS
Deupree, Robert G.
2011-07-10
Zero-age main-sequence models of uniformly rotating stars have been computed for 10 masses between 1.625 and 8 M{sub sun} and for 21 rotation rates from zero to nearly critical rotation. The surface shape is used to distinguish rotation rather than the surface equatorial velocity or the rotation rate. Using the surface shape is close, but not quite equivalent, to using the ratio of the rotation rate to the critical rotation rate. Using constant shape as the rotation variable means that it and the mass are separable, something that is not true for either the rotation rate or surface equatorial velocity. Thus, a number of properties, including the ratio of the effective temperature anywhere on the surface to the equatorial temperature, are nearly independent of the mass of the model, as long as the rotation rate changes in such a way as to keep the surface shape constant.
Uniformly Rotating Single Substance Bodies
NASA Astrophysics Data System (ADS)
Leonard, Charles Michael Leo
This dissertation explicitly and in detail solves the extended rotator problem in the uncharged relativistic classical cases of most physical interest. It shows that no plausible relativistic solutions exist in the literature of the extended rotator and that the point rotator solutions sometimes ballyhooed are not to be taken seriously. Explicit energy speedratio functions, angular momentum speedratio functions, Hamiltonian, Lagrangian, and other important characteristic functions of the state of uniform rotation of the extended body are detailed. This dissertation does not retreat to an 'analysis' of just the point rotator --which so many others have done and done incorrectly, or at best misleadingly, by hiding implausible assumptions in manifestly covariant formats. Assumptions in the model are not hidden but are brought out and analyzed as to their relevance for highlighting the core of the uniform rotation physics. Neither does the author hide any ignorance of the internal holding field for the rotator. Formulae for the characteristic Minimum Holding Field are explicitly given and their relativistic relevance is shown. The demonstration that such fields can be ignored in the energy and angular momentum expressions is completely detailed. The explicit Stress-Energy Tensor for the entire closed rotator system is given with all that entails as to the inescapability of the results from out of that mathematics. The generality of the finiteness of the extreme relativistic rotational limit is detailed and explained with its stark essential contrast to the infinite limit in the case of extreme relativistic translation of a body. The rotator is shown to possess a rich mathematical structure. Many elegant interconnection formulae are found as well as new Hamiltonian formulae --sometimes of considerable complexity. Exact rotator formulae as well as graphs, tables, and even interesting approximations are provided. New nonlinear differential equations are discovered and
Structure formation with scalar field dark matter: the field approach
Magaña, Juan; Sánchez-Salcedo, F.J.; Matos, Tonatiuh; Suárez, Abril E-mail: tmatos@fis.cinvestav.mx E-mail: jsanchez@astro.unam.mx
2012-10-01
We study the formation of structure in the Universe assuming that dark matter can be described by a scalar field Φ-tilde with a potential V(Φ) = −m{sup 2}Φ-tilde {sup 2}/2+λΦ-tilde {sup 4}/4. We derive the evolution equations of the scalar field in the linear regime of perturbations. We investigate the symmetry breaking and possibly a phase transition of this scalar field in the early Universe. At low temperatures, the scalar perturbations have an oscillating growing mode and therefore, this kind of dark matter could lead to the formation of gravitational structures. In order to study the nonlinear regime, we use the spherical collapse model and show that, in the quadratic potential limit, this kind of dark matter can form virialized structures. The main difference with the traditional Cold Dark Matter paradigm is that the formation of structure in the scalar field model can occur at earlier times. Thus, if the dark matter behaves as a scalar field, large galaxies are expected to be formed already at high redshifts.
Bi-scalar modified gravity and cosmology with conformal invariance
Saridakis, Emmanuel N.; Tsoukalas, Minas E-mail: minasts@central.ntua.gr
2016-04-01
We investigate the cosmological applications of a bi-scalar modified gravity that exhibits partial conformal invariance, which could become full conformal invariance in the absence of the usual Einstein-Hilbert term and introducing additionally either the Weyl derivative or properly rescaled fields. Such a theory is constructed by considering the action of a non-minimally conformally-coupled scalar field, and adding a second scalar allowing for a nonminimal derivative coupling with the Einstein tensor and the energy-momentum tensor of the first field. At a cosmological framework we obtain an effective dark-energy sector constituted from both scalars. In the absence of an explicit matter sector we extract analytical solutions, which for some parameter regions correspond to an effective matter era and/or to an effective radiation era, thus the two scalars give rise to 'mimetic dark matter' or to 'dark radiation' respectively. In the case where an explicit matter sector is included we obtain a cosmological evolution in agreement with observations, that is a transition from matter to dark energy era, with the onset of cosmic acceleration. Furthermore, for particular parameter regions, the effective dark-energy equation of state can transit to the phantom regime at late times. These behaviors reveal the capabilities of the theory, since they arise purely from the novel, bi-scalar construction and the involved couplings between the two fields.
Universal contributions to scalar masses from five dimensional supergravity
NASA Astrophysics Data System (ADS)
Dudas, Emilian; von Gersdorff, Gero
2012-10-01
We compute the effective Kahler potential for matter fields in warped compactifications, starting from five dimensional gauged supergravity, as a function of the matter fields localization. We show that truncation to zero modes is inconsistent and the tree-level exchange of the massive gravitational multiplet is needed for consistency of the four-dimensional theory. In addition to the standard Kahler coming from dimensional reduction, we find the quartic correction coming from integrating out the gravity multiplet. We apply our result to the computation of scalar masses, by assuming that the SUSY breaking field is a bulk hypermultiplet. In the limit of extreme opposite localization of the matter and the spurion fields, we find zero scalar masses, consistent with sequestering arguments. Surprisingly enough, for all the other cases the scalar masses are tachyonic. This suggests the holographic interpretation that a CFT sector always generates operators contributing in a tachyonic way to scalar masses. Viability of warped supersymmetric compactifications necessarily asks then for additional contributions. We discuss the case of additional bulk vector multiplets with mixed boundary conditions, which is a particularly simple and attractive way to generate large positive scalar masses. We show that in this case successful fermion mass matrices implies highly degenerate scalar masses for the first two generations of squarks and sleptons.
Scalar decay in a three-dimensional chaotic flow.
Ngan, K; Vanneste, J
2011-05-01
The decay of a passive scalar in a three-dimensional chaotic flow is studied using high-resolution numerical simulations. The (volume-preserving) flow considered is a three-dimensional extension of the randomized alternating sine flow employed extensively in studies of mixing in two dimensions. It is used to show that theoretical predictions for two-dimensional flows with small diffusivity carry over to three dimensions even though the stretching properties differ significantly. The variance decay rate, scalar field structure, and time evolution of statistical moments confirm that there are two distinct regimes of scalar decay: a locally controlled regime, which applies when the domain size is comparable to the characteristic length scale of the velocity field, and a globally controlled regime, which applies when the domain is larger. Asymptotic predictions for the variance decay rate in both regimes show excellent agreement with the numerical results. Consideration of both the forward flow and its time reverse makes it possible to compare the scalar evolution in flows with one or two expanding directions; simulations confirm the theoretical prediction that the decay rate of the scalar is the same in both flows, despite the very different scalar field structures.
Attenuation of Scalar Fluxes Measured with Spatially-displaced Sensors
NASA Astrophysics Data System (ADS)
Horst, T. W.; Lenschow, D. H.
2009-02-01
Observations from the Horizontal Array Turbulence Study (HATS) field program are used to examine the attenuation of measured scalar fluxes caused by spatial separation between the vertical velocity and scalar sensors. The HATS data show that flux attenuation for streamwise, crosswind, and vertical sensor displacements are each a function of a dimensionless, stability-dependent parameter n m multiplied by the ratio of sensor displacement to measurement height. The scalar flux decays more rapidly with crosswind displacements than for streamwise displacements and decays more rapidly for stable stratification than for unstable stratification. The cospectral flux attenuation model of Kristensen et al. agrees well with the HATS data for streamwise sensor displacements, although it is necessary to include a neglected quadrature spectrum term to explain the observation that flux attenuation is often less with the scalar sensor downwind of the anemometer than for the opposite configuration. A simpler exponential decay model provides good estimates for crosswind sensor displacements, as well as for streamwise sensor displacements with stable stratification. A model similar to that of Lee and Black correctly predicts flux attenuation for a combination of streamwise and crosswind displacements, i.e. as a function of wind direction relative to the sensor displacement. The HATS data for vertical sensor displacements extend the near-neutral results of Kristensen et al. to diabatic stratification and confirm their finding that flux attenuation is less with the scalar sensor located below the anemometer than if the scalar sensor is displaced an equal distance either horizontally or above the anemometer.
Scalar-tensor cosmologies: Fixed points of the Jordan frame scalar field
Jaerv, Laur; Kuusk, Piret; Saal, Margus
2008-10-15
We study the evolution of homogeneous and isotropic, flat cosmological models within the general scalar-tensor theory of gravity with arbitrary coupling function and potential. After introducing the limit of general relativity we describe the details of the phase space geometry. Using the methods of dynamical systems for the decoupled equation of the Jordan frame scalar field we find the fixed points of flows in two cases: potential domination and matter domination. We present the conditions on the mathematical form of the coupling function and potential which determine the nature of the fixed points (attractor or other). There are two types of fixed points, both are characterized by cosmological evolution mimicking general relativity, but only one of the types is compatible with the Solar System parametrized post-Newtonian (PPN) constraints. The phase space structure should also carry over to the Einstein frame as long as the transformation between the frames is regular which however is not the case for the latter (PPN compatible) fixed point.
QCD tests of the puzzling scalar mesons
NASA Astrophysics Data System (ADS)
Narison, Stephan
2006-06-01
Motivated by several recent data, we test the QCD spectral sum rules (QSSR) predictions based on different proposals (q¯q, q¯q¯qq, and gluonium) for the nature of scalar mesons. In the I=1 and 1/2 channels, the unusual wrong splitting between the a0(980) and κ(900) and the a0(980) width can be understood from QSSR within a q¯q assignment. However, none of the q¯q and q¯q¯qq results can explain the large κ width, which may suggest that it can result from a strong interference with nonresonant backgrounds. In the I=0 channel, QSSR and some low-energy theorems (LET) require the existence of a low mass gluonium σB(1GeV) coupled strongly to Goldstone boson pairs which plays in the U(1)V channel, a similar role as the η' for the value of the U(1)A topological charge. The observed σ(600) and f0(980) mesons result from a maximal mixing between the gluonium σB and q¯q (1 GeV) mesons, a mixing scheme which passes several experimental tests. Okubo-Zweig-Izuki (OZI) violating J/ψ→ϕπ+π-, Ds→3π decays, and J/ψ→γS glueball filter processes may indicate that the f0(1500), f0(1710), and f0(1790) have significant gluonium components in their wave functions, while the f0(1370) is mostly q¯q. Tests of these results can be provided by the measurements of the pure gluonium η'η and 4π specific U(1)A decay channels.
Cheng Haiyang; Chua Chunkhiang; Yang Kweichou
2006-01-01
The hadronic charmless B decays into a scalar meson and a pseudoscalar meson are studied within the framework of QCD factorization. Based on the QCD sum rule method, we have derived the leading-twist light-cone distribution amplitudes of scalar mesons and their decay constants. Although the light scalar mesons f{sub 0}(980) and a{sub 0}(980) are widely perceived as primarily the four-quark bound states, in practice it is difficult to make quantitative predictions based on the four-quark picture for light scalars. Hence, predictions are made in the 2-quark model for the scalar mesons. The short-distance approach suffices to explain the observed large rates of f{sub 0}(980)K{sup -} and f{sub 0}(980)K{sup 0} that receive major penguin contributions from the b{yields}sss process. When f{sub 0}(980) is assigned as a four-quark bound state, there exist extra diagrams contributing to B{yields}f{sub 0}(980)K. Therefore, a priori the f{sub 0}(980)K rate is not necessarily suppressed for a four-quark state f{sub 0}(980). The predicted B{sup 0}{yields}a{sub 0}{sup {+-}}(980){pi}{sup {+-}} and a{sub 0}{sup +}(980)K{sup -} rates exceed the current experimental limits, favoring a four-quark nature for a{sub 0}(980). The penguin-dominated modes a{sub 0}(980)K and a{sub 0}(1450)K receive predominant weak annihilation contributions. There exists a twofold experimental ambiguity in extracting the branching ratio of B{sup -}{yields}K{sub 0}*{sup 0}(1430){pi}{sup -}, which can be resolved by measuring other K{sub 0}*(1430){pi} modes in conjunction with the isospin symmetry consideration. Large weak annihilation contributions are needed to explain the K{sub 0}*(1430){pi} data. The decay B{sup 0}{yields}{kappa}{sup +}K{sup -} provides a nice ground for testing the 4-quark and 2-quark nature of the {kappa} meson. It can proceed through W-exchange and hence is quite suppressed if {kappa} is made of two quarks, while it receives a tree contribution if {kappa} is predominately a four
NASA Astrophysics Data System (ADS)
Berberian, John Edwin
1999-01-01
A new framework is presented for analysing the spherically symmetric Einstein field equations for a zero-mass scalar field. The framework consists of a coordinate system (p, q), where the coordinate p is the scalar field, and q is a coordinate chosen to be orthogonal to p. This idea allows for a reduction of the field equations into a system of two first order partial differential equations for the areal metric function gqq and a mass function m . The metric coefficients in this coordinate system then take on values which are simply related to the scalars of the problem: 1->f˙1 ->f,gq q and-via the field equations-the scalar curvature R as well. The scalar field coordinate system is shown to have many advantages. Many of the known exact solutions (e.g. static, Roberts) are represented simply, and new self- similar solutions are derived. The framework is then applied to the problem of matching spherically symmetric scalar-tensor vacuum solutions to a homogeneous and isotropic dust solution (e.g. scalar- tensor Einstein-Straus swiss cheese solutions, scalar- tensor Oppenheimer-Snyder dust ball collapse). Scalar field coordinates are shown to be ideal for such an application. We derive the necessary matching conditions in scalar field coordinates, and show how they imply a natural extension of the Schücking condition for spherically symmetric vacuum in general relativity. The problem of finding a vacuum solution which matches a given homogeneous and isotropic solution is examined. It is found that the matching conditions are sufficient to guarantee local existence and uniqueness of the vacuum solution if it is assumed that the scalar field has neither maxima nor minima on the matching interface. In order to find explicit matched solutions, criteria are developed to screen known exact vacuum solutions for matchability, and procedures are given for determining the details of the homogeneous and isotropic solution (curvature constant, comoving radial coordinate of the
Architecture Adaptive Computing Environment
NASA Technical Reports Server (NTRS)
Dorband, John E.
2006-01-01
Architecture Adaptive Computing Environment (aCe) is a software system that includes a language, compiler, and run-time library for parallel computing. aCe was developed to enable programmers to write programs, more easily than was previously possible, for a variety of parallel computing architectures. Heretofore, it has been perceived to be difficult to write parallel programs for parallel computers and more difficult to port the programs to different parallel computing architectures. In contrast, aCe is supportable on all high-performance computing architectures. Currently, it is supported on LINUX clusters. aCe uses parallel programming constructs that facilitate writing of parallel programs. Such constructs were used in single-instruction/multiple-data (SIMD) programming languages of the 1980s, including Parallel Pascal, Parallel Forth, C*, *LISP, and MasPar MPL. In aCe, these constructs are extended and implemented for both SIMD and multiple- instruction/multiple-data (MIMD) architectures. Two new constructs incorporated in aCe are those of (1) scalar and virtual variables and (2) pre-computed paths. The scalar-and-virtual-variables construct increases flexibility in optimizing memory utilization in various architectures. The pre-computed-paths construct enables the compiler to pre-compute part of a communication operation once, rather than computing it every time the communication operation is performed.
Uniform sampling table method and its applications: establishment of a uniform sampling method.
Chen, Yibin; Chen, Jiaxi; Wang, Wei
2013-01-01
A novel uniform sampling method is proposed in this paper. According to the requirements of uniform sampling, we propose the properties that must be met by analyzing the distribution of samples. Based on this, the proposed uniform sampling method is demonstrated and evaluated strictly by mathematical means such as inference. The uniform sampling tables with respect to Cn(t2) and Cn(t3) are established. Furthermore, a one-dimension uniform sampling method and a multidimension method are proposed. The proposed novel uniform sampling method, which is guided by uniform design theory, enjoys the advantages of simplified use and good representativeness of the whole sample.
Bohn, Mark S.; Anselmo, Mark
2001-01-01
Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.
A Self-Contained Mapping Closure Approximation for Scalar Mixing
NASA Technical Reports Server (NTRS)
He, Guo-Wei; Zhang, Zi-Fan
2003-01-01
Scalar turbulence exhibits interplays of coherent structures and random fluctuations over a broad range of spatial and temporal scales. This feature necessitates a probabilistic description of the scalar dynamics, which can be achieved comprehensively by using probability density functions (PDFs). Therefore, the challenge is to obtain the scalar PDFs (Lundgren 1967; Dopazo 1979). Generally, the evolution of a scalar is governed by three dynamical processes: advection, diffusion and reaction. In a PDF approach (Pope 1985), the advection and reaction can be treated exactly but the effect of molecular diffusion has to be modeled. It has been shown (Pope 1985) that the effect of molecular diffusion can be expressed as conditional dissipation rates or conditional diffusions. The currently used models for the conditional dissipation rates and conditional diffusions (Pope 1991) have resisted deduction from the fundamental equations and are unable to yield satisfactory results for the basic test cases of decaying scalars in isotropic turbulence, although they have achieved some success in a variety of individual cases. The recently developed mapping closure approach (Pope 1991; Chen, Chen & Kraichnan 1989; Kraichnan 1990; Klimenko & Pope 2003) provides a deductive method for conditional dissipation rates and conditional di usions, and the models obtained can successfully describe the shape relaxation of the scalar PDF from an initial double delta distribution to a Gaussian one. However, the mapping closure approach is not able to provide the rate at which the scalar evolves. The evolution rate has to be modeled. Therefore, the mapping closure approach is not closed. In this letter, we will address this problem.
Turbulent Transport of Momentum and Scalars Above an Urban Canopy
NASA Astrophysics Data System (ADS)
Wang, Linlin; Li, Dan; Gao, Zhiqiu; Sun, Ting; Guo, Xiaofeng; Bou-Zeid, Elie
2014-03-01
Turbulent transport of momentum and scalars over an urban canopy is investigated using the quadrant analysis technique. High-frequency measurements are available at three levels above the urban canopy (47, 140 and 280 m). The characteristics of coherent ejection-sweep motions (flux contributions and time fractions) at the three levels are analyzed, particularly focusing on the difference between ejections and sweeps, the dissimilarity between momentum and scalars, and the dissimilarity between the different scalars (i.e., temperature, water vapour and . It is found that ejections dominate momentum and scalar transfer at all three levels under unstable conditions, while sweeps are the dominant eddy motions for transporting momentum and scalars in the urban roughness sublayer under neutral and stable conditions. The flux contributions and time fractions of ejections and sweeps can be adequately captured by assuming a Gaussian joint probability density function for flow variables. However, the inequality of flux contributions from ejections and sweeps is more accurately reproduced by the third-order cumulant expansion method (CEM). The incomplete cumulant expansion method (ICEM) also works well except for at 47 m where the skewness of fluctuations is significantly larger than that for vertical velocity. The dissimilarity between momentum and scalar transfers is linked to the dissimilarity in the characteristics of ejection-sweep motions and is further quantified by measures of transport efficiencies. Atmospheric stability is the controlling factor for the transport efficiencies of momentum and heat, and fitted functions from the literature describe their behaviour fairly accurately. However, transport efficiencies of water vapour and are less affected by the atmospheric stability. The dissimilarity among the three scalars examined in this study is linked to the active role of temperature and to the surface heterogeneity effect.
N-body simulations for coupled scalar-field cosmology
Li Baojiu; Barrow, John D.
2011-01-15
We describe in detail the general methodology and numerical implementation of consistent N-body simulations for coupled-scalar-field models, including background cosmology and the generation of initial conditions (with the different couplings to different matter species taken into account). We perform fully consistent simulations for a class of coupled-scalar-field models with an inverse power-law potential and negative coupling constant, for which the chameleon mechanism does not work. We find that in such cosmological models the scalar-field potential plays a negligible role except in the background expansion, and the fifth force that is produced is proportional to gravity in magnitude, justifying the use of a rescaled gravitational constant G in some earlier N-body simulation works for similar models. We then study the effects of the scalar coupling on the nonlinear matter power spectra and compare with linear perturbation calculations to see the agreement and places where the nonlinear treatment deviates from the linear approximation. We also propose an algorithm to identify gravitationally virialized matter halos, trying to take account of the fact that the virialization itself is also modified by the scalar-field coupling. We use the algorithm to measure the mass function and study the properties of dark-matter halos. We find that the net effect of the scalar coupling helps produce more heavy halos in our simulation boxes and suppresses the inner (but not the outer) density profile of halos compared with the {Lambda}CDM prediction, while the suppression weakens as the coupling between the scalar field and dark-matter particles increases in strength.
NASA Astrophysics Data System (ADS)
Guo, X.; Yang, K.; Yang, W.; Li, S.; Long, Z.
2011-12-01
behaves in the glacier winds, based on the turbulent fluctuations of temperature (T'), and water vapor (q') and CO2 (c') concentrations. This dataset is advantageous to analyses of turbulent scalar similarity, because the source/sink distribution of scalars is uniform over an ice/snow surface. New pieces of knowledge are: (1) T' and q' can be highly correlated, even when sensible heat and latent heat fluxes are in opposite directions. - The same direction of scalar fluxes is not a necessary condition for high scalar correlation. (2) The vertical transport efficiency of T' is always higher than that of q'. - The Bowen ratio (|β| > 1) is one factor underlying the T'-to-q' transport efficiency in stable conditions as well. (3) We provide confirmatory evidence of Detto and Katul's (Boundary-Layer Meteorol 122:205-216) original argument: density effect correction to q' and c' is necessitated for eddy-covariance analyses of turbulence structure.
Quasiequilibrium sequences of binary neutron stars undergoing dynamical scalarization
NASA Astrophysics Data System (ADS)
Taniguchi, Keisuke; Shibata, Masaru; Buonanno, Alessandra
2015-01-01
We calculate quasiequilibrium sequences of equal-mass, irrotational binary neutron stars in a scalar-tensor theory of gravity that admits dynamical scalarization. We model neutron stars with realistic equations of state (notably through piecewise polytropic equations of state). Using these quasiequilibrium sequences we compute the binary's scalar charge and binding energy versus orbital angular frequency. We find that the absolute value of the binding energy is smaller than in general relativity, differing at most by ˜14 % at high frequencies for the cases considered. We use the newly computed binding energy and the balance equation to estimate the number of gravitational-wave (GW) cycles during the adiabatic, quasicircular inspiral stage up to the end of the sequence, which is the last stable orbit or the mass-shedding point, depending on which comes first. We find that, depending on the scalar-tensor parameters, the number of GW cycles can be substantially smaller than in general relativity. In particular, we obtain that when dynamical scalarization sets in around a GW frequency of ˜130 Hz , the sole inclusion of the scalar-tensor binding energy causes a reduction of GW cycles from ˜120 Hz up to the end of the sequence (˜1200 Hz ) of ˜11 % with respect to the general-relativity case. (The number of GW cycles from ˜120 Hz to the end of the sequence in general relativity is ˜270 .) We estimate that when the scalar-tensor energy flux is also included the reduction in GW cycles becomes of ˜24 %. Quite interestingly, dynamical scalarization can produce a difference in the number of GW cycles with respect to the general-relativity point-particle case that is much larger than the effect due to tidal interactions, which is on the order of only a few GW cycles. These results further clarify and confirm recent studies that have evolved binary neutron stars either in full numerical relativity or in post-Newtonian theory, and point out the importance of developing
Fold-change detection and scalar symmetry of sensory input fields
Goentoro, Lea; Hart, Yuval; Mayo, Avi; Sontag, Eduardo; Alon, Uri
2010-01-01
Recent studies suggest that certain cellular sensory systems display fold-change detection (FCD): a response whose entire shape, including amplitude and duration, depends only on fold changes in input and not on absolute levels. Thus, a step change in input from, for example, level 1 to 2 gives precisely the same dynamical output as a step from level 2 to 4, because the steps have the same fold change. We ask what the benefit of FCD is and show that FCD is necessary and sufficient for sensory search to be independent of multiplying the input field by a scalar. Thus, the FCD search pattern depends only on the spatial profile of the input and not on its amplitude. Such scalar symmetry occurs in a wide range of sensory inputs, such as source strength multiplying diffusing/convecting chemical fields sensed in chemotaxis, ambient light multiplying the contrast field in vision, and protein concentrations multiplying the output in cellular signaling systems. Furthermore, we show that FCD entails two features found across sensory systems, exact adaptation and Weber's law, but that these two features are not sufficient for FCD. Finally, we present a wide class of mechanisms that have FCD, including certain nonlinear feedback and feed-forward loops. We find that bacterial chemotaxis displays feedback within the present class and hence, is expected to show FCD. This can explain experiments in which chemotaxis searches are insensitive to attractant source levels. This study, thus, suggests a connection between properties of biological sensory systems and scalar symmetry stemming from physical properties of their input fields. PMID:20729472
The symbolism and myth surrounding nurses' uniform.
