Science.gov

Sample records for adaptive variable structure

  1. Adaptive variable structure hierarchical fuzzy control for a class of high-order nonlinear dynamic systems.

    PubMed

    Mansouri, Mohammad; Teshnehlab, Mohammad; Aliyari Shoorehdeli, Mahdi

    2015-05-01

    In this paper, a novel adaptive hierarchical fuzzy control system based on the variable structure control is developed for a class of SISO canonical nonlinear systems in the presence of bounded disturbances. It is assumed that nonlinear functions of the systems be completely unknown. Switching surfaces are incorporated into the hierarchical fuzzy control scheme to ensure the system stability. A fuzzy soft switching system decides the operation area of the hierarchical fuzzy control and variable structure control systems. All the nonlinearly appeared parameters of conclusion parts of fuzzy blocks located in different layers of the hierarchical fuzzy control system are adjusted through adaptation laws deduced from the defined Lyapunov function. The proposed hierarchical fuzzy control system reduces the number of rules and consequently the number of tunable parameters with respect to the ordinary fuzzy control system. Global boundedness of the overall adaptive system and the desired precision are achieved using the proposed adaptive control system. In this study, an adaptive hierarchical fuzzy system is used for two objectives; it can be as a function approximator or a control system based on an intelligent-classic approach. Three theorems are proven to investigate the stability of the nonlinear dynamic systems. The important point about the proposed theorems is that they can be applied not only to hierarchical fuzzy controllers with different structures of hierarchical fuzzy controller, but also to ordinary fuzzy controllers. Therefore, the proposed algorithm is more general. To show the effectiveness of the proposed method four systems (two mechanical, one mathematical and one chaotic) are considered in simulations. Simulation results demonstrate the validity, efficiency and feasibility of the proposed approach to control of nonlinear dynamic systems.

  2. Structure identification of an uncertain network coupled with complex-variable chaotic systems via adaptive impulsive control

    NASA Astrophysics Data System (ADS)

    Liu, Dan-Feng; Wu, Zhao-Yan; Ye, Qing-Ling

    2014-04-01

    In this paper, structure identification of an uncertain network coupled with complex-variable chaotic systems is investigated. Both the topological structure and the system parameters can be unknown and need to be identified. Based on impulsive stability theory and the Lyapunov function method, an impulsive control scheme combined with an adaptive strategy is adopted to design effective and universal network estimators. The restriction on the impulsive interval is relaxed by adopting an adaptive strategy. Further, the proposed method can monitor the online switching topology effectively. Several numerical simulations are provided to illustrate the effectiveness of the theoretical results.

  3. Structural Adaptation

    ERIC Educational Resources Information Center

    Crowley, Julianne; Titmus, Morgan

    2016-01-01

    This article explores an alternative conception held by high school and first-year university biology students regarding the structure of the left and right ventricles of the heart and the significance of the left ventricular wall being thicker than the right. The left ventricular wall of the heart is thicker than the right ventricular wall due to…

  4. Exploring the Structure-Function Loop Adaptability of a (β/α)(8)-Barrel Enzyme through Loop Swapping and Hinge Variability.

    PubMed

    Ochoa-Leyva, Adrián; Barona-Gómez, Francisco; Saab-Rincón, Gloria; Verdel-Aranda, Karina; Sánchez, Filiberto; Soberón, Xavier

    2011-08-05

    Evolution of proteins involves sequence changes that are frequently localized at loop regions, revealing their important role in natural evolution. However, the development of strategies to understand and imitate such events constitutes a challenge to design novel enzymes in the laboratory. In this study, we show how to adapt loop swapping as semiautonomous units of functional groups in an enzyme with the (β/α)(8)-barrel and how this functional adaptation can be measured in vivo. To mimic the natural mechanism providing loop variability in antibodies, we developed an overlap PCR strategy. This includes introduction of sequence diversity at two hinge residues, which connect the new loops with the rest of the protein scaffold, and we demonstrate that this is necessary for a successful exploration of functional sequence space. This design allowed us to explore the sequence requirements to functional adaptation of each loop replacement that may not be sampled otherwise. Libraries generated following this strategy were evaluated in terms of their folding competence and their functional proficiency, an observation that was formalized as a Structure-Function Loop Adaptability value. Molecular details about the function and structure of some variants were obtained by enzyme kinetics and circular dichroism. This strategy yields functional variants that retain the original activity at higher frequencies, suggesting a new strategy for protein engineering that incorporates a more divergent sequence exploration beyond that limited to point mutations. We discuss how this approach may provide insights into the mechanism of enzyme evolution and function.

  5. Variable Neural Adaptive Robust Control: A Switched System Approach

    SciTech Connect

    Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.

    2015-05-01

    Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewise quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.

  6. Adaptive building skin structures

    NASA Astrophysics Data System (ADS)

    Del Grosso, A. E.; Basso, P.

    2010-12-01

    The concept of adaptive and morphing structures has gained considerable attention in the recent years in many fields of engineering. In civil engineering very few practical applications are reported to date however. Non-conventional structural concepts like deployable, inflatable and morphing structures may indeed provide innovative solutions to some of the problems that the construction industry is being called to face. To give some examples, searches for low-energy consumption or even energy-harvesting green buildings are amongst such problems. This paper first presents a review of the above problems and technologies, which shows how the solution to these problems requires a multidisciplinary approach, involving the integration of architectural and engineering disciplines. The discussion continues with the presentation of a possible application of two adaptive and dynamically morphing structures which are proposed for the realization of an acoustic envelope. The core of the two applications is the use of a novel optimization process which leads the search for optimal solutions by means of an evolutionary technique while the compatibility of the resulting configurations of the adaptive envelope is ensured by the virtual force density method.

  7. A Consideration for Variable Length Adaptive Tests.

    ERIC Educational Resources Information Center

    Wingersky, Marilyn S.

    In a variable-length adaptive test with a stopping rule that relied on the asymptotic standard error of measurement of the examinee's estimated true score, M. S. Stocking (1987) discovered that it was sufficient to know the examinee's true score and the number of items administered to predict with some accuracy whether an examinee's true score was…

  8. Dynamically variable negative stiffness structures

    PubMed Central

    Churchill, Christopher B.; Shahan, David W.; Smith, Sloan P.; Keefe, Andrew C.; McKnight, Geoffrey P.

    2016-01-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness–based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  9. Adaptive Variable Bias Magnetic Bearing Control

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.; Inman, Daniel J.

    1998-01-01

    Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. With the existence of the bias current, even in no load conditions, there is always some power consumption. In aerospace applications, power consumption becomes an important concern. In response to this concern, an alternative magnetic bearing control method, called Adaptive Variable Bias Control (AVBC), has been developed and its performance examined. The AVBC operates primarily as a proportional-derivative controller with a relatively slow, bias current dependent, time-varying gain. The AVBC is shown to reduce electrical power loss, be nominally stable, and provide control performance similar to conventional bias control. Analytical, computer simulation, and experimental results are presented in this paper.

  10. Typhoon Structural Variability,

    DTIC Science & Technology

    1985-10-01

    1964). NHRL Report No. 83, 64 pp. Simiu, E., and R. H. Scanlan , 1978: Wind Effects on Structures. Wiley-Interscience, 458 pp. Simpson, R. H., 1952...Parameter Relationships (105 pp.). J. E. George . December 1975. NOAA Support. 243 Diurnal Variation of Oceanic Deep Cumulus Convection. Paper I

  11. 3D Structured Grid Adaptation

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; Hafez, M. M.

    1996-01-01

    Grid adaptation for structured meshes is the art of using information from an existing, but poorly resolved, solution to automatically redistribute the grid points in such a way as to improve the resolution in regions of high error, and thus the quality of the solution. This involves: (1) generate a grid vis some standard algorithm, (2) calculate a solution on this grid, (3) adapt the grid to this solution, (4) recalculate the solution on this adapted grid, and (5) repeat steps 3 and 4 to satisfaction. Steps 3 and 4 can be repeated until some 'optimal' grid is converged to but typically this is not worth the effort and just two or three repeat calculations are necessary. They also may be repeated every 5-10 time steps for unsteady calculations.

  12. Kinematics and computation of workspace for adaptive geometry structures

    NASA Astrophysics Data System (ADS)

    Pourki, Forouza; Sosa, Horacio

    1993-09-01

    A new feature in the design of smart structures is the capability of the structure to respond autonomously to undesirable phenomena and environment. This capability is often synonymous to the requirement that the structure should assume a set of different geometric shapes or adapt to a set of kinematic constraints to accomplish a maneuver. Systems with these characteristics have been referred to as `shape adaptive' or `variable geometry' structures. The present paper introduces a basis for the kinematics and work space studies of statically deterministic truss structures which are shape adaptive. The difference between these structures and the traditional truss structures, which are merely built to support the weight and may be modelled by finite element methods, is the fact that these variable geometry structures allow for large (and nonlinear) deformations. On the other hand, these structures unlike structures composed of well investigated `four bar mechanisms,' are statically deterministic.

  13. Adaptive structures to enable ground test validation of precision structures

    NASA Technical Reports Server (NTRS)

    Wada, Ben K.; Fanson, James F.; Chen, Gun-Shing; Kuo, Chin-Po

    1990-01-01

    The use of analytical models and ground-based experimental validation of precision space structures is addressed. The application of adaptive structures to such validation of precision space structures is addressed, with the focus on adaptive truss structures.

  14. Conical isogrid adapter structural test results

    NASA Technical Reports Server (NTRS)

    Dyer, J. E.; Slysh, P.

    1974-01-01

    The structural characteristics of isogrid composite structures are discussed. To demonstrate the feasibility of applying isogrid to conical structures, a full scale flanged isogrid conical adapter similar to the configuration of the D-1 Centaur equipment module was constructed. The adapter was tested to evaluate the response of the conical isogrid structure to various combinations of bending and axial compression loading. The analysis techniques for predicting conical isogrid structural capability are examined.

  15. [Mechanisms of natural variability at adaptation of human physiological systems to conditions of space flight].

    PubMed

    Larina, I M; Nosovskiĭ, A M; Grigor'ev, A I

    2012-01-01

    This article analyzes the physiological data using the principle of invariant relationships, to reveal the mechanisms of adaptive variability. It was used physical-chemical, biochemical, and hormonal blood parameters of cosmonauts who have committed short-term and long space flights. These results suggest that application of the methods of fractal geometry to quantitative estimates of homeostasis allows to allocate the processes depending on the increase/decrease of adaptive variability and fix the state of stability or instability of certain physiological regulatory subsystems, due to mobility and to reduce the level of stability which remains stable internal structure of relationships throughout the body.

  16. Adaptive structures - Test hardware and experimental results

    NASA Technical Reports Server (NTRS)

    Wada, Ben K.; Fanson, James L.; Chen, Gun-Shing; Kuo, Chin-Po

    1990-01-01

    The facilities and procedures used at JPL to test adaptive structures such as the large deployable reflector (LDR) are described and preliminary results are reported. The applications of adaptive structures in future NASA missions are outlined, and the techniques which are employed to modify damping, stiffness, and isolation characteristics, as well as geometric changes, are listed. The development of adaptive structures is shown to be effective as a result of new actuators and sensors, and examples are listed for categories such as fiber optics, shape-memory materials, piezoelectrics, and electrorheological fluids. Some ground test results are described for laboratory truss structures and truss test beds, which are shown to be efficient and easy to assemble in space. Adaptive structures are shown to be important for precision space structures such as the LDR, and can alleviate ground test requirements.

  17. Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution

    PubMed Central

    Erickson, Keesha E.; Otoupal, Peter B.

    2017-01-01

    ABSTRACT Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment

  18. Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution.

    PubMed

    Erickson, Keesha E; Otoupal, Peter B; Chatterjee, Anushree

    2017-01-01

    Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress

  19. Wind Turbines Adaptation to the Variability of the Wind Field

    NASA Astrophysics Data System (ADS)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar

  20. Segmentally variable genes: a new perspective on adaptation.

    PubMed

    Zheng, Yu; Roberts, Richard J; Kasif, Simon

    2004-04-01

    Genomic sequence variation is the hallmark of life and is key to understanding diversity and adaptation among the numerous microorganisms on earth. Analysis of the sequenced microbial genomes suggests that genes are evolving at many different rates. We have attempted to derive a new classification of genes into three broad categories: lineage-specific genes that evolve rapidly and appear unique to individual species or strains; highly conserved genes that frequently perform housekeeping functions; and partially variable genes that contain highly variable regions, at least 70 amino acids long, interspersed among well-conserved regions. The latter we term segmentally variable genes (SVGs), and we suggest that they are especially interesting targets for biochemical studies. Among these genes are ones necessary to deal with the environment, including genes involved in host-pathogen interactions, defense mechanisms, and intracellular responses to internal and environmental changes. For the most part, the detailed function of these variable regions remains unknown. We propose that they are likely to perform important binding functions responsible for protein-protein, protein-nucleic acid, or protein-small molecule interactions. Discerning their function and identifying their binding partners may offer biologists new insights into the basic mechanisms of adaptation, context-dependent evolution, and the interaction between microbes and their environment.

  1. Adaptive structures for deployment/construction of structures in space

    NASA Technical Reports Server (NTRS)

    Wada, Ben K.; Utku, Senol

    1992-01-01

    The application of adaptive structures to the structural design of space structures is examined with attention given to facilitating their construction in space and enhancing reliability. A modified approach based on traditional techniques is presented which incorporates the loads analysis by Wada (1979) and the application of adaptive structures to control structural motion. An analytical technique is described for the deployment/construction of the structure in which each step of the assembly sequence is analyzed. The use of adaptive structures is shown to permit the static adjustment of the structure after assembly in its operational environment. The concepts presented to incorporate adaptive structures in the deployment of large space structures are expected to improve the reliability and reduce the cost of the total systems.

  2. Bio-inspired variable structural color materials.

    PubMed

    Zhao, Yuanjin; Xie, Zhuoying; Gu, Hongcheng; Zhu, Cun; Gu, Zhongze

    2012-04-21

    Natural structural color materials, especially those that can undergo reversible changes, are attracting increasing interest in a wide variety of research fields. Inspired by the natural creatures, many elaborately nanostructured photonic materials with variable structural colors were developed. These materials have found important applications in switches, display devices, sensors, and so on. In this critical review, we will provide up-to-date research concerning the natural and bio-inspired photonic materials with variable structural colors. After introducing the variable structural colors in natural creatures, we will focus on the studies of artificial variable structural color photonic materials, including their bio-inspired designs, fabrications and applications. The prospects for the future development of these fantastic variable structural color materials will also be presented. We believe this review will promote the communications among biology, bionics, chemistry, optical physics, and material science (196 references).

  3. Distance and slope constraints: adaptation and variability in golf putting.

    PubMed

    Dias, Gonçalo; Couceiro, Micael S; Barreiros, João; Clemente, Filipe M; Mendes, Rui; Martins, Fernando M

    2014-07-01

    The main objective of this study is to understand the adaptation to external constraints and the effects of variability in a golf putting task. We describe the adaptation of relevant variables of golf putting to the distance to the hole and to the addition of a slope. The sample consisted of 10 adult male (33.80 ± 11.89 years), volunteers, right handed and highly skilled golfers with an average handicap of 10.82. Each player performed 30 putts at distances of 2, 3 and 4 meters (90 trials in Condition 1). The participants also performed 90 trials, at the same distances, with a constraint imposed by a slope (Condition 2). The results indicate that the players change some parameters to adjust to the task constraints, namely the duration of the backswing phase, the speed of the club head and the acceleration at the moment of impact with the ball. The effects of different golf putting distances in the no-slope condition on different kinematic variables suggest a linear adjustment to distance variation that was not observed when in the slope condition.

  4. Specificity of reflex adaptation for task-relevant variability.

    PubMed

    Franklin, David W; Wolpert, Daniel M

    2008-12-24

    The motor system responds to perturbations with reflexes, such as the vestibulo-ocular reflex or stretch reflex, whose gains adapt in response to novel and fixed changes in the environment, such as magnifying spectacles or standing on a tilting platform. Here we demonstrate a reflex response to shifts in the hand's visual location during reaching, which occurs before the onset of voluntary reaction time, and investigate how its magnitude depends on statistical properties of the environment. We examine the change in reflex response to two different distributions of visuomotor discrepancies, both of which have zero mean and equal variance across trials. Critically one distribution is task relevant and the other task irrelevant. The task-relevant discrepancies are maintained to the end of the movement, whereas the task-irrelevant discrepancies are transient such that no discrepancy exists at the end of the movement. The reflex magnitude was assessed using identical probe trials under both distributions. We find opposite directions of adaptation of the reflex response under these two distributions, with increased reflex magnitudes for task-relevant variability and decreased reflex magnitudes for task-irrelevant variability. This demonstrates modulation of reflex magnitudes in the absence of a fixed change in the environment, and shows that reflexes are sensitive to the statistics of tasks with modulation depending on whether the variability is task relevant or task irrelevant.

  5. Adaptive Control Of Large Vibrating, Rotating Structures

    NASA Technical Reports Server (NTRS)

    Bayard, David S.

    1991-01-01

    Globally convergent theoretical method provides for adaptive set-point control of orientation of, along with suppression of the vibrations of, large structure. Method utilizes inherent passivity properties of structure to attain mathematical condition essential to adaptive convergence on commanded set point. Maintains stability and convergence in presence of errors in mathematical model of dynamics of structure and actuators. Developed for controlling attitudes of large, somewhat flexible spacecraft, also useful in such terrestrial applications as controlling movable bridges or suppressing earthquake vibrations in bridges, buildings, and other large structures.

  6. Radiotherapy Adapted to Spatial and Temporal Variability in Tumor Hypoxia

    SciTech Connect

    Sovik, Aste; Malinen, Eirik . E-mail: emalinen@fys.uio.no; Skogmo, Hege K.; Bentzen, Soren M.; Bruland, Oyvind S.; Olsen, Dag Rune

    2007-08-01

    Purpose: To explore the feasibility and clinical potential of adapting radiotherapy to temporal and spatial variations in tumor oxygenation. Methods and Materials: Repeated dynamic contrast enhanced magnetic resonance (DCEMR) images were taken of a canine sarcoma during the course of fractionated radiation therapy. The tumor contrast enhancement was assumed to represent the oxygen distribution. The IMRT plans were retrospectively adapted to the DCEMR images by employing tumor dose redistribution. Optimized nonuniform tumor dose distributions were calculated and compared with a uniform dose distribution delivering the same integral dose to the tumor. Clinical outcome was estimated from tumor control probability (TCP) and normal tissue complication probability (NTCP) modeling. Results: The biologically adapted treatment was found to give a substantial increase in TCP compared with conventional radiotherapy, even when only pretreatment images were used as basis for the treatment planning. The TCP was further increased by repeated replanning during the course of treatment, and replanning twice a week was found to give near optimal TCP. Random errors in patient positioning were found to give a small decrease in TCP, whereas systematic errors were found to reduce TCP substantially. NTCP for the adapted treatment was similar to or lower than for the conventional treatment, both for parallel and serial normal tissue structures. Conclusion: Biologically adapted radiotherapy is estimated to improve treatment outcome of tumors having spatial and temporal variations in radiosensitivity.

  7. A control strategy for adaptive absorber based on variable mass

    NASA Astrophysics Data System (ADS)

    Gao, Qiang; Han, Ning; Zhao, Yanqing; Duan, Chendong; Wang, Wanqin

    2015-07-01

    The tuned vibration absorber (TVA) has been an effective tool for vibration control. However, the application of TVA can cause resonance of the primary system and increase its vibration when the absorber is mistuned. In this paper, a novel control strategy based on adaptive tuned vibration absorber (ATVA) of variable mass is proposed to reduce the resonance of the primary system. Unlike most ATVAs suggested by other researchers which adjust the absorber natural frequency by changing the stiffness, the variable mass ATVA varies its natural frequency by changing absorber mass to match the excitation frequency. Some simulations and experiments were conducted to test the performance of the control strategy. The results show that the proposed control plan can widen the frequency bandwidth of the absorber, as well as suppress the resonance of the primary system significantly. This implies that the work is useful for practical applications of ATVA.

  8. A modular approach to adaptive structures.

    PubMed

    Pagitz, Markus; Pagitz, Manuel; Hühne, Christian

    2014-10-07

    A remarkable property of nastic, shape changing plants is their complete fusion between actuators and structure. This is achieved by combining a large number of cells whose geometry, internal pressures and material properties are optimized for a given set of target shapes and stiffness requirements. An advantage of such a fusion is that cell walls are prestressed by cell pressures which increases, decreases the overall structural stiffness, weight. Inspired by the nastic movement of plants, Pagitz et al (2012 Bioinspir. Biomim. 7) published a novel concept for pressure actuated cellular structures. This article extends previous work by introducing a modular approach to adaptive structures. An algorithm that breaks down any continuous target shapes into a small number of standardized modules is presented. Furthermore it is shown how cytoskeletons within each cell enhance the properties of adaptive modules. An adaptive passenger seat and an aircrafts leading, trailing edge is used to demonstrate the potential of a modular approach.

  9. Outcome-adaptive lasso: Variable selection for causal inference.

    PubMed

    Shortreed, Susan M; Ertefaie, Ashkan

    2017-03-08

    Methodological advancements, including propensity score methods, have resulted in improved unbiased estimation of treatment effects from observational data. Traditionally, a "throw in the kitchen sink" approach has been used to select covariates for inclusion into the propensity score, but recent work shows including unnecessary covariates can impact both the bias and statistical efficiency of propensity score estimators. In particular, the inclusion of covariates that impact exposure but not the outcome, can inflate standard errors without improving bias, while the inclusion of covariates associated with the outcome but unrelated to exposure can improve precision. We propose the outcome-adaptive lasso for selecting appropriate covariates for inclusion in propensity score models to account for confounding bias and maintaining statistical efficiency. This proposed approach can perform variable selection in the presence of a large number of spurious covariates, that is, covariates unrelated to outcome or exposure. We present theoretical and simulation results indicating that the outcome-adaptive lasso selects the propensity score model that includes all true confounders and predictors of outcome, while excluding other covariates. We illustrate covariate selection using the outcome-adaptive lasso, including comparison to alternative approaches, using simulated data and in a survey of patients using opioid therapy to manage chronic pain.

  10. Universal structures of normal and pathological heart rate variability.

    PubMed

    Gañán-Calvo, Alfonso M; Fajardo-López, Juan

    2016-02-25

    The circulatory system of living organisms is an autonomous mechanical system softly tuned with the respiratory system, and both developed by evolution as a response to the complex oxygen demand patterns associated with motion. Circulatory health is rooted in adaptability, which entails an inherent variability. Here, we show that a generalized N-dimensional normalized graph representing heart rate variability reveals two universal arrhythmic patterns as specific signatures of health one reflects cardiac adaptability, and the other the cardiac-respiratory rate tuning. In addition, we identify at least three universal arrhythmic profiles whose presences raise in proportional detriment of the two healthy ones in pathological conditions (myocardial infarction; heart failure; and recovery from sudden death). The presence of the identified universal arrhythmic structures together with the position of the centre of mass of the heart rate variability graph provide a unique quantitative assessment of the health-pathology gradient.

  11. Universal structures of normal and pathological heart rate variability

    PubMed Central

    Gañán-Calvo, Alfonso M.; Fajardo-López, Juan

    2016-01-01

    The circulatory system of living organisms is an autonomous mechanical system softly tuned with the respiratory system, and both developed by evolution as a response to the complex oxygen demand patterns associated with motion. Circulatory health is rooted in adaptability, which entails an inherent variability. Here, we show that a generalized N-dimensional normalized graph representing heart rate variability reveals two universal arrhythmic patterns as specific signatures of health one reflects cardiac adaptability, and the other the cardiac-respiratory rate tuning. In addition, we identify at least three universal arrhythmic profiles whose presences raise in proportional detriment of the two healthy ones in pathological conditions (myocardial infarction; heart failure; and recovery from sudden death). The presence of the identified universal arrhythmic structures together with the position of the centre of mass of the heart rate variability graph provide a unique quantitative assessment of the health-pathology gradient. PMID:26912108

  12. Variable Complexity Optimization of Composite Structures

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.

    2002-01-01

    The use of several levels of modeling in design has been dubbed variable complexity modeling. The work under the grant focused on developing variable complexity modeling strategies with emphasis on response surface techniques. Applications included design of stiffened composite plates for improved damage tolerance, the use of response surfaces for fitting weights obtained by structural optimization, and design against uncertainty using response surface techniques.

  13. Adaptive finite element strategies for shell structures

    NASA Technical Reports Server (NTRS)

    Stanley, G.; Levit, I.; Stehlin, B.; Hurlbut, B.

    1992-01-01

    The present paper extends existing finite element adaptive refinement (AR) techniques to shell structures, which have heretofore been neglected in the AR literature. Specific challenges in applying AR to shell structures include: (1) physical discontinuities (e.g., stiffener intersections); (2) boundary layers; (3) sensitivity to geometric imperfections; (4) the sensitivity of most shell elements to mesh distortion, constraint definition and/or thinness; and (5) intrinsic geometric nonlinearity. All of these challenges but (5) are addressed here.

  14. The spatial structure of correlated neuronal variability.

    PubMed

    Rosenbaum, Robert; Smith, Matthew A; Kohn, Adam; Rubin, Jonathan E; Doiron, Brent

    2017-01-01

    Shared neural variability is ubiquitous in cortical populations. While this variability is presumed to arise from overlapping synaptic input, its precise relationship to local circuit architecture remains unclear. We combine computational models and in vivo recordings to study the relationship between the spatial structure of connectivity and correlated variability in neural circuits. Extending the theory of networks with balanced excitation and inhibition, we find that spatially localized lateral projections promote weakly correlated spiking, but broader lateral projections produce a distinctive spatial correlation structure: nearby neuron pairs are positively correlated, pairs at intermediate distances are negatively correlated and distant pairs are weakly correlated. This non-monotonic dependence of correlation on distance is revealed in a new analysis of recordings from superficial layers of macaque primary visual cortex. Our findings show that incorporating distance-dependent connectivity improves the extent to which balanced network theory can explain correlated neural variability.

  15. Adaptive data filtering of inertial sensors with variable bandwidth.

    PubMed

    Alam, Mushfiqul; Rohac, Jan

    2015-02-02

    MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing.

  16. Adaptive Data Filtering of Inertial Sensors with Variable Bandwidth

    PubMed Central

    Alam, Mushfiqul; Rohac, Jan

    2015-01-01

    MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing. PMID:25648711

  17. Parallel computations and control of adaptive structures

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alvin, Kenneth F.; Belvin, W. Keith; Chong, K. P. (Editor); Liu, S. C. (Editor); Li, J. C. (Editor)

    1991-01-01

    The equations of motion for structures with adaptive elements for vibration control are presented for parallel computations to be used as a software package for real-time control of flexible space structures. A brief introduction of the state-of-the-art parallel computational capability is also presented. Time marching strategies are developed for an effective use of massive parallel mapping, partitioning, and the necessary arithmetic operations. An example is offered for the simulation of control-structure interaction on a parallel computer and the impact of the approach presented for applications in other disciplines than aerospace industry is assessed.

  18. An Adaptive Mesh Algorithm: Mapping the Mesh Variables

    SciTech Connect

    Scannapieco, Anthony J.

    2016-07-25

    Both thermodynamic and kinematic variables must be mapped. The kinematic variables are defined on a separate kinematic mesh; it is the duel mesh to the thermodynamic mesh. The map of the kinematic variables is done by calculating the contributions of kinematic variables on the old thermodynamic mesh, mapping the kinematic variable contributions onto the new thermodynamic mesh and then synthesizing the mapped kinematic variables on the new kinematic mesh. In this document the map of the thermodynamic variables will be described.

  19. Structural Probability Concepts Adapted to Electrical Engineering

    NASA Technical Reports Server (NTRS)

    Steinberg, Eric P.; Chamis, Christos C.

    1994-01-01

    Through the use of equivalent variable analogies, the authors demonstrate how an electrical subsystem can be modeled by an equivalent structural subsystem. This allows the electrical subsystem to be probabilistically analyzed by using available structural reliability computer codes such as NESSUS. With the ability to analyze the electrical subsystem probabilistically, we can evaluate the reliability of systems that include both structural and electrical subsystems. Common examples of such systems are a structural subsystem integrated with a health-monitoring subsystem, and smart structures. Since these systems have electrical subsystems that directly affect the operation of the overall system, probabilistically analyzing them could lead to improved reliability and reduced costs. The direct effect of the electrical subsystem on the structural subsystem is of secondary order and is not considered in the scope of this work.

  20. Structured adaptive grid generation using algebraic methods

    NASA Technical Reports Server (NTRS)

    Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.

    1993-01-01

    The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration

  1. Gene Expression Variability Underlies Adaptive Resistance in Phenotypically Heterogeneous Bacterial Populations.

    PubMed

    Erickson, Keesha E; Otoupal, Peter B; Chatterjee, Anushree

    2015-11-13

    The root cause of the antibiotic resistance crisis is the ability of bacteria to evolve resistance to a multitude of antibiotics and other environmental toxins. The regulation of adaptation is difficult to pinpoint due to extensive phenotypic heterogeneity arising during evolution. Here, we investigate the mechanisms underlying general bacterial adaptation by evolving wild-type Escherichia coli populations to dissimilar chemical toxins. We demonstrate the presence of extensive inter- and intrapopulation phenotypic heterogeneity across adapted populations in multiple traits, including minimum inhibitory concentration, growth rate, and lag time. To search for a common response across the heterogeneous adapted populations, we measured gene expression in three stress-response networks: the mar regulon, the general stress response, and the SOS response. While few genes were differentially expressed, clustering revealed that interpopulation gene expression variability in adapted populations was distinct from that of unadapted populations. Notably, we observed both increases and decreases in gene expression variability upon adaptation. Sequencing select genes revealed that the observed gene expression trends are not necessarily attributable to genetic changes. To further explore the connection between gene expression variability and adaptation, we propagated single-gene knockout and CRISPR (clustered regularly interspaced short palindromic repeats) interference strains and quantified impact on adaptation to antibiotics. We identified significant correlations that suggest genes with low expression variability have greater impact on adaptation. This study provides evidence that gene expression variability can be used as an indicator of bacterial adaptive resistance, even in the face of the pervasive phenotypic heterogeneity underlying adaptation.

  2. Variability in Adaptive Behavior in Autism: Evidence for the Importance of Family History

    ERIC Educational Resources Information Center

    Mazefsky, Carla A.; Williams, Diane L.; Minshew, Nancy J.

    2008-01-01

    Adaptive behavior in autism is highly variable and strongly related to prognosis. This study explored family history as a potential source of variability in adaptive behavior in autism. Participants included 77 individuals (mean age = 18) with average or better intellectual ability and autism. Parents completed the Family History Interview about…

  3. Variable-Length Computerized Adaptive Testing: Adaptation of the A-Stratified Strategy in Item Selection with Content Balancing

    ERIC Educational Resources Information Center

    Huo, Yan

    2009-01-01

    Variable-length computerized adaptive testing (CAT) can provide examinees with tailored test lengths. With the fixed standard error of measurement ("SEM") termination rule, variable-length CAT can achieve predetermined measurement precision by using relatively shorter tests compared to fixed-length CAT. To explore the application of…

  4. Disentangling Stability, Variability and Adaptability in Human Performance: Focus on the Interplay between Local Variance and Serial Correlation

    ERIC Educational Resources Information Center

    Torre, Kjerstin; Balasubramaniam, Ramesh

    2011-01-01

    We address the complex relationship between the stability, variability, and adaptability of psychological systems by decomposing the global variance of serial performance into two independent parts: the local variance (LV) and the serial correlation structure. For two time series with equal LV, the presence of persistent long-range correlations…

  5. Variable structure control of spacecraft reorientation maneuvers

    NASA Technical Reports Server (NTRS)

    Sira-Ramirez, H.; Dwyer, T. A. W., III

    1986-01-01

    A Variable Structure Control (VSC) approach is presented for multi-axial spacecraft reorientation maneuvers. A nonlinear sliding surface is proposed which results in an asymptotically stable, ideal linear sliding motion of Cayley-Rodriques attitude parameters. By imposing a desired equivalent dynamics on the attitude parameters, the approach is devoid of optimal control considerations. The single axis case provides a design scheme for the multiple axes design problem. Illustrative examples are presented.

  6. Climate variables explain neutral and adaptive variation within salmonid metapopulations: The importance of replication in landscape genetics

    USGS Publications Warehouse

    Hand, Brian K; Muhlfeld, Clint C.; Wade, Alisa A.; Kovach, Ryan; Whited, Diane C.; Narum, Shawn R.; Matala, Andrew P; Ackerman, Michael W.; Garner, B. A.; Kimball, John S; Stanford, Jack A.; Luikart, Gordon

    2016-01-01

    Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.

  7. Climate variables explain neutral and adaptive variation within salmonid metapopulations: the importance of replication in landscape genetics.

    PubMed

    Hand, Brian K; Muhlfeld, Clint C; Wade, Alisa A; Kovach, Ryan P; Whited, Diane C; Narum, Shawn R; Matala, Andrew P; Ackerman, Michael W; Garner, Brittany A; Kimball, John S; Stanford, Jack A; Luikart, Gordon

    2016-02-01

    Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST ) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.

  8. Variable Complexity Structural Optimization of Shells

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Venkataraman, Satchi

    1999-01-01

    Structural designers today face both opportunities and challenges in a vast array of available analysis and optimization programs. Some programs such as NASTRAN, are very general, permitting the designer to model any structure, to any degree of accuracy, but often at a higher computational cost. Additionally, such general procedures often do not allow easy implementation of all constraints of interest to the designer. Other programs, based on algebraic expressions used by designers one generation ago, have limited applicability for general structures with modem materials. However, when applicable, they provide easy understanding of design decisions trade-off. Finally, designers can also use specialized programs suitable for designing efficiently a subset of structural problems. For example, PASCO and PANDA2 are panel design codes, which calculate response and estimate failure much more efficiently than general-purpose codes, but are narrowly applicable in terms of geometry and loading. Therefore, the problem of optimizing structures based on simultaneous use of several models and computer programs is a subject of considerable interest. The problem of using several levels of models in optimization has been dubbed variable complexity modeling. Work under NASA grant NAG1-2110 has been concerned with the development of variable complexity modeling strategies with special emphasis on response surface techniques. In addition, several modeling issues for the design of shells of revolution were studied.

  9. Variable Complexity Structural Optimization of Shells

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Venkataraman, Satchi

    1998-01-01

    Structural designers today face both opportunities and challenges in a vast array of available analysis and optimization programs. Some programs such as NASTRAN, are very general, permitting the designer to model any structure, to any degree of accuracy, but often at a higher computational cost. Additionally, such general procedures often do not allow easy implementation of all constraints of interest to the designer. Other programs, based on algebraic expressions used by designers one generation ago, have limited applicability for general structures with modem materials. However, when applicable, they provide easy understanding of design decisions trade-off. Finally, designers can also use specialized programs suitable for designing efficiently a subset of structural problems. For example, PASCO and PANDA2 are panel design codes, which calculate response and estimate failure much more efficiently than general-purpose codes, but are narrowly applicable in terms of geometry and loading. Therefore, the problem of optimizing structures based on simultaneous use of several models and computer programs is a subject of considerable interest. The problem of using several levels of models in optimization has been dubbed variable complexity modeling. Work under NASA grant NAG1-1808 has been concerned with the development of variable complexity modeling strategies with special emphasis on response surface techniques. In addition several modeling issues for the design of shells of revolution were studied.

  10. Seeking help: B cells adapting to flu variability.

    PubMed

    van der Most, Robbert G; Roman, François P; Innis, Bruce; Hanon, Emmanuel; Vaughn, David W; Gillard, Paul; Walravens, Karl; Wettendorff, Martine

    2014-07-23

    The study of influenza vaccines has revealed potential interactions between preexisting immunological memory and antigenic context and/or adjuvantation. In the face of antigenic diversity, the process of generating B cell adaptability is driven by cross-reactive CD4 memory cells, such as T follicular helper cells from previous infections or vaccinations. Although such "helped" B cells are capable of adapting to variant antigens, lack of CD4 help could lead to a suboptimal antibody response. Collectively, this indicates an interplay between CD4 T cells, adjuvant, and B cell adaptability.

  11. Adaptive momentum management for large space structures

    NASA Technical Reports Server (NTRS)

    Hahn, E.

    1987-01-01

    Momentum management is discussed for a Large Space Structure (LSS) with the structure selected configuration being the Initial Orbital Configuration (IOC) of the dual keel space station. The external forces considered were gravity gradient and aerodynamic torques. The goal of the momentum management scheme developed is to remove the bias components of the external torques and center the cyclic components of the stored angular momentum. The scheme investigated is adaptive to uncertainties of the inertia tensor and requires only approximate knowledge of principle moments of inertia. Computational requirements are minimal and should present no implementation problem in a flight type computer and the method proposed is shown to be effective in the presence of attitude control bandwidths as low as .01 radian/sec.

  12. Ladder-structured photonic variable delay device

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    1998-01-01

    An ladder-structured variable delay device for providing variable true time delay to multiple optical beams simultaneously. The device comprises multiple basic units stacked on top of each other resembling a ladder. Each basic unit comprises a polarization sensitive corner reflector formed by two polarization beamsplitters and a polarization rotator array placed parallel to the hypotenuse of the corner reflector. Controlling an array element of the polarization rotator array causes an optical beam passing through the array element to either go up to a basic unit above it or reflect back towards output. The beams going higher on the ladder experience longer optical path delay. Finally, the ladder-structured variable device can be cascaded with another multi-channel delay device to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  13. Variable energy constant current accelerator structure

    DOEpatents

    Anderson, Oscar A.

    1990-01-01

    A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90.degree. intervals with opposing electrodes maintained at the same potential. Adjacent cylinder electrodes of the quadrupole structure are maintained at different potentials to thereby reshape the cross section of the charged particle beam to an ellipse in cross section at the mid point along each quadrupole electrode unit in the accelerator modules. The beam is maintained in focus by alternating the major axis of the ellipse along the x and y axis respectively at adjacent quadrupoles. In another embodiment, electrostatic ring electrodes may be utilized instead of the quadrupole electrodes.

  14. Climate variability and climate change vulnerability and adaptation. Workshop summary

    SciTech Connect

    Bhatti, N.; Cirillo, R.R.; Dixon, R.K.

    1995-12-31

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country`s vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations.

  15. Online Calibration via Variable Length Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Chang, Yuan-chin Ivan; Lu, Hung-Yi

    2010-01-01

    Item calibration is an essential issue in modern item response theory based psychological or educational testing. Due to the popularity of computerized adaptive testing, methods to efficiently calibrate new items have become more important than that in the time when paper and pencil test administration is the norm. There are many calibration…

  16. Shape Morphing Adaptive Radiator Technology (SMART) for Variable Heat Rejection

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa

    2016-01-01

    The proposed technology leverages the temperature dependent phase change of shape memory alloys (SMAs) to drive the shape of a flexible radiator panel. The opening/closing of the radiator panel, as a function of temperature, passively adapts the radiator's rate of heat rejection in response to a vehicle's needs.

  17. Variability Discrimination in Humans and Animals: Implications for Adaptive Action.

    ERIC Educational Resources Information Center

    Wasserman, Edward A.; Young, Michael E.; Cook, Robert G.

    2004-01-01

    Both humans and animals live in a rich world of events. Some events repeat themselves, whereas others constantly change. The authors propose that discriminating this stability, sameness, and uniformity from change, differentness, and diversity is fundamental to adaptive action. Evidence from many areas of behavioral science indicates that the…

  18. Shape-variable seals for pressure actuated cellular structures

    NASA Astrophysics Data System (ADS)

    Gramüller, B.; Tempel, A.; Hühne, C.

    2015-09-01

    Sealing concepts that allow a large change of cross-sectional area are investigated. Shape variable seals are indispensable for biologically inspired pressure actuated cellular structures (PACS), which can be utilized to develop energy efficient, lightweight and adaptive structures for diverse applications. The extensibility, stiffness and load capacity requirements exceed the characteristics of state of the art solutions. This work focuses on the design of seals suitable for extensional deformations of more than 25%. In a first step, a number of concepts are generated. Then the most suitable concept is chosen, based on numerical characterization and experimental examination. The deformation supportive end cap (DSEC) yields satisfying results as it displays a stress optimized shape under maximum load, an energetically inexpensive bending-based deformation mechanism and utilizes the applied forces to support distortion. In the first real-life implementation of a double row PACS demonstrator, which contains the DSEC, the proof of concept is demonstrated.

  19. Ig Constant Region Effects on Variable Region Structure and Function

    PubMed Central

    Janda, Alena; Bowen, Anthony; Greenspan, Neil S.; Casadevall, Arturo

    2016-01-01

    The adaptive humoral immune response is responsible for the generation of antimicrobial proteins known as immunoglobulin molecules or antibodies. Immunoglobulins provide a defense system against pathogenic microbes and toxins by targeting them for removal and/or destruction. Historically, antibodies have been thought to be composed of distinct structural domains known as the variable and constant regions that are responsible for antigen binding and mediating effector functions such as opsonization and complement activation, respectively. These domains were thought to be structurally and functionally independent. Recent work has revealed however, that in some families of antibodies, the two regions can influence each other. We will discuss the body of work that led to these observations, as well as the mechanisms that have been proposed to explain how these two different antibody regions may interact in the function of antigen binding. PMID:26870003

  20. Adaptive pitch control for variable speed wind turbines

    DOEpatents

    Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  1. Interresponse Time Structures in Variable-Ratio and Variable-Interval Schedules

    ERIC Educational Resources Information Center

    Bowers, Matthew T.; Hill, Jade; Palya, William L.

    2008-01-01

    The interresponse-time structures of pigeon key pecking were examined under variable-ratio, variable-interval, and variable-interval plus linear feedback schedules. Whereas the variable-ratio and variable-interval plus linear feedback schedules generally resulted in a distinct group of short interresponse times and a broad distribution of longer…

  2. Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris.

    PubMed

    Rodriguez, Monica; Rau, Domenico; Bitocchi, Elena; Bellucci, Elisa; Biagetti, Eleonora; Carboni, Andrea; Gepts, Paul; Nanni, Laura; Papa, Roberto; Attene, Giovanna

    2016-03-01

    Here we studied the organization of genetic variation of the common bean (Phaseolus vulgaris) in its centres of domestication. We used 131 single nucleotide polymorphisms to investigate 417 wild common bean accessions and a representative sample of 160 domesticated genotypes, including Mesoamerican and Andean genotypes, for a total of 577 accessions. By analysing the genetic spatial patterns of the wild common bean, we documented the existence of several genetic groups and the occurrence of variable degrees of diversity in Mesoamerica and the Andes. Moreover, using a landscape genetics approach, we demonstrated that both demographic processes and selection for adaptation were responsible for the observed genetic structure. We showed that the study of correlations between markers and ecological variables at a continental scale can help in identifying local adaptation genes. We also located putative areas of common bean domestication in Mesoamerica, in the Oaxaca Valley, and the Andes, in southern Bolivia-northern Argentina. These observations are of paramount importance for the conservation and exploitation of the genetic diversity preserved within this species and other plant genetic resources.

  3. Aftereffects for Face Attributes with Different Natural Variability: Children Are More Adaptable than Adolescents

    ERIC Educational Resources Information Center

    Hills, Peter J.; Holland, Andrew M.; Lewis, Michael B.

    2010-01-01

    Adults can be adapted to a particular facial distortion in which both eyes are shifted symmetrically (Robbins, R., McKone, E., & Edwards, M. (2007). "Aftereffects for face attributes with different natural variability: Adapter position effects and neural models." "Journal of Experimental Psychology: Human Perception and Performance, 33," 570-592),…

  4. Flexible stocking strategies for adapting to climatic variability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a result of precipitation-induced variability on forage production, ranchers have difficulty matching animal demand with forage availability in their operations. Flexible stocking strategies could more effectively use extra forage in highly productive years and limit risk of overgrazing during dr...

  5. Weather variability and adaptive management for rangeland restoration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inherent weather variability in upland rangeland systems requires relatively long-term goal setting, and contingency planning for partial success or failure in any given year. Rangeland plant communities are dynamic systems and successional planning is essential for achieving and maintaining system...

  6. Variable Cadence Walking and Ground Adaptive Standing with a Powered Ankle Prosthesis

    PubMed Central

    Shultz, Amanda H.; Lawson, Brian E.; Goldfarb, Michael

    2015-01-01

    Abstract This paper describes a control approach that provides walking and standing functionality for a powered ankle prosthesis, and demonstrates the efficacy of the approach in experiments in which a unilateral transtibial amputee subject walks with the prosthesis at variable cadences, and stands on various slopes. Both controllers incorporate a finite-state structure that emulates healthy ankle joint behavior via a series of piecewise passive impedance functions. The walking controller incorporates an algorithm to modify impedance parameters based on estimated cadence, while the standing controller incorporates an algorithm to modulate the ankle equilibrium angle in order to adapt to the ground slope and user posture, and the supervisory controller selects between the walking and standing controllers. The system is shown to reproduce several essential biomechanical features of the healthy joint during walking, particularly relative to a passive prosthesis, and is shown to adapt to variable cadences. The system is also shown to adapt to slopes over a range of ± 15 deg and to provide support to the user in a manner that is biomimetic, as validated by quasi-static stiffness measurements recorded by the prosthesis. Data from standing trials indicate that the user places more weight on the powered prosthesis than on his passive prosthesis when standing on sloped surfaces, particularly at angles of 10 deg or greater. The authors also demonstrated that the prosthesis typically began providing support within 1 s of initial contact with the ground. Further, the supervisory controller was shown to be effective in switching between walking and standing, as well as in determining ground slope just prior to the transition from the standing controller to the walking controller, where the estimated ground slope was within 1.25 deg of the actual ground slope for all trials. PMID:25955789

  7. Fluctuating selection: the perpetual renewal of adaptation in variable environments.

    PubMed

    Bell, Graham

    2010-01-12

    Darwin insisted that evolutionary change occurs very slowly over long periods of time, and this gradualist view was accepted by his supporters and incorporated into the infinitesimal model of quantitative genetics developed by R. A. Fisher and others. It dominated the first century of evolutionary biology, but has been challenged in more recent years both by field surveys demonstrating strong selection in natural populations and by quantitative trait loci and genomic studies, indicating that adaptation is often attributable to mutations in a few genes. The prevalence of strong selection seems inconsistent, however, with the high heritability often observed in natural populations, and with the claim that the amount of morphological change in contemporary and fossil lineages is independent of elapsed time. I argue that these discrepancies are resolved by realistic accounts of environmental and evolutionary changes. First, the physical and biotic environment varies on all time-scales, leading to an indefinite increase in environmental variance over time. Secondly, the intensity and direction of natural selection are also likely to fluctuate over time, leading to an indefinite increase in phenotypic variance in any given evolving lineage. Finally, detailed long-term studies of selection in natural populations demonstrate that selection often changes in direction. I conclude that the traditional gradualist scheme of weak selection acting on polygenic variation should be supplemented by the view that adaptation is often based on oligogenic variation exposed to commonplace, strong, fluctuating natural selection.

  8. Farmers' Perceptions of Climate Variability and Factors Influencing Adaptation: Evidence from Anhui and Jiangsu, China

    NASA Astrophysics Data System (ADS)

    Kibue, Grace Wanjiru; Liu, Xiaoyu; Zheng, Jufeng; zhang, Xuhui; Pan, Genxing; Li, Lianqing; Han, Xiaojun

    2016-05-01

    Impacts of climate variability and climate change are on the rise in China posing great threat to agriculture and rural livelihoods. Consequently, China is undertaking research to find solutions of confronting climate change and variability. However, most studies of climate change and variability in China largely fail to address farmers' perceptions of climate variability and adaptation. Yet, without an understanding of farmers' perceptions, strategies are unlikely to be effective. We conducted questionnaire surveys of farmers in two farming regions, Yifeng, Jiangsu and Qinxi, Anhui achieving 280 and 293 responses, respectively. Additionally, we used climatological data to corroborate the farmers' perceptions of climate variability. We found that farmers' were aware of climate variability such that were consistent with climate records. However, perceived impacts of climate variability differed between the two regions and were influenced by farmers' characteristics. In addition, the vast majorities of farmers were yet to make adjustments in their farming practices as a result of numerous challenges. These challenges included socioeconomic and socio-cultural barriers. Results of logit modeling showed that farmers are more likely to adapt to climate variability if contact with extension services, frequency of seeking information, household heads' education, and climate variability perceptions are improved. These results suggest the need for policy makers to understand farmers' perceptions of climate variability and change in order to formulate policies that foster adaptation, and ultimately protect China's agricultural assets.

  9. Farmers' Perceptions of Climate Variability and Factors Influencing Adaptation: Evidence from Anhui and Jiangsu, China.

    PubMed

    Kibue, Grace Wanjiru; Liu, Xiaoyu; Zheng, Jufeng; Zhang, Xuhui; Pan, Genxing; Li, Lianqing; Han, Xiaojun

    2016-05-01

    Impacts of climate variability and climate change are on the rise in China posing great threat to agriculture and rural livelihoods. Consequently, China is undertaking research to find solutions of confronting climate change and variability. However, most studies of climate change and variability in China largely fail to address farmers' perceptions of climate variability and adaptation. Yet, without an understanding of farmers' perceptions, strategies are unlikely to be effective. We conducted questionnaire surveys of farmers in two farming regions, Yifeng, Jiangsu and Qinxi, Anhui achieving 280 and 293 responses, respectively. Additionally, we used climatological data to corroborate the farmers' perceptions of climate variability. We found that farmers' were aware of climate variability such that were consistent with climate records. However, perceived impacts of climate variability differed between the two regions and were influenced by farmers' characteristics. In addition, the vast majorities of farmers were yet to make adjustments in their farming practices as a result of numerous challenges. These challenges included socioeconomic and socio-cultural barriers. Results of logit modeling showed that farmers are more likely to adapt to climate variability if contact with extension services, frequency of seeking information, household heads' education, and climate variability perceptions are improved. These results suggest the need for policy makers to understand farmers' perceptions of climate variability and change in order to formulate policies that foster adaptation, and ultimately protect China's agricultural assets.

  10. Novel adaptation of the demodulation technology for gear damage detection to variable amplitudes of mesh harmonics

    NASA Astrophysics Data System (ADS)

    Combet, F.; Gelman, L.

    2011-04-01

    In this paper, a novel adaptive demodulation technique including a new diagnostic feature is proposed for gear diagnosis in conditions of variable amplitudes of the mesh harmonics. This vibration technique employs the time synchronous average (TSA) of vibration signals. The new adaptive diagnostic feature is defined as the ratio of the sum of the sideband components of the envelope spectrum of a mesh harmonic to the measured power of the mesh harmonic. The proposed adaptation of the technique is justified theoretically and experimentally by the high level of the positive covariance between amplitudes of the mesh harmonics and the sidebands in conditions of variable amplitudes of the mesh harmonics. It is shown that the adaptive demodulation technique preserves effectiveness of local fault detection of gears operating in conditions of variable mesh amplitudes.

  11. Heart Rate Variability During Early Adaptation to Space

    NASA Technical Reports Server (NTRS)

    Toscano, W. B.; Cowings, P. S.

    1994-01-01

    A recent report hypothesized that episodes of space motion sickness (SMS) were reliably associated with low frequency oscillations (less than 0.03 to less than 0.01 Hz) in heart rate variability. This paper archives a large data set for review of investigators in this field which may facilitate the evaluation of this hypothesis. Continuous recording of Electro-cardiography (ECG) and other measures were made for 6 to 12 hours per day (waking hours) of six Shuttle crewmembers for the first 3 mission days of two separate Shuttle flights. Spectral analyses of heart rate variability during approximately 200 hours of inflight is presented. In addition, nearly 200 hours of data collected on these same individuals during ground tests prior to the mission are presented. The Purpose of this Publication is to document the incidence of low frequency oscillations of heart rate in 4 people exposed to microgravity over a period of five days. In addition, this report contains spectral analyses of heart rate data collected on these same individuals during ground-based mission simulations. By archiving these data in this manner, it is our intention to make this information available to other investigators interested in studying this phenomena.

  12. Societal Adaptation to Decadal Climate Variability in the United States

    NASA Astrophysics Data System (ADS)

    Rosenberg, Norman J.; Mehta, Vikram M.; Olsen, J. Rolf; von Storch, Hans; Varady, Robert G.; Hayes, Michael J.; Wilhite, Donald

    2007-10-01

    CRCES Workshop on Societal Impacts of Decadal Climate Variability in the United States, 26-28 April 2007, Waikoloa, Hawaii The search for evidence of decadal climatic variability (DCV) has a very long history. In the past decade, a research community has coalesced around a series of roughly biennial workshops that have emphasized description of past DCV events; their causes and their ``teleconnections'' responsible for droughts, floods, and warm and cold spells around the world; and recently, the predictability of DCV events. Researchers studying climate change put great emphasis on prospective impacts, but the DCV community has yet to do so. To begin rectifying this deficiency, a short but ambitious workshop was convened in Waikoloa, near Kona, Hawaii, from 26-28 April 2007. This workshop, sponsored by the Center for Research on the Changing Earth System (CRCES), NOAA, the U.S. Geological Survey, and the U.S. Army Corps of Engineers, brought together climatologists and sectoral specialists representing agriculture, water resources, economics, the insurance industry, and developing country interests.

  13. A Polychoric Instrumental Variable (PIV) Estimator for Structural Equation Models with Categorical Variables

    ERIC Educational Resources Information Center

    Bollen, Kenneth A.; Maydeu-Olivares, Albert

    2007-01-01

    This paper presents a new polychoric instrumental variable (PIV) estimator to use in structural equation models (SEMs) with categorical observed variables. The PIV estimator is a generalization of Bollen's (Psychometrika 61:109-121, 1996) 2SLS/IV estimator for continuous variables to categorical endogenous variables. We derive the PIV estimator…

  14. Xenomic networks variability and adaptation traits in wood decaying fungi.

    PubMed

    Morel, Mélanie; Meux, Edgar; Mathieu, Yann; Thuillier, Anne; Chibani, Kamel; Harvengt, Luc; Jacquot, Jean-Pierre; Gelhaye, Eric

    2013-05-01

    Fungal degradation of wood is mainly restricted to basidiomycetes, these organisms having developed complex oxidative and hydrolytic enzymatic systems. Besides these systems, wood-decaying fungi possess intracellular networks allowing them to deal with the myriad of potential toxic compounds resulting at least in part from wood degradation but also more generally from recalcitrant organic matter degradation. The members of the detoxification pathways constitute the xenome. Generally, they belong to multigenic families such as the cytochrome P450 monooxygenases and the glutathione transferases. Taking advantage of the recent release of numerous genomes of basidiomycetes, we show here that these multigenic families are extended and functionally related in wood-decaying fungi. Furthermore, we postulate that these rapidly evolving multigenic families could reflect the adaptation of these fungi to the diversity of their substrate and provide keys to understand their ecology. This is of particular importance for white biotechnology, this xenome being a putative target for improving degradation properties of these fungi in biomass valorization purposes.