Richardson, M
This article addresses nurses' uniform from the perspective of the symbolic, myth, legend and competing discourse. The analysis touches upon why nurses working with people who have learning disabilities discarded the nurses' uniform and why other nurses may consider doing so, particularly if suitable alternatives exist. The analysis draws from various areas of nursing practice, including the nursing of disabled people, elderly people and people with learning disabilities. Nurses' uniform is revealed as a totem of considerable potency such that to wear a uniform in just any setting or context has to be cautioned. The practicalities of protective clothing are addressed. A differentiation is drawn between uniform and protective clothing such that much of the undesirable symbolism associated with uniform may be discarded with a consequent enhancement of the image of the nurse.
Local and nonlocal advection of a passive scalar
NASA Astrophysics Data System (ADS)
Scott, R. K.
2006-11-01
Passive and active scalar mixing is examined in a simple one-parameter family of two-dimensional flows based on quasi-geostrophic dynamics, in which the active scalar, the quasi-geostrophic potential vorticity, is confined to a single horizontal surface (so-called surface quasi-geostrophic dynamics) and in which a passive scalar field is also advected by the (horizontal, two-dimensional) velocity field at a finite distance from the surface. At large distances from the surface the flow is determined by the largest horizontal scales, the flow is spectrally nonlocal, and a chaotic advection-type regime dominates. At small distances, z, scaling arguments suggest a transition wavenumber kc˜1/2z, where the slope of the passive scalar spectrum changes from k-5/3, determined by local dynamics, to k-1, determined by nonlocal dynamics, analogous to the transition to a k-1 slope in the Batchelor regime in three-dimensional turbulence. Direct numerical simulations reproduce the qualitative aspects of this transition. Other characteristics of the simulated scalar fields, such as the relative dominance of coherent or filamentary structures, are also shown to depend strongly on the degree of locality.
Dark energy parametrization motivated by scalar field dynamics
NASA Astrophysics Data System (ADS)
de la Macorra, Axel
2016-05-01
We propose a new dark energy (DE) parametrization motivated by the dynamics of a scalar field ϕ. We use an equation of state w parametrized in terms of two functions L and y, closely related to the dynamics of scalar fields, which is exact and has no approximation. By choosing an appropriate ansatz for L we obtain a wide class of behavior for the evolution of DE without the need to specify the scalar potential V. We parametrize L and y in terms of only four parameters, giving w a rich structure and allowing for a wide class of DE dynamics. Our w can either grow and later decrease, or it can happen the other way around; the steepness of the transition is not fixed and it contains the ansatz w={w}o+{w}a(1-a). Our parametrization follows closely the dynamics of a scalar field, and the function L allows us to connect it with the scalar potential V(φ ). While the Universe is accelerating and the slow roll approximation is valid, we get L≃ {({V}\\prime /V)}2. To determine the dynamics of DE we also calculate the background evolution and its perturbations, since they are important to discriminate between different DE models.
Iron Kα line of Kerr black holes with scalar hair
NASA Astrophysics Data System (ADS)
Ni, Yueying; Zhou, Menglei; Cárdenas-Avendaño, Alejandro; Bambi, Cosimo; Herdeiro, Carlos A. R.; Radu, Eugen
2016-07-01
Recently, a family of hairy black holes in 4-dimensional Einstein gravity minimally coupled to a complex, massive scalar field was discovered [1]. Besides the mass M and spin angular momentum J, these objects are characterized by a Noether charge Q, measuring the amount of scalar hair, which is not associated to a Gauss law and cannot be measured at spatial infinity. Introducing a dimensionless scalar hair parameter q, ranging from 0 to 1, we recover (a subset of) Kerr black holes for q = 0 and a family of rotating boson stars for q = 1. In the present paper, we explore the possibility of measuring q for astrophysical black holes with current and future X-ray missions. We study the iron Kα line expected in the reflection spectrum of such hairy black holes and we simulate observations with Suzaku and eXTP. As a proof of concept, we point out, by analyzing a sample of hairy black holes, that current observations can already constrain the scalar hair parameter q, because black holes with q close to 1 would have iron lines definitively different from those we observe in the available data. We conclude that a detailed scanning of the full space of solutions, together with data from the future X-ray missions, like eXTP, will be able to put relevant constraints on the astrophysical realization of Kerr black holes with scalar hair.
Scalar dissipation rate measurements in a starting jet
NASA Astrophysics Data System (ADS)
Soulopoulos, N.; Hardalupas, Y.; Taylor, A. M. K. P.
2014-03-01
Measurements of the scalar dissipation rate are taken in an impulsively started gas jet, using planar laser-induced fluorescence. The measurements are well-resolved spatially. The deteriorating effect of experimental noise on this experiment is treated with a Wiener filter, which is shown to be applicable to this large-scale inhomogeneous flow. The accuracy of the scalar dissipation rate is within 20 %, as determined from an explicit calculation of the filtering errors. The residual fields that remain after the filtering are analysed in detail, and their statistical properties show that these resemble white noise to a good approximation. The level of corrections is minimal for the scalar field but it is of the order of 40 % for the scalar dissipation rate. An examination of the filtering operation using modelled spectra and the measured spatial resolution shows that the Wiener filter produces errors in the estimate of the scalar dissipation rate ˜30 %, for Taylor-scale Reynolds number up to 1,000. The implications of this modelling are discussed with respect to common experimental situations and point out the relative merits of improving the spatial resolution as compared to improvements in the signal-to-noise ratio.
Supernova constraints on massive (pseudo)scalar coupling to neutrinos
NASA Astrophysics Data System (ADS)
Heurtier, Lucien; Zhang, Yongchao
2017-02-01
In this paper we derive constraints on the emission of a massive (pseudo)scalar S from annihilation of neutrinos in the core of supernovae through the dimension-4 coupling νν S, as well as the effective dimension-5 operator 1/Λ(νν)(SS). While most of earlier studies have focused on massless or ultralight scalars, our analysis involves scalar with masses of order eV–GeV which can be copiously produced during {the explosion of supernovae, whose core temperature is} generally of order T~ Script OO(10) MeV. From the luminosity and deleptonization arguments regarding the observation of SN1987A, we exclude a large range of couplings 10‑12 lesssim |gαβ|lesssim 10‑5 for the dimension-4 case, depending on the neutrino flavours involved and the scalar mass. In the case of dimension-5 operator, for a scalar mass from MeV to 100 MeV the coupling hαβ get constrained from 10‑6 to 10‑2, with the cutoff scale explicitly set Λ = 1 TeV. We finally show that if the neutrino burst of a nearby supernova explosion is detected by Super-Kamiokande and IceCube, the constraints will be largely reinforced.
Adjunctation and Scalar Product in the Dirac Equation - II
NASA Astrophysics Data System (ADS)
Dima, M.
2017-02-01
Part-I Dima (Int. J. Theor. Phys. 55, 949, 2016) of this paper showed in a representation independent way that γ 0 is the Bergmann-Pauli adjunctator of the Dirac { γ μ } set. The distiction was made between similarity (MATH) transformations and PHYS transformations - related to the (covariant) transformations of physical quantities. Covariance is due solely to the gauging of scalar products between systems of reference and not to the particular action of γ 0 on Lorentz boosts - a matter that in the past led inadvertently to the definition of a second scalar product (the Dirac-bar product). Part-II shows how two scalar products lead to contradictions and eliminates this un-natural duality in favour of the canonical scalar product and its gauge between systems of reference. What constitutes a proper observable is analysed and for instance spin is revealed not to embody one (except as projection on the boost direction - helicity). A thorough investigation into finding a proper-observable current for the theory shows that the Dirac equation does not possess one in operator form. A number of problems with the Dirac current operator are revealed - its Klein-Gordon counterpart being significantly more physical. The alternative suggested is finding a current for the Dirac theory in scalar form j^{μ } = < ρ rangle _{_{ψ }}v^{μ }_{ψ }.
Long-lived, colour-triplet scalars from unnaturalness
NASA Astrophysics Data System (ADS)
Barnard, James; Cox, Peter; Gherghetta, Tony; Spray, Andrew
2016-03-01
Long-lived, colour-triplet scalars are a generic prediction of unnatural, or split, composite Higgs models where the spontaneous global-symmetry breaking scale f ≳ 10 TeV and an unbroken SU(5) symmetry is preserved. Since the triplet scalars are pseudo NambuGoldstone bosons they are split from the much heavier composite-sector resonances and are the lightest exotic, coloured states. This makes them ideal to search for at colliders. Due to discrete symmetries the triplet scalar decays via a dimension-six term and given the large suppression scale f is often metastable. We show that existing searches for collider-stable R-hadrons from Run-I at the LHC forbid a triplet scalar mass below 845 GeV, whereas with 300 fb-1 at 13 TeV triplet scalar masses up to 1.4 TeV can be discovered. For shorter lifetimes displaced-vertex searches provide a discovery reach of up to 1.8 TeV. In addition we present exclusion and discovery reaches of future hadron colliders as well as indirect limits that arise from modifications of the Higgs couplings.
Minimally coupled scalar field cosmology in anisotropic cosmological model
NASA Astrophysics Data System (ADS)
Singh, C. P.; Srivastava, Milan
2017-02-01
We study a spatially homogeneous and anisotropic cosmological model in the Einstein gravitational theory with a minimally coupled scalar field. We consider a non-interacting combination of scalar field and perfect fluid as the source of matter components which are separately conserved. The dynamics of cosmic scalar fields with a zero rest mass and an exponential potential are studied, respectively. We find that both assumptions of potential along with the average scale factor as an exponential function of scalar field lead to the logarithmic form of scalar field in each case which further gives power-law form of the average scale factor. Using these forms of the average scale factor, exact solutions of the field equations are obtained to the metric functions which represent a power-law and a hybrid expansion, respectively. We find that the zero-rest-mass model expands with decelerated rate and behaves like a stiff matter. In the case of exponential potential function, the model decelerates, accelerates or shows the transition depending on the parameters. The isotropization is observed at late-time evolution of the Universe in the exponential potential model.
Scalar susceptibility in QCD and the multiflavor Schwinger model
NASA Astrophysics Data System (ADS)
Smilga, A.; Verbaarschot, J. J. M.
1996-07-01
We evaluate the leading infrared behavior of the scalar susceptibility in QCD and in the multiflavor Schwinger model for a small nonzero quark mass m and/or small nonzero temperature as well as the scalar susceptibility for the finite-volume QCD partition function. In QCD, it is determined by one-loop chiral perturbation theory, with the result that the leading infrared singularity behaves as ~ln m at zero temperature and as ~T/m at finite temperature. In the Schwinger model with several flavors we use exact results for the scalar correlation function. We find that the Schwinger model has a phase transition at T=0 with critical exponents that satisfy the standard scaling relations. The singular behavior of this model depends on the number of flavors with a scalar susceptibility that behaves as ~m-2/(Nf+1). At finite volumes V we show that the scalar susceptibility is proportional to 1/m2V. Recent lattice calculations of this quantity by Karsch and Laermann are discussed.
Long-lived, colour-triplet scalars from unnaturalness
Barnard, James; Cox, Peter; Gherghetta, Tony; Spray, Andrew
2016-03-01
We study that long-lived, colour-triplet scalars are a generic prediction of unnatural, or split, composite Higgs models where the spontaneous global-symmetry breaking scale f ≳ 10TeV and an unbroken SU(5) symmetry is preserved. Since the triplet scalars are pseudo Nambu- Goldstone bosons they are split from the much heavier composite-sector resonances and are the lightest exotic, coloured states. This makes them ideal to search for at colliders. Due to discrete symmetries the triplet scalar decays via a dimension-six term and given the large suppression scale f is often metastable. We show that existing searches for collider-stable R-hadrons from Run-I at the LHC forbid a triplet scalar mass below 845 GeV, whereas with 300 fb^{-1} at 13TeV triplet scalar masses up to 1.4TeV can be discovered. For shorter lifetimes displaced-vertex searches provide a discovery reach of up to 1.8TeV. Also, we present exclusion and discovery reaches of future hadron colliders as well as indirect limits that arise from modi cations of the Higgs couplings.
Critical behavior in black hole scalar field interaction
NASA Astrophysics Data System (ADS)
Crespo, J. A.; de Oliveira, H. P.
2015-09-01
We study the critical behavior at the threshold of black hole formation in a model consisting of a scalar field incident to a reflector barrier enclosing a Schwarzschild black hole. Weak incident scalar field waves disturb slightly the black hole spacetime and are completely radiated by the reflector, like water waves striking against the wall of a dam. Strong incident waves produce the formation of an apparent horizon outside the barrier. In this case, a fraction of scalar field crosses the horizon together with the barrier, whereas another fraction escapes to infinity. We have integrated the field equations using a Galerkin collocation code that allowed the necessary accuracy to investigate the behavior of the black hole masses for a broad range of scalar field initial amplitude. We have shown that a scaling law describes the black hole masses for amplitudes very close to the critical value. In the limit of very strong scalar fields, the black hole masses either scale linearly with the initial amplitude or saturate depending on the existence of the initial monopole moment.
Long-lived, colour-triplet scalars from unnaturalness
Barnard, James; Cox, Peter; Gherghetta, Tony; ...
2016-03-01
We study that long-lived, colour-triplet scalars are a generic prediction of unnatural, or split, composite Higgs models where the spontaneous global-symmetry breaking scale f ≳ 10TeV and an unbroken SU(5) symmetry is preserved. Since the triplet scalars are pseudo Nambu- Goldstone bosons they are split from the much heavier composite-sector resonances and are the lightest exotic, coloured states. This makes them ideal to search for at colliders. Due to discrete symmetries the triplet scalar decays via a dimension-six term and given the large suppression scale f is often metastable. We show that existing searches for collider-stable R-hadrons from Run-I atmore » the LHC forbid a triplet scalar mass below 845 GeV, whereas with 300 fb-1 at 13TeV triplet scalar masses up to 1.4TeV can be discovered. For shorter lifetimes displaced-vertex searches provide a discovery reach of up to 1.8TeV. Also, we present exclusion and discovery reaches of future hadron colliders as well as indirect limits that arise from modi cations of the Higgs couplings.« less
Uniform Additivity in Classical and Quantum Information
NASA Astrophysics Data System (ADS)
Cross, Andrew; Li, Ke; Smith, Graeme
2017-01-01
Information theory quantifies the optimal rates of resource interconversions, usually in terms of entropies. However, nonadditivity often makes evaluating entropic formulas intractable. In a few auspicious cases, additivity allows a full characterization of optimal rates. We study uniform additivity of formulas, which is easily evaluated and captures all known additive quantum formulas. Our complete characterization of uniform additivity exposes an intriguing new additive quantity and identifies a remarkable coincidence—the classical and quantum uniformly additive functions with one auxiliary variable are identical.
Hydraulic machine with non-uniform cascade
NASA Astrophysics Data System (ADS)
Haluza, M.; Pochylý, F.; Habán, V.
2012-11-01
In this article is introduced the sentence of an extension of operational zone of hydraulic machines. The problems of its extending is based on the design of non-uniform cascade. The non-uniform cascade is connected with other factors. The change of own frequency of the runner of a hydraulic machine and pressure pulsations. The suitable construction of non-uniform cascade is introduced on the results of computational simulation and experiment.
Adjunctation and Scalar Product in the Dirac Equation - I
NASA Astrophysics Data System (ADS)
Dima, M.
2016-02-01
The Bargmann-Pauli adjunctator (hermitiser) of {C}{l}_{_{1,3}}(C) is derived in a representation independent way, circumventing the early derivations (Pauli, Ann. inst. Henri Poincaré 6, 109 and 121 1936) using representation-dependent arguments. Relations for the adjunctator's transformation with the scalar product and space generator set are given. The S U(2) adjunctator is shown to determine the {C}{l}_{_{1,3}}(C) adjunctator. Part-II of the paper will approach the problem of the two scalar products used in Dirac theory - an unphysical situation of "piece-wise physics" with erroneous results. The adequate usage of scalar product - via calibration - will be presented, in particular under boosts, yielding the known covariant transformations of physical quantities.
Optimized scalar promotion with load and splat SIMD instructions
Eichenberger, Alexandre E [Chappaqua, NY; Gschwind, Michael K [Chappaqua, NY; Gunnels, John A [Yorktown Heights, NY
2012-08-28
Mechanisms for optimizing scalar code executed on a single instruction multiple data (SIMD) engine are provided. Placement of vector operation-splat operations may be determined based on an identification of scalar and SIMD operations in an original code representation. The original code representation may be modified to insert the vector operation-splat operations based on the determined placement of vector operation-splat operations to generate a first modified code representation. Placement of separate splat operations may be determined based on identification of scalar and SIMD operations in the first modified code representation. The first modified code representation may be modified to insert or delete separate splat operations based on the determined placement of the separate splat operations to generate a second modified code representation. SIMD code may be output based on the second modified code representation for execution by the SIMD engine.
Optimized scalar promotion with load and splat SIMD instructions
Eichenberger, Alexander E; Gschwind, Michael K; Gunnels, John A
2013-10-29
Mechanisms for optimizing scalar code executed on a single instruction multiple data (SIMD) engine are provided. Placement of vector operation-splat operations may be determined based on an identification of scalar and SIMD operations in an original code representation. The original code representation may be modified to insert the vector operation-splat operations based on the determined placement of vector operation-splat operations to generate a first modified code representation. Placement of separate splat operations may be determined based on identification of scalar and SIMD operations in the first modified code representation. The first modified code representation may be modified to insert or delete separate splat operations based on the determined placement of the separate splat operations to generate a second modified code representation. SIMD code may be output based on the second modified code representation for execution by the SIMD engine.
Bose-Einstein condensates and scalar fields; exploring the similitudes
NASA Astrophysics Data System (ADS)
Castellanos, E.; Macías, A.; Núñez, D.
2014-01-01
We analyze the the remarkable analogy between the classical Klein-Gordon equation for a test scalar field in a flat and also in a curved background, and the Gross-Pitaevskii equation for a Bose-Einstein condensate trapped by an external potential. We stress here that the solution associated with the Klein-Gordon equation (KG) in a flat space time has the same mathematical structure, under certain circumstances, to those obtained for the Gross-Pitaevskii equation, that is, a static soliton solution. Additionally, Thomas-Fermi approximation is applied to the 3-dimensional version of this equation, in order to calculate some thermodynamical properties of the system in curved a space-time back ground. Finally, we stress the fact that a gravitational background provides, in some cases, a kind of confining potential for the scalar field, allowing us to remarks even more the possible connection between scalar fields and the phenomenon of Bose-Einstein condensation.
Chiral Loops and Ghost States in the Quenched Scalar Propagator
W. Bardeen; A. Duncan; E. Eichten; N. Isgur; H. Thacker
2001-06-01
The scalar, isovector meson propagator is analyzed in quenched QCD, using the MQA pole-shifting ansatz to study the chiral limit. In addition to the expected short-range exponential falloff characteristic of a heavy scalar meson, the propagator also exhibits a longer-range, negative metric contribution which becomes pronounced for smaller quark masses. We show that this is a quenched chiral loop effect associated with the anomalous structure of the eta' propagator in quenched QCD. Both the time dependence and the quark mass dependence of this effect are well-described by a chiral loop diagram corresponding to an eta'-pi intermediate state, which is light and effectively of negative norm in the quenched approximation. The relevant parameters of the effective Lagrangian describing the scalar sector of the quenched theory are determined.
B decays into light scalar particles and glueball
NASA Astrophysics Data System (ADS)
Minkowski, P.; Ochs, W.
2005-01-01
The recent observations of f 0(980) in charmless B decays motivate further studies of scalar particle and glueball production in these processes. Amplitudes for charmless two-body B decays involving the members of the scalar nonet are presented based on the symmetries of the dominant penguin contribution. Different scenarios for the lightest scalar nonet are investigated in view of the presently available data. We describe the evidence from B decays for f 0(1500) with a flavor octet like mixing and the hints towards the members of the qbar{q} nonet of lowest mass. There is further support for the hypothesis of a broad 0 + + glueball acting as coherent background especially in Bto Koverline K K. The estimated B decay rates into gluonic mesons represent a sizable fraction of the theoretically derived decay rate for {bto sg}.
Low energy chiral lagrangian parameters for scalar and pseudoscalar mesons
NASA Astrophysics Data System (ADS)
Bardeen, W.; Eichten, E.; Thacker, H.
2003-05-01
We present results of a high-statistics study of scalar and pseudoscalar meson propagators in quenched QCD at two values of lattice spacing,β = 5.7 and 5.9, with clover-improved Wilson fermions. The study of the chiral limit is facilitated by the pole-shifting ansatz of the modified quenched approximation. Pseudoscalar masses and decay constants are determined as a function of quark mass and quenched chiral log effects are estimated. A study of the flavor singlet ν' hairpin diagram yields a precise determination of the ν' mass insertion. The corresponding value of the quenched chiral log parameter b is compared with the observed QCL effects. Removal of QCL effects from the scalar propagator allows a determination of the mass of the lowest lying isovector scalar qq meson.
Gravitating monopole-antimonopole systems at large scalar coupling
Kunz, Jutta; Neemann, Ulrike; Shnir, Yasha
2007-06-15
We discuss static axially symmetric solutions of SU(2) Einstein-Yang-Mills-Higgs theory for large scalar coupling {lambda}. These regular asymptotically flat solutions represent monopole-antimonopole chain and vortex ring solutions, as well as new configurations, present only for larger values of {lambda}. When gravity is coupled to the Yang-Mills-Higgs system, branches of gravitating solutions emerge from the flat-space solutions, and extend up to critical values of the gravitational coupling constant. For small scalar coupling only two branches of gravitating solutions exist, where the second branch connects to a generalized Bartnik-McKinnon solution. For large scalar coupling, however, a plethora of gravitating branches can be present and indicate the emergence of new flat-space branches.
A scalar field dark energy model: Noether symmetry approach
NASA Astrophysics Data System (ADS)
Dutta, Sourav; Panja, Madan Mohan; Chakraborty, Subenoy
2016-04-01
Scalar field dark energy cosmology has been investigated in the present paper in the frame work of Einstein gravity. In the context of Friedmann-Lemaitre-Robertson-Walker space time minimally coupled scalar field with self interacting potential and non-interacting perfect fluid with barotropic equation of state (dark matter) is chosen as the matter context. By imposing Noether symmetry on the Lagrangian of the system the symmetry vector is obtained and the self interacting potential for the scalar field is determined. Then we choose a point transformation (a, φ )→ (u, v) such that one of the transformation variable (say u) is cyclic for the Lagrangian. Subsequently, using conserved charge (corresponding to the cyclic co-ordinate) and the constant of motion, solutions are obtained. Finally, the cosmological implication of the solutions in the perspective of recent observation has been examined.
Bose–Einstein condensates and scalar fields; exploring the similitudes
Castellanos, E.; Macías, A.; Núñez, D.
2014-01-14
We analyze the the remarkable analogy between the classical Klein–Gordon equation for a test scalar field in a flat and also in a curved background, and the Gross–Pitaevskii equation for a Bose–Einstein condensate trapped by an external potential. We stress here that the solution associated with the Klein–Gordon equation (KG) in a flat space time has the same mathematical structure, under certain circumstances, to those obtained for the Gross–Pitaevskii equation, that is, a static soliton solution. Additionally, Thomas–Fermi approximation is applied to the 3–dimensional version of this equation, in order to calculate some thermodynamical properties of the system in curved a space–time back ground. Finally, we stress the fact that a gravitational background provides, in some cases, a kind of confining potential for the scalar field, allowing us to remarks even more the possible connection between scalar fields and the phenomenon of Bose–Einstein condensation.
Scalar field dark matter and the Higgs field
NASA Astrophysics Data System (ADS)
Bertolami, O.; Cosme, Catarina; Rosa, João G.
2016-08-01
We discuss the possibility that dark matter corresponds to an oscillating scalar field coupled to the Higgs boson. We argue that the initial field amplitude should generically be of the order of the Hubble parameter during inflation, as a result of its quasi-de Sitter fluctuations. This implies that such a field may account for the present dark matter abundance for masses in the range 10-6-10-4eV, if the tensor-to-scalar ratio is within the range of planned CMB experiments. We show that such mass values can naturally be obtained through either Planck-suppressed non-renormalizable interactions with the Higgs boson or, alternatively, through renormalizable interactions within the Randall-Sundrum scenario, where the dark matter scalar resides in the bulk of the warped extra-dimension and the Higgs is confined to the infrared brane.
Screening of scalar fields in Dirac-Born-Infeld theory
NASA Astrophysics Data System (ADS)
Burrage, Clare; Khoury, Justin
2014-07-01
We study a new screening mechanism which is present in Dirac-Born-Infeld (DBI)-like theories. A scalar field with a DBI-like Lagrangian is minimally coupled to matter. In the vicinity of sufficiently dense sources, nonlinearities in the scalar dominate and result in an approximately constant acceleration on a test particle, thereby suppressing the scalar force relative to gravity. Unlike generic P(X) or chameleon theories, screening happens within the regime of validity of the effective field theory thanks to the DBI symmetry. We derive an exact form for the field profile around multiple sources and determine the constraints on the theory parameters from tests of gravity. Perturbations around the spherically-symmetric background propagate superluminally, but we argue for a chronology protection analogous to Galileons. This is the first example of a screening mechanism for which quantum corrections to the theory are under control and exact solutions to cosmological N-body problems can be found.
Impact of scalar mesons on the rare B-decays
NASA Astrophysics Data System (ADS)
Issadykov, Aidos; Ivanov, Mikhail A.; Sakhiyev, Sayabek K.
2015-11-01
In the wake of exploring uncertainty in the full angular distribution of the B → Kπ + μ+μ- caused by the presence of the intermediate scalar K0∗ meson, we perform the straightforward calculation of the B(Bs) → S (S is a scalar meson) transition form factors in the full kinematical region within the covariant quark model. We restrict ourselves by the scalar mesons below 1 GeV: a0(980),f0(500),f0(980),K0∗(800). As an application of the obtained results we calculate the widths of the semileptonic and rare decays B(Bs) → Sℓν¯, B(Bs) → Sℓℓ¯ and B(Bs) → Sνν¯. We compare our results with those obtained in other approaches.
Pulsar timing signal from ultralight scalar dark matter
Khmelnitsky, Andrei; Rubakov, Valery E-mail: rubakov@ms2.inr.ac.ru
2014-02-01
An ultralight free scalar field with mass around 10{sup −23}−10{sup −22} eV is a viable dark mater candidate, which can help to resolve some of the issues of the cold dark matter on sub-galactic scales. We consider the gravitational field of the galactic halo composed out of such dark matter. The scalar field has oscillating in time pressure, which induces oscillations of gravitational potential with amplitude of the order of 10{sup −15} and frequency in the nanohertz range. This frequency is in the range of pulsar timing array observations. We estimate the magnitude of the pulse arrival time residuals induced by the oscillating gravitational potential. We find that for a range of dark matter masses, the scalar field dark matter signal is comparable to the stochastic gravitational wave signal and can be detected by the planned SKA pulsar timing array experiment.
Detecting chameleons: The astronomical polarization produced by chameleonlike scalar fields
Burrage, Clare; Davis, Anne-Christine; Shaw, Douglas J.
2009-02-15
We show that a coupling between chameleonlike scalar fields and photons induces linear and circular polarization in the light from astrophysical sources. In this context chameleonlike scalar fields include those of the Olive-Pospelov (OP) model, which describes a varying fine structure constant. We determine the form of this polarization numerically and give analytic expressions in two useful limits. By comparing the predicted signal with current observations we are able to improve the constraints on the chameleon-photon coupling and the coupling in the OP model by over 2 orders of magnitude. It is argued that, if observed, the distinctive form of the chameleon induced circular polarization would represent a smoking gun for the presence of a chameleon. We also report a tentative statistical detection of a chameleonlike scalar field from observations of starlight polarization in our galaxy.
Extended scalar-tensor theory and thermodynamics in teleparallel framework
NASA Astrophysics Data System (ADS)
Salti, Mustafa; Aydogdu, Oktay; Acikgoz, Irfan
2016-09-01
We present here a new modified gravitation theory for the galactic dark energy effect by using a general Lagrangian density which is represented by an arbitrary function f(T, ϕ, X) where T describes the torsion scalar in teleparallel gravity while X shows the kinetic scalar field energy. While the function is in general form, once reduced, the model can be transformed into some of the other well-known gravitation theories. After deriving the corresponding field equations and considering the flat Friedmann-Robertson-Walker type universe which is filled with ordinary cosmic matter, we discuss both the non-equilibrium and equilibrium profiles of galactic thermodynamics. We find that there exists an equilibrium picture of thermodynamics. Additionally, we also generalize ordinary f(T, ϕ, X) model’s action to the case in which there exists an interaction between the chameleon and scalar fields.
Thick branes from self-gravitating scalar fields
Novikov, Oleg O.; Andrianov, Vladimir A.; Andrianov, Alexander A.
2014-07-23
The formation of a domain wall ('thick brane') induced by scalar matter dynamics and triggered by a thin brane defect is considered in noncompact five-dimensional space-time with warped AdS type geometry. The scalar matter is composed of two fields with softly broken O(2) symmetry and minimal coupling to gravity. The nonperturbative effects in the invariant mass spectrum of light localized scalar states are investigated for different values of the tension of the thin brane defect. Especially interesting is the case of the thin brane with negative tension when the singular barriers form a potential well with two infinitely tall walls and the discrete spectrum of localized states arises completely isolated from the bulk.
Behavior of Phantom Scalar Fields near Black Holes
Lora-Clavijo, F. D.; Gonzalez, J. A.; Guzman, F. S.
2010-07-12
We present the accretion of a phantom scalar field into a black hole for various scalar field potentials in the full non-linear regime. Our results are based on the use of numerical methods and show that for all the cases studied the black hole's apparent horizon mass decreases. We explore a particular subset of the parameter space and from our results we conclude that this is a very efficient black hole shrinking process because the time scales of the area reduction of the horizon are short. We show that the radial equation of state of the scalar field depends strongly on the space and time, with the condition {omega} = p/{rho}>-1, as opposed to a phantom fluid at cosmic scales that allows {omega}<-1.
Aharonov-Casher and Scalar Aharonov-Bohm Topological Effects
NASA Astrophysics Data System (ADS)
Dulat, Sayipjamal; Ma, Kai
2012-02-01
We reexamine the topological and nonlocal natures of the Aharonov-Casher and scalar Aharonov-Bohm phase effects. The underlying U(1) gauge structure is exhibited explicitly. And the conditions for developing topological Aharonov-Casher and scalar Aharonov-Bohm phases are clarified. We analyze the arguments of M. Peshkin and H. J. Lipkin [Phys. Rev. Lett. 74, 2847 (1995)PRLTAO0031-900710.1103/PhysRevLett.74.2847] in detail and show that they are based on the wrong Hamiltonian which yields their conclusion incorrect.
Time-dependent scalar fields as candidates for dark matter
NASA Astrophysics Data System (ADS)
Malakolkalami, B.; Mahmoodzadeh, A.
2016-11-01
In this paper, we study some properties of what is called the oscillaton, a spherically symmetric object made of a real time-dependent scalar field. Using an exponential scalar potential instead of a quadratic one discussed in previous works, as a new choice, we investigate the oscillaton properties with this potential. Solving the differential equation system resulting from the Einstein-Klein-Gordon equations reveals the importance of the oscillatons as candidates for dark matter. Meanwhile, a simplification called the stationary limit procedure is also carried out.
Effective Hamiltonian for non-minimally coupled scalar fields
NASA Astrophysics Data System (ADS)
Meşe, Emine; Pirinççiog˜Lu, Nurettin; Açıkgöz, Irfan; Binbay, Figen
2009-01-01
In the post Newtonian limit, a non-relativistic Hamiltonian is derived for scalar fields with quartic self-interaction and non-minimal coupling to the curvature scalar of the background spacetime. These effects are found to contribute to the non-relativistic Hamiltonian by adding nonlinearities and by modifying the gravitational Darwin term. As we discuss briefly in the text, the impact of these novel structures can be sizable in dense media like neutron star core, and can have observable signatures in phase transitions, for example.
The structure of turbulent channel flow with passive scalar transport
NASA Technical Reports Server (NTRS)
Guezennec, Y.; Stretch, D.; Kim, J.
1990-01-01
The simulation of turbulent channel flow, with various passive markers, was examined to investigate the local mechanisms of passive scalar transport. We found significant differences between the local transport of heat and momentum, even when the molecular and turbulent Prandtl numbers are of order one. These discrepancies can be attributed to the role of the pressure. We also found that the heat is a poor marker of the vorticity field outside of the near wall region and that scalar transport over significant distances results from the aggregate effect of many turbulent eddies.
Can a spectator scalar field enhance inflationary tensor mode?
NASA Astrophysics Data System (ADS)
Fujita, Tomohiro; Yokoyama, Jun'ichi; Yokoyama, Shuichiro
2015-04-01
We consider the possibility of enhancing the inflationary tensor mode by introducing a spectator scalar field with a small sound speed which induces gravitational waves as a second-order effect. We analytically obtain the power spectra of gravitational waves and curvature perturbation induced by the spectator scalar field. We find that the small sound speed amplifies the curvature perturbation much more than the tensor mode and the current observational constraint forces the induced gravitational waves to be negligible compared with those from the vacuum fluctuation during inflation.
Spinning Particles in Scalar-Tensor Gravity with Torsion
Wang, C.-H.
2008-10-10
A new model of neutral spinning particles in scalar-tensor gravity with torsion is developed by using a Fermi coordinates associated with orthonormal frames attached to a timelike curve and Noether identities. We further analyze its equations of motion both in background Brans-Dicke torsion field and the constant pseudo-Riemannian curvature with a constant scalar field. It turns that the particle's spin vector is parallel transport along its wordline in the Brans-Dicke torsion field and de Sitter spacetime. However, the dynamics of the spinning particle cannot completely determined in anti-de Sitter spacetime and it requires a further investigation.
Gravity quantized: Loop quantum gravity with a scalar field
Domagala, Marcin; Kaminski, Wojciech; Giesel, Kristina; Lewandowski, Jerzy
2010-11-15
...''but we do not have quantum gravity.'' This phrase is often used when analysis of a physical problem enters the regime in which quantum gravity effects should be taken into account. In fact, there are several models of the gravitational field coupled to (scalar) fields for which the quantization procedure can be completed using loop quantum gravity techniques. The model we present in this paper consists of the gravitational field coupled to a scalar field. The result has similar structure to the loop quantum cosmology models, except that it involves all the local degrees of freedom of the gravitational field because no symmetry reduction has been performed at the classical level.
Anisotropic exact solutions in scalar-tensor-vector gravity
NASA Astrophysics Data System (ADS)
Sharif, M.; Yousaf, Aasma
2016-09-01
The aim of this paper is to explore exact solutions in the scalar-tensor-vector theory of gravity with two scalar fields and one vector field. We consider a locally rotationally symmetric Bianchi type-I universe filled with perfect fluid. The first exact solution is found through certain assumptions while the second solution is obtained through Noether symmetry approach. We discuss the behavior of the resulting solutions numerically and also explore the corresponding energy conditions. It is found that the strong energy condition is violated in both cases indicating the accelerated expansion of the universe.
Scalar-tensor theory of gravitation with negative coupling constant
NASA Technical Reports Server (NTRS)
Smalley, L. L.; Eby, P. B.
1976-01-01
The possibility of a Brans-Dicke scalar-tensor gravitation theory with a negative coupling constant is considered. The admissibility of a negative-coupling theory is investigated, and a simplified cosmological solution is obtained which allows a negative derivative of the gravitation constant. It is concluded that a Brans-Dicke theory with a negative coupling constant can be a viable alternative to general relativity and that a large negative value for the coupling constant seems to bring the original scalar-tensor theory into close agreement with perihelion-precession results in view of recent observations of small solar oblateness.
Unified description of the dynamics of quintessential scalar fields
Ureña-López, L. Arturo
2012-03-01
Using the dynamical system approach, we describe the general dynamics of cosmological scalar fields in terms of critical points and heteroclinic lines. It is found that critical points describe the initial and final states of the scalar field dynamics, but that heteroclinic lines give a more complete description of the evolution in between the critical points. In particular, the heteroclinic line that departs from the (saddle) critical point of perfect fluid-domination is the representative path in phase space of quintessence fields that may be viable dark energy candidates. We also discuss the attractor properties of the heteroclinic lines, and their importance for the description of thawing and freezing fields.
Light colored scalars and the up quarks phenomenology
NASA Astrophysics Data System (ADS)
Fajfer, Svjetlana; Doršner, Ilja; Kamenik, Jernej F.; Košnik, Nejc
2010-12-01
A colored weak singlet scalar can accommodate the 2 σ disagreement of the measured forward-backward asymmetry from the Standard model prediction in the tt¯ production at the Tevatron. Such colored scalars appear in a class of grand unified theories. Their couplings to up quarks can be fully constrained using D-D oscillation observables, as well as di-jet and single top production measurements at the Tevatron. After making predictions for the flavour changing neutral current transitions in the charm and top quark sectors, we discuss the impact of these constraints on the texture of the up-quark mass matrix within a class of grand unified models.
Very light cosmological scalar fields from a tiny cosmological constant
Calmet, Xavier
2007-10-15
I discuss a mechanism which generates a mass term for a scalar field in an expanding universe. The mass of this field turns out to be generated by the cosmological constant and can be naturally small if protected by a conformal symmetry which is, however, broken in the gravitational sector. The mass is comparable today to the Hubble time. This scalar field could thus impact our Universe today and, for example, be at the origin of a time variation of the couplings and masses of the parameters of the standard model.
On the stability and causality of scalar-vector theories
Fleury, Pierre; Pitrou, Cyril; Uzan, Jean-Philippe; Almeida, Juan P. Beltrán E-mail: juanpbeltran@uan.edu.co E-mail: uzan@iap.fr
2014-11-01
Various extensions of standard inflationary models have been proposed recently by adding vector fields. Because they are generally motivated by large-scale anomalies, and the possibility of statistical anisotropy of primordial fluctuations, such models require to introduce non-standard couplings between vector fields on the one hand, and either gravity or scalar fields on the other hand. In this article, we study models involving a vector field coupled to a scalar field. We derive restrictive necessary conditions for these models to be both stable (Hamiltonian bounded by below) and causal (hyperbolic equations of motion)
Finite temperature scalar field theory in the early universe
Leutwyler, H.; Mallik, S. )
1991-01-01
The authors study a scalar Higgs field in an expanding Robertson-Walker geometry, using the real time formulation of Semenoff and Weiss. It is shown that the density matrix associated with the Hamiltonian at a sharp time describes a state for which perturbation theory is not renormalizable and an alternative, renormalizable characterization of thermal equilibrium is given. They calculate the thermal quantum fluctuations surrounding a classical field and discuss the characteristic time scales occurring in the evolution of a scalar field from an initial radiation dominated phase of thermal equilibrium to an unstable, inflationary de Sitter phase.
Searches for scalar and vector leptoquarks at future hadron colliders
Rizzo, T.G.
1996-09-01
The search reaches for both scalar(S) and vector(V) leptoquarks at future hadron colliders are summarized. In particular the authors evaluate the production cross sections of both leptoquark types at TeV33 and LHC as well as the proposed 60 and 200 TeV colliders through both quark-antiquark annihilation and gluon-gluon fusion: q{anti q},gg {r_arrow} SS,VV. Experiments at these machines should easily discover such particles if their masses are not in excess of the few TeV range.
Belinsky, Moisey I
2016-05-02
The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.
School Dress Codes and Uniform Policies.
ERIC Educational Resources Information Center
Anderson, Wendell
2002-01-01
Opinions abound on what students should wear to class. Some see student dress as a safety issue; others see it as a student-rights issue. The issue of dress codes and uniform policies has been tackled in the classroom, the boardroom, and the courtroom. This Policy Report examines the whole fabric of the debate on dress codes and uniform policies…
Student Dress Codes and Uniforms. Research Brief
ERIC Educational Resources Information Center
Johnston, Howard
2009-01-01
According to an Education Commission of the States "Policy Report", research on the effects of dress code and school uniform policies is inconclusive and mixed. Some researchers find positive effects; others claim no effects or only perceived effects. While no state has legislatively mandated the wearing of school uniforms, 28 states and…
School Uniform Policies: Students' Views of Effectiveness.
ERIC Educational Resources Information Center
McCarthy, Teresa M.; Moreno, Josephine
2001-01-01
Focus-group interviews of New York City middle-school students about their perceptions of the effectiveness of the school-uniform policy. Finds that students' perceptions of the effects of school-uniform policy on school culture varied considerably with those intended by the principal. (Contains 40 references.) (PKP)
School Uniforms and Discourses on Childhood.
ERIC Educational Resources Information Center
Bodine, Ann
2003-01-01
This ethnographic study examined the introduction of school uniforms in the public schools of one California city. Findings indicated that the uniform issue intersected with issues such as student safety and violence, family stress, egalitarianism, competitive dressing, and a power struggle over shaping the childhood environment. It was concluded…
A School Uniform Program That Works.
ERIC Educational Resources Information Center
Loesch, Paul C.
1995-01-01
According to advocates, school uniforms reduce gang influence, decrease families' clothing expenditures, and help mitigate potentially divisive cultural and economic differences. Aiming to improve school climate, a California elementary school adopted uniforms as a source of pride and affiliation. This article describes the development of the…
School Uniform Policies in Public Schools
ERIC Educational Resources Information Center
Brunsma, David L.
2006-01-01
The movement for school uniforms in public schools continues to grow despite the author's research indicating little if any impact on student behavior, achievement, and self-esteem. The author examines the distribution of uniform policies by region and demographics, the impact of these policies on perceptions of school climate and safety, and…
Uniform insulation applied-B ion diode
Seidel, David B.; Slutz, Stephen A.
1988-01-01
An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.
Testing for uniformity in multidimensional data.
Smith, S P; Jain, A K
1984-01-01
Testing for uniformity in multidimensional data is important in exploratory pattern analysis, statistical pattern recognition, and image processing. The goal of this paper is to determine whether the data follow the uniform distribution over some compact convex set in K-dimensional space, called the sampling window. We first provide a simple, computationally efficient method for generating a uniformly distributed sample over a set which approximates the convex hul of the data. We then test for uniformity by comparing this generated sample to the data by using Friedman-Rafsky's minimal spanning tree (MST) based test. Experiments with both simulated and real data indicate that this MST-based test is useful in deciding if data are uniform.
Asynchronous signal-dependent non-uniform sampler
NASA Astrophysics Data System (ADS)
Can-Cimino, Azime; Chaparro, Luis F.; Sejdić, Ervin
2014-05-01
Analog sparse signals resulting from biomedical and sensing network applications are typically non-stationary with frequency-varying spectra. By ignoring that the maximum frequency of their spectra is changing, uniform sampling of sparse signals collects unnecessary samples in quiescent segments of the signal. A more appropriate sampling approach would be signal-dependent. Moreover, in many of these applications power consumption and analog processing are issues of great importance that need to be considered. In this paper we present a signal dependent non-uniform sampler that uses a Modified Asynchronous Sigma Delta Modulator which consumes low-power and can be processed using analog procedures. Using Prolate Spheroidal Wave Functions (PSWF) interpolation of the original signal is performed, thus giving an asynchronous analog to digital and digital to analog conversion. Stable solutions are obtained by using modulated PSWFs functions. The advantage of the adapted asynchronous sampler is that range of frequencies of the sparse signal is taken into account avoiding aliasing. Moreover, it requires saving only the zero-crossing times of the non-uniform samples, or their differences, and the reconstruction can be done using their quantized values and a PSWF-based interpolation. The range of frequencies analyzed can be changed and the sampler can be implemented as a bank of filters for unknown range of frequencies. The performance of the proposed algorithm is illustrated with an electroencephalogram (EEG) signal.
Poisson cohomology of scalar multidimensional Dubrovin-Novikov brackets
NASA Astrophysics Data System (ADS)
Carlet, Guido; Casati, Matteo; Shadrin, Sergey
2017-04-01
We compute the Poisson cohomology of a scalar Poisson bracket of Dubrovin-Novikov type with D independent variables. We find that the second and third cohomology groups are generically non-vanishing in D > 1. Hence, in contrast with the D = 1 case, the deformation theory in the multivariable case is non-trivial.
Physical Scalar Mass Particles in the 331 Model
Ravinez, O.; Diaz, H.; Romero, D.
2007-10-26
We get to diagonalize the mass matrix considering all terms in the scalar lagrangian sector, given in the SU(3)xSU(3)xU(1) model cited below. This will let us in the future realize the phenomenological consequences.
Viscous range of turbulent scalar of large Prandtl number
NASA Astrophysics Data System (ADS)
Qian, J.
1995-02-01
The analytical theory of a turbulent scalar, developed in previous papers is extended to the case of large Prandtl number. The fluctuation character of the least principal rate of strain gamma has an important effect upon the scalar spectrum. The scalar variance spectrum in the viscous range is F(k) = 4.472 (nu/epsilon)(exp 1/2) chi k(exp -1) H(x), X is identical to (k/k(sub b))(exp 2), H(x) is a dimensionless universal function and is determined by solving numerically the closed spectral dynamical equations. A simple fitting formula of the numerical result is H(x) = 0.7687 exp(- 3.79x) + 0.2313 exp(-11.13 x), which corresponds a two-values fluctuation model of gamma. Here upsilon is the kinematic viscosity, k(sub b) is identical to (epsilon/upsilon mu(exp 2))(exp 1/4) is the Batchelor wavenumber, mu is the scalar diffusivity, and epsilon and eni are respectively the energy and variance dissipation rates.