  15. Xenomic networks variability and adaptation traits in wood decaying fungi

    PubMed Central

    Morel, Mélanie; Meux, Edgar; Mathieu, Yann; Thuillier, Anne; Chibani, Kamel; Harvengt, Luc; Jacquot, Jean-Pierre; Gelhaye, Eric

    2013-01-01

    Fungal degradation of wood is mainly restricted to basidiomycetes, these organisms having developed complex oxidative and hydrolytic enzymatic systems. Besides these systems, wood-decaying fungi possess intracellular networks allowing them to deal with the myriad of potential toxic compounds resulting at least in part from wood degradation but also more generally from recalcitrant organic matter degradation. The members of the detoxification pathways constitute the xenome. Generally, they belong to multigenic families such as the cytochrome P450 monooxygenases and the glutathione transferases. Taking advantage of the recent release of numerous genomes of basidiomycetes, we show here that these multigenic families are extended and functionally related in wood-decaying fungi. Furthermore, we postulate that these rapidly evolving multigenic families could reflect the adaptation of these fungi to the diversity of their substrate and provide keys to understand their ecology. This is of particular importance for white biotechnology, this xenome being a putative target for improving degradation properties of these fungi in biomass valorization purposes. PMID:23279857

  16. Variability in the adaptive acid tolerance response phenotype of Salmonella enterica strains.

    PubMed

    Lianou, Alexandra; Nychas, George-John E; Koutsoumanis, Konstantinos P

    2017-04-01

    The objective of this study was the assessment of the stationary-phase, low-pH-inducible acid tolerance response (ATR) of different Salmonella enterica strains. For this purpose, 30 strains of the pathogen were grown in tryptone soy broth in the absence (non-adapted cultures) and presence (1% w/v; acid-adapted cultures) of glucose, and then subjected to 4-h acid challenge trials at pH 3.0. Surviving populations of each strain were determined at 1-h intervals, and the Weibull model was fitted to the derived microbiological data. Extensive variability in the acid stress responses of the tested S. enterica strains was observed, with the total population reductions (log CFU/ml) attained in 4 h of acid challenge ranging from 0.9 to 5.5 and from 0.6 to 7.0 for the non-adapted and acid-adapted cultures, respectively. As demonstrated by the model scale parameter δ and shape parameter p, the effect of acid adaptation on the inactivation curves was strain-specific. Although acid adaptation resulted in enhanced acid survival for the majority of the tested strains, there were strains exhibiting similar or decreased acid resistance compared to their non-adapted counterparts. Moreover, acid adaptation appeared to decrease the strain variability of δ whereas increasing the strain variability of p: the coefficient of variation of δ among the tested strains was 97.2 and 54.9% for the non-adapted and acid-adapted cultures, respectively, while the corresponding values for p were 12.7 and 48.1%. The data of the present study, which is the first one to systematically evaluate the adaptive ATR of multiple S. enterica strains, clearly demonstrate that this phenotype (attempted to be induced by growing the pathogen in the presence of glucose) is strain-dependent.

  17. Adaptive Control Techniques for Large Space Structures.

    DTIC Science & Technology

    1986-09-15

    Adaptive Systems: A Ji . Fixed-Point Analysis", submitted, IEEE Trans. on Circuits and Systems; Special Issue on Adaptive Systems, Sept. 1987. I.M.Y...Shaped Cost Functionals: Extensions of LQG Methods," *.. AIAA J. of Guidance and Control, pp. 529-535, Nov-Dec. 1980. [81 C.A. Desoer , R.W. Liu, J. Murray...for Parameter Conver- gence in Adaptive Control," Memo No. UCB/ERL M84/25, Univ. of California, Berke- ley, 1984. [19] C.A. Desoer and M. Vidyasagar

  18. Adaptive Control Techniques for Large Space Structures

    DTIC Science & Technology

    1989-01-06

    Point Analy- sis", submitted, IEEE Trans. on Circuits and Systems; Special Issue on Adaptive Systems, Sept. 1987. I.M.Y. Mareels, R.R. Bitmead, M. Gevers...adaptive system with unmodelled dynamics," Proc. IFAC Workshop on Adaptive Systems, San Francisco, CA. C.A. Desoer , R.W. Liu, J. Murray and R. Sacks...June 1980. C.A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic Press, * 1975. J.C. Doyle and G. Stein (1981

  19. Adaptive control and noise suppression by a variable-gain gradient algorithm

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.; Mehta, R. S.

    1987-01-01

    An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters.

  20. Adaptive Control of Flexible Structures Using Residual Mode Filters

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Frost, Susan

    2010-01-01

    Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter. We have proposed a modified adaptive controller with a residual mode filter. The RMF is used to accommodate troublesome modes in the system that might otherwise inhibit the adaptive controller, in particular the ASPR condition. This new theory accounts for leakage of the disturbance term into the Q modes. A simple three-mode example shows that the RMF can restore stability to an otherwise unstable adaptively controlled system. This is done without modifying the adaptive controller design.

  1. Modeling of variable speed refrigerated display cabinets based on adaptive support vector machine

    NASA Astrophysics Data System (ADS)

    Cao, Zhikun; Han, Hua; Gu, Bo

    2010-01-01

    In this paper the adaptive support vector machine (ASVM) method is introduced to the field of intelligent modeling of refrigerated display cabinets and used to construct a highly precise mathematical model of their performance. A model for a variable speed open vertical display cabinet was constructed using preprocessing techniques for measured data, including the elimination of outlying data points by the use of an exponential weighted moving average (EWMA). Using dynamic loss coefficient adjustment, the adaptation of the SVM for use in this application was achieved. From there, the object function for energy use per unit of display area total energy consumption (TEC)/total display area (TDA) was constructed and solved using the ASVM method. When compared to the results achieved using a back-propagation neural network (BPNN) model, the ASVM model for the refrigerated display cabinet was characterized by its simple structure, fast convergence speed and high prediction accuracy. The ASVM model also has better noise rejection properties than that of original SVM model. It was revealed by the theoretical analysis and experimental results presented in this paper that it is feasible to model of the display cabinet built using the ASVM method.

  2. Flexilevel Adaptive Testing Paradigm: Hierarchical Concept Structures.

    DTIC Science & Technology

    1977-07-01

    items . In reference to the psychometric outcomes, Table 3 presents the mean item difficulties by subtest plus a Kuder - Richardson reliability index. A...leas~: 50percent of the subject population , an adaptive Kuder - Richardson index was calculated . This was found to be r = . 701 for Block II test and r...whole correlations between adaptive test and total test scores (r ’s = .95). Descriptive test indices and test reliabilities were also essentially

  3. Bayesian Variable Selection for Detecting Adaptive Genomic Differences Among Populations

    PubMed Central

    Riebler, Andrea; Held, Leonhard; Stephan, Wolfgang

    2008-01-01

    We extend an Fst-based Bayesian hierarchical model, implemented via Markov chain Monte Carlo, for the detection of loci that might be subject to positive selection. This model divides the Fst-influencing factors into locus-specific effects, population-specific effects, and effects that are specific for the locus in combination with the population. We introduce a Bayesian auxiliary variable for each locus effect to automatically select nonneutral locus effects. As a by-product, the efficiency of the original approach is improved by using a reparameterization of the model. The statistical power of the extended algorithm is assessed with simulated data sets from a Wright–Fisher model with migration. We find that the inclusion of model selection suggests a clear improvement in discrimination as measured by the area under the receiver operating characteristic (ROC) curve. Additionally, we illustrate and discuss the quality of the newly developed method on the basis of an allozyme data set of the fruit fly Drosophila melanogaster and a sequence data set of the wild tomato Solanum chilense. For data sets with small sample sizes, high mutation rates, and/or long sequences, however, methods based on nucleotide statistics should be preferred. PMID:18245358

  4. Adaptation of a-Stratified Method in Variable Length Computerized Adaptive Testing.

    ERIC Educational Resources Information Center

    Wen, Jian-Bing; Chang, Hua-Hua; Hau, Kit-Tai

    Test security has often been a problem in computerized adaptive testing (CAT) because the traditional wisdom of item selection overly exposes high discrimination items. The a-stratified (STR) design advocated by H. Chang and his collaborators, which uses items of less discrimination in earlier stages of testing, has been shown to be very…

  5. Optimized adaptation algorithm for HEVC/H.265 dynamic adaptive streaming over HTTP using variable segment duration

    NASA Astrophysics Data System (ADS)

    Irondi, Iheanyi; Wang, Qi; Grecos, Christos

    2016-04-01

    Adaptive video streaming using HTTP has become popular in recent years for commercial video delivery. The recent MPEG-DASH standard allows interoperability and adaptability between servers and clients from different vendors. The delivery of the MPD (Media Presentation Description) files in DASH and the DASH client behaviours are beyond the scope of the DASH standard. However, the different adaptation algorithms employed by the clients do affect the overall performance of the system and users' QoE (Quality of Experience), hence the need for research in this field. Moreover, standard DASH delivery is based on fixed segments of the video. However, there is no standard segment duration for DASH where various fixed segment durations have been employed by different commercial solutions and researchers with their own individual merits. Most recently, the use of variable segment duration in DASH has emerged but only a few preliminary studies without practical implementation exist. In addition, such a technique requires a DASH client to be aware of segment duration variations, and this requirement and the corresponding implications on the DASH system design have not been investigated. This paper proposes a segment-duration-aware bandwidth estimation and next-segment selection adaptation strategy for DASH. Firstly, an MPD file extension scheme to support variable segment duration is proposed and implemented in a realistic hardware testbed. The scheme is tested on a DASH client, and the tests and analysis have led to an insight on the time to download next segment and the buffer behaviour when fetching and switching between segments of different playback durations. Issues like sustained buffering when switching between segments of different durations and slow response to changing network conditions are highlighted and investigated. An enhanced adaptation algorithm is then proposed to accurately estimate the bandwidth and precisely determine the time to download the next

  6. Bayesian Semiparametric Structural Equation Models with Latent Variables

    ERIC Educational Resources Information Center

    Yang, Mingan; Dunson, David B.

    2010-01-01

    Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…

  7. Distributed Adaptive Control: Beyond Single-Instant, Discrete Variables

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Bieniawski, Stefan

    2005-01-01

    In extensive form noncooperative game theory, at each instant t, each agent i sets its state x, independently of the other agents, by sampling an associated distribution, q(sub i)(x(sub i)). The coupling between the agents arises in the joint evolution of those distributions. Distributed control problems can be cast the same way. In those problems the system designer sets aspects of the joint evolution of the distributions to try to optimize the goal for the overall system. Now information theory tells us what the separate q(sub i) of the agents are most likely to be if the system were to have a particular expected value of the objective function G(x(sub 1),x(sub 2), ...). So one can view the job of the system designer as speeding an iterative process. Each step of that process starts with a specified value of E(G), and the convergence of the q(sub i) to the most likely set of distributions consistent with that value. After this the target value for E(sub q)(G) is lowered, and then the process repeats. Previous work has elaborated many schemes for implementing this process when the underlying variables x(sub i) all have a finite number of possible values and G does not extend to multiple instants in time. That work also is based on a fixed mapping from agents to control devices, so that the the statistical independence of the agents' moves means independence of the device states. This paper also extends that work to relax all of these restrictions. This extends the applicability of that work to include continuous spaces and Reinforcement Learning. This paper also elaborates how some of that earlier work can be viewed as a first-principles justification of evolution-based search algorithms.

  8. Personal and situational variables, and career concerns: predicting career adaptability in young adults.

    PubMed

    Yousefi, Zahra; Abedi, Mohammadreza; Baghban, Iran; Eatemadi, Ozra; Abedi, Ahmade

    2011-05-01

    This study examined relationships among career adaptability and career concerns, social support and goal orientation. We surveyed 304 university students using measures of career concerns, adaptability (career planning, career exploration, self-exploration, decision-making, self-regulation), goal-orientation (learning, performance-prove, performance-avoid) and social support (family, friends, significant others). Multiple regression analysis revealed career concerns, learning and performance-prove goal orientations emerged relatively as the most important contributors. Other variables did not contribute significantly.

  9. Structured variable selection with q-values

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When some of the regressors can act on both the response and other explanatory variables, the already challenging problem of selecting variables when the number of covariates exceeds the sample size becomes more difficult. A motivating example is a metabolic study in mice that has diet groups and gu...

  10. Increased Adaptation Rates and Reduction in Trial-by-Trial Variability in Subjects with Cerebral Palsy Following a Multi-session Locomotor Adaptation Training

    PubMed Central

    Mawase, Firas; Bar-Haim, Simona; Joubran, Katherin; Rubin, Lihi; Karniel, Amir; Shmuelof, Lior

    2016-01-01

    Cerebral Palsy (CP) results from an insult to the developing brain and is associated with deficits in locomotor and manual skills and in sensorimotor adaptation. We hypothesized that the poor sensorimotor adaptation in persons with CP is related to their high execution variability and does not reflect a general impairment in adaptation learning. We studied the interaction between performance variability and adaptation deficits using a multi-session locomotor adaptation design in persons with CP. Six adolescents with diplegic CP were exposed, during a period of 15 weeks, to a repeated split-belt treadmill perturbation spread over 30 sessions and were tested again 6 months after the end of training. Compared to age-matched healthy controls, subjects with CP showed poor adaptation and high execution variability in the first exposure to the perturbation. Following training they showed marked reduction in execution variability and an increase in learning rates. The reduction in variability and the improvement in adaptation were highly correlated in the CP group and were retained 6 months after training. Interestingly, despite reducing their variability in the washout phase, subjects with CP did not improve learning rates during washout phases that were introduced only four times during the experiment. Our results suggest that locomotor adaptation in subjects with CP is related to their execution variability. Nevertheless, while variability reduction is generalized to other locomotor contexts, the development of savings requires both reduction in execution variability and multiple exposures to the perturbation. PMID:27199721

  11. Parallel adaptive mesh refinement for electronic structure calculations

    SciTech Connect

    Kohn, S.; Weare, J.; Ong, E.; Baden, S.

    1996-12-01

    We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradients with multigrid preconditioning. We have parallelized our solver using an object-oriented adaptive mesh refinement framework.

  12. Adaptation strategies to climate change and climate variability: a comparative study between seven contrasting river basins.

    NASA Astrophysics Data System (ADS)

    Droogers, P.

    2003-04-01

    Climate change and climate variability is and will have a tremendous impact on hydrology and consequently on food security and environmental protection. From the four major components in climate change and climate variability studies, projection, mitigation, impact and adaptation, has the latter so far received less attention than the other three. An international collaboration of ten institutions is comparing adaptation strategies between contrasting basins ranging from wet to dry and from poor to rich. Basins included are: Mekong, Walawe (Sri Lanka), Rhine, Sacramento, Syr Darya, Volta, and Zayandeh (Iran). Simulation models at basin and field scale have been set up and possible adaptation strategies are explored by these models. Preliminary results indicate that appropriate adaptation strategies are different between these seven contrasting basins. It is also clear that these adaptation strategies should focus on increased variability rather than on the overall change of the mean. The focus was hereby not only on an increase in variation but especially on the number of successive dry and wet years. Results show that the studies on these adaptation strategies could not be performed only at one scale, but that a combination of field scale as well as basin scale analysis is essential.

  13. Adaptive Control Techniques for Large Space Structures

    DTIC Science & Technology

    1987-12-23

    2500 Mizssion. CoV~ege Boulevard Sar-ta Clara, Califorr-Iia 950541-1215 P--epared for: AFOSR, O irectcorate of Aerospace Sciences Bolling Air Force...formulated in late 1982 in re- sponse to the increasing concern that performance robustness of Air Force LSS type system would be inadequate to meet...Reducing the effects of on-board disturbance rejection) is particularly important for planned Air Force missions. For these cases, adaptive control

  14. Rapid adaptation in visual cortex to the structure of images.

    PubMed

    Müller, J R; Metha, A B; Krauskopf, J; Lennie, P

    1999-08-27

    Complex cells in striate cortex of macaque showed a rapid pattern-specific adaptation. Adaptation made cells more sensitive to orientation change near the adapting orientation. It reduced correlations among the responses of populations of cells, thereby increasing the information transmitted by each action potential. These changes were brought about by brief exposures to stationary patterns, on the time scale of a single fixation. Thus, if successive fixations expose neurons' receptive fields to images with similar but not identical structure, adaptation will remove correlations and improve discriminability.

  15. Design of Discrete Variable Structure Controller Based on Variable Boundary Layer

    NASA Astrophysics Data System (ADS)

    Su, Shibin; Wang, Heng; Zhang, Hua; Xiong, Wei

    Variable structure control is recognized as the most efficient method for control of uncertain systems. In order to reduce the chattering and improve the stability of the Discrete-time Variable Structure Control System (DVSCS) with parameter uncertainties and external disturbances, this paper proposes a variable structure controller based on variable boundary layer. Simulations results demonstrate the controller is not only effectively reduce chattering of the DVSCS, but improve the asymptotic stability and robustness of system. In addition, the results also revealed that the controller has strong effectiveness and robustness of the trajectory tracking.

  16. Rangeland management strategies for adapting to climatic variability: Enhancing the positive and mitigating the negative effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rangeland management strategies for adapting to climatic variability are needed to reduce enterprise risk, increase resilience of rangeland/grassland ecosystems and deliver sustainable provision of ecosystem goods (e.g., livestock production) and services (e.g., wildlife habitat) from western North ...

  17. The Influence of Item Calibration Error on Variable-Length Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi

    2013-01-01

    Variable-length computerized adaptive testing (VL-CAT) allows both items and test length to be "tailored" to examinees, thereby achieving the measurement goal (e.g., scoring precision or classification) with as few items as possible. Several popular test termination rules depend on the standard error of the ability estimate, which in turn depends…

  18. Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change.

    PubMed

    van der Pol, T D; van Ierland, E C; Gabbert, S; Weikard, H-P; Hendrix, E M T

    2015-05-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change given a predefined system performance target, for example a flood risk standard. Rainfall variability causes system performance estimates to be volatile. These estimates may be used to recurrently evaluate system performance. This paper presents a model for this setting, and develops a solution method to identify cost-effective investments in stormwater drainage adaptations. Runoff and water levels are simulated with rainfall from stationary rainfall distributions, and time series of annual rainfall maxima are simulated for a climate scenario. Cost-effective investment strategies are determined by dynamic programming. The method is applied to study the choice of volume for a storage basin in a Dutch polder. We find that 'white noise', i.e. trend-free variability of rainfall, might cause earlier re-investment than expected under projected changes in rainfall. The risk of early re-investment may be reduced by increasing initial investment. This can be cost-effective if the investment involves fixed costs. Increasing initial investments, therefore, not only increases water system robustness to structural changes in rainfall, but could also offer insurance against additional costs that would occur if system performance is underestimated and re-investment becomes inevitable.

  19. SOGI-FLL Based Adaptive Filter for DSTATCOM Under Variable Supply Frequency

    NASA Astrophysics Data System (ADS)

    Puranik, Vishal; Arya, Sabha Raj

    2016-12-01

    This paper presents an adaptive filter based on second order generalized integrator-frequency locked loop (SOGI-FLL) for distribution static compensator (DSTATCOM) operating under variable supply frequency with nonlinear load. It is observed that under variable supply frequency, the FLL provides an excellent frequency tracking performance. Necessary compensation can be provided by DSTATCOM at any frequency with the help of SOGI-FLL. The MATLAB simulink model of DSTATCOM is developed with SOGI-FLL based control algorithm and rectifier based nonlinear load. This three wire system is simulated in power factor correction and zero voltage regulation mode under variable supply frequency.

  20. Control of sound radiation with active/adaptive structures

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.; Rogers, C. A.; Robertshaw, H. H.

    1992-01-01

    Recent research is discussed in the area of active structural acoustic control with active/adaptive structures. Progress in the areas of structural acoustics, actuators, sensors, and control approaches is presented. Considerable effort has been given to the interaction of these areas with each other due to the coupled nature of the problem. A discussion is presented on actuators bonded to or embedded in the structure itself. The actuators discussed are piezoceramic actuators and shape memory alloy actuators. The sensors discussed are optical fiber sensors, Nitinol fiber sensors, piezoceramics, and polyvinylidene fluoride sensors. The active control techniques considered are state feedback control techniques and least mean square adaptive algorithms. Results presented show that significant progress has been made towards controlling structurally radiated noise by active/adaptive means applied directly to the structure.

  1. Assessment of Tropical Cyclone Structure Variability

    DTIC Science & Technology

    2013-09-01

    Postgraduate School M onterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/A 10 ...2 3. Secondary Eyewall Scenario . . . . . . . . . . 8 4. Annular Storm Structure . . . . . . . . . . . . 10 5. Importance of Wind Structure...intensification cycle; and (d) phase III, decay. See text for specific definitions (Definitions from Elsberry et al. 2007). 41 10 . Time series of structure

  2. Adaptive neuro-control for large flexible structures

    NASA Astrophysics Data System (ADS)

    Krishna Kumar, K.; Montgomery, L.

    1992-12-01

    Special problems related to control system design for large flexible structures include the inherent low damping, wide range of modal frequencies, unmodeled dynamics, and possibility of system failures. Neuro-control, which combines concepts from artificial neural networks and adaptive control is investigated as a solution to some of these problems. Specifically, the roles of neutro-controllers in learning unmodeled dynamics and adaptive control for system failures are investigated. The neuro-controller synthesis procedure and its capabilities in adaptively controlling the structure are demonstrated using a mathematical model of an existing structure, the advanced control evaluation for systems test article located at NASA/Marshall Space Flight Center. Also, the real-time adaptive capability of neuro-controllers is demonstrated via an experiment utilizing a flexible clamped-free beam equipped with an actuator that uses a bang-bang controller.

  3. Gradient-based adaptation of continuous dynamic model structures

    NASA Astrophysics Data System (ADS)

    La Cava, William G.; Danai, Kourosh

    2016-01-01

    A gradient-based method of symbolic adaptation is introduced for a class of continuous dynamic models. The proposed model structure adaptation method starts with the first-principles model of the system and adapts its structure after adjusting its individual components in symbolic form. A key contribution of this work is its introduction of the model's parameter sensitivity as the measure of symbolic changes to the model. This measure, which is essential to defining the structural sensitivity of the model, not only accommodates algebraic evaluation of candidate models in lieu of more computationally expensive simulation-based evaluation, but also makes possible the implementation of gradient-based optimisation in symbolic adaptation. The proposed method is applied to models of several virtual and real-world systems that demonstrate its potential utility.

  4. Adaptive Gaussian quadrature detection for continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Gyongyosi, L.; Imre, S.

    2016-03-01

    We propose the adaptive quadrature detection for multicarrier continuous-variable quantum key distribution (CVQKD). A multicarrier CVQKD scheme uses Gaussian subcarrier continuous variables for the information conveying and Gaussian sub-channels for the transmission. The proposed multicarrier detection scheme dynamically adapts to the subchannel conditions using a corresponding statistics which is provided by our sophisticated sub-channel estimation procedure. The sub-channel estimation phase determines the transmittance coefficients of the sub-channels, which information are used further in the adaptive quadrature decoding process. We define a technique to estimate the transmittance conditions of the sub-channels. We introduce the terms of single and collective adaptive quadrature detection. We prove the achievable error probabilities, the signal-to-noise ratios, and quantify the attributes of the framework. The adaptive detection scheme allows to utilize the extra resources of multicarrier CVQKD and to maximize the amount of transmittable valuable information in diverse measurement and transmission conditions. The framework is particularly convenient for experimental CVQKD scenarios.

  5. Neuromuscular adaptations to constant vs. variable resistance training in older men.

    PubMed

    Walker, S; Peltonen, H; Sautel, J; Scaramella, C; Kraemer, W J; Avela, J; Häkkinen, K

    2014-01-01

    This study examined the effects of constant or variable external resistance training on neuromuscular adaptations in the lower limbs of older men. 37 subjects (age 65±4 year) were quasi-randomly assigned to the constant or variable training group, or a non-training control group. Training consisted of a 20-week medium-intensity, high volume resistance training program. Maximum bilateral concentric and isometric force production of the leg extensors as well as repetitions-to-failure test were performed pre-, mid- and post-training. Vastus lateralis muscle cross-sectional area was assessed by ultrasound and lean leg mass was assessed by dual-energy x-ray absorptiometry. Both training groups significantly increased force production of the leg extensors (variable: 26 kg, 95% CI=12-39, P<0.01; constant: 31 kg, 95% CI=19-43, P<0.01) and VL cross-sectional area (variable: 1.5 cm2, 95% CI=0.03-3.1, P=0.046; constant: 3 cm2, 95% CI=1.2-4.8, P=0.002). However, only the variable training group significantly improved repetitions to failure performance (704 kg, 95% CI=45-1 364, P=0.035). Only the variable resistance training group improved fatigue-resistance properties, which may be an important adaptation to maintain exercise and functional capacity in older individuals.

  6. Adaptive structures for fixed and rotary wing aircraft

    NASA Astrophysics Data System (ADS)

    Martin, Willi; Jänker, Peter; Siemetzki, Markus; Lorkowski, Thomas; Grohmann, Boris; Maier, Rudolf; Maucher, Christoph; Klöppel, Valentin; Enenkl, Bernhard; Roth, Dieter; Hansen, Heinz

    2007-07-01

    Since more than 10 years EADS Innovation Works, which is the corporate research centre of EADS (European Aeronautic Defence and Space Company), is investigating smart materials and adaptive structures for aircraft in cooperation with EADS business units. Focus of research efforts are adaptive systems for shape control, noise reduction and vibration control of both fixed and rotary wing aircraft as well as for lift optimisation of fixed wing aircraft. Two outstanding adaptive systems which have been pushed ahead in cooperation with Airbus Germany and Eurocopter Germany are adaptive servo flaps for helicopter rotor blades and innovative high lift devices for fixed wing aircraft which both were tested in flight for the first time representing world premieres. In this paper various examples of adaptive systems are presented which were developed and realized by EADS in recent years.

  7. Process for applying control variables having fractal structures

    DOEpatents

    Bullock, J.S. IV; Lawson, R.L.

    1996-01-23

    A process and apparatus are disclosed for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform. 3 figs.

  8. Process for applying control variables having fractal structures

    DOEpatents

    Bullock, IV, Jonathan S.; Lawson, Roger L.

    1996-01-01

    A process and apparatus for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform.

  9. Adaptive Origami for Efficiently Folded Structures

    DTIC Science & Technology

    2016-02-01

    4 3.2 Design of 2D-to- 3D Actuating Mechanisms...printing, lithography) to convert surface patterns on substrates into stable 3D objects. The design and fabrication of structures based on folding...Nafion, where prescribed 3D geometric information can be encoded as a spatially patterned composite of discrete shape-memory and locked-shape-memory

  10. Chaos, dynamical structure, and climate variability

    SciTech Connect

    Stewart, H.B.

    1996-06-01

    Deterministic chaos in dynamical systems offers a new paradigm for understanding irregular fluctuations. Techniques for identifying deterministic chaos from observed data, without recourse to mathematical models, are being developed. Powerful methods exist for reconstructing multidimensional phase space from an observed time series of a single scalar variable; these methods are invaluable when only a single scalar record of the dynamics is available. However in some applications multiple concurrent time series may be available for consideration as phase space coordinates. Here we propose some basic analytical tools for such multichannel time series data, and illustrate them by applications to a simple synthetic model of chaos, to a low-order model of atmospheric circulation, and to two high-resolution paleoclimate proxy data series. {copyright} {ital 1996 American Institute of Physics.}

  11. Dynamics of adaptive structures: Design through simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alexander, S.

    1993-01-01

    The use of a helical bi-morph actuator/sensor concept by mimicking the change of helical waveform in bacterial flagella is perhaps the first application of bacterial motions (living species) to longitudinal deployment of space structures. However, no dynamical considerations were analyzed to explain the waveform change mechanisms. The objective is to review various deployment concepts from the dynamics point of view and introduce the dynamical considerations from the outset as part of design considerations. Specifically, the impact of the incorporation of the combined static mechanisms and dynamic design considerations on the deployment performance during the reconfiguration stage is studied in terms of improved controllability, maneuvering duration, and joint singularity index. It is shown that intermediate configurations during articulations play an important role for improved joint mechanisms design and overall structural deployability.

  12. Active region coronal loops - Structural and variability

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.; Strong, Keith T.; Harrison, Richard A.; Gary, G. A.

    1988-01-01

    X-ray images of a pair of active region loops are studied which show significant, short time-scale variability in the line fluxes of O VIII, Ne IX, and Mg XI and in the 3.5-11.5 keV soft X-ray bands. Vector magnetograms and high-resolution UV images were used to model the three-dimensional characteristics of the loops. X-ray light curves were generated spanning four consecutive orbits for both loops individually, and light curves of the loop tops and brightest points were also generated. The largest variations involve flux changes of up to several hundred percent on time scales of 10 minutes. No significant H-alpha flare activity is reported, and loop temperatures remain in the four to six million K range. The decay phases of the light curves indicate radiative cooling, inhibition of conduction, and some type of 'continued heating' due to ongoing, underlying activity at the microflare level.

  13. Climatic variability in combination with eutrophication drives adaptive responses in the gills of Lake Victoria cichlids.

    PubMed

    van Rijssel, Jacco C; Hecky, Robert E; Kishe-Machumu, Mary A; Meijer, Saskia E; Pols, Johan; van Tienderen, Kaj M; Ververs, Jan D; Wanink, Jan H; Witte, Frans

    2016-12-01

    Textbook examples of adaptive radiation often show rapid morphological changes in response to environmental perturbations. East Africa's Lake Victoria, famous for its stunning adaptive radiation of cichlids, has suffered from human-induced eutrophication over the past decades. This cultural eutrophication is thought to be partly responsible for the dramatically reduced cichlid biodiversity, but climatic variability in itself might also have contributed to the eutrophication which resulted in low oxygen levels and decreased water transparency. To determine how recent environmental changes have influenced the lake and its cichlids over the past 50 years, we gathered environmental and meteorological variables and compared these with gill surface area of four cichlid species. We found that during the period of severe eutrophication and temperature increase (1980s), reduced wind speeds coincided with a reduction in oxygen levels and a decrease in both water temperature and transparency. The gill surface area in three out of the four cichlid species increased during this period which is consistent with adaptive change in response to increased hypoxia. During the 2000s, wind speeds, oxygen levels, water transparency and water temperature increased again, while cichlid gill surface area decreased. Our results imply that climatic changes and especially wind speed and direction might play a crucial role in tropical lake dynamics. The changes in Lake Victoria's water quality coincide with fluctuations in cichlid gill surface area, suggesting that these fish can respond rapidly to environmental perturbations, but also that climatic variability, together with continued eutrophication, might be detrimental to the lake's cichlid biodiversity.

  14. Adaptive neuro-control for large flexible structures

    NASA Astrophysics Data System (ADS)

    Krishankumar, K.; Montgomery, L.

    Special problems related to control system design for large flexible structures include the inherent low structural damping, wide range of modal frequencies, unmodeled dynamics, and possibility of system failures. Neuro-control, which combines concepts from artificial neural networks and adaptive control is investigated as a solution to some of these problems. Specifically, the roles of neuro-controllers in learning unmodeled dynamics and adaptive control for system failures are investigated. Satisfying these objectives requires training a neural network model (neuro-model) to simulate the actual structure, and then training a neural network controller (neuro-controller) to minimize structural response resulting from an arbitrary disturbance. The neuro-controller synthesis procedure and its capabilities in adaptively controlling the structure are demonstrated using a mathematical model of an existing structure, the Advanced Control Evaluation for Systems test article located at NASA/Marshall Space Flight Center, Huntsville, Alabama. Also, the real-time adaptive capability of neuro-controllers is demonstrated via an experiment utilizing a flexible clamped-free beam equipped with an actuator that uses a bang-bang controller.

  15. Residual mode filters and adaptive control in large space structures

    NASA Technical Reports Server (NTRS)

    Davidson, Roger A.; Balas, Mark J.

    1989-01-01

    One of the most difficult problems in controlling large systems and structures is compensating for the destructive interaction which can occur between the reduced-order model (ROM) of the plant, which is used by the controller, and the unmodeled dynamics of the plant, often called the residual modes. The problem is more significant in the case of large space structures because their naturally light damping and high performance requirements lead to more frequent, destructive residual mode interaction (RMI). Using the design/compensation technique of residual mode filters (RMF's), effective compensation of RMI can be accomplished in a straightforward manner when using linear controllers. The use of RMF's has been shown to be effective for a variety of large structures, including a space-based laser and infinite dimensional systems. However, the dynamics of space structures is often uncertain and may even change over time due to on-orbit erosion from space debris and corrosive chemicals in the upper atmosphere. In this case, adaptive control can be extremely beneficial in meeting the performance requirements of the structure. Adaptive control for large structures is also based on ROM's and so destructive RMI may occur. Unfortunately, adaptive control is inherently nonlinear, and therefore the known results of RMF's cannot be applied. The purpose is to present the results of new research showing the effects of RMI when using adaptive control and the work which will hopefully lead to RMF compensation of this problem.

  16. Adaptive Control of Truss Structures for Gossamer Spacecraft

    NASA Technical Reports Server (NTRS)

    Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.

    2007-01-01

    Neural network-based adaptive control is considered for active control of a highly flexible truss structure which may be used to support solar sail membranes. The objective is to suppress unwanted vibrations in SAFE (Solar Array Flight Experiment) boom, a test-bed located at NASA. Compared to previous tests that restrained truss structures in planar motion, full three dimensional motions are tested. Experimental results illustrate the potential of adaptive control in compensating for nonlinear actuation and modeling error, and in rejecting external disturbances.

  17. Block-structured adaptive mesh refinement - theory, implementation and application

    SciTech Connect

    Deiterding, Ralf

    2011-01-01

    Structured adaptive mesh refinement (SAMR) techniques can enable cutting-edge simulations of problems governed by conservation laws. Focusing on the strictly hyperbolic case, these notes explain all algorithmic and mathematical details of a technically relevant implementation tailored for distributed memory computers. An overview of the background of commonly used finite volume discretizations for gas dynamics is included and typical benchmarks to quantify accuracy and performance of the dynamically adaptive code are discussed. Large-scale simulations of shock-induced realistic combustion in non-Cartesian geometry and shock-driven fluid-structure interaction with fully coupled dynamic boundary motion demonstrate the applicability of the discussed techniques for complex scenarios.

  18. Structural variability in multifunctional metal xylenediaminetetraphosphonate hybrids.

    PubMed

    Colodrero, Rosario M P; Angeli, Giasemi K; Bazaga-Garcia, Montse; Olivera-Pastor, Pascual; Villemin, Didier; Losilla, Enrique R; Martos, Estefania Q; Hix, Gary B; Aranda, Miguel A G; Demadis, Konstantinos D; Cabeza, Aurelio

    2013-08-05

    Two new families of divalent metal hybrid derivatives from the aromatic tetraphosphonic acids 1,4- and 1,3-bis(aminomethyl)benzene-N,N'-bis(methylenephosphonic acid), (H2O3PCH2)2-N-CH2C6H4CH2-N(CH2PO3H2)2 (designated herein as p-H8L and m-H8L) have been synthesized by crystallization at room temperature and hydrothermal conditions. The crystal structures of M[(HO3PCH2)2N(H)CH2C6H4CH2N(H)(CH2PO3H)2(H2O)2]·2H2O (M = Mg, Co, and Zn), M-(p-H6L), and M[(HO3PCH2)2N(H)CH2C6H4CH2N(H)(CH2PO3H)2]·nH2O (M = Ca, Mg, Co, and Zn and n = 1-1.5), M-(m-H6L), were solved ab initio by synchrotron powder diffraction data using the direct methods and subsequently refined using the Rietveld method. The crystal structure of the isostructural M-(p-H6L) is constituted by organic-inorganic monodimensional chains where the phosphonate moiety acts as a bidentate chelating ligand bridging two metal octahedra. M-(m-H6L) compounds exhibit a 3D pillared open-framework with small 1D channels filled with water molecules. These channels are formed by the pillaring action of the organic ligand connecting adjacent layers through the phosphonate oxygens. Thermogravimetric and X-ray thermodiffraction analyses of M-(p-H6L) showed that the integrity of their crystalline structures is maintained up to 470 K, without significant reduction of water content, while thermal decomposition takes place above 580 K. The utility of M-(p-H6L) (M = Mg and Zn) hybrid materials in corrosion protection was investigated in acidic aqueous solutions. In addition, the impedance data indicate both families of compounds display similar proton conductivities (σ ∼ 9.4 × 10(-5) S·cm(-1), at 98% RH and 297 K), although different proton transfer mechanisms are involved.

  19. Explaining finite state machine characteristics using variable structure control

    SciTech Connect

    Feddema, J.T.; Robinett, R.D.; Driessen, B.J.

    1997-10-01

    This paper describes how variable structure control can be used to describe the overall behavior of multiple autonomous robotic vehicles with simple finite state machine rules. The importance of this result is that it allows for the design of provably asymptotically stable group behaviors from a set of simple control laws and appropriate switching points with variable structure control. The ability to prove convergence to a goal is especially important for applications such as locating military targets or land mines.

  20. Dynamics of genetic variability in Anastrepha fraterculus (Diptera: Tephritidae) during adaptation to laboratory rearing conditions

    PubMed Central

    2014-01-01

    Background Anastrepha fraterculus is one of the most important fruit fly plagues in the American continent and only chemical control is applied in the field to diminish its population densities. A better understanding of the genetic variability during the introduction and adaptation of wild A. fraterculus populations to laboratory conditions is required for the development of stable and vigorous experimental colonies and mass-reared strains in support of successful Sterile Insect Technique (SIT) efforts. Methods The present study aims to analyze the dynamics of changes in genetic variability during the first six generations under artificial rearing conditions in two populations: a) a wild population recently introduced to laboratory culture, named TW and, b) a long-established control line, named CL. Results Results showed a declining tendency of genetic variability in TW. In CL, the relatively high values of genetic variability appear to be maintained across generations and could denote an intrinsic capacity to avoid the loss of genetic diversity in time. Discussion The impact of evolutionary forces on this species during the adaptation process as well as the best approach to choose strategies to introduce experimental and mass-reared A. fraterculus strains for SIT programs are discussed. PMID:25471362

  1. Spanish Version of the Savings Inventory-Revised: Adaptation, Psychometric Properties, and Relationship to Personality Variables

    ERIC Educational Resources Information Center

    Tortella-Feliu, Miquel; Fullana, Miquel A.; Caseras, Xavier; Andion, Oscar; Torrubia, Rafael; Mataix-Cols, David

    2006-01-01

    The factor structure, psychometric properties, and relationship with personality variables of a Spanish version of the Savings Inventory-Revised (SI-R) are investigated in a sample of 381 undergraduate students. A maximum likelihood factor analysis suggests a three-factor structure, which is similar but not identical to that of the original…

  2. Computerized Adaptive Testing with Multiple-Form Structures

    ERIC Educational Resources Information Center

    Armstrong, Ronald D.; Jones, Douglas H.; Koppel, Nicole B.; Pashley, Peter J.

    2004-01-01

    A multiple-form structure (MFS) is an ordered collection or network of testlets (i.e., sets of items). An examinee's progression through the network of testlets is dictated by the correctness of an examinee's answers, thereby adapting the test to his or her trait level. The collection of paths through the network yields the set of all possible…

  3. Adaptive zero-tree structure for curved wavelet image coding

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Wang, Demin; Vincent, André

    2006-02-01

    We investigate the issue of efficient data organization and representation of the curved wavelet coefficients [curved wavelet transform (WT)]. We present an adaptive zero-tree structure that exploits the cross-subband similarity of the curved wavelet transform. In the embedded zero-tree wavelet (EZW) and the set partitioning in hierarchical trees (SPIHT), the parent-child relationship is defined in such a way that a parent has four children, restricted to a square of 2×2 pixels, the parent-child relationship in the adaptive zero-tree structure varies according to the curves along which the curved WT is performed. Five child patterns were determined based on different combinations of curve orientation. A new image coder was then developed based on this adaptive zero-tree structure and the set-partitioning technique. Experimental results using synthetic and natural images showed the effectiveness of the proposed adaptive zero-tree structure for encoding of the curved wavelet coefficients. The coding gain of the proposed coder can be up to 1.2 dB in terms of peak SNR (PSNR) compared to the SPIHT coder. Subjective evaluation shows that the proposed coder preserves lines and edges better than the SPIHT coder.

  4. An Adaptive Evaluation Structure for Computer-Based Instruction.

    ERIC Educational Resources Information Center

    Welsh, William A.

    Adaptive Evaluation Structure (AES) is a set of linked computer programs designed to increase the effectiveness of interactive computer-assisted instruction at the college level. The package has four major features, the first of which is based on a prior cognitive inventory and on the accuracy and pace of student responses. AES adjusts materials…

  5. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring.

    PubMed

    Plews, Daniel J; Laursen, Paul B; Stanley, Jamie; Kilding, Andrew E; Buchheit, Martin

    2013-09-01

    The measurement of heart rate variability (HRV) is often considered a convenient non-invasive assessment tool for monitoring individual adaptation to training. Decreases and increases in vagal-derived indices of HRV have been suggested to indicate negative and positive adaptations, respectively, to endurance training regimens. However, much of the research in this area has involved recreational and well-trained athletes, with the small number of studies conducted in elite athletes revealing equivocal outcomes. For example, in elite athletes, studies have revealed both increases and decreases in HRV to be associated with negative adaptation. Additionally, signs of positive adaptation, such as increases in cardiorespiratory fitness, have been observed with atypical concomitant decreases in HRV. As such, practical ways by which HRV can be used to monitor training status in elites are yet to be established. This article addresses the current literature that has assessed changes in HRV in response to training loads and the likely positive and negative adaptations shown. We reveal limitations with respect to how the measurement of HRV has been interpreted to assess positive and negative adaptation to endurance training regimens and subsequent physical performance. We offer solutions to some of the methodological issues associated with using HRV as a day-to-day monitoring tool. These include the use of appropriate averaging techniques, and the use of specific HRV indices to overcome the issue of HRV saturation in elite athletes (i.e., reductions in HRV despite decreases in resting heart rate). Finally, we provide examples in Olympic and World Champion athletes showing how these indices can be practically applied to assess training status and readiness to perform in the period leading up to a pinnacle event. The paper reveals how longitudinal HRV monitoring in elites is required to understand their unique individual HRV fingerprint. For the first time, we demonstrate how

  6. Modified Adaptive Control for Region 3 Operation in the Presence of Wind Turbine Structural Modes

    NASA Technical Reports Server (NTRS)

    Frost, Susan Alane; Balas, Mark J.; Wright, Alan D.

    2010-01-01

    Many challenges exist for the operation of wind turbines in an efficient manner that is reliable and avoids component fatigue and failure. Turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, possibly causing component fatigue and failure. Wind turbine manufacturers are highly motivated to reduce component fatigue and failure that can lead to loss of revenue due to turbine down time and maintenance costs. The trend in wind turbine design is toward larger, more flexible turbines that are ideally suited to adaptive control methods due to the complexity and expense required to create accurate models of their dynamic characteristics. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed horizontal axis wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the excitation of structural modes in the wind turbine. The control objective is accomplished by collectively pitching the turbine blades. The adaptive collective pitch controller for Region 3 was compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller. The adaptive controller will demonstrate the ability to regulate generator speed in Region 3, while accommodating gusts, and reducing the excitation of certain structural modes in the wind turbine.

  7. Augmented Adaptive Control of a Wind Turbine in the Presence of Structural Modes

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.; Wright, Alan D.

    2010-01-01

    Wind turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, potentially causing component fatigue and failure. Two key technology drivers for turbine manufacturers are increasing turbine up time and reducing maintenance costs. Since the trend in wind turbine design is towards larger, more flexible turbines with lower frequency structural modes, manufacturers will want to develop methods to operate in the presence of these modes. Accurate models of the dynamic characteristics of new wind turbines are often not available due to the complexity and expense of the modeling task, making wind turbines ideally suited to adaptive control. In this paper, we develop theory for adaptive control with rejection of disturbances in the presence of modes that inhibit the controller. We use this method to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the interference of certain structural modes in feedback. The control objective is accomplished by collectively pitching the turbine blades. The adaptive pitch controller for Region 3 is compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller.

  8. Climate Variability, Andean Livelihood Strategies, Development and Adaptation in the Andean Region

    NASA Astrophysics Data System (ADS)

    Valdivia, C.; Quiroz, R.; Zorogastua, P.; Baigorrea, G.

    2002-05-01

    Development programs in the Andes have failed to recognize climate variability as an element that is crucial to the adoption of new alternatives. Dairy, potatoes, improved sheep, forages are all part of the history of development in this region. A combination of climate variability, changes in the economy, the political environment, and land tenure reform shape rural livelihoods and welfare. Diversification, linking to markets, and networking are some elements that contribute to the resilience of families in the Andes. Strategies change, are flexible, and may incorporate non-agricultural activities. While some farmers are able to improve their welfare through the life cycle, others become poorer. Climate variability increases the vulnerability of some groups; in other cases, because of diversification and assets, households build economic portfolios that are more resilient to the elements. The many projects provide insights into how in the long run households improve their environment, hinting at mechanisms to adapt to climate change. In order to understand changing composition of portfolios in future scenarios of spatial heterogeneous areas such as mountains (Andes), estimates of models predicting climate change at a global scale are not useful because their resolution. Therefore, downscaling tools are useful. Spatial heterogeneity is assessed through agroecozoning. Both production and the impact on some environmental indicators are simulated through process-based models, for the Ilave-Huenque watershed in Peru that help in discussing scenarios of adaptation.

  9. Structural disorder provides increased adaptability for vesicle trafficking pathways.

    PubMed

    Pietrosemoli, Natalia; Pancsa, Rita; Tompa, Peter

    2013-01-01

    Vesicle trafficking systems play essential roles in the communication between the organelles of eukaryotic cells and also between cells and their environment. Endocytosis and the late secretory route are mediated by clathrin-coated vesicles, while the COat Protein I and II (COPI and COPII) routes stand for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar fundamental organizations, the molecular machinery, functions, and evolutionary characteristics of the three systems are very different. In this work, we compiled the basic functional protein groups of the three main routes for human and yeast and analyzed them from the structural disorder perspective. We found similar overall disorder content in yeast and human proteins, confirming the well-conserved nature of these systems. Most functional groups contain highly disordered proteins, supporting the general importance of structural disorder in these routes, although some of them seem to heavily rely on disorder, while others do not. Interestingly, the clathrin system is significantly more disordered (~23%) than the other two, COPI (~9%) and COPII (~8%). We show that this structural phenomenon enhances the inherent plasticity and increased evolutionary adaptability of the clathrin system, which distinguishes it from the other two routes. Since multi-functionality (moonlighting) is indicative of both plasticity and adaptability, we studied its prevalence in vesicle trafficking proteins and correlated it with structural disorder. Clathrin adaptors have the highest capability for moonlighting while also comprising the most highly disordered members. The ability to acquire tissue specific functions was also used to approach adaptability: clathrin route genes have the most tissue specific exons encoding for protein segments enriched in structural disorder and interaction sites. Overall, our results confirm the general importance of structural disorder in vesicle trafficking and suggest

  10. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods

    NASA Astrophysics Data System (ADS)

    Bause, M.; Knabner, P.

    2004-06-01

    We present adaptive mixed hybrid finite element discretizations of the Richards equation, a nonlinear parabolic partial differential equation modeling the flow of water into a variably saturated porous medium. The approach simultaneously constructs approximations of the flux and the pressure head in Raviart-Thomas spaces. The resulting nonlinear systems of equations are solved by a Newton method. For the linear problems of the Newton iteration a multigrid algorithm is used. We consider two different kinds of error indicators for space adaptive grid refinement: superconvergence and residual based indicators. They can be calculated easily by means of the available finite element approximations. This seems attractive for computations since no additional (sub-)problems have to be solved. Computational experiments conducted for realistic water table recharge problems illustrate the effectiveness and robustness of the approach.

  11. Using structural equation modeling to investigate relationships among ecological variables

    USGS Publications Warehouse

    Malaeb, Z.A.; Kevin, Summers J.; Pugesek, B.H.

    2000-01-01

    Structural equation modeling is an advanced multivariate statistical process with which a researcher can construct theoretical concepts, test their measurement reliability, hypothesize and test a theory about their relationships, take into account measurement errors, and consider both direct and indirect effects of variables on one another. Latent variables are theoretical concepts that unite phenomena under a single term, e.g., ecosystem health, environmental condition, and pollution (Bollen, 1989). Latent variables are not measured directly but can be expressed in terms of one or more directly measurable variables called indicators. For some researchers, defining, constructing, and examining the validity of latent variables may be the end task of itself. For others, testing hypothesized relationships of latent variables may be of interest. We analyzed the correlation matrix of eleven environmental variables from the U.S. Environmental Protection Agency's (USEPA) Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) using methods of structural equation modeling. We hypothesized and tested a conceptual model to characterize the interdependencies between four latent variables-sediment contamination, natural variability, biodiversity, and growth potential. In particular, we were interested in measuring the direct, indirect, and total effects of sediment contamination and natural variability on biodiversity and growth potential. The model fit the data well and accounted for 81% of the variability in biodiversity and 69% of the variability in growth potential. It revealed a positive total effect of natural variability on growth potential that otherwise would have been judged negative had we not considered indirect effects. That is, natural variability had a negative direct effect on growth potential of magnitude -0.3251 and a positive indirect effect mediated through biodiversity of magnitude 0.4509, yielding a net positive total effect of 0

  12. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability.

    PubMed

    Wu, Howard G; Miyamoto, Yohsuke R; Gonzalez Castro, Luis Nicolas; Ölveczky, Bence P; Smith, Maurice A

    2014-02-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning.

  13. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability

    PubMed Central

    Wu, Howard G; Miyamoto, Yohsuke R; Castro, Luis Nicolas Gonzalez; Ölveczky, Bence P; Smith, Maurice A

    2015-01-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning. PMID:24413700

  14. Software abstractions and computational issues in parallel structure adaptive mesh methods for electronic structure calculations

    SciTech Connect

    Kohn, S.; Weare, J.; Ong, E.; Baden, S.

    1997-05-01

    We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradient with FAC multigrid preconditioning. We have parallelized our solver using an object- oriented adaptive mesh refinement framework.

  15. Recent Developments in Smart Adaptive Structures for Solar Sailcraft

    NASA Technical Reports Server (NTRS)

    Worton, M. S.; Kim, Y. K.; Oakley, J.; Adetona, O.; Keel, L. H.

    2007-01-01

    The "Smart Adaptive Structures for Solar Sailcraft" development activity at MSFC has investigated issues associated with understanding how to model and scale the subsystem and multi-body system dynamics of a gossamer solar sailcraft with the objective of designing sailcraft attitude control systems. This research and development activity addressed three key tasks that leveraged existing facilities and core competencies of MSFC to investigate dynamics and control issues of solar sails. Key aspects of this effort included modeling and testing of a 30 m deployable boom; modeling of the multi-body system dynamics of a gossamer sailcraft; investigation of control-structures interaction for gossamer sailcraft; and development and experimental demonstration of adaptive control technologies to mitigate control-structures interaction.

  16. Adaptive control of large space structures using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Goglia, G. L.

    1985-01-01

    The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.

  17. Adaptive control of large space structures using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.

    1985-01-01

    The use of recursive lattice filters for identification and adaptive control of large space structures was studied. Lattice filters are used widely in the areas of speech and signal processing. Herein, they are used to identify the structural dynamics model of the flexible structures. This identified model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures control is engaged. This type of validation scheme prevents instability when the overall loop is closed. The results obtained from simulation were compared to those obtained from experiments. In this regard, the flexible beam and grid apparatus at the Aerospace Control Research Lab (ACRL) of NASA Langley Research Center were used as the principal candidates for carrying out the above tasks. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods.

  18. An adaptive learning control system for large flexible structures

    NASA Technical Reports Server (NTRS)

    Thau, F. E.

    1985-01-01

    The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.

  19. Adaptive variable selection for extended Nijboer-Zernike aberration retrieval via lasso

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Diao, Huai-An; Guo, Jianhua; Liu, Xiyang; Wu, Yuanhao

    2017-02-01

    In this paper, we propose extended Nijboer-Zernike (ENZ) method for aberration retrieval by incorporating lasso variable selection method which can improve the accuracy of aberration retrieval. The proposed model is computed by the state-of-art algorithm of the Bregman iterative algorithm (Bregman, 1967 [1]; Cai et al., 2008 [2]; Yin et al., 2008 [3]) for L1 minimization problem with adaptive regularized parameter choice based on the strategy (Ito et al., 2011 [4]). Numerical simulations for real world and simulated phase data validate the effectiveness of the proposed ENZ AR via lasso.

  20. Adaptive state estimation for control of flexible structures

    NASA Technical Reports Server (NTRS)

    Chen, Chung-Wen; Huang, Jen-Kuang

    1990-01-01

    This paper proposes a new approach of obtaining adaptive state estimation of a system in the presence of unknown system disturbances and measurement noise. In the beginning, a non-optimal Kalman filter with arbitrary initial guess for the process and measurement noises is implemented. At the same time, an adaptive transversal predictor (ATP) based on the recursive least-squares (RLS) algorithm is used to yield optimal one- to p- step-ahead output predictions using the previous input/output data. Referring to these optimal predictions the Kalman filter gain is updated and the performance of the state estimation is thus improved. If forgetting factor is implemented in the recursive least-squares algorithm, this method is also capable of dealing with the situation when the noise statistics are slowly time-varying. This feature makes this new approach especially suitable for the control of flexible structures. A numerical example demonstrates the feasibility of this real time adaptive state estimation method.

  1. Adaptive potential of genomic structural variation in human and mammalian evolution.

    PubMed

    Radke, David W; Lee, Charles

    2015-09-01

    Because phenotypic innovations must be genetically heritable for biological evolution to proceed, it is natural to consider new mutation events as well as standing genetic variation as sources for their birth. Previous research has identified a number of single-nucleotide polymorphisms that underlie a subset of adaptive traits in organisms. However, another well-known class of variation, genomic structural variation, could have even greater potential to produce adaptive phenotypes, due to the variety of possible types of alterations (deletions, insertions, duplications, among others) at different genomic positions and with variable lengths. It is from these dramatic genomic alterations, and selection on their phenotypic consequences, that adaptations leading to biological diversification could be derived. In this review, using studies in humans and other mammals, we highlight examples of how phenotypic variation from structural variants might become adaptive in populations and potentially enable biological diversification. Phenotypic change arising from structural variants will be described according to their immediate effect on organismal metabolic processes, immunological response and physical features. Study of population dynamics of segregating structural variation can therefore provide a window into understanding current and historical biological diversification.

  2. Governmental responses and smallholders' adaptations to climatic variability in southeastern Mexico

    NASA Astrophysics Data System (ADS)

    Mardero Jimenez, Silvia Sofia; Schmook, Birgit; Christman, Zachary; Radel, Claudia

    2016-04-01

    Maize agriculture comprises a third of the area under cultivation in Mexico (75 million hectares), with only a quarter of this crop irrigated artificially. With the great dependence of the country's dominant crop on natural rainfall, there is potential for major losses in maize production due to climatic events, such as irregular rainfalls, droughts, and hurricanes. In 2012, droughts alone caused losses of 16 billion Mexican pesos nationwide in the agricultural sector. Over the last decades, political and economic pressures in the agrarian sector have further stressed Mexican smallholder farmers, as they have to respond to a combination of economic and climatic factors. This interdisciplinary study first documents local climate changes and then explores smallholder farmers' adaptations and governmental policy responses to the variable and changing precipitation and temperature patterns across southeastern Mexico. To assess local climate changes, we analyzed precipitation and temperature data from the land-based weather station network of CONAGUA for the 1973-2012 period. Precipitation anomalies were estimated to evaluate the annual and seasonal stability, deficit, or surplus; and linear regressions used to evaluate precipitation and temperature trends. Climatic analysis demonstrated, 1) a considerable increase in temperature across the study area; 2) a decline in precipitation across a sub-section; 3) increased drought frequency; and 4) an increase in negative anomalies in recent years. We then combine findings from our previous research (Mardero et al. 2014 and Mardero et al. 2015), based on interviews with 150 swidden maize smallholders in 10 communities, to new data from in-depth interviews with managers of local and regional agricultural associations and with members of governmental institutions in charge of climate policy implementation (n=19). The new data allow us to explore governmental responses to climatic variability in the agricultural sector in direct

  3. Cloud structure of brown dwarfs from spectroscopic variability observations

    NASA Astrophysics Data System (ADS)

    Buenzli, E.; Marley, M. S.; Apai, D.; Lupu, R. E.