Decay of passive scalar fluctuations in axisymmetric turbulence
NASA Astrophysics Data System (ADS)
Yoshimatsu, Katsunori; Davidson, Peter A.; Kaneda, Yukio
2016-11-01
Passive scalar fluctuations in axisymmetric Saffman turbulence are examined theoretically and numerically. Theoretical predictions are verified by direct numerical simulation (DNS). According to the DNS, self-similar decay of the turbulence and the persistency of the large-scale anisotropy are found for its fully developed turbulence. The DNS confirms the time-independence of the Corrsin integral.
Asymmetric inelastic inert doublet dark matter from triplet scalar leptogenesis
NASA Astrophysics Data System (ADS)
Arina, Chiara; Sahu, Narendra
2012-01-01
The nature of dark matter (DM) particles and the mechanism that provides their measured relic abundance are currently unknown. In this paper we investigate inert scalar and vector like fermion doublet DM candidates with a charge asymmetry in the dark sector, which is generated by the same mechanism that provides the baryon asymmetry, namely baryogenesis-via-leptogenesis induced by decays of scalar triplets. At the same time the model gives rise to neutrino masses in the ballpark of oscillation experiments via type II seesaw. We discuss possible sources of depletion of asymmetry in the DM and visible sectors and solve the relevant Boltzmann equations for quasi-equilibrium decay of triplet scalars. A Monte-Carlo-Markov-Chain analysis is performed for the whole parameter space. The survival of the asymmetry in the dark sector leads to inelastic scattering off nuclei. We then apply Bayesian statistic to infer the model parameters favoured by the current experimental data, in particular the DAMA annual modulation and XENON100 exclusion limit. The latter strongly disfavours asymmetric scalar doublet DM of mass O(TeV) as required by DM-DM¯ oscillations, while an asymmetric vector like fermion doublet DM with mass around 100 GeV is a good candidate for DAMA annual modulation yet satisfying the constraints from XENON100 data.
Q(M) and the depolarization index scalar metrics.
Espinosa-Luna, Rafael; Bernabeu, Eusebio; Atondo-Rubio, Gelacio
2008-04-01
A depolarization scalar metric for Mueller matrices, named Q(M), is derived from the degree of polarization. Q(M) has been recently reported, and it has been deduced from the nine bilinear constraints between the sixteen elements of the Mueller-Jones matrix. We discuss the relations between Q(M) and the depolarization index.
Scalar control on speed drive for ac motor
NASA Astrophysics Data System (ADS)
Barsoum, Nader
2012-11-01
This paper aims to investigate the performance of ABB ACS800 variable speed drive operating under Scalar Control mode, and eventually develop a set of experimental procedures for undergraduate laboratory purposes. Scalar Control is the most widespread form of ac drive, for its low cost and simplicity especially implemented in the open loop mode. Scalar control is achieved by controlling the stator voltage and frequency, thus maintaining the motor's air-gap flux at a constant value. To illustrate the control method, the ac drive is configured according to the wiring diagram in the firmware manual that the drive control location can be both local and external. The drive is selected to operate under Factory application macro, whereby either ordinary speed control applications or constant speeds applications may be used. Under ordinary speed control, frequency reference signals are provided to the drive through the analogue input AI1. The drive will operate at the given frequency reference value throughout the operation regardless of any changes in the load. The torque speed curve moves along the speed axis with no changes to the shape as the supply frequencies changes. On the other hand, the drive allows three preset constant speed through digital inputs DI5 and DI6. The drive operate at a constant speed value over a time period, and only switch from one constant speed to another constant speed by triggering the two input switches. Scalar control is most suitable for applications not required high precision, such as blowers, fans and pumps.
Scalar decay constant and Yukawa coupling in walking gauge theories
Hashimoto, Michio
2011-05-01
We propose an approach for the calculation of the Yukawa coupling through the scalar decay constant and the chiral condensate in the context of the extended technicolor . We perform the nonperturbative computation of the Yukawa coupling based on the improved ladder Schwinger-Dyson equation. It turns out that the Yukawa coupling can be larger or smaller than the standard model value, depending on the number N{sub D} of the weak doublets for each technicolor (TC) index. It is thus nontrivial whether or not the huge enhancement of the production of the scalar via the gluon fusion takes place even for a walking TC model with a colored techni-fermion. For the typical one-family TC model near conformality, it is found that the Yukawa coupling is slightly larger than the standard model one, where the expected mass of the scalar bound state is around 500 GeV. In this case, the production cross section via the gluon fusion is considerably enhanced, as naively expected, and hence such a scalar can be discovered/excluded at the early stage of the LHC.
Top and bottom tensor couplings from a color octet scalar
NASA Astrophysics Data System (ADS)
Martinez, Roberto; Valencia, German
2017-02-01
We compute the one-loop contributions from a color octet scalar to the tensor anomalous couplings of top and bottom quarks to gluons, photons and W bosons. We use known constraints on the parameters of the model to compare the predicted size of these couplings with existing phenomenological constraints.
Evolution of dark energy perturbations in scalar-tensor cosmologies
Bueno Sanchez, J. C.; Perivolaropoulos, L.
2010-05-15
We solve analytically and numerically the generalized Einstein equations in scalar-tensor cosmologies to obtain the evolution of dark energy and matter linear perturbations. We compare our results with the corresponding results for minimally coupled quintessence perturbations. We find that scalar-tensor dark energy density perturbations are amplified by a factor of about 10{sup 4} compared to minimally coupled quintessence perturbations on scales less than about 1000 h{sup -1} Mpc (sub-Hubble scales). On these scales dark energy perturbations constitute a fraction of about 10% compared to matter density perturbations. Scalar-tensor dark energy density perturbations are anticorrelated with matter linear perturbations on sub-Hubble scales. This anticorrelation of matter with negative pressure perturbations induces a mild amplification of matter perturbations by about 10% on sub-Hubble scales. The evolution of scalar field perturbations on sub-Hubble scales is scale independent and therefore corresponds to a vanishing effective speed of sound (c{sub s{Phi}=}0). We briefly discuss the observational implications of our results, which may include predictions for galaxy and cluster halo profiles that are modified compared to {Lambda}CDM. The observed properties of these profiles are known to be in some tension with the predictions of {Lambda}CDM.
Factorization for radiative heavy quarkonium decays into scalar Glueball
NASA Astrophysics Data System (ADS)
Zhu, Ruilin
2015-09-01
We establish the factorization formula for scalar Glueball production through radiative decays of vector states of heavy quarkonia, e.g. J/ ψ, ψ(2 S) and Υ( nS), where the Glueball mass is much less than the parent heavy quarkonium mass. The factorization is demonstrated explicitly at one-loop level through the next-to-leading order (NLO) corrections to the hard kernel, the non-relativistic QCD (NRQCD) long-distance matrix elements (LDMEs) of the heavy quarkonium, and the light-cone distribution amplitude (LCDA) of scalar Glueball. The factorization provides a comprehensive theoretical approach to investigate Glueball production in the radiative decays of vector states of heavy quarkonia and determine the physic nature of Glueball. We discuss the scale evolution equation of LCDA for scalar Glueball. In the end, we extract the value of the decay constant of Scalar Glueball from Lattice QCD calculation and analyze the mixing effect among f 0(1370), f 0(1500) and f 0(1710).
Kinetic mixing in scalar-tensor theories of gravity
NASA Astrophysics Data System (ADS)
Bettoni, Dario; Zumalacárregui, Miguel
2015-05-01
Kinetic mixing between the metric and scalar degrees of freedom is an essential ingredient in contemporary scalar-tensor theories. This often makes it hard to understand their physical content, especially when derivative mixing is present, as is the case for Horndeski action. In this work we develop a method that allows us to write a Ricci-curvature-free scalar field equation, and we discuss some of the advantages of such a rephrasing in the study of stability issues in the presence of matter, the existence of an Einstein frame, and the generalization of the disformal screening mechanism. For quartic Horndeski theories, such a procedure leaves, in general, a residual coupling to the curvature, given by the Weyl tensor. This gives rise to a binary classification of scalar-tensor theories into stirred theories, in which the curvature can be substituted, and shaken theories, in which a residual coupling to the curvature remains. Quite remarkably, we have found that generalized Dirac-Born-Infeld Galileons belong to the first class. Finally, we discuss kinetic mixing in quintic theories, in which nonlinear mixing terms appear, and in the recently proposed theories beyond Horndeski that display a novel form of kinetic mixing, in which the field equation is sourced by derivatives of the energy-momentum tensor.
Exact null controllability of degenerate evolution equations with scalar control
Fedorov, Vladimir E; Shklyar, Benzion
2012-12-31
Necessary and sufficient conditions for the exact null controllability of a degenerate linear evolution equation with scalar control are obtained. These general results are used to examine the exact null controllability of the Dzektser equation in the theory of seepage. Bibliography: 13 titles.
Classification of scalar and dyadic nonlocal optical response models.
Wubs, M
2015-11-30
Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response, the transverse response, or both. In phenomenological scalar models the nonlocal response is described as a smearing out of the commonly assumed infinitely localized response, as characterized by a distribution with a finite width. Here we calculate explicitly whether and how tensorial models, such as the hydrodynamic Drude model and generalized nonlocal optical response theory, follow this phenomenological description. We find considerable differences, for example that nonlocal response functions, in contrast to simple distributions, assume negative and complex values. Moreover, nonlocal response regularizes some but not all diverging optical near fields. We identify the scalar model that comes closest to the hydrodynamic model. Interestingly, for the hydrodynamic Drude model we find that actually only one third (1/3) of the free-electron response is smeared out nonlocally. In that sense, nonlocal response is stronger for transverse and scalar nonlocal response models, where the smeared-out fractions are 2/3 and 3/3, respectively. The latter two models seem to predict novel plasmonic resonances also below the plasma frequency, in contrast to the hydrodynamic model that predicts standing pressure waves only above the plasma frequency.
Quantum Theory of a Strongly-Dissipative Scalar Field
NASA Astrophysics Data System (ADS)
Jafari, Marjan; Kheirandish, Fardin
2017-04-01
The properties of a quantum dissipative scalar field is analyzed by Caldeira-Leggett model in strong-coupling regime. The Lagrangian of the total system is canonically quantized and the full Hamiltonian is diagonalized using Fano technique. A mode-dependent probability density is introduced. The steady state energy and correlation functions at finite temperature are calculated in terms of the probability density.
Collider searches and cosmology in the MSSM with heavy scalars
Carena, Marcela; Freitas, A.; /Zurich U.
2006-08-01
In a variety of supersymmetric extensions of the Standard Model, the scalar partners of the quarks and leptons are predicted to be very heavy and beyond the reach of next-generation colliders. For instance, the realization of electroweak baryogenesis in supersymmetry requires new sources of CP-violation, which can only be naturally accommodated with electric dipole moment constraints if the first and second generation scalar fermions are beyond the TeV scale. Also in focus-point supersymmetry and split supersymmetry the scalar fermions are very heavy. In this work, the phenomenology of scenarios with electroweak baryogenesis and in the focus point region at the LHC and ILC is studied, which becomes challenging due to the presence of heavy scalar fermions. Implications for the analysis of baryogenesis and dark matter are deduced. It is found that precision measurements of superpartner properties allow an accurate determination of the dark matter relic density in both scenarios, while important but only incomplete information about the baryogenesis mechanism can be obtained.
Alternate Light Front Quantization Procedure for Scalar Fields
NASA Astrophysics Data System (ADS)
Przeszowski, Jerzy A.
2017-03-01
The novel procedure for the light-front (LF) quantization is formulated and applied for models of free scalar fields. The expected well-known results are rediscovered for a single field and new results are obtained for the two fields model. We use fields smeared with a test function on the LF hypersurface as the basic ingredient of our novel quantization procedure.
Inflation with an extra light scalar field after Planck
Vennin, Vincent; Koyama, Kazuya; Wands, David E-mail: kazuya.koyama@port.ac.uk
2016-03-01
Bayesian inference techniques are used to investigate situations where an additional light scalar field is present during inflation and reheating. This includes (but is not limited to) curvaton-type models. We design a numerical pipeline where ≅ 200 inflaton setups × 10 reheating scenarios = 2000 models are implemented and we present the results for a few prototypical potentials. We find that single-field models are remarkably robust under the introduction of light scalar degrees of freedom. Models that are ruled out at the single-field level are not improved in general, because good values of the spectral index and the tensor-to-scalar ratio can only be obtained for very fine-tuned values of the extra field parameters and/or when large non-Gaussianities are produced. The only exception is quartic large-field inflation, so that the best models after Planck are of two kinds: plateau potentials, regardless of whether an extra field is added or not, and quartic large-field inflation with an extra light scalar field, in some specific reheating scenarios. Using Bayesian complexity, we also find that more parameters are constrained for the models we study than for their single-field versions. This is because the added parameters not only contribute to the reheating kinematics but also to the cosmological perturbations themselves, to which the added field contributes. The interplay between these two effects lead to a suppression of degeneracies that is responsible for having more constrained parameters.
Inflation with an extra light scalar field after Planck
NASA Astrophysics Data System (ADS)
Vennin, Vincent; Koyama, Kazuya; Wands, David
2016-03-01
Bayesian inference techniques are used to investigate situations where an additional light scalar field is present during inflation and reheating. This includes (but is not limited to) curvaton-type models. We design a numerical pipeline where simeq 200 inflaton setups × 10 reheating scenarios = 2000 models are implemented and we present the results for a few prototypical potentials. We find that single-field models are remarkably robust under the introduction of light scalar degrees of freedom. Models that are ruled out at the single-field level are not improved in general, because good values of the spectral index and the tensor-to-scalar ratio can only be obtained for very fine-tuned values of the extra field parameters and/or when large non-Gaussianities are produced. The only exception is quartic large-field inflation, so that the best models after Planck are of two kinds: plateau potentials, regardless of whether an extra field is added or not, and quartic large-field inflation with an extra light scalar field, in some specific reheating scenarios. Using Bayesian complexity, we also find that more parameters are constrained for the models we study than for their single-field versions. This is because the added parameters not only contribute to the reheating kinematics but also to the cosmological perturbations themselves, to which the added field contributes. The interplay between these two effects lead to a suppression of degeneracies that is responsible for having more constrained parameters.
Impact of other scalar fields on oscillons after hilltop inflation
Antusch, Stefan; Orani, Stefano E-mail: stefano.orani@unibas.ch
2016-03-01
Oscillons are spatially localized and relatively stable field fluctuations which can form after inflation under suitable conditions. In order to reheat the universe, the fields which dominate the energy density after inflation have to couple to other degrees of freedom and finally produce the matter particles present in the universe today. In this study, we use lattice simulations in 2+1 dimensions to investigate how such couplings can affect the formation and stability of oscillons. We focus on models of hilltop inflation, where we have recently shown that hill crossing oscillons generically form, and consider the coupling to an additional scalar field which, depending on the value of the coupling parameter, can get resonantly enhanced from the inhomogeneous inflaton field. We find that three cases are realized: without a parametric resonance, the additional scalar field has no effects on the oscillons. For a fast and strong parametric resonance of the other scalar field, oscillons are strongly suppressed. For a delayed parametric resonance, on the other hand, the oscillons get imprinted on the other scalar field and their stability is even enhanced compared to the single-field oscillons.
Cosmological models in the scalar-tetradic theory B
NASA Astrophysics Data System (ADS)
Chauvet, Pablo; Pimentel, Luis O.
1992-03-01
We present two methods for solving the cosmological equations of the scalar-tetradic theory B [19] when a Friedmann-Robertson-Walker (FRW) geometry is assumed. Among the many solutions found there are several physically meaningful ones including inflationary universe solutions.
Remarks on the spherical scalar field halo in galaxies
Nandi, Kamal K.; Valitov, Ildar; Migranov, Nail G.
2009-08-15
Matos, Guzman, and Nunez proposed a model for the galactic halo within the framework of scalar field theory. We argue that an analysis involving the full metric can reveal the true physical nature of the halo only when a certain condition is maintained. We fix that condition and also calculate its impact on observable parameters of the model.
Revisiting the Brans solutions of scalar-tensor gravity
NASA Astrophysics Data System (ADS)
Faraoni, Valerio; Hammad, Fayçal; Belknap-Keet, Shawn D.
2016-11-01
Motivated by statements in the literature which contradict two general theorems, the static and spherically symmetric Brans solutions of scalar-tensor gravity are analyzed explicitly in both the Jordan and the Einstein conformal frames. Depending on the parameter range, these solutions describe wormholes or naked singularities but not black holes.
Propagation of Scalar Fields in a Plane Symmetric Spacetime
NASA Astrophysics Data System (ADS)
Celestino, Juliana; Alves, Márcio E. S.; Barone, F. A.
2016-12-01
The present article deals with solutions for a minimally coupled scalar field propagating in a static plane symmetric spacetime. The considered metric describes the curvature outside a massive infinity plate and exhibits an intrinsic naked singularity (a singular plane) that makes the accessible universe finite in extension. This solution can be interpreted as describing the spacetime of static domain walls. In this context, a first solution is given in terms of zero order Bessel functions of the first and second kind and presents a stationary pattern which is interpreted as a result of the reflection of the scalar waves at the singular plane. This is an evidence, at least for the massless scalar field, of an old interpretation given by Amundsen and Grøn regarding the behaviour of test particles near the singularity. A second solution is obtained in the limit of a weak gravitational field which is valid only far from the singularity. In this limit, it was possible to find out an analytic solution for the scalar field in terms of the Kummer and Tricomi confluent hypergeometric functions.
Brane models with a Ricci-coupled scalar field
Bogdanos, C.; Dimitriadis, A.; Tamvakis, K.
2006-08-15
We consider the problem of a scalar field, nonminimally coupled to gravity through a -{xi}{phi}{sup 2}R term, in the presence of a brane. Exact solutions, for a wide range of values of the coupling parameter {xi}, for both {phi}-dependent and {phi}-independent brane tension, are derived and their behavior is studied. In the case of a Randall-Sundrum geometry, a class of the resulting scalar field solutions exhibits a folded-kink profile. We go beyond the Randall-Sundrum geometry studying general warp factor solutions in the presence of a kink scalar. Analytic and numerical results are provided for the case of a brane or for smooth geometries, where the scalar field acts as a thick brane. It is shown that finite geometries with warp factors that asymptotically decrease exponentially are realizable for a wide range of parameter values. We also study graviton localization in our setup and find that the localizing potential for gravitons with the characteristic volcanolike profile develops a local maximum located at the origin for high values of the coupling {xi}.
Collapse of charged scalar field in dilaton gravity
Borkowska, Anna; Rogatko, Marek; Moderski, Rafal
2011-04-15
We elaborated the gravitational collapse of a self-gravitating complex charged scalar field in the context of the low-energy limit of the string theory, the so-called dilaton gravity. We begin with the regular spacetime and follow the evolution through the formation of an apparent horizon and the final central singularity.
Running of scalar spectral index in multi-field inflation
Gong, Jinn-Ouk
2015-05-01
We compute the running of the scalar spectral index in general multi-field slow-roll inflation. By incorporating explicit momentum dependence at the moment of horizon crossing, we can find the running straightforwardly. At the same time, we can distinguish the contributions from the quasi de Sitter background and the super-horizon evolution of the field fluctuations.
Brans-Dicke scalar field as a chameleon
Das, Sudipta; Banerjee, Narayan
2008-08-15
In this paper it is shown that in Brans-Dicke theory, if one considers a nonminimal coupling between the matter and the scalar field, it can give rise to a late time accelerated expansion for the Universe preceded by a decelerated expansion for very high values of the Brans-Dicke parameter {omega}.
Direct Searches for Scalar Leptoquarks at the Run II Tevatron
Ryan, Daniel Edward
2004-08-01
This dissertation sets new limits on the mass of the scalar leptoquark from direct searches carried out at the Run II CDF detector using data from March 2001 to October 2003. The data analyzed has a total time-integrated measured luminosity of 198 pb^{-1} of p$\\bar{p}$ collisions with √s = 1.96 TeV. Leptoquarks are assumed to be pair-produced and to decay into a lepton and a quark of the same generation. They consider two possible leptoquark decays: (1) β = BR(LQ → μq) = 1.0, and (2) β = BR(LQ → μq) = 0.5. For the β = 1 channel, they focus on the signature represented by two isolated high-p_{T} muons and two isolated high-p_{T} jets. For the β = 1/2 channel, they focus on the signature represented by one isolated high-p_{T} muon, large missing transverse energy, and two isolated high-p_{T} jets. No leptoquark signal is experimentally detected for either signature. Using the next to leading order theoretical cross section for scalar leptoquark production in p$\\bar{p}$ collisions [1], they set new mass limits on second generation scalar leptoquarks. They exclude the existence of second generation scalar leptoquarks with masses below 221(175) GeV/c^{2} for the β = 1(1/2) channels.
Matter parity as the origin of scalar dark matter
Kadastik, Mario; Kannike, Kristjan; Raidal, Martti
2010-01-01
We extend the concept of matter parity P{sub M}=(-1){sup 3(B-L)} to nonsupersymmetric theories and argue that P{sub M} is the natural explanation to the existence of dark matter of the Universe. We show that the nonsupersymmetric dark matter must be contained in a scalar 16 representation(s) of SO(10), thus the unique low-energy dark matter candidates are P{sub M}-odd complex scalar singlet(s) S and an inert scalar doublet(s) H{sub 2}. We have calculated the thermal relic dark matter (DM) abundance of the model and shown that its minimal form may be testable at LHC via the standard model (SM) Higgs boson decays H{sub 1{yields}}DM DM. The PAMELA anomaly can be explained with the decays DM{yields}{nu}lW induced via seesawlike operator which is additionally suppressed by the Planck scale. Because the SM fermions are odd under matter parity too, the DM sector is just our scalar relative.
Production of scalar and tensor perturbations in inflationary models
Turner, M.S. NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 )
1993-10-15
Scalar (density) and tensor (gravity-wave) perturbations provide the basis for the fundamental observable consequences of inflation, including CBR anisotropy and the formation of structure in the Universe. These perturbations are nearly scale invariant (Harrison-Zel'dovich spectrum), though a slight deviation from scale invariance ( tilt'') can have significant consequences for both CBR anisotropy and structure formation. In particular, a slightly tilted spectrum of scalar perturbations may improve the agreement of the cold dark matter scenario with the observational data. The amplitude and spectrum of the scalar and tensor perturbations depend upon the shape of the inflationary potential in the small interval where the scalar field responsible for inflation was between about 46 and 54 [ital e]-folds before the end of inflation. By expanding the inflationary potential in a Taylor series over this interval we show that the amplitudes of the perturbations and the power-law slopes of their spectra can be expressed in terms of the value of the potential 50 [ital e]-folds before the end of inflation, [ital V][sub 50], its steepness [ital x][sub 50][equivalent to][ital m][sub Pl][ital V50][sup [prime
A Class of Homogeneous Scalar Tensor Cosmologies with a Radiation Fluid
NASA Astrophysics Data System (ADS)
Yazadjiev, Stoytcho S.
We present a new class of exact homogeneous cosmological solutions with a radiation fluid for all scalar tensor theories. The solutions belong to Bianchi type VIh cosmologies. Explicit examples of nonsingular homogeneous scalar tensor cosmologies are also given.
Webster, Michael A.
2015-01-01
Sensory systems continuously mold themselves to the widely varying contexts in which they must operate. Studies of these adaptations have played a long and central role in vision science. In part this is because the specific adaptations remain a powerful tool for dissecting vision, by exposing the mechanisms that are adapting. That is, “if it adapts, it's there.” Many insights about vision have come from using adaptation in this way, as a method. A second important trend has been the realization that the processes of adaptation are themselves essential to how vision works, and thus are likely to operate at all levels. That is, “if it's there, it adapts.” This has focused interest on the mechanisms of adaptation as the target rather than the probe. Together both approaches have led to an emerging insight of adaptation as a fundamental and ubiquitous coding strategy impacting all aspects of how we see. PMID:26858985
On the late-time cosmology of a condensed scalar field
NASA Astrophysics Data System (ADS)
Ghalee, Amir
2016-04-01
We study the late-time cosmology of a scalar field with a kinetic term non-minimally coupled to gravity. It is demonstrated that the scalar field dominate the radiation matter and the cold dark matter (CDM). Moreover, we show that eventually the scalar field will be condensed and results in an accelerated expansion. The metric perturbations around the condensed phase of the scalar field are investigated and it has been shown that the ghost instability and gradient instability do not exist.
NASA Astrophysics Data System (ADS)
Tong, Chenning; Li, Wei; Yuan, Mengyuan; Carter, Campbell
2016-11-01
We investigate three-scalar mixing in a turbulent coaxial jet, in which a center jet and an annular flow, consisting of acetone-doped air and ethylene respectively, are mixed with the co-flow air. We investigate the effects of the velocity and length scale ratios of the annular flow to the center jet. Planar laser-induced fluorescence and Rayleigh scattering are employed to image the scalars. The results show that the velocity ratio alters the relative mean shear rates in the mixing layers between the center jet and the annular flow and between the annular flow and the co-flow, modifying the scalar fields through mean-flow advection, turbulent transport, and small-scale mixing. The length scale ratio determines the degree of separation between the center jet and the co-flow. The results show that while varying the velocity ratio can alter the mixing characteristics qualitatively, varying the annulus width only has quantitative effects. The evolution of the mean scalar profiles are dominated by the mean-flow advection, while the shape of the joint probability density function is largely determined by the turbulent transport and molecular diffusion. The results in the present study have implications for understanding and modeling multiscalar mixing in turbulent reactive flows. Supported by NSF.
Accessing the Unsaid: The Role of Scalar Alternatives in Children's Pragmatic Inference
ERIC Educational Resources Information Center
Barner, David; Brooks, Neon; Bale, Alan
2011-01-01
When faced with a sentence like, "Some of the toys are on the table", adults, but not preschoolers, compute a scalar implicature, taking the sentence to imply that not all the toys are on the table. This paper explores the hypothesis that children fail to compute scalar implicatures because they lack knowledge of relevant scalar alternatives to…
Feynman propagator for a free scalar field on a causal set.
Johnston, Steven
2009-10-30
The Feynman propagator for a free bosonic scalar field on the discrete spacetime of a causal set is presented. The formalism includes scalar field operators and a vacuum state which define a scalar quantum field theory on a causal set. This work can be viewed as a novel regularization of quantum field theory based on a Lorentz invariant discretization of spacetime.
Uniforms, status and professional boundaries in hospital.
Timmons, Stephen; East, Linda
2011-11-01
Despite their comparative neglect analytically, uniforms play a key role in the delineation of occupational boundaries and the formation of professional identity in healthcare. This paper analyses a change to the system of uniforms in one UK hospital, where management have required all professions (with the exception of doctors) to wear the same 'corporate' uniform. Focus groups were conducted with the professionals and patients. We analyse this initiative as a kind of McDonaldisation, seeking to create a new 'corporate' worker whose allegiance is principally to the organisation, rather than a profession. Our findings show how important uniforms are to their wearers, both in terms of the defence of professional boundaries and status, as well as the construction of professional identity.
Code of Federal Regulations, 2010 CFR
2010-01-01
... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign... tobacco as it is prepared for market. Uniformity is expressed in grade specifications as a percentage....
Effects of beam irregularity on uniform scanning
NASA Astrophysics Data System (ADS)
Kim, Chang Hyeuk; Jang, Sea duk; Yang, Tae-Keun
2016-09-01
An active scanning beam delivery method has many advantages in particle beam applications. For the beam is to be successfully delivered to the target volume by using the active scanning technique, the dose uniformity must be considered and should be at least 2.5% in the case of therapy application. During beam irradiation, many beam parameters affect the 2-dimensional uniformity at the target layer. A basic assumption in the beam irradiation planning stage is that the shape of the beam is symmetric and follows a Gaussian distribution. In this study, a pure Gaussian-shaped beam distribution was distorted by adding parasitic Gaussian distribution. An appropriate uniform scanning condition was deduced by using a quantitative analysis based on the gamma value of the distorted beam and 2-dimensional uniformities.
Uniform National Discharge Standards (UNDS): Outreach
Describes the Federalism and Tribal consultation efforts related to the Uniform National Discharge Standards (UNDS) and links to copies of each presentation, both to state and local representatives, as well as federally-recognized tribes.
Scalar implicatures: experiments at the semantics-pragmatics interface.
Papafragou, Anna; Musolino, Julien
2003-01-01
In this article we present two sets of experiments designed to investigate the acquisition of scalar implicatures. Scalar implicatures arise in examples like Some professors are famous where the speaker's use of some typically indicates that s/he had reasons not to use a more informative term, e.g. all. Some professors are famous therefore gives rise to the implicature that not all professors are famous. Recent studies on the development of pragmatics suggest that preschool children are often insensitive to such implicatures when they interpret scalar terms (Cognition 78 (2001) 165; Chierchia, G., Crain, S., Guasti, M.T., Gualmini, A., & Meroni, L. (2001). The acquisition of disjunction: evidence for a grammatical view of scalar implicatures. In A.H.-J. Do, L. Dominguez, & A. Johansen (Eds.), Proceedings of the 25th Boston University Conference on Language Development (pp. 157-168). Somerville, MA: Cascadilla Press; Musolino, J., & Lidz, J. (2002). Preschool logic: truth and felicity in the acquisition of quantification. In B. Skarabela, S. Fish, & A.H.-J. Do, Proceedings of the 26th Boston University Conference on Language Development (pp. 406-416). Somerville, MA: Cascadilla Press). This conclusion raises two important questions: (a) are all scalar terms treated in the same way by young children?, and (b) does the child's difficulty reflect a genuine inability to derive scalar implicatures or is it due to demands imposed by the experimental task on an otherwise pragmatically savvy child? Experiment 1 addresses the first question by testing a group of 30 5-year-olds and 30 adults (all native speakers of Greek) on three different scales,
Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive managem...
Passive scalar scaling regimes in a rapidly decorrelating turbulent flow
NASA Astrophysics Data System (ADS)
Kramer, Peter Roland
This thesis is concerned with some issues pertaining to the small scale structure of a passive scalar field advected by a turbulent flow, and driven by external stochastic pumping and/or interaction with a background passive scalar gradient. We analyze and apply two previously developed simplified mathematical models: the Simple Shear Model of Andrew Majda and Marco Avellaneda, and the Rapid Decorrelation in Time (RDT) Model of Robert Kraichnan. The fundamental representation of the passive scalar statistics in these models is presented from a consideration of Lagrangian tracer trajectories. This permits an easy extension of the Simple Shear Model to incorporate driving, and an alternative derivation of the governing mathematical equations in the RDT Model. Using a Simple Shear Poisson Blob Model of Majda and Avellaneda, we provide an example in which the correlation time of the velocity field becomes very small, but the passive scalar statistics do not converge to those of the RDT model. The RDT Model therefore only describes passive scalar advection for a velocity field with short correlation time in a certain sense. We next apply the RDT Model to investigate scaling regimes in the spectral density of a random passive scalar field advected by a turbulent flow. First, we rigorously derive three scaling regimes, and test some physical theories against these exact results. We find most predictions to succeed, but indicate an apparent gap in the reasoning behind the inertial-diffusive theory of Carl Gibson. Next, motivated by a recent experimental controversy, we consider whether, in the RDT Model, anisotropies in the external pumping could disrupt the k-1 viscous- convective scaling law at high Schmidt number. We find that the k-1 law persists. Finally, we test two asymptotic procedures, the Intermediate Asymptotic (IA) approach as described by G. I. Barenblatt and the Renormalization Group (RG) method of Lin-Yuan Chen et al. on an exactly solvable ODE arising in
NASA Astrophysics Data System (ADS)
Anderson, David; Yunes, Nicolás; Barausse, Enrico
2016-11-01
Certain scalar-tensor theories of gravity that generalize Jordan-Fierz-Brans-Dicke theory are known to predict nontrivial phenomenology for neutron stars. In these theories, first proposed by Damour and Esposito-Farèse, the scalar field has a standard kinetic term and couples conformally to the matter fields. The weak equivalence principle is therefore satisfied, but scalar effects may arise in strong-field regimes, e.g., allowing for violations of the strong equivalence principle in neutron stars ("spontaneous scalarization") or in sufficiently tight binary neutron-star systems ("dynamical/induced scalarization"). The original scalar-tensor theory proposed by Damour and Esposito-Farèse is in tension with Solar System constraints (for couplings that lead to scalarization), if one accounts for cosmological evolution of the scalar field and no mass term is included in the action. We extend here the conformal coupling of that theory, in order to ascertain if, in this way, Solar System tests can be passed, while retaining a nontrivial phenomenology for neutron stars. We find that, even with this generalized conformal coupling, it is impossible to construct a theory that passes both big bang nucleosynthesis and Solar System constraints, while simultaneously allowing for scalarization in isolated/binary neutron stars.
Spinning Kerr black holes with stationary massive scalar clouds: the large-coupling regime
NASA Astrophysics Data System (ADS)
Hod, Shahar
2017-01-01
We study analytically the Klein-Gordon wave equation for stationary massive scalar fields linearly coupled to spinning Kerr black holes. In particular, using the WKB approximation, we derive a compact formula for the discrete spectrum of scalar field masses which characterize the stationary composed Kerr-black-hole-massive-scalar-field configurations in the large-coupling regime M μ ≫ 1 (here M and μ are respectively the mass of the central black hole and the proper mass of the scalar field). We confirm our analytically derived formula for the Kerr-scalar-field mass spectrum with numerical data that recently appeared in the literature.
Scalar self-force on a static particle in Schwarzschild spacetime using the massive field approach
NASA Astrophysics Data System (ADS)
Rosenthal, Eran
2004-12-01
I use the recently developed massive field approach to calculate the scalar self-force on a static particle in a Schwarzschild spacetime. In this approach the scalar self-force is obtained from the difference between the (massless) scalar field, and an auxiliary massive scalar field combined with a certain limiting process. By applying this approach to a static particle in Schwarzschild I show that the scalar self-force vanishes in this case. This result conforms with a previous analysis [A. G. Wiseman, Phys. Rev. D612000084014].
All one-loop scalar vertices in the effective potential approach
NASA Astrophysics Data System (ADS)
Camargo-Molina, José Eliel; Morais, António P.; Pasechnik, Roman; Sampaio, Marco O. P.; Wessén, Jonas
2016-08-01
Using the one-loop Coleman-Weinberg effective potential, we derive a general analytic expression for all the derivatives of the effective potential with respect to any number of classical scalar fields. The result is valid for a renormalisable theory in four dimensions with any number of scalars, fermions or gauge bosons. This result corresponds to the zero-external momentum contribution to a general one-loop diagram with N scalar external legs. We illustrate the use of the general result in two simple scalar singlet extensions of the Standard Model, to obtain the dominant contributions to the triple couplings of light scalar particles under the zero external momentum approximation.
Uniform color space based on color matching
NASA Astrophysics Data System (ADS)
Liao, Shih-Fang; Yang, Tsung-Hsun; Lee, Cheng-Chung
2007-09-01
This research intends to explore with a uniform color space based on the CIE 1931 x-y chromatic coordinate system. The goal is to improve the non-uniformity of the CIE 1931 x-y chromaticity diagram such as to approach the human color sensation as possible; however, its simple methodology still can be kept. In spite of the existence of various kinds of the uniform color coordinate systems built up early (CIE u'-v', CIE Lab, CIE LUV, etc.), the establishment of a genuine uniform color space is actually still an important work both for the basic research in color science and the practical applications of colorimetry, especially for recent growing request in illumination engineering and in display technology. In this study, the MacAdam ellipses and the Munsell color chips are utilized for the comparison with the human color sensation. One specific linear transformation matrix is found for the CIE 1931 color matching functions (see manuscript) to become the novel uniform ones. With the aid of the optimization method, the transformation matrix can be easily discovered and makes the 25 MacAdam ellipses are similar to each other in the novel uniform color space. On the other hand, the perfectiveness of the equal-hue curves and the equal-chroma contours from the Mnusell color chips evaluates for the best optimization conditions among several different definitions for the similarity of all the MacAdam ellipses. Finally, the color difference between any two colors can be simply measured by the Euclidean distance in the novel uniform color space and is still fitted to the human color sensation.
Stevens, D.E.; Bretherton, S.
1996-12-01
This paper presents a new forward-in-time advection method for nearly incompressible flow, MU, and its application to an adaptive multilevel flow solver for atmospheric flows. MU is a modification of Leonard et al.`s UTOPIA scheme. MU, like UTOPIA, is based on third-order accurate semi-Lagrangian multidimensional upwinding for constant velocity flows. for varying velocity fields, MU is a second-order conservative method. MU has greater stability and accuracy than UTOPIA and naturally decomposes into a monotone low-order method and a higher-order accurate correction for use with flux limiting. Its stability and accuracy make it a computationally efficient alternative to current finite-difference advection methods. We present a fully second-order accurate flow solver for the anelastic equations, a prototypical low Mach number flow. The flow solver is based on MU which is used for both momentum and scalar transport equations. This flow solver can also be implemented with any forward-in-time advection scheme. The multilevel flow solver conserves discrete global integrals of advected quantities and includes adaptive mesh refinements. Its second-order accuracy is verified using a nonlinear energy conservation integral for the anelastic equations. For a typical geophysical problem in which the flow is most rapidly varying in a small part of the domain, the multilevel flow solver achieves global accuracy comparable to uniform-resolution simulation for 10% of the computational cost. 36 refs., 10 figs.
Constraints on the symmetry noninheriting scalar black hole hair
NASA Astrophysics Data System (ADS)
Smolić, Ivica
2017-01-01
Any recipe to grow black hole hair has to circumvent no-hair theorems by violating some of their assumptions. Recently discovered hairy black hole solutions exist due to the fact that their scalar fields don't inherit the symmetries of the spacetime metric. We present here a general analysis of the constraints which limit the possible forms of such a hair, for both the real and the complex scalar fields. These results can be taken as a novel piece of the black hole uniqueness theorems or simply as a symmetry noninheriting Ansätze guide. In addition, we introduce new classification of the gravitational field equations which might prove useful for various generalizations of the theorems about spacetimes with symmetries.
Comment on "SU(5) octet scalar at the LHC"
NASA Astrophysics Data System (ADS)
Doršner, Ilja
2015-06-01
I address the validity of results presented in [S. Khalil, S. Salem, and M. Allam, Phys. Rev. D 89, 095011 (2014)] with regard to unification of gauge couplings within a particular S U (5 ) framework. The scalar sector of the proposed S U (5 ) model contains one 5-dimensional, one 24-dimensional, and one 45-dimensional representation. The authors discuss one specific unification scenario that supports the case for the LHC accessible color octet scalar. I show that the unification analysis in question is based on (i) an erroneous assumption related to the issue of nucleon stability and (ii) an incorrect input for the applicable set of renormalization group equations. This, in my view, invalidates the aforementioned gauge coupling unification study. I also question a source of the fermion mass relations presented in that work.
Dark matter relic density in scalar-tensor gravity revisited
Meehan, Michael T.; Whittingham, Ian B. E-mail: Ian.Whittingham@jcu.edu.au
2015-12-01
We revisit the calculation of dark matter relic abundances in scalar-tensor gravity using a generic form A(φ{sub *}) = e{sup βφ{sub *}{sup 2/2}} for the coupling between the scalar field φ{sub *} and the metric, for which detailed Big Bang Nucleosynthesis constraints are available. We find that BBN constraints restrict the modified expansion rate in these models to be almost degenerate with the standard expansion history at the time of dark matter decoupling. In this case the maximum level of enhancement of the dark matter relic density was found to be a factor of ∼ 3, several orders of magnitude below that found in previous investigations.
Baryogenesis from baryon-number-violating scalar interactions
NASA Astrophysics Data System (ADS)
Bowes, J. P.; Volkas, R. R.
1997-03-01
In the following work we consider the possibility of explaining the observed baryon-number asymmetry in the universe from simple baryon-number-violating modifications, involving massive scalar bosons, to the standard model. In these cases baryon-number violation is mediated through a combination of Yukawa and scalar self-coupling interactions. Starting with a previously compiled catalogue of baryon-number-violating extensions of the standard model, we identify the minimal subsets which can induce a B-L asymmetry and thus be immune to sphaleron washout. For each of these models, we identify the region of parameter space that leads to the production of a baryon number asymmetry of the correct order of magnitude.
Three-dimensional measurements of scalar dispersion in grid turbulence
NASA Astrophysics Data System (ADS)
Dimotakis, Paul; Lang, Daniel; Lombeyda, Santiago; Lindheim, Jan
2006-11-01
The three-dimensional scalar-dispersion field of a passive Lagrangian-marker contaminant released in grid-generated turbulent flow with an initial Taylor Reynolds number of ˜40, was investigated. The experiments were conducted in the GALCIT Free Surface Water Tunnel using laser-induced fluorescence, a two-dimensional galvanometric optical scanner, and recorded with a fast-framing CCD camera and data acquisition system that sustained 10^8,pix/s, at 12,bits/pix. The resulting data frames were processed to compensate for temporal and spatial skewing, and resampled on a Cartesian grid for subsequent processing. The spatial structure of the scalar field downstream of the grid will be presented and discussed.
Scalar field as a Bose-Einstein condensate?
Castellanos, Elías; Escamilla-Rivera, Celia; Macías, Alfredo; Núñez, Darío E-mail: cescamilla@mctp.mx E-mail: nunez@nucleares.unam.mx
2014-11-01
We discuss the analogy between a classical scalar field with a self-interacting potential, in a curved spacetime described by a quasi-bounded state, and a trapped Bose-Einstein condensate. In this context, we compare the Klein-Gordon equation with the Gross-Pitaevskii equation. Moreover, the introduction of a curved background spacetime endows, in a natural way, an equivalence to the Gross-Pitaevskii equation with an explicit confinement potential. The curvature also induces a position dependent self-interaction parameter. We exploit this analogy by means of the Thomas-Fermi approximation, commonly used to describe the Bose-Einstein condensate, in order to analyze the quasi bound scalar field distribution surrounding a black hole.
New class of consistent scalar-tensor theories.
Gleyzes, Jérôme; Langlois, David; Piazza, Federico; Vernizzi, Filippo
2015-05-29
We introduce a new class of scalar-tensor theories of gravity that extend Horndeski, or "generalized Galileon," models. Despite possessing equations of motion of higher order in derivatives, we show that the true propagating degrees of freedom obey well-behaved second-order equations and are thus free from Ostrogradski instabilities, in contrast to standard lore. Remarkably, the covariant versions of the original Galileon Lagrangians-obtained by direct replacement of derivatives with covariant derivatives-belong to this class of theories. These extensions of Horndeski theories exhibit an uncommon, interesting phenomenology: The scalar degree of freedom affects the speed of sound of matter, even when the latter is minimally coupled to gravity.
Entanglement entropy for free scalar fields in AdS
NASA Astrophysics Data System (ADS)
Sugishita, Sotaro
2016-09-01
We compute entanglement entropy for free massive scalar fields in anti-de Sitter (AdS) space. The entangling surface is a minimal surface whose boundary is a sphere at the boundary of AdS. The entropy can be evaluated from the thermal free energy of the fields on a topological black hole by using the replica method. In odd-dimensional AdS, exact expressions of the Rényi entropy S n are obtained for arbitrary n. We also evaluate 1-loop corrections coming from the scalar fields to holographic entanglement entropy. Applying the results, we compute the leading difference of entanglement entropy between two holographic CFTs related by a renormalization group flow triggered by a double trace deformation. The difference is proportional to the shift of a central charge under the flow.
Singular cosmological evolution using canonical and ghost scalar fields
Nojiri, Shin'ichi; Odintsov, S.D.; Oikonomou, V.K.; Saridakis, Emmanuel N. E-mail: odintsov@ieec.uab.es E-mail: Emmanuel_Saridakis@baylor.edu
2015-09-01
We demonstrate that finite time singularities of Type IV can be consistently incorporated in the Universe's cosmological evolution, either appearing in the inflationary era, or in the late-time regime. While using only one scalar field instabilities can in principle occur at the time of the phantom-divide crossing, when two fields are involved we are able to avoid such instabilities. Additionally, the two-field scalar-tensor theories prove to be able to offer a plethora of possible viable cosmological scenarios, at which various types of cosmological singularities can be realized. Amongst others, it is possible to describe inflation with the appearance of a Type IV singularity, and phantom late-time acceleration which ends in a Big Rip. Finally, for completeness, we also present the Type IV realization in the context of suitably reconstructed F(R) gravity.
A T Matrix Method Based upon Scalar Basis Functions
NASA Technical Reports Server (NTRS)
Mackowski, D.W.; Kahnert, F. M.; Mishchenko, Michael I.
2013-01-01
A surface integral formulation is developed for the T matrix of a homogenous and isotropic particle of arbitrary shape, which employs scalar basis functions represented by the translation matrix elements of the vector spherical wave functions. The formulation begins with the volume integral equation for scattering by the particle, which is transformed so that the vector and dyadic components in the equation are replaced with associated dipole and multipole level scalar harmonic wave functions. The approach leads to a volume integral formulation for the T matrix, which can be extended, by use of Green's identities, to the surface integral formulation. The result is shown to be equivalent to the traditional surface integral formulas based on the VSWF basis.
Scalar wormholes in a cosmological setting and their instability
Sushkov, Sergey V.; Zhang Yuanzhong
2008-01-15
We construct exact nonstatic nonhomogeneous spherically symmetric solutions in the theory of gravity with a scalar field possessing the exponential potential. The solution of particular interest corresponds to the scalar field with negative kinetic energy, i.e. a ghost, and represents two asymptotically homogeneous spatially flat universes connected by a throat. We interpret this solution as a wormhole in the cosmological setting. Both the universes and the wormhole throat are simultaneously expanding with acceleration. The character of expansion qualitatively depends on the wormhole's mass m. For m=0 the expansion goes exponentially, so that the corresponding spacetime configuration represents two de Sitter universes joining by the throat. For m>0 the expansion has the power character, so that one has the inflating wormhole connecting two homogeneous spatially flat universes expanding according to the power law into the final singularity. The stability analysis of the nonstatic wormholes reveals their instability against linear spherically symmetric perturbations.
Hamiltonian analysis of higher derivative scalar-tensor theories
NASA Astrophysics Data System (ADS)
Langlois, David; Noui, Karim
2016-07-01
We perform a Hamiltonian analysis of a large class of scalar-tensor Lagrangians which depend quadratically on the second derivatives of a scalar field. By resorting to a convenient choice of dynamical variables, we show that the Hamiltonian can be written in a very simple form, where the Hamiltonian and the momentum constraints are easily identified. In the case of degenerate Lagrangians, which include the Horndeski and beyond Horndeski quartic Lagrangians, our analysis confirms that the dimension of the physical phase space is reduced by the primary and secondary constraints due to the degeneracy, thus leading to the elimination of the dangerous Ostrogradsky ghost. We also present the Hamiltonian formulation for nondegenerate theories and find that they contain four degrees of freedom, including a ghost, as expected. We finally discuss the status of the unitary gauge from the Hamiltonian perspective.
On the stability of the asymptotically free scalar field theories
Shalaby, A M.
2015-03-30
Asymptotic freedom plays a vital role in our understanding of the theory of particle interactions. To have this property, one has to resort to a Non-abelian gauge theory with the number of colors equal to or greater than three (QCD). However, recent studies have shown that simple scalar field theories can possess this interesting property. These theories have non-Hermitian effective field forms but their classical potentials are bounded from above. In this work, we shall address the stability of the vacua of the bounded from above (−Φ{sup 4+n}) scalar field theories. Moreover, we shall cover the effect of the distribution of the Stokes wedges in the complex Φ-plane on the features of the vacuum condensate within these theories.