    Recent discoveries of variable brown dwarfs have provided us with a new window into their three-dimensional cloud structure. The highest variables are found at the L/T transition, where the cloud cover is thought to break up, but variability has been found to occur also for both cloudy L dwarfs and (mostly) cloud-free mid T dwarfs. We summarize results from recent HST programs measuring the spectral variability of brown dwarfs in the near-infrared and compare to results from ground-based programs. We discuss the patchy cloud structure of L/T transition objects, for which it is becoming increasingly certain that the variability does not arise from cloud holes into the deep hot regions but from varying cloud thickness. We present a new patchy cloud model to explain the spectral variability of 2MASSJ21392676+0220226. We also discuss the curious multi-wavelength variability behavior of the recently discovered very nearby early T dwarf WISE J104915.57-531906.1B (Luhman 16B) and the mid T dwarf 2MASS J22282889-431026. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program # 12314 and 13280

  4. Adaptive data analysis for characterizing the temporal variability of the solar resource

    NASA Astrophysics Data System (ADS)

    Bengulescu, Marc; Blanc, Philippe; Wald, Lucien

    2016-04-01

    One of the key challenges associated with the large-scale penetration of solar power is the inherent spatio-temporal variability of the solar radiation impinging on the surface. Particular methods are currently employed to measure, estimate or forecast the extent and availability of the solar resource depending on the effective spatial and temporal scales of interest, such as numerical weather prediction models, satellite-based estimates, sky-imagers or in-situ ground measurements. Here we present a method for characterizing the intrinsic time-scales of the solar resource variability. The study deals with decennial time-series of daily values of the surface solar irradiance (SSI) issued from high-quality BSRN ground measurement stations. Geophysical signals, such as the SSI time-series under scrutiny, are often the result of non-linear interactions of physical processes that are also often under natural or anthropogenic non-stationary forcings. Therefore, an adaptive data analysis technique is employed that makes no beforehand assumptions about the data: neither linearity, nor stationarity of the signal is assumed. The method, called the Hilbert-Huang transform, first extracts all the embedded oscillations that have a similar time-scale, to which it then applies Hilbert spectral analysis. A time-frequency-energy representation of the signal is thus constructed, which reveals the time-varying character of the intrinsic temporal scales of variability (frequency modulation), along with any fluctuations in the intensity of the signal at the corresponding scale (amplitude modulation). In order to test whether the features extracted from the data are the expression of deterministic physical processes, as opposed to being stochastic realizations of various background processes (i.e. noise), a novel, adaptive null-hypothesis based on the statistical properties of noise is employed. It is shown that the data, irrespective of the geographical conditions, shares common time

  5. Adaptations in Electronic Structure Calculations in Heterogeneous Environments

    SciTech Connect

    Talamudupula, Sai

    2011-01-01

    Modern quantum chemistry deals with electronic structure calculations of unprecedented complexity and accuracy. They demand full power of high-performance computing and must be in tune with the given architecture for superior e ciency. To make such applications resourceaware, it is desirable to enable their static and dynamic adaptations using some external software (middleware), which may monitor both system availability and application needs, rather than mix science with system-related calls inside the application. The present work investigates scienti c application interlinking with middleware based on the example of the computational chemistry package GAMESS and middleware NICAN. The existing synchronous model is limited by the possible delays due to the middleware processing time under the sustainable runtime system conditions. Proposed asynchronous and hybrid models aim at overcoming this limitation. When linked with NICAN, the fragment molecular orbital (FMO) method is capable of adapting statically and dynamically its fragment scheduling policy based on the computing platform conditions. Signi cant execution time and throughput gains have been obtained due to such static adaptations when the compute nodes have very di erent core counts. Dynamic adaptations are based on the main memory availability at run time. NICAN prompts FMO to postpone scheduling certain fragments, if there is not enough memory for their immediate execution. Hence, FMO may be able to complete the calculations whereas without such adaptations it aborts.

  6. Variable Structure Control of a Hand-Launched Glider

    NASA Technical Reports Server (NTRS)

    Anderson, Mark R.; Waszak, Martin R.

    2005-01-01

    Variable structure control system design methods are applied to the problem of aircraft spin recovery. A variable structure control law typically has two phases of operation. The reaching mode phase uses a nonlinear relay control strategy to drive the system trajectory to a pre-defined switching surface within the motion state space. The sliding mode phase involves motion along the surface as the system moves toward an equilibrium or critical point. Analysis results presented in this paper reveal that the conventional method for spin recovery can be interpreted as a variable structure controller with a switching surface defined at zero yaw rate. Application of Lyapunov stability methods show that deflecting the ailerons in the direction of the spin helps to insure that this switching surface is stable. Flight test results, obtained using an instrumented hand-launched glider, are used to verify stability of the reaching mode dynamics.

  7. Engaging stakeholders for adaptive management using structured decision analysis

    USGS Publications Warehouse

    Irwin, Elise R.; Kathryn, D.; Kennedy, Mickett

    2009-01-01

    Adaptive management is different from other types of management in that it includes all stakeholders (versus only policy makers) in the process, uses resource optimization techniques to evaluate competing objectives, and recognizes and attempts to reduce uncertainty inherent in natural resource systems. Management actions are negotiated by stakeholders, monitored results are compared to predictions of how the system should respond, and management strategies are adjusted in a “monitor-compare-adjust” iterative routine. Many adaptive management projects fail because of the lack of stakeholder identification, engagement, and continued involvement. Primary reasons for this vary but are usually related to either stakeholders not having ownership (or representation) in decision processes or disenfranchisement of stakeholders after adaptive management begins. We present an example in which stakeholders participated fully in adaptive management of a southeastern regulated river. Structured decision analysis was used to define management objectives and stakeholder values and to determine initial flow prescriptions. The process was transparent, and the visual nature of the modeling software allowed stakeholders to see how their interests and values were represented in the decision process. The development of a stakeholder governance structure and communication mechanism has been critical to the success of the project.

  8. Adaptable structural synthesis using advanced analysis and optimization coupled by a computer operating system

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Bhat, R. B.

    1979-01-01

    A finite element program is linked with a general purpose optimization program in a 'programing system' which includes user supplied codes that contain problem dependent formulations of the design variables, objective function and constraints. The result is a system adaptable to a wide spectrum of structural optimization problems. In a sample of numerical examples, the design variables are the cross-sectional dimensions and the parameters of overall shape geometry, constraints are applied to stresses, displacements, buckling and vibration characteristics, and structural mass is the objective function. Thin-walled, built-up structures and frameworks are included in the sample. Details of the system organization and characteristics of the component programs are given.

  9. Preparation of iridescent colloidal crystal coatings with variable structural colors.

    PubMed

    Cong, Hailin; Yu, Bing; Wang, Shaopeng; Qi, Limin; Wang, Jilei; Ma, Yurong

    2013-07-29

    Iridescent colloidal crystal coatings with variable structural colors were fabricated by incorporating carbon black nanoparticles (CB-NPs) into the voids of polystyrene (PS) colloidal crystals. The structural color of the colloid crystal coatings was not only greatly enhanced after the composition but also varied with observation angles. By changing the diameter of monodisperse PS colloids in the composites, colloidal crystal coatings with three primary colors for additive or subtractive combination were obtained. After incorporation of the PS/CB-NPs hybrid coatings into polydimethylsiloxane (PDMS) matrix, manmade opal jewelry with variable iridescent colors was made facilely.

  10. Real-Time Wastewater System Operational Strategy Adaptation for Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Zimmer, A. L.; Minsker, B. S.; Schmidt, A.; Ostfeld, A.; Treinish, L. A.

    2010-12-01

    Management strategies for many large-scale wastewater systems are based on longstanding rules and may not effectively utilize system capacity for every storm event. Conservative operational rules are established to prevent flow instabilities. However, the rules may be modified to retain more wastewater and reduce overflows while continuing to avoid hydraulic conditions that lead to transients. Possible adaptation of system decision rules can be evaluated through coupling radar rainfall, a hydrologic system model, and an optimization routine. In this study, genetic algorithm optimization is evaluated for a hydrologic test case modeled after the Chicago Tunnel and Reservoir Plan (TARP) that minimizes combined sewer overflow (CSO) discharge to nearby waterways. This approach identifies potential new operational rules that reliably utilize deep tunnel storage and reduce overflows for a variety of historic storm events. The study utilizes a model based on the portion of the TARP deep tunnel system that flows directly under the North Branch of the Chicago River. Potential overflows coming from the upstream pipe and interceptor system are directed into the deep tunnel through sluice gates. System decision variables consist of sluice gate positions that control whether water enters the deep tunnel or flows into the river, as well as a treatment plant pumping rate on the interceptor lines. For different optimization runs, modifications are made to existing hydraulic structures to evaluate solution robustness for comparable hydraulic systems. The operational objective is to minimize the total volume of overflows for each storm event through a decision sequence, generated at discretized intervals, within a model predictive control (MPC) framework. Current operational strategies restrict water entry to the deep tunnel when an averaged tunnel water level reaches 70 percent of the diameter to avoid hydraulic transients. The optimization routine implements constraints that

  11. Adapting Predictive Models for Cepheid Variable Star Classification Using Linear Regression and Maximum Likelihood

    NASA Astrophysics Data System (ADS)

    Gupta, Kinjal Dhar; Vilalta, Ricardo; Asadourian, Vicken; Macri, Lucas

    2014-05-01

    We describe an approach to automate the classification of Cepheid variable stars into two subtypes according to their pulsation mode. Automating such classification is relevant to obtain a precise determination of distances to nearby galaxies, which in addition helps reduce the uncertainty in the current expansion of the universe. One main difficulty lies in the compatibility of models trained using different galaxy datasets; a model trained using a training dataset may be ineffectual on a testing set. A solution to such difficulty is to adapt predictive models across domains; this is necessary when the training and testing sets do not follow the same distribution. The gist of our methodology is to train a predictive model on a nearby galaxy (e.g., Large Magellanic Cloud), followed by a model-adaptation step to make the model operable on other nearby galaxies. We follow a parametric approach to density estimation by modeling the training data (anchor galaxy) using a mixture of linear models. We then use maximum likelihood to compute the right amount of variable displacement, until the testing data closely overlaps the training data. At that point, the model can be directly used in the testing data (target galaxy).

  12. The influence of clinical variables on the psychological adaptation of adolescents after solid organ transplantation.

    PubMed

    de Castro, Elisa Kern; Moreno Jiménez, Bernardo

    2008-06-01

    This study assessed the influence of clinical and socio-demographic variables on the psychological adaptation of transplanted adolescents. Twenty-six transplanted adolescents and 25 healthy adolescents, aged 13-17, and their parents participated in the study. The following domains were measured: social competence, emotional/behavioral problems, self-concept, self-esteem and subjective well-being. The findings revealed that transplanted boys presented significantly less social competence (U = 26,000, p < .05) and more externalizing problems (U = 25,000, p < .05), social problems (U = 25,000, p < .05) and attention problems (U = 17,500, p < .01) than healthy boys. In contrast, transplanted girls displayed significantly more internalizing problems (U = 47,000, p < .05) and lower physical self-concept (U = 49,500, p < .05) than healthy girls. Hierarchical regression analysis showed clinical variables, especially waiting-list time, significantly predicted attention problems (beta = .364, p < .05) and negative affect (beta = .632, p < .05) in transplanted adolescents. Also, male (beta = -0.554, p < .01) and younger (beta = -0.444, p < .01) transplanted adolescents were at risk for attention problems. Our data suggest the importance of the waiting-list time for transplanted adolescents. Efforts to reduce the pretransplant phase would help adolescents achieve better psychological adaptation at long-term posttransplant.

  13. Design of adaptive two-stage double-arm clinical trials for dichotomous variables.

    PubMed

    Jiang, Zhiwei; Xue, Fubo; Li, Chanjuan; Wang, Ling; Cai, Hongwei; Zhang, Chunmao; Xia, Jielai

    2010-05-01

    It is well known that flexibility is one of the major advantages of an adaptive two-stage design, and the intended adaptation should be as preplanned as possible to maintain the integrity of the clinical trial. The design of adaptive two-stage double-arm clinical trials for dichotomous variables was proposed by simulation and forecasting procedure at the planning stage. To further ensure the integrity of the clinical trial, the sample size scheme for each scenario, which was supposed to be based on the first stage, was provided in the protocol by Monte Carlo simulation. In addition, the study parameters were determined by comparing the assessment indexes such as total sample size, expected sample size and the test power at the first stage. Furthermore, Fisher's combination test and pooled data analysis were considered and compared through the simulation. The latter, which has the larger overall power and the better overall type I error control, with the same sample size was adopted for further simulation and statistical analysis in the clinical trial.

  14. Morphology operators construction by adaptive elliptical structuring elements based on nonlinear structure tensor

    NASA Astrophysics Data System (ADS)

    Tang, Chunming; Liu, Xinlei; Li, Yanjie; Zhao, Hongbo

    2017-01-01

    As the linear structure tensor is tending to inaccurately or even wrong estimate the gradient direction of a gray-level image, we present a novel algorithm to construct adaptive elliptical structuring elements via estimating the local anisotropy of an image based on the nonlinear structure tensor. Erosion, dilation, opening, closing and Hit-or-Miss transform are redefined according to the presented structuring elements, which have been applied to some representative images. The processed results and the quantitative analysis show that the novel morphological operators have more advantages in structure adaptation, corner protection, filtering and targets extraction than the others.

  15. Structural adaptations to diverse fighting styles in sexually selected weapons

    PubMed Central

    McCullough, Erin L.; Tobalske, Bret W.; Emlen, Douglas J.

    2014-01-01

    The shapes of sexually selected weapons differ widely among species, but the drivers of this diversity remain poorly understood. Existing explanations suggest weapon shapes reflect structural adaptations to different fighting styles, yet explicit tests of this hypothesis are lacking. We constructed finite element models of the horns of different rhinoceros beetle species to test whether functional specializations for increased performance under species-specific fighting styles could have contributed to the diversification of weapon form. We find that horns are both stronger and stiffer in response to species-typical fighting loads and that they perform more poorly under atypical fighting loads, which suggests weapons are structurally adapted to meet the functional demands of fighting. Our research establishes a critical link between weapon form and function, revealing one way male–male competition can drive the diversification of animal weapons. PMID:25201949

  16. Predicting coral bleaching hotspots: the role of regional variability in thermal stress and potential adaptation rates

    NASA Astrophysics Data System (ADS)

    Teneva, Lida; Karnauskas, Mandy; Logan, Cheryl A.; Bianucci, Laura; Currie, Jock C.; Kleypas, Joan A.

    2012-03-01

    Sea surface temperature fields (1870-2100) forced by CO2-induced climate change under the IPCC SRES A1B CO2 scenario, from three World Climate Research Programme Coupled Model Intercomparison Project Phase 3 (WCRP CMIP3) models (CCSM3, CSIRO MK 3.5, and GFDL CM 2.1), were used to examine how coral sensitivity to thermal stress and rates of adaption affect global projections of coral-reef bleaching. The focus of this study was two-fold, to: (1) assess how the impact of Degree-Heating-Month (DHM) thermal stress threshold choice affects potential bleaching predictions and (2) examine the effect of hypothetical adaptation rates of corals to rising temperature. DHM values were estimated using a conventional threshold of 1°C and a variability-based threshold of 2σ above the climatological maximum Coral adaptation rates were simulated as a function of historical 100-year exposure to maximum annual SSTs with a dynamic rather than static climatological maximum based on the previous 100 years, for a given reef cell. Within CCSM3 simulations, the 1°C threshold predicted later onset of mild bleaching every 5 years for the fraction of reef grid cells where 1°C > 2σ of the climatology time series of annual SST maxima (1961-1990). Alternatively, DHM values using both thresholds, with CSIRO MK 3.5 and GFDL CM 2.1 SSTs, did not produce drastically different onset timing for bleaching every 5 years. Across models, DHMs based on 1°C thermal stress threshold show the most threatened reefs by 2100 could be in the Central and Western Equatorial Pacific, whereas use of the variability-based threshold for DHMs yields the Coral Triangle and parts of Micronesia and Melanesia as bleaching hotspots. Simulations that allow corals to adapt to increases in maximum SST drastically reduce the rates of bleaching. These findings highlight the importance of considering the thermal stress threshold in DHM estimates as well as potential adaptation models in future coral bleaching projections.

  17. Transform Domain Robust Variable Step Size Griffiths' Adaptive Algorithm for Noise Cancellation in ECG

    NASA Astrophysics Data System (ADS)

    Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.

    2011-12-01

    The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.

  18. Adaptivity demonstration of inflatable rigidized integrated structures (IRIS)

    NASA Astrophysics Data System (ADS)

    Natori, M. C.; Higuchi, Ken; Sekine, Koji; Okazaki, Kakuma

    1995-10-01

    An inflatable rigidized integrated structure (IRIS), which is composed of membrane elements and cable networks, and whose structural accuracy is decided by mainly cable networks, has various design adaptivity, since it is a high performance deployable structure for future space applications. In order to keep some stiffness after deployment, materials of membrane are assumed to be rigidized in space, and sometimes the cable network is also rigidized. The concept can cover various structural elements and structure systems. The accuracy analysis of reflector surface constrained by inside hard points and the manufacturing of a simple reflector model is introduced. Test results of rigidized cable columns to show many variations of IRIS to be feasible are also reported.

  19. Discrete-continuous variable structural synthesis using dual methods

    NASA Technical Reports Server (NTRS)

    Schmit, L. A.; Fleury, C.

    1980-01-01

    Approximation concepts and dual methods are extended to solve structural synthesis problems involving a mix of discrete and continuous sizing type of design variables. Pure discrete and pure continuous variable problems can be handled as special cases. The basic mathematical programming statement of the structural synthesis problem is converted into a sequence of explicit approximate primal problems of separable form. These problems are solved by constructing continuous explicit dual functions, which are maximized subject to simple nonnegativity constraints on the dual variables. A newly devised gradient projection type of algorithm called DUAL 1, which includes special features for handling dual function gradient discontinuities that arise from the discrete primal variables, is used to find the solution of each dual problem. Computational implementation is accomplished by incorporating the DUAL 1 algorithm into the ACCESS 3 program as a new optimizer option. The power of the method set forth is demonstrated by presenting numerical results for several example problems, including a pure discrete variable treatment of a metallic swept wing and a mixed discrete-continuous variable solution for a thin delta wing with fiber composite skins.

  20. Segmentation of branching vascular structures using adaptive subdivision surface fitting

    NASA Astrophysics Data System (ADS)

    Kitslaar, Pieter H.; van't Klooster, Ronald; Staring, Marius; Lelieveldt, Boudewijn P. F.; van der Geest, Rob J.

    2015-03-01

    This paper describes a novel method for segmentation and modeling of branching vessel structures in medical images using adaptive subdivision surfaces fitting. The method starts with a rough initial skeleton model of the vessel structure. A coarse triangular control mesh consisting of hexagonal rings and dedicated bifurcation elements is constructed from this skeleton. Special attention is paid to ensure a topological sound control mesh is created around the bifurcation areas. Then, a smooth tubular surface is obtained from this coarse mesh using a standard subdivision scheme. This subdivision surface is iteratively fitted to the image. During the fitting, the target update locations of the subdivision surface are obtained using a scanline search along the surface normals, finding the maximum gradient magnitude (of the imaging data). In addition to this surface fitting framework, we propose an adaptive mesh refinement scheme. In this step the coarse control mesh topology is updated based on the current segmentation result, enabling adaptation to varying vessel lumen diameters. This enhances the robustness and flexibility of the method and reduces the amount of prior knowledge needed to create the initial skeletal model. The method was applied to publicly available CTA data from the Carotid Bifurcation Algorithm Evaluation Framework resulting in an average dice index of 89.2% with the ground truth. Application of the method to the complex vascular structure of a coronary artery tree in CTA and to MRI images were performed to show the versatility and flexibility of the proposed framework.

  1. Bayesian analysis of structural equation models with dichotomous variables.

    PubMed

    Lee, Sik-Yum; Song, Xin-Yuan

    2003-10-15

    Structural equation modelling has been used extensively in the behavioural and social sciences for studying interrelationships among manifest and latent variables. Recently, its uses have been well recognized in medical research. This paper introduces a Bayesian approach to analysing general structural equation models with dichotomous variables. In the posterior analysis, the observed dichotomous data are augmented with the hypothetical missing values, which involve the latent variables in the model and the unobserved continuous measurements underlying the dichotomous data. An algorithm based on the Gibbs sampler is developed for drawing the parameters values and the hypothetical missing values from the joint posterior distributions. Useful statistics, such as the Bayesian estimates and their standard error estimates, and the highest posterior density intervals, can be obtained from the simulated observations. A posterior predictive p-value is used to test the goodness-of-fit of the posited model. The methodology is applied to a study of hypertensive patient non-adherence to medication.

  2. Load-Adapted Design of Generative Manufactured Lattice Structures

    NASA Astrophysics Data System (ADS)

    Reinhart, Gunther; Teufelhart, Stefan

    Additive layer manufacturing offers many opportunities for the production of lightweight components, because of the high geometrical freedom that can be realized in comparison to conventional manufacturing processes. This potential gets demonstrated at the example of a bending beam. Therefore, a topology optimization is performed as well as the use of periodically arranged lattice structures. The latter ones show the constraint, that shear forces in the struts reduce the stiffness of the lattice. To avoid this, the structure has to be adapted to the flux of force. This thesis is supported by studies on a torqueloaded shaft.

  3. Variable-structure control of spacecraft attitude maneuvers

    NASA Technical Reports Server (NTRS)

    Dwyer, Thomas A. W., III; Sira-Ramirez, Hebertt

    1988-01-01

    A variable-structure control approach is presented for multiaxial spacecraft attitude maneuvers. Nonlinear sliding surfaces are proposed that result in asymptotically stable, ideal linear decoupled sliding motions of Cayley-Rodrigues attitude parameters, as well as of angular velocities. The resulting control laws are interpreted as more easily implemented and more robust versions of those previously obtained by feedback linearization.

  4. Variable structure controller design for spacecraft nutation damping

    NASA Technical Reports Server (NTRS)

    Sira-Ramirez, Hebertt; Dwyer, Thomas A. W., III

    1987-01-01

    Variable structure systems theory is used to design an automatic controller for active nutation damping in momentum biased stabilized spacecraft. Robust feedback stabilization of roll and yaw angular dynamics is achieved with prescribed qualitative characteristics which are totally independent of the spacecraft defining parameters.

  5. Individual Differences and Instructional Variables in the Acquisition of Structure.

    ERIC Educational Resources Information Center

    Wilson, Margaret Patricia

    The effects of instructional variables and individual differences upon structural learning tasks were studied. Eighty college students were given pretasks to test mathematical problem solving and paired-associate (PA) learning skills. Each subject was then given two PA learning tasks presented in a study-test format. Kinship terms served as…

  6. Robust Structural Equation Modeling with Missing Data and Auxiliary Variables

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Zhang, Zhiyong

    2012-01-01

    The paper develops a two-stage robust procedure for structural equation modeling (SEM) and an R package "rsem" to facilitate the use of the procedure by applied researchers. In the first stage, M-estimates of the saturated mean vector and covariance matrix of all variables are obtained. Those corresponding to the substantive variables…

  7. Experimental studies of adaptive structures for precision performance

    NASA Technical Reports Server (NTRS)

    Chen, G.-S.; Lurie, B. J.; Wada, B. K.

    1989-01-01

    An experimental study was made of the adaptive structure concept. Experimental data were obtained for a three-longeron, thirteen-bay truss-type test structure. This test structure can be softly suspended as well as rigidly clamped at the central bay. The load-carrying active member consists of a stack of concentric piezoelectric wafers, an eddy current displacement sensor, and a strain gage force sensor. A bridge (or compound) feedback technique developed in communication engineering is applied to the problem of active damping augmentation in adaptive structures. Using collocated force and velocity feedback around the active member, a desired output mechanical impedance can be implemented to maximize energy absorption by the active members. In addition, large gains can be implemented to linearize the active member's nonlinear behavior. Good agreements with linear finite element analysis was found for both static and dynamic structural responses. An 11 percent damping in the first bending mode was demonstrated in the closed-loop damping experiment.

  8. Passively Adaptive Inflatable Structure for the Shooting Star Experiment

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L..

    1998-01-01

    An inflatable structural system is described for the Shooting Star Experiment that is a technology demonstrator flight for solar thermal propulsion. The inflatable structure is a pressurized assembly used in orbit to support a fresnel lens for focusing sunlight into a thermal storage engine. When the engine temperature reaches a preset level, the propellant is injected into the storage engine, absorbs heat from a heat exchanger, and is expanded through the nozzle to produce thrust. The inflatable structure is an adaptive system in that a regulator and relief valve are utilized to maintain pressure within design limits during the full range of orbital conditions. Further, the polyimide film material used for construction of the inflatable is highly nonlinear, with modulus varying as a function of frequency, temperature, and level of excitation. A series of tests is described for characterizing the structure in response to various operating conditions.

  9. Adaptive free energy sampling in multidimensional collective variable space using boxed molecular dynamics.

    PubMed

    O'Connor, Mike; Paci, Emanuele; McIntosh-Smith, Simon; Glowacki, David R

    2016-12-22

    The past decade has seen the development of a new class of rare event methods in which molecular configuration space is divided into a set of boundaries/interfaces, and then short trajectories are run between boundaries. For all these methods, an important concern is how to generate boundaries. In this paper, we outline an algorithm for adaptively generating boundaries along a free energy surface in multi-dimensional collective variable (CV) space, building on the boxed molecular dynamics (BXD) rare event algorithm. BXD is a simple technique for accelerating the simulation of rare events and free energy sampling which has proven useful for calculating kinetics and free energy profiles in reactive and non-reactive molecular dynamics (MD) simulations across a range of systems, in both NVT and NVE ensembles. Two key developments outlined in this paper make it possible to automate BXD, and to adaptively map free energy and kinetics in complex systems. First, we have generalized BXD to multidimensional CV space. Using strategies from rigid-body dynamics, we have derived a simple and general velocity-reflection procedure that conserves energy for arbitrary collective variable definitions in multiple dimensions, and show that it is straightforward to apply BXD to sampling in multidimensional CV space so long as the Cartesian gradients ∇CV are available. Second, we have modified BXD to undertake on-the-fly statistical analysis during a trajectory, harnessing the information content latent in the dynamics to automatically determine boundary locations. Such automation not only makes BXD considerably easier to use; it also guarantees optimal boundaries, speeding up convergence. We have tested the multidimensional adaptive BXD procedure by calculating the potential of mean force for a chemical reaction recently investigated using both experimental and computational approaches - i.e., F + CD3CN → DF + D2CN in both the gas phase and a strongly coupled explicit CD3CN solvent

  10. Shoulder pain and time dependent structure in wheelchair propulsion variability.

    PubMed

    Jayaraman, Chandrasekaran; Moon, Yaejin; Sosnoff, Jacob J

    2016-07-01

    Manual wheelchair propulsion places considerable repetitive mechanical strain on the upper limbs leading to shoulder injury and pain. While recent research indicates that the amount of variability in wheelchair propulsion and shoulder pain may be related. There has been minimal inquiry into the fluctuation over time (i.e. time-dependent structure) in wheelchair propulsion variability. Consequently the purpose of this investigation was to examine if the time-dependent structure in the wheelchair propulsion parameters are related to shoulder pain. 27 experienced wheelchair users manually propelled their own wheelchair fitted with a SMARTWheel on a roller at 1.1m/s for 3min. Time-dependent structure of cycle-to-cycle fluctuations in contact angle and inter push time interval was quantified using sample entropy (SampEn) and compared between the groups with/without shoulder pain using non-parametric statistics. Overall findings were, (1) variability observed in contact angle fluctuations during manual wheelchair propulsion is structured (Z=3.15;p<0.05), (2) individuals with shoulder pain exhibited higher SampEn magnitude for contact angle during wheelchair propulsion than those without pain (χ(2)(1)=6.12;p<0.05); and (3) SampEn of contact angle correlated significantly with self-reported shoulder pain (rs (WUSPI) =0.41;rs (VAS)=0.56;p<0.05). It was concluded that the time-dependent structure in wheelchair propulsion may provide novel information for tracking and monitoring shoulder pain.

  11. Variable Geometry Aircraft Pylon Structure and Related Operation Techniques

    NASA Technical Reports Server (NTRS)

    Shah, Parthiv N. (Inventor)

    2014-01-01

    An aircraft control structure can be utilized for purposes of drag management, noise control, or aircraft flight maneuvering. The control structure includes a high pressure engine nozzle, such as a bypass nozzle or a core nozzle of a turbofan engine. The nozzle exhausts a high pressure fluid stream, which can be swirled using a deployable swirl vane architecture. The control structure also includes a variable geometry pylon configured to be coupled between the nozzle and the aircraft. The variable geometry pylon has a moveable pylon section that can be deployed into a deflected state to maintain or alter a swirling fluid stream (when the swirl vane architecture is deployed) for drag management purposes, or to assist in the performance of aircraft flight maneuvers.

  12. Structural and Trajectory Control of Variable Geometry Planetary Entry Systems

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco; Kwok, Kawai; Pellegrino, Sergio

    2009-01-01

    The results presented in this paper apply to a generic vehicle entering a planetary atmosphere which makes use of a variable geometry change to modulate the heat, drag, and acceleration loads. Two structural concepts for implementing the cone angle variation, namely a segmented shell and a corrugated shell, are presented. A structural analysis of these proposed structural configuration shows that the stress levels are tolerable during entry. The analytic expressions of the longitudinal aerodynamic coefficients are also derived, and guidance laws that track reference heat flux, drag, and aerodynamic acceleration loads are also proposed. These guidance laws have been tested in an integrated simulation environment, and the results indicate that use of variable geometry is feasible to track specific profiles of dynamic load conditions during reentry.

  13. Structural and Control Concepts for Variable Geometry Planetary Entry Systems

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco; Boussalis, Dhemetrios; Davis, Gregory; Kwok, Kawai; Pellegrino, Sergio

    2009-01-01

    The results presented in this paper apply to a generic vehicle entering a planetary atmosphere which makes use of a variable geometry change to modulate the heat, drag, and acceleration loads. Two structural concepts for implementing the cone angle variation, namely a segmented shell and a corrugated shell, are presented. A structural analysis of these proposed structural configuration shows that the stress levels are tolerable during entry. The analytic expressions of the longitudinal aerodynamic coefficients are also derived, and guidance laws that track reference heat flux, drag, and aerodynamic acceleration loads are also proposed. These guidance laws have been tested in an integrated simulation environment, and the results indicate that use of variable geometry is feasible to track specific profiles of dynamic load conditions during reentry.

  14. Interarea Power System Oscillations Damping via AI-based Referential Integrity Variable-Structure Control

    NASA Astrophysics Data System (ADS)

    Ebrahim, M. A.; Ramadan, H. S.

    2016-10-01

    The design of power system stabilizer (PSS) is load-dependent and needs continuous adjustment at each operating condition. This paper aims at introducing a robust non-fragile PSS for interconnected power systems. The proposed controller has the capability of adaptively tuning online its rule-base through a variable-structure direct adaptive control algorithm in order to rigorously attain the desired objectives. The PSS controller acts on damping the electromechanical modes of oscillations not only through a wide range of operating conditions but also in presence of different disturbances. Using MATLABTM-Simulink, simulation results significantly verify that the proposed controller provides favorable performance and efficiently contributes towards enhancing the system dynamic behavior when applied to the four machines two-area power system that mimics the typical system behavior in actual operation. The interaction between the variable-structure adaptive fuzzy-based power system stabilizer (VS-AFPSS) and the existed typical ones inside the interconnected power systems has been explicitly discussed. Compared to other conventional controllers, VS-AFPSS enables better damping characteristics to both local and inter-area oscillation modes considering different operating conditions and sever disturbances.

  15. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  16. Human Vulnerability to Climate Variability in the Sahel: Farmers' Adaptation Strategies in Northern Burkina Faso

    NASA Astrophysics Data System (ADS)

    Barbier, Bruno; Yacouba, Hamma; Karambiri, Harouna; Zoromé, Malick; Somé, Blaise

    2009-05-01

    In this study, the authors investigate farmers’ vulnerability to climate variability and evaluate local adoption of technology and farmers’ perceptions of adaptation strategies to rainfall variability and policies. A survey was conducted in a community in northern Burkina Faso following the crop failure of 2004. In 2006, following a better harvest, another survey was conducted to compare farmers’ actions and reactions during two contrasted rainy seasons. The results confirm that farmers from this community have substantially changed their practices during the last few decades. They have adopted a wide range of techniques that are intended to simultaneously increase crop yield and reduce yield variability. Micro water harvesting (Zaï) techniques have been widely adopted (41%), and a majority of fields have been improved with stone lines (60%). Hay (48%) and sorghum residues are increasingly stored to feed animals during the dry season, making bull and sheep fattening now a common practice. Dry season vegetable production also involves a majority of the population (60%). According to farmers, most of the new techniques have been adopted because of growing land scarcity and new market opportunities, rather than because of climate variability. Population pressure has reached a critical threshold, while land scarcity, declining soil fertility and reduced animal mobility have pushed farmers to intensify agricultural production. These techniques reduce farmers’ dependency on rainfall but are still insufficient to reduce poverty and vulnerability. Thirty-nine percent of the population remains vulnerable after a good rainy season. Despite farmers’ desire to remain in their own communities, migrations are likely to remain a major source of regular income and form of recourse in the event of droughts.

  17. Conceptualising computerized adaptive testing for measurement of latent variables associated with physical objects

    NASA Astrophysics Data System (ADS)

    Camargo, F. R.; Henson, B.

    2015-02-01

    The notion of that more or less of a physical feature affects in different degrees the users' impression with regard to an underlying attribute of a product has frequently been applied in affective engineering. However, those attributes exist only as a premise that cannot directly be measured and, therefore, inferences based on their assessment are error-prone. To establish and improve measurement of latent attributes it is presented in this paper the concept of a stochastic framework using the Rasch model for a wide range of independent variables referred to as an item bank. Based on an item bank, computerized adaptive testing (CAT) can be developed. A CAT system can converge into a sequence of items bracketing to convey information at a user's particular endorsement level. It is through item banking and CAT that the financial benefits of using the Rasch model in affective engineering can be realised.

  18. Adaptation of rainfed agriculture to climatic variability in the Mixteca Alta Region of Oaxaca, Mexico

    NASA Astrophysics Data System (ADS)

    Rogé, P.; Friedman, A. R.; Astier, M.; Altieri, M.

    2015-12-01

    The traditional management systems of the Mixteca Alta Region of Oaxaca, Mexico offer historical lessons about resilience to climatic variability. We interviewed small farmers to inquire about the dynamics of abandonment and persistence of a traditional management systems. We interpret farmers' narratives from a perspective of general agroecological resilience. In addition, we facilitated workshops in small farmers described their adaptation to past climate challenges and identified 14 indicators that they subsequently used to evaluate the condition of their agroecosystems. The most recent years presented increasingly extreme climatic and socioeconomic hardships: increased temperatures, delayed rainy seasons, reduced capacity of soils to retain soil moisture, changing cultural norms, and reduced rural labor. Farmers reported that their cropping systems were changing for multiple reasons: more drought, later rainfall onset, decreased rural labor, and introduced labor-saving technologies. Examination of climate data found that farmers' climate narratives were largely consistent with the observational record. There have been increases in temperature and rainfall intensity, and an increase in rainfall seasonality that may be perceived as later rainfall onset. Farmers ranked landscape-scale indicators as more marginal than farmer management or soil quality indicators. From this analysis, farmers proposed strategies to improve the ability of their agroecosystems to cope with climatic variability. Notably, they recognized that social organizing and education are required for landscape-level indicators to be improved. Transformative change is required to develop novel cropping systems and complementary activities to agriculture that will allow for farming to be sustained in the face of these challenges. Climate change adaptation by small farmers involves much more than just a set of farming practices, but also community action to tackle collective problems.

  19. Acute systematic and variable postural adaptations induced by an orthopaedic shoe lift in control subjects.

    PubMed

    Beaudoin, L; Zabjek, K F; Leroux, M A; Coillard, C; Rivard, C H

    1999-01-01

    A small leg length inequality, either true or functional, can be implicated in the pathogenesis of numerous spinal disorders. The correction of a leg length inequality with the goal of treating a spinal pathology is often achieved with the use of a shoe lift. Little research has focused on the impact of this correction on the three-dimensional (3D) postural organisation. The goal of this study is to quantify in control subjects the 3D postural changes to the pelvis, trunk, scapular belt and head, induced by a shoe lift. The postural geometry of 20 female subjects (X = 22, sigma = 1.2) was evaluated using a motion analysis system for three randomised conditions: control, and right and left shoe lift. Acute postural adaptations were noted for all subjects, principally manifested through the tilt of the pelvis, asymmetric version of the left and right iliac bones, and a lateral shift of the pelvis and scapular belt. The difference in the version of the right and left iliac bones was positively associated with the pelvic tilt. Postural adaptations were noted to vary between subjects for rotation and postero-anterior shift of the pelvis and scapular belt. No notable differences between conditions were noted in the estimation of kyphosis and lordosis. The observed systematic and variable postural adaptations noted in the presence of a shoe lift reflects the unique constraints of the musculoskeletal system. This suggests that the global impact of a shoe lift on a patient's posture should also be considered during treatment. This study provides a basis for comparison of future research involving pathological populations.

  20. Development of Variable Camber Continuous Trailing Edge Flap for Performance Adaptive Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James

    2015-01-01

    This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.

  1. Application of an automatic adaptive filter for Heart Rate Variability analysis.

    PubMed

    Dos Santos, Laurita; Barroso, Joaquim J; Macau, Elbert E N; de Godoy, Moacir F

    2013-12-01

    The presence of artifacts and noise effects in temporal series can seriously hinder the analysis of Heart Rate Variability (HRV). The tachograms should be carefully edited to avoid erroneous interpretations. The physician should carefully analyze the tachogram in order to detect points that might be associated with unlikely biophysical behavior and manually eliminate them from the data series. However, this is a time-consuming procedure. To facilitate the pre-analysis of the tachogram, this study uses a method of data filtering based on an adaptive filter which is quickly able to analyze a large amount of data. The method was applied to 229 time series from a database of patients with different clinical conditions: premature newborns, full-term newborns, healthy young adults, adults submitted to a very-low-calorie diet, and adults under preoperative evaluation for coronary artery bypass grafting. This proposed method is compared to the demanding conventional method, wherein the corrections of occasional ectopic beats and artifacts are usually manually executed by a specialist. To confirm the reliability of the results obtained, correlation coefficients were calculated, using both automatic and manual methods of ltering for each HRV index selected. A high correlation between the results was found, with highly significant p values, for all cases, except for some parameters analyzed in the premature newborns group, an issue that is thoroughly discussed. The authors concluded that the proposed adaptive filtering method helps to efficiently handle the task of editing temporal series for HRV analysis.

  2. Wind speed variability and adaptation strategies in coastal areas of the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Griffin, Bradford

    Overall, previous wind speed studies in the Pacific Northwest (PNW) present conflicting results for wind speed trends (both increasing and decreasing) in relation to climate drivers. This study fills a gap in the understanding of PNW wind behaviour by: determining if relationships exist between wind speed distributions, ocean/atmospheric climate indices, and monitoring station-specific attributes; assessing the robustness of relationships for forecasting wind speeds within the study area; and presenting adaptation strategies to wind damage. Analyzing the quantiles of the strongly skewed (non-normal) wind speed distributions reveals different behaviours for average and extreme wind speeds and significantly stronger winds at coastal locations compared with sites further inland. Coast locations appear to follow a nine-year cyclic pattern, while mainland sites have a downward wind speed trend. This finding has important implications for wind research and infrastructure or ecosystem planning in areas such as wind energy feasibility studies and timing management activities. Keywords: Wind speed; Pacific Northwest; Quantiles; Linear mixed-effects model; Variability; Adaptation; Climate change.

  3. Rice Root Architectural Plasticity Traits and Genetic Regions for Adaptability to Variable Cultivation and Stress Conditions.

    PubMed

    Sandhu, Nitika; Raman, K Anitha; Torres, Rolando O; Audebert, Alain; Dardou, Audrey; Kumar, Arvind; Henry, Amelia

    2016-08-01

    Future rice (Oryza sativa) crops will likely experience a range of growth conditions, and root architectural plasticity will be an important characteristic to confer adaptability across variable environments. In this study, the relationship between root architectural plasticity and adaptability (i.e. yield stability) was evaluated in two traditional × improved rice populations (Aus 276 × MTU1010 and Kali Aus × MTU1010). Forty contrasting genotypes were grown in direct-seeded upland and transplanted lowland conditions with drought and drought + rewatered stress treatments in lysimeter and field studies and a low-phosphorus stress treatment in a Rhizoscope study. Relationships among root architectural plasticity for root dry weight, root length density, and percentage lateral roots with yield stability were identified. Selected genotypes that showed high yield stability also showed a high degree of root plasticity in response to both drought and low phosphorus. The two populations varied in the soil depth effect on root architectural plasticity traits, none of which resulted in reduced grain yield. Root architectural plasticity traits were related to 13 (Aus 276 population) and 21 (Kali Aus population) genetic loci, which were contributed by both the traditional donor parents and MTU1010. Three genomic loci were identified as hot spots with multiple root architectural plasticity traits in both populations, and one locus for both root architectural plasticity and grain yield was detected. These results suggest an important role of root architectural plasticity across future rice crop conditions and provide a starting point for marker-assisted selection for plasticity.

  4. Finite element simulation of adaptive aerospace structures with SMA actuators

    NASA Astrophysics Data System (ADS)

    Frautschi, Jason; Seelecke, Stefan

    2003-07-01

    The particular demands of aerospace engineering have spawned many of the developments in the field of adaptive structures. Shape memory alloys are particularly attractive as actuators in these types of structures due to their large strains, high specific work output and potential for structural integration. However, the requisite extensive physical testing has slowed development of potential applications and highlighted the need for a simulation tool for feasibility studies. In this paper we present an implementation of an extended version of the M'ller-Achenbach SMA model into a commercial finite element code suitable for such studies. Interaction between the SMA model and the solution algorithm for the global FE equations is thoroughly investigated with respect to the effect of tolerances and time step size on convergence, computational cost and accuracy. Finally, a simulation of a SMA-actuated flexible trailing edge of an aircraft wing modeled with beam elements is presented.

  5. Residual vibration suppression of flexible arms using ER adaptive structures

    NASA Astrophysics Data System (ADS)

    Wei, Kexiang; Meng, Guang; Tang, Huanqing; Liu, Yingchun

    2007-07-01

    In the past decades, there have been a number of research activities to control unwanted vibration of flexible robot arms. The electrorheological (ER) adaptive structures, which behave as viscoelastic damping structures with controllable shear modulus, are used to suppress the residual vibrations of the rotating flexible arm in this study. The flexible arm is designed as an ER sandwich structures, in which ER fluids is sandwiched between two elastic surface layers. Experimental tests are conducted. The vibration response performances of the beam subjected to different electric field intensity and motion conditions are demonstrated and evaluated. The experimental results obtained indicate that significant vibration attenuation is achieved at different operating conditions by applying an electric field to the rotating flexible arm.

  6. Narcissistic Personality Inventory: structure of the adapted Dutch version.

    PubMed

    Barelds, Dick P H; Dijkstra, Pieternel

    2010-04-01

    The present study examined the structure of a Dutch adaptation of the 40-item Narcissistic Personality Inventory (Raskin & Terry, 1988) in a community sample (n = 460) and a student sample (n = 515). Altering the response format of the NPI to a Likert-scale had no apparent effect on the responses. Confirmatory factor analyses supported neither the four-factor structure reported by Emmons (1984), nor the seven-factor structure reported by Raskin and Terry (1988). Instead, exploratory factor analyses supported either a single-factor solution (general narcissism), or a two-factor solution (Authority/Power and Self-Admiration). The validity of the NPI was supported by its relations with sex, age, personality, self-esteem, shame, guilt and social desirability.

  7. Adaptivity and smart algorithms for fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley

    1990-01-01

    This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.

  8. Rapid Structured Volume Grid Smoothing and Adaption Technique

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2006-01-01

    A rapid, structured volume grid smoothing and adaption technique, based on signal processing methods, was developed and applied to the Shuttle Orbiter at hypervelocity flight conditions in support of the Columbia Accident Investigation. Because of the fast pace of the investigation, computational aerothermodynamicists, applying hypersonic viscous flow solving computational fluid dynamic (CFD) codes, refined and enhanced a grid for an undamaged baseline vehicle to assess a variety of damage scenarios. Of the many methods available to modify a structured grid, most are time-consuming and require significant user interaction. By casting the grid data into different coordinate systems, specifically two computational coordinates with arclength as the third coordinate, signal processing methods are used for filtering the data [Taubin, CG v/29 1995]. Using a reverse transformation, the processed data are used to smooth the Cartesian coordinates of the structured grids. By coupling the signal processing method with existing grid operations within the Volume Grid Manipulator tool, problems related to grid smoothing are solved efficiently and with minimal user interaction. Examples of these smoothing operations are illustrated for reductions in grid stretching and volume grid adaptation. In each of these examples, other techniques existed at the time of the Columbia accident, but the incorporation of signal processing techniques reduced the time to perform the corrections by nearly 60%. This reduction in time to perform the corrections therefore enabled the assessment of approximately twice the number of damage scenarios than previously possible during the allocated investigation time.

  9. Rapid Structured Volume Grid Smoothing and Adaption Technique

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2004-01-01

    A rapid, structured volume grid smoothing and adaption technique, based on signal processing methods, was developed and applied to the Shuttle Orbiter at hypervelocity flight conditions in support of the Columbia Accident Investigation. Because of the fast pace of the investigation, computational aerothermodynamicists, applying hypersonic viscous flow solving computational fluid dynamic (CFD) codes, refined and enhanced a grid for an undamaged baseline vehicle to assess a variety of damage scenarios. Of the many methods available to modify a structured grid, most are time-consuming and require significant user interaction. By casting the grid data into different coordinate systems, specifically two computational coordinates with arclength as the third coordinate, signal processing methods are used for filtering the data [Taubin, CG v/29 1995]. Using a reverse transformation, the processed data are used to smooth the Cartesian coordinates of the structured grids. By coupling the signal processing method with existing grid operations within the Volume Grid Manipulator tool, problems related to grid smoothing are solved efficiently and with minimal user interaction. Examples of these smoothing operations are illustrated for reduction in grid stretching and volume grid adaptation. In each of these examples, other techniques existed at the time of the Columbia accident, but the incorporation of signal processing techniques reduced the time to perform the corrections by nearly 60%. This reduction in time to perform the corrections therefore enabled the assessment of approximately twice the number of damage scenarios than previously possible during the allocated investigation time.

  10. The Electronically Steerable Flash Lidar Adaptability for Characterizing Forest Structure

    NASA Astrophysics Data System (ADS)

    Ramond, T.; Weimer, C. S.; Lefsky, M. A.; Ruppert, L.; Donley, B.; Delker, T.; Applegate, J.

    2010-12-01

    The Electronically Steerable Flash Lidar (ESFL) instrument developed at Ball Aerospace is one that provides unprecedented flexibility to adapt to the scene of the moment. For probing the structure of forests, ESFL provides several features that can be changed shot-to-shot, enabling real time adaptability. The number of beams transmitted to the scene can vary. The spacing of the beams can be changed from a contiguous configuration suited to probing smaller scale forest structure to a sparse configuration to sample larger scale variations over the maximum possible swath. Variation of the oscillator rate can provide multiple range sampling resolutions. Data will be presented illustrating these capabilities during flight from a Twin Otter aircraft. The poster will discuss how this instrument could be used to design studies intended to quantify exactly what is the minimum sampling structure needed to measure a given scientific parameter with the desired accuracy. Such a result could allow for maximum efficiency of precious observation time in the world of remote sensing from airplane or from space.

  11. Controller-structure interaction compensation using adaptive residual mode filters

    NASA Technical Reports Server (NTRS)

    Davidson, Roger A.; Balas, Mark J.

    1990-01-01

    It is not feasible to construct controllers for large space structures or large scale systems (LSS's) which are of the same order as the structures. The complexity of the dynamics of these systems is such that full knowledge of its behavior cannot by processed by today's controller design methods. The controller for system performance of such a system is therefore based on a much smaller reduced-order model (ROM). Unfortunately, the interaction between the LSS and the ROM-based controller can produce instabilities in the closed-loop system due to the unmodeled dynamics of the LSS. Residual mode filters (RMF's) allow the systematic removal of these instabilities in a matter which does not require a redesign of the controller. In addition RMF's have a strong theoretical basis. As simple first- or second-order filters, the RMF CSI compensation technique is at once modular, simple and highly effective. RMF compensation requires knowledge of the dynamics of the system modes which resulted in the previous closed-loop instabilities (the residual modes), but this information is sometimes known imperfectly. An adaptive, self-tuning RMF design, which compensates for uncertainty in the frequency of the residual mode, has been simulated using continuous-time and discrete-time models of a flexible robot manipulator. Work has also been completed on the discrete-time experimental implementation on the Martin Marietta flexible robot manipulator experiment. This paper will present the results of that work on adaptive, self-tuning RMF's, and will clearly show the advantage of this adaptive compensation technique for controller-structure interaction (CSI) instabilities in actively-controlled LSS's.

  12. Climate change and climate variability: personal motivation for adaptation and mitigation

    PubMed Central

    2011-01-01

    Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. Methods In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Results Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4 - 4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1 - 3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2 - 3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4 - 3.1) or plan, OR = 2.2 (95% CI: 1.5 -3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1 - 2.4) or an emergency plan OR = 1.5 (95%CI: 1.0 - 2.2). Conclusions Motivation for

  13. An Adaptive Mesh Algorithm: Mesh Structure and Generation

    SciTech Connect

    Scannapieco, Anthony J.

    2016-06-21

    The purpose of Adaptive Mesh Refinement is to minimize spatial errors over the computational space not to minimize the number of computational elements. The additional result of the technique is that it may reduce the number of computational elements needed to retain a given level of spatial accuracy. Adaptive mesh refinement is a computational technique used to dynamically select, over a region of space, a set of computational elements designed to minimize spatial error in the computational model of a physical process. The fundamental idea is to increase the mesh resolution in regions where the physical variables are represented by a broad spectrum of modes in k-space, hence increasing the effective global spectral coverage of those physical variables. In addition, the selection of the spatially distributed elements is done dynamically by cyclically adjusting the mesh to follow the spectral evolution of the system. Over the years three types of AMR schemes have evolved; block, patch and locally refined AMR. In block and patch AMR logical blocks of various grid sizes are overlaid to span the physical space of interest, whereas in locally refined AMR no logical blocks are employed but locally nested mesh levels are used to span the physical space. The distinction between block and patch AMR is that in block AMR the original blocks refine and coarsen entirely in time, whereas in patch AMR the patches change location and zone size with time. The type of AMR described herein is a locally refi ned AMR. In the algorithm described, at any point in physical space only one zone exists at whatever level of mesh that is appropriate for that physical location. The dynamic creation of a locally refi ned computational mesh is made practical by a judicious selection of mesh rules. With these rules the mesh is evolved via a mesh potential designed to concentrate the nest mesh in regions where the physics is modally dense, and coarsen zones in regions where the physics is modally

  14. Adaptive and learning control of large space structures

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Thau, F. J.

    1980-01-01

    The paper describes the adaptive learning system for space operations which assumes that structural testing can be conducted during deployment and assembly. Simulation results using the solar electric propulsion array and a novel remote sensor are presented; they involve faster scan television coverage of the motions of the array from four cameras on the corners of the Space Shuttle payload bay. The description of the simulation, the filtering algorithm for processing the TV data, the parameter extraction algorithm, and the simulation results are presented.

  15. Passive radar tracking of a maneuvering target using variable structure multiple-model algorithm

    NASA Astrophysics Data System (ADS)

    Mao, Yunxiang; Zhou, Xiaohui; Zhang, Jin

    2013-03-01

    The variable structure multiple-model (VSMM) algorithm to passive radar maneuvering target tracking problem is considered. A new VSMM design, expected mode augmentation based on likely model set (LMS-EMA) algorithm is presented. The LMS-EMA algorithm adaptively determines the fixed grid model set using likely model set (LMS) algorithm, and generates the expected mode based on this set. Then, the union of fixed grid model set and expected model is used to perform multiple-model estimation. The performance of the LMS-EMA algorithm is evaluated via simulation of a highly maneuvering target tracking problem.

  16. Novel pathogenetic mechanisms and structural adaptations in ischemic mitral regurgitation.

    PubMed

    Silbiger, Jeffrey J

    2013-10-01

    Ischemic mitral regurgitation (MR) is a common complication of myocardial infarction thought to result from leaflet tethering caused by displacement of the papillary muscles that occurs as the left ventricle remodels. The author explores the possibility that left atrial remodeling may also play a role in the pathogenesis of ischemic MR, through a novel mechanism: atriogenic leaflet tethering. When ischemic MR is hemodynamically significant, the left ventricle compensates by dilating to preserve forward output using the Starling mechanism. Left ventricular dilatation, however, worsens MR by increasing the mitral valve regurgitant orifice, leading to a vicious cycle in which MR begets more MR. The author proposes that several structural adaptations play a role in reducing ischemic MR. In contrast to the compensatory effects of left ventricular enlargement, these may reduce, rather than increase, its severity. The suggested adaptations involve the mitral valve leaflets, the papillary muscles, the mitral annulus, and the left ventricular false tendons. This review describes the potential role each may play in reducing ischemic MR. Therapies that exploit these adaptations are also discussed.

  17. Rainfall Variability, Adaptation through Irrigation, and Sustainable Management of Water Resources in India

    NASA Astrophysics Data System (ADS)

    Fishman, R.

    2013-12-01

    Most studies of the impact of climate change on agriculture account for shifts in temperature and total seasonal (or monthly) precipitation. However, climate change is also projected to increase intra-seasonal precipitation variability in many parts of the world. To provide first estimates of the potential impact, I paired daily rainfall and rice yield data during the period 1970-2004, from across India, where about a fifth of the world's rice is produced, and yields have always been highly dependent on the erratic monsoon rainfall. Multivariate regression models revealed that the number of rainless days during the wet season has a statistically robust negative impact on rice yields that exceeds that of total seasonal rainfall. Moreover, a simulation of climate change impacts found that the negative impact of the projected increase in the number of rainless days will trump the positive impact of the projected increase in total precipitation, and reverse the net precipitation effect on rice production from positive (+3%) to negative (-10%). The results also indicate that higher irrigation coverage is correlated with reduced sensitivity to rainfall variability, suggesting the expansion of irrigation can effectively adapt agriculture to these climate change impacts. However, taking into account limitations on water resource availability in India, I calculate that under current irrigation practices, sustainable use of water can mitigate less than a tenth of the impact.

  18. A variable structure approach to robust control of VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Kramer, F.

    1982-01-01

    This paper examines the application of variable structure control theory to the design of a flight control system for the AV-8A Harrier in a hover mode. The objective in variable structure design is to confine the motion to a subspace of the total state space. The motion in this subspace is insensitive to system parameter variations and external disturbances that lie in the range space of the control. A switching type of control law results from the design procedure. The control system was designed to track a vector velocity command defined in the body frame. For comparison purposes, a proportional controller was designed using optimal linear regulator theory. Both control designs were first evaluated for transient response performance using a linearized model, then a nonlinear simulation study of a hovering approach to landing was conducted. Wind turbulence was modeled using a 1052 destroyer class air wake model.