New techniques in 3D scalar and vector field visualization
Max, N.; Crawfis, R.; Becker, B.
1993-05-05
At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.
Galilean-invariant scalar fields can strengthen gravitational lensing.
Wyman, Mark
2011-05-20
The mystery of dark energy suggests that there is new gravitational physics on long length scales. Yet light degrees of freedom in gravity are strictly limited by Solar System observations. We can resolve this apparent contradiction by adding a Galilean-invariant scalar field to gravity. Called Galileons, these scalars have strong self-interactions near overdensities, like the Solar System, that suppress their dynamical effect. These nonlinearities are weak on cosmological scales, permitting new physics to operate. In this Letter, we point out that a massive-gravity-inspired coupling of Galileons to stress energy can enhance gravitational lensing. Because the enhancement appears at a fixed scaled location for dark matter halos of a wide range of masses, stacked cluster analysis of weak lensing data should be able to detect or constrain this effect.
Dynamical dark energy: Scalar fields and running vacuum
NASA Astrophysics Data System (ADS)
Solà, Joan; Gómez-Valent, Adrià; de Cruz Pérez, Javier
2017-03-01
Recent analyses in the literature suggest that the concordance ΛCDM model with rigid cosmological term, Λ = const. may not be the best description of the cosmic acceleration. The class of “running vacuum models”, in which Λ = Λ(H) evolves with the Hubble rate, has been shown to fit the string of SNIa + BAO + H(z) + LSS + CMB data significantly better than the ΛCDM. Here, we provide further evidence on the time-evolving nature of the dark energy (DE) by fitting the same cosmological data in terms of scalar fields. As a representative model, we use the original Peebles and Ratra potential, V ∝ ϕ‑α. We find clear signs of dynamical DE at ˜ 4σ c.l., thus reconfirming through a nontrivial scalar field approach the strong hints formerly found with other models and parametrizations.
New Class of Consistent Scalar-Tensor Theories
NASA Astrophysics Data System (ADS)
Gleyzes, Jérôme; Langlois, David; Piazza, Federico; Vernizzi, Filippo
2015-05-01
We introduce a new class of scalar-tensor theories of gravity that extend Horndeski, or "generalized Galileon," models. Despite possessing equations of motion of higher order in derivatives, we show that the true propagating degrees of freedom obey well-behaved second-order equations and are thus free from Ostrogradski instabilities, in contrast to standard lore. Remarkably, the covariant versions of the original Galileon Lagrangians—obtained by direct replacement of derivatives with covariant derivatives—belong to this class of theories. These extensions of Horndeski theories exhibit an uncommon, interesting phenomenology: The scalar degree of freedom affects the speed of sound of matter, even when the latter is minimally coupled to gravity.
Post-Newtonian celestial mechanics in scalar-tensor cosmology
NASA Astrophysics Data System (ADS)
Galiautdinov, Andrei; Kopeikin, Sergei M.
2016-08-01
Applying the recently developed dynamical perturbation formalism on cosmological background to scalar-tensor theory, we provide a solid theoretical basis and a rigorous justification for phenomenological models of orbital dynamics that are currently used to interpret experimental measurements of the time-dependent gravitational constant. We derive the field equations for the scalar-tensor perturbations and study their gauge freedom associated with the cosmological expansion. We find a new gauge eliminating a prohibitive number of gauge modes in the field equations and significantly simplifying post-Newtonian equations of motion for localized astronomical systems in the universe with a time-dependent gravitational constant. We identify several new post-Newtonian terms and calculate their effect on secular cosmological evolution of the osculating orbital elements.
Shadows of Kerr black holes with and without scalar hair
NASA Astrophysics Data System (ADS)
Cunha, Pedro V. P.; Herdeiro, Carlos A. R.; Radu, Eugen; Rúnarsson, Helgi F.
2016-06-01
For an observer, the Black Hole (BH) shadow is the BHs apparent image in the sky due to the gravitational lensing of nearby radiation, emitted by an external source. A recent class of solutions dubbed Kerr BHs with scalar hair possess smaller shadows than the corresponding Kerr BHs and, under some conditions, novel exotic shadow shapes can arise. Thus, these hairy BHs could potentially provide new shadow templates for future experiments such as the Event Horizon Telescope. In order to obtain the shadows, the backward ray-tracing algorithm is briefly introduced, followed by numerical examples of shadows of Kerr BHs with scalar hair contrasting with the Kerr analogues. Additionally, an analytical solution for the Kerr shadow is derived in closed form for a ZAMO observer at an arbitrary position.
Goldstone pion and other mesons using a scalar confining interaction
Gross, F. |; Milana, J.
1994-04-01
A covariant wave equation for q{bar q} interactions with an interaction kernel composed of the sum of constant vector and linear scalar confining interactions is solved for states with two quarks with identical mass. The model includes an NJL-like mechanism which links the dynamical breaking of chiral symmetry to the spontaneous generation of quark mass and the appearance of a low mass Goldstone pion. A novel feature of this approach is that it automatically explains the small mass of the pion even though the linear potential is a scalar interaction in Dirac space, and hence breaks chiral symmetry. Solutions for mesons composed of light quarks ({pi},{rho}, and low lying excited states) and heavy quarks ({rho}{sub c}, J/{Psi}, and low lying excited states) are presented and discussed.
The scalar singlet-triplet dark matter model
Fischer, O.; Van der Bij, J.J. E-mail: vdbij@physik.uni-freiburg.de
2014-01-01
We consider a model for cold dark matter, which combines a real scalar singlet and a real scalar SU(2){sub L} triplet field, both of which are residing in the odd representation of a global Z{sub 2} symmetry. The parameter space of the model is constrained by the inferred dark matter abundance from the WMAP and Planck data, the most recent results from the direct dark matter search experiment LUX, the Z boson decay width from LEP-I and perturbativity of the coupling parameters. The phenomenology of the remaining parameter space is studied. We find that the model allows for DM masses near the electroweak scale and a variety of decay scenarios.
Quantum entanglement in three accelerating qubits coupled to scalar fields
NASA Astrophysics Data System (ADS)
Dai, Yue; Shen, Zhejun; Shi, Yu
2016-07-01
We consider quantum entanglement of three accelerating qubits, each of which is locally coupled with a real scalar field, without causal influence among the qubits or among the fields. The initial states are assumed to be the GHZ and W states, which are the two representative three-partite entangled states. For each initial state, we study how various kinds of entanglement depend on the accelerations of the three qubits. All kinds of entanglement eventually suddenly die if at least two of three qubits have large enough accelerations. This result implies the eventual sudden death of all kinds of entanglement among three particles coupled with scalar fields when they are sufficiently close to the horizon of a black hole.
Unifying framework for scalar-tensor theories of gravity
NASA Astrophysics Data System (ADS)
Gao, Xian
2014-10-01
A general framework for effective theories propagating two tensor and one scalar degrees of freedom is investigated. Geometrically, it describes dynamical foliation of spacelike hypersurfaces coupled to a general background, in which the scalar mode encodes the fluctuation of the hypersurfaces. Within this framework, various models in the literature—including k-essence, Horndeski theory, the effective field theory of inflation, ghost condensate as well as the Hořava gravity—get unified. Our framework generalizes the Horndeski theory in the sense that, it propagates the correct number of degrees of freedom, although the equations of motion are generally higher order. We also identify new operators beyond the Horndeski theory, which yield second order equations of motion for linear perturbations around a Friedmann-Robertson-Walker background.
Scalar triplet on a domain wall: an exact solution
NASA Astrophysics Data System (ADS)
Gani, Vakhid A.; Lizunova, Mariya A.; Radomskiy, Roman V.
2016-04-01
We study a model with a real scalar Higgs field and a scalar triplet field that allows existence of a topological defect — a domain wall. The wall breaks the global O(3) symmetry of the model, which gives rise to non-Abelian orientational degrees of freedom. We found an exact analytic solution that describes a domain wall with a localized configuration of the triplet field on it. This solution enables one to calculate contributions to the action from the orientational and translational degrees of freedom of the triplet field. We also study the linear stability of the domain wall with the triplet field switched off. We obtain that degrees of freedom localized on the wall can appear or do not appear depending on the parameters of the model.
The Scalar Relativistic Contribution to Ga-Halide Bond Energies
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)
1998-01-01
The one-electron Douglas Kroll (DK) and perturbation theory (+R) approaches are used to compute the scalar relativistic contribution to the atomization energies of GaFn. These results are compared with the previous GaCln results. While the +R and DK results agree well for the GaCln atom nation energies, they differ for GaFn. The present work suggests that the DK approach is more accurate than the +R approach. In addition, the DK approach is less sensitive to the choice of basis set. The computed atomization energies of GaF2 and GaF3 are smaller than the somewhat uncertain experiments. It is suggested that additional calibration calculations for the scalar relativistic effects in GaF2 and GaF3 would be valuable.
Scalar-tensor teleparallel wormholes by Noether symmetries
NASA Astrophysics Data System (ADS)
Bahamonde, Sebastian; Camci, Ugur; Capozziello, Salvatore; Jamil, Mubasher
2016-10-01
A gravitational theory of a scalar field nonminimally coupled with torsion and a boundary term is considered with the aim to construct Lorentzian wormholes. Geometrical parameters including shape and redshift functions are obtained for these solutions. We adopt the formalism of the Noether gauge symmetry approach in order to find symmetries, Lie brackets and invariants (conserved quantities). Furthermore by imposing specific forms of potential function, we are able to calculate metric coefficients and discuss their geometrical behavior.
Scalar emission in a rotating Goedel black hole
Chen Songbai; Wang Bin; Jing Jiliang
2008-09-15
We study the absorption probability and Hawking radiation of the scalar field in the rotating Goedel black hole in minimal five-dimensional gauged supergravity. We find that Goedel parameter j imprints in the greybody factor and Hawking radiation. It plays a different role from the angular momentum of the black hole in the Hawking radiation and super-radiance. This information can help us know more about rotating Goedel black holes in minimal five-dimensional gauged supergravity.
Semi-Classical Dirac Vacuum Polarisation in a Scalar Field
NASA Astrophysics Data System (ADS)
Lampart, Jonas; Lewin, Mathieu
2016-08-01
We study vacuum polarisation effects of a Dirac field coupled to an external scalar field and derive a semi-classical expansion of the regu-larised vacuum energy. The leading order of this expansion is given by a classical formula due to Chin, Lee-Wick and Walecka, for which our result provides the first rigorous proof. We then discuss applications to the non-relativistic large-coupling limit of an interacting system, and to the stability of homogeneous systems.
Coupled channel model of the scalar isovector meson photoproduction
NASA Astrophysics Data System (ADS)
Bibrzycki, Ł.; Kamiński, R.
2017-03-01
We present the coupled channel model of the scalar isovector resonance photoproduction including the πη, KK̅ and πη' channels and calculate resulting mass distribution and the cross section in the πη channel. We show that the shape of this mass distribution, is strongly affected by the phase of background amplitude. We also discuss the effect of inclusion the πη' channel on the overall isovector photoproduction process.
GravitoMagnetic Field in Tensor-Vector-Scalar Theory
Exirifard, Qasem
2013-04-01
We study the gravitomagnetism in the TeVeS theory. We compute the gravitomagnetic field that a slow moving mass distribution produces in its Newtonian regime. We report that the consistency between the TeVeS gravitomagnetic field and that predicted by the Einstein-Hilbert theory leads to a relation between the vector and scalar coupling constants of the theory. We translate the Lunar Laser Ranging measurement's data into a constraint on the deviation from this relation.
Search for third generation scalar leptoquarks decaying into taub.
Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cuplov, V; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Kalk, J M; Karmanov, D; Kasper, P A; Katsanos, I; Kau, D; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna, R; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Millet, T; Mitrevski, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osman, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rieger, J; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Tamburello, P; Tanasijczuk, A; Taylor, W; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vokac, P; Von Toerne, E; Voutilainen, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yasuda, T; Yatsunenko, Y A; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G
2008-12-12
We have searched for third generation leptoquarks (LQ3) using 1.05 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider operating at sqrt[s]=1.96 TeV. We set a 95% C.L. lower limit of 210 GeV on the mass of a scalar LQ3 state decaying solely to a b quark and a tau lepton.
Bound States of (Anti-)Scalar-Quarks in SU(3)c Lattice QCD
Iida, H.; Takahashi, T. T.; Suganuma, H.
2007-06-13
Light scalar-quarks {phi} (colored scalar particles or idealized diquarks) and their color-singlet hadronic states are studied with quenched SU(3)c lattice QCD in terms of mass generation. We investigate 'scalar-quark mesons' {phi}{dagger}{phi} and 'scalar-quark baryons' {phi}{phi}{phi} as the bound states of scalar-quarks {phi}. We also investigate the bound states of scalar-quarks {phi} and quarks {psi}, i.e., {phi}{dagger}{psi}, {psi}{psi}{phi} and {phi}{phi}{psi}, which we name 'chimera hadrons'. All the new-type hadrons including {phi} are found to have a large mass due to large quantum corrections by gluons, even for zero bare scalar-quark mass m{phi} = 0 at a-1 {approx} 1GeV. We conjecture that all colored particles generally acquire a large effective mass due to dressed gluon effects.
Scalar dark matter in the B−L model
Rodejohann, Werner; Yaguna, Carlos E. E-mail: carlos.yaguna@mpi-hd.mpg.de
2015-12-01
The U(1){sub B−L} extension of the Standard Model requires the existence of right-handed neutrinos and naturally realizes the seesaw mechanism of neutrino mass generation. We study the possibility of explaining the dark matter in this model with an additional scalar field, φ{sub DM}, that is a singlet of the Standard Model but charged under U(1){sub B−L}. An advantage of this scenario is that the stability of φ{sub DM} can be guaranteed by appropriately choosing its B−L charge, without the need of an extra ad hoc discrete symmetry. We investigate in detail the dark matter phenomenology of this model. We show that the observed dark matter density can be obtained via gauge or scalar interactions, and that semi-annihilations could play an important role in the latter case. The regions consistent with the dark matter density are determined in each instance and the prospects for detection in future experiments are analyzed. If dark matter annihilations are controlled by the B−L gauge interaction, the mass of the dark matter particle should lie below 5 TeV and its direct detection cross section can be easily probed by XENON1T; if instead they are controlled by scalar interactions, the dark matter mass can be much larger and the detection prospects are less certain. Finally, we show that this scenario can be readily extended to accommodate multiple dark matter particles.
Scalar dark matter in the B−L model
Rodejohann, Werner; Yaguna, Carlos E.
2015-12-15
The U(1){sub B−L} extension of the Standard Model requires the existence of right-handed neutrinos and naturally realizes the seesaw mechanism of neutrino mass generation. We study the possibility of explaining the dark matter in this model with an additional scalar field, ϕ{sub DM}, that is a singlet of the Standard Model but charged under U(1){sub B−L}. An advantage of this scenario is that the stability of ϕ{sub DM} can be guaranteed by appropriately choosing its B−L charge, without the need of an extra ad hoc discrete symmetry. We investigate in detail the dark matter phenomenology of this model. We show that the observed dark matter density can be obtained via gauge or scalar interactions, and that semi-annihilations could play an important role in the latter case. The regions consistent with the dark matter density are determined in each instance and the prospects for detection in future experiments are analyzed. If dark matter annihilations are controlled by the B−L gauge interaction, the mass of the dark matter particle should lie below 5 TeV and its direct detection cross section can be easily probed by XENON1T; if instead they are controlled by scalar interactions, the dark matter mass can be much larger and the detection prospects are less certain. Finally, we show that this scenario can be readily extended to accommodate multiple dark matter particles.
Scalar speed limits and cosmology: Acceleration from D-cceleration
NASA Astrophysics Data System (ADS)
Silverstein, Eva; Tong, David
2004-11-01
Causality on the gravity side of the AdS/CFT correspondence restricts motion on the moduli space of the N=4 super Yang-Mills theory by imposing a speed limit on how fast the scalar field may roll. This effect can be traced to higher-derivative operators arising from integrating out light degrees of freedom near the origin. In the strong coupling limit of the theory, the dynamics is well approximated by the Dirac-Born-Infeld Lagrangian for a probe D3-brane moving toward the horizon of the AdS Poincaré patch, combined with an estimate of the (ultimately suppressed) rate of particle and string production in the system. We analyze the motion of a rolling scalar field explicitly in the strong coupling regime of the field theory and extend the analysis to cosmological systems obtained by coupling this type of field theory to four-dimensional gravity. This leads to a mechanism for slow roll inflation for a massive scalar at sub-Planckian vacuum expectation value without need for a flat potential (realizing a version of k inflation in a microphysical framework). It also leads to a variety of novel Friedman-Roberston-Walker cosmologies, some of which are related to those obtained with tachyon matter.
Non-Gaussianity from self-ordering scalar fields
Figueroa, Daniel G.; Kamionkowski, Marc
2010-06-15
The Universe may harbor relics of the post-inflationary epoch in the form of a network of self-ordered scalar fields. Such fossils, while consistent with current cosmological data at trace levels, may leave too weak an imprint on the cosmic microwave background and the large-scale distribution of matter to allow for direct detection. The non-Gaussian statistics of the density perturbations induced by these fields, however, permit a direct means to probe for these relics. Here we calculate the bispectrum that arises in models of self-ordered scalar fields. We find a compact analytic expression for the bispectrum, evaluate it numerically, and provide a simple approximation that may be useful for data analysis. The bispectrum is largest for triangles that are aligned (have edges k{sub 1{approx_equal}}2k{sub 2{approx_equal}}2k{sub 3}) as opposed to the local-model bispectrum, which peaks for squeezed triangles (k{sub 1{approx_equal}}k{sub 2}>>k{sub 3}), and the equilateral bispectrum, which peaks at k{sub 1{approx_equal}}k{sub 2{approx_equal}}k{sub 3}. We estimate that this non-Gaussianity should be detectable by the Planck satellite if the contribution from self-ordering scalar fields to primordial perturbations is near the current upper limit.
Direct numerical simulation of reacting scalar mixing layers
NASA Astrophysics Data System (ADS)
de Bruyn Kops, S. M.; Riley, J. J.; Kosály, G.
2001-05-01
Understanding the passive reaction of two chemical species in shear-free turbulence with order unity Schmidt number is important in atmospheric and turbulent combustion research. The canonical configuration considered here is the reacting scalar mixing layer; in this problem two initially separated species mix and react downstream of a turbulence generating grid in a wind tunnel. A conserved scalar in this flow is, with some restrictions, analogous to temperature in a thermal mixing layer, and considerable laboratory data are available on the latter. In this paper, results are reported from high resolution, direct numerical simulations in which the evolution of the conserved scalar field accurately matches that of the temperature field in existing laboratory experiments. Superimposed on the flow are passive, single-step reactions with a wide range of activation energies and stoichiometric ratios (r). The resulting data include species concentrations as a function of three spatial dimensions plus time, and statistical moments and spectra of all species. Several aspects of the flow are investigated here with the conclusions that (1) reactions in which r≠1 are more accurately modeled by frozen and equilibrium chemistry limits than are reactions in which r=1, (2) an existing definition of a reduced Damköhler number that includes temperature and stoichiometry effects is a useful measure of reaction rate, and (3) existing theoretical models for predicting the coherence and phase of fuel-oxidizer cross-spectra and the spectrum of the equilibrium fuel mass fraction when r=1 yield accurate predictions.
Kolmogorov and scalar spectral regimes in numerical turbulence
NASA Technical Reports Server (NTRS)
Kerr, R. M.
1985-01-01
Velocity and passive-scalar spectra for turbulent fields generated by a forced three-dimensional simulation and Taylormicroscale Reynolds numbers up to 83 are shown to have distinct spectral regimes, including a Kolmogorov inertial subrange. Both one- and three-dimensional spectra are shown for comparison with experiment and theory, respectively. When normalized by the Kolmogorov dissipation scales velocity spectra collapse to a single curve and a high-wavenumber bulge is seen. The bulge leads to an artificially high Kolmogorov constant, but is consistent with recent measurements of the velocity spectrum in the dissipation regime and the velocity-derivative skewness. Scalar spectra, when normalized by the Oboukov-Corrsin scales, collapse to curves which depend only on Prandtl number and show a universal inertial-convective subrange, independent of Prandtl number. When normalized by the Batchelor scales, the scalar spectra show a universal dissipation regime which is independent of Prandtl numbers from 0.1 to 1.0. The time development of velocity spectra is illustrated by energy-transfer spectra in which distinct pulses propagate to high wavenumbers.
Novel ansatzes and scalar quantities in gravito-electromagnetism
NASA Astrophysics Data System (ADS)
Bakopoulos, A.; Kanti, P.
2017-03-01
In this work, we focus on the theory of gravito-electromagnetism (GEM)—the theory that describes the dynamics of the gravitational field in terms of quantities met in electromagnetism—and we propose two novel forms of metric perturbations. The first one is a generalisation of the traditional GEM ansatz, and succeeds in reproducing the whole set of Maxwell's equations even for a dynamical vector potential A. The second form, the so-called alternative ansatz, goes beyond that leading to an expression for the Lorentz force that matches the one of electromagnetism and is free of additional terms even for a dynamical scalar potential Φ. In the context of the linearised theory, we then search for scalar invariant quantities in analogy to electromagnetism. We define three novel, 3rd-rank gravitational tensors, and demonstrate that the last two can be employed to construct scalar quantities that succeed in giving results very similar to those found in electromagnetism. Finally, the gauge invariance of the linearised gravitational theory is studied, and shown to lead to the gauge invariance of the GEM fields E and B for a general configuration of the arbitrary vector involved in the coordinate transformations.
Shell model of optimal passive-scalar mixing
NASA Astrophysics Data System (ADS)
Miles, Christopher; Doering, Charles
2015-11-01
Optimal mixing is significant to process engineering within industries such as food, chemical, pharmaceutical, and petrochemical. An important question in this field is ``How should one stir to create a homogeneous mixture while being energetically efficient?'' To answer this question, we consider an initially unmixed scalar field representing some concentration within a fluid on a periodic domain. This passive-scalar field is advected by the velocity field, our control variable, constrained by a physical quantity such as energy or enstrophy. We consider two objectives: local-in-time (LIT) optimization (what will maximize the mixing rate now?) and global-in-time (GIT) optimization (what will maximize mixing at the end time?). Throughout this work we use the H-1 mix-norm to measure mixing. To gain a better understanding, we provide a simplified mixing model by using a shell model of passive-scalar advection. LIT optimization in this shell model gives perfect mixing in finite time for the energy-constrained case and exponential decay to the perfect-mixed state for the enstrophy-constrained case. Although we only enforce that the time-average energy (or enstrophy) equals a chosen value in GIT optimization, interestingly, the optimal control keeps this value constant over time.
Cosmology and Structure Formation with Scalar Field Dark Matter
NASA Astrophysics Data System (ADS)
Rindler-Daller, Tanja; Li, Bohua; Shapiro, Paul R.
2013-04-01
The exploration of the nature of the cosmological dark matter is an ongoing hot topic in modern cosmology and particle physics. Suggested candidates include ultra-light particles which are described by a real or complex scalar field. Previous literature has revealed the richness of this candidate in terms of its power to explain astrophysical and cosmological observations, from the background cosmological evolution to galactic rotation curves. However, a lot of research remains to be done to find out which parts of the parameter space of this kind of dark matter is able to explain observations on all scales consistently. In this talk, we will present our current and ongoing work on the study of complex scalar field dark matter (SFDM). We find that this SFDM underwent three distinctive states in the early Universe, a scalar-field dominated, a radiation-dominated and a matter-dominated phase. The timing and longevity of each phase places important first constraints on the parameters of the model. For this SFDM model, we revisit classical problems of structure formation theory, like the tophat collapse, the problem of virial shocks, and the cosmological infall problem for an isolated halo, in order to find viable model parameters which match the constraints from cosmology.
Chiral Lagrangian parameters for scalar and pseudoscalar mesons
NASA Astrophysics Data System (ADS)
Bardeen, W.; Eichten, E.; Thacker, H.
2004-03-01
The results of a high-statistics study of scalar and pseudoscalar meson propagators in quenched lattice QCD are presented. For two values of lattice spacing, β=5.7 (a≈.18 fm) and 5.9 (a≈.12 fm), we probe the light quark mass region using clover improved Wilson fermions with the modified quenched approximation pole-shifting ansatz to treat the exceptional configuration problem. The quenched chiral loop parameters m0 and αΦ are determined from a study of the pseudoscalar hairpin correlator. From a global fit to the meson correlators, estimates are obtained for the relevant chiral Lagrangian parameters, including the Leutwyler parameters L5 and L8. Using the parameters obtained from the singlet and nonsinglet pseudoscalar correlators, the quenched chiral loop (QCL) effect in the nonsinglet scalar meson correlator is studied. By removing this QCL effect from the lattice correlator, we obtain the mass and decay constant of the ground state scalar, isovector meson a0.
New charged black holes with conformal scalar hair
NASA Astrophysics Data System (ADS)
Anabalón, Andrés; Maeda, Hideki
2010-02-01
A new class of four-dimensional, hairy, stationary solutions of the Einstein-Maxwell-Λ system with a conformally coupled scalar field is obtained. The metric belongs to the Plebański-Demiański family and hence its static limit has the form of the charged (A)dS C metric. It is shown that, in the static case, a new family of hairy black holes arises. They turn out to be cohomogeneity-two, with horizons that are neither Einstein nor homogenous manifolds. The conical singularities in the C metric can be removed due to the backreaction of the scalar field providing a new kind of regular, radiative spacetime. The scalar field carries a continuous parameter proportional to the usual acceleration present in the C metric. In the zero-acceleration limit, the static solution reduces to the dyonic Bocharova-Bronnikov-Melnikov-Bekenstein solution or the dyonic extension of the Martínez-Troncoso-Zanelli black holes, depending on the value of the cosmological constant.
Scalar field evolution in Gauss-Bonnet black holes
Abdalla, E.; Konoplya, R.A.; Molina, C.
2005-10-15
It is presented a thorough analysis of scalar perturbations in the background of Gauss-Bonnet, Gauss-Bonnet-de Sitter and Gauss-Bonnet-anti-de Sitter black hole spacetimes. The perturbations are considered both in frequency and time domain. The dependence of the scalar field evolution on the values of the cosmological constant {lambda} and the Gauss-Bonnet coupling {alpha} is investigated. For Gauss-Bonnet and Gauss-Bonnet-de Sitter black holes, at asymptotically late times either power-law or exponential tails dominate, while for Gauss-Bonnet-anti-de Sitter black hole, the quasinormal modes govern the scalar field decay at all times. The power-law tails at asymptotically late times for odd-dimensional Gauss-Bonnet black holes does not depend on {alpha}, even though the black hole metric contains {alpha} as a new parameter. The corrections to quasinormal spectrum due to Gauss-Bonnet coupling is not small and should not be neglected. For the limit of near extremal value of the (positive) cosmological constant and pure de Sitter and anti-de Sitter modes in Gauss-Bonnet gravity we have found analytical expressions.
Effects of a scalar scaling field on quantum mechanics
Benioff, Paul
2016-04-18
This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at each location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. Here, the lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.
Scalar dissipation rates in non-conservative transport systems
Engdahl, Nicholas B.; Ginn, Timothy R.; Fogg, Graham E.
2014-01-01
This work considers how the inferred mixing state of diffusive and advective-diffusive systems will vary over time when the solute masses are not constant over time. We develop a number of tools that allow the scalar dissipation rate to be used as a mixing measure in these systems without calculating local concentration gradients. The behavior of dissipation rates are investigated for single and multi-component kinetic reactions and a commonly studied equilibrium reaction. The scalar dissipation rate of a tracer experiencing first order decay can be determined exactly from the decay constant and the dissipation rate of a passive tracer, and the mixing rate of a conservative component is not the superposition of the solute specific mixing rates. We then show how the behavior of the scalar dissipation rate can be determined from a limited subset of an infinite domain. Corrections are derived for constant and time dependent limits of integration the latter is used to approximate dissipation rates in advective-diffusive systems. Several of the corrections exhibit similarities to the previous work on mixing, including non-Fickian mixing. This illustrates the importance of accounting for the effects that reaction systems or limited monitoring areas may have on the inferred mixing state. PMID:23584457
Stability in Einstein-scalar gravity with a logarithmic branch
NASA Astrophysics Data System (ADS)
Amsel, Aaron J.; Roberts, Matthew M.
2012-05-01
We investigate the nonperturbative stability of asymptotically anti-de Sitter gravity coupled to tachyonic scalar fields with mass saturating the Breitenlohner-Freedman bound. Such “designer gravity” theories admit a large class of boundary conditions at asymptotic infinity. At this mass, the asymptotic behavior of the scalar field develops a logarithmic branch, and previous attempts at proving a minimum energy theorem failed due to a large radius divergence in the spinor charge. In this paper, we finally resolve this issue and derive a lower bound on the conserved energy. Just as for masses slightly above the Breitenlohner-Freedman bound, a given scalar potential can admit two possible branches of the corresponding superpotential, one analytic and one nonanalytic. The key point again is that existence of the nonanalytic branch is necessary for the energy bound to hold. We discuss several AdS/CFT applications of this result, including the use of double-trace deformations to induce spontaneous symmetry breaking.
Search for a Scalar Component in the Weak Interaction
NASA Astrophysics Data System (ADS)
Zakoucky, Dalibor; Baczyk, Pavel; Ban, Gilles; Beck, Marcus; Breitenfeldt, Martin; Couratin, Claire; Fabian, Xavier; Finlay, Paul; Flechard, Xavier; Friedag, Peter; Glück, Ferenc; Herlert, Alexander; Knecht, Andreas; Kozlov, Valentin; Lienard, Etienne; Porobic, Tomica; Soti, Gergelj; Tandecki, Michael; Vangorp, Simon; Weinheimer, Christian; Wursten, Elise; Severijns, Nathal
Weak interactions are described by the Standard Model which uses the basic assumption of a pure "V(ector)-A(xial vector)" character for the interaction. However, after more than half a century of model development and experimental testing of its fundamental ingredients, experimental limits for possible admixtures of scalar and/or tensor interactions are still as high as 7%. The WITCH project (Weak Interaction Trap for CHarged particles) at the isotope separator ISOLDE at CERN is trying to probe the structure of the weak interaction in specific low energy β-decays in order to look for possible scalar or tensor components or at least significantly improve the current experimental limits. This worldwide unique experimental setup consisting of a combination of two Penning ion traps and a retardation spectrometer allows to catch, trap and cool the radioactive nuclei provided by the ISOLDE separator, form a cooled and scattering-free radioactive source of β-decaying nuclei and let these nuclei decay at rest. The precise measurement of the shape of the energy spectrum of the recoiling nuclei, the shape of which is very sensitive to the character of the weak interaction, enables searching for a possible admixture of a scalar/tensor component in the dominant vector/axial vector mode. First online measurements with the isotope 35Ar were performed in 2011 and 2012. The current status of the experiment, the data analysis and results as well as extensive simulations will be presented and discussed.
Is scalar-tensor gravity consistent with polytropic stellar models?
Henttunen, K.; Vilja, I. E-mail: vilja@utu.fi
2015-05-01
We study the scalar field potential V(φ) in the scalar-tensor gravity with self-consistent polytropic stellar configurations. Without choosing a particular potential, we numerically derive the potential inside various stellar objects. We restrict the potential to conform to general relativity or to f(R) gravity inside and require the solution to arrive at SdS vacuum at the surface. The studied objects are required to obtain observationally valid masses and radii corresponding to solar type stars, white dwarfs and neutron stars. We find that the resulting scalar-tensor potential V(φ) for the numerically derived polytrope that conforms to general relativity, in each object class, is highly dependent on the matter configuration as well as on the vacuum requirement at the boundary. As a result, every stellar configuration arrives at a potential V(φ) that is not consistent with the other stellar class potentials. Therefore, a general potential that conforms to all these polytropic stellar classes could not be found.
Treatment decisions based on scalar and functional baseline covariates.
Ciarleglio, Adam; Petkova, Eva; Ogden, R Todd; Tarpey, Thaddeus
2015-12-01
The amount and complexity of patient-level data being collected in randomized-controlled trials offer both opportunities and challenges for developing personalized rules for assigning treatment for a given disease or ailment. For example, trials examining treatments for major depressive disorder are not only collecting typical baseline data such as age, gender, or scores on various tests, but also data that measure the structure and function of the brain such as images from magnetic resonance imaging (MRI), functional MRI (fMRI), or electroencephalography (EEG). These latter types of data have an inherent structure and may be considered as functional data. We propose an approach that uses baseline covariates, both scalars and functions, to aid in the selection of an optimal treatment. In addition to providing information on which treatment should be selected for a new patient, the estimated regime has the potential to provide insight into the relationship between treatment response and the set of baseline covariates. Our approach can be viewed as an extension of "advantage learning" to include both scalar and functional covariates. We describe our method and how to implement it using existing software. Empirical performance of our method is evaluated with simulated data in a variety of settings and also applied to data arising from a study of patients with major depressive disorder from whom baseline scalar covariates as well as functional data from EEG are available.
Effects of a scalar scaling field on quantum mechanics
Benioff, Paul
2016-04-18
This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at eachmore » location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. Here, the lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.« less
Fermionic dark matter with pseudo-scalar Yukawa interaction
Ghorbani, Karim
2015-01-01
We consider a renormalizable extension of the standard model whose fermionic dark matter (DM) candidate interacts with a real singlet pseudo-scalar via a pseudo-scalar Yukawa term while we assume that the full Lagrangian is CP-conserved in the classical level. When the pseudo-scalar boson develops a non-zero vacuum expectation value, spontaneous CP-violation occurs and this provides a CP-violated interaction of the dark sector with the SM particles through mixing between the Higgs-like boson and the SM-like Higgs boson. This scenario suggests a minimal number of free parameters. Focusing mainly on the indirect detection observables, we calculate the dark matter annihilation cross section and then compute the DM relic density in the range up to m{sub DM} = 300 GeV.We then find viable regions in the parameter space constrained by the observed DM relic abundance as well as invisible Higgs decay width in the light of 125 GeV Higgs discovery at the LHC. We find that within the constrained region of the parameter space, there exists a model with dark matter mass m{sub DM} ∼ 38 GeV annihilating predominantly into b quarks, which can explain the Fermi-LAT galactic gamma-ray excess.
Evaluating uniformity of IR reference sources
NASA Astrophysics Data System (ADS)
Barrat, Catherine; Violleau, Sébastien
2015-10-01
Infrared reference sources such as blackbodies are used to calibrate and test IR sensors and cameras.. Applications requiring a high thermal uniformity over the emissive surface become more and more frequent compared to the past applications. Among these applications are non uniformity correction of infrared cameras focused at short distance and simultaneous calibration of a set of sensor facing a large area blackbody. Facing these demanding applications requires to accurately measuring thee thermal radiation of each point of the emissive surface of the reference source. The use of an infrared camera for this purpose turns out to be absolutely inefficient since the uniformity off response of this camera is usually worse than the uniformity of thee source to bee measured. Consequently, HGH has developed a testing bench for accurate measurement of uniformity of infrared sources based on a low noise radiometer mounted of translating stages and using an exclusive drift correction method. This bench delivers a reliable thermal map of any kind of infrared reference source.
Temperature uniformity in hyperthermal tumor therapy
NASA Technical Reports Server (NTRS)
Harrison, G. H.; Robinson, J. E.; Samaras, G. M.
1978-01-01
Mouse mammary tumors heated by water bath or by microwave-induced hyperthermia exhibit a response that varies sharply with treatment temperature; therefore, uniform heating of the tumor is essential to quantitate the biological response as a function of temperature. C3H tumors implanted on the mouse flank were easily heated to uniformities within 0.1 C by using water baths. Cold spots up to 1 C below the desired treatment temperature were observed in the same tumors implanted on the hind leg. These cold spots were attributed to cooling by major blood vessels near the tumor. In this case temperature uniformity was achieved by the deposition of 2450 MHz microwave energy into the tumor volume by using parallel-opposed applicators.
Nonspherical LED packaging lens for uniformity improvement
NASA Astrophysics Data System (ADS)
Chang, Yu-Cheng; Ou, Chung-Jen; Tsai, Yu-Sheng; Juang, Fuh-Shyang
2009-05-01
Light emitting diode (LED) has more advantages compared with a traditional incandescent light bulb and a fluorescent lamp, such as small size, low quantity of heat, long life, low power consumption, fast response, plain packaging and ease of develop ment of a frivolous short product. A methodology is proposed to improve the uniformity of the LED illumination system. As a light source in a backlight unit (BLU), the requirement for optical characteristics of a LED is different from highly directional conventional ones. New diffused-type LEDs need to be developed to fulfill the requirement of the BLU industry. A non-spherical lens is designed to optimize uniformity, and a great improvement in uniformity from 28.4 to 64% is demonstrated. In the future, it may used in an LED display to improve the unevenness of illumination.
Uniform colloidal zinc compounds of various morphologies
Castellano, M.; Matijevic, E. )
1989-02-01
The preparation of finely dispersed zinc compounds consisting of uniform particles is described. Aging at elevated temperatures ({approx} 90{degree}C) of aqueous solutions of zinc nitrate or zinc chloride in the presence of urea resulted in precipitation of uniform rodlike basic zinc carbonate particles. These solids show x-ray characteristics of crystalline hydrozincite. In the presence of sulfate ions amorphous spherical particles of narrow size distribution of the same chemical composition are generated. On calcination both kinds of solids change to zinc oxide yet retain the original shape. In the presence of NaH{sub 2}PO{sub 4} and urea, aqueous zinc salt solutions on aging yield rather uniform amorphous spherical zinc basic phosphate particles, which on calcination lose water.
Wideband audio compression using subband coding and entropy-constrained scalar quantization
NASA Astrophysics Data System (ADS)
Trinkaus, Trevor R.
1995-04-01
Source coding of wideband audio signals for storage applications and/or transmission over band limited channels is currently a research topic receiving considerable attention. A goal common to all systems designed for wideband audio coding is to achieve an efficient reduction in code rate, while maintaining imperceptible differences between the original and coded audio signals. In this thesis, an effective source coding scheme aimed at reducing the code rate to the entropy of the quantized audio source, while providing good subjective audio quality, is discussed. This scheme employs the technique of subband coding, where a 32-band single sideband modulated filter bank is used to perform subband analysis and synthesis operations. Encoding and decoding of the subbands is accomplished using entropy constrained uniform scalar quantization and subsequent arithmetic coding. A computationally efficient subband rate allocation procedure is used which relies on analytic models to describe the rate distortion characteristics of the subband quantizers. Signal quality is maintained by incorporating masking properties of the human ear into this rate allocation procedure. Results of simulations performed on compact disc quality audio segments are provided.
Optimal results on TV bounds for scalar conservation laws with discontinuous flux
NASA Astrophysics Data System (ADS)
Ghoshal, Shyam Sundar
2015-02-01
This paper is concerned with the total variation of the solution of scalar conservation law with discontinuous flux in one space dimension. One of the main unsettled questions concerning conservation law with discontinuous flux was the boundedness of the total variation of the solution near interface. In [1], it has been shown by a counter-example at T = 1, that the total variation of the solution blows up near interface, but in that example the solution become of bounded variation after time T > 1. So the natural question is what happens to the BV-ness of the solution for large time. Here we give a complete picture of the bounded variation of the solution for all time. For a uniform convex flux with only L∞ data, we obtain a natural smoothing effect in BV for all time t >T0. Also we give a counter-example (even for a BV data) to show that the assumptions which have been made are optimal.
Scalar perturbations in the late Universe: viability of the Chaplygin gas models
Bouhmadi-López, Mariam; Brilenkov, Maxim; Brilenkov, Ruslan; Morais, João
2015-12-01
We study the late-time evolution of the Universe where dark energy (DE) is parametrised by a modified generalised Chaplygin gas (mGCG) on top of cold dark matter (CDM) . We also take into account the radiation content of the Universe. In this context, the late stage of the evolution of the universe refers to the epoch where CDM is already clustered into inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies). Under these conditions, the mechanical approach is an adequate tool to study the Universe deep inside the cell of uniformity. To be more accurate, we study scalar perturbations of the Friedmann-Lemaȋtre-Robertson-Walker metric due to inhomogeneities of CDM as well as fluctuations of radiation and mGCG, the later driving the late-time acceleration of the universe. Our analysis applies as well to the case where mGCG plays the role of DM and DE . We select the sets of parameters of the mGCG that are compatible with the mechanical approach. These sets define prospective mGCG models. By comparing the selected sets of models with some of the latest observational data results, we conclude that the mGCG is in tight agreement with those observations particularly for a mGCG playing the role of DE and DM.
Effective-action approach to wave propagation in scalar QED plasmas
NASA Astrophysics Data System (ADS)
Shi, Yuan; Fisch, Nathaniel J.; Qin, Hong
2016-07-01
A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate how the general theory can be applied, we give two examples: a cold unmagnetized plasma and a cold uniformly magnetized plasma. Using these two examples, we show that all linear waves well known in classical plasma physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit, classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically spaced Bernstein waves persist even when plasmas are cold. These waves account for cyclotron absorption features observed in spectra of x-ray pulsars. Moreover, cutoff frequencies of the two nondegenerate electromagnetic waves are red-shifted by different amounts. These corrections need to be taken into account in order to correctly interpret diagnostic results in laser plasma experiments.
NASA Astrophysics Data System (ADS)
Ostrov, Daniel N.
2002-06-01
We establish a unique stable solution to the Hamilton-Jacobi equation ut+H(K(x,t),ux)=0, x∈(-∞,∞), t∈[0,∞) with Lipschitz initial condition, where K(x,t) is allowed to be discontinuous in the (x,t) plane along a finite number of (possibly intersecting) curves parameterized by t. We assume that for fixed k, H(k,p) is convex in p and limp→±∞∣{H(k,p)}/{p}∣=∞. The solution is determined by showing that if K is made smooth by convolving K in the x direction with the standard mollifier, then the control theory representation of the viscosity solution to the resulting Hamilton-Jacobi equation must converge uniformly as the mollification decreases to a Lipschitz continuous solution with an explicit control theory representation. This also defines the unique stable solution to the corresponding scalar conservation law ut+(f(K(x,t),u))x=0, x∈(-∞,∞), t∈[0,∞) with K discontinuous.
Roadmap towards justice in urban climate adaptation research
NASA Astrophysics Data System (ADS)
Shi, Linda; Chu, Eric; Anguelovski, Isabelle; Aylett, Alexander; Debats, Jessica; Goh, Kian; Schenk, Todd; Seto, Karen C.; Dodman, David; Roberts, Debra; Roberts, J. Timmons; Vandeveer, Stacy D.
2016-02-01
The 2015 United Nations Climate Change Conference in Paris (COP21) highlighted the importance of cities to climate action, as well as the unjust burdens borne by the world's most disadvantaged peoples in addressing climate impacts. Few studies have documented the barriers to redressing the drivers of social vulnerability as part of urban local climate change adaptation efforts, or evaluated how emerging adaptation plans impact marginalized groups. Here, we present a roadmap to reorient research on the social dimensions of urban climate adaptation around four issues of equity and justice: (1) broadening participation in adaptation planning; (2) expanding adaptation to rapidly growing cities and those with low financial or institutional capacity; (3) adopting a multilevel and multi-scalar approach to adaptation planning; and (4) integrating justice into infrastructure and urban design processes. Responding to these empirical and theoretical research needs is the first step towards identifying pathways to more transformative adaptation policies.
Generating code adapted for interlinking legacy scalar code and extended vector code
Gschwind, Michael K
2013-06-04
Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.
Elastic stability of non-uniform columns
NASA Astrophysics Data System (ADS)
Lee, S. Y.; Kuo, Y. H.
1991-07-01
A simple and efficient method is proposed to investigate the elastic stability of three different tapered columns subjected to uniformly distributed follower forces. The influences of the boundary conditions and taper ratio on critical buckling loads are investigated. The critical buckling loads of columns of rectangular cross section with constant depth and linearly varied width ( T1), constant width and linearly varied depth ( T2) and double taper ( T3) are investigated. Among the three different non-uniform columns considered, taper ratio has the greatest influence on the critical buckling load of column T3 and the lowest influence on that of column T1. The types of instability mechanisms for hinged-hinged and cantilever non-uniform columns are divergence and flutter respectively. However, for clamped-hinged and clamped-clamped non-uniform columns, the type of instability mechanism for column T1 is divergence, while that for columns T2 and T3 is divergence only when the taper ratio of the columns is greater than certain critical values and flutter for the rest value of taper ratio. When the type of instability mechanism changes from divergence to flutter, there is a finite jump for the critical buckling load. The influence of taper ratio on the elastic stability of cantilever column T3 is very sensitive for small values of the taper ratio and there also exist some discontinieties in the critical buckling loads of flutter instability. For a hinged-hinged non-uniform column ( T2 or T3) with a rotational spring at the left end of the column, when the taper ratio is less than the critical value the instability mechanism changes from divergence to flutter as the rotational spring constant is increased. For a clamped-elastically supported non-uniform column, when the taper ratio is greater than the critical value the instability mechanism changes from flutter to divergence as the translational spring constant is increased.
Uniform color space is not homogeneous
NASA Astrophysics Data System (ADS)
Kuehni, Rolf G.
2002-06-01
Historical data of chroma scaling and hue scaling are compared and evidence is shown that we do not have a reliable basis in either case. Several data sets indicate explicitly or implicitly that the number of constant sized hue differences between unique hues as well as in the quadrants of the a*, b* diagram differs making what is commonly regarded as uniform color space inhomogeneous. This problem is also shown to affect the OSA-UCS space. A Euclidean uniform psychological or psychophysical color space appears to be impossible.
Barrett, Harrison H.; Furenlid, Lars R.; Freed, Melanie; Hesterman, Jacob Y.; Kupinski, Matthew A.; Clarkson, Eric; Whitaker, Meredith K.
2008-01-01
Adaptive imaging systems alter their data-acquisition configuration or protocol in response to the image information received. An adaptive pinhole single-photon emission computed tomography (SPECT) system might acquire an initial scout image to obtain preliminary information about the radiotracer distribution and then adjust the configuration or sizes of the pinholes, the magnifications, or the projection angles in order to improve performance. This paper briefly describes two small-animal SPECT systems that allow this flexibility and then presents a framework for evaluating adaptive systems in general, and adaptive SPECT systems in particular. The evaluation is in terms of the performance of linear observers on detection or estimation tasks. Expressions are derived for the ideal linear (Hotelling) observer and the ideal linear (Wiener) estimator with adaptive imaging. Detailed expressions for the performance figures of merit are given, and possible adaptation rules are discussed. PMID:18541485
Elastic deformations driven by non-uniform lubrication flows
NASA Astrophysics Data System (ADS)
Rubin, Shimon; Tulchinsky, Arie; Gat, Amir D.; Bercovici, Moran
2017-02-01
The ability to create dynamic deformations of micron-sized structures is relevant to a wide variety of applications such as adaptable optics, soft robotics, and reconfigurable microfluidic devices. In this work we examine non-uniform lubrication flow as a mechanism to create complex deformation fields in an elastic plate. We consider a Kirchoff-Love elasticity model for the plate and Hele-Shaw flow in a narrow gap between the plate and a parallel rigid surface. Based on linearization of the Reynolds equation, we obtain a governing equation which relates elastic deformations to gradients in non-homogenous physical properties of the fluid (e.g. body forces, viscosity, and slip velocity). We then focus on a specific case of non-uniform Helmholtz-Smoluchowski electroosmotic slip velocity, and provide a method for determining the zeta-potential distribution necessary to generate arbitrary static and quasi-static deformations of the elastic plate. Extending the problem to time-dependent solutions, we analyze transient effects on asymptotically static solutions, and finally provide a closed form solution for a Green's function for time periodic actuations.