  19. Single step optimization of manipulator maneuvers with variable structure control

    NASA Technical Reports Server (NTRS)

    Chen, N.; Dwyer, T. A. W., III

    1987-01-01

    One step ahead optimization has been recently proposed for spacecraft attitude maneuvers as well as for robot manipulator maneuvers. Such a technique yields a discrete time control algorithm implementable as a sequence of state-dependent, quadratic programming problems for acceleration optimization. Its sensitivity to model accuracy, for the required inversion of the system dynamics, is shown in this paper to be alleviated by a fast variable structure control correction, acting between the sampling intervals of the slow one step ahead discrete time acceleration command generation algorithm. The slow and fast looping concept chosen follows that recently proposed for optimal aiming strategies with variable structure control. Accelerations required by the VSC correction are reserved during the slow one step ahead command generation so that the ability to overshoot the sliding surface is guaranteed.

  20. Water management to cope with and adapt to climate variability and change.

    NASA Astrophysics Data System (ADS)

    Hamdy, A.; Trisorio-Liuzzi, G.

    2009-04-01

    In many parts of the world, variability in climatic conditions is already resulting in major impacts. These impacts are wide ranging and the link to water management problems is obvious and profound. The know-how and the available information undoubtedly indicate that climate change will lead to an intensification of the global hydrological cycle and can have major impacts on regional water resources, affecting both ground and surface water supply for sectorial water uses and, in particular, the irrigation field imposing notable negative effects on food security and poverty alleviation programs in most arid and semi-arid developing countries. At the United Nations Millennium Summit, in September 2000, world leaders adopted the Millennium Development Declaration. From this declaration, the IWRM was recognised as the key concept the water sector should be using for water related development and measures and, hence, for achieving the water related MDG's. However, the potential impacts of climate change and increasing climate variability are not sufficiently addressed in the IWRM plans. Indeed, only a very limited IWRM national plans have been prepared, coping with climate variability and changes. This is mainly due to the lack of operational instruments to deal with climate change and climate variability issues. This is particularly true in developing countries where the financial, human and ecological impacts are potentially greatest and where water resources may be already highly stressed, but the capacity to cope and adapt is weakest. Climate change has now brought realities including mainly rising temperatures and increasing frequency of floods and droughts that present new challenges to be addressed by the IWRM practice. There are already several regional and international initiatives underway that focus on various aspects of water resources management those to be linked with climate changes and vulnerability issues. This is the way where the water resources

  1. Development of a new adaptive ordinal approach to continuous-variable probabilistic optimization.

    SciTech Connect

    Romero, Vicente JosÔe; Chen, Chun-Hung (George Mason University, Fairfax, VA)

    2006-11-01

    A very general and robust approach to solving continuous-variable optimization problems involving uncertainty in the objective function is through the use of ordinal optimization. At each step in the optimization problem, improvement is based only on a relative ranking of the uncertainty effects on local design alternatives, rather than on precise quantification of the effects. One simply asks ''Is that alternative better or worse than this one?'' -not ''HOW MUCH better or worse is that alternative to this one?'' The answer to the latter question requires precise characterization of the uncertainty--with the corresponding sampling/integration expense for precise resolution. However, in this report we demonstrate correct decision-making in a continuous-variable probabilistic optimization problem despite extreme vagueness in the statistical characterization of the design options. We present a new adaptive ordinal method for probabilistic optimization in which the trade-off between computational expense and vagueness in the uncertainty characterization can be conveniently managed in various phases of the optimization problem to make cost-effective stepping decisions in the design space. Spatial correlation of uncertainty in the continuous-variable design space is exploited to dramatically increase method efficiency. Under many circumstances the method appears to have favorable robustness and cost-scaling properties relative to other probabilistic optimization methods, and uniquely has mechanisms for quantifying and controlling error likelihood in design-space stepping decisions. The method is asymptotically convergent to the true probabilistic optimum, so could be useful as a reference standard against which the efficiency and robustness of other methods can be compared--analogous to the role that Monte Carlo simulation plays in uncertainty propagation.

  2. Application of discrete-time variable structure control in the vibration reduction of a flexible structure

    NASA Astrophysics Data System (ADS)

    Wang, Der-An; Huang, Yii-Mei

    2003-03-01

    This paper studies the application of using the discrete-time variable structure control method to reduce the vibration of the flexible structure. The structure is subjected to arbitrary, unmeasurable disturbance forces. The concept of independent modal space control is adopted, and the system is studied by the discrete-time model. Here, discrete sensors and actuators are used. We choose the modal filters as the state estimator to obtain the modal co-ordinates and modal velocities for the modal space control. A discrete-time variable structure controller with a disturbance force observer is adopted due to its distinguished robustness property of insensitiveness to parameter uncertainties and external disturbances. The included disturbance force observer can observe the unknown disturbance modal forces, which are used in the discrete-time variable structure control law to cancel out the excitations. The upperbound limitations of the unknown disturbances in the variable structure control, therefore, are no longer needed. The switching surface, in the discrete-time variable structure control system, is designed in an optimal sense. That is, along the switching surface, the cost function of the states is minimized. The investigation of this research focuses on the optimal switching surface design and the control performances of the discrete-time variable structure controller. The performance of estimating the disturbance modal forces and the robustness property of the control law are also discussed.

  3. A structurally variable hinged tetrahedron framework from DNA origami.

    PubMed

    Smith, David M; Schüller, Verena; Forthmann, Carsten; Schreiber, Robert; Tinnefeld, Philip; Liedl, Tim

    2011-01-01

    Nanometer-sized polyhedral wire-frame objects hold a wide range of potential applications both as structural scaffolds as well as a basis for synthetic nanocontainers. The utilization of DNA as basic building blocks for such structures allows the exploitation of bottom-up self-assembly in order to achieve molecular programmability through the pairing of complementary bases. In this work, we report on a hollow but rigid tetrahedron framework of 75 nm strut length constructed with the DNA origami method. Flexible hinges at each of their four joints provide a means for structural variability of the object. Through the opening of gaps along the struts, four variants can be created as confirmed by both gel electrophoresis and direct imaging techniques. The intrinsic site addressability provided by this technique allows the unique targeted attachment of dye and/or linker molecules at any point on the structure's surface, which we prove through the superresolution fluorescence microscopy technique DNA PAINT.

  4. An adaptive identification and control scheme for large space structures

    NASA Technical Reports Server (NTRS)

    Carroll, J. V.

    1988-01-01

    A unified identification and control scheme capable of achieving space at form performance objectives under nominal or failure conditions is described. Preliminary results are also presented, showing that the methodology offers much promise for effective robust control of large space structures. The control method is a multivariable, adaptive, output predictive controller called Model Predictive Control (MPC). MPC uses a state space model and input reference trajectories of set or tracking points to adaptively generate optimum commands. For a fixed model, MPC processes commands with great efficiency, and is also highly robust. A key feature of MPC is its ability to control either nonminimum phase or open loop unstable systems. As an output controller, MPC does not explicitly require full state feedback, as do most multivariable (e.g., Linear Quadratic) methods. Its features are very useful in LSS operations, as they allow non-collocated actuators and sensors. The identification scheme is based on canonical variate analysis (CVA) of input and output data. The CVA technique is particularly suited for the measurement and identification of structural dynamic processes - that is, unsteady transient or dynamically interacting processes such as between aerodynamics and structural deformation - from short, noisy data. CVA is structured so that the identification can be done in real or near real time, using computationally stable algorithms. Modeling LSS dynamics in 1-g laboratories has always been a major impediment not only to understanding their behavior in orbit, but also to controlling it. In cases where the theoretical model is not confirmed, current methods provide few clues concerning additional dynamical relationships that are not included in the theoretical models. CVA needs no a priori model data, or structure; all statistically significant dynamical states are determined using natural, entropy-based methods. Heretofore, a major limitation in applying adaptive

  5. Multivariable feedback active structural acoustic control using adaptive piezoelectric sensoriactuators.

    PubMed

    Vipperman, J S; Clark, R L

    1999-01-01

    An experimental implementation of a multivariable feedback active structural acoustic control system is demonstrated on a piezostructure plate with pinned boundary conditions. Four adaptive piezoelectric sensoriactuators provide an array of truly colocated actuator/sensor pairs to be used as control transducers. Radiation filters are developed based on the self- and mutual-radiation efficiencies of the structure and are included into the performance cost of an H2 control law which minimizes total radiated sound power. In the cost function, control effort is balanced with reductions in radiated sound power. A similarity transform which produces generalized velocity states that are required as inputs to the radiation filters is presented. Up to 15 dB of attenuation in radiated sound power was observed at the resonant frequencies of the piezostructure.

  6. Algorithms and data structures for adaptive multigrid elliptic solvers

    NASA Technical Reports Server (NTRS)

    Vanrosendale, J.

    1983-01-01

    Adaptive refinement and the complicated data structures required to support it are discussed. These data structures must be carefully tuned, especially in three dimensions where the time and storage requirements of algorithms are crucial. Another major issue is grid generation. The options available seem to be curvilinear fitted grids, constructed on iterative graphics systems, and unfitted Cartesian grids, which can be constructed automatically. On several grounds, including storage requirements, the second option seems preferrable for the well behaved scalar elliptic problems considered here. A variety of techniques for treatment of boundary conditions on such grids are reviewed. A new approach, which may overcome some of the difficulties encountered with previous approaches, is also presented.

  7. Novel MRE/CFRP sandwich structures for adaptive vibration control

    NASA Astrophysics Data System (ADS)

    Kozlowska, J.; Boczkowska, A.; Czulak, A.; Przybyszewski, B.; Holeczek, K.; Stanik, R.; Gude, M.

    2016-03-01

    The aim of this work was the development of sandwich structures formed by embedding magnetorheological elastomers (MRE) between constrained layers of carbon fibre-reinforced plastic (CFRP) laminates. The MREs were obtained by mechanical stirring of a reactive mixture of substrates with carbonyl-iron particles, followed by orienting the particles into chains under an external magnetic field. Samples with particle volume fractions of 11.5% and 33% were examined. The CFRP/MRE sandwich structures were obtained by compressing MREs samples between two CFRP laminates composed. The used A.S.SET resin was in powder form and the curing process was carried out during pressing with MRE. The microstructure of the manufactured sandwich beams was inspected using SEM. Moreover, the rheological and damping properties of the examined materials with and without a magnetic field were experimentally investigated. In addition, the free vibration responses of the adaptive three-layered MR beams were studied at different fixed magnetic field levels. The free vibration tests revealed that an applied non-homogeneous magnetic field causes a shift in natural frequency values and a reduction in the vibration amplitudes of the CFRP/MRE adaptive beams. The reduction in vibration amplitude was attributed mainly to the stiffening effect of the MRE core and only a minor contribution was made by the enhanced damping capacity, which was evidenced by the variation in damping ratio values.

  8. The model adaptive space shrinkage (MASS) approach: a new method for simultaneous variable selection and outlier detection based on model population analysis.

    PubMed

    Wen, Ming; Deng, Bai-Chuan; Cao, Dong-Sheng; Yun, Yong-Huan; Yang, Rui-Han; Lu, Hong-Mei; Liang, Yi-Zeng

    2016-10-07

    Variable selection and outlier detection are important processes in chemical modeling. Usually, they affect each other. Their performing orders also strongly affect the modeling results. Currently, many studies perform these processes separately and in different orders. In this study, we examined the interaction between outliers and variables and compared the modeling procedures performed with different orders of variable selection and outlier detection. Because the order of outlier detection and variable selection can affect the interpretation of the model, it is difficult to decide which order is preferable when the predictabilities (prediction error) of the different orders are relatively close. To address this problem, a simultaneous variable selection and outlier detection approach called Model Adaptive Space Shrinkage (MASS) was developed. This proposed approach is based on model population analysis (MPA). Through weighted binary matrix sampling (WBMS) from model space, a large number of partial least square (PLS) regression models were built, and the elite parts of the models were selected to statistically reassign the weight of each variable and sample. Then, the whole process was repeated until the weights of the variables and samples converged. Finally, MASS adaptively found a high performance model which consisted of the optimized variable subset and sample subset. The combination of these two subsets could be considered as the cleaned dataset used for chemical modeling. In the proposed approach, the problem of the order of variable selection and outlier detection is avoided. One near infrared spectroscopy (NIR) dataset and one quantitative structure-activity relationship (QSAR) dataset were used to test this approach. The result demonstrated that MASS is a useful method for data cleaning before building a predictive model.

  9. Can the structure of motor variability predict learning rate?

    PubMed

    Barbado Murillo, David; Caballero Sánchez, Carla; Moreside, Janice; Vera-García, Francisco J; Moreno, Francisco J

    2017-03-01

    Recent studies show that motor variability is actively regulated as an exploration tool to promote learning in reward-based tasks. However, its role in learning processes during error-based tasks, when a reduction of the motor variability is required to achieve good performance, is still unclear. In this study, we hypothesized that error-based learning not only depends on exploration but also on the individuals' ability to measure and predict the motor error. Previous studies identified a less auto-correlated motor variability as a higher ability to perform motion adjustments. Two experiments investigated the relationship between motor learning and variability, analyzing the long-range autocorrelation of the center of pressure fluctuations through the α score of a Detrended Fluctuation Analysis in balance tasks. In Experiment 1, we assessed the relationship between variability and learning rate using a standing balance task. Based on the results of this experiment, and to maximize learning, we performed a second experiment with a more difficult sitting balance task and increased practice. The learning rate of the 2 groups with similar balance performances but different α scores was compared. Individuals with a lower α score showed a higher learning rate. Because the α scores reveal how the motor output changes over time, instead of the magnitude of those changes, the higher learning rate is mainly linked to the higher error sensitivity rather than the exploration strategies. The results of this study highlight the relevance of the structure of output motor variability as a predictor of learning rate in error-based tasks. (PsycINFO Database Record

  10. Hybrid Self-Adaptive Evolution Strategies Guided by Neighborhood Structures for Combinatorial Optimization Problems.

    PubMed

    Coelho, V N; Coelho, I M; Souza, M J F; Oliveira, T A; Cota, L P; Haddad, M N; Mladenovic, N; Silva, R C P; Guimarães, F G

    2016-01-01

    This article presents an Evolution Strategy (ES)--based algorithm, designed to self-adapt its mutation operators, guiding the search into the solution space using a Self-Adaptive Reduced Variable Neighborhood Search procedure. In view of the specific local search operators for each individual, the proposed population-based approach also fits into the context of the Memetic Algorithms. The proposed variant uses the Greedy Randomized Adaptive Search Procedure with different greedy parameters for generating its initial population, providing an interesting exploration-exploitation balance. To validate the proposal, this framework is applied to solve three different [Formula: see text]-Hard combinatorial optimization problems: an Open-Pit-Mining Operational Planning Problem with dynamic allocation of trucks, an Unrelated Parallel Machine Scheduling Problem with Setup Times, and the calibration of a hybrid fuzzy model for Short-Term Load Forecasting. Computational results point out the convergence of the proposed model and highlight its ability in combining the application of move operations from distinct neighborhood structures along the optimization. The results gathered and reported in this article represent a collective evidence of the performance of the method in challenging combinatorial optimization problems from different application domains. The proposed evolution strategy demonstrates an ability of adapting the strength of the mutation disturbance during the generations of its evolution process. The effectiveness of the proposal motivates the application of this novel evolutionary framework for solving other combinatorial optimization problems.

  11. Variability in Older Forest Structure in Western Oregon

    USGS Publications Warehouse

    Poage, Nathan J.

    2005-01-01

    The goal of this report is to assist Federal land managers in developing realistic structural targets for young forests for which the development of late-successional and old-growth (LSOG) characteristics is a long-term management objective (i.e., in Late-Successional Reserves established under the Northwest Forest Plan). A unique LSOG structural database was created using complete inventories, or censuses (i.e., 100% timber cruise records), of all conifer trees > 1 ft diameter from 586 recently harvested older forests on five Bureau of Land Management (BLM) districts in western Oregon. The average area of each of the 586 inventoried older forests, 28.1 ac, clearly reflected the spatial scales typical of forest management units on Federal lands covered by the Northwest Forest Plan. All told, the LSOG database contains conifer tree census data for over 16,400 ac of LSOG forests. Ecoregion-level variability in LSOG forest structure was compared and contrasted for sites contained in the LSOG database. The spatial variability of trees and snags at 14 LSOG sites was characterized using structural data collected along one or more long (396-2178 ft) belt transects at each site.

  12. Bioinformatics and variability in drug response: a protein structural perspective

    PubMed Central

    Lahti, Jennifer L.; Tang, Grace W.; Capriotti, Emidio; Liu, Tianyun; Altman, Russ B.

    2012-01-01

    Marketed drugs frequently perform worse in clinical practice than in the clinical trials on which their approval is based. Many therapeutic compounds are ineffective for a large subpopulation of patients to whom they are prescribed; worse, a significant fraction of patients experience adverse effects more severe than anticipated. The unacceptable risk–benefit profile for many drugs mandates a paradigm shift towards personalized medicine. However, prior to adoption of patient-specific approaches, it is useful to understand the molecular details underlying variable drug response among diverse patient populations. Over the past decade, progress in structural genomics led to an explosion of available three-dimensional structures of drug target proteins while efforts in pharmacogenetics offered insights into polymorphisms correlated with differential therapeutic outcomes. Together these advances provide the opportunity to examine how altered protein structures arising from genetic differences affect protein–drug interactions and, ultimately, drug response. In this review, we first summarize structural characteristics of protein targets and common mechanisms of drug interactions. Next, we describe the impact of coding mutations on protein structures and drug response. Finally, we highlight tools for analysing protein structures and protein–drug interactions and discuss their application for understanding altered drug responses associated with protein structural variants. PMID:22552919

  13. Variable structure control of nonlinear systems through simplified uncertain models

    NASA Technical Reports Server (NTRS)

    Sira-Ramirez, Hebertt

    1986-01-01

    A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.

  14. Distributed adaptive diagnosis of sensor faults using structural response data

    NASA Astrophysics Data System (ADS)

    Dragos, Kosmas; Smarsly, Kay

    2016-10-01

    The reliability and consistency of wireless structural health monitoring (SHM) systems can be compromised by sensor faults, leading to miscalibrations, corrupted data, or even data loss. Several research approaches towards fault diagnosis, referred to as ‘analytical redundancy’, have been proposed that analyze the correlations between different sensor outputs. In wireless SHM, most analytical redundancy approaches require centralized data storage on a server for data analysis, while other approaches exploit the on-board computing capabilities of wireless sensor nodes, analyzing the raw sensor data directly on board. However, using raw sensor data poses an operational constraint due to the limited power resources of wireless sensor nodes. In this paper, a new distributed autonomous approach towards sensor fault diagnosis based on processed structural response data is presented. The inherent correlations among Fourier amplitudes of acceleration response data, at peaks corresponding to the eigenfrequencies of the structure, are used for diagnosis of abnormal sensor outputs at a given structural condition. Representing an entirely data-driven analytical redundancy approach that does not require any a priori knowledge of the monitored structure or of the SHM system, artificial neural networks (ANN) are embedded into the sensor nodes enabling cooperative fault diagnosis in a fully decentralized manner. The distributed analytical redundancy approach is implemented into a wireless SHM system and validated in laboratory experiments, demonstrating the ability of wireless sensor nodes to self-diagnose sensor faults accurately and efficiently with minimal data traffic. Besides enabling distributed autonomous fault diagnosis, the embedded ANNs are able to adapt to the actual condition of the structure, thus ensuring accurate and efficient fault diagnosis even in case of structural changes.

  15. Design, realization and structural testing of a compliant adaptable wing

    NASA Astrophysics Data System (ADS)

    Molinari, G.; Quack, M.; Arrieta, A. F.; Morari, M.; Ermanni, P.

    2015-10-01

    This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing.

  16. STRUCTURE FUNCTION ANALYSIS OF LONG-TERM QUASAR VARIABILITY

    SciTech Connect

    de Vries, W; Becker, R; White, R; Loomis, C

    2004-11-15

    In our second paper on long-term quasar variability, we employ a much larger database of quasars than in de Vries, Becker & White. This expanded sample, containing 35,165 quasars from the Sloan Digital Sky Survey Data Release 2, and 6,413 additional quasars in the same area of the sky taken from the 2dF QSO Redshift Survey, allows us to significantly improve on our earlier conclusions. As before, all the historic quasar photometry has been calibrated onto the SDSS scale by using large numbers of calibration stars around each quasar position. We find the following: (1) the outbursts have an asymmetric light-curve profile, with a fast-rise, slow-decline shape; this argues against a scenario in which micro-lensing events along the line-of-sight to the quasars are dominating the long-term variations in quasars; (2) there is no turnover in the Structure Function of the quasars up to time-scales of {approx}40 years, and the increase in variability with increasing time-lags is monotonic and constant; and consequently, (3) there is not a single preferred characteristic outburst time-scale for the quasars, but most likely a continuum of outburst time-scales, (4) the magnitude of the quasar variability is a function of wavelength: variability increases toward the blue part of the spectrum, (5) high-luminosity quasars vary less than low-luminosity quasars, consistent with a scenario in which variations have limited absolute magnitude. Based on this, we conclude that quasar variability is intrinsic to the Active Galactic Nucleus, is caused by chromatic outbursts/flares with a limited luminosity range and varying time-scales, and which have an overall asymmetric light-curve shape. Currently the model that has the most promise of fitting the observations is based on accretion disk instabilities.

  17. StructBoost: Boosting Methods for Predicting Structured Output Variables.

    PubMed

    Chunhua Shen; Guosheng Lin; van den Hengel, Anton

    2014-10-01

    Boosting is a method for learning a single accurate predictor by linearly combining a set of less accurate weak learners. Recently, structured learning has found many applications in computer vision. Inspired by structured support vector machines (SSVM), here we propose a new boosting algorithm for structured output prediction, which we refer to as StructBoost. StructBoost supports nonlinear structured learning by combining a set of weak structured learners. As SSVM generalizes SVM, our StructBoost generalizes standard boosting approaches such as AdaBoost, or LPBoost to structured learning. The resulting optimization problem of StructBoost is more challenging than SSVM in the sense that it may involve exponentially many variables and constraints. In contrast, for SSVM one usually has an exponential number of constraints and a cutting-plane method is used. In order to efficiently solve StructBoost, we formulate an equivalent 1-slack formulation and solve it using a combination of cutting planes and column generation. We show the versatility and usefulness of StructBoost on a range of problems such as optimizing the tree loss for hierarchical multi-class classification, optimizing the Pascal overlap criterion for robust visual tracking and learning conditional random field parameters for image segmentation.

  18. Variable input observer for structural health monitoring of high-rate systems

    NASA Astrophysics Data System (ADS)

    Hong, Jonathan; Laflamme, Simon; Cao, Liang; Dodson, Jacob

    2017-02-01

    The development of high-rate structural health monitoring methods is intended to provide damage detection on timescales of 10 µs -10ms where speed of detection is critical to maintain structural integrity. Here, a novel Variable Input Observer (VIO) coupled with an adaptive observer is proposed as a potential solution for complex high-rate problems. The VIO is designed to adapt its input space based on real-time identification of the system's essential dynamics. By selecting appropriate time-delayed coordinates defined by both a time delay and an embedding dimension, the proper input space is chosen which allows more accurate estimations of the current state and a reduction of the convergence rate. The optimal time-delay is estimated based on mutual information, and the embedding dimension is based on false nearest neighbors. A simulation of the VIO is conducted on a two degree-of-freedom system with simulated damage. Results are compared with an adaptive Luenberger observer, a fixed time-delay observer, and a Kalman Filter. Under its preliminary design, the VIO converges significantly faster than the Luenberger and fixed observer. It performed similarly to the Kalman Filter in terms of convergence, but with greater accuracy.

  19. Cloud Structures on Neptune Observed with Keck Telescope Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Max, C. E.; Macintosh, B. A.; Gibbard, S. G.; Gavel, D. T.; Roe, H. G.; de Pater, I.; Ghez, A. M.; Acton, D. S.; Lai, O.; Stomski, P.; Wizinowich, P. L.

    2003-01-01

    We report on observations obtained with the adaptive optics system at the 10 m Keck II Telescope during engineering validation and early science observing time for the adaptive optics system. We observed Neptune at near-infrared wavelengths. Angular resolution was 0.05"-0.06", corresponding to a spatial scale of approximately 1000 km at Neptune. We discuss the latitudinal structure of circumferential cloud bands and of compact infrared-bright features seen in the southern hemisphere, as well as their variation with wavelength. We determine the values of I/F (proportional to the ratio of reflected intensity to incident solar flux) in the J and H infrared-wavelength bands, including narrowband filters where there is strong methane absorption. We use the I/F values inside and outside of methane bands to estimate the altitude of clouds responsible for the brightest compact features in the infrared. Our data show that, on two of our four observing dates, the brightest region on Neptune contained highly reflective haze layers located below the tropopause but not deeper than a few bars.

  20. Flight test results from a supercritical mission adaptive wing with smooth variable camber

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke; Webb, Lannie D.; Friend, Edward L.; Lokos, William A.

    1992-01-01

    The mission adaptive wing (MAW) consisted of leading- and trailing-edge variable-camber surfaces that could be deflected in flight to provide a near-ideal wing camber shape for any flight condition. These surfaces featured smooth, flexible upper surfaces and fully enclosed lower surfaces, distinguishing them from conventional flaps that have discontinuous surfaces and exposed or semiexposed mechanisms. Camber shape was controlled by either a manual or automatic flight control system. The wing and aircraft were extensively instrumented to evaluate the local flow characteristics and the total aircraft performance. This paper discusses the interrelationships between the wing pressure, buffet, boundary-layer and flight deflection measurement system analyses and describes the flight maneuvers used to obtain the data. The results are for a wing sweep of 26 deg, a Mach number of 0.85, leading and trailing-edge cambers (delta(sub LE/TE)) of 0/2 and 5/10, and angles of attack from 3.0 deg to 14.0 deg. For the well-behaved flow of the delta(sub LE/TE) = 0/2 camber, a typical cruise camber shape, the local and global data are in good agreement with respect to the flow properties of the wing. For the delta(sub LE/TE) = 5/10 camber, a maneuvering camber shape, the local and global data have similar trends and conclusions, but not the clear-cut agreement observed for cruise camber.

  1. Human Health Impacts of and Public Health Adaptation to Climate Variability and Change

    NASA Astrophysics Data System (ADS)

    Ebi, K. L.

    2007-12-01

    Weather and climate are among the factors that determine the geographic range and incidence of several major causes of ill health, including undernutrition, diarrheal diseases and other conditions due to unsafe water and lack of basic sanitation, and malaria. The Human Health chapter in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change concluded that climate change has begun to negatively affect human health, and that projected climate change will increase the risks of climate-sensitive health outcomes, particularly in lower-income populations, predominantly within tropical/subtropical countries. Those at greatest risk include the urban poor, older adults, children, traditional societies, subsistence farmers, and coastal populations, particularly in low income countries. The cause-and-effect chain from climate change to changing patterns of health determinants and outcomes is complex and includes socioeconomic, institutional, and other factors. The severity of future impacts will be determined by changes in climate as well as by concurrent changes in nonclimatic factors and by the adaptation measures implemented to reduce negative impacts. Public health has a long history of effectively intervening to reduce risks to the health of individuals and communities. Lessons learned from more than 150 years of research and intervention can provide insights to guide the design and implementation of effective and efficient interventions to reduce the current and projected impacts of climate variability and change.

  2. Predictive-property-ranked variable reduction with final complexity adapted models in partial least squares modeling for multiple responses.

    PubMed

    Andries, Jan P M; Heyden, Yvan Vander; Buydens, Lutgarde M C

    2013-06-04

    For partial least-squares regression with one response (PLS1), many variable-reduction methods have been developed. However, only a few address the case of multiple-response partial-least-squares (PLS2) modeling. The calibration performance of PLS1 can be improved by elimination of uninformative variables. Many variable-reduction methods are based on various PLS-model-related parameters, called predictor-variable properties. Recently, an important adaptation, in which the model complexity is optimized, was introduced in these methods. This method was called Predictive-Property-Ranked Variable Reduction with Final Complexity Adapted Models, denoted as PPRVR-FCAM or simply FCAM. In this study, variable reduction for PLS2 models, using an adapted FCAM method, FCAM-PLS2, is investigated. The utility and effectiveness of four new predictor-variable properties, derived from the multiple response PLS2 regression coefficients, are studied for six data sets consisting of ultraviolet-visible (UV-vis) spectra, near-infrared (NIR) spectra, NMR spectra, and two simulated sets, one with correlated and one with uncorrelated responses. The four properties include the mean of the absolute values as well as the norm of the PLS2 regression coefficients and their significances. The four properties were found to be applicable by the FCAM-PLS2 method for variable reduction. The predictive abilities of models resulting from the four properties are similar. The norm of the PLS2 regression coefficients has the best selective abilities, low numbers of variables with an informative meaning to the responses are retained. The significance of the mean of the PLS2 regression coefficients is found to be the least-selective property.

  3. COCO: a simple tool to enrich the representation of conformational variability in NMR structures.

    PubMed

    Laughton, Charles A; Orozco, Modesto; Vranken, Wim

    2009-04-01

    NMR structures are typically deposited in databases such as the PDB in the form of an ensemble of structures. Generally, each of the models in such an ensemble satisfies the experimental data and is equally valid. No unique solution can be calculated because the experimental NMR data is insufficient, in part because it reflects the conformational variability and dynamical behavior of the molecule in solution. Even for relatively rigid molecules, the limited number of structures that are typically deposited cannot completely encompass the structural diversity allowed by the observed NMR data, but they can be chosen to try and maximize its representation. We describe here the adaptation and application of techniques more commonly used to examine large ensembles from molecular dynamics simulations, to the analysis of NMR ensembles. The approach, which is based on principal component analysis, we call COCO ("Complementary Coordinates"). The COCO approach analyses the distribution of an NMR ensemble in conformational space, and generates a new ensemble that fills "gaps" in the distribution. The method is very rapid, and analysis of a 25-member ensemble and generation of a new 25 member ensemble typically takes 1-2 min on a conventional workstation. Applied to the 545 structures in the RECOORD database, we find that COCO generates new ensembles that are as structurally diverse-both from each other and from the original ensemble-as are the structures within the original ensemble. The COCO approach does not explicitly take into account the NMR restraint data, yet in tests on selected structures from the RECOORD database, the COCO ensembles are frequently good matches to this data, and certainly are structures that can be rapidly refined against the restraints to yield high-quality, novel solutions. COCO should therefore be a useful aid in NMR structure refinement and in other situations where a richer representation of conformational variability is desired-for example in

  4. A study of the time variability of Jupiter's atmospheric structure

    NASA Astrophysics Data System (ADS)

    Kuehn, D. M.; Beebe, R. F.

    1993-02-01

    Aspects of the time-variable nature of the Jovian atmosphere are addressed using high-resolution photometrically calibrated multicolored imaging data obtained over two Jovian apparitions. During the period of observations, Jupiter's South Equatorial Belts (SEB) underwent a drastic brightening and its Equatorial Zone gradually darkened throughout the period. Based on the data, vertically inhomogeneous atmospheric structure models are constructed and used to make direct quantitative comparisons between different latitudinal regions and different epochs. The drastic brightening of the SEB is explained by an increase in both the optical thickness and the single-scattering albedo of the upper tropospheric cloud.

  5. A simulated force generator with an adaptive command structure

    NASA Astrophysics Data System (ADS)

    Hanes, P. Jeff

    2006-05-01

    The Force Laydown Automated Generator (FLAG) is a script-driven behavior model that automatically creates military formations from the platoon level up to division level for use in simulations built on the FLAMES simulation framework. The script allows users to define formation command structure, command relationships, vehicle type and equipment, and behaviors. We have used it to automatically generate more than 3000 units in a single simulation. Currently, FLAG is used in the Air Force Research Laboratory Munitions Directorate (AFRL/MN) to assist their Comprehensive Analysis Process (CAP). It produces a reasonable threat laydown of red forces for testing their blue concept weapons. Our success in the application of FLAG leads us to believe that it offers an invaluable potential for use in training environments and other applications that need a large number of reactive, adaptive forces - red or blue.

  6. Guaranteeing robustness of structural condition monitoring to environmental variability

    NASA Astrophysics Data System (ADS)

    Van Buren, Kendra; Reilly, Jack; Neal, Kyle; Edwards, Harry; Hemez, François

    2017-01-01

    Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October-28

  7. Effortful Control and Adaptive Functioning of Homeless Children: Variable-Focused and Person-Focused Analyses

    ERIC Educational Resources Information Center

    Obradovic, Jelena

    2010-01-01

    Homeless children show significant developmental delays across major domains of adaptation, yet research on protective processes that may contribute to resilient adaptation in this highly disadvantaged group of children is extremely rare. This study examined the role of effortful control for adaption in 58 homeless children, ages 5-6, during their…

  8. DNA variability in five crystal structures of d(CGCAATTGCG).

    PubMed

    Valls, Núria; Wright, Glenford; Steiner, Roberto A; Murshudov, Garib N; Subirana, Juan A

    2004-04-01

    The deoxyoligonucleotide d(CGCAATTGCG) has previously been crystallized in four different space groups. The crystals diffract to moderate resolution (2.3-2.9 A). Here, a fifth crystal form that diffracts to higher resolution (1.6 A) is presented which was obtained thanks to the use of Co2+ and cryogenic temperatures. The availability of five different crystal structures allows a thorough analysis of the conformational variability of this DNA sequence. It is concluded that the central hexamer sequence CAATTG has a practically constant conformation under all conditions, whilst the terminal base pairs at both ends vary considerably as a result of differing interactions in the crystals. The new crystal structure presented here is stabilized by guanine-Co2+-guanine interactions and the formation of C1+ -G8.C3 triplexes between neighbouring duplexes. As a result of the higher resolution of the crystal structure, a more regular structure was obtained and a clear definition of the spine of hydration was observed which was not visible in the four previous structures.

  9. Continuous-variable-entanglement dynamics in structured reservoirs

    SciTech Connect

    Vasile, Ruggero; Maniscalco, Sabrina; Olivares, Stefano; Paris, Matteo G. A.

    2009-12-15

    We address the evolution of entanglement in bimodal continuous variable quantum systems interacting with two independent structured reservoirs. We derive an analytic expression for the entanglement of formation without performing the Markov and the secular approximations and study in details the entanglement dynamics for various types of structured reservoirs and for different reservoir temperatures, assuming the two modes initially excited in a twin-beam state. Our analytic solution allows us to identify three dynamical regimes characterized by different behaviors of the entanglement: the entanglement sudden death, the non-Markovian revival and the non-secular revival regimes. Remarkably, we find that, contrarily to the Markovian case, the short-time system-reservoir correlations in some cases destroy quickly the initial entanglement even at zero temperature.

  10. Vibration-based structural health monitoring using adaptive statistical method under varying environmental condition

    NASA Astrophysics Data System (ADS)

    Jin, Seung-Seop; Jung, Hyung-Jo

    2014-03-01

    It is well known that the dynamic properties of a structure such as natural frequencies depend not only on damage but also on environmental condition (e.g., temperature). The variation in dynamic characteristics of a structure due to environmental condition may mask damage of the structure. Without taking the change of environmental condition into account, false-positive or false-negative damage diagnosis may occur so that structural health monitoring becomes unreliable. In order to address this problem, an approach to construct a regression model based on structural responses considering environmental factors has been usually used by many researchers. The key to success of this approach is the formulation between the input and output variables of the regression model to take into account the environmental variations. However, it is quite challenging to determine proper environmental variables and measurement locations in advance for fully representing the relationship between the structural responses and the environmental variations. One alternative (i.e., novelty detection) is to remove the variations caused by environmental factors from the structural responses by using multivariate statistical analysis (e.g., principal component analysis (PCA), factor analysis, etc.). The success of this method is deeply depending on the accuracy of the description of normal condition. Generally, there is no prior information on normal condition during data acquisition, so that the normal condition is determined by subjective perspective with human-intervention. The proposed method is a novel adaptive multivariate statistical analysis for monitoring of structural damage detection under environmental change. One advantage of this method is the ability of a generative learning to capture the intrinsic characteristics of the normal condition. The proposed method is tested on numerically simulated data for a range of noise in measurement under environmental variation. A comparative

  11. Molecular determinants of enzyme cold adaptation: comparative structural and computational studies of cold- and warm-adapted enzymes.

    PubMed

    Papaleo, Elena; Tiberti, Matteo; Invernizzi, Gaetano; Pasi, Marco; Ranzani, Valeria

    2011-11-01

    The identification of molecular mechanisms underlying enzyme cold adaptation is a hot-topic both for fundamental research and industrial applications. In the present contribution, we review the last decades of structural computational investigations on cold-adapted enzymes in comparison to their warm-adapted counterparts. Comparative sequence and structural studies allow the definition of a multitude of adaptation strategies. Different enzymes carried out diverse mechanisms to adapt to low temperatures, so that a general theory for enzyme cold adaptation cannot be formulated. However, some common features can be traced in dynamic and flexibility properties of these enzymes, as well as in their intra- and inter-molecular interaction networks. Interestingly, the current data suggest that a family-centered point of view is necessary in the comparative analyses of cold- and warm-adapted enzymes. In fact, enzymes belonging to the same family or superfamily, thus sharing at least the three-dimensional fold and common features of the functional sites, have evolved similar structural and dynamic patterns to overcome the detrimental effects of low temperatures.

  12. Spatial impacts of urban structures on micrometeorological variables

    NASA Astrophysics Data System (ADS)

    Koelbing, Merle; Schuetz, Tobias; Weiler, Markus

    2016-04-01

    The heterogeneity of urban surfaces including buildings and the urban vegetation causes high variability of micrometeorological variables on small spatial scales which makes it hard to observe or even predict climate conditions and in particular evapotranspiration with high resolution on the scale of entire cities. Regarding future climate changes and their impacts on urban climate and hydrology the predictability of these small scale variations becomes more and more relevant i.e. for city planners to improve the development of appropriate mitigation strategies. Therefore, new transfer functions for meteorological variables are needed, which consider the structural variability in urban areas and its impacts on the energy balance (shading effects, ventilation, lateral longwave energy fluxes). We approach this goal by testing a mobile meteorological station (the station is mounted on a bicycle trailer and transported by an E-Bike) as a means to derive empirical spatial transfer functions for specific urban structures. We observe air temperature and relative air humidity at 2 different heights, wind direction and speed, incoming and outgoing shortwave radiation as well as infrared temperature from above and below and the four directions. First measurements have been performed in December 2015 at 22 locations in four clusters, which represent manifold different characteristics of urban areas within the city of Freiburg. Every location has been monitored two to six times. Overall, nearly 200 measurements of each variable have been taken. Each measurement takes five minutes. Values are logged every 15 seconds. These measurements were analyzed with regard to a climate station mounted on a rooftop in the proximity of all clusters. Results show a systematic pattern in the differences between the values taken with the fixed and those taken with the mobile climate station, depending on the measurement locations. For example, lower air temperature and higher relative air

  13. Behavioral Variability of Choices Versus Structural Inconsistency of Preferences

    PubMed Central

    Regenwetter, Michel; Davis-Stober, Clintin P.

    2012-01-01

    Theories of rational choice often make the structural consistency assumption that every decision maker’s binary strict preference among choice alternatives forms a strict weak order. Likewise, the very concept of a utility function over lotteries in normative, prescriptive, and descriptive theory is mathematically equivalent to strict weak order preferences over those lotteries, while intransitive heuristic models violate such weak orders. Using new quantitative interdisciplinary methodologies we dissociate variability of choices from structural inconsistency of preferences. We show that laboratory choice behavior among stimuli of a classical “intransitivity” paradigm is, in fact, consistent with variable strict weak order preferences. We find that decision makers act in accordance with a restrictive mathematical model that, for the behavioral sciences, is extraordinarily parsimonious. Our findings suggest that the best place to invest future behavioral decision research is not in the development of new intransitive decision models, but rather in the specification of parsimonious models consistent with strict weak order(s), as well as heuristics and other process models that explain why preferences appear to be weakly ordered. PMID:22506679

  14. Phytoplankton community structure defined by key environmental variables in Tagus estuary, Portugal.

    PubMed

    Brogueira, Maria José; Oliveira, Maria do Rosário; Cabeçadas, Graça

    2007-12-01

    In this work, we analyze environmental (physical and chemical) and biological (phytoplankton) data obtained along Tagus estuary during three surveys, carried out in productive period (May/June/July) at ebb tide. The main objective of this study was to identify the key environmental factors affecting phytoplankton structure in the estuary. BIOENV analysis revealed that, in study period, temperature, salinity, silicate and total phosphorus were the variables that best explained the phytoplankton spatial pattern in the estuary (Spearman correlation, rho=0.803). A generalized linear model (GLM) also identified salinity, silicate and phosphate as having a high explanatory power (63%) of phytoplankton abundance. These selected nutrients appear to be consistent with the requirements of the dominant phytoplankton group, Baccilariophyceae. Apparently, phytoplankton community is adapted to fluctuations in light intensity, as suspended particulate matter did not come out as a key factor in shaping phytoplankton structure along Tagus estuary.

  15. A Structurally Variable Hinged Tetrahedron Framework from DNA Origami

    PubMed Central

    Smith, David M.; Schüller, Verena; Forthmann, Carsten; Schreiber, Robert; Tinnefeld, Philip; Liedl, Tim

    2011-01-01

    Nanometer-sized polyhedral wire-frame objects hold a wide range of potential applications both as structural scaffolds as well as a basis for synthetic nanocontainers. The utilization of DNA as basic building blocks for such structures allows the exploitation of bottom-up self-assembly in order to achieve molecular programmability through the pairing of complementary bases. In this work, we report on a hollow but rigid tetrahedron framework of 75 nm strut length constructed with the DNA origami method. Flexible hinges at each of their four joints provide a means for structural variability of the object. Through the opening of gaps along the struts, four variants can be created as confirmed by both gel electrophoresis and direct imaging techniques. The intrinsic site addressability provided by this technique allows the unique targeted attachment of dye and/or linker molecules at any point on the structure's surface, which we prove through the superresolution fluorescence microscopy technique DNA PAINT. PMID:21941629

  16. Back to the Future -Precipitation Extremes, Climate Variability, Environmental Planning and Adaptation

    NASA Astrophysics Data System (ADS)

    Barros, A. P.

    2008-12-01

    uncertainty and separating climatic variability and change from model error. Nonstationarity and persistence at multiple scales confound the problem. From an economics perspective, the unprecedented success of environmental control and "conservation" in the 20th century, present another yet challenge in terms of social expectations and human development, including the right to sustainable (high) quality of life. In this presentation, we illustrate these challenges by considering first the estimation of Probable Maximum Precipitation, an engineering design criterion typically used in dam design, and examine how it varies spatially across the continental US according to physiographic region and as a function of climate regime. Second, we explore the spatial and temporal scales that link climate variability to macroscale environmental planning, and the notion of place-based adaptive riskgrade analysis.

  17. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  18. Adapting to Climate Variability and Change: Experiences from Cereal-Based Farming in the Central Rift and Kobo Valleys, Ethiopia

    NASA Astrophysics Data System (ADS)

    Kassie, Belay Tseganeh; Hengsdijk, Huib; Rötter, Reimund; Kahiluoto, Helena; Asseng, Senthold; Van Ittersum, Martin

    2013-11-01

    Small-holder farmers in Ethiopia are facing several climate related hazards, in particular highly variable rainfall with severe droughts which can have devastating effects on their livelihoods. Projected changes in climate are expected to aggravate the existing challenges. This study examines farmer perceptions on current climate variability and long-term changes, current adaptive strategies, and potential barriers for successful further adaptation in two case study regions—the Central Rift Valley (CRV) and Kobo Valley. The study was based on a household questionnaire, interviews with key stakeholders, and focus group discussions. The result revealed that about 99 % of the respondents at the CRV and 96 % at the Kobo Valley perceived an increase in temperature and 94 % at CRV and 91 % at the Kobo Valley perceived a decrease in rainfall over the last 20-30 years. Inter-annual and intraseasonal rainfall variability also has increased according to the farmers. The observed climate data (1977-2009) also showed an increasing trend in temperature and high inter-annual and intra-seasonal rainfall variability. In contrast to farmers’ perceptions of a decrease in rainfall totals, observed rainfall data showed no statistically significant decline. The interaction among various bio-physical and socio-economic factors, changes in rainfall intensity and reduced water available to crops due to increased hot spells, may have influenced the perception of farmers with respect to rainfall trends. In recent decades, farmers in both the CRV and Kobo have changed farming practices to adapt to perceived climate change and variability, for example, through crop and variety choice, adjustment of cropping calendar, and in situ moisture conservation. These relatively low-cost changes in farm practices were within the limited adaptation capacity of farmers, which may be insufficient to deal with the impacts of future climate change. Anticipated climate change is expected to impose new

  19. Music structure determines heart rate variability of singers

    PubMed Central

    Vickhoff, Björn; Malmgren, Helge; Åström, Rickard; Nyberg, Gunnar; Ekström, Seth-Reino; Engwall, Mathias; Snygg, Johan; Nilsson, Michael; Jörnsten, Rebecka

    2013-01-01

    Choir singing is known to promote wellbeing. One reason for this may be that singing demands a slower than normal respiration, which may in turn affect heart activity. Coupling of heart rate variability (HRV) to respiration is called Respiratory sinus arrhythmia (RSA). This coupling has a subjective as well as a biologically soothing effect, and it is beneficial for cardiovascular function. RSA is seen to be more marked during slow-paced breathing and at lower respiration rates (0.1 Hz and below). In this study, we investigate how singing, which is a form of guided breathing, affects HRV and RSA. The study comprises a group of healthy 18 year olds of mixed gender. The subjects are asked to; (1) hum a single tone and breathe whenever they need to; (2) sing a hymn with free, unguided breathing; and (3) sing a slow mantra and breathe solely between phrases. Heart rate (HR) is measured continuously during the study. The study design makes it possible to compare above three levels of song structure. In a separate case study, we examine five individuals performing singing tasks (1–3). We collect data with more advanced equipment, simultaneously recording HR, respiration, skin conductance and finger temperature. We show how song structure, respiration and HR are connected. Unison singing of regular song structures makes the hearts of the singers accelerate and decelerate simultaneously. Implications concerning the effect on wellbeing and health are discussed as well as the question how this inner entrainment may affect perception and behavior. PMID:23847555

  20. Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics.

    PubMed

    Bagheri, Pedram; Sun, Qiao

    2016-07-01

    In this paper, a novel synthesis of Nussbaum-type functions, and an adaptive radial-basis function neural network is proposed to design controllers for variable-speed, variable-pitch wind turbines. Dynamic equations of the wind turbine are highly nonlinear, uncertain, and affected by unknown disturbance sources. Furthermore, the dynamic equations are non-affine with respect to the pitch angle, which is a control input. To address these problems, a Nussbaum-type function, along with a dynamic control law are adopted to resolve the non-affine nature of the equations. Moreover, an adaptive radial-basis function neural network is designed to approximate non-parametric uncertainties. Further, the closed-loop system is made robust to unknown disturbance sources, where no prior knowledge of disturbance bound is assumed in advance. Finally, the Lyapunov stability analysis is conducted to show the stability of the entire closed-loop system. In order to verify analytical results, a simulation is presented and the results are compared to both a PI and an existing adaptive controllers.

  1. Adaptation of spherical multicellular magnetotactic prokaryotes to the geochemically variable habitat of an intertidal zone.

    PubMed

    Zhou, Ke; Zhang, Wen-Yan; Pan, Hong-Miao; Li, Jin-Hua; Yue, Hai-Dong; Xiao, Tian; Wu, Long-Fei

    2013-05-01

    A combination of microscopic, molecular and biogeochemical methods was used to study the structure, phylogenetics and vertical distribution of spherical multicellular magnetotactic prokaryotes (MMPs) of intertidal sediments in the Yellow Sea. These MMPs were 5.5 μm in diameter and composed of approximately 15-30 cells. They synthesized bullet-shaped magnetites in chains or clusters. Phylogenetic analysis of 16S rRNA gene sequences suggested that these MMPs represent a novel species affiliated to the Deltaproteobacteria. To study their vertical distribution and the relationship to geochemical parameters, sediment cores were collected after the redox potential was measured in situ. The sediments were composed of yellow, grey and black layers from the surface to depth. The spherical MMPs were concentrated near the grey-black layer transition at a depth of 8-12 cm, while coccoid-shaped magnetotactic bacteria near the yellow-grey layer transition at a depth of 3-5 cm. The intertidal MMPs showed a deeper distribution at more reduced environments than coccoid-shaped magnetotactic bacteria, and MMPs in lagoon sediments. Additionally the MMPs were concentrated significantly in layers with high proportion of fine sand and total organic carbon, rich in leachable iron but poor in nitrate. These results show an adaptation of spherical MMPs to the peculiar intertidal sediment habitat.

  2. Structural Variability of 3C 111 on Parsec Scales

    NASA Technical Reports Server (NTRS)

    Grossberger, C.; Kadler, M.; Wilms, J.; Muller, C.; Beuchert, T.; Ros, E.; Ojha, R.; Aller, M.; Aller, H.; Angelakis, E.; Fuhrmann, L.; Nestoras, I.; Schmidt, R.; Zensus, J. A.; Krichbaum, T. P.; Ungerechts, H.; Sievers, A.; Riquelme, D.

    2011-01-01

    We discuss the parsec-scale structural variability of the extragalactic jet 3C 111 related to a major radio flux density outburst in 2007, The data analyzed were taken within the scope of the MOJAVE, UMRAO, and F-GAMMA programs, which monitor a large sample of the radio brightest compact extragalactic jets with the VLBA, the University of Michigan 26 m, the Effelsberg 100 m, and the IRAM 30 m radio telescopes. The analysis of the VLBA data is performed by fitting Gaussian model components in the visibility domain, We associate the ejection of bright features in the radio jet with a major flux-density outburst in 2007, The evolution of these features suggests the formation of a leading component and multiple trailing components

  3. Hierarchical Structure of Heart Rate Variability in Humans

    NASA Astrophysics Data System (ADS)

    Gao, X. Z.; Ching, E. S. C.; Lin, D. C.

    2004-03-01

    We show a hierarchical structure (HS) of the She-Leveque form in the beat-to-beat RR intervals of heart rate variability (HRV) in humans. This structure, first found as an empirical law in turbulent fluid flows, implies further details in the HRV multifractal scaling. We tested HS using daytime RRi data from healthy subjects and heart diseased patients with congestive heart failure and found a universal law C(b) where b characterizes the multifractality of HRV and C is related to a co-dimension parameter of the most violent events in the fluctuation. The potential of diagnosis is discussed based on the characteristics of this finding. To model the HRV phenomenology, we propose a local-feedback-global-cascade (LFGC) model based on the She-Waymire (SW) cascade solution to the HS in fluid turbulence. This model extends from the previous work in that it integrates additive law multiplicatively into the cascade structure. It is an attempt to relate to the cardiovascular physiology which consists of numerous feedback controls that function primarily on the principle of additive law. In particular, the model is based on the same philosophy as the SW cascade that its multifractal dynamics consists of a singular and a modulating component. In the LFGC model, we introduce local feedback to model the dynamics of the modulating effect. The novelty of our model is to incorporate the cascade structure in the scheduling for the feedback control. This model also represents an alternative solution to the HS. We will present the simulation results by the LFGC model and discuss its implication in physiology terms.

  4. Parallel Block Structured Adaptive Mesh Refinement on Graphics Processing Units

    SciTech Connect

    Beckingsale, D. A.; Gaudin, W. P.; Hornung, R. D.; Gunney, B. T.; Gamblin, T.; Herdman, J. A.; Jarvis, S. A.

    2014-11-17

    Block-structured adaptive mesh refinement is a technique that can be used when solving partial differential equations to reduce the number of zones necessary to achieve the required accuracy in areas of interest. These areas (shock fronts, material interfaces, etc.) are recursively covered with finer mesh patches that are grouped into a hierarchy of refinement levels. Despite the potential for large savings in computational requirements and memory usage without a corresponding reduction in accuracy, AMR adds overhead in managing the mesh hierarchy, adding complex communication and data movement requirements to a simulation. In this paper, we describe the design and implementation of a native GPU-based AMR library, including: the classes used to manage data on a mesh patch, the routines used for transferring data between GPUs on different nodes, and the data-parallel operators developed to coarsen and refine mesh data. We validate the performance and accuracy of our implementation using three test problems and two architectures: an eight-node cluster, and over four thousand nodes of Oak Ridge National Laboratory’s Titan supercomputer. Our GPU-based AMR hydrodynamics code performs up to 4.87× faster than the CPU-based implementation, and has been scaled to over four thousand GPUs using a combination of MPI and CUDA.

  5. Parallel architectures for iterative methods on adaptive, block structured grids

    NASA Technical Reports Server (NTRS)

    Gannon, D.; Vanrosendale, J.

    1983-01-01

    A parallel computer architecture well suited to the solution of partial differential equations in complicated geometries is proposed. Algorithms for partial differential equations contain a great deal of parallelism. But this parallelism can be difficult to exploit, particularly on complex problems. One approach to extraction of this parallelism is the use of special purpose architectures tuned to a given problem class. The architecture proposed here is tuned to boundary value problems on complex domains. An adaptive elliptic algorithm which maps effectively onto the proposed architecture is considered in detail. Two levels of parallelism are exploited by the proposed architecture. First, by making use of the freedom one has in grid generation, one can construct grids which are locally regular, permitting a one to one mapping of grids to systolic style processor arrays, at least over small regions. All local parallelism can be extracted by this approach. Second, though there may be a regular global structure to the grids constructed, there will be parallelism at this level. One approach to finding and exploiting this parallelism is to use an architecture having a number of processor clusters connected by a switching network. The use of such a network creates a highly flexible architecture which automatically configures to the problem being solved.

  6. Community change and evidence for variable warm-water temperature adaptation of corals in Northern Male Atoll, Maldives.

    PubMed

    McClanahan, T R; Muthiga, N A

    2014-03-15

    This study provides a descriptive analysis of the North Male, Maldives seven years after the 1998 bleaching disturbance to determine the state of the coral community composition, the recruitment community, evidence for recovery, and adaptation to thermal stress. Overall, hard coral cover recovered at a rate commonly reported in the literature but with high spatial variability and shifts in taxonomic composition. Massive Porites, Pavona, Synarea, and Goniopora were unusually common in both the recruit and adult communities. Coral recruitment was low and some coral taxa, namely Tubipora, Seriatopora, and Stylophora, were rarer than expected. A study of the bleaching response to a thermal anomaly in 2005 indicated that some taxa, including Leptoria, Platygyra, Favites, Fungia, Hydnophora, and Galaxea astreata, bleached as predicted while others, including Acropora, Pocillopora, branching Porites, Montipora, Stylophora, and Alveopora, bleached less than predicted. This indicates variable-adaptation potentials among the taxa and considerable potential for ecological reorganization of the coral community.

  7. Reduced error signalling in medication-naive children with ADHD: associations with behavioural variability and post-error adaptations

    PubMed Central

    Plessen, Kerstin J.; Allen, Elena A.; Eichele, Heike; van Wageningen, Heidi; Høvik, Marie Farstad; Sørensen, Lin; Worren, Marius Kalsås; Hugdahl, Kenneth; Eichele, Tom

    2016-01-01

    Background We examined the blood-oxygen level–dependent (BOLD) activation in brain regions that signal errors and their association with intraindividual behavioural variability and adaptation to errors in children with attention-deficit/hyperactivity disorder (ADHD). Methods We acquired functional MRI data during a Flanker task in medication-naive children with ADHD and healthy controls aged 8–12 years and analyzed the data using independent component analysis. For components corresponding to performance monitoring networks, we compared activations across groups and conditions and correlated them with reaction times (RT). Additionally, we analyzed post-error adaptations in behaviour and motor component activations. Results We included 25 children with ADHD and 29 controls in our analysis. Children with ADHD displayed reduced activation to errors in cingulo-opercular regions and higher RT variability, but no differences of interference control. Larger BOLD amplitude to error trials significantly predicted reduced RT variability across all participants. Neither group showed evidence of post-error response slowing; however, post-error adaptation in motor networks was significantly reduced in children with ADHD. This adaptation was inversely related to activation of the right-lateralized ventral attention network (VAN) on error trials and to task-driven connectivity between the cingulo-opercular system and the VAN. Limitations Our study was limited by the modest sample size and imperfect matching across groups. Conclusion Our findings show a deficit in cingulo-opercular activation in children with ADHD that could relate to reduced signalling for errors. Moreover, the reduced orienting of the VAN signal may mediate deficient post-error motor adaptions. Pinpointing general performance monitoring problems to specific brain regions and operations in error processing may help to guide the targets of future treatments for ADHD. PMID:26441332

  8. A family of variable step-size affine projection adaptive filter algorithms using statistics of channel impulse response

    NASA Astrophysics Data System (ADS)

    Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar

    2011-12-01

    This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.

  9. Structure of a variable lymphocyte receptor-like protein from the amphioxus Branchiostoma floridae.

    PubMed

    Cao, Dong-Dong; Liao, Xin; Cheng, Wang; Jiang, Yong-Liang; Wang, Wen-Jie; Li, Qiong; Chen, Jun-Yuan; Chen, Yuxing; Zhou, Cong-Zhao

    2016-01-29

    Discovery of variable lymphocyte receptors (VLRs) in agnathans (jawless fish) has brought the origin of adaptive immunity system (AIS) forward to 500 million years ago accompanying with the emergence of vertebrates. Previous findings indicated that amphioxus, a representative model organism of chordate, also possesses some homologs of the basic components of TCR/BCR-based AIS, but it remains unknown if there exist any components of VLR-based AIS in amphioxus. Bioinformatics analyses revealed the amphioxus Branchiostoma floridae encodes a group of putative VLR-like proteins. Here we reported the 1.79 Å crystal structure of Bf66946, which forms a crescent-shaped structure of five leucine-rich repeats (LRRs). Structural comparisons indicated that Bf66946 resembles the lamprey VLRC. Further electrostatic potential analyses showed a negatively-charged patch at the concave of LRR solenoid structure that might be responsible for antigen recognition. Site-directed mutagenesis combined with bacterial binding assays revealed that Bf66946 binds to the surface of Gram-positive bacteria Staphylococcus aureus and Streptococcus pneumonia via a couple of acidic residues at the concave. In addition, the closest homolog of Bf66946 is highly expressed in the potential immune organ gill of Branchiostoma belcheri. Altogether, our findings provide the first structural evidence for the emergence of VLR-like molecules in the basal chordates.

  10. Structure of a variable lymphocyte receptor-like protein from the amphioxus Branchiostoma floridae

    PubMed Central

    Cao, Dong-Dong; Liao, Xin; Cheng, Wang; Jiang, Yong-Liang; Wang, Wen-Jie; Li, Qiong; Chen, Jun-Yuan; Chen, Yuxing; Zhou, Cong-Zhao

    2016-01-01

    Discovery of variable lymphocyte receptors (VLRs) in agnathans (jawless fish) has brought the origin of adaptive immunity system (AIS) forward to 500 million years ago accompanying with the emergence of vertebrates. Previous findings indicated that amphioxus, a representative model organism of chordate, also possesses some homologs of the basic components of TCR/BCR-based AIS, but it remains unknown if there exist any components of VLR-based AIS in amphioxus. Bioinformatics analyses revealed the amphioxus Branchiostoma floridae encodes a group of putative VLR-like proteins. Here we reported the 1.79 Å crystal structure of Bf66946, which forms a crescent-shaped structure of five leucine-rich repeats (LRRs). Structural comparisons indicated that Bf66946 resembles the lamprey VLRC. Further electrostatic potential analyses showed a negatively-charged patch at the concave of LRR solenoid structure that might be responsible for antigen recognition. Site-directed mutagenesis combined with bacterial binding assays revealed that Bf66946 binds to the surface of Gram-positive bacteria Staphylococcus aureus and Streptococcus pneumonia via a couple of acidic residues at the concave. In addition, the closest homolog of Bf66946 is highly expressed in the potential immune organ gill of Branchiostoma belcheri. Altogether, our findings provide the first structural evidence for the emergence of VLR-like molecules in the basal chordates. PMID:26821753

  11. S-wave velocity self-adaptive prediction based on a variable dry rock frame equivalent model

    NASA Astrophysics Data System (ADS)

    Feng-Ying, Yang; Xing-Yao, Yin; Bo, Liu

    2014-08-01

    Seismic velocities are important reservoir parameters in seismic exploration. The Gassmann theory has been widely used to predict velocities of fluid-saturated isotropic reservoirs at low frequency. According to Gassmann theory, dry rock frame moduli are essential input parameters for estimating reservoir velocities. A variable dry rock frame equivalent model called VDEM based on the differential effective medium (DEM) theory is constructed in this paper to obtain the dry rock frame moduli. We decouple the DEM equations by introducing variable parameters, then simplify these decoupled equations to get the equivalent dry rock fame model. The predicted dry rock frame moduli by the VDEM are in good agreement with the laboratory data. The VDEM is also utilized to predict S-wave velocity combined with Gassmann theory. A self-adaptive inversion method is applied to fit the variable parameters with the constraint of P-wave velocity from well logging data. The S-wave velocity is estimated from these inversed parameters. A comparison between the self-adaptive method and the Xu-White model on S-wave velocity estimation is made. The results corroborate that the self-adaptive method is flexible and effective for S-wave velocity prediction.

  12. Exploring the Structure of Adaptive Behavior: Project Report Number 87-1.

    ERIC Educational Resources Information Center

    Bruininks, Robert H.; McGrew, Kevin

    This report presents results from three research studies that were designed to explore both the definition and the structure of the adaptive behavior construct. The first study investigated the structure of adaptive behavior as a function of age, developmental level, and type of handicap through an exploratory factor analysis of both the…

  13. Brain: a complex adaptive structure at multiple levels

    NASA Astrophysics Data System (ADS)

    Klein, Bradley G.

    2001-10-01

    The human brain is comprised of over 100 billion neurons organized into tracts, nuclei, circuits and systems. This provides innumerable elegant abilities that rely on the nervous system to act as a complex adaptive structure (CAS). This property is apparent with respect to overall function, the function of individual neurons and the function of sensory and motor systems. At the overall functional level, the nervous system monitors the environments and can alter that environment. Alterations such as turning on a light switch or changing the diameter of neural vasculature, can improve the performance or chance for survival of the nervous system. Individual neurons can alter the activity of their electrogenic pumps, their rate of transmitter synthesis, their neurotransmitter release and their receptor density in order to maintain optimal functioning in a circuit following changes in their micro-environment. At the systems level, the visual system adjusts the orientation of the eyes or pupillary diameter to receive the highest quality visual information. In the motor system, the myotatic reflex maintains muscle position in the face of changing load, and the gain of the muscle organ responsible for the myotatic reflex can also be automatically adjusted. Internal homeostasis, essential for optimal performance of the nervous system, can be achieved through complex behavioral actions such as feeding. The hypothalamus plays an important role in such behaviors and in the type of sensorimotor integration responsible for the CAS nature of overall nervous system function. Thinking about the CAS characteristics of the nervous system may lead to development of non-biological CAS prostheses for the brain.

  14. Variability Analysis and the Structure of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1998-01-01

    This five-year Long-Term Space Astrophysics grant provided the support for several major steps in advancing our knowledge of the internal structure of active galactic nuclei. The single largest portion of this program had to do with the development and application of techniques for "reverberation mapping", the use of spectral monitoring of several different bands related by radiation reprocessing to infer the internal geometry of sources. Major steps were taken in this regard, particularly in establishing the distribution in radius of emission line material, and in relating the apparent reprocessing of continuum bands to the underlying structure of the accretion disk. Another major effort built directly upon these results. Once the case for continuum reprocessing was made by the monitoring, it next behooved us to understand the spectral output of AGN as a result of this reprocessing. As a result, our view of continuum production in AGN is now much better focussed on the key problems. A third focus of effort had to do with the nature of X-ray variability in AGN, and what it can tell us about the dynamics of extremely hot material in the immediate outskirts of the supermassive black holes that form the central engines of active galactic nuclei. In addition to these primary efforts, this grant also supported many other, smaller projects. Several of these were demonstrations of how the material spewed out of AGN in relativistic.ets generate the radiation by which we observe them. J Finally, the portion of this study that had to do with continuum production by accretion disks in AGN led naturally to several papers in which new developments were presented having to do with "advection-dominated accretion disks", those disks in which accretion appears to proceed at a substantial rate, but in which radiation processes are weak.

  15. Variable modulus cellular structures using pneumatic artificial muscles

    NASA Astrophysics Data System (ADS)

    Pontecorvo, Michael E.; Niemiec, Robert J.; Gandhi, Farhan S.

    2014-04-01

    This paper presents a novel variable modulus cellular structure based on a hexagonal unit cell with pneumatic artificial muscle (PAM) inclusions. The cell considered is pin-jointed, loaded in the horizontal direction, with three PAMs (one vertical PAM and two horizontal PAMs) oriented in an "H" configuration between the vertices of the cell. A method for calculation of the hexagonal cell modulus is introduced, as is an expression for the balance of tensile forces between the horizontal and vertical PAMs. An aluminum hexagonal unit cell is fabricated and simulation of the hexagonal cell with PAM inclusions is then compared to experimental measurement of the unit cell modulus in the horizontal direction with all three muscles pressurized to the same value over a pressure range up to 758 kPa. A change in cell modulus by a factor of 1.33 and a corresponding change in cell angle of 0.41° are demonstrated experimentally. A design study via simulation predicts that differential pressurization of the PAMs up to 2068 kPa can change the cell modulus in the horizontal direction by a factor of 6.83 with a change in cell angle of only 2.75°. Both experiment and simulation show that this concept provides a way to decouple the length change of a PAM from the change in modulus to create a structural unit cell whose in-plane modulus in a given direction can be tuned based on the orientation of PAMs within the cell and the pressure supplied to the individual muscles.

  16. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  17. Immunoglobulin variable region structure and B-cell malignancies.

    PubMed

    Kiyoi, H; Naoe, T

    2001-01-01

    The enormous diversity of immunoglobulin (Ig) variable (V) gene sequences encoding the antibody repertoire are formed by the somatic recombination of relatively few genetic elements. In B-lineage malignancies, Ig gene rearrangements have been widely used for determining clonality and cell origin. The recent development of rapid cloning and sequencing techniques has resulted in a substantial accumulation of IgV region sequences at various stages of B-cell development and has revealed stage-specific trends in the use of V, diversity, joining genes, the degree of noncoding nucleotide addition, and the rate of somatic mutations. Furthermore, sequences from B-lineage malignant cells nearly reflect the characteristics of the normal counterpart at each respective stage of development. Alternatively, from the IgV region structure of the malignant cells, it is possible to speculate at which stage of B-cell development the cells were transformed. As the complete nucleotide sequences of the human Ig heavy and Ig light V region loci have now been determined, the study of Ig genetics has entered into the super-information era.

  18. A fuzzy adaptive network approach to parameter estimation in cases where independent variables come from an exponential distribution

    NASA Astrophysics Data System (ADS)

    Dalkilic, Turkan Erbay; Apaydin, Aysen

    2009-11-01

    In a regression analysis, it is assumed that the observations come from a single class in a data cluster and the simple functional relationship between the dependent and independent variables can be expressed using the general model; Y=f(X)+[epsilon]. However; a data cluster may consist of a combination of observations that have different distributions that are derived from different clusters. When faced with issues of estimating a regression model for fuzzy inputs that have been derived from different distributions, this regression model has been termed the [`]switching regression model' and it is expressed with . Here li indicates the class number of each independent variable and p is indicative of the number of independent variables [J.R. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transaction on Systems, Man and Cybernetics 23 (3) (1993) 665-685; M. Michel, Fuzzy clustering and switching regression models using ambiguity and distance rejects, Fuzzy Sets and Systems 122 (2001) 363-399; E.Q. Richard, A new approach to estimating switching regressions, Journal of the American Statistical Association 67 (338) (1972) 306-310]. In this study, adaptive networks have been used to construct a model that has been formed by gathering obtained models. There are methods that suggest the class numbers of independent variables heuristically. Alternatively, in defining the optimal class number of independent variables, the use of suggested validity criterion for fuzzy clustering has been aimed. In the case that independent variables have an exponential distribution, an algorithm has been suggested for defining the unknown parameter of the switching regression model and for obtaining the estimated values after obtaining an optimal membership function, which is suitable for exponential distribution.

  19. Estimating and Interpreting Latent Variable Interactions: A Tutorial for Applying the Latent Moderated Structural Equations Method

    ERIC Educational Resources Information Center

    Maslowsky, Julie; Jager, Justin; Hemken, Douglas

    2015-01-01

    Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS)…

  20. Parallel adaptive fluid-structure interaction simulation of explosions impacting on building structures

    SciTech Connect

    Deiterding, Ralf; Wood, Stephen L

    2013-01-01

    We pursue a level set approach to couple an Eulerian shock-capturing fluid solver with space-time refinement to an explicit solid dynamics solver for large deformations and fracture. The coupling algorithms considering recursively finer fluid time steps as well as overlapping solver updates are discussed in detail. Our ideas are implemented in the AMROC adaptive fluid solver framework and are used for effective fluid-structure coupling to the general purpose solid dynamics code DYNA3D. Beside simulations verifying the coupled fluid-structure solver and assessing its parallel scalability, the detailed structural analysis of a reinforced concrete column under blast loading and the simulation of a prototypical blast explosion in a realistic multistory building are presented.

  1. Thermal and structural analyses of variable thickness plane problems

    SciTech Connect

    Wang, Zhibi; Kuzay, T.M.

    1995-07-01

    Finite difference formulations for variable thickness thermal analysis and variable thickness plane stress analysis are presented. In heat transfer analysis, radiation effects and temperature-dependent thermal conductivity are taken into account. While in thermal stress analysis, the thermal expansion coefficient is considered as temperature dependent. An application of the variable thickness window for synchrotron radiation beamline under very strong X-ray is provided.

  2. Crystal Structure of the Lamprey Variable Lymphocyte Receptor C Reveals an Unusual Feature in Its N-Terminal Capping Module

    PubMed Central

    Kanda, Ryo; Sutoh, Yoichi; Kasamatsu, Jun; Maenaka, Katsumi; Kasahara, Masanori; Ose, Toyoyuki

    2014-01-01

    Jawless vertebrates represented by lampreys and hagfish use variable lymphocyte receptors (VLRs) as antigen receptors to mount adaptive immune responses. VLRs generate diversity that is comparable to immunoglobulins and T-cell receptors by a gene conversion-like mechanism, which is mediated by cytosine deaminases. Currently, three types of VLRs, VLRA, VLRB, and VLRC, have been identified in lampreys. Crystal structures of VLRA and VLRB in complex with antigens have been reported recently, but no structural information is available for VLRC. Here, we present the first crystal structure of VLRC from the Japanese lamprey (Lethenteron japonicum). Similar to VLRA and VLRB, VLRC forms a typical horseshoe-like solenoid structure with a variable concave surface. Strikingly, its N-terminal cap has a long loop with limited sequence variability that protrudes toward the concave surface, which is the putative antigen-binding surface. Furthermore, as predicted previously, its C-terminal cap lacks a highly variable protruding loop that plays an important role in antigen recognition by lamprey VLRA and VLRB. Recent work suggests that VLRC+ lymphocytes in jawless vertebrates might be akin to γδ T cells in jawed vertebrates. Structural features of lamprey VLRC described here suggest that it may recognize antigens in a unique manner. PMID:24465760

  3. Crystal structure of the lamprey variable lymphocyte receptor C reveals an unusual feature in its N-terminal capping module.

    PubMed

    Kanda, Ryo; Sutoh, Yoichi; Kasamatsu, Jun; Maenaka, Katsumi; Kasahara, Masanori; Ose, Toyoyuki

    2014-01-01

    Jawless vertebrates represented by lampreys and hagfish use variable lymphocyte receptors (VLRs) as antigen receptors to mount adaptive immune responses. VLRs generate diversity that is comparable to immunoglobulins and T-cell receptors by a gene conversion-like mechanism, which is mediated by cytosine deaminases. Currently, three types of VLRs, VLRA, VLRB, and VLRC, have been identified in lampreys. Crystal structures of VLRA and VLRB in complex with antigens have been reported recently, but no structural information is available for VLRC. Here, we present the first crystal structure of VLRC from the Japanese lamprey (Lethenteron japonicum). Similar to VLRA and VLRB, VLRC forms a typical horseshoe-like solenoid structure with a variable concave surface. Strikingly, its N-terminal cap has a long loop with limited sequence variability that protrudes toward the concave surface, which is the putative antigen-binding surface. Furthermore, as predicted previously, its C-terminal cap lacks a highly variable protruding loop that plays an important role in antigen recognition by lamprey VLRA and VLRB. Recent work suggests that VLRC+ lymphocytes in jawless vertebrates might be akin to γδ T cells in jawed vertebrates. Structural features of lamprey VLRC described here suggest that it may recognize antigens in a unique manner.

  4. Integration of variable-rate OWC with OFDM-PON for hybrid optical access based on adaptive envelope modulation

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Zhong, Wen-De; Wu, Dehao

    2016-12-01

    In this paper, we investigate an integrated optical wireless communication (OWC) and orthogonal frequency division multiplexing based passive optical network (OFDM-PON) system for hybrid wired and wireless optical access, based on an adaptive envelope modulation technique. Both the outdoor and indoor wireless communications are considered in the integrated system. The data for wired access is carried by a conventional OFDM signal, while the data for wireless access is carried by an M-ary pulse amplitude modulation (M-PAM) signal which is modulated onto the envelope of a phase-modulated OFDM signal. By adaptively modulating the wireless M-PAM signal onto the envelope of the wired phase-modulated constant envelope OFDM (CE-OFDM) signal, hybrid wired and wireless optical access can be seamlessly integrated and variable-rate optical wireless transmission can also be achieved. Analytical bit-error-rate (BER) expressions are derived for both the CE-OFDM signal with M-PAM overlay and the overlaid unipolar M-PAM signal, which are verified by Monte Carlo simulations. The BER performances of wired access, indoor OWC wireless access and outdoor OWC wireless access are evaluated. Moreover, variable-rate indoor and outdoor optical wireless access based on the adaptive envelope modulation technique is also discussed.

  5. Interpretation of illness in cancer survivors is associated with health-related variables and adaptive coping styles

    PubMed Central

    Büssing, Arndt; Fischer, Julia

    2009-01-01

    Background A patient's interpretation of illness may have an influence on the choice of coping strategies and decision making. We intended to analyze the meaning German cancer survivors would attribute to their disease, and investigated intercorrelations between the respective interpretations, health-related variables and adaptive coping strategies. Methods In an anonymous cross-sectional survey, we analyzed the interpretations of disease (according to Lipowski's eight 'meaning of illness' categories) in 387 patients with cancer (81% breast cancer). To make statements about their conceptual relationships with health-related variables, we correlated the 8 items of the 'Interpretation of Illness' questionnaire (IIQ) with health-related quality of life, anxiety/depression, fatigue, life satisfaction, and adaptive coping strategies. Results Most cancer survivors regarded their disease as a challenge (52%), others as value (38%) or even an interruption of life (irreparable loss; 35%); weakness/failure (5%) and punishment (3%) were rated the lowest. The fatalistic negative interpretations 'interruption/loss' and 'enemy/threat' were inversely correlated with mental health-related quality of life and life satisfaction, and positively with an escape-avoidance strategy, depression and anxiety. In contrast, positive disease interpretations (i.e., 'challenge' and 'value') correlated only with adaptive coping strategies. Physical health correlated with none of the disease interpretations. Conclusion Despite conceptual limitations, the 8-item schema could be regarded as a useful screening approach to identify patients at risk for reduced psychosocial functioning. PMID:19178733

  6. Modeling and Simulation of Variable Mass, Flexible Structures

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Matras, Alex L.; Wilson, Heath E.

    2009-01-01

    The advent of the new Ares I launch vehicle has highlighted the need for advanced dynamic analysis tools for variable mass, flexible structures. This system is composed of interconnected flexible stages or components undergoing rapid mass depletion through the consumption of solid or liquid propellant. In addition to large rigid body configuration changes, the system simultaneously experiences elastic deformations. In most applications, the elastic deformations are compatible with linear strain-displacement relationships and are typically modeled using the assumed modes technique. The deformation of the system is approximated through the linear combination of the products of spatial shape functions and generalized time coordinates. Spatial shape functions are traditionally composed of normal mode shapes of the system or even constraint modes and static deformations derived from finite element models of the system. Equations of motion for systems undergoing coupled large rigid body motion and elastic deformation have previously been derived through a number of techniques [1]. However, in these derivations, the mode shapes or spatial shape functions of the system components were considered constant. But with the Ares I vehicle, the structural characteristics of the system are changing with the mass of the system. Previous approaches to solving this problem involve periodic updates to the spatial shape functions or interpolation between shape functions based on system mass or elapsed mission time. These solutions often introduce misleading or even unstable numerical transients into the system. Plus, interpolation on a shape function is not intuitive. This paper presents an approach in which the shape functions are held constant and operate on the changing mass and stiffness matrices of the vehicle components. Each vehicle stage or component finite element model is broken into dry structure and propellant models. A library of propellant models is used to describe the

  7. The Relationship between Career Adaptability, Person and Situation Variables, and Career Concerns in Young Adults

    ERIC Educational Resources Information Center

    Creed, Peter A.; Fallon, Tracy; Hood, Michelle

    2009-01-01

    We surveyed 245 first-year university students using measures of career concerns, career adaptability (career planning, career exploration, self-exploration, decision-making, self-regulation), goal-orientation (learning, performance-prove, performance-avoid) and social support (family, friends, significant others), and tested: (a) whether the…

  8. Variable-Length Computerized Adaptive Testing Based on Cognitive Diagnosis Models

    ERIC Educational Resources Information Center

    Hsu, Chia-Ling; Wang, Wen-Chung; Chen, Shu-Ying

    2013-01-01

    Interest in developing computerized adaptive testing (CAT) under cognitive diagnosis models (CDMs) has increased recently. CAT algorithms that use a fixed-length termination rule frequently lead to different degrees of measurement precision for different examinees. Fixed precision, in which the examinees receive the same degree of measurement…

  9. Item Pool Design for an Operational Variable-Length Computerized Adaptive Test

    ERIC Educational Resources Information Center

    He, Wei; Reckase, Mark D.

    2014-01-01

    For computerized adaptive tests (CATs) to work well, they must have an item pool with sufficient numbers of good quality items. Many researchers have pointed out that, in developing item pools for CATs, not only is the item pool size important but also the distribution of item parameters and practical considerations such as content distribution…

  10. Analysis of trait mean and variability versus temperature in trematode cercariae: is there scope for adaptation to global warming?

    PubMed

    Studer, A; Poulin, R

    2014-05-01

    The potential of species for evolutionary adaptation in the context of global climate change has recently come under scrutiny. Estimates of phenotypic variation in biological traits may prove valuable for identifying species, or groups of species, with greater or lower potential for evolutionary adaptation, as this variation, when heritable, represents the basis for natural selection. Assuming that measures of trait variability reflect the evolutionary potential of these traits, we conducted an analysis across trematode species to determine the potential of these parasites as a group to adapt to increasing temperatures. Firstly, we assessed how the mean number of infective stages (cercariae) emerging from infected snail hosts as well as the survival and infectivity of cercariae are related to temperature. Secondly and importantly in the context of evolutionary potential, we assessed how coefficients of variation for these traits are related to temperature, in both cases controlling for other factors such as habitat, acclimatisation, latitude and type of target host. With increasing temperature, an optimum curve was found for mean output and mean infectivity, and a linear decrease for survival of cercariae. For coefficients of variation, temperature was only an important predictor in the case of cercarial output, where results indicated that there is, however, no evidence for limited trait variation at the higher temperature range. No directional trend was found for either variation of survival or infectivity. These results, characterising general patterns among trematodes, suggest that all three traits considered may have potential to change through adaptive evolution.

  11. IRAS variables as galactic structure tracers - Classification of the bright variables

    NASA Technical Reports Server (NTRS)

    Allen, L. E.; Kleinmann, S. G.; Weinberg, M. D.

    1993-01-01

    The characteristics of the 'bright infrared variables' (BIRVs), a sample consisting of the 300 brightest stars in the IRAS Point Source Catalog with IRAS variability index VAR of 98 or greater, are investigated with the purpose of establishing which of IRAS variables are AGB stars (e.g., oxygen-rich Miras and carbon stars, as was assumed by Weinberg (1992)). Results of the analysis of optical, infrared, and microwave spectroscopy of these stars indicate that, out of 88 stars in the BIRV sample identified with cataloged variables, 86 can be classified as Miras. Results of a similar analysis performed for a color-selected sample of stars, using the color limits employed by Habing (1988) to select AGB stars, showed that, out of 52 percent of classified stars, 38 percent are non-AGB stars, including H II regions, planetary nebulae, supergiants, and young stellar objects, indicating that studies using color-selected samples are subject to misinterpretation.

  12. The Relationship of Organizational Structure to Organizational Adaptiveness in Elementary Schools. Report from the Project on Organization for Instruction and Administrative Arrangements.

    ERIC Educational Resources Information Center

    Walter, James Ellsworth

    This study attempted to examine the organizational structures of elementary schools in terms of complexity, centralization, formalization, stratification, and job satisfaction; and to analyze the relationship of these variables to the adaptiveness of elementary schools. More specifically, it compared the Multiunit School-Elementary (MUS-E) type of…

  13. Geographic distribution and adaptive significance of genomic structural variants: an anthropological genetics perspective.

    PubMed

    Eaaswarkhanth, Muthukrishnan; Pavlidis, Pavlos; Gokcumen, Omer

    2014-01-01

    Anthropological geneticists have successfully used single-nucleotide and short tandem repeat variations across human genomes to reconstruct human history. These markers have also been used extensively to identify adaptive and phenotypic variation. The recent advent of high-throughput genomic technologies revealed an overlooked type of genomic variation: structural variants (SVs). In fact, some SVs may contribute to human adaptation in substantial and previously unexplored ways. SVs include deletions, insertions, duplications, inversions, and translocations of genomic segments that vary among individuals from the same species. SVs are much less numerous than single-nucleotide variants but account for at least seven times more variable base pairs than do single-nucleotide variants when two human genomes are compared. Moreover, recent studies have shown that SVs have higher mutation rates than single-nucleotide variants when the affected base pairs are considered, especially in certain parts of the genome. The null hypothesis for the evolution of SVs, as for single-nucleotide variants, is neutrality. Hence, drift is the primary force that shapes the current allelic distribution of most SVs. However, due to their size, a larger proportion of SVs appear to evolve under nonneutral forces (mostly purifying selection) than do single-nucleotide variants. In fact, as exemplified by several groundbreaking studies, SVs contribute to anthropologically relevant phenotypic variation and local adaptation among humans. In this review, we argue that with the advent of affordable genomic technologies, anthropological scrutiny of genomic structural variation emerges as a fertile area of inquiry to better understand human phenotypic variation. To motivate potential studies, we discuss scenarios through which structural variants (SVs) affect phenotypic variation among humans within an anthropological context. We further provide a methodological workflow in which we analyzed 1000 Genomes

  14. Dual mode adaptive fractional order PI controller with feedforward controller based on variable parameter model for quadruple tank process.

    PubMed

    Roy, Prasanta; Roy, Binoy Krishna

    2016-07-01

    The Quadruple Tank Process (QTP) is a well-known benchmark of a nonlinear coupled complex MIMO process having both minimum and nonminimum phase characteristics. This paper presents a novel self tuning type Dual Mode Adaptive Fractional Order PI controller along with an Adaptive Feedforward controller for the QTP. The controllers are designed based on a novel Variable Parameter Transfer Function model. The effectiveness of the proposed model and controllers is tested through numerical simulation and experimentation. Results reveal that the proposed controllers work successfully to track the reference signals in all ranges of output. A brief comparison with some of the earlier reported similar works is presented to show that the proposed control scheme has some advantages and better performances than several other similar works.

  15. Top-down determinants of niche structure and adaptation among African Acacias.

    PubMed

    Staver, A Carla; Bond, William J; Cramer, Michael D; Wakeling, Julia L

    2012-07-01

    The role of top-down factors like herbivory and fire in structuring species' niches, even in disturbance-dependent biomes like savanna, remains poorly understood. Interactions between herbivory and fire may set up a potential tradeoff axis, along which unique adaptations contribute to structuring communities and determining species distributions. We examine the role of herbivory and fire in structuring distributions of Acacia saplings in Hluhluwe iMfolozi Park in South Africa, and the relationship of species' niche structure to traits that help them survive herbivory or fire. Results suggest that (1) fire and herbivory form a single trade-off axis, (2) Acacia sapling distributions are constrained by fire and herbivory, and (3) Acacia saplings have adaptations that are structured by the tradeoff axis. Herbivory-adapted species tend to have 'cage'-like architecture, thicker bark, and less starch storage, while fire-adapted species tend to have 'pole'-like architecture, relatively thinner bark, and more starch storage.

  16. Vegetation regulation on streamflow intra-annual variability through adaption to climate variations

    SciTech Connect

    Ye, Sheng; Li, Hongyi; Li, Shuai; Leung, Lai-Yung R.; Demissie, Yonas; Ran, Qihua; Blschl, Gnter

    2015-12-16

    This study aims to provide a mechanistic explanation of the empirical patterns of streamflow intra-annual variability revealed by watershed-scale hydrological data across the contiguous United States. A mathematical extension of the Budyko formula with explicit account for the soil moisture storage change is used to show that, in catchments with a strong seasonal coupling between precipitation and potential evaporation, climate aridity has a dominant control on intra-annual streamflow variability, but in other catchments, additional factors related to soil water storage change also have important controls on how precipitation seasonality propagates to streamflow. More importantly, use of leaf area index as a direct and indirect indicator of the above ground biomass and plant root system, respectively, reveals the vital role of vegetation in regulating soil moisture storage and hence streamflow intra-annual variability under different climate conditions.

  17. Individual Variability in Aerobic Fitness Adaptations to 70-d of Bed Rest and Exercise Training

    NASA Technical Reports Server (NTRS)

    Downs, Meghan; Buxton, Roxanne; Goetchius, Elizabeth; DeWitt, John; Ploutz-Snyder, Lori

    2016-01-01

    Change in maximal aerobic capacity (VO2pk) in response to exercise training and disuse is highly variable among individuals. Factors that could contribute to the observed variability (lean mass, daily activity, diet, sleep, stress) are not routinely controlled in studies. The NASA bed rest (BR) studies use a highly controlled hospital based model as an analog of spaceflight. In this study, diet, hydration, physical activity and light/dark cycles were precisely controlled and provided the opportunity to investigate individual variability. PURPOSE. Evaluate the contribution of exercise intensity and lean mass on change in VO2pk during 70-d of BR or BR + exercise. METHODS. Subjects completed 70-d of BR alone (CON, N=9) or BR + exercise (EX, N=17). The exercise prescription included 6 d/wk of aerobic exercise at 70 - 100% of max and 3 d/wk of lower body resistance exercise. Subjects were monitored 24 hr/d. VO2pk and lean mass (iDXA) were measured pre and post BR. ANOVA was used to evaluate changes in VO2pk pre to post BR. Subjects were retrospectively divided into high and low responders based on change in VO2pk (CON > 20% loss, n=5; EX >10% loss, n=4, or 5% gain, n=4) to further understand individual variability. RESULTS. VO2pk decreased from pre to post BR in CON (P<0.05) and was maintained in EX; however, significant individual variability was observed (CON: -22%, range: -39% to -.5%; EX: -1.8%, range: -16% to 12.6%). The overlap in ranges between groups included 3 CON who experienced smaller reduction in VO2pk (<16%) than the worst responding EX subjects. Individual variability was maintained when VO2pk was normalized to lean mass (range, CON: -33.7% to -5.7%; EX: -15.8% to 11%), and the overlap included 5 CON with smaller reductions in VO2pk than the worst responding EX subjects. High responders to disuse also lost the most lean mass; however, this relationship was not maintained in EX (i.e. the largest gains/losses in lean mass were observed in both high and low

  18. Quantifying Multi-variables in Urban Watershed Adaptation: Challenges and Opportunities

    EPA Science Inventory

    Climate change and rapid socioeconomic developments are considered to be the principle variables affecting evolution of an urban watershed, the forms and sustainability of its built environment. In the traditional approach, we are accustomed to the assumption of a stationary cli...

  19. Impact of experimental thermal amplitude on ectotherm performance: Adaptation to climate change variability?

    PubMed

    Folguera, Guillermo; Bastías, Daniel A; Bozinovic, Francisco

    2009-11-01

    Global climate change is one of the greatest threats to biodiversity; one of the most important effects is increase in the mean earth surface temperature. However, another but poorly studied main effect of global change appears to be an increase in temperature variability. Most of the current analyses of global change have focused on mean values, paying less attention to the role of the fluctuations of environmental variables. We tested the effects of daily thermal amplitude with constant mean (24-24 degrees C, 27-21 degrees C and 32-16 degrees C) on different performance traits (rollover speed, body mass balance and survival) in populations of woodlouse (Porcellio laevis) from two altitudes. We observed that maximum performance showed a significant effect of population in the first but not in the fifth week, and only the population effect was significant for optimum temperature. Interestingly, populations under higher amplitude in environmental temperature exhibited higher resistance to a fluctuating climatic regime. We suggest that our results indicate that thermal variability may produce important effects on biodiversity. Therefore, in order to develop more realistic scenarios of global climate change effects on biodiversity, the effects of thermal variability as well as mean need to be examined simultaneously.

  20. Adaptability in Crisis Management: The Role of Organizational Structure

    DTIC Science & Technology

    2013-06-01

    and hindrance stress : Relationships with exhaustion, motivation to learn, and learning performance. Journal of Applied Psychology , 89, 883-891...The notion of EOs is not new. Indeed, in organizational psychology and management sciences very similar concepts – for example, empowered self...role and implications of adaptability in relation to other aspects of teamwork and team effectiveness, for instance team cognition (e.g., shared

  1. Adaptive Techniques for Control of Large Space Structures.

    DTIC Science & Technology

    1984-12-01

    S1 a ) remais oiniall teruine the robt imss propertie% of adaptive stable. 1 hts. h\\ iheoi-cin 2. an) -regionl of local algorithms Ni oreose, . input...that Vg¢R ev + .[Hev(Jw)] 4 y and 1 He(iw) + Hey • ’I (4.8a) Then, bounds on lei 2 and 1o. can be obtained from: le-e~2 1 112*2 l~ 2 ’eo 12 [ie.* 2

  2. Spatial structure enhanced cooperation in dissatisfied adaptive snowdrift game

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Xu, Chen; Hui, Pak Ming

    2013-05-01

    The dissatisfied adaptive snowdrift game (DASG) describes the adaptive actions driven by the level of dissatisfaction when two connected agents interact. We study the DASG in static networks both numerically and analytically. In a random network of uniform degree k, the system evolves into a homogeneous state consisting only of cooperators when the cost-to-benefit ratio r < r 0 and a mixed phase with the coexistence of cooperators and defectors when r > r 0, where r 0 is a threshold. For an infinite population, the large k limit corresponding to the well-mixed case is solved analytically. A theory is developed based on the pair approximation. It gives the frequency of cooperation f c and the densities of different pairs that are in good agreement with simulation results. The results revealed that f c is enhanced in networked populations with a finite k, when compared with the well-mixed case. The reasons that the theory works well for the present model are traced back to the weak spatial correlation implied by the random network and the fact that the adaptive actions in DASG are driven only by the strategy pairs. The results shed light on the class of models that the pair approximation is applicable.

  3. Variability of Protein Structure Models from Electron Microscopy.

    PubMed

    Monroe, Lyman; Terashi, Genki; Kihara, Daisuke

    2017-03-02

    An increasing number of biomolecular structures are solved by electron microscopy (EM). However, the quality of structure models determined from EM maps vary substantially. To understand to what extent structure models are supported by information embedded in EM maps, we used two computational structure refinement methods to examine how much structures can be refined using a dataset of 49 maps with accompanying structure models. The extent of structure modification as well as the disagreement between refinement models produced by the two computational methods scaled inversely with the global and the local map resolutions. A general quantitative estimation of deviations of structures for particular map resolutions are provided. Our results indicate that the observed discrepancy between the deposited map and the refined models is due to the lack of structural information present in EM maps and thus these annotations must be used with caution for further applications.

  4. Adaptation paths to novel motor tasks are shaped by prior structure learning.

    PubMed

    Kobak, Dmitry; Mehring, Carsten

    2012-07-18

    After extensive practice with motor tasks sharing structural similarities (e.g., different dancing movements, or different sword techniques), new tasks of the same type can be learned faster. According to the recent "structure learning" hypothesis (Braun et al., 2009a), such rapid generalization of related motor skills relies on learning the dynamic and kinematic relationships shared by this set of skills. As a consequence, motor adaptation becomes constrained, effectively leading to a dimensionality reduction of the learning problem; at the same time, adaptation to tasks lying outside the structure becomes biased toward the structure. We tested these predictions by investigating how previously learned structures influence subsequent motor adaptation. Human subjects were making reaching movements in 3D virtual reality, experiencing perturbations either in the vertical or in the horizontal plane. Perturbations were either visuomotor rotations of varying angle or velocity-dependent forces of varying strength. We found that, after extensive training with both kinematic or dynamic perturbations, adaptation to unpracticed, diagonal, perturbations happened along the previously learned structure (vertical or horizontal), and resulting adaptation trajectories were curved. This effect is robust, can be observed on the single-subject level, and occurs during adaptation both within and across trials. Additionally, we demonstrate that structure learning changes involuntary visuomotor reflexes and therefore is not exclusively a high-level cognitive phenomenon.

  5. Structural variability of E. coli thioredoxin captured in the crystal structures of single-point mutants

    PubMed Central

    Noguera, Martín E.; Vazquez, Diego S.; Ferrer-Sueta, Gerardo; Agudelo, William A.; Howard, Eduardo; Rasia, Rodolfo M.; Manta, Bruno; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier

    2017-01-01

    Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity. PMID:28181556

  6. Structural variability of E. coli thioredoxin captured in the crystal structures of single-point mutants.

    PubMed

    Noguera, Martín E; Vazquez, Diego S; Ferrer-Sueta, Gerardo; Agudelo, William A; Howard, Eduardo; Rasia, Rodolfo M; Manta, Bruno; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier

    2017-02-09

    Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity.

  7. Structural variability of E. coli thioredoxin captured in the crystal structures of single-point mutants

    NASA Astrophysics Data System (ADS)

    Noguera, Martín E.; Vazquez, Diego S.; Ferrer-Sueta, Gerardo; Agudelo, William A.; Howard, Eduardo; Rasia, Rodolfo M.; Manta, Bruno; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier

    2017-02-01

    Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity.

  8. Clues to the Structure of AGN Through Massive Variability Surveys

    NASA Astrophysics Data System (ADS)

    Lawrence, A.

    2016-06-01

    Variability studies hold information on otherwise unresolvable regions in Active Galactic Nuclei (AGN). Population studies of large samples likewise have been very productive for our understanding of AGN. These two themes are coming together in the idea of systematic variability studies of large samples - with SDSS, PanSTARRS, and soon, LSST. I summarise what we have learned about the optical and UV variability of AGN, and what it tells us about accretion discs and the BLR. The most exciting recent results have focused on rare large-scale outbursts and collapses - Tidal Disruption Events, changing-look AGN, and large amplitude microlensing. All of these promise to give us new insight into AGN physics.

  9. The value of seasonal forecasting and crop mix adaptation to climate variability for agriculture under climate change

    NASA Astrophysics Data System (ADS)

    Choi, H. S.; Schneider, U.; Schmid, E.; Held, H.

    2012-04-01

    Changes to climate variability and frequency of extreme weather events are expected to impose damages to the agricultural sector. Seasonal forecasting and long range prediction skills have received attention as an option to adapt to climate change because seasonal climate and yield predictions could improve farmers' management decisions. The value of seasonal forecasting skill is assessed with a crop mix adaptation option in Spain where drought conditions are prevalent. Yield impacts of climate are simulated for six crops (wheat, barely, cotton, potato, corn and rice) with the EPIC (Environmental Policy Integrated Climate) model. Daily weather data over the period 1961 to 1990 are used and are generated by the regional climate model REMO as reference period for climate projection. Climate information and its consequent yield variability information are given to the stochastic agricultural sector model to calculate the value of climate information in the agricultural market. Expected consumers' market surplus and producers' revenue is compared with and without employing climate forecast information. We find that seasonal forecasting benefits not only consumers but also producers if the latter adopt a strategic crop mix. This mix differs from historical crop mixes by having higher shares of crops which fare relatively well under climate change. The corresponding value of information is highly sensitive to farmers' crop mix choices.

  10. Structural brain correlates of heart rate variability in a healthy young adult population.

    PubMed

    Winkelmann, Tobias; Thayer, Julian F; Pohlack, Sebastian; Nees, Frauke; Grimm, Oliver; Flor, Herta

    2017-03-01

    The high frequency component of heart rate variability (HRV) has reliably been shown to serve as an index of autonomic inhibitory control and is increasingly considered as a biomarker of adaptability and health. While several functional neuroimaging studies identified associations between regional cerebral blood flow and HRV, studies on structural brain correlates of HRV are scarce. We investigated whether interindividual differences in HRV are related to brain morphology in healthy humans. Thirty participants underwent HRV recording at rest subsequent to structural magnetic resonance imaging. Cortical reconstruction and subcortical volumetry were performed with the Freesurfer image analysis suite. The amount of resting HRV was positively correlated with the cortical thickness of an area within the right anterior midcingulate cortex (aMCC). Consistent with existing studies implicating forebrain regions in cardiac regulation, our findings show that the thickness of the right aMCC is associated with the degree of parasympathetic regulation of heart rate. Evidence for the neural correlates of interindividual differences in HRV may complement our understanding of the mechanisms underlying the association between HRV and self-regulatory capacity.

  11. Nonlinear Effects of Nanoparticles: Biological Variability From Hormetic Doses, Small Particle Sizes, and Dynamic Adaptive Interactions

    PubMed Central

    Bell, Iris R.; Ives, John A.; Jonas, Wayne B.

    2014-01-01

    Researchers are increasingly focused on the nanoscale level of organization where biological processes take place in living systems. Nanoparticles (NPs, e.g., 1–100 nm diameter) are small forms of natural or manufactured source material whose properties differ markedly from those of the respective bulk forms of the “same” material. Certain NPs have diagnostic and therapeutic uses; some NPs exhibit low-dose toxicity; other NPs show ability to stimulate low-dose adaptive responses (hormesis). Beyond dose, size, shape, and surface charge variations of NPs evoke nonlinear responses in complex adaptive systems. NPs acquire unique size-dependent biological, chemical, thermal, optical, electromagnetic, and atom-like quantum properties. Nanoparticles exhibit high surface adsorptive capacity for other substances, enhanced bioavailability, and ability to cross otherwise impermeable cell membranes including the blood-brain barrier. With super-potent effects, nano-forms can evoke cellular stress responses or therapeutic effects not only at lower doses than their bulk forms, but also for longer periods of time. Interactions of initial effects and compensatory systemic responses can alter the impact of NPs over time. Taken together, the data suggest the need to downshift the dose-response curve of NPs from that for bulk forms in order to identify the necessarily decreased no-observed-adverse-effect-level and hormetic dose range for nanoparticles. PMID:24910581

  12. Nonlinear effects of nanoparticles: biological variability from hormetic doses, small particle sizes, and dynamic adaptive interactions.

    PubMed

    Bell, Iris R; Ives, John A; Jonas, Wayne B

    2014-05-01

    Researchers are increasingly focused on the nanoscale level of organization where biological processes take place in living systems. Nanoparticles (NPs, e.g., 1-100 nm diameter) are small forms of natural or manufactured source material whose properties differ markedly from those of the respective bulk forms of the "same" material. Certain NPs have diagnostic and therapeutic uses; some NPs exhibit low-dose toxicity; other NPs show ability to stimulate low-dose adaptive responses (hormesis). Beyond dose, size, shape, and surface charge variations of NPs evoke nonlinear responses in complex adaptive systems. NPs acquire unique size-dependent biological, chemical, thermal, optical, electromagnetic, and atom-like quantum properties. Nanoparticles exhibit high surface adsorptive capacity for other substances, enhanced bioavailability, and ability to cross otherwise impermeable cell membranes including the blood-brain barrier. With super-potent effects, nano-forms can evoke cellular stress responses or therapeutic effects not only at lower doses than their bulk forms, but also for longer periods of time. Interactions of initial effects and compensatory systemic responses can alter the impact of NPs over time. Taken together, the data suggest the need to downshift the dose-response curve of NPs from that for bulk forms in order to identify the necessarily decreased no-observed-adverse-effect-level and hormetic dose range for nanoparticles.

  13. Fundamental Advances in Inverse Mechanics Towards Self-Aware and Intrinsically Adaptable Structural Systems

    DTIC Science & Technology

    2014-11-30

    AFRL-OSR-VA-TR-2015-0007 FUNDAMENTAL ADVANCES IN INVERSE MECHANICS TOWARDS SELF-AWARE JOHN BRIGHAM UNIVERSITY OF PITTSBURGH Final Report 12/04/2014...TITLE AND SUBTITLE Fundamental Advances in Inverse Mechanics Towards Self-Aware and Intrinsically Adaptable Structural Systems 5a. CONTRACT NUMBER...methods for solving inverse problems related to smart morphable structures that can evaluate their current environment and then adapt accordingly to

  14. A Structure-Adaptive Hybrid RBF-BP Classifier with an Optimized Learning Strategy.

    PubMed

    Wen, Hui; Xie, Weixin; Pei, Jihong

    2016-01-01

    This paper presents a structure-adaptive hybrid RBF-BP (SAHRBF-BP) classifier with an optimized learning strategy. SAHRBF-BP is composed of a structure-adaptive RBF network and a BP network of cascade, where the number of RBF hidden nodes is adjusted adaptively according to the distribution of sample space, the adaptive RBF network is used for nonlinear kernel mapping and the BP network is used for nonlinear classification. The optimized learning strategy is as follows: firstly, a potential function is introduced into training sample space to adaptively determine the number of initial RBF hidden nodes and node parameters, and a form of heterogeneous samples repulsive force is designed to further optimize each generated RBF hidden node parameters, the optimized structure-adaptive RBF network is used for adaptively nonlinear mapping the sample space; then, according to the number of adaptively generated RBF hidden nodes, the number of subsequent BP input nodes can be determined, and the overall SAHRBF-BP classifier is built up; finally, different training sample sets are used to train the BP network parameters in SAHRBF-BP. Compared with other algorithms applied to different data sets, experiments show the superiority of SAHRBF-BP. Especially on most low dimensional and large number of data sets, the classification performance of SAHRBF-BP outperforms other training SLFNs algorithms.

  15. A Structure-Adaptive Hybrid RBF-BP Classifier with an Optimized Learning Strategy

    PubMed Central

    Wen, Hui; Xie, Weixin; Pei, Jihong

    2016-01-01

    This paper presents a structure-adaptive hybrid RBF-BP (SAHRBF-BP) classifier with an optimized learning strategy. SAHRBF-BP is composed of a structure-adaptive RBF network and a BP network of cascade, where the number of RBF hidden nodes is adjusted adaptively according to the distribution of sample space, the adaptive RBF network is used for nonlinear kernel mapping and the BP network is used for nonlinear classification. The optimized learning strategy is as follows: firstly, a potential function is introduced into training sample space to adaptively determine the number of initial RBF hidden nodes and node parameters, and a form of heterogeneous samples repulsive force is designed to further optimize each generated RBF hidden node parameters, the optimized structure-adaptive RBF network is used for adaptively nonlinear mapping the sample space; then, according to the number of adaptively generated RBF hidden nodes, the number of subsequent BP input nodes can be determined, and the overall SAHRBF-BP classifier is built up; finally, different training sample sets are used to train the BP network parameters in SAHRBF-BP. Compared with other algorithms applied to different data sets, experiments show the superiority of SAHRBF-BP. Especially on most low dimensional and large number of data sets, the classification performance of SAHRBF-BP outperforms other training SLFNs algorithms. PMID:27792737

  16. Vegetation regulates streamflow intra-annual variability by adapting to climate variations

    NASA Astrophysics Data System (ADS)

    Ye, S.; Li, H. Y.; Li, S.; Leung, L. R.; Demissie, Y.; Ran, Q.; Bloeschl, G.

    2015-12-01

    This study aims to provide a mechanistic explanation of the empirical findings on the emergent patterns of streamflow intra-annual variability reported in a companion data-driven study across the contiguous United States. A mathematical extension of the Budyko formula with explicit accounts for the soil moisture storage change is introduced with a focus on the intra-annual variability of streamflow. The mathematical extension is then used to systematically examine the relative contributions of the intra-annual variability of precipitation, potential evaporative energy, soil water storage change and their co-variances. It is shown that, apart from aridity index whose importance has been recognized before, the variance of soil water storage change, its covariance with precipitation and the coupling of the seasonality in precipitation and potential evaporation are relatively more influential than the other factors. More importantly, the vital role of vegetation affecting streamflow intra-annual variability through regulating soil moisture storage is revealed under different climate conditions by using Leaf Area Index as an indicator of the above ground biomass directly and plant root system indirectly. In Mediterranean catchments where the water and energy cycles are out of phase, more persistent vegetation types (i.e. evergreen forests) are established with advanced root system to maximize the usage soil moisture. While in less humid catchments where precipitation and potential evaporation are more synchronous, recurrent vegetation types (i.e. deciduous forests, pastures) take over the dominance. Moreover, the two emerging classes in how vegetation correlates to the synchronism of EP and P suggest the recurring influence of aridity index: vegetation in arid catchments inclines to be more efficient in water usage to maintain a more persistent above ground gross production.

  17. Smallholder agriculture in India and adaptation to current and future climate variability and climate change

    NASA Astrophysics Data System (ADS)

    Murari, K. K.; Jayaraman, T.

    2014-12-01

    Modeling studies have indicated that global warming, in many regions, will increase the exposure of major crops to rainfall and temperature stress, leading to lower crop yields. Climate variability alone has a potential to decrease yield to an extent comparable to or greater than yield reductions expected due to rising temperature. For India, where agriculture is important, both in terms of food security as well as a source of livelihoods to a majority of its population, climate variability and climate change are subjects of serious concern. There is however a need to distinguish the impact of current climate variability and climate change on Indian agriculture, especially in relation to their socioeconomic impact. This differentiation is difficult to determine due to the secular trend of increasing production and yield of the past several decades. The current research in this aspect is in an initial stage and requires a multi-disciplinary effort. In this study, we assess the potential differential impacts of environmental stress and shock across different socioeconomic strata of the rural population, using village level survey data. The survey data from eight selected villages, based on the Project on Agrarian Relations in India conducted by the Foundation for Agrarian Studies, indicated that income from crop production of the top 20 households (based on the extent of operational land holding, employment of hired labour and asset holdings) is a multiple of the mean income of the village. In sharp contrast, the income of the bottom 20 households is a fraction of the mean and sometimes negative, indicating a net loss from crop production. The considerable differentials in output and incomes suggest that small and marginal farmers are far more susceptible to climate variability and climate change than the other sections. Climate change is effectively an immediate threat to small and marginal farmers, which is driven essentially by socioeconomic conditions. The impact

  18. A hierarchical structure for automatic meshing and adaptive FEM analysis

    NASA Technical Reports Server (NTRS)

    Kela, Ajay; Saxena, Mukul; Perucchio, Renato

    1987-01-01

    A new algorithm for generating automatically, from solid models of mechanical parts, finite element meshes that are organized as spatially addressable quaternary trees (for 2-D work) or octal trees (for 3-D work) is discussed. Because such meshes are inherently hierarchical as well as spatially addressable, they permit efficient substructuring techniques to be used for both global analysis and incremental remeshing and reanalysis. The global and incremental techniques are summarized and some results from an experimental closed loop 2-D system in which meshing, analysis, error evaluation, and remeshing and reanalysis are done automatically and adaptively are presented. The implementation of 3-D work is briefly discussed.

  19. Variable Resistance Training Promotes Greater Strength and Power Adaptations Than Traditional Resistance Training in Elite Youth Rugby League Players.

    PubMed

    Rivière, Maxence; Louit, Loic; Strokosch, Alasdair; Seitz, Laurent B

    2017-04-01

    Rivière, M, Louit, L, Strokosch, A, and Seitz, LB. Variable resistance training promotes greater strength and power adaptations than traditional resistance training in elite youth rugby league players. J Strength Cond Res 31(4): 947-955, 2017-The purpose of this study was to examine the strength, velocity, and power adaptations in youth rugby league players in response to a variable resistance training (VRT) or traditional free-weight resistance training (TRAD) intervention. Sixteen elite youth players were assigned to a VRT or TRAD group and completed 2 weekly upper- and lower-body strength and power sessions for 6 weeks. Training programs were identical except that the VRT group trained the bench press exercise with 20% of the prescribed load coming from elastic bands. Bench press 1 repetition maximum (1RM) and bench press mean velocity and power at 35, 45, 65, 75, and 85% of 1RM were measured before and after the training intervention, and the magnitude of the changes was determined using effect sizes (ESs). The VRT group experienced larger increases in both absolute (ES = 0.46 vs. 0.20) and relative (ES = 0.41 vs. 0.19) bench press 1RM. Similar results were observed for mean velocity as well as both absolute and relative mean power at 35, 45, 65, 75, and 85% of 1RM. Furthermore, both groups experienced large gains in both velocity and power in the heavier loads but small improvements in the lighter loads. The improvements in both velocity and power against the heavier loads were larger for the VRT group, whereas smaller differences existed between the 2 groups in the lighter loads. Variable resistance training using elastic bands may offer a greater training stimulus than traditional free-weight resistance training to improve upper-body strength, velocity, and power in elite youth rugby league players.

  20. Application of adaptive trusses to vibration isolation in flexible structures

    NASA Technical Reports Server (NTRS)

    Clark, William W.; Robertshaw, Harry H.

    1992-01-01

    It is shown through analysis that force feedback can be used to provide complete vibration isolation in two directions. Simultations were carried out to demonstrate the use of two control methods applied to an adaptive truss as an active mount. The first technique was simple force feedback with a gain. This method has the potential to provide excellent vibration isolation performance. It requires no model of the system and no knowledge of the applied disturbance, and is easily implemented in an adaptive truss. There is some question as to how high the gain can be allowed to go but the experimental results have shown performance advantages over passive techniques even for small gains. The second technique presented is the LQR method, with disturbance modeling. A method is presented for using the LQR method for vibration isolation with the intention of achieving performance with guaranteed stability and relatively lower loop gains. The overhead for those benefits is an accurate system model. It was shown analytically that this method works; however, the performance is not as good as expected. It is believed that the difference in performance is partly due to an increase in active damping which is inadvertently provided by the LQR method.

  1. Structural, Linguistic and Topic Variables in Verbal and Computational Problems in Elementary Mathematics.

    ERIC Educational Resources Information Center

    Beardslee, Edward C.; Jerman, Max E.

    Five structural, four linguistic and twelve topic variables are used in regression analyses on results of a 50-item achievement test. The test items are related to 12 topics from the third-grade mathematics curriculum. The items reflect one of two cases of the structural variable, cognitive level; the two levels are characterized, inductive…

  2. Adaptive Neural Control for Space Structure Vibration Suppression.

    DTIC Science & Technology

    1996-08-01

    Hierarchy of Modular Nebular Structures Progressing from Basic Constituents to Higher-Level Modules...Systems Replicator Networks Dynamic Ganglia & Toeplitz Synapses Individual Neurons Figure 2-2: Hierarchy of Modular Nebular Structures Progressing from...significant portion of the low frequency drift was traced to the round-off problems with ARMA replicators discovered in ANC 10. Our next hypothesis was

  3. A conforming to interface structured adaptive mesh refinement technique for modeling fracture problems

    NASA Astrophysics Data System (ADS)

    Soghrati, Soheil; Xiao, Fei; Nagarajan, Anand

    2016-12-01

    A Conforming to Interface Structured Adaptive Mesh Refinement (CISAMR) technique is introduced for the automated transformation of a structured grid into a conforming mesh with appropriate element aspect ratios. The CISAMR algorithm is composed of three main phases: (i) Structured Adaptive Mesh Refinement (SAMR) of the background grid; (ii) r-adaptivity of the nodes of elements cut by the crack; (iii) sub-triangulation of the elements deformed during the r-adaptivity process and those with hanging nodes generated during the SAMR process. The required considerations for the treatment of crack tips and branching cracks are also discussed in this manuscript. Regardless of the complexity of the problem geometry and without using iterative smoothing or optimization techniques, CISAMR ensures that aspect ratios of conforming elements are lower than three. Multiple numerical examples are presented to demonstrate the application of CISAMR for modeling linear elastic fracture problems with intricate morphologies.

  4. A conforming to interface structured adaptive mesh refinement technique for modeling fracture problems

    NASA Astrophysics Data System (ADS)

    Soghrati, Soheil; Xiao, Fei; Nagarajan, Anand

    2017-04-01

    A Conforming to Interface Structured Adaptive Mesh Refinement (CISAMR) technique is introduced for the automated transformation of a structured grid into a conforming mesh with appropriate element aspect ratios. The CISAMR algorithm is composed of three main phases: (i) Structured Adaptive Mesh Refinement (SAMR) of the background grid; (ii) r-adaptivity of the nodes of elements cut by the crack; (iii) sub-triangulation of the elements deformed during the r-adaptivity process and those with hanging nodes generated during the SAMR process. The required considerations for the treatment of crack tips and branching cracks are also discussed in this manuscript. Regardless of the complexity of the problem geometry and without using iterative smoothing or optimization techniques, CISAMR ensures that aspect ratios of conforming elements are lower than three. Multiple numerical examples are presented to demonstrate the application of CISAMR for modeling linear elastic fracture problems with intricate morphologies.

  5. Species-specific adaptations explain resilience of herbaceous understorey to increased precipitation variability in a Mediterranean oak woodland.

    PubMed

    Jongen, Marjan; Hellmann, Christine; Unger, Stephan

    2015-10-01

    To date, the implications of the predicted greater intra-annual variability and extremes in precipitation on ecosystem functioning have received little attention. This study presents results on leaf-level physiological responses of five species covering the functional groups grasses, forbs, and legumes in the understorey of a Mediterranean oak woodland, with increasing precipitation variability, without altering total annual precipitation inputs. Although extending the dry period between precipitation events from 3 to 6 weeks led to increased soil moisture deficit, overall treatment effects on photosynthetic performance were not observed in the studied species. This resilience to prolonged water stress was explained by different physiological and morphological strategies to withstand periods below the wilting point, that is, isohydric behavior in Agrostis, Rumex, and Tuberaria, leaf succulence in Rumex, and taproots in Tolpis. In addition, quick recovery upon irrigation events and species-specific adaptations of water-use efficiency with longer dry periods and larger precipitation events contributed to the observed resilience in productivity of the annual plant community. Although none of the species exhibited a change in cover with increasing precipitation variability, leaf physiology of the legume Ornithopus exhibited signs of sensitivity to moisture deficit, which may have implications for the agricultural practice of seeding legume-rich mixtures in Mediterranean grassland-type systems. This highlights the need for long-term precipitation manipulation experiments to capture possible directional changes in species composition and seed bank development, which can subsequently affect ecosystem state and functioning.

  6. Decision-Making for Adaptation Investment in a Highly Variable Climate

    NASA Astrophysics Data System (ADS)

    Enda O'Connell, P.; O'Donnell, Greg; Hall, Jim; Blenkinsop, Stephen

    2010-05-01

    Methodologies for determining flood protection investments have traditionally relied on past hydrological records being stationary and therefore statistically representative of future conditions. Due to climate change, it has been suggested that the hypothesis of stationarity for hydrological time series models is no longer tenable, and that nonstationarity must be invoked. However, while this proposition is very plausible, nonstationarity represents a highly intractable assumption in that it can take many different forms, and the usual processes of statistical averaging used in calculating means, variances and covariances can no longer be invoked. It is suggested that, before stationarity is discarded, its limits should be explored more fully by using stationary time series models that exhibit long-term variability/persistence to explore investment strategies as a function of increasing levels of variability in hydrological time series. One such model, the ARMA (1,1) model, is employed here in a virtual case study where a flood protection investment problem is formulated as the optimization of a cost-benefit function for different levels of persistence and knowledge of the pdf of annual flood maxima. Do nothing, reactive and proactive investment strategies are formulated, and results for each in terms of costs and damages will be presented.

  7. An object-oriented approach for parallel self adaptive mesh refinement on block structured grids

    NASA Technical Reports Server (NTRS)

    Lemke, Max; Witsch, Kristian; Quinlan, Daniel

    1993-01-01

    Self-adaptive mesh refinement dynamically matches the computational demands of a solver for partial differential equations to the activity in the application's domain. In this paper we present two C++ class libraries, P++ and AMR++, which significantly simplify the development of sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory architectures. The development is based on our previous research in this area. The C++ class libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement applications into those of parallelism, abstracted by P++, and adaptive mesh refinement, abstracted by AMR++. P++ is a parallel array class library to permit efficient development of architecture independent codes for structured grid applications, and AMR++ provides support for self-adaptive mesh refinement on block-structured grids of rectangular non-overlapping blocks. Using these libraries, the application programmers' work is greatly simplified to primarily specifying the serial single grid application and obtaining the parallel and self-adaptive mesh refinement code with minimal effort. Initial results for simple singular perturbation problems solved by self-adaptive multilevel techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++ environment, are presented. Singular perturbation problems frequently arise in large applications, e.g. in the area of computational fluid dynamics. They usually have solutions with layers which require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.

  8. Health monitoring of bridgelike structures using state variable models

    NASA Astrophysics Data System (ADS)

    Valentin-Sivico, Javier; Rao, Vittal S.; Koval, Leslie R.

    1997-05-01

    A global damage detection method for civil engineering structures is proposed. This method provides the capability of determining the reduction in both stiffness and damping parameters of the structural elements. The proposed method uses the state-space representation of the structural dynamics to make the diagnosis of structural integrity. Given that the state-space representation of any system is not unique, the damage detection procedure is developed for the physical coordinates of the state-space representation. A transformation matrix to get any arbitrary state-space representation into the physical coordinates is also utilized. The feasibility of the proposed method is verified on a numerical example as well as on a simulated three-bar truss structure with 3 degrees of freedom.

  9. Structured estimation - Sample size reduction for adaptive pattern classification

    NASA Technical Reports Server (NTRS)

    Morgera, S.; Cooper, D. B.

    1977-01-01

    The Gaussian two-category classification problem with known category mean value vectors and identical but unknown category covariance matrices is considered. The weight vector depends on the unknown common covariance matrix, so the procedure is to estimate the covariance matrix in order to obtain an estimate of the optimum weight vector. The measure of performance for the adapted classifier is the output signal-to-interference noise ratio (SIR). A simple approximation for the expected SIR is gained by using the general sample covariance matrix estimator; this performance is both signal and true covariance matrix independent. An approximation is also found for the expected SIR obtained by using a Toeplitz form covariance matrix estimator; this performance is found to be dependent on both the signal and the true covariance matrix.

  10. Active noise control using noise source having adaptive resonant frequency tuning through variable ring loading

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud.

  11. Complex Adaptive Systems and the Origins of Adaptive Structure: What Experiments Can Tell Us

    ERIC Educational Resources Information Center

    Cornish, Hannah; Tamariz, Monica; Kirby, Simon

    2009-01-01

    Language is a product of both biological and cultural evolution. Clues to the origins of key structural properties of language can be found in the process of cultural transmission between learners. Recent experiments have shown that iterated learning by human participants in the laboratory transforms an initially unstructured artificial language…

  12. Variability in thermal and phototactic preferences in Drosophila may reflect an adaptive bet‐hedging strategy

    PubMed Central

    Kain, Jamey S.; Zhang, Sarah; Akhund‐Zade, Jamilla; Samuel, Aravinthan D. T.; Klein, Mason; de Bivort, Benjamin L.

    2015-01-01

    Organisms use various strategies to cope with fluctuating environmental conditions. In diversified bet‐hedging, a single genotype exhibits phenotypic heterogeneity with the expectation that some individuals will survive transient selective pressures. To date, empirical evidence for bet‐hedging is scarce. Here, we observe that individual Drosophila melanogaster flies exhibit striking variation in light‐ and temperature‐preference behaviors. With a modeling approach that combines real world weather and climate data to simulate temperature preference‐dependent survival and reproduction, we find that a bet‐hedging strategy may underlie the observed interindividual behavioral diversity. Specifically, bet‐hedging outcompetes strategies in which individual thermal preferences are heritable. Animals employing bet‐hedging refrain from adapting to the coolness of spring with increased warm‐seeking that inevitably becomes counterproductive in the hot summer. This strategy is particularly valuable when mean seasonal temperatures are typical, or when there is considerable fluctuation in temperature within the season. The model predicts, and we experimentally verify, that the behaviors of individual flies are not heritable. Finally, we model the effects of historical weather data, climate change, and geographic seasonal variation on the optimal strategies underlying behavioral variation between individuals, characterizing the regimes in which bet‐hedging is advantageous. PMID:26531165

  13. Mechanisms of phytoplankton adaptation to environmental variability in a shelf ecosystem

    NASA Astrophysics Data System (ADS)

    Barlow, R.; Lamont, T.; Britz, K.; Sessions, H.

    2013-11-01

    Phytoplankton absorption, pigments and active fluorescence were investigated at five focus sites in a shelf region during summer and winter to elucidate the adaptation of communities to changing environmental conditions. We determined that the availability of nutrients and changing irradiance were the key drivers of phytoplankton growth and photoacclimation in an ecosystem influenced by a warm western boundary current. Diatoms dominated the communities in the winter, while mixed diatom-flagellate populations generally prevailed in summer. Prokaryotes were dominant in the surface layer at one site where warm water flowed onto the shelf. Diatom and flagellate communities were associated with cooler, lower salinity water and prokaryotes with warm, higher salinity water. Populations appeared not be nutrient stressed and actively drew down silicates and nitrates, with nitrates being rapidly utilized resulting in low ambient nitrate levels in the upper water column. The phytoplankton acclimated to changing irradiance conditions by increasing the quantum yield of photochemistry with decreasing irradiance and adjusting the absorption of light by accessory pigments. Prokaryote dominated communities had high chlorophyll-specific absorption coefficients, and a high proportion of spectral absorption by chlorophyll a and photoprotective carotenoids. Diatoms had low chlorophyll-specific absorption and elevated absorption by photosynthetic carotenoids and chlorophyll c. Although flagellate-dominated communities had intermediate chlorophyll-specific absorption, their proportion of absorption by photosynthetic carotenoids and chlorophyll c was similar to the diatoms.

  14. Insights into the selective pressures restricting Pelargonium flower break virus genome variability: Evidence for host adaptation.

    PubMed

    Rico, Patricia; Ivars, Pilar; Elena, Santiago F; Hernández, Carmen

    2006-08-01

    The molecular diversity of Pelargonium flower break virus (PFBV) was assessed using a collection of isolates from different geographical origins, hosts, and collecting times. The genomic region examined was 1,828 nucleotides (nt) long and comprised the coding sequences for the movement (p7 and p12) and the coat (CP) proteins, as well as flanking segments including the entire 3' untranslated region (3' UTR). Some constraints limiting viral heterogeneity could be inferred from sequence analyses, such as the conservation of the amino acid sequences of p7 and of the shell domain of the CP, the maintenance of a leucine zipper motif in p12, and the preservation of a particular folding in the 3' UTR. A remarkable covariation, involving five specific amino acid sites, was found in the CP of isolates largely propagated in the local lesion host Chenopodium quinoa and in the progeny of a PFBV variant subjected to serial passages in this host. Concomitant with this covariation, up to 30 nucleotide substitutions in a 1,428-nt region of the viral RNA could be attributable to C. quinoa-specific adaptation, representing one of the most outstanding cases of host-driven genome variation for a plant virus. Globally, the results indicate that the selective pressures exerted by the host play a critical role in shaping PFBV populations and that these populations are likely being selected for at both protein and RNA levels.

  15. Enhancing the flexibility and adaptability of the DARC structural representation for computer-aided drug design.

    PubMed

    Sobel, Y; Vizet, P; Chemtob, S; Barbieux, F; Mercier, C

    1998-01-01

    Noticeable progress has been achieved in the determination of dynamic topochromatic variables for the structural representation of compounds and their situation in a given population. These independent structural variables can be further combined into more complex variables. Their contributions to the evolution of an associated property can therefore be evaluated with certainty. The risk of having correlated variables is avoided while the structural description remains exhaustive. In order to enhance the interpretative ability of the QSAR model, one or several physicochemical properties can be taken with these structural parameters as explanatory variables. Typically, partition coefficients, 3-D and quantum mechanical data are used for this purpose. The structural aspects not taken into account by the physicochemical parameters are reflected in the remaining topochromatic variables. The use of these new concepts is presented in a study of carbazole mutagenicity. The model explains 99% of the total variance with one external property and four additional topochromatic variables. The modulation of the heat of formation of an intermediate by two topochromatic variables suggests a much more precise interpretation than a simple combination of the usual external variables.

  16. Spectral Variability and Cloud Structure in Luhman 16AB

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Gillon, M.; Faherty, J. K.; Triaud, A.; Street, R.

    2014-01-01

    We report resolved near-infrared spectroscopic monitoring observations of the nearby L dwarf/T dwarf binary WISE J104915.57-531906.1AB (aka Luhman 16AB), as part of a broader campaign to characterize the spectral energy distribution and temporal variability of this source. A continuous 45-minute sequence of low-resolution spectra spanning 0.8-2.4 µm was obtained with IRTF/SpeX, concurrent with combined-light optical photometry with TRAPPIST. Our integrated spectral observations confirm the flux reversal of this binary, with the T dwarf secondary being brighter from 0.8-1.5 µm. We observe a wavelength-dependent decline in the relative fluxes of the two components over the course of the observation, concurrent with a decline in the optical brightness of the combined light system, variations that can be successfully modeled with both achromatic (brightness) and chromatic (color) variations in Luhma 16B, assuming Luhma 16A to be nonvariable. We estimate a peak-to-peak amplitude of 13.5% at 1.25 µm over the full lightcurve, intermediate in amplitude and period as the variable early-T dwarfs SIMP 0136+0933 and 2MASS J2139+0220 confirm the correlation suggested by Apai et al. assuming spot sizes are set by the atmospheric Rhines scale. Using a simple two-layer brightness-temperature model, we infer a cloud coverage fraction of 33--57% than varies by up to 50% assuming a 300 K difference between cool cloud tops and hot "holes". The strong variability of Luhman 16B combined with the relative spectral intensities of the A and B components support the model of a patchy disruption of the mineral cloud layer across the L dwarf/T dwarf transition.

  17. Continuous-variable quantum teleportation in bosonic structured environments

    SciTech Connect

    He Guangqiang; Zhang Jingtao; Zhu Jun; Zeng Guihua

    2011-09-15

    The effects of dynamics of continuous-variable entanglement under the various kinds of environments on quantum teleportation are quantitatively investigated. Only under assumption of the weak system-reservoir interaction, the evolution of teleportation fidelity is analytically derived and is numerically plotted in terms of environment parameters including reservoir temperature and its spectral density, without Markovian and rotating wave approximations. We find that the fidelity of teleportation is a monotonically decreasing function for Markovian interaction in Ohmic-like environments, while it oscillates for non-Markovian ones. According to the dynamical laws of teleportation, teleportation with better performances can be implemented by selecting the appropriate time.

  18. Inter-Individual Variability in the Adaptive Responses to Endurance and Sprint Interval Training: A Randomized Crossover Study

    PubMed Central

    Rotundo, Mario P.; Whittall, Jonathan P.; Scribbans, Trisha D.; Graham, Ryan B.; Gurd, Brendon J.

    2016-01-01

    The current study examined the adaptive response to both endurance (END) and sprint interval training (SIT) in a group of twenty-one recreationally active adults. All participants completed three weeks (four days/ week) of both END (30 minutes at ~65% VO2peak work rate (WR) and SIT (eight, 20-second intervals at ~170% VO2peak WR separated by 10 seconds of active rest) following a randomized crossover study design with a three-month washout period between training interventions. While a main effect of training was observed for VO2peak, lactate threshold, and submaximal heart rate (HR), considerable variability was observed in the individual responses to both END and SIT. No significant positive relationships were observed between END and SIT for individual changes in any variable. Non-responses were determined using two times the typical error (TE) of measurement for VO2peak (0.107 L/min), lactate threshold (15.7 W), and submaximal HR (10.7bpm). Non-responders in VO2peak, lactate threshold, and submaximal HR were observed following both END and SIT, however, the individual patterns of response differed following END and SIT. Interestingly, all individuals responded in at least one variable when exposed to both END and SIT. These results suggest that the individual response to exercise training is highly variable following different training protocols and that the incidence of non-response to exercise training may be reduced by changing the training stimulus for non-responders to three weeks of END or SIT. PMID:27936084

  19. Classification and assessment of water bodies as adaptive structural measures for flood risk management planning.

    PubMed

    McMinn, William R; Yang, Qinli; Scholz, Miklas

    2010-09-01

    Severe rainfall events have become increasingly common in Europe. Flood defence engineering works are highly capital intensive and can be limited by land availability, leaving land and communities exposed to repeated flooding. Any adaptive drainage structure must have engineered inlets and outlets that control the water level and the rate of release. In Scotland, there are a relatively high number of drinking water reservoirs (operated by Scottish Water), which fall within this defined category and could contribute to flood management control. Reducing the rate of runoff from the upper reaches of a catchment will reduce the volume and peak flows of flood events downstream, thus allowing flood defences to be reduced in size, decreasing the corresponding capital costs. A database of retention basins with flood control potential has been developed for Scotland. The research shows that the majority of small and former drinking water reservoirs are kept full and their spillways are continuously in operation. Utilising some of the available capacity to contribute to flood control could reduce the costs of complying with the EU Flood Directive. Furthermore, the application of a previously developed classification model for Baden in Germany for the Scottish data set showed a lower diversity for basins in Scotland due to less developed infrastructure. The principle value of this approach is a clear and unambiguous categorisation, based on standard variables, which can help to promote communication and understanding between stakeholders.

  20. Computation identifies structural features that govern neuronal firing properties in slowly adapting touch receptors.

    PubMed

    Lesniak, Daine R; Marshall, Kara L; Wellnitz, Scott A; Jenkins, Blair A; Baba, Yoshichika; Rasband, Matthew N; Gerling, Gregory J; Lumpkin, Ellen A

    2014-01-01

    Touch is encoded by cutaneous sensory neurons with diverse morphologies and physiological outputs. How neuronal architecture influences response properties is unknown. To elucidate the origin of firing patterns in branched mechanoreceptors, we combined neuroanatomy, electrophysiology and computation to analyze mouse slowly adapting type I (SAI) afferents. These vertebrate touch receptors, which innervate Merkel cells, encode shape and texture. SAI afferents displayed a high degree of variability in touch-evoked firing and peripheral anatomy. The functional consequence of differences in anatomical architecture was tested by constructing network models representing sequential steps of mechanosensory encoding: skin displacement at touch receptors, mechanotransduction and action-potential initiation. A systematic survey of arbor configurations predicted that the arrangement of mechanotransduction sites at heminodes is a key structural feature that accounts in part for an afferent's firing properties. These findings identify an anatomical correlate and plausible mechanism to explain the driver effect first described by Adrian and Zotterman. DOI: http://dx.doi.org/10.7554/eLife.01488.001.

  1. Velocity structure in long period variable star atmospheres

    NASA Technical Reports Server (NTRS)

    Pilachowski, C.; Wallerstein, G.; Willson, L. A.

    1980-01-01

    A regression analysis of the dependence of absorption line velocities on wavelength, line strength, excitation potential, and ionization potential is presented. The method determines the region of formation of the absorption lines for a given data and wavelength region. It is concluded that the scatter which is frequently found in velocity measurements of absorption lines in long period variables is probably the result of a shock of moderate amplitude located in or near the reversing layer and that the frequently observed correlation of velocity with excitation and ionization are a result of the velocity gradients produced by this shock in the atmosphere. A simple interpretation of the signs of the coefficients of the regression analysis is presented in terms of preshock, post shock, or across the shock, together with criteria for evaluating the validity of the fit. The amplitude of the reversing layer shock is estimated from an analysis of a series of plates for four long period variable stars along with the most probable stellar velocity for these stars.

  2. The Women's Role in the Adaptation to Climate Variability and Climate Change: Its Contribution to the Risk Management

    NASA Astrophysics Data System (ADS)

    Quintero Angel, M.; Carvajal Escobar, Y.; Garcia Vargas, M.

    2007-05-01

    Recently, there is evidence of an increase in the amount of severity in extreme events associated with the climate variability or climate change; which demonstrates that climate in this planet is changing. There is an observation of increasing damages, and of social economical cost associated with these phenomena's, mostly do to more people are living in hazard vulnerable conditions. The victims of natural disasters have increase from 147 to 211 million between 1991 and 2000. In same way more than 665.000 people have died in 2557 natural disasters, which 90% are associated with water and climate. (UNESCO & WWAP, 2003). The actual tendency and the introduction of new factors of risk, suggest lost increase in the future, obligating actions to manage and reduce risk of disaster. Bind work, health, poverty, education, water, climate, and disasters is not an error, is an obligation. Vulnerability of society to natural hazards and to poverty are bond, to reduce the risk of disasters is frequently united with the reduction of poverty and in the other way too (Sen, 2000). In this context, extreme events impact societies in all the world, affecting differently men and women, do to the different roles they play in the society, the different access in the control of resources, the few participation that women have in taking decisions with preparedness, mitigation, rehabilitation of disasters, impacting more women in developing countries. Although, women understand better the causes and local consequences in changes of climate conditions. They have a pile of knowledge and abilities for guiding adaptation, playing a very important role in vulnerable communities. This work shows how these topics connect with the millennium development goals; particularly how it affects its accomplishment. It also describes the impact of climate variability and climate change in developing countries. Analyzing adaptation responses that are emerging; especially from women initiation.

  3. Successive Cambia: A Developmental Oddity or an Adaptive Structure?

    PubMed Central

    Robert, Elisabeth M. R.; Schmitz, Nele; Boeren, Ilse; Driessens, Tess; Herremans, Kristof; De Mey, Johan; Van de Casteele, Elke; Beeckman, Hans; Koedam, Nico

    2011-01-01

    Background Secondary growth by successive cambia is a rare phenomenon in woody plant species. Only few plant species, within different phylogenetic clades, have secondary growth by more than one vascular cambium. Often, these successive cambia are organised concentrically. In the mangrove genus Avicennia however, the successive cambia seem to have a more complex organisation. This study aimed (i) at understanding the development of successive cambia by giving a three-dimensional description of the hydraulic architecture of Avicennia and (ii) at unveiling the possible adaptive nature of growth by successive cambia through a study of the ecological distribution of plant species with concentric internal phloem. Results Avicennia had a complex network of non-cylindrical wood patches, the complexity of which increased with more stressful ecological conditions. As internal phloem has been suggested to play a role in water storage and embolism repair, the spatial organisation of Avicennia wood could provide advantages in the ecologically stressful conditions species of this mangrove genus are growing in. Furthermore, we could observe that 84.9% of the woody shrub and tree species with concentric internal phloem occurred in either dry or saline environments strengthening the hypothesis that successive cambia provide the necessary advantages for survival in harsh environmental conditions. Conclusions Successive cambia are an ecologically important characteristic, which seems strongly related with water-limited environments. PMID:21304983

  4. An adaptive PID like controller using mix locally recurrent neural network for robotic manipulator with variable payload.

    PubMed

    Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P

    2016-05-01

    Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller.

  5. Rice Root Architectural Plasticity Traits and Genetic Regions for Adaptability to Variable Cultivation and Stress Conditions1[OPEN

    PubMed Central

    Sandhu, Nitika; Raman, K. Anitha; Torres, Rolando O.; Audebert, Alain; Dardou, Audrey; Kumar, Arvind; Henry, Amelia

    2016-01-01

    Future rice (Oryza sativa) crops will likely experience a range of growth conditions, and root architectural plasticity will be an important characteristic to confer adaptability across variable environments. In this study, the relationship between root architectural plasticity and adaptability (i.e. yield stability) was evaluated in two traditional × improved rice populations (Aus 276 × MTU1010 and Kali Aus × MTU1010). Forty contrasting genotypes were grown in direct-seeded upland and transplanted lowland conditions with drought and drought + rewatered stress treatments in lysimeter and field studies and a low-phosphorus stress treatment in a Rhizoscope study. Relationships among root architectural plasticity for root dry weight, root length density, and percentage lateral roots with yield stability were identified. Selected genotypes that showed high yield stability also showed a high degree of root plasticity in response to both drought and low phosphorus. The two populations varied in the soil depth effect on root architectural plasticity traits, none of which resulted in reduced grain yield. Root architectural plasticity traits were related to 13 (Aus 276 population) and 21 (Kali Aus population) genetic loci, which were contributed by both the traditional donor parents and MTU1010. Three genomic loci were identified as hot spots with multiple root architectural plasticity traits in both populations, and one locus for both root architectural plasticity and grain yield was detected. These results suggest an important role of root architectural plasticity across future rice crop conditions and provide a starting point for marker-assisted selection for plasticity. PMID:27342311

  6. Population variability in biological adaptive responses to DNA damage and the shapes of carcinogen dose-response curves

    SciTech Connect

    Conolly, Rory B. . E-mail: Conolly.Rory@epa.gov; Gaylor, David W.; Lutz, Werner K.

    2005-09-01

    Carcinogen dose-response curves for both ionizing radiation and chemicals are typically assumed to be linear at environmentally relevant doses. This assumption is used to ensure protection of the public health in the absence of relevant dose-response data. A theoretical justification for the assumption has been provided by the argument that low dose linearity is expected when an exogenous agent adds to an ongoing endogenous process. Here, we use computational modeling to evaluate (1) how two biological adaptive processes, induction of DNA repair and cell cycle checkpoint control, may affect the shapes of dose-response curves for DNA-damaging carcinogens and (2) how the resulting dose-response behaviors may vary within a population. Each model incorporating an adaptive process was capable of generating not only monotonic dose-responses but also nonmonotonic (J-shaped) and threshold responses. Monte Carlo analysis suggested that all these dose-response behaviors could coexist within a population, as the spectrum of qualitative differences arose from quantitative changes in parameter values. While this analysis is largely theoretical, it suggests that (a) accurate prediction of the qualitative form of the dose-response requires a quantitative understanding of the mechanism (b) significant uncertainty is associated with human health risk prediction in the absence of such quantitative understanding and (c) a stronger experimental and regulatory focus on biological mechanisms and interindividual variability would allow flexibility in regulatory treatment of environmental carcinogens without compromising human health.

  7. Robust adaptive self-structuring fuzzy control design for nonaffine, nonlinear systems

    NASA Astrophysics Data System (ADS)

    Chen, Pin-Cheng; Wang, Chi-Hsu; Lee, Tsu-Tian

    2011-01-01

    In this article, a robust adaptive self-structuring fuzzy control (RASFC) scheme for the uncertain or ill-defined nonlinear, nonaffine systems is proposed. The RASFC scheme is composed of a robust adaptive controller and a self-structuring fuzzy controller. In the self-structuring fuzzy controller design, a novel self-structuring fuzzy system (SFS) is used to approximate the unknown plant nonlinearity, and the SFS can automatically grow and prune fuzzy rules to realise a compact fuzzy rule base. The robust adaptive controller is designed to achieve an L 2 tracking performance to stabilise the closed-loop system. This L 2 tracking performance can provide a clear expression of tracking error in terms of the sum of lumped uncertainty and external disturbance, which has not been shown in previous works. Finally, five examples are presented to show that the proposed RASFC scheme can achieve favourable tracking performance, yet heavy computational burden is relieved.

  8. Adaptation by macrophytes to inorganic carbon down a river with naturally variable concentrations of CO2.

    PubMed

    Maberly, S C; Berthelot, S A; Stott, A W; Gontero, B

    2015-01-01

    The productivity and ecological distribution of freshwater plants can be controlled by the availability of inorganic carbon in water despite the existence of different mechanisms to ameliorate this, such as the ability to use bicarbonate. Here we took advantage of a short, natural gradient of CO2 concentration, against a background of very high and relatively constant concentration of bicarbonate, in a spring-fed river, to study the effect of variable concentration of CO2 on the ability of freshwater plants to use bicarbonate. Plants close to the source, where the concentration of CO2 was up to 24 times air equilibrium, were dominated by Berula erecta. pH-drift results and discrimination against (13)C were consistent with this and the other species being restricted to CO2 and unable to use the high concentration of bicarbonate. There was some indication from stable (13)C data that B. erecta may have had access to atmospheric CO2 at low water levels. In contrast, species downstream, where concentrations of CO2 were only about 5 times air-equilibrium were almost exclusively able to use bicarbonate, based on pH-drift results. Discrimination against (13)C was also consistent with bicarbonate being the main source of inorganic carbon for photosynthesis in these species. There was, therefore, a transect downstream from the source of increasing ability to use bicarbonate that closely matched the decreasing concentration of CO2. This was produced largely by altered species composition, but partly by phenotypic changes in individual species.

  9. COMPENSATORY POSTURAL ADAPTATIONS DURING CONTINUOUS, VARIABLE AMPLITUDE PERTURBATIONS REVEAL GENERALIZED RATHER THAN SEQUENCE-SPECIFIC LEARNING

    PubMed Central

    Van Ooteghem, K; Frank, JS; Allard, F; Buchanan, JJ; Oates, AR; Horak, FB

    2010-01-01

    We examined changes in the motor organization of postural control in response to continuous, variable amplitude oscillations evoked by a translating platform and explored whether these changes reflected implicit sequence learning. The platform underwent random amplitude (maximum ± 15 cm) and constant frequency (0.5 Hz) oscillations. Each trial was composed of three 15-second segments containing seemingly random oscillations. Unbeknownst to participants, the middle segment was repeated in each of 42 trials on the first day of testing and in an additional seven trials completed approximately 24 hours later. Kinematic data were used to determine spatial and temporal components of total body centre of mass (COM) and joint segment coordination. Results showed that with repeated trials, participants reduced the magnitude of horizontal body COM displacement, shifted from a COM phase lag to a phase lead relative to platform motion and increased correlations between ankle/platform motion and hip/platform motion as they evolved from an ankle strategy to a multi-segment control strategy involving the ankle and hip. Maintenance of these changes across days provided evidence for learning. Similar improvements for the random and repeated segments, however, indicate that participants did not exploit the sequence of perturbations to improve balance control. Rather, the central nervous system (CNS) may have been tuning into more general features of platform motion. These findings provide important insight into the generalizabilty of improved compensatory balance control with training. PMID:18327574

  10. Teacher Observation of Classroom Adaptation--Checklist: Development and Factor Structure

    ERIC Educational Resources Information Center

    Koth, Christine W.; Bradshaw, Catherine P.; Leaf, Philip J.

    2009-01-01

    Two studies examined the validity and factor structure of the Teacher Observation of Classroom Adaptation-Checklist, an instrument used to evaluate school-based programs. The checklist is a cost-effective alternative to the original interview format, and the factor structure is consistent across gender, race, age, and time of administration.…

  11. Adaptation to a Changing Environment by Modifications in Organizational Decision Unit Structure.

    ERIC Educational Resources Information Center

    Duncan, Robert B.

    This paper presents a model of how organizations adapt to the uncertainty in their environment by making changes in the way they structure themselves for decisionmaking. The research reported here indicates that it is not just a single change in organizational structure, but rather a shifting between a more rigid and more flexible decision…

  12. Spiders in Motion: Demonstrating Adaptation, Structure-Function Relationships, and Trade-Offs in Invertebrates

    ERIC Educational Resources Information Center

    Bowlin, Melissa S.; McLeer, Dorothy F.; Danielson-Francois, Anne M.

    2014-01-01

    Evolutionary history and structural considerations constrain all aspects of animal physiology. Constraints on invertebrate locomotion are especially straightforward for students to observe and understand. In this exercise, students use spiders to investigate the concepts of adaptation, structure-function relationships, and trade-offs. Students…

  13. Application of flexure structures to active and adaptive opto-mechanical mechanisms

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo; Genequand, Pierre M.; Kjelberg, Ivar; Morschel, Joseph

    1997-03-01

    Active and adaptive structures, also commonly called 'smart' structures, combine in one integrated system various functions such as load carrying and structural function, mechanical (cinematic) functions, sensing, control and actuating. Originally developed for high accuracy opto-mechanical applications, CSEM's technology of flexure structures and flexible mechanisms is particularly suited to solve many structural and mechanical issues found in such active/adaptive mechanisms. The paper illustrates some recent flexure structures developments at CSEM and outlines the comprehensive know-how involved in this technology. This comprises in particular the elaboration of optimal design guidelines, related to the geometry, kinematics and dynamics issues (for instance, the minimization of spurious high frequency effects), the evaluation and predictability of all performance quantities relevant to the utilization of flexure structures in space (reliability, fatigue, static and dynamic modeling, etc.). material issues and manufacturing procedures.

  14. A structured multi-block solution-adaptive mesh algorithm with mesh quality assessment

    NASA Technical Reports Server (NTRS)

    Ingram, Clint L.; Laflin, Kelly R.; Mcrae, D. Scott

    1995-01-01

    The dynamic solution adaptive grid algorithm, DSAGA3D, is extended to automatically adapt 2-D structured multi-block grids, including adaption of the block boundaries. The extension is general, requiring only input data concerning block structure, connectivity, and boundary conditions. Imbedded grid singular points are permitted, but must be prevented from moving in space. Solutions for workshop cases 1 and 2 are obtained on multi-block grids and illustrate both increased resolution of and alignment with the solution. A mesh quality assessment criteria is proposed to determine how well a given mesh resolves and aligns with the solution obtained upon it. The criteria is used to evaluate the grid quality for solutions of workshop case 6 obtained on both static and dynamically adapted grids. The results indicate that this criteria shows promise as a means of evaluating resolution.

  15. Electromagnetic Modeling and Measurement of Adaptive Metamaterial Structural Elements

    DTIC Science & Technology

    2011-03-01

    via electrodes , the permittivity is shifted, thereby shifting the resonance of the device [24]. Figure 35. Geometry of a tunable FSS structure that...2.5.6 Series SRR Particles. Nicholson and Ghorbani present a series SRR design with interdigital capacitors patterned on a barium strontium titanate

  16. Recursive dynamic programming for adaptive sequence and structure alignment

    SciTech Connect

    Thiele, R.; Zimmer, R.; Lengauer, T.

    1995-12-31

    We propose a new alignment procedure that is capable of aligning protein sequences and structures in a unified manner. Recursive dynamic programming (RDP) is a hierarchical method which, on each level of the hierarchy, identifies locally optimal solutions and assembles them into partial alignments of sequences and/or structures. In contrast to classical dynamic programming, RDP can also handle alignment problems that use objective functions not obeying the principle of prefix optimality, e.g. scoring schemes derived from energy potentials of mean force. For such alignment problems, RDP aims at computing solutions that are near-optimal with respect to the involved cost function and biologically meaningful at the same time. Towards this goal, RDP maintains a dynamic balance between different factors governing alignment fitness such as evolutionary relationships and structural preferences. As in the RDP method gaps are not scored explicitly, the problematic assignment of gap cost parameters is circumvented. In order to evaluate the RDP approach we analyse whether known and accepted multiple alignments based on structural information can be reproduced with the RDP method.

  17. Cooperation in networked populations of selfish adaptive agents: Sensitivity to network structure

    NASA Astrophysics Data System (ADS)

    Gulyás, László

    2007-05-01

    This paper investigates the adaptation of cooperating strategies in an iterated prisoner's dilemma (IPD) game with individually learning agents, subject to the structure of the interaction network. In particular, we study how cooperation or defection comes to dominate the population on Watts-Strogatz networks, under varying average path lengths. Our results are in good agreement with previous works on discrete choice dynamics on networks, but are in stark contrast with results from the evolution of cooperation literature. We argue that the latter is because the different adaptation method used (i.e., adaptive learning instead of ‘evolutionary’ strategy switching).

  18. Behavioral Variability of Choices versus Structural Inconsistency of Preferences

    ERIC Educational Resources Information Center

    Regenwetter, Michel; Davis-Stober, Clintin P.

    2012-01-01

    Theories of rational choice often make the structural consistency assumption that every decision maker's binary strict preference among choice alternatives forms a "strict weak order". Likewise, the very concept of a "utility function" over lotteries in normative, prescriptive, and descriptive theory is mathematically equivalent to strict weak…

  19. Structural correlates of mechanosensory transduction and adaptation in identified neurons of spider slit sensilla.

    PubMed

    Höger, U; Seyfarth, E A

    2001-11-01

    We used isolated but functionally intact preparations of the lyriform slit-sense organ VS-3 from the leg of the spider, Cupiennius salei Keys, to examine the role of prominent fine-structural elements for mechanosensory transduction and adaptation. Slit sensilla act as strain sensors in the cuticular exoskeleton; each slit is innervated by two mechanosensitive neurons. Punctate mechanical deformation at four points along the dendrites demonstrated that mechanical excitability is confined to membrane sites at the extreme dendrite tips that are enclosed by cuticular slit structures. Depletion of microtubules in VS-3 neurons by prolonged mechanical stimulation and application of 5 mmol l(-1) colchicine did not disrupt the generation of a receptor potential. Hence, putative gating mechanisms of the mechanically activated membrane channels at the dendrite tips appear to be largely independent of microtubular structures. The discrete adaptation pattern in each of the two partner neurons, rapidly adapting versus slowly adapting, did not depend on the distinct mode of dendrite attachment to cuticular slit structures, and even persisted in isolated neurons after their dendrite tips and auxiliary structures were lost. We suggest that the two discrete adaptation patterns are based on intrinsic differences in the action potential encoding process rather than differences in stimulus transformation or mechanotransduction.

  20. Stabilizing Spatially-Structured Populations through Adaptive Limiter Control

    PubMed Central

    Sah, Pratha; Dey, Sutirth

    2014-01-01

    Stabilizing the dynamics of complex, non-linear systems is a major concern across several scientific disciplines including ecology and conservation biology. Unfortunately, most methods proposed to reduce the fluctuations in chaotic systems are not applicable to real, biological populations. This is because such methods typically require detailed knowledge of system specific parameters and the ability to manipulate them in real time; conditions often not met by most real populations. Moreover, real populations are often noisy and extinction-prone, which can sometimes render such methods ineffective. Here, we investigate a control strategy, which works by perturbing the population size, and is robust to reasonable amounts of noise and extinction probability. This strategy, called the Adaptive Limiter Control (ALC), has been previously shown to increase constancy and persistence of laboratory populations and metapopulations of Drosophila melanogaster. Here, we present a detailed numerical investigation of the effects of ALC on the fluctuations and persistence of metapopulations. We show that at high migration rates, application of ALC does not require a priori information about the population growth rates. We also show that ALC can stabilize metapopulations even when applied to as low as one-tenth of the total number of subpopulations. Moreover, ALC is effective even when the subpopulations have high extinction rates: conditions under which another control algorithm had previously failed to attain stability. Importantly, ALC not only reduces the fluctuation in metapopulation sizes, but also the global extinction probability. Finally, the method is robust to moderate levels of noise in the dynamics and the carrying capacity of the environment. These results, coupled with our earlier empirical findings, establish ALC to be a strong candidate for stabilizing real biological metapopulations. PMID:25153073

  1. Adaptive Structures Programs for the Strategic Defense Initiative Organization

    DTIC Science & Technology

    2007-11-02

    to address this difficult problem. A PZT device is being used to isolate the motion of a cryocooler cold finger on an existing, advanced Stirling ...Suppression for Cryocoolers Advanced Materials Applications for Space Structures (AMASS) Advanced Composites with Embedded Sensors and Actuators (ACESA...One of the greatest sources of sensor jitter, given a quiescent spacecraft, is the cryocooler itself1 ’• 12. A project was initiated by M&S with JPL

  2. Materials for Adaptive Structural Acoustic Control. Volume 1

    DTIC Science & Technology

    1993-04-06

    unusual response of thin film BaTiO3 is discussed in Appendix 49, which shows that for small grains (6-8 nm) the structure is cubic nonferroelectric, but...smart dental braces made from shape memory alloys Smart hulls and propulsion systems for navy ships and submarines that detect flow noise, remove... zirconia are a good example. Here the tetragonal-monoclinic phase change accompanied by ferroelastic twin wail motion are the stand-by phenomena capable of

  3. Multidisciplinary optimization of a controlled space structure using 150 design variables

    NASA Technical Reports Server (NTRS)

    James, Benjamin B.

    1993-01-01

    A controls-structures interaction design method is presented. The method coordinates standard finite-element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structure and control system of a spacecraft. Global sensitivity equations are used to account for coupling between the disciplines. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Design problems using 15, 63, and 150 design variables to optimize truss member sizes and feedback gain values are solved and the results are presented. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporation of the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables.

  4. Recent Extremes of Drought and Flooding in Amazonia in the context of long term climate variability: Vulnerabilities and Human Adaptation

    NASA Astrophysics Data System (ADS)

    Marengo, J. A.; Borma, L. S.; Rodriguez, D. A.; Pinho, P.; Soares, W. R.; Alves, L. M.

    2013-12-01

    The present study focuses on the analyses of extreme drought and flooding situations in Amazonia, using level/discharge data from some rivers in the Amazon region as indicators of impacts. The last 10 years have featured various 'once in a century' droughts and floods in the Amazon basin, which have affected human and natural systems in the region. We assess a history of such hazards based on river data, and discuss some of the observed impacts in terms of vulnerability of human and natural systems, as well as some of adaptation strategies implemented by regional and local governments to cope with them. A critical perspective of mitigation of drought and flood policies in Amazonia suggests that they have been mostly ineffective in reducing vulnerability for the majority of the population. The last seven years have featured severe droughts and floods in Amazonia, with some of these events being characterized at the time as 'once-in-a-century' seasonal extremes. Most of these events were classified as such using river data statistics. Flood and drought hazards represent the integrated impacts due to changes in rainfall across the basin. The record flooding in the Amazon in 2012 surpassed the previous record extreme of 2009, and river levels during the droughts of 2005 and 2010 were among the lowest during the last 40 years. Droughts and floods, part of the natural climate variability inthose regions, have occurred in the past and will continue to occur in the future. The inhabitants of the region are well adapted to this hydrological interannual dynamics and, over time, have been able to develop their livelihood strategies in an 'optimum manner'. Hydrological extremes affect not only human activities and economy but also ecosystems, with large potential impacts on regional biogeochemical and carbon cycles, particularly during droughts due to forest fires and biomass burning. Various studies have shown that interannual variability of rainfall and river levels in the

  5. Bionic intraocular lens with variable focus and integrated structure

    NASA Astrophysics Data System (ADS)

    Liang, Dan; Wang, Xuan-Yin; Du, Jia-Wei; Xiang, Ke

    2015-10-01

    This paper proposes a bionic accommodating intraocular lens (IOL) for ophthalmic surgery. The designed lens has a solid-liquid mixed integrated structure, which mainly consists of a support ring, elastic membrane, rigid lens, and optical liquid. The lens focus can be adjusted through the deformation of the lens front surface when compressed. The integrated structure of the IOL is presented, as well as a detailed description of the lens materials and fabrication process. Images under different radial pressures are captured, and the lens deformation process, accommodating range, density, and optical property are analyzed. The designed lens achieves a 14.6 D accommodating range under a radial pressure of 51.4 mN and a 0.24 mm alteration of the lens outer radius. The deformation property of the lens matches well with the characteristic of the eye and shows the potential to help patients fully recover their vision accommodation ability after the cataract surgery.

  6. The period structure of the ZZ Ceti variables

    NASA Technical Reports Server (NTRS)

    Mcgraw, J. T.

    1980-01-01

    The current observational status of the period structure of ZZ Ceti stars is reviewed, and in particular those features which appear to be the most important for theory to explain, or which may be relevant to the directions of theoretical development are discussed. Mechanisms to explain the broad range of period structure are suggested. Multiple nonradial modes, probably corresponding to different radial overtones, may be simultaneously excited in each star. The excitation energy of individual stars is distributed among permitted modes by nonlinear resonant coupling. In addition, rotational splitting of the nonradial modes can produce closely spaced periods which results in modulation of the light curve. Amplitude/spectral complexity correlation results from the appearance in the power spectrum of harmonics and cross-frequencies which are the effects brought on by increasing nonlinearity of the pulsations.

  7. Lunar Crater Mini-Wakes: Structure, Variability, and Volatiles

    NASA Technical Reports Server (NTRS)

    Zimmerman, Michael I.; Jackson, T. L.; Farrell, W. M.; Stubbs, T. J.

    2012-01-01

    Within a permanently shadowed lunar crater the horizontal flow of solar wind is obstructed by upstream topography, forming a regional plasma mini-wake. In the present work kinetic simulations are utilized to investigate how the most prominent structural aspects of a crater mini-wake are modulated during passage of a solar storm. In addition, the simulated particle fluxes are coupled into an equivalent-circuit model of a roving astronaut,. including triboelectric charging due to frictional contact with the lunar regolith, to characterize charging of the astronaut suit during the various stages of the storm. In some cases, triboelectric charging of the astronaut suit becomes effectively perpetual, representing a critical engineering concern for roving within shadowed lunar regions. Finally, the present results suggest that wake structure plays a critical role in modulating the spatial distribution of volatiles at the lunar poles.

  8. Cortical Structure of Hallucal Metatarsals and Locomotor Adaptations in Hominoids

    PubMed Central

    Jashashvili, Tea; Dowdeswell, Mark R.; Lebrun, Renaud; Carlson, Kristian J.

    2015-01-01

    Diaphyseal morphology of long bones, in part, reflects in vivo loads experienced during the lifetime of an individual. The first metatarsal, as a cornerstone structure of the foot, presumably expresses diaphyseal morphology that reflects loading history of the foot during stance phase of gait. Human feet differ substantially from those of other apes in terms of loading histories when comparing the path of the center of pressure during stance phase, which reflects different weight transfer mechanisms. Here we use a novel approach for quantifying continuous thickness and cross-sectional geometric properties of long bones in order to test explicit hypotheses about loading histories and diaphyseal structure of adult chimpanzee, gorilla, and human first metatarsals. For each hallucal metatarsal, 17 cross sections were extracted at regularly-spaced intervals (2.5% length) between 25% and 65% length. Cortical thickness in cross sections was measured in one degree radially-arranged increments, while second moments of area were measured about neutral axes also in one degree radially-arranged increments. Standardized thicknesses and second moments of area were visualized using false color maps, while penalized discriminant analyses were used to evaluate quantitative species differences. Humans systematically exhibit the thinnest diaphyseal cortices, yet the greatest diaphyseal rigidities, particularly in dorsoplantar regions. Shifts in orientation of maximum second moments of area along the diaphysis also distinguish human hallucal metatarsals from those of chimpanzees and gorillas. Diaphyseal structure reflects different loading regimes, often in predictable ways, with human versus non-human differences probably resulting both from the use of arboreal substrates by non-human apes and by differing spatial relationships between hallux position and orientation of the substrate reaction resultant during stance. The novel morphological approach employed in this study offers the

  9. Materials for Adaptive Structural Acoustic Control. Volume 3

    DTIC Science & Technology

    1993-04-06

    3 Nanocomposites," Materials Letters 1., 26 (1992). 22. C. A. Randall, S. F . Wang, D. Laubscher, J. P. Dougherty and W. Huebner, "Structure Property ...1955). 4. G. W. Taylor. "Electric Properties of Niobium- doped Ferroelectric Pb(Zr,Sn,Ti)0 3 Ceramics", J. Appl. Phys., 38, 4697-4706(1967). 5 W. C...I Forrii Approved REPORT DOCUMENTATION PAGE 10M4 No 07040788 Vuioh, -Domogln utwd-n to, th, -c.lietl•on , f ,-~~i~m ,I -&lem d I*. -cr•=I•uf gow,DO3t

  10. Adaptive Damping and Positioning Using Intelligent Composite Active Structures (ADPICAS)

    DTIC Science & Technology

    2005-10-01

    previous applications for optimal actuator placement were based on structures themselves and overlooked the effects of the applied control law . In fact, the...optimal gain matrix K such that the state-feedback law u = -Kx minimizes the quadratic cost function, J(u), as: J(u) = f(xTQx + uTRu)dt (4.46) 0 where Q...account. The second improvement lays in the combination of the optimization technique (i.e. GAs) with the control law in the entire optimization process

  11. MODELING MID-INFRARED VARIABILITY OF CIRCUMSTELLAR DISKS WITH NON-AXISYMMETRIC STRUCTURE

    SciTech Connect

    Flaherty, K. M.; Muzerolle, J.

    2010-08-20

    Recent mid-infrared observations of young stellar objects have found significant variations possibly indicative of changes in the structure of the circumstellar disk. Previous models of this variability have been restricted to axisymmetric perturbations in the disk. We consider simple models of a non-axisymmetric variation in the inner disk, such as a warp or a spiral wave. We find that the precession of these non-axisymmetric structures produces negligible flux variations but a change in the height of these structures can lead to significant changes in the mid-infrared flux. Applying these models to observations of the young stellar object LRLL 31 suggests that the observed variability could be explained by a warped inner disk with variable scale height. This suggests that some of the variability observed in young stellar objects could be explained by non-axisymmetric disturbances in the inner disk and this variability would be easily observable in future studies.

  12. Language and communication skills in preschool children with autism spectrum disorders: contribution of cognition, severity of autism symptoms, and adaptive functioning to the variability.

    PubMed

    Kjellmer, Liselotte; Hedvall, Åsa; Fernell, Elisabeth; Gillberg, Christopher; Norrelgen, Fritjof

    2012-01-01

    This study examined the contribution of cognitive function, severity of autism, and adaptive functioning to the variability in language and communication skills in 129 preschool children (aged 24-63 months) with autism spectrum disorder (ASD). Participants were selected from a representative research cohort of 208 preschool children on the basis of caregiver completion of the MacArthur-Bates Communicative Development Inventories (CDI). The children were classified into three cognitive groups: (a) Normal intelligence; (b) Developmental delay; and (c) Intellectual disability. Autism symptom severity was measured by the Autistic Behavior Checklist (ABC), and adaptive functioning by the Daily Living Skills (DLS) and Socialization (Soc) subscales from the Vineland Adaptive Behavior Scales. For each of five CDI variables (Phrases understood, Words understood, Words produced, Gestures and actions, and Language use), the contribution of cognition, severity of autism symptoms, and adaptive functioning to the variability was examined. Cognition and age explained about half or more of the variance in the four verbal language CDI variables, but only about one fourth of the variance in the non-verbal communication variable Gestures and actions. Severity of autism symptoms and the two adaptive measures (DLS and Soc) each only accounted for a few percent more of the variance in the four CDI language variables; however, for Gestures and actions, an additional 11-21% of the variance was accounted for. In conclusion, for children with ASD, receptive and expressive language is mainly related to cognitive level, whereas non-verbal communication skills seem to also be related to severity of autism symptoms and adaptive functioning.

  13. Stochastic stage-structured modeling of the adaptive immune system

    SciTech Connect

    Chao, D. L.; Davenport, M. P.; Forrest, S.; Perelson, Alan S.,

    2003-01-01

    We have constructed a computer model of the cytotoxic T lymphocyte (CTL) response to antigen and the maintenance of immunological memory. Because immune responses often begin with small numbers of cells and there is great variation among individual immune systems, we have chosen to implement a stochastic model that captures the life cycle of T cells more faithfully than deterministic models. Past models of the immune response have been differential equation based, which do not capture stochastic effects, or agent-based, which are computationally expensive. We use a stochastic stage-structured approach that has many of the advantages of agent-based modeling but is more efficient. Our model can provide insights into the effect infections have on the CTL repertoire and the response to subsequent infections.

  14. Influence of Family Structure and School Variables on Behavior Disorders of Children

    ERIC Educational Resources Information Center

    Lindholm, Byron W.; And Others

    1977-01-01

    This study examined the influence of family structure and school variables on behavior disorders of children (N=1,162). Results indicated grade in school, sex, social class, ordinal position in the family, and teacher were important variables in the determination of behavior disorders. (Author)

  15. Bayesian Methods for Analyzing Structural Equation Models with Covariates, Interaction, and Quadratic Latent Variables

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan; Tang, Nian-Sheng

    2007-01-01

    The analysis of interaction among latent variables has received much attention. This article introduces a Bayesian approach to analyze a general structural equation model that accommodates the general nonlinear terms of latent variables and covariates. This approach produces a Bayesian estimate that has the same statistical optimal properties as a…

  16. Changes in the Structure of Children's Isometric Force Variability with Practice

    ERIC Educational Resources Information Center

    Deutsch, Katherine M.; Newell, Karl M.

    2004-01-01

    This study examined the effect of age and practice on the structure of children's force variability to test the information processing hypothesis that a reduction of sensorimotor system noise accounts in large part for age-related reductions in perceptual-motor performance variability. In the study, 6-year-olds, 10-year-olds, and young adults…

  17. Effect of the Number of Variables on Measures of Fit in Structural Equation Modeling.

    ERIC Educational Resources Information Center

    Kenny, David A.; McCoach, D. Betsy

    2003-01-01

    Used three approaches to understand the effect of the number of variables in the model on model fit in structural equation modeling through computer simulation. Developed a simple formula for the theoretical value of the comparative fit index. (SLD)

  18. Self-adaptive asymmetric on-line boosting for detecting anatomical structures

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Tajbakhsh, Nima; Xue, Wenzhe; Liang, Jianming

    2012-03-01

    In this paper, we propose a self-adaptive, asymmetric on-line boosting (SAAOB) method for detecting anatomical structures in CT pulmonary angiography (CTPA). SAAOB is novel in that it exploits a new asymmetric loss criterion with self-adaptability according to the ratio of exposed positive and negative samples and in that it has an advanced rule to update sample's importance weight taking account of both classification result and sample's label. Our presented method is evaluated by detecting three distinct thoracic structures, the carina, the pulmonary trunk and the aortic arch, in both balanced and imbalanced conditions.

  19. Signatures of disk structure from line profile variability

    NASA Astrophysics Data System (ADS)

    Powell, Stacie; Latham, D. W.; Irwin, M.; Bouvier, J.; Clarke, C.; Facchini, S.

    2014-01-01

    Despite the abundance of FU Orionis objects (FUors) in the solar neighborhood and the implied repetitive nature of this episodic accretion phenomenon in low-mass stars, the triggering mechanism within the disk, propagation from the disk to the wind and the implications of these outbursts on planet formation remain unclear. FUors are young stars where disk accretion increases from 10-7 to 10-4 M⊙ yr-1 within a decade, with a slow decline of over 100 years. These systems provide a unique opportunity to observe the inner disk photosphere in optical light. Previous observations of the prototype FU Orionis by Herbig et al. (2003) suggest that the wind and disk photospheric lines are modulated with periods of 14.54 and 3.54 days, respectively. We have re-observed the system at higher resolution with SOPHIE and TRES, by monitoring variations of optical line profiles over 21 nights in 2007 and 35 nights in 2012-13. We detect wind periods of 13 days and 10 days (present in the latter epoch only), which are manifested not only in blueshifted Hα absorption, as found previously, but also in redshifted emission of Hα and Hβ, as well as in blueshifted absorption of Na I D, Li I and Fe II λ5018. We discuss the potential configurations responsible for the two distinct wind modulations in this system. In addition the disk photospheric lines show periods of 3.6 and 3.2 days in 2007 and 2012-13, respectively. Remarkably, this implies variability mechanisms that are stable against shear over at least 15 years (>1000 orbits); we tentatively ascribe this to an orbiting hotspot in the disk. We have monitored the velocity shift of these periodic variations for the first time, which are confined to the blue wing of the line profiles and centered on velocities of -9 and -60 km s-1 in 2007 and 2013, respectively. We discuss the possibility of an embedded hot Jupiter precessing on an inclined orbit relative to the disk to explain the different velocities of the detected periodic signal

  20. Structural and Psycho-Social Limits to Climate Change Adaptation in the Great Barrier Reef Region.

    PubMed

    Evans, Louisa S; Hicks, Christina C; Adger, W Neil; Barnett, Jon; Perry, Allison L; Fidelman, Pedro; Tobin, Renae

    2016-01-01

    Adaptation, as a strategy to respond to climate change, has limits: there are conditions under which adaptation strategies fail to alleviate impacts from climate change. Research has primarily focused on identifying absolute bio-physical limits. This paper contributes empirical insight to an emerging literature on the social limits to adaptation. Such limits arise from the ways in which societies perceive, experience and respond to climate change. Using qualitative data from multi-stakeholder workshops and key-informant interviews with representatives of the fisheries and tourism sectors of the Great Barrier Reef region, we identify psycho-social and structural limits associated with key adaptation strategies, and examine how these are perceived as more or less absolute across levels of organisation. We find that actors experience social limits to adaptation when: i) the effort of pursuing a strategy exceeds the benefits of desired adaptation outcomes; ii) the particular strategy does not address the actual source of vulnerability, and; iii) the benefits derived from adaptation are undermined by external factors. We also find that social limits are not necessarily more absolute at higher levels of organisation: respondents perceived considerable opportunities to address some psycho-social limits at the national-international interface, while they considered some social limits at the local and regional levels to be effectively absolute.

  1. Structural and Psycho-Social Limits to Climate Change Adaptation in the Great Barrier Reef Region

    PubMed Central

    Evans, Louisa S.; Hicks, Christina C.; Adger, W. Neil; Barnett, Jon; Perry, Allison L.; Fidelman, Pedro; Tobin, Renae

    2016-01-01

    Adaptation, as a strategy to respond to climate change, has limits: there are conditions under which adaptation strategies fail to alleviate impacts from climate change. Research has primarily focused on identifying absolute bio-physical limits. This paper contributes empirical insight to an emerging literature on the social limits to adaptation. Such limits arise from the ways in which societies perceive, experience and respond to climate change. Using qualitative data from multi-stakeholder workshops and key-informant interviews with representatives of the fisheries and tourism sectors of the Great Barrier Reef region, we identify psycho-social and structural limits associated with key adaptation strategies, and examine how these are perceived as more or less absolute across levels of organisation. We find that actors experience social limits to adaptation when: i) the effort of pursuing a strategy exceeds the benefits of desired adaptation outcomes; ii) the particular strategy does not address the actual source of vulnerability, and; iii) the benefits derived from adaptation are undermined by external factors. We also find that social limits are not necessarily more absolute at higher levels of organisation: respondents perceived considerable opportunities to address some psycho-social limits at the national-international interface, while they considered some social limits at the local and regional levels to be effectively absolute. PMID:26960200

  2. Adaptive cellular structures and devices with internal features for enhanced structural performance

    NASA Astrophysics Data System (ADS)

    Pontecorvo, Michael Eugene

    This dissertation aims to develop a family of cellular and repeatable devices that exhibit a variety of force-displacement behaviors. It is envisioned that these cellular structures might be used either as stand-alone elements, or combined and repeated to create multiple types of structures (i.e. buildings, ship hulls, vehicle subfloors, etc.) with the ability to passively or actively perform multiple functions (harmonic energy dissipation, impact mitigation, modulus change) over a range of loading types, amplitudes, and frequencies. To accomplish this goal, this work combines repeatable structural frameworks, such as that provided by a hexagonal cellular structure, with internal structural elements such as springs, viscous dampers, buckling plates, bi-stable von Mises trusses (VMTs), and pneumatic artificial muscles (PAMs). The repeatable framework serves to position damping and load carrying elements throughout the structure, and the configuration of the internal elements allow each cell to be tuned to exhibit a desired force-displacement response. Therefore, gradient structures or structures with variable load paths can be created for an optimal global response to a range of loads. This dissertation focuses on the development of cellular structures for three functions: combined load-carrying capability with harmonic energy dissipation, impact mitigation, and cell modulus variation. One or more conceptual designs are presented for devices that can perform each of these functions, and both experimental measurements and simulations are used to gain a fundamental understanding of each device. Chapter 2 begins with a presentation of a VMT model that is the basis for many of the elements. The equations of motion for the VMT are derived and the static and dynamic behavior of the VMT are discussed in detail. Next, two metrics for the energy dissipation of the VMT - hysteresis loop area and loss factor - are presented. The responses of the VMT to harmonic displacement

  3. U.S. perspective on technology demonstration experiments for adaptive structures

    NASA Technical Reports Server (NTRS)

    Aswani, Mohan; Wada, Ben K.; Garba, John A.

    1991-01-01

    Evaluation of design concepts for adaptive structures is being performed in support of several focused research programs. These include programs such as Precision Segmented Reflector (PSR), Control Structure Interaction (CSI), and the Advanced Space Structures Technology Research Experiment (ASTREX). Although not specifically designed for adaptive structure technology validation, relevant experiments can be performed using the Passive and Active Control of Space Structures (PACOSS) testbed, the Space Integrated Controls Experiment (SPICE), the CSI Evolutionary Model (CEM), and the Dynamic Scale Model Test (DSMT) Hybrid Scale. In addition to the ground test experiments, several space flight experiments have been planned, including a reduced gravity experiment aboard the KC-135 aircraft, shuttle middeck experiments, and the Inexpensive Flight Experiment (INFLEX).

  4. Structure and Mixing Characterization of Variable Density Transverse Jet Flows

    NASA Astrophysics Data System (ADS)

    Gevorkyan, Levon

    This dissertation describes an experimental study of the structural and mixing characteristics of transverse jets, or jets in crossfiow (JICF). Hot-wire anemometry, stereo particle image velocimetry (PIV), and acetone planar laser-induced fiuorescence (PLIF) measurements were utilized to illuminate and quantify the wind-ward (upstream) jet shear layer instability characteristics and their relationship to the velocity field evolution, as well as the effect of the overall velocity field on the scalar field distribution and resulting mixing characteristics. Transverse jets of various jet-to-crossfiow momentum flux ratios in the range 41 ≥ J ≥ 2, and jet-to-crossfiow density ratios in the range 1.00 ≥ S ≥ 0.35, were generated using mixtures of helium and nitrogen in the jet fluid. Jets were injected from one of three different injectors explored: a convergent nozzle with circular geometry which was mounted flush with the wind tunnel floor, another convergent nozzle with circular geometry whose exit plane lies above the crossfiow boundary layer, and a flush-mounted straight pipe injector with a circular orifice. Jet Reynolds number was kept constant for the majority of the mixing and structural exploration experiments at Rej = 1900, except when the effect of Reynolds number on cross-sectional jet structure was explored. Previous hot-wire based measurements at UCLA suggest that the upstream jet shear layer transitions from convective instability to absolute instability, giving rise to self-excited nonlinear states, as either the momentum flux ratio is lowered below J ≈10, or the density ratio is lowered below S ≈ 0.45 for the JICF injected from the flush nozzle injector. A similar transition to absolute instability when lowering momentum flux ratio was found in this work for the flush-mounted pipe injector. Cross-sectional PLIF measurements in the present studies suggested clear correspondence between the formation of a symmetric counter-rotating vortex pair

  5. Adaptive Filtering for Large Space Structures: A Closed-Form Solution

    NASA Technical Reports Server (NTRS)

    Rauch, H. E.; Schaechter, D. B.

    1985-01-01

    In a previous paper Schaechter proposes using an extended Kalman filter to estimate adaptively the (slowly varying) frequencies and damping ratios of a large space structure. The time varying gains for estimating the frequencies and damping ratios can be determined in closed form so it is not necessary to integrate the matrix Riccati equations. After certain approximations, the time varying adaptive gain can be written as the product of a constant matrix times a matrix derived from the components of the estimated state vector. This is an important savings of computer resources and allows the adaptive filter to be implemented with approximately the same effort as the nonadaptive filter. The success of this new approach for adaptive filtering was demonstrated using synthetic data from a two mode system.

  6. M4ARC: multi-model multi-mode adaptive resonant control for dynamically loaded flexible beam structures

    NASA Astrophysics Data System (ADS)

    Tjahyadi, H.; He, F.; Sammut, K.

    2008-08-01

    A hybrid multi-model-multi-mode adaptive resonant control (M4ARC) approach is proposed for dynamically loaded flexible beam structures to provide superior vibration damping performance as compared to its fixed-model and adaptive counterparts. The proposed approach uses a configurable controller, the parameters of which are updated using a fast and accurate on-line frequency identification method for N modes of interest. This method incorporates a simple supervision scheme that selects between the output of an N-mode filter bank (representing the multiple-fixed-model set) and the output of an estimator bank (representing the accurate model of the plant). The estimator bank comprises a multi-rate set of parallel N second-order recursive-least-squares estimators to achieve rapid parameter convergence. While the estimators are still in transition, the supervisor provides the configurable controller with an intermediate set of frequencies that correspond to the closest fixed model. Once the estimators converge, the supervisor selects the estimated frequency set to provide the configurable controller with an accurate representation of the current plant. This supervisor scheme significantly reduces the computational complexity as compared with existing counterparts. Experiments reveal that the proposed M4ARC approach offers the best compromise in terms of adapting to sudden and highly variable loading condition changes (within a bounded domain) while, at the same time, achieving fast transient performance.

  7. Effects of community structure on epidemic spread in an adaptive network

    NASA Astrophysics Data System (ADS)

    Tunc, Ilker; Shaw, Leah B.

    2014-08-01

    When an epidemic spreads in a population, individuals may adaptively change the structure of their social contact network to reduce risk of infection. Here we study the spread of an epidemic on an adaptive network with community structure. We model two communities with different average degrees. The disease model is susceptible-infected-susceptible (SIS), and adaptation is rewiring of links between susceptibles and infectives. Locations of rewired links are selected so that the community structure will be preserved if susceptible-infective links are homogeneously distributed. The bifurcation structure is obtained, and a mean field model is developed that accurately predicts the steady-state behavior of the system. In a static network, weakly connected heterogeneous communities can have significantly different infection levels. In contrast, adaptation promotes similar infection levels and alters the network structure so that communities have more similar average degrees. We estimate the time for network restructuring to allow infection incursion from one community to another and show that it is inversely proportional to the number of cross-links between communities. In extremely heterogeneous systems, periodic oscillations in infection level can occur due to repeated infection incursions.

  8. Spatial variability, structure and composition of crustose algal communities in Diadema africanum barrens

    NASA Astrophysics Data System (ADS)

    Sangil, Carlos; Sansón, Marta; Díaz-Villa, Tania; Hernández, José Carlos; Clemente, Sabrina; Afonso-Carrillo, Julio

    2014-12-01

    Crustose algal communities were studied in Diadema africanum urchin barrens around Tenerife (Canary Islands, NE Atlantic). A hierarchical nested sampling design was used to study patterns of community variability at different spatial scales (sectors, three sides of the island; sites within each sector, 5-10 km apart; stations within each site, 50-100 m apart). Although noncrustose species contributed the most to community richness, cover was dominated by crustose forms, like the coralline algae Hydrolithon farinosum, H. samoënse, H. onkodes, Neogoniolithon orotavicum and N. hirtum, and the phaeophycean Pseudolithoderma adriaticum. The structure of these communities showed high spatial variability, and we found differences in the structure of urchin barrens when compared across different spatial scales. Multivariate analysis showed that variability in community structure was related to the five environmental variables studied (wave exposure, urchin density, substrate roughness, productivity and depth). Wave exposure was the variable that contributed most to community variability, followed by urchin density and substrate roughness. Productivity and depth had limited influence. The effects of these variables differed depending on the spatial scale; wave exposure and productivity were the main variables influencing community changes at the largest scale (between different sectors of the island), while D. africanum density, roughness and depth were the most influential at medium and small scales.

  9. Evolution of Anabaenopeptin Peptide Structural Variability in the Cyanobacterium Planktothrix

    PubMed Central

    Entfellner, Elisabeth; Frei, Mark; Christiansen, Guntram; Deng, Li; Blom, Jochen; Kurmayer, Rainer

    2017-01-01

    , Tyrosine, and Lysine in the exocyclic position of the AP-molecule. The increased structural diversity resulted from the evolution of apnA A1 genotypes through a small number of positively selected point mutations that occurred repeatedly and independently from phylogenetic association. PMID:28261178

  10. The Variable Regions of Lactobacillus rhamnosus Genomes Reveal the Dynamic Evolution of Metabolic and Host-Adaptation Repertoires

    PubMed Central

    Ceapa, Corina; Davids, Mark; Ritari, Jarmo; Lambert, Jolanda; Wels, Michiel; Douillard, François P.; Smokvina, Tamara; de Vos, Willem M.; Knol, Jan; Kleerebezem, Michiel

    2016-01-01

    Lactobacillus rhamnosus is a diverse Gram-positive species with strains isolated from different ecological niches. Here, we report the genome sequence analysis of 40 diverse strains of L. rhamnosus and their genomic comparison, with a focus on the variable genome. Genomic comparison of 40 L. rhamnosus strains discriminated the conserved genes (core genome) and regions of plasticity involving frequent rearrangements and horizontal transfer (variome). The L. rhamnosus core genome encompasses 2,164 genes, out of 4,711 genes in total (the pan-genome). The accessory genome is dominated by genes encoding carbohydrate transport and metabolism, extracellular polysaccharides (EPS) biosynthesis, bacteriocin production, pili production, the cas system, and the associated clustered regularly interspaced short palindromic repeat (CRISPR) loci, and more than 100 transporter functions and mobile genetic elements like phages, plasmid genes, and transposons. A clade distribution based on amino acid differences between core (shared) proteins matched with the clade distribution obtained from the presence–absence of variable genes. The phylogenetic and variome tree overlap indicated that frequent events of gene acquisition and loss dominated the evolutionary segregation of the strains within this species, which is paralleled by evolutionary diversification of core gene functions. The CRISPR-Cas system could have contributed to this evolutionary segregation. Lactobacillus rhamnosus strains contain the genetic and metabolic machinery with strain-specific gene functions required to adapt to a large range of environments. A remarkable congruency of the evolutionary relatedness of the strains’ core and variome functions, possibly favoring interspecies genetic exchanges, underlines the importance of gene-acquisition and loss within the L. rhamnosus strain diversification. PMID:27358423

  11. The Variable Regions of Lactobacillus rhamnosus Genomes Reveal the Dynamic Evolution of Metabolic and Host-Adaptation Repertoires.

    PubMed

    Ceapa, Corina; Davids, Mark; Ritari, Jarmo; Lambert, Jolanda; Wels, Michiel; Douillard, François P; Smokvina, Tamara; de Vos, Willem M; Knol, Jan; Kleerebezem, Michiel

    2016-07-02

    Lactobacillus rhamnosus is a diverse Gram-positive species with strains isolated from different ecological niches. Here, we report the genome sequence analysis of 40 diverse strains of L. rhamnosus and their genomic comparison, with a focus on the variable genome. Genomic comparison of 40 L. rhamnosus strains discriminated the conserved genes (core genome) and regions of plasticity involving frequent rearrangements and horizontal transfer (variome). The L. rhamnosus core genome encompasses 2,164 genes, out of 4,711 genes in total (the pan-genome). The accessory genome is dominated by genes encoding carbohydrate transport and metabolism, extracellular polysaccharides (EPS) biosynthesis, bacteriocin production, pili production, the cas system, and the associated clustered regularly interspaced short palindromic repeat (CRISPR) loci, and more than 100 transporter functions and mobile genetic elements like phages, plasmid genes, and transposons. A clade distribution based on amino acid differences between core (shared) proteins matched with the clade distribution obtained from the presence-absence of variable genes. The phylogenetic and variome tree overlap indicated that frequent events of gene acquisition and loss dominated the evolutionary segregation of the strains within this species, which is paralleled by evolutionary diversification of core gene functions. The CRISPR-Cas system could have contributed to this evolutionary segregation. Lactobacillus rhamnosus strains contain the genetic and metabolic machinery with strain-specific gene functions required to adapt to a large range of environments. A remarkable congruency of the evolutionary relatedness of the strains' core and variome functions, possibly favoring interspecies genetic exchanges, underlines the importance of gene-acquisition and loss within the L. rhamnosus strain diversification.

  12. New hypotheses derived from the structure of a flaviviral Xrn1-resistant RNA: Conservation, folding, and host adaptation

    PubMed Central

    Kieft, Jeffrey S; Rabe, Jennifer L; Chapman, Erich G

    2015-01-01

    Arthropod-borne flaviviruses (FVs) are a growing world-wide health threat whose incidence and range are increasing. The pathogenicity and cytopathicity of these single-stranded RNA viruses are influenced by viral subgenomic non-protein-coding RNAs (sfRNAs) that the viruses produce to high levels during infection. To generate sfRNAs the virus co-opts the action of the abundant cellular exonuclease Xrn1, which is part of the cell's normal RNA turnover machinery. This exploitation of the cellular machinery is enabled by discrete, highly structured, Xrn1-resistant RNA elements (xrRNAs) in the 3′UTR that interact with Xrn1 to halt processive 5′ to 3′ decay of the viral genomic RNA. We recently solved the crystal structure of a functional xrRNA, revealing a novel fold that provides a mechanistic model for Xrn1 resistance. Continued analysis and interpretation of the structure reveals that the tertiary contacts that knit the xrRNA fold together are shared by a wide variety of arthropod-borne FVs, conferring robust Xrn1 resistance in all tested. However, there is some variability in the structures that correlates with unexplained patterns in the viral 3′ UTRs. Finally, examination of these structures and their behavior in the context of viral infection leads to a new hypothesis linking RNA tertiary structure, overall 3′ UTR architecture, sfRNA production, and host adaptation. PMID:26399159

  13. Bayesian Hierarchical Structure for Quantifying Population Variability to Inform Probabilistic Health Risk Assessments.

    PubMed

    Shao, Kan; Allen, Bruce C; Wheeler, Matthew W

    2016-12-29

    Human variability is a very important factor considered in human health risk assessment for protecting sensitive populations from chemical exposure. Traditionally, to account for this variability, an interhuman uncertainty factor is applied to lower the exposure limit. However, using a fixed uncertainty factor rather than probabilistically accounting for human variability can hardly support probabilistic risk assessment advocated by a number of researchers; new methods are needed to probabilistically quantify human population variability. We propose a Bayesian hierarchical model to quantify variability among different populations. This approach jointly characterizes the distribution of risk at background exposure and the sensitivity of response to exposure, which are commonly represented by model parameters. We demonstrate, through both an application to real data and a simulation study, that using the proposed hierarchical structure adequately characterizes variability across different populations.

  14. Control design variable linking for optimization of structural/control systems

    NASA Technical Reports Server (NTRS)

    Jin, Ik Min; Schmit, Lucien A.

    1993-01-01

    A method is presented to integrate the design space of structural/control system optimization problems in the case of linear state feedback control. Conventional structural sizing variables and elements of the feedback gain matrix are both treated as strictly independent design variables in optimization by extending design variable linking concepts to the control gains. Several approximation concepts including new control design variable linking schemes are used to formulate the integrated structural/control optimization problem as a sequence of explicit nonlinear mathematical programming problems. Examples which involve a variety of behavior constraints, including constraints on dynamic stability, damped frequencies, control effort, peak transient displacement, acceleration, and control force limits, are effectively solved by using the method presented.

  15. Adaptive EAGLE dynamic solution adaptation and grid quality enhancement

    NASA Technical Reports Server (NTRS)

    Luong, Phu Vinh; Thompson, J. F.; Gatlin, B.; Mastin, C. W.; Kim, H. J.

    1992-01-01

    In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code.

  16. Ways and Means of Adapting Culture and Structure: Case Studies. Support Document 1

    ERIC Educational Resources Information Center

    Clayton, Berwyn; Fisher, Thea; Harris, Roger; Bateman, Andrea; Brown, Mike

    2008-01-01

    The resource in this support document is a set of small case studies, offering insights into how a range of organisations have gone about adapting their organisational structure and/or culture to enhance their capability. Key elements of each case are presented with a particular emphasis on: (1) the principles that have underpinned each approach…

  17. Parametric 3D Atmospheric Reconstruction in Highly Variable Terrain with Recycled Monte Carlo Paths and an Adapted Bayesian Inference Engine

    NASA Technical Reports Server (NTRS)

    Langmore, Ian; Davis, Anthony B.; Bal, Guillaume; Marzouk, Youssef M.

    2012-01-01

    We describe a method for accelerating a 3D Monte Carlo forward radiative transfer model to the point where it can be used in a new kind of Bayesian retrieval framework. The remote sensing challenge is to detect and quantify a chemical effluent of a known absorbing gas produced by an industrial facility in a deep valley. The available data is a single low resolution noisy image of the scene in the near IR at an absorbing wavelength for the gas of interest. The detected sunlight has been multiply reflected by the variable terrain and/or scattered by an aerosol that is assumed partially known and partially unknown. We thus introduce a new class of remote sensing algorithms best described as "multi-pixel" techniques that call necessarily for a 3D radaitive transfer model (but demonstrated here in 2D); they can be added to conventional ones that exploit typically multi- or hyper-spectral data, sometimes with multi-angle capability, with or without information about polarization. The novel Bayesian inference methodology uses adaptively, with efficiency in mind, the fact that a Monte Carlo forward model has a known and controllable uncertainty depending on the number of sun-to-detector paths used.

  18. Variable Is Better Than Invariable: Sparse VSS-NLMS Algorithms with Application to Adaptive MIMO Channel Estimation

    PubMed Central

    Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki

    2014-01-01

    Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics. PMID:25089286

  19. Language and Communication Skills in Preschool Children with Autism Spectrum Disorders: Contribution of Cognition, Severity of Autism Symptoms, and Adaptive Functioning to the Variability

    ERIC Educational Resources Information Center

    Kjellmer, Liselotte; Hedvall, Asa; Fernell, Elisabeth; Gillberg, Christopher; Norrelgen, Fritjof

    2012-01-01

    This study examined the contribution of cognitive function, severity of autism, and adaptive functioning to the variability in language and communication skills in 129 preschool children (aged 24-63 months) with autism spectrum disorder (ASD). Participants were selected from a representative research cohort of 208 preschool children on the basis…

  20. Time variability of Io's volcanic activity from near-IR adaptive optics observations on 100 nights in 2013-2015

    NASA Astrophysics Data System (ADS)

    de Kleer, Katherine; de Pater, Imke

    2016-12-01

    Jupiter's moon Io is a dynamic target, exhibiting extreme and time-variable volcanic activity powered by tidal forcing from Jupiter. We have conducted a campaign of high-cadence observations of Io with the goal of characterizing its volcanic activity. Between Aug 2013 and the end of 2015, we imaged Io on 100 nights in the near-infrared with adaptive optics on the Keck and Gemini N telescopes, which resolve emission from individual volcanic hot spots. During our program, we made over 400 detections of 48 distinct hot spots, some of which were detected 30+ times. We use these observations to derive a timeline of global volcanic activity on Io, which exhibits wide variability from month to month. The timelines of thermal activity at individual volcanic centers have geophysical implications, and will permit future characterization by others. We evaluate hot spot detection limits and give a simple parameterization of the minimum detectable intensity as a function of emission angle, which can be applied to other analyses. We detected three outburst eruptions in August 2013, but no other outburst-scale events were observed in the subsequent ∼90 observations. Either the cluster of events in August 2013 was a rare occurrence, or there is a mechanism causing large events to occur closely-spaced in time. We also detected large eruptions (though not of outburst scale) within days of one another at Kurdalagon Patera and Sethlaus/Gabija Paterae in 2015. As was also seen in the Galileo dataset, the hot spots we detected can be separated into two categories based on their thermal emission: those that are persistently active for 1 year or more at moderate intensity, and those that are only briefly active, are time-variable, and often reach large intensities. A small number of hot spots in the latter category appear and subside in a matter of days, reaching particularly high intensities; although these are not bright enough to qualify as outbursts, their thermal signatures follow

  1. Adaptive Piezoelectric Circuitry Sensor Network with High-Frequency Harmonics Interrogation for Structural Damage Detection

    DTIC Science & Technology

    2014-09-17

    Harmonics Interrogation for Structural Damage Detection FA9550-11-1-0072 Kon-Well Wang and Jiong Tang The Regents of the University of Michigan, 3003...Well Wang 734-764-8464 1    Adaptive Piezoelectric Circuitry Sensor Network with High-Frequency Harmonics Interrogation for Structural Damage Detection...limitations. This research explores damage identification via advancing a third type of approach: high-frequency harmonic excitation-based self

  2. Conceptual study of the damping of large space structures using large-stroke adaptive stiffness cables

    NASA Technical Reports Server (NTRS)

    Thorwald, Gregory; Mikulas, Martin M., Jr.

    1992-01-01

    The concept of a large-stroke adaptive stiffness cable-device for damping control of space structures with large mass is introduced. The cable is used to provide damping in several examples, and its performance is shown through numerical simulation results. Displacement and velocity information of how the structure moves is used to determine when to modify the cable's stiffness in order to provide a damping force.

  3. Highly phosphorylated core oligosaccharide structures from cold-adapted Psychromonas arctica.

    PubMed

    Corsaro, Maria M; Pieretti, Giuseppina; Lindner, Buko; Lanzetta, Rosa; Parrilli, Ermenegilda; Tutino, Maria L; Parrilli, Michelangelo

    2008-01-01

    Many cold habitats contain plenty of microorganisms that represent the most abundant cold-adapted life forms on earth. These organisms have developed a wide range of adaptations that involve the cell wall of the microorganism. In particular, bacteria enhance the synthesis of unsaturated fatty acids of membrane lipids to maintain the membrane fluidity, but very little is known about the adaptational changes in the structure of the lipopolysaccharides (LPSs), the main constituent of the outer leaflet of the outer membrane of Gram-negative bacteria. The aim of this study was to investigate the chemical structure of these LPSs for insight into the temperature-adaptation mechanism. For this objective, the cold-adapted Psychromonas arctica bacterium, which lives in the arctic sea-water near Spitzbergen (Svalbard islands, Arctic) was cultivated at 4 degrees C. The lipooligosaccharides (LOSs) were isolated and analysed by means of chemical analysis and electrospray ionisation high-resolution Fourier transform mass spectrometry. The LOS was then degraded either by mild hydrazinolysis (O-deacylation) or with hot 4 M KOH (N-deacylation). Both products were investigated in detail by using 1H and 13C NMR spectroscopy and mass spectrometry. The core consists of a mixture of species that differ because of the presence of nonstoichiometric D-fructose and/or D-galacturonic acid units.

  4. A low-complexity adaptive beamformer for ultrasound imaging using structured covariance matrix.

    PubMed

    Asl, Babak Mohammadzadeh; Mahloojifar, Ali

    2012-04-01

    In recent years, adaptive beamforming methods have been successfully applied to medical ultrasound imaging, resulting in simultaneous improvement in imaging resolution and contrast. These improvements have been achieved at the expense of higher computational complexity, with respect to the conventional non-adaptive delay-and-sum (DAS) beamformer, in which computational complexity is proportional to the number of elements, O(M). The computational overhead results from the covariance matrix inversion needed for computation of the adaptive weights, the complexity of which is cubic with the subarray size, O(L(3)). This is a computationally intensive procedure, which makes the implementation of adaptive beamformers less attractive in spite of their advantages. Considering that, in medical ultrasound applications, most of the energy is scattered from angles close to the steering angle, assuming spatial stationarity is a good approximation, allowing us to assume the Toeplitz structure for the estimated covariance matrix. Based on this idea, in this paper, we have applied the Toeplitz structure to the spatially smoothed covariance matrix by averaging the entries along all subdiagonals. Because the inverse of the resulting Toeplitz covariance matrix can be computed in O(L(2)) operations, this technique results in a greatly reduced computational complexity. By using simulated and experimental RF data-point targets as well as cyst phantoms-we show that the proposed low-complexity adaptive beamformer significantly outperforms the DAS and its performance is comparable to that of the minimum variance beamformer, with reduced computational complexity.

  5. [Phospholipids and structural modification of tissues and cell membranes for adaptation in high altitude mountains].

    PubMed

    Iakovlev, V M; Vishnevskiĭ, A A; Shanazarov, A S

    2012-01-01

    The nature of the impact of physical factors of high altitudes (3200 m) on the lipids of tissues and membranes of animals was researched. It was established that the adaptation process in Wistar rats was followed by peroxide degradation and subsequent modification of the phospholipids' structure of tissues and microsomal membranes. Adaptive phospholipids reconstruction takes place in microsomal membranes in the tissues of the lungs, brain, liver and skeletal muscles. Together with this, the amount of phosphatidylinositol and phosphatidic acid accumulates, indicating that the hydrolysis of phosphatidylinositol-4, 5 biphosphate to diacylglycerol and secondary messenger--inositol triphosphate, occurs. A decrease in temperature adaptation (+10 degrees C) leads to a more noticeable shift in peroxide oxidation of lipids, phospholipid structure in the tissues and membranes rather than adaptation in thermoneutral conditions (+30 degrees C). Modification of lipid composition of tissues and cell membranes in the highlands obviously increases the adaptive capabilities of cells of the whole body: physical performance and resistance to hypoxia increases in animals.

  6. Toward Hamiltonian Adaptive QM/MM: Accurate Solvent Structures Using Many-Body Potentials.

    PubMed

    Boereboom, Jelle M; Potestio, Raffaello; Donadio, Davide; Bulo, Rosa E

    2016-08-09

    Adaptive quantum mechanical (QM)/molecular mechanical (MM) methods enable efficient molecular simulations of chemistry in solution. Reactive subregions are modeled with an accurate QM potential energy expression while the rest of the system is described in a more approximate manner (MM). As solvent molecules diffuse in and out of the reactive region, they are gradually included into (and excluded from) the QM expression. It would be desirable to model such a system with a single adaptive Hamiltonian, but thus far this has resulted in distorted structures at the boundary between the two regions. Solving this long outstanding problem will allow microcanonical adaptive QM/MM simulations that can be used to obtain vibrational spectra and dynamical properties. The difficulty lies in the complex QM potential energy expression, with a many-body expansion that contains higher order terms. Here, we outline a Hamiltonian adaptive multiscale scheme within the framework of many-body potentials. The adaptive expressions are entirely general, and complementary to all standard (nonadaptive) QM/MM embedding schemes available. We demonstrate the merit of our approach on a molecular system defined by two different MM potentials (MM/MM'). For the long-range interactions a numerical scheme is used (particle mesh Ewald), which yields energy expressions that are many-body in nature. Our Hamiltonian approach is the first to provide both energy conservation and the correct solvent structure everywhere in this system.

  7. Multidisciplinary optimization of a controlled space structure using 150 design variables

    NASA Technical Reports Server (NTRS)

    James, Benjamin B.

    1992-01-01

    A general optimization-based method for the design of large space platforms through integration of the disciplines of structural dynamics and control is presented. The method uses the global sensitivity equations approach and is especially appropriate for preliminary design problems in which the structural and control analyses are tightly coupled. The method is capable of coordinating general purpose structural analysis, multivariable control, and optimization codes, and thus, can be adapted to a variety of controls-structures integrated design projects. The method is used to minimize the total weight of a space platform while maintaining a specified vibration decay rate after slewing maneuvers.

  8. Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2006-01-01

    In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…

  9. Structural Response of Compression-Loaded, Tow-Placed, Variable Stiffness Panels

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Guerdal, Zafer; Starnes, James H., Jr.

    2002-01-01

    Results of an analytical and experimental study to characterize the structural response of two compression-loaded variable stiffness composite panels are presented and discussed. These variable stiffness panels are advanced composite structures, in which tows are laid down along precise curvilinear paths within each ply and the fiber orientation angle varies continuously throughout each ply. The panels are manufactured from AS4/977-3 graphite-epoxy pre-preg material using an advanced tow placement system. Both variable stiffness panels have the same layup, but one panel has overlapping tow bands and the other panel has a constant-thickness laminate. A baseline cross-ply panel is also analyzed and tested for comparative purposes. Tests performed on the variable stiffness panels show a linear prebuckling load-deflection response, followed by a nonlinear response to failure at loads between 4 and 53 percent greater than the baseline panel failure load. The structural response of the variable stiffness panels is also evaluated using finite element analyses. Nonlinear analyses of the variable stiffness panels are performed which include mechanical and thermal prestresses. Results from analyses that include thermal prestress conditions correlate well with measured variable stiffness panel results. The predicted response of the baseline panel also correlates well with measured results.

  10. Imitation of variable structural color in Paracheirodon innesi using colloidal crystal films.

    PubMed

    Cong, Hailin; Yu, Bing; Zhao, Xiu Song

    2011-06-20

    Spacing variation of adjoining reflecting thin films in iridophore is responsible for the variable interference color in the paracheirodon innesi. On the basis of this phenomenon, colloidal crystal thin films with different structures are fabricated from monodisperse poly(styrene-methyl methacrylate-acrylic acid) (PSMA) colloids. The relationship between the colors and structures of the films is investigated and discussed according to the principle of light interference. A two-layer colloidal film having uniform color is researched and it displays diverse colors before and after swelling by styrene (St), which can be used to mimic the variable structural color of the paracheirodon innesi.

  11. Variable structure control of globally feedback-decoupled deformable vehicle maneuvers

    NASA Technical Reports Server (NTRS)

    Dwyer, T. A. W., III; Sira-Ramirez, H.; Monaco, S.; Stornelli, S.

    1987-01-01

    The use of Cayley-Rodrigues attitude parameters as kinematic variables is shown to yield a globally linearized and decoupled model of the equations of motion of a deformable body, where the structural deformation state appears only in the coefficients of the inverse transformation. It is shown how commanded multiaxial attitude maneuvers can be encoded as switching surfaces for a variable-structure control implementation of the corresponding computed slew torques, automatically modulated in respnse only to detected angular rate error signs, for accurate tracking in the presence of separately damped or even uncontrolled (but stable) structural deformations.

  12. Development of adaptive seismic isolators for ultimate seismic protection of civil structures

    NASA Astrophysics Data System (ADS)

    Li, Jianchun; Li, Yancheng; Li, Weihua; Samali, Bijan

    2013-04-01

    Base isolation is the most popular seismic protection technique for civil engineering structures. However, research has revealed that the traditional base isolation system due to its passive nature is vulnerable to two kinds of earthquakes, i.e. the near-fault and far-fault earthquakes. A great deal of effort has been dedicated to improve the performance of the traditional base isolation system for these two types of earthquakes. This paper presents a recent research breakthrough on the development of a novel adaptive seismic isolation system as the quest for ultimate protection for civil structures, utilizing the field-dependent property of the magnetorheological elastomer (MRE). A novel adaptive seismic isolator was developed as the key element to form smart seismic isolation system. The novel isolator contains unique laminated structure of steel and MR elastomer layers, which enable its large-scale civil engineering applications, and a solenoid to provide sufficient and uniform magnetic field for energizing the field-dependent property of MR elastomers. With the controllable shear modulus/damping of the MR elastomer, the developed adaptive seismic isolator possesses a controllable lateral stiffness while maintaining adequate vertical loading capacity. In this paper, a comprehensive review on the development of the adaptive seismic isolator is present including designs, analysis and testing of two prototypical adaptive seismic isolators utilizing two different MRE materials. Experimental results show that the first prototypical MRE seismic isolator can provide stiffness increase up to 37.49%, while the second prototypical MRE seismic isolator provides amazing increase of lateral stiffness up to1630%. Such range of increase of the controllable stiffness of the seismic isolator makes it highly practical for developing new adaptive base isolation system utilizing either semi-active or smart passive controls.

  13. An Investigation of Structure, Flexibility and Function Variables that Discriminate Asymptomatic Foot Types.

    PubMed

    Shultz, Sarah P; Song, Jinsup; Kraszewski, Andrew P; Hafer, Jocelyn F; Rao, Smita; Backus, Sherry; Mootanah, Rajshree; Hillstrom, Howard J

    2016-12-19

    It has been suggested that foot type consider not only foot structure (high, normal, low arch), but also function (over-pronation, normal, over-supination) and flexibility (reduced, normal, excessive). Therefore, this study used canonical regression analyses to assess which variables of foot structure, function, and flexibility can accurately discriminate between clinical foot type classifications. The feet of 61 asymptomatic, healthy adults (18-77 years) were classified as cavus (N=24), rectus (N=54), or planus (N=44) using standard clinical measures. Custom jigs assessed foot structure and flexibility. Foot function was assessed using an emed-x plantar pressure measuring device. Canonical regression analyses were applied separately to extract essential structure, flexibility, and function variables. A third canonical regression analysis was performed on the extracted variables to identify a combined model. The initial combined model included 30 extracted variables; however five terminal variables (malleolar valgus index, arch height index while sitting, first metatarsophalangeal joint laxity while standing, pressure-time integral and maximum contact area of medial arch) were able to correctly predict 80.7% of foot types. These remaining variables focused on specific foot characteristics (hindfoot alignment, arch height, midfoot mechanics, Windlass mechanism) that could be essential to discriminating foot type.

  14. Adaptive unstructured meshing for thermal stress analysis of built-up structures

    NASA Technical Reports Server (NTRS)

    Dechaumphai, Pramote

    1992-01-01

    An adaptive unstructured meshing technique for mechanical and thermal stress analysis of built-up structures has been developed. A triangular membrane finite element and a new plate bending element are evaluated on a panel with a circular cutout and a frame stiffened panel. The adaptive unstructured meshing technique, without a priori knowledge of the solution to the problem, generates clustered elements only where needed. An improved solution accuracy is obtained at a reduced problem size and analysis computational time as compared to the results produced by the standard finite element procedure.

  15. Adaptive identification and control of structural dynamics systems using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Montgomery, R. C.; Williams, J. P.

    1985-01-01

    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.

  16. Approach for Structurally Clearing an Adaptive Compliant Trailing Edge Flap for Flight

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Lokos, William A.; Cruz, Josue; Crampton, Glen; Stephens, Craig A.; Kota, Sridhar; Ervin, Gregory; Flick, Pete

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) flap was flown on the National Aeronautics and Space Administration (NASA) Gulfstream GIII testbed at the NASA Armstrong Flight Research Center. This smoothly curving flap replaced the existing Fowler flaps creating a seamless control surface. This compliant structure, developed by FlexSys Inc. in partnership with the Air Force Research Laboratory, supported NASA objectives for airframe structural noise reduction, aerodynamic efficiency, and wing weight reduction through gust load alleviation. A thorough structures airworthiness approach was developed to move this project safely to flight. A combination of industry and NASA standard practice require various structural analyses, ground testing, and health monitoring techniques for showing an airworthy structure. This paper provides an overview of compliant structures design, the structural ground testing leading up to flight, and the flight envelope expansion and monitoring strategy. Flight data will be presented, and lessons learned along the way will be highlighted.

  17. Fluidic origami: a plant-inspired adaptive structure with shape morphing and stiffness tuning

    NASA Astrophysics Data System (ADS)

    Li, Suyi; Wang, K. W.

    2015-10-01

    Inspired by the physics behind the rapid plant movements and the rich topologies in origami folding, this research creates a unique class of multi-functional adaptive structure through exploring the innovation of fluidic origami. The idea is to connect multiple Miura folded sheets along their crease lines into a space-filling structure, and fill the tubular cells in-between with working fluids. The pressure and fluid flow in these cells can be strategically controlled much like in plants for nastic movements. The relationship between the internal fluid volume and the overall structure deformation is primarily determined by the kinematics of folding. This relationship can be exploited so that fluidic origami can achieve actuation/morphing by actively changing the internal fluid volume, and stiffness tuning by constraining the fluid volume. In order to characterize the working principles and performance potentials of these two adaptive functions, this research develops an equivalent truss frame model on a fluidic origami unit cell to analyze its fundamental elastic characteristics. Eigen-stiffness analysis based on this model reveals the primary modes of deformation and their relationships with initial folding configurations. Performances of the adaptive functions are correlated to the crease pattern design. In parallel to analytical studies, the feasibility of the morphing and stiffness tuning is also examined experimentally via a 3D printed multi-material prototype demonstrator. The research reported in this paper could lead to the synthesis of adaptive fluidic origami cellular metastructures or metamaterial systems for various engineering applications.

  18. Variable Stiffness Panel Structural Analyses With Material Nonlinearity and Correlation With Tests

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Gurdal, Zafer

    2006-01-01

    Results from structural analyses of three tow-placed AS4/977-3 composite panels with both geometric and material nonlinearities are presented. Two of the panels have variable stiffness layups where the fiber orientation angle varies as a continuous function of location on the panel planform. One variable stiffness panel has overlapping tow bands of varying thickness, while the other has a theoretically uniform thickness. The third panel has a conventional uniform-thickness [plus or minus 45](sub 5s) layup with straight fibers, providing a baseline for comparing the performance of the variable stiffness panels. Parametric finite element analyses including nonlinear material shear are first compared with material characterization test results for two orthotropic layups. This nonlinear material model is incorporated into structural analysis models of the variable stiffness and baseline panels with applied end shortenings. Measured geometric imperfections and mechanical prestresses, generated by forcing the variable stiffness panels from their cured anticlastic shapes into their flatter test configurations, are also modeled. Results of these structural analyses are then compared to the measured panel structural response. Good correlation is observed between the analysis results and displacement test data throughout deep postbuckling up to global failure, suggesting that nonlinear material behavior is an important component of the actual panel structural response.

  19. Physiological adaptation along environmental gradients and replicated hybrid zone structure in swordtails (Teleostei: Xiphophorus).

    PubMed

    Culumber, Z W; Shepard, D B; Coleman, S W; Rosenthal, G G; Tobler, M

    2012-09-01

    Local adaptation is often invoked to explain hybrid zone structure, but empirical evidence of this is generally rare. Hybrid zones between two poeciliid fishes, Xiphophorus birchmanni and X. malinche, occur in multiple tributaries with independent replication of upstream-to-downstream gradients in morphology and allele frequencies. Ecological niche modelling revealed that temperature is a central predictive factor in the spatial distribution of pure parental species and their hybrids and explains spatial and temporal variation in the frequency of neutral genetic markers in hybrid populations. Among populations of parentals and hybrids, both thermal tolerance and heat-shock protein expression vary strongly, indicating that spatial and temporal structure is likely driven by adaptation to local thermal environments. Therefore, hybrid zone structure is strongly influenced by interspecific differences in physiological mechanisms for coping with the thermal environment.

  20. Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew

    2004-01-01

    This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.

  1. New Tools and Data to Understand and Adapt to Hydroclimatic Variability and Change in Alaska and Hawaii

    NASA Astrophysics Data System (ADS)

    Arnold, J. R.; Clark, M. P.; Gutmann, E. D.; Wood, A.; Newman, A. J.; Rasmussen, R.; Giambelluca, T. W.; Liston, G. E.; Monaghan, A. J.; Musselman, K. N.

    2015-12-01

    The US Army Corps of Engineers (USACE) Climate Preparedness and Resilience Program has long been a member of the team developing and maintaining the archive of downscaled climatologies and hydrologies for historical and future conditions distributed from the Green Data Oasis site at the Lawrence Livermore National Lab. These products have been created and served out publically with the hope of enhancing decision-making capabilities and potentially improving the use of climate change information in water-resource planning and management. To date, all this work - used extensively to compute climate change threats and water-resource vulnerabilities - has been done for the contiguous U.S. (CONUS); these and most other tools and datasets produced by others have not been primarily concerned with the unique hydrometeorological problems in Alaska and Hawaii. However, the different hydroclimatic regions of both those states are especially sensitive to specific climate change threats made more difficult to characterize by the intense spatial climatic gradients tracked with sparse station networks there and the dominance of distinctive hydrologic processes relatively rare in the CONUS. Examples of those processes include glaciers and permafrost in Alaska; and volcanic subsurface hydrogeology, intense tropical rainfall, and high rates of evapotranspiration in Hawaii, to name but a few. To address these knowledge and capability gaps for these regions outside the CONUS, USACE and its partners are now developing new tools and datasets of current and projected future climatologies and hydrologies to provide enhanced streamflow simulations and support both climate risk assessments and climate adaptation strategies in Alaska and Hawaii. This presentation will focus on our early stage analysis of historical hydroclimate variability in Alaska and Hawaii using the Weather Research and Forecast (WRF) model simulations and probabilistic interpolation of local gauge data in support of

  2. Approach for Structurally Clearing an Adaptive Compliant Trailing Edge Flap for Flight

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Lokos, William A.; Cruz, Josue; Crampton, Glen; Stephens, Craig A.; Kota, Sridhar; Ervin, Gregory; Flick, Pete

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) flap was flown on the NASA Gulfstream GIII test bed at the NASA Armstrong Flight Research Center. This smoothly curving flap replaced the existing Fowler flaps creating a seamless control surface. This compliant structure, developed by FlexSys Inc. in partnership with Air Force Research Laboratory, supported NASA objectives for airframe structural noise reduction, aerodynamic efficiency, and wing weight reduction through gust load alleviation. A thorough structures airworthiness approach was developed to move this project safely to flight.

  3. Representing general theoretical concepts in structural equation models: The role of composite variables

    USGS Publications Warehouse

    Grace, J.B.; Bollen, K.A.

    2008-01-01

    Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest. ?? Springer Science+Business Media, LLC 2007.

  4. Adaptive Dynamic Bayesian Networks

    SciTech Connect

    Ng, B M

    2007-10-26

    A discrete-time Markov process can be compactly modeled as a dynamic Bayesian network (DBN)--a graphical model with nodes representing random variables and directed edges indicating causality between variables. Each node has a probability distribution, conditional on the variables represented by the parent nodes. A DBN's graphical structure encodes fixed conditional dependencies between variables. But in real-world systems, conditional dependencies between variables may be unknown a priori or may vary over time. Model errors can result if the DBN fails to capture all possible interactions between variables. Thus, we explore the representational framework of adaptive DBNs, whose structure and parameters can change from one time step to the next: a distribution's parameters and its set of conditional variables are dynamic. This work builds on recent work in nonparametric Bayesian modeling, such as hierarchical Dirichlet processes, infinite-state hidden Markov networks and structured priors for Bayes net learning. In this paper, we will explain the motivation for our interest in adaptive DBNs, show how popular nonparametric methods are combined to formulate the foundations for adaptive DBNs, and present preliminary results.

  5. An adaptive technique for multiscale approximate entropy (MAEbin) threshold (r) selection: application to heart rate variability (HRV) and systolic blood pressure variability (SBPV) under postural stress.

    PubMed

    Singh, Amritpal; Saini, Barjinder Singh; Singh, Dilbag

    2016-06-01

    Multiscale approximate entropy (MAE) is used to quantify the complexity of a time series as a function of time scale τ. Approximate entropy (ApEn) tolerance threshold selection 'r' is based on either: (1) arbitrary selection in the recommended range (0.1-0.25) times standard deviation of time series (2) or finding maximum ApEn (ApEnmax) i.e., the point where self-matches start to prevail over other matches and choosing the corresponding 'r' (rmax) as threshold (3) or computing rchon by empirically finding the relation between rmax, SD1/SD2 ratio and N using curve fitting, where, SD1 and SD2 are short-term and long-term variability of a time series respectively. None of these methods is gold standard for selection of 'r'. In our previous study [1], an adaptive procedure for selection of 'r' is proposed for approximate entropy (ApEn). In this paper, this is extended to multiple time scales using MAEbin and multiscale cross-MAEbin (XMAEbin). We applied this to simulations i.e. 50 realizations (n = 50) of random number series, fractional Brownian motion (fBm) and MIX (P) [1] series of data length of N = 300 and short term recordings of HRV and SBPV performed under postural stress from supine to standing. MAEbin and XMAEbin analysis was performed on laboratory recorded data of 50 healthy young subjects experiencing postural stress from supine to upright. The study showed that (i) ApEnbin of HRV is more than SBPV in supine position but is lower than SBPV in upright position (ii) ApEnbin of HRV decreases from supine i.e. 1.7324 ± 0.112 (mean ± SD) to upright 1.4916 ± 0.108 due to vagal inhibition (iii) ApEnbin of SBPV increases from supine i.e. 1.5535 ± 0.098 to upright i.e. 1.6241 ± 0.101 due sympathetic activation (iv) individual and cross complexities of RRi and systolic blood pressure (SBP) series depend on time scale under consideration (v) XMAEbin calculated using ApEnmax is correlated with cross-MAE calculated using ApEn (0.1-0.26) in steps of 0

  6. An adaptive piezoelectric vibration absorber enhanced by a negative capacitance applied to a shell structure

    NASA Astrophysics Data System (ADS)

    Gripp, J. A. B.; Góes, L. C. S.; Heuss, O.; Scinocca, F.

    2015-12-01

    Piezoelectric shunt damping is a well-known technique to damp mechanical vibrations of a structure, using a piezoelectric transducer to convert mechanical vibration energy into electrical energy, which is dissipated in an electrical resistance. Resonant shunts consisting of a resistance and an inductance connected to a piezoelectric transducer are used to damp structural vibrations in narrow frequency bands, but their performance is very sensitive to variations in structural modal frequencies and transducer capacitance. In order to overcome this drawback, a piezoelectric shunt damping technique with improved performance and robustness is presented in this paper. The design of the adaptive circuit considers the variation of the host structure’s natural frequency as a project parameter. This paper describes an adaptive resonant piezoelectric vibration absorber enhanced by a synthetic negative capacitance applied to a shell structure. The resonant shunt circuit autonomously adapts its inductance value by comparing the phase difference of the vibration velocity and the current flowing through the shunt circuit. Moreover, a synthetic negative capacitance is added to the shunt circuit to enhance the vibration attenuation provided by the piezoelectric absorber. The circuitry is implemented using analog components. Validation of the proposed method is done by bonding the piezoelectric absorber on a free-formed metallic shell.

  7. Adaptive active vibration control to improve the fatigue life of a carbon-epoxy smart structure

    NASA Astrophysics Data System (ADS)

    Ripamonti, Francesco; Cazzulani, Gabriele; Cinquemani, Simone; Resta, Ferruccio; Torti, Alessandro

    2015-04-01

    Active vibration controls are helpful in improving fatigue life of structures through limitation of absolute displacements. However, control algorithms are usually designed without explicitly taking into account the fatigue phenomenon. In this paper, an adaptive vibration controller is proposed to increase the fatigue life of a smart structure made of composite material and actuated with piezoelectric patches. The main innovation with respect to the most common solutions is that the control laws are directly linked to a damage driving force, which is correlated to a fatigue damage model for the specific material. The control logic is different depending on the damage state of the structure. If no significant damage affects the structure, the controller decreases the crack nucleation probability by limiting the driving forces in the overall structure. On the contrary, if initiated cracks are present, their further propagation is prevented by controlling the damage driving forces in the already damaged areas. The structural diagnostics is performed through a vibration-based health monitoring technique, while periodical adaptation of the controller is adopted to consider damage-induced changes on the structure state-space model and to give emphasis to the most excited modes. The control algorithm has been numerically validated on the finite element model of a cantilever plate.

  8. Historic range of variability in landscape structure in subalpine forests of the Greater Yellowstone Area, USA

    USGS Publications Warehouse

    Tinker, D.B.; Romme, W.H.; Despain, D.G.

    2003-01-01

    A measure of the historic range of variability (HRV) in landscape structure is essential for evaluating current landscape patterns of Rocky Mountain coniferous forests that have been subjected to intensive timber harvest. We used a geographic information system (GIS) and FRAGSTATS to calculate key landscape metrics on two ???130,000-ha landscapes in the Greater Yellowstone Area, USA: one in Yellowstone National Park (YNP), which has been primarily shaped by natural fires, and a second in the adjacent Targhee National Forest (TNF), which has undergone intensive clearcutting for nearly 30 years. Digital maps of the current and historical landscape in YNP were developed from earlier stand age maps developed by Romme and Despain. Maps of the TNF landscape were adapted from United States Forest Service Resource Information System (RIS) data. Key landscape metrics were calculated at 20-yr intervals for YNP for the period from 1705-1995. These metrics were used to first evaluate the relative effects of small vs. large fire events on landscape structure and were then compared to similar metrics calculated for both pre- and post-harvest landscapes of the TNF. Large fires, such as those that burned in 1988, produced a structurally different landscape than did previous, smaller fires (1705-1985). The total number of patches of all types was higher after 1988 (694 vs. 340-404 before 1988), and mean patch size was reduced by almost half (186 ha vs. 319-379 ha). The amount of unburned forest was less following the 1988 fires (63% vs. 72-90% prior to 1988), yet the number of unburned patches increased by nearly an order of magnitude (230 vs. a maximum of 41 prior to 1988). Total core area and mean core area per patch decreased after 1988 relative to smaller fires (???73,700 ha vs. 87,000-110,000 ha, and 320 ha vs. 2,123 ha, respectively). Notably, only edge density was similar (17 m ha-1 after 1988) to earlier landscapes (9.8-14.2 m ha-1). Three decades of timber harvesting

  9. Shape adaptation of long bone structures using a contour based approach.

    PubMed

    Roberts, M D; Hart, R T

    2005-06-01

    In this work, an approach for mechanically driven shape adaptation of long bone structures is presented which utilizes contour descriptions to track morphological changes at different bone cross sections. A script-based procedure is used to iteratively generate a solid geometry and finite element (FE) model from these contours, perform a stress analysis, and then update the contour shapes using the results of the stress analysis using a prescribed remodeling rule. Because a remeshing operation is performed at each timestep the method is able to effectively simulate large changes in geometry. Several examples of shape adaptation of idealized and geometrically accurate long-bone structures are presented using a variety of remodeling signals and parameters.

  10. [Structural and functional reorganization of photosynthetic apparatus in cold adaptation of wheat plants].

    PubMed

    Venzhik, Ju V; Titov, D F; Talanova, V V; Miroslavov, E D; Koteeva, N K

    2012-01-01

    The structural and functional characteristics of the photosynthetic apparatus (PSA) and the cold resistance of wheat seedlings were studied during low-temperature adaptation. It has been established that large chloroplasts with thylakoid system of "sun type" forme in the mesophyll cells in the early hours of plants hardening. At the same time the functional reorganization of the PSA in the leaves of wheat occurs: content of pigments changes, stabilization of the pigment-protein complexes is observed, non-photochemical quenching of excess energy increases. The stabilization of photosynthesis during cold adaptation occurs due to structural and functional reorganization of the PSA. It is assumed that the reorganization of the PSA is a prerequisite for formation of increased cold resistance of leaf cells, and this, along with other physiological and biochemical changes occurring in cells and tissues of plants, allows the plants to survive in chilling.

  11. Three Experiments Examining the Use of Electroencephalogram,Event-Related Potentials, and Heart-Rate Variability for Real-Time Human-Centered Adaptive Automation Design

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Parasuraman, Raja; Freeman, Frederick G.; Scerbo, Mark W.; Mikulka, Peter J.; Pope, Alan T.

    2003-01-01

    Adaptive automation represents an advanced form of human-centered automation design. The approach to automation provides for real-time and model-based assessments of human-automation interaction, determines whether the human has entered into a hazardous state of awareness and then modulates the task environment to keep the operator in-the-loop , while maintaining an optimal state of task engagement and mental alertness. Because adaptive automation has not matured, numerous challenges remain, including what the criteria are, for determining when adaptive aiding and adaptive function allocation should take place. Human factors experts in the area have suggested a number of measures including the use of psychophysiology. This NASA Technical Paper reports on three experiments that examined the psychophysiological measures of event-related potentials, electroencephalogram, and heart-rate variability for real-time adaptive automation. The results of the experiments confirm the efficacy of these measures for use in both a developmental and operational role for adaptive automation design. The implications of these results and future directions for psychophysiology and human-centered automation design are discussed.

  12. Effect of joint imperfections on static control of adaptive structures as space cranes

    NASA Technical Reports Server (NTRS)

    Ramesh, A. V.; Utku, Senol; Wada, B. K.; Chen, G. S.

    1990-01-01

    Effect of imperfections in the joints of an adaptive structure on its slow (no inertia forces) motion along a prescribed trajectory as a space crane is studied. Two mathematical models to predict the effect of joint imperfections are proposed. The two models are used to obtain estimates of the deviations of the node of the space crane to which the end-effector is attached, from its prescribed trajectory. An application of the models to a two-section space crane is given.

  13. Structural and Functional Mechanisms of Adaptations of WrbA in Extremophilic Organisms

    DTIC Science & Technology

    2010-05-11

    Archaeoglobus fulgidus and the mesophile Escherichia coli were investigated to gain an understanding of the mechanisms by which proteins in extremophilic...hypcrthcrmoph’tieArchaeoglohns fidgidus and the mesophile EMiwruhia coli were investigated to gain an understanding of the mechanisms by which proteins in...extremophilic organisms adapt to high temperature. A model of the thermophilic enzyme was constructed based on the crystal structure of the mesophilic

  14. Adapting to Reductions in Team Size: An Examination of Three Structural Alternatives

    DTIC Science & Technology

    2005-06-01

    Std Z39-18 Reductions in Team Size 2 Abstract Research on downsizing in organizations has traditionally focused on the affective- based reactions...of survivors or the reactions of financial markets to downsizing announcements. Very little research has examined how organizational units adapt to... downsizing . This paper investigates three structural approaches to downsizing in teams and directly tests the general proposition that the

  15. Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis

    PubMed Central

    Whitlock, Raj

    2014-01-01

    Understanding the effects of intraspecific genetic diversity on the structure and functioning of ecological communities is a fundamentally important part of evolutionary ecology and may also have conservation relevance in identifying the situations in which genetic diversity coincides with species-level diversity.Early studies within this field documented positive relationships between genetic diversity and ecological structure, but recent studies have challenged these findings. Conceptual synthesis has been hampered because studies have used different measures of intraspecific variation (phenotypically adaptive vs. neutral) and have considered different measures of ecological structure in different ecological and spatial contexts. The aim of this study is to strengthen conceptual understanding by providing an empirical synthesis quantifying the relationship between genetic diversity and ecological structure.Here, I present a meta-analysis of the relationship between genetic diversity within plant populations and the structure and functioning of associated ecological communities (including 423 effect sizes from 70 studies). I used Bayesian meta-analyses to examine (i) the strength and direction of this relationship, (ii) the extent to which phenotypically adaptive and neutral (molecular) measures of diversity differ in their association with ecological structure and (iii) variation in outcomes among different measures of ecological structure and in different ecological contexts.Effect sizes measuring the relationship between adaptive diversity (genotypic richness) and both community- and ecosystem-level ecological responses were small, but significantly positive. These associations were supported by genetic effects on species richness and productivity, respectively.There was no overall association between neutral genetic diversity and measures of ecological structure, but a positive correlation was observed under a limited set of demographic conditions. These

  16. The Effect of Adaptive Administration on the Variability of the Mantel-Haenszel Measure of Differential Item Functioning.

    ERIC Educational Resources Information Center

    Zwick, Rebecca

    1997-01-01

    Recent simulations have shown that, for a given sample size, the Mantel-Haenszel (MH) variances tend to be larger when items are administered to randomly selected examinees than when they are administered adaptively. Results suggest that adaptive testing may lead to more efficient application of MH differential item functioning analyses. (SLD)

  17. Energetic loads and informational entropy during insect metamorphosis: measuring structural variability and self-organization.

    PubMed

    Damos, Petros T; Papadopoulos, Nikos T; Rigas, Alexandros; Savopoulou-Soultani, Matilda

    2011-10-07

    In this work an information theory approach is presented for measuring structural variability during insect metamorphosis. Following a self-organizational perspective, the underlying assumption is that an insect pupa is a cybernetic bio-system, which displays a homeostatic control during its metamorphosis. The description of structural variability was based on biochemical data (lipids, glycogen, carbohydrates and proteins) analysed at different time intervals during the metamorphosis of Anarsia lineatella Zeller (Lepidoptera: Gelechiidae). Probabilities of biochemical variables were further treated by considering a finite countable set of progressive metamorphosis states having Markov properties at isothermal conditions (25 °C, 16:8h L:D, 65 ± 5%RH). The probabilities of the biochemical variables, as well as the related informational entropies, are affected when the system moves one step forward for each successive state. In most cases, but protein, there is some observable evidence that histolysis could be related to a decrease in informational entropy H ('disorganization of the system'), followed by a 'stable balance period' during the middle stages of metamorphosis. An initial increase in H is measured at the last stages of metamorphosis, which theoretically correspond to histogenesis ('reorganization of the system'). In this context, the temporal evolution of pupal structural variability was probabilistically quantified according to the classical information theory. The principles of the proposed holistic system are independent of its detailed dynamics and the proposed model can potentially describe part of the observable experimental data during metamorphosis of a holometabolous insect.

  18. Symmetry-Adapted Ab Initio Shell Model for Nuclear Structure Calculations

    NASA Astrophysics Data System (ADS)

    Draayer, J. P.; Dytrych, T.; Launey, K. D.; Langr, D.

    2012-05-01

    An innovative concept, the symmetry-adapted ab initio shell model, that capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. This framework is expected to inform the leading features of nuclear structure and reaction data for light and medium mass nuclei, which are currently inaccessible by theory and experiment and for which predictions of modern phenomenological models often diverge. We use powerful computational and group-theoretical algorithms to perform ab initio CI (configuration-interaction) calculations in a model space spanned by SU(3) symmetry-adapted many-body configurations with the JISP16 nucleon-nucleon interaction. We demonstrate that the results for the ground states of light nuclei up through A = 16 exhibit a strong dominance of low-spin and high-deformation configurations together with an evident symplectic structure. This, in turn, points to the importance of using a symmetry-adapted framework, one based on an LS coupling scheme with the associated spatial configurations organized according to deformation.

  19. Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales.

    PubMed

    Kurniawan, Nicholas A; Vos, Bart E; Biebricher, Andreas; Wuite, Gijs J L; Peterman, Erwin J G; Koenderink, Gijsje H

    2016-09-06

    Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues.

  20. A new explicit variable time-integration self-starting methodology for computational structural dynamics

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; D'Costa, Joseph F.

    1992-01-01

    A new explicit variable time-integration methodology and architecture which possesses self-starting attributes, eliminates the need to involve acceleration computations, and which has improved accuracy characteristics in comparison to the traditional central-difference-type formulations customarily advocated is described for applicability to computational structural dynamics. To sharpen the focus of the present study, an explicit variable time-integration architecture which is relatively simple, yet effective, is described. Unlike variable explicit time-integration formulations adopted in the past, the present self-starting variable time-integration architecture and implementation aspects facilitate a simplified representation and a straightforward and effective approach for combining finite element meshes requiring different time steps in a single analysis. Numerical test cases are provided which demonstrate the applicability of the proposed formulations.

  1. Conserved variable analysis of the convective boundary layer thermodynamic structure over the tropical oceans

    NASA Technical Reports Server (NTRS)

    Betts, Alan K.; Albrecht, Bruce A.

    1987-01-01

    An analysis of FGGE dropwindsonde data using conserved thermodynamic variables shows mixing line structures for the convective boundary layer over the equatorial Pacific. Deeper boundary layers show a double structure. Reversals of the gradients of mixing ratio and equivalent potential temperature above the boundary-layer top are present in all the averages and suggest that the origin of the air sinking into the boundary layer needs further study.

  2. Genetic contributions to regional variability in human brain structure: methods and preliminary results.

    PubMed

    Wright, I C; Sham, P; Murray, R M; Weinberger, D R; Bullmore, E T

    2002-09-01

    Twin studies provide one approach for investigating and partitioning genetic and environmental contributions to phenotypic variability in human brain structure. Previous twin studies have found that cerebral volume, hemispheric volume, ventricular volume, and cortical gyral pattern variability were heritable. We investigated the contributions of genetic and environmental factors to both global (brain volume and lateral ventricular volume) and regional (parcellated gray matter) variability in brain structure. We examined MR images from 10 pairs of healthy monozygotic and 10 pairs of same-sex dizygotic twins. Regional gray matter volume was estimated by automated image segmentation, transformation to standard space, and parcellation using a digital atlas. Heritability was estimated by path analysis. Estimated heritability for brain volume variability was high (0.66; 95% confidence interval 0.17, 1.0) but the major effects on lateral ventricular volume variability were common and unique environmental factors. We constructed a map of regional brain heritability and found large genetic effects shared in common between several bilateral brain regions, particularly paralimbic structures and temporal-parietal neocortex. We tested three specific hypotheses with regard to the genetic control of brain variability: (i) that the strength of the genetic effect is related to gyral ontogenesis, (ii) that there is greater genetic control of left than of right hemisphere variability, and (iii) that random or fluctuating asymmetry in bilateral structures is not heritable. We found no evidence in support of the first two hypotheses, but our results were consistent with the third hypothesis. Finally, we used principal component (PC) analysis of the genetic correlation matrix, to identify systems of anatomically distributed gray matter regions which shared major genetic effects in common. Frontal and parietal neocortical areas loaded positively on the first PC; some paralimbic and

  3. Kinks and Dents in Protoplanetary Disks: Rapid Infrared Variability as Evidence for Large Structural Perturbations

    NASA Astrophysics Data System (ADS)

    Flaherty, K. M.; Muzerolle, J.; Rieke, G.; Gutermuth, R.; Balog, Z.; Herbst, W.; Megeath, S. T.

    2013-03-01

    We report on synoptic observations at 3.6 and 4.5 μm of young stellar objects in IC 348 with 38 epochs covering 40 days. We find that among the detected cluster members, 338 at [3.6] and 269 at both [3.6] and [4.5], many are variable on daily to weekly timescales with typical fluctuations of ~0.1 mag. The fraction of variables ranges from 20% for the diskless pre-main sequence stars to 60% for the stars still surrounded by infalling envelopes. We also find that stars in the exposed cluster core are less variable than the stars in the dense, slightly younger, southwestern ridge. This trend persists even after accounting for the underlying correlation with infrared spectral energy distribution type, suggesting that the change in variable fraction is not simply a reflection of the change in relative fraction of class I versus class II sources across the cloud, but instead reflects a change in variability with age. We also see a strong correlation between infrared variability and X-ray luminosity among the class II sources. The observed variability most likely reflects large changes in the structure of the inner wall located at the dust sublimation radius. We explore the possibility that these structural perturbations could be caused by a hot spot on the star heating dust above the sublimation temperature, causing it to evaporate rapidly, and increasing the inner radius for a portion of the disk. Under a number of simplifying assumptions we show that this model can reproduce the size and timescale of the 3.6 and 4.5 μm fluctuations. Regardless of its source, the infrared variability indicates that the inner disk is not a slowly evolving entity, but instead is a bubbling, warped, dented mass of gas and dust whose global size and shape fluctuate in a matter of days.

  4. Structural Modeling of Variables Related to Parental Support in Mexican Children's Perfomance on Reading and Writing

    ERIC Educational Resources Information Center

    Bazan-Ramirez, Aldo; Castellanos-Simons, Doris; Lopez-Valenzuela, Mercedes

    2010-01-01

    This paper aims at analysing the structural relationships among some latent and observed variables related to the assessment of written language performance in 139 fourth grade students of Elementary School selected from nine public schools of the northwest of Mexico. Questionnaires were also applied to the children's parents and teachers. The…

  5. Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters

    ERIC Educational Resources Information Center

    Hoshino, Takahiro; Shigemasu, Kazuo

    2008-01-01

    The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…

  6. A Structural Analysis on Korean Young Children's Mathematical Ability and Its Related Children's and Mothers' Variables

    ERIC Educational Resources Information Center

    Lee, Hye Jung; Kim, Jihyun

    2016-01-01

    The objective of this study is to examine the structural relationships among variables that predict the mathematical ability of young children, namely young children's mathematical attitude, exposure to private mathematical learning, mothers' view about their children's mathematical learning, and mothers' mathematical attitude. To this end, we…

  7. Adaptive fuzzy logic controller with direct action type structures for InnoSAT attitude control system

    NASA Astrophysics Data System (ADS)

    Bakri, F. A.; Mashor, M. Y.; Sharun, S. M.; Bibi Sarpinah, S. N.; Abu Bakar, Z.

    2016-10-01

    This study proposes an adaptive fuzzy controller for attitude control system (ACS) of Innovative Satellite (InnoSAT) based on direct action type structure. In order to study new methods used in satellite attitude control, this paper presents three structures of controllers: Fuzzy PI, Fuzzy PD and conventional Fuzzy PID. The objective of this work is to compare the time response and tracking performance among the three different structures of controllers. The parameters of controller were tuned on-line by adjustment mechanism, which was an approach similar to a PID error that could minimize errors between actual and model reference output. This paper also presents a Model References Adaptive Control (MRAC) as a control scheme to control time varying systems where the performance specifications were given in terms of the reference model. All the controllers were tested using InnoSAT system under some operating conditions such as disturbance, varying gain, measurement noise and time delay. In conclusion, among all considered DA-type structures, AFPID controller was observed as the best structure since it outperformed other controllers in most conditions.

  8. Three-dimensional structural representation of the sleep-wake adaptability.

    PubMed

    Putilov, Arcady A

    2016-01-01

    Various characteristics of the sleep-wake cycle can determine the success or failure of individual adjustment to certain temporal conditions of the today's society. However, it remains to be explored how many such characteristics can be self-assessed and how they are inter-related one to another. The aim of the present report was to apply a three-dimensional structural representation of the sleep-wake adaptability in the form of "rugby cake" (scalene or triaxial ellipsoid) to explain the results of analysis of the pattern of correlations of the responses to the initial 320-item list of a new inventory with scores on the six scales designed for multidimensional self-assessment of the sleep-wake adaptability (Morning and Evening Lateness, Anytime and Nighttime Sleepability, and Anytime and Daytime Wakeability). The results obtained for sample consisting of 149 respondents were confirmed by the results of similar analysis of earlier collected responses of 139 respondents to the same list of 320 items and responses of 1213 respondents to the 72 items of one of the earlier established questionnaire tools. Empirical evidence was provided in support of the model-driven prediction of the possibility to identify items linked to as many as 36 narrow (6 core and 30 mixed) adaptabilities of the sleep-wake cycle. The results enabled the selection of 168 items for self-assessment of all these adaptabilities predicted by the rugby cake model.

  9. Dynamic Structure of Neural Variability in the Cortical Representation of Speech Sounds

    PubMed Central

    Dichter, Benjamin K.; Bouchard, Kristofer E.

    2016-01-01

    Accurate sensory discrimination is commonly believed to require precise representations in the nervous system; however, neural stimulus responses can be highly variable, even to identical stimuli. Recent studies suggest that cortical response variability decreases during stimulus processing, but the implications of such effects on stimulus discrimination are unclear. To address this, we examined electrocorticographic cortical field potential recordings from the human nonprimary auditory cortex (superior temporal gyrus) while subjects listened to speech syllables. Compared with a prestimulus baseline, activation variability decreased upon stimulus onset, similar to findings from microelectrode recordings in animal studies. We found that this decrease was simultaneous with encoding and spatially specific for those electrodes that most strongly discriminated speech sounds. We also found that variability was predominantly reduced in a correlated subspace across electrodes. We then compared signal and variability (noise) correlations and found that noise correlations reduce more for electrodes with strong signal correlations. Furthermore, we found that this decrease in variability is strongest in the high gamma band, which correlates with firing rate response. Together, these findings indicate that the structure of single-trial response variability is shaped to enhance discriminability despite non–stimulus-related noise. SIGNIFICANCE STATEMENT Cortical responses can be highly variable to auditory speech sounds. Despite this, sensory perception can be remarkably stable. Here, we recorded from the human superior temporal gyrus, a high-order auditory cortex, and studied the changes in the cortical representation of speech stimuli across multiple repetitions. We found that neural variability is reduced upon stimulus onset across electrodes that encode speech sounds. PMID:27413155

  10. The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012-2013.

    PubMed

    Damerell, Gillian M; Heywood, Karen J; Thompson, Andrew F; Binetti, Umberto; Kaiser, Jan

    2016-05-01

    This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre-scale water mass changes. Below ∼150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode-1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ∼415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700-900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques.

  11. The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012-2013

    NASA Astrophysics Data System (ADS)

    Damerell, Gillian M.; Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan

    2016-05-01

    This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre-scale water mass changes. Below ˜150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode-1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ˜415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700-900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques.

  12. The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012–2013

    PubMed Central

    Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan

    2016-01-01

    Abstract This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre‐scale water mass changes. Below ∼150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode‐1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ∼415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700–900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques. PMID:27840785

  13. Impact of variable [CO2] and temperature on water transport structure-function relationships in Eucalyptus.

    PubMed

    Phillips, Nathan G; Attard, Renee D; Ghannoum, Oula; Lewis, James D; Logan, Barry A; Tissue, David T

    2011-09-01

    Nearly 30 years ago, Whitehead and Jarvis and Whitehead et al. postulated an elegant mechanistic explanation for the observed relationship between tree hydraulic structure and function, hypothesizing that structural adjustments promote physiological homeostasis. To date, this framework has been nearly completely overlooked with regard to varying atmospheric carbon dioxide ([CO(2)]). Here, we evaluated Whitehead's hypothesis of leaf water potential (Ψ(l)) homeostasis in faster-growing (Eucalyptus saligna) and slower-growing (Eucalyptus sideroxylon) tree saplings grown under three [CO(2)] (pre-industrial, current and future) and two temperature (ambient and ambient + 4°C) treatments. We tested for relationships between physiological (stomatal conductance and Ψ(l)) and structural (leaf and sapwood areas (A(l), A(s)), height (h), xylem conductivity (k(s))) plant variables as a function of the [CO(2)] and temperature treatments to assess whether structural variables adjusted to maintain physiological homeostasis. Structural components (A(l), A(s), h) generally increased with [CO(2)] or temperature, while g(s) was negatively correlated with [CO(2)]. Contrary to Whitehead's hypothesis, Ψ(l) did not exhibit homeostasis in either species; elevated temperatures were associated with more negative Ψ(l) in faster-growing E. saligna, and less negative Ψ(l) in slower-growing E. sideroxylon. Moreover, individual structural variables were generally uncorrelated with Ψ(l). However, across both species, the integrated hydraulic property of leaf specific hydraulic conductance (K(l)) was positively correlated with an independent calculation of K(l) determined exclusively from leaf physiological variables. These results suggest that physiological homeostasis may not apply to saplings exposed to global change drivers including [CO(2)] and temperature. Nevertheless, Whitehead et al.'s formulation identified K(l) as a sensitive measure of plant structural-physiological co

  14. Evaluating within-population variability in behavior and demography for the adaptive potential of a dispersal-limited species to climate change

    USGS Publications Warehouse

    Muñoz, David J.; Miller Hesed, Kyle; Grant, Evan H. Campbell; Miller, David A.W.

    2016-01-01

    Multiple pathways exist for species to respond to changing climates. However, responses of dispersal-limited species will be more strongly tied to ability to adapt within existing populations as rates of environmental change will likely exceed movement rates. Here, we assess adaptive capacity in Plethodon cinereus, a dispersal-limited woodland salamander. We quantify plasticity in behavior and variation in demography to observed variation in environmental variables over a 5-year period. We found strong evidence that temperature and rainfall influence P. cinereus surface presence, indicating changes in climate are likely to affect seasonal activity patterns. We also found that warmer summer temperatures reduced individual growth rates into the autumn, which is likely to have negative demographic consequences. Reduced growth rates may delay reproductive maturity and lead to reductions in size-specific fecundity, potentially reducing population-level persistence. To better understand within-population variability in responses, we examined differences between two common color morphs. Previous evidence suggests that the color polymorphism may be linked to physiological differences in heat and moisture tolerance. We found only moderate support for morph-specific differences for the relationship between individual growth and temperature. Measuring environmental sensitivity to climatic variability is the first step in predicting species' responses to climate change. Our results suggest phenological shifts and changes in growth rates are likely responses under scenarios where further warming occurs, and we discuss possible adaptive strategies for resulting selective pressures.

  15. Adaptability of protein structures to enable functional interactions and evolutionary implications.

    PubMed

    Haliloglu, Turkan; Bahar, Ivet

    2015-12-01

    Several studies in recent years have drawn attention to the ability of proteins to adapt to intermolecular interactions by conformational changes along structure-encoded collective modes of motions. These so-called soft modes, primarily driven by entropic effects, facilitate, if not enable, functional interactions. They represent excursions on the conformational space along principal low-ascent directions/paths away from the original free energy minimum, and they are accessible to the protein even before protein-protein/ligand interactions. An emerging concept from these studies is the evolution of structures or modular domains to favor such modes of motion that will be recruited or integrated for enabling functional interactions. Structural dynamics, including the allosteric switches in conformation that are often stabilized upon formation of complexes and multimeric assemblies, emerge as key properties that are evolutionarily maintained to accomplish biological activities, consistent with the paradigm sequence→structure→dynamics→function where 'dynamics' bridges structure and function.

  16. Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings

    NASA Astrophysics Data System (ADS)

    Wada, Ben K.; Fanson, James L.; Miura, Koryo

    1991-11-01

    The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.

  17. Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings

    NASA Technical Reports Server (NTRS)

    Wada, Ben K. (Editor); Fanson, James L. (Editor); Miura, Koryo (Editor)

    1991-01-01

    The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.

  18. Bayesian hierarchical structured variable selection methods with application to MIP studies in breast cancer.

    PubMed

    Zhang, Lin; Baladandayuthapani, Veerabhadran; Mallick, Bani K; Manyam, Ganiraju C; Thompson, Patricia A; Bondy, Melissa L; Do, Kim-Anh

    2014-08-01

    The analysis of alterations that may occur in nature when segments of chromosomes are copied (known as copy number alterations) has been a focus of research to identify genetic markers of cancer. One high-throughput technique recently adopted is the use of molecular inversion probes (MIPs) to measure probe copy number changes. The resulting data consist of high-dimensional copy number profiles that can be used to ascertain probe-specific copy number alterations in correlative studies with patient outcomes to guide risk stratification and future treatment. We propose a novel Bayesian variable selection method, the hierarchical structured variable selection (HSVS) method, which accounts for the natural gene and probe-within-gene architecture to identify important genes and probes associated with clinically relevant outcomes. We propose the HSVS model for grouped variable selection, where simultaneous selection of both groups and within-group variables is of interest. The HSVS model utilizes a discrete mixture prior distribution for group selection and group-specific Bayesian lasso hierarchies for variable selection within groups. We provide methods for accounting for serial correlations within groups that incorporate Bayesian fused lasso methods for within-group selection. Through simulations we establish that our method results in lower model errors than other methods when a natural grouping structure exists. We apply our method to an MIP study of breast cancer and show that it identifies genes and probes that are significantly associated with clinically relevant subtypes of breast cancer.

  19. Gait variability is altered in older adults when listening to auditory stimuli with differing temporal structures.

    PubMed

    Kaipust, Jeffrey P; McGrath, Denise; Mukherjee, Mukul; Stergiou, Nicholas

    2013-08-01

    Gait variability in the context of a deterministic dynamical system may be quantified using nonlinear time series analyses that characterize the complexity of the system. Pathological gait exhibits altered gait variability. It can be either too periodic and predictable, or too random and disordered, as is the case with aging. While gait therapies often focus on restoration of linear measures such as gait speed or stride length, we propose that the goal of gait therapy should be to restore optimal gait variability, which exhibits chaotic fluctuations and is the balance between predictability and complexity. In this context, our purpose was to investigate how listening to different auditory stimuli affects gait variability. Twenty-seven young and 27 elderly subjects walked on a treadmill for 5 min while listening to white noise, a chaotic rhythm, a metronome, and with no auditory stimulus. Stride length, step width, and stride intervals were calculated for all conditions. Detrended Fluctuation Analysis was then performed on these time series. A quadratic trend analysis determined that an idealized inverted-U shape described the relationship between gait variability and the structure of the auditory stimuli for the elderly group, but not for the young group. This proof-of-concept study shows that the gait of older adults may be manipulated using auditory stimuli. Future work will investigate which structures of auditory stimuli lead to improvements in functional status in older adults.

  20. Quantifying the variability in stiffness and damping of an automotive vehicle's trim-structure mounts

    NASA Astrophysics Data System (ADS)

    Abolfathi, Ali; O'Boy, Dan J.; Walsh, Stephen J.; Dowsett, Amy; Fisher, Stephen A.

    2016-09-01

    Small plastic clips are used in large numbers in automotive vehicles to connect interior trims to vehicle structures. The variability in their properties can contribute to the overall variability in noise and vibration response of the vehicle. The variability arises due to their material and manufacturing tolerances and more importantly due to the boundary condition. To measure their stiffness and damping, a simple experimental rig is used where a mass is supported by the clip which is modelled as a single degree of freedom system. The rig is designed in a way that it simulates the boundary condition as those of the real vehicle. The variability in clip and also due to the boundary condition at the structure side is first examined which is 7% for stiffness and 8% for damping. To simulate the connection of the trim side, a mount is built using a 3D printer. Rattling occurs in the response of the clips with loose connections, however by preloading the mount the effective stiffness increases and the rattling is eliminated. The variability due to the boundary condition at the trim side was as large as 40% for stiffness and 52% for damping.

  1. Bayesian hierarchical structured variable selection methods with application to molecular inversion probe studies in breast cancer

    PubMed Central

    Zhang, Lin; Baladandayuthapani, Veerabhadran; Mallick, Bani K.; Manyam, Ganiraju C.; Thompson, Patricia A.; Bondy, Melissa L.; Do, Kim-Anh

    2015-01-01

    Summary The analysis of alterations that may occur in nature when segments of chromosomes are copied (known as copy number alterations) has been a focus of research to identify genetic markers of cancer. One high-throughput technique recently adopted is the use of molecular inversion probes (MIPs) to measure probe copy number changes. The resulting data consist of high-dimensional copy number profiles that can be used to ascertain probe-specific copy number alterations in correlative studies with patient outcomes to guide risk stratification and future treatment. We propose a novel Bayesian variable selection method, the hierarchical structured variable selection (HSVS) method, which accounts for the natural gene and probe-within-gene architecture to identify important genes and probes associated with clinically relevant outcomes. We propose the HSVS model for grouped variable selection, where simultaneous selection of both groups and within-group variables is of interest. The HSVS model utilizes a discrete mixture prior distribution for group selection and group-specific Bayesian lasso hierarchies for variable selection within groups. We provide methods for accounting for serial correlations within groups that incorporate Bayesian fused lasso methods for within-group selection. Through simulations we establish that our method results in lower model errors than other methods when a natural grouping structure exists. We apply our method to an MIP study of breast cancer and show that it identifies genes and probes that are significantly associated with clinically relevant subtypes of breast cancer. PMID:25705056

  2. Genetic Diversity and the Structure of Genealogies in Rapidly Adapting Populations

    PubMed Central

    Desai, Michael M.; Walczak, Aleksandra M.; Fisher, Daniel S.

    2013-01-01

    Positive selection distorts the structure of genealogies and hence alters patterns of genetic variation within a population. Most analyses of these distortions focus on the signatures of hitchhiking due to hard or soft selective sweeps at a single genetic locus. However, in linked regions of rapidly adapting genomes, multiple beneficial mutations at different loci can segregate simultaneously within the population, an effect known as clonal interference. This leads to a subtle interplay between hitchhiking and interference effects, which leads to a unique signature of rapid adaptation on genetic variation both at the selected sites and at linked neutral loci. Here, we introduce an effective coalescent theory (a “fitness-class coalescent”) that describes how positive selection at many perfectly linked sites alters the structure of genealogies. We use this theory to calculate several simple statistics describing genetic variation within a rapidly adapting population and to implement efficient backward-time coalescent simulations, which can be used to predict how clonal interference alters the expected patterns of molecular evolution. PMID:23222656

  3. Adaptive modeling, identification, and control of dynamic structural systems. I. Theory

    USGS Publications Warehouse

    Safak, Erdal

    1989-01-01

    A concise review of the theory of adaptive modeling, identification, and control of dynamic structural systems based on discrete-time recordings is presented. Adaptive methods have four major advantages over the classical methods: (1) Removal of the noise from the signal is done over the whole frequency band; (2) time-varying characteristics of systems can be tracked; (3) systems with unknown characteristics can be controlled; and (4) a small segment of the data is needed during the computations. Included in the paper are the discrete-time representation of single-input single-output (SISO) systems, models for SISO systems with noise, the concept of stochastic approximation, recursive prediction error method (RPEM) for system identification, and the adaptive control. Guidelines for model selection and model validation and the computational aspects of the method are also discussed in the paper. The present paper is the first of two companion papers. The theory given in the paper is limited to that which is necessary to follow the examples for applications in structural dynamics presented in the second paper.

  4. Self-Learning Variable Structure Control for a Class of Sensor-Actuator Systems

    PubMed Central

    Chen, Sanfeng; Li, Shuai; Liu, Bo; Lou, Yuesheng; Liang, Yongsheng

    2012-01-01

    Variable structure strategy is widely used for the control of sensor-actuator systems modeled by Euler-Lagrange equations. However, accurate knowledge on the model structure and model parameters are often required for the control design. In this paper, we consider model-free variable structure control of a class of sensor-actuator systems, where only the online input and output of the system are available while the mathematic model of the system is unknown. The problem is formulated from an optimal control perspective and the implicit form of the control law are analytically obtained by using the principle of optimality. The control law and the optimal cost function are explicitly solved iteratively. Simulations demonstrate the effectiveness and the efficiency of the proposed method. PMID:22778633

  5. Experimental investigation of the variability in the dynamics of connected structures

    NASA Astrophysics Data System (ADS)

    Souza, M. R.; Ferguson, N. S.

    2016-09-01

    Hydraulic pipes and cable bundles attached to host structures are widely found in engineering. This paper explores how variability in the connection points between structures affects the coupled dynamics. One at a time, two different one-dimensional waveguides are attached to a thin plate through a different set of point connections. Measurements considering randomly spaced connections were made and the experimental results are presented and compared to previously developed models. When multiples attachments are considered, the structure accommodates standing-like waves between the attachments, amplifying its response. It was possible to see the variability due the random spacing and, in a frequency-averaged sense, good agreement between the experimental data and the models were obtained. A comparison of the spatial response of the experiment and the infinite system is also presented.

  6. Farmer Health and Adaptive Capacity in the Face of Climate Change and Variability. Part 2: Contexts, Personal Attributes and Behaviors

    PubMed Central

    Hogan, Anthony; Bode, Adam; Berry, Helen

    2011-01-01

    This study extends the emerging body of research on farmer adaptation to climate change, by segmenting farmers on the basis of specific attributes (health, values, belief about climate change, sense of responsibility for climate change, desire to change, social, human and financial capitals and farmer demographics) and considering such attributes as critical social aspects of the contextualized capacity to adapt. The segmental analysis was based on a nationally representative sample of 3,993 farmers concerned with farmer adaptation of climate risks. The resulting data were subjected to two-step cluster analysis to identify homogenous groups of farmers based on factors related to climate change adaptation. A three-cluster solution was identified wherein farmers were distinguishable on the basis of belief in climate change, desire for financial assistance and advice, social connectedness, information seeking, and adverse farm conditions. The largest group (Cluster 1: 55%) was characterized by farmers who recognized being affected by drought and drying and who were actively engaged in adaptive practices, despite the fact that they had little income and poor farm resources. One third of these farmers reported that their health was a barrier to sustained activity in farming. Cluster 2 (26%) was characterized by farmers not readily affected by drying, who enjoyed good incomes, good health and better farming conditions. They expressed little desire to adapt. The smallest cluster (Cluster 3: 19%) was also characterized by farmers who recognized that they were affected by drying. However, despite a desire to adapt, they had very little means to do so. They reported the poorest natural resources and the poorest health, despite being younger. The findings suggest that it is the intent to adapt, starting from where people are at, which is a more important indicator of the capacity to work towards sustainable practices than assets tests alone. PMID:22073028

  7. Farmer health and adaptive capacity in the face of climate change and variability. Part 2: Contexts, personal attributes and behaviors.

    PubMed

    Hogan, Anthony; Bode, Adam; Berry, Helen

    2011-10-01

    This study extends the emerging body of research on farmer adaptation to climate change, by segmenting farmers on the basis of specific attributes (health, values, belief about climate change, sense of responsibility for climate change, desire to change, social, human and financial capitals and farmer demographics) and considering such attributes as critical social aspects of the contextualized capacity to adapt. The segmental analysis was based on a nationally representative sample of 3,993 farmers concerned with farmer adaptation of climate risks. The resulting data were subjected to two-step cluster analysis to identify homogenous groups of farmers based on factors related to climate change adaptation. A three-cluster solution was identified wherein farmers were distinguishable on the basis of belief in climate change, desire for financial assistance and advice, social connectedness, information seeking, and adverse farm conditions. The largest group (Cluster 1: 55%) was characterized by farmers who recognized being affected by drought and drying and who were actively engaged in adaptive practices, despite the fact that they had little income and poor farm resources. One third of these farmers reported that their health was a barrier to sustained activity in farming. Cluster 2 (26%) was characterized by farmers not readily affected by drying, who enjoyed good incomes, good health and better farming conditions. They expressed little desire to adapt. The smallest cluster (Cluster 3: 19%) was also characterized by farmers who recognized that they were affected by drying. However, despite a desire to adapt, they had very little means to do so. They reported the poorest natural resources and the poorest health, despite being younger. The findings suggest that it is the intent to adapt, starting from where people are at, which is a more important indicator of the capacity to work towards sustainable practices than assets tests alone.

  8. Seismic Response Control Of Structures Using Semi-Active and Passive Variable Stiffness Devices

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed M. A.

    Controllable devices such as Magneto-Rheological Fluid Dampers, Electro-Rheological Dampers, and controllable friction devices have been studied extensively with limited implementation in real structures. Such devices have shown great potential in reducing seismic demands, either as smart base isolation systems, or as smart devices for multistory structures. Although variable stiffness devices can be used for seismic control of structures, the vast majority of research effort has been given to the control of damping. The primary focus of this dissertation is to evaluate the seismic control of structures using semi-active and passive variable stiffness characteristics. Smart base isolation systems employing variable stiffness devices have been studied, and two semi-active control strategies are proposed. The control algorithms were designed to reduce the superstructure and base accelerations of seismically isolated structures subject to near-fault and far-field ground motions. Computational simulations of the proposed control algorithms on the benchmark structure have shown that excessive base displacements associated with the near-fault ground motions may be better mitigated with the use of variable stiffness devices. However, the device properties must be controllable to produce a wide range of stiffness changes for an effective control of the base displacements. The potential of controllable stiffness devices in limiting the base displacement due to near-fault excitation without compromising the performance of conventionally isolated structures, is illustrated. The application of passive variable stiffness devices for seismic response mitigation of multistory structures is also investigated. A stiffening bracing system (SBS) is proposed to replace the conventional bracing systems of braced frames. An optimization process for the SBS parameters has been developed. The main objective of the design process is to maintain a uniform inter-story drift angle over the

  9. Use of a structured descriptive assessment methodology to identify variables affecting problem behavior.

    PubMed Central

    Anderson, Cynthia M; Long, Ethan S

    2002-01-01

    This study evaluated a variation of functional assessment methodology, the structured descriptive assessment (SDA). The SDA is conducted in an individual's natural environment and involves systematically manipulating antecedent variables while leaving consequences free to vary. Results were evaluated by comparing the results of an SDA with results obtained from an analogue functional analysis with 4 children who exhibited problem behavior. For 3 of 4 participants, the results of the two assessments suggested similar hypotheses about variables maintaining problem behavior. Interventions based on the results of the SDA were implemented for 3 children and resulted in significant reductions in rates of problem behavior. PMID:12102134

  10. Local Adaptation and Vector-Mediated Population Structure in Plasmodium vivax Malaria

    PubMed Central

    Gonzalez-Ceron, Lilia; Carlton, Jane M.; Gueye, Amy; Fay, Michael; McCutchan, Thomas F.; Su, Xin-zhuan

    2008-01-01

    Plasmodium vivax in southern Mexico exhibits different infectivities to 2 local mosquito vectors, Anopheles pseudopunctipennis and Anopheles albimanus. Previous work has tied these differences in mosquito infectivity to variation in the central repeat motif of the malaria parasite's circumsporozoite (csp) gene, but subsequent studies have questioned this view. Here we present evidence that P. vivax in southern Mexico comprised 3 genetic populations whose distributions largely mirror those of the 2 mosquito vectors. Additionally, laboratory colony feeding experiments indicate that parasite populations are most compatible with sympatric mosquito species. Our results suggest that reciprocal selection between malaria parasites and mosquito vectors has led to local adaptation of the parasite. Adaptation to local vectors may play an important role in generating population structure in Plasmodium. A better understanding of coevolutionary dynamics between sympatric mosquitoes and parasites will facilitate the identification of molecular mechanisms relevant to disease transmission in nature and provide crucial information for malaria control. PMID:18385220

  11. Arbitrary Lagrangian-Eulerian Method with Local Structured Adaptive Mesh Refinement for Modeling Shock Hydrodynamics

    SciTech Connect

    Anderson, R W; Pember, R B; Elliott, N S

    2001-10-22

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. This method facilitates the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required through dynamic adaption. Many of the core issues involved in the development of the combined ALEAMR method hinge upon the integration of AMR with a staggered grid Lagrangian integration method. The novel components of the method are mainly driven by the need to reconcile traditional AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. Numerical examples are presented which demonstrate the accuracy and efficiency of the method.

  12. Ensemble X-ray variability of active galactic nuclei. II. Excess variance and updated structure function

    NASA Astrophysics Data System (ADS)

    Vagnetti, F.; Middei, R.; Antonucci, M.; Paolillo, M.; Serafinelli, R.

    2016-09-01

    Context. Most investigations of the X-ray variability of active galactic nuclei (AGN) have been concentrated on the detailed analyses of individual, nearby sources. A relatively small number of studies have treated the ensemble behaviour of the more general AGN population in wider regions of the luminosity-redshift plane. Aims: We want to determine the ensemble variability properties of a rich AGN sample, called Multi-Epoch XMM Serendipitous AGN Sample (MEXSAS), extracted from the fifth release of the XMM-Newton Serendipitous Source Catalogue (XMMSSC-DR5), with redshift between ~0.1 and ~5, and X-ray luminosities in the 0.5-4.5 keV band between ~1042 erg/s and ~1047 erg/s. Methods: We urge caution on the use of the normalised excess variance (NXS), noting that it may lead to underestimate variability if used improperly. We use the structure function (SF), updating our previous analysis for a smaller sample. We propose a correction to the NXS variability estimator, taking account of the light curve duration in the rest frame on the basis of the knowledge of the variability behaviour gained by SF studies. Results: We find an ensemble increase of the X-ray variability with the rest-frame time lag τ, given by SF ∝ τ0.12. We confirm an inverse dependence on the X-ray luminosity, approximately as SF ∝ LX-0.19. We analyse the SF in different X-ray bands, finding a dependence of the variability on the frequency as SF ∝ ν-0.15, corresponding to a so-called softer when brighter trend. In turn, this dependence allows us to parametrically correct the variability estimated in observer-frame bands to that in the rest frame, resulting in a moderate (≲15%) shift upwards (V-correction). Conclusions: Ensemble X-ray variability of AGNs is best described by the structure function. An improper use of the normalised excess variance may lead to an underestimate of the intrinsic variability, so that appropriate corrections to the data or the models must be applied to prevent

  13. Global References, Local Translation: Adaptation of the Bologna Process Degree Structure and Credit System at Universities in Cameroon

    ERIC Educational Resources Information Center

    Eta, Elizabeth Agbor; Vubo, Emmanuel Yenshu

    2016-01-01

    This article uses temporal comparison and thematic analytical approaches to analyse text documents and interviews, examining the adaptation of the Bologna Process degree structure and credit system in two sub-systems of education in Cameroon: the Anglo-Saxon and the French systems. The central aim is to verify whether such adaptation has replaced,…

  14. Adaptive nonlinear polynomial neural networks for control of boundary layer/structural interaction

    NASA Technical Reports Server (NTRS)

    Parker, B. Eugene, Jr.; Cellucci, Richard L.; Abbott, Dean W.; Barron, Roger L.; Jordan, Paul R., III; Poor, H. Vincent

    1993-01-01

    The acoustic pressures developed in a boundary layer can interact with an aircraft panel to induce significant vibration in the panel. Such vibration is undesirable due to the aerodynamic drag and structure-borne cabin noises that result. The overall objective of this work is to develop effective and practical feedback control strategies for actively reducing this flow-induced structural vibration. This report describes the results of initial evaluations using polynomial, neural network-based, feedback control to reduce flow induced vibration in aircraft panels due to turbulent boundary layer/structural interaction. Computer simulations are used to develop and analyze feedback control strategies to reduce vibration in a beam as a first step. The key differences between this work and that going on elsewhere are as follows: that turbulent and transitional boundary layers represent broadband excitation and thus present a more complex stochastic control scenario than that of narrow band (e.g., laminar boundary layer) excitation; and secondly, that the proposed controller structures are adaptive nonlinear infinite impulse response (IIR) polynomial neural network, as opposed to the traditional adaptive linear finite impulse response (FIR) filters used in most studies to date. The controllers implemented in this study achieved vibration attenuation of 27 to 60 dB depending on the type of boundary layer established by laminar, turbulent, and intermittent laminar-to-turbulent transitional flows. Application of multi-input, multi-output, adaptive, nonlinear feedback control of vibration in aircraft panels based on polynomial neural networks appears to be feasible today. Plans are outlined for Phase 2 of this study, which will include extending the theoretical investigation conducted in Phase 2 and verifying the results in a series of laboratory experiments involving both bum and plate models.

  15. Active load path adaption in a simple kinematic load-bearing structure due to stiffness change in the structure's supports

    NASA Astrophysics Data System (ADS)

    Gehb, C. M.; Platz, R.; Melz, T.

    2016-09-01

    Load-bearing structures with kinematic functions enable and disable degrees of freedom and are part of many mechanical engineering applications. The relative movement between a wheel and the body of a car or a landing gear and an aircraft fuselage are examples for load-bearing systems with defined kinematics. In most cases, the load is transmitted through a predetermined load path to the structural support interfaces. However, unexpected load peaks or varying health condition of the system's supports, which means for example varying damping and stiffness characteristics, may require an active adjustment of the load path. However, load paths transmitted through damaged or weakened supports can be the reason for reduced comfort or even failure. In this paper a simplified 2D two mass oscillator with two supports is used to numerically investigate the potential of controlled adaptive auxiliary kinematic guidance elements in a load-bearing structure to adapt the load path depending on the stiffness change, representing damage of the supports. The aim is to provide additional forces in the auxiliary kinematic guidance elements for two reasons. On the one hand, one of the two supports that may become weaker through stiffness change will be relieved from higher loading. On the other hand, tilting due to different compliance in the supports will be minimized. Therefore, shifting load between the supports during operation could be an effective option.

  16. Genetic Variability and Structuring of Arctic Charr (Salvelinus alpinus) Populations in Northern Fennoscandia

    PubMed Central

    Shikano, Takahito; Järvinen, Antero; Marjamäki, Paula; Kahilainen, Kimmo K.; Merilä, Juha

    2015-01-01

    Variation in presumably neutral genetic markers can inform us about evolvability, historical effective population sizes and phylogeographic history of contemporary populations. We studied genetic variability in 15 microsatellite loci in six native landlocked Arctic charr (Salvelinus alpinus) populations in northern Fennoscandia, where this species is considered near threatened. We discovered that all populations were genetically highly (mean FST ≈ 0.26) differentiated and isolated from each other. Evidence was found for historical, but not for recent population size bottlenecks. Estimates of contemporary effective population size (Ne) ranged from seven to 228 and were significantly correlated with those of historical Ne but not with lake size. A census size (NC) was estimated to be approximately 300 individuals in a pond (0.14 ha), which exhibited the smallest Ne (i.e. Ne/NC = 0.02). Genetic variability in this pond and a connected lake is severely reduced, and both genetic and empirical estimates of migration rates indicate a lack of gene flow between them. Hence, albeit currently thriving, some northern Fennoscandian populations appear to be vulnerable to further loss of genetic variability and are likely to have limited capacity to adapt if selection pressures change. PMID:26468642

  17. Azimuthal variability of radial structure of Saturn's rings observed by Cassini radio occultations

    NASA Astrophysics Data System (ADS)

    Marouf, E.; Rappaport, N.; French, R.; McGhee, C.; Anabtawi, A.

    Eight completed Cassini radio occultation observations of Saturn s rings have yielded high spatial resolution 1 km X-band 3 6 cm-wavelength optical depth profiles at twelve distinct ring longitudes The profiles provide a rich resource of information about radial ring structure and its azimuthal variability Additional acquired Ka- and S-band 0 94 and 13 cm-wavelength profiles yield important complementary information about the particle sizes populating the observed structure Of particular interest here is the observed profile variability with observation longitude azimuth Well-known mechanisms responsible for the variability include resonant interaction with exterior satellites gravitational interactions with ring-embedded satellites and resonant forcing of ring edges and narrow ringlets Streamline distortion caused by such mechanisms is clearly evident in the profiles in the form of a host of density waves some bending waves Pan s wake sharp noncircular edges and narrow eccentric ringlets Although much of the observed structure correlates well with known forcing mechanisms some structure does not This includes width profile variations of several narrow gaps and eccentric ringlets as well as several wave-like features Much of the asymmetry is particularly prominent in features within Rings C the Cassini Division and Ring A A different known mechanism responsible for profile asymmetry is related to the rings microstructure Gravitational wakes developing within self-gravitating Keplerian disks result in spatial correlations

  18. Crystal Structure of Neurotropism-Associated Variable Surface Protein 1 (VSP1) of Borrelia Turicatae

    SciTech Connect

    Lawson,C.; Yung, B.; Barbour, A.; Zuckert, W.

    2006-01-01

    Vsp surface lipoproteins are serotype-defining antigens of relapsing fever spirochetes that undergo multiphasic antigenic variation to allow bacterial persistence in spite of an immune response. Two isogenic serotypes of Borrelia turicatae strain Oz1 differ in their Vsp sequences and in disease manifestations in infected mice: Vsp1 is associated with the selection of a neurological niche, while Vsp2 is associated with blood and skin infection. We report here crystal structures of the Vsp1 dimer at 2.7 and 2.2 Angstroms. The structures confirm that relapsing fever Vsp proteins share a common helical fold with OspCs of Lyme disease-causing Borrelia. The fold features an inner stem formed by highly conserved N and C termini and an outer 'dome' formed by the variable central residues. Both Vsp1 and OspC structures possess small water-filled cavities, or pockets, that are lined largely by variable residues and are thus highly variable in shape. These features appear to signify tolerance of the Vsp-OspC fold for imperfect packing of residues at its antigenic surface. Structural comparison of Vsp1 with a homology model for Vsp2 suggests that observed differences in disease manifestation may arise in part from distinct differences in electrostatic surface properties; additional predicted positively charged surface patches on Vsp2 compared to Vsp1 may be sufficient to explain the relative propensity of Vsp2 to bind to acidic glycosaminoglycans.

  19. Structural variability and the nature of intermolecular interactions in Watson-Crick B-DNA base pairs.

    PubMed

    Czyznikowska, Z; Góra, R W; Zaleśny, R; Lipkowski, P; Jarzembska, K N; Dominiak, P M; Leszczynski, J

    2010-07-29

    A set of nearly 100 crystallographic structures was analyzed using ab initio methods in order to verify the effect of the conformational variability of Watson-Crick guanine-cytosine and adenine-thymine base pairs on the intermolecular interaction energy and its components. Furthermore, for the representative structures, a potential energy scan of the structural parameters describing mutual orientation of the base pairs was carried out. The results were obtained using the hybrid variational-perturbational interaction energy decomposition scheme. The electron correlation effects were estimated by means of the second-order Møller-Plesset perturbation theory and coupled clusters with singles and doubles method adopting AUG-cc-pVDZ basis set. Moreover, the characteristics of hydrogen bonds in complexes, mimicking those appearing in B-DNA, were evaluated using topological analysis of the electron density. Although the first-order electrostatic energy is usually the largest stabilizing component, it is canceled out by the associated exchange repulsion in majority of the studied crystallographic structures. Therefore, the analyzed complexes of the nucleic acid bases appeared to be stabilized mainly by the delocalization component of the intermolecular interaction energy which, in terms of symmetry adapted perturbation theory, encompasses the second- and higher-order induction and exchange-induction terms. Furthermore, it was found that the dispersion contribution, albeit much smaller in terms of magnitude, is also a vital stabilizing factor. It was also revealed that the intermolecular interaction energy and its components are strongly influenced by four (out of six) structural parameters describing mutual orientation of bases in Watson-Crick pairs, namely shear, stagger, stretch, and opening. Finally, as a part of a model study, much of the effort was devoted to an extensive testing of the UBDB databank. It was shown that the databank quite successfully reproduces the

  20. Self-adaptive predictor-corrector algorithm for static nonlinear structural analysis

    NASA Technical Reports Server (NTRS)

    Padovan, J.

    1981-01-01

    A multiphase selfadaptive predictor corrector type algorithm was developed. This algorithm enables the solution of highly nonlinear structural responses including kinematic, kinetic and material effects as well as pro/post buckling behavior. The strategy involves three main phases: (1) the use of a warpable hyperelliptic constraint surface which serves to upperbound dependent iterate excursions during successive incremental Newton Ramphson (INR) type iterations; (20 uses an energy constraint to scale the generation of successive iterates so as to maintain the appropriate form of local convergence behavior; (3) the use of quality of convergence checks which enable various self adaptive modifications of the algorithmic structure when necessary. The restructuring is achieved by tightening various conditioning parameters as well as switch to different algorithmic levels to improve the convergence process. The capabilities of the procedure to handle various types of static nonlinear structural behavior are illustrated.

  1. Adaptive comb filtering for motion artifact reduction from PPG with a structure of adaptive lattice IIR notch filter.

    PubMed

    Lee, Boreom; Kee, Youngwook; Han, Jonghee; Yi, Won Jin

    2011-01-01

    Photoplethysmographic (PPG) signal can provide important information about cardiovascular and respiratory conditions of individuals in a hospital or daily life. However, PPG can be distorted by motion artifacts significantly. Therefore, the reduction of the effects of motion artifacts is very important procedure for monitoring cardio-respiratory system by PPG. There have been many adaptive techniques to reduce motion artifacts from PPG signal including normalized least mean squares (NLMS) method, recursive least squares (RLS) filter, and Kalman filter. In the present study, we propose the adaptive comb filter (ACF) for reducing the effects of motion artifacts from PPG signal. ACF with adaptive lattice infinite impulse response (IIR) notch filter (ALNF) successfully reduced the motion artifacts from the quasi-periodic PPG signal.

  2. Variable stiffness corrugated composite structure with shape memory polymer for morphing skin applications

    NASA Astrophysics Data System (ADS)

    Gong, Xiaobo; Liu, Liwu; Scarpa, Fabrizio; Leng, Jinsong; Liu, Yanju

    2017-03-01

    This work presents a variable stiffness corrugated structure based on a shape memory polymer (SMP) composite with corrugated laminates as reinforcement that shows smooth aerodynamic surface, extreme mechanical anisotropy and variable stiffness for potential morphing skin applications. The smart composite corrugated structure shows a low in-plane stiffness to minimize the actuation energy, but also possess high out-of-plane stiffness to transfer the aerodynamic pressure load. The skin provides an external smooth aerodynamic surface because of the one-sided filling with the SMP. Due to variable stiffness of the shape memory polymer the morphing skin exhibits a variable stiffness with a change of temperature, which can help the skin adjust its stiffness according different service environments and also lock the temporary shape without external force. Analytical models related to the transverse and bending stiffness are derived and validated using finite element techniques. The stiffness of the morphing skin is further investigated by performing a parametric analysis against the geometry of the corrugation and various sets of SMP fillers. The theoretical and numerical models show a good agreement and demonstrate the potential of this morphing skin concept for morphing aircraft applications. We also perform a feasibility study of the use of this morphing skin in a variable camber morphing wing baseline. The results show that the morphing skin concept exhibits sufficient bending stiffness to withstand the aerodynamic load at low speed (less than 0.3 Ma), while demonstrating a large transverse stiffness variation (up to 191 times) that helps to create a maximum mechanical efficiency of the structure under varying external conditions.

  3. Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors

    SciTech Connect

    Alexander, Roger P; Jouline, Igor B

    2007-01-01

    As an important model for transmembrane signaling, methyl-accepting chemotaxis proteins (MCPs) have been extensively studied by using genetic, biochemical, and structural techniques. However, details of the molecular mechanism of signaling are still not well understood. The availability of genomic information for hundreds of species enables the identification of features in protein sequences that are conserved over long evolutionary distances and thus are critically important for function. We carried out a large-scale comparative genomic analysis of the MCP signaling and adaptation domain family and identified features that appear to be critical for receptor structure and function. Based on domain length and sequence conservation, we identified seven major MCP classes and three distinct structural regions within the cytoplasmic domain: signaling, methylation, and flexible bundle subdomains. The flexible bundle subdomain, not previously recognized in MCPs, is a conserved element that appears to be important for signal transduction. Remarkably, the N- and C-terminal helical arms of the cytoplasmic domain maintain symmetry in length and register despite dramatic variation, from 24 to 64 7-aa heptads in overall domain length. Loss of symmetry is observed in some MCPs, where it is concomitant with specific changes in the sensory module. Each major MCP class has a distinct pattern of predicted methylation sites that is well supported by experimental data. Our findings indicate that signaling and adaptation functions within the MCP cytoplasmic domain are tightly coupled, and that their coevolution has contributed to the significant diversity in chemotaxis mechanisms among different organisms.

  4. KRISTINA: Kinematic rib-based structural system for innovative adaptive trailing edge

    NASA Astrophysics Data System (ADS)

    Pecora, R.; Amoroso