Vibration analysis of multiple-cracked non-uniform beams
NASA Astrophysics Data System (ADS)
Mazanoglu, K.; Yesilyurt, I.; Sabuncu, M.
2009-03-01
This paper presents the energy-based method for the vibration identification of non-uniform Euler-Bernoulli beams having multiple open cracks. The method includes significant modifications for the energy-based method presented by Yang et al. [Crack identification in vibrating beams using the energy method, Journal of Sound and Vibration 244 (2) (2001) 339-357.] The distribution of the energy consumed is determined by taking into account not only the strain change at the cracked beam surface as in general but also the considerable effect of the stress field caused by the angular displacement of the beam due to bending. The Rayleigh-Ritz approximation method is used in the analysis. The method is adapted to the cases of multiple cracks with an approach based on the definition of strain disturbance variation along the beam. Examples are presented on cantilever beams having different truncation factors. When the results are compared with a commercial finite element program and with the results of Zheng and Fan [Natural frequencies of a non-uniform beam with multiple cracks via modified Fourier series, Journal of Sound and Vibration 242 (4) (2001) 701-717], good agreements are obtained. The effects of truncation factors and positions of cracks on the natural frequency ratios are presented in graphics.
Nonuniform spatially adaptive wavelet packets
NASA Astrophysics Data System (ADS)
Carre, Philippe; Fernandez-Maloigne, Christine
2000-12-01
In this paper, we propose a new decomposition scheme for spatially adaptive wavelet packets. Contrary to the double tree algorithm, our method is non-uniform and shift- invariant in the time and frequency domains, and is minimal for an information cost function. We prose some-restrictions to our algorithm to reduce the complexity and permitting us to provide some time-frequency partitions of the signal in agreement with its structure. This new 'totally' non-uniform transform, more adapted than Malvar, Packets or dyadic double-tree decomposition, allows the study of all possible time-frequency partitions with the only restriction that the blocks are rectangular. It permits one to obtain a satisfying Time-Frequency representation, and is applied for the study of EEG signals.
NASA Technical Reports Server (NTRS)
Boersma, J.; Rahmat-Samii, Y.
1980-01-01
The diffraction of an arbitrary cylindrical wave by a half-plane has been treated by Rahmat-Samii and Mittra who used a spectral domain approach. In this paper, their exact solution for the total field is expressed in terms of a new integral representation. For large wave number k, two rigorous procedures are described for the exact uniform asymptotic expansion of the total field solution. The uniform expansions obtained are valid in the entire space, including transition regions around the shadow boundaries. The final results are compared with the formulations of two leading uniform theories of edge diffraction, namely, the uniform asymptotic theory and the uniform theory of diffraction. Some unique observations and conclusions are made in relating the two theories.
Mulcahey, Thomas I; Coad, James E; Fan, Wei Li; Grasso, Daniel J; Hanley, Brian M; Hawkes, Heather V; McDermott, Sean A; O’Connor, John P; Sheets, Ellen E; Vadala, Charles J
2017-01-01
In this article, a novel cryotherapy approach using a uniform, controlled, and consistent in vivo application of liquid nitrogen (LN2) spray as a Metered Cryospray™ (MCS) process is described. Although MCS may be used for many potential clinical applications, this paper focuses on the development that led to the controlled and consistent delivery of radial LN2 cryogen spray in order to generate a uniform circumferential effect and how the amount of MCS can be adapted to specifically ablate targeted diseases within a patient’s lumen such as an airway or esophagus. PMID:28255257
NASA Astrophysics Data System (ADS)
Khanwale, Makrand A.; Khadamkar, Hrushikesh P.; Mathpati, Channamallikarjun S.
2015-11-01
and velocity fields are calculated using wavelet transform modulus maxima methodology to analyse the distribution of non-Gaussian flow structures and their effect on scalar transport. Further, Fourier spectra based on velocity and concentration are also reported. We found that vorticity and concentration fields became progressively non-Gaussian, as one moved from large scales to small scales. This turbulence like behaviour is attributed to interfacial instabilities developed because of the non-uniform shear at the interface. The multi-fractal singularity spectra had their Hurst exponent H > 0.5, which showed high correlation in the hierarchy of the flow structures. A strong correlation between concentration and velocity multi-fractal spectra was also seen.
A method for real time detecting of non-uniform magnetic field
NASA Astrophysics Data System (ADS)
Marusenkov, Andriy
2015-04-01
The principle of measuring magnetic signatures for observing diverse objects is widely used in Near Surface work (unexploded ordnance (UXO); engineering & environmental; archaeology) and security and vehicle detection systems as well. As a rule, the magnitude of the signals to be measured is much lower than that of the quasi-uniform Earth magnetic field. Usually magnetometers for these purposes contain two or more spatially separated sensors to estimate the full tensor gradient of the magnetic field or, more frequently, only partial gradient components. The both types (scalar and vector) of magnetic sensors could be used. The identity of the scale factors and proper alignment of the sensitivity axes of the vector sensors are very important for deep suppression of the ambient field and detection of weak target signals. As a rule, the periodical calibration procedure is used to keep matching sensors' parameters as close as possible. In the present report we propose the technique for detection magnetic anomalies, which is almost insensitive to imperfect matching of the sensors. This method based on the idea that the difference signals between two sensors are considerably different when the instrument is rotated or moved in uniform and non-uniform fields. Due to the misfit of calibration parameters the difference signal observed at the rotation in the uniform field is similar to the total signal - the sum of the signals of both sensors. Zero change of the difference and total signals is expected, if the instrument moves in the uniform field along a straight line. In contrast, the same move in the non-uniform field produces some response of each of the sensors. In case one measures dB/dx and moves along x direction, the sensors signals is shifted in time with the lag proportional to the distance between sensors and the speed of move. It means that the difference signal looks like derivative of the total signal at move in the non-uniform field. So, using quite simple
Uniforms: Are They a Good Fit?
ERIC Educational Resources Information Center
Boutelle, Marsha
2008-01-01
In an era where some parents seem unwilling or unable to draw the "clothes" line with their children, where pop culture influences kids' clothing choices as never before, and school safety--including gang violence--is at the top of everyone's minds, school uniforms and dress codes can play a significant role. What that role should be,…
Electroformed screens with uniform hole size
NASA Technical Reports Server (NTRS)
Schaer, G. R.
1968-01-01
Efficient method electroforms fine-mesh nickel screens, or plagues, with uniform hole size and accurate spacing between holes. An electroformed nickel mandrel has nonconducting silicone rubber projections that duplicate the desired hole size and shape in the finished nickel screen.
Uniform spray coating for large tanks
NASA Technical Reports Server (NTRS)
Carter, J. M.
1977-01-01
System employs spray facility located within ventilated plastic booth to uniformly coat exterior of large cylindrical tanks with polyurethane foam insulation. Coating target is rotated on turntable while movable spray guns apply overlapping spirals of foam. Entire operation may be controlled by single operator from remote station.
Spatial uniformity measurement of SAW convolvers
NASA Astrophysics Data System (ADS)
Selviah, D. R.; Warne, D. H.; Morgan, D. P.
1982-09-01
For correlation of coded waveforms, the nonlinear interactive process in a SAW convolver should ideally give an amplitude and phase independent of position. A new experimental method of measuring this spatial uniformity used CW test waveforms and gave a resolution of 25 ns - a considerably higher resolution than previously attained.
Mandatory School Uniforms and Freedom of Expression
ERIC Educational Resources Information Center
Vopat, Mark C.
2010-01-01
On 10 December 2007 the Akron City School Board--following the precedent set by many school systems across the United States and the world--instituted a policy of mandatory school uniforms for all students in grades K-8. The measure was met with mixed reviews. While many parents supported the measure, a small group of parents from a selective,…
School Uniforms in Urban Public High Schools
ERIC Educational Resources Information Center
Draa, Virginia Ann Bendel
2005-01-01
The purpose of this study was to determine whether or not the implementation of a mandatory uniform policy in urban public high schools improved school performance measures at the building level for rates of attendance, graduation, academic proficiency, and student conduct as measured by rates of suspensions and expulsions. Sixty-four secondary…
School Uniform Revisited: Procedure, Pressure and Equality
ERIC Educational Resources Information Center
Carney, Damian; Sinclair, Adele
2006-01-01
The House of Lords' decision in "R. (on the application of Begum) v. The Headteacher and Governors of Denbigh High School" considered whether a particular school uniform policy infringed a student's right to manifest her religion under Article 9. This paper analyses the content of this decision, and explores how schools should approach…
Is Curriculum Quality Uniform? Evidence from Florida
ERIC Educational Resources Information Center
Bhatt, Rachana; Koedel, Cory; Lehmann, Douglas
2013-01-01
We construct a large panel dataset of schools and districts in Florida to evaluate curricular effectiveness in elementary mathematics. A key innovation of our study is that we allow for curriculum quality to be non-uniform across various mathematics subtopics. We find evidence of variability in curricular effectiveness across different subtopics…
MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR
Balent, R.
1963-03-12
This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)
METHOD OF OBTAINING UNIFORM COATINGS ON GRAPHITE
Campbell, I.E.
1961-04-01
A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.
Method of Obtaining Uniform Coatings on Graphite
Campbell, I. E.
1961-04-01
A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.
Uniformity and Diversity: Curricular and Instructional Issues.
ERIC Educational Resources Information Center
Passow, A. Harry
1987-01-01
In the drive toward "democratization of education," the twin goals of diversity and uniformity (like equality and excellence) are considered desirable even though they often conflict with one another. This paper reviews the history of curriculum design, including bilingual and cultural pluralism influences and concludes that both…
School Uniforms: A Blueprint for Legal Challenges.
ERIC Educational Resources Information Center
Simonson, Mary Ellen
1998-01-01
This article discusses some of the options and strategies available to school districts in defending dress codes which mandate uniforms. Three components are essential to a successful defense: the dress code must bear a reasonable relation to the school's pedagogical purpose, it must include alternative avenues of expression, and it must…
Uniform color spaces and natural image statistics.
McDermott, Kyle C; Webster, Michael A
2012-02-01
Many aspects of visual coding have been successfully predicted by starting from the statistics of natural scenes and then asking how the stimulus could be efficiently represented. We started from the representation of color characterized by uniform color spaces, and then asked what type of color environment they implied. These spaces are designed to represent equal perceptual differences in color discrimination or appearance by equal distances in the space. The relative sensitivity to different axes within the space might therefore reflect the gamut of colors in natural scenes. To examine this, we projected perceptually uniform distributions within the Munsell, CIE L(*)u(*)v(*) or CIE L(*)a(*)b(*) spaces into cone-opponent space. All were elongated along a bluish-yellowish axis reflecting covarying signals along the L-M and S-(L+M) cardinal axes, a pattern typical (though not identical) to many natural environments. In turn, color distributions from environments were more uniform when projected into the CIE L(*)a(*)b(*) perceptual space than when represented in a normalized cone-opponent space. These analyses suggest the bluish-yellowish bias in environmental colors might be an important factor shaping chromatic sensitivity, and also suggest that perceptually uniform color metrics could be derived from natural scene statistics and potentially tailored to specific environments.
Uniform color spaces and natural image statistics
McDermott, Kyle C.; Webster, Michael A.
2011-01-01
Many aspects of visual coding have been successfully predicted by starting from the statistics of natural scenes and then asking how the stimulus could be efficiently represented. We started from the representation of color characterized by uniform color spaces, and then asked what type of color environment they implied. These spaces are designed to represent equal perceptual differences in color discrimination or appearance by equal distances in the space. The relative sensitivity to different axes within the space might therefore reflect the gamut of colors in natural scenes. To examine this, we projected perceptually uniform distributions within the Munsell, CIEL*u*v* or CIEL*a*b* spaces into cone-opponent space. All were elongated along a bluish-yellowish axis reflecting covarying signals along the L-M and S-L+M cardinal axes, a pattern typical (though not identical) to many natural environments. In turn, color distributions from environments were more uniform when projected into the CIEL*a*b* perceptual space than when represented in a normalized cone-opponent space. These analyses suggest the bluish-yellowish bias in environmental colors might be an important factor shaping chromatic sensitivity, and also suggest that perceptually uniform color metrics could be derived from natural scene statistics and potentially tailored to specific environments. PMID:22330376
Uniformly convex and strictly convex Orlicz spaces
NASA Astrophysics Data System (ADS)
Masta, Al Azhary
2016-02-01
In this paper we define the new norm of Orlicz spaces on ℝn through a multiplication operator on an old Orlicz spaces. We obtain some necessary and sufficient conditions that the new norm to be a uniformly convex and strictly convex spaces.
Preparation and properties of uniform size colloids
Matijevic, E. )
1993-04-01
The achievements and problems in the preparation of uniform colloids by precipitation from homogeneous electrolyte solutions are reviewed. Specifically, the syntheses of [open quotes]monodispersed[close quotes] particles of simple and mixed compositions as well as of coated and hollow particles of different shapes are described, and the physical and chemical mechanisms of their formation are discussed. 126 refs., 25 figs., 1 tab.
Perceptual uniformity of commonly used color spaces
NASA Astrophysics Data System (ADS)
Avanaki, Ali; Espig, Kathryn; Kimpe, Tom; Xthona, Albert; Marchessoux, Cedric; Rostang, Johan; Piepers, Bastian
2014-03-01
Use of color images in medical imaging has increased significantly the last few years. Color information is essential for applications such as ophthalmology, dermatology and clinical photography. Use of color at least brings benefits for other applications such as endoscopy, laparoscopy and digital pathology. Remarkably, as of today, there is no agreed standard on how color information needs to be visualized for medical applications. This lack of standardization results in large variability of how color images are visualized and it makes quality assurance a challenge. For this reason FDA and ICC recently organized a joint summit on color in medical imaging (CMI). At this summit, one of the suggestions was that modalities such as digital pathology could benefit from using a perceptually uniform color space (T. Kimpe, "Color Behavior of Medical Displays," CMI presentation, May 2013). Perceptually uniform spaces have already been used for many years in the radiology community where the DICOM GSDF standard provides linearity in luminance but not in color behavior. In this paper we quantify perceptual uniformity, using CIE's ΔE2000 as a color distance metric, of several color spaces that are typically used for medical applications. We applied our method to theoretical color spaces Gamma 1.8, 2.0, & 2.2, standard sRGB, and DICOM (correction LUT for gray applied to all primaries). In addition, we also measured color spaces (i.e., native behavior) of a high-end medical display (Barco Coronis Fusion 6MP DL, MDCC-6130), and a consumer display (Dell 1907FP). Our results indicate that sRGB & the native color space on the Barco Coronis Fusion exhibit the least non-uniformity within their group. However, the remaining degree of perceptual non-uniformity is still significant and there is room for improvement.
NASA Astrophysics Data System (ADS)
Kinzig, Ann P.
2015-03-01
This paper is intended as a brief introduction to climate adaptation in a conference devoted otherwise to the physics of sustainable energy. Whereas mitigation involves measures to reduce the probability of a potential event, such as climate change, adaptation refers to actions that lessen the impact of climate change. Mitigation and adaptation differ in other ways as well. Adaptation does not necessarily have to be implemented immediately to be effective; it only needs to be in place before the threat arrives. Also, adaptation does not necessarily require global, coordinated action; many effective adaptation actions can be local. Some urban communities, because of land-use change and the urban heat-island effect, currently face changes similar to some expected under climate change, such as changes in water availability, heat-related morbidity, or changes in disease patterns. Concern over those impacts might motivate the implementation of measures that would also help in climate adaptation, despite skepticism among some policy makers about anthropogenic global warming. Studies of ancient civilizations in the southwestern US lends some insight into factors that may or may not be important to successful adaptation.
Scalar mass relations and flavor violations in supersymmetric theories
Cheng, Hsin-Chia |
1996-05-09
Supersymmetry provides the most promising solution to the gauge hierarchy problem. For supersymmetry to stablize the hierarchy, it must be broken at the weak scale. The combination of weak scale supersymmetry and grand unification leads to a successful prediction of the weak mixing angle to within 1{percent} accuracy. If supersymmetry is a symmetry of nature, the mass spectrum and the flavor mixing pattern of the scalar superpartners of all the quarks and leptons will provide important information about a more fundamental theory at higher energies. We studied the scalar mass relations which follow from the assumption that at high energies there is a grand unified theory which leads to a significant prediction of the weak mixing angle; these will serve as important tests of grand unified theories. Two intragenerational mass relations for each of the light generations are derived. A third relation is also found which relates the Higgs masses and the masses of all three generation scalars. In a realistic supersymmetric grand unified theory, nontrivial flavor mixings are expected to exist at all gaugino vertices. This could lead to important contributions to the neutron electric dipole moment, the decay mode p {r_arrow} K{sup 0}{mu}{sup +}, weak scale radiative corrections to the up-type quark masses, and lepton flavor violating signals such as {mu} {r_arrow} e{gamma}. These also provide important probes of physics at high energy scales. Supersymmetric theories involving a spontaneously broken flavor symmetry can provide a solution to the supersymmetric flavor-changing problem and an understanding of the fermion masses and mixings. We studied the possibilities and the general conditions under which some fermion masses and mixings can be obtained radiatively. We also constructed theories of flavor in which the first generation fermion masses arise from radiative corrections while flavor-changing constraints are satisfied. 69 refs., 19 figs., 9 tabs.
Fluid flow and scalar transport through porous fins
NASA Astrophysics Data System (ADS)
Coletti, F.; Muramatsu, K.; Schiavazzi, D.; Elkins, C. J.; Eaton, J. K.
2014-05-01
Lotus-type porous metals are a promising alternative for compact heat transfer applications. In lotus-type porous fins, jet impingement and transverse mixing play important roles for heat transfer: jets emerging from the pores impinge on the following fin and enhance heat transfer performance, while the transverse fluid motion advects heat away from the fin surface. By means of magnetic resonance imaging we have performed mean flow and scalar transport measurements through scaled-up replicas of two kinds of lotus-type porous fins: one with a deterministic hole pattern and staggered alignment, and one with a random hole pattern, but the same porosity and mean pore diameter. The choice of geometric parameters (fin spacing, thickness, porosity, and hole diameter) is based on previous thermal studies. The Reynolds number based on the mean pore diameter and inner velocity ranges from 80 to 3800. The measurements show that in the random hole pattern the jet characteristic length scale is substantially larger with respect to the staggered hole pattern. The random geometry also produces long coherent vortices aligned with the streamwise direction, which improves the transverse mixing. The random hole distribution causes the time mean streamlines to meander in a random-walk manner, and the diffusivity coefficient associated to the mechanical dispersion (which is nominally zero in the staggered hole configuration) is several times larger than the fluid molecular diffusivity at the higher Reynolds numbers. From the trends in maximum streamwise velocity, streamwise vorticity, and mechanical diffusivity, it is inferred that the flow undergoes a transition to an unsteady/turbulent regime around Reynolds number 300. This is supported by the measurements of concentration of an isokinetic non-buoyant plume of scalar injected upstream of the stack of fins. The total scalar diffusivity for the fully turbulent regime is found to be 22 times larger than the molecular diffusivity, but
Scalar-pseudoscalar interaction in the francium atom
NASA Astrophysics Data System (ADS)
Skripnikov, L. V.; Maison, D. E.; Mosyagin, N. S.
2017-02-01
Fr atom can be successively used to search for the atomic permanent electric dipole moment (EDM) [Hyperfine Interact. 236, 53 (2015), 10.1007/s10751-015-1193-1; J. Phys.: Conference Series 691, 012017 (2016), 10.1088/1742-6596/691/1/012017]. It can be induced by the permanent electron EDM predicted by modern extensions of the standard model to be nonzero at the level accessible by the new generation of EDM experiments. We consider another mechanism of the atomic EDM generation in Fr. This is caused by the scalar-pseudoscalar nucleus-electron neutral current interaction with the dimensionless strength constant kT ,P. Similar to the electron EDM this interaction violates both spatial parity and time-reversal symmetries and can also induce permanent atomic EDM. It was shown in [Phys. Rev. D 89, 056006 (2014), 10.1103/PhysRevD.89.056006] that the scalar-pseudoscalar contribution to the atomic EDM can dominate over the direct contribution from the electron EDM within the standard model. We report high-accuracy combined all-electron and two-step relativistic coupled cluster treatment of the effect from the scalar-pseudoscalar interaction in the Fr atom. Up to the quadruple cluster amplitudes within the coupled cluster method with single, double, triple, and noniterative quadruple amplitudes, CCSDT(Q), were included in correlation treatment. This calculation is required for the interpretation of the experimental data in terms of kT ,P. The resulted EDM of the Fr atom expressed in terms of kT ,P is dFr=kT ,P4.50 ×10-18e cm , where e is the (negative) charge of the electron. The value of the ionization potential of the 2S1 /2 ground state of Fr calculated within the same methods is in very good agreement with the experimental datum.
Neutrino Oscillations as a Probe of Light Scalar Dark Matter.
Berlin, Asher
2016-12-02
We consider a class of models involving interactions between ultralight scalar dark matter and standard model neutrinos. Such couplings modify the neutrino mass splittings and mixing angles to include additional components that vary in time periodically with a frequency and amplitude set by the mass and energy density of the dark matter. Null results from recent searches for anomalous periodicities in the solar neutrino flux strongly constrain the dark matter-neutrino coupling to be orders of magnitude below current and projected limits derived from observations of the cosmic microwave background.
Power spectrum of passive scalars in two dimensional chaotic flows
NASA Astrophysics Data System (ADS)
Yuan, Guo-Cheng; Nam, Keeyeol; Antonsen, Thomas M.; Ott, Edward; Guzdar, Parvez N.
2000-03-01
In this paper the power spectrum of passive scalars transported in two dimensional chaotic fluid flows is studied theoretically. Using a wave-packet method introduced by Antonsen et al., several model flows are investigated, and the fact that the power spectrum has the k-1-scaling predicted by Batchelor is confirmed. It is also observed that increased intermittency of the stretching tends to make the roll-off of the power spectrum at the high k end of the k-1 scaling range more gradual. These results are discussed in light of recent experiments where a k-1 scaling range was not observed.
Lagrangian chaos and small scale structure of passive scalars
NASA Astrophysics Data System (ADS)
Vulpiani, Angelo
1989-09-01
We revise the classical theory of Batchelor, which gives a k-1 law for the power spectrum of a passive scalar at wavenumbers k, for which the molecular diffusion is unimportant and much smaller than the fluid viscosity. Using some ideas borrowed from the theory of dynamical systems, we show that this power law is related to the chaotic motion of marker particles (Lagrangian chaos) and to the incompressibility constraint. Moreover our approach permits showing that the k-1 regime is present in fluids which are not turbulent and it is valid for all dimensionalities d⩾2.
Active helium target: Neutron scalar polarizability extraction via Compton scattering
Morris, Meg Hornidge, David; Annand, John; Strandberg, Bruno
2015-12-31
Precise measurement of the neutron scalar polarizabilities has been a lasting challenge because of the lack of a free-neutron target. Led by the University of Glasgow and the Mount Allison University groups of the A2 collaboration in Mainz, Germany, preparations have begun to test a recent theoretical model with an active helium target with the hope of determining these elusive quantities with small statistical, systematic, and model-dependent errors. Apparatus testing and background-event simulations have been carried out, with the full experiment projected to run in 2015. Once determined, these values can be applied to help understand quantum chromodynamics in the nonperturbative region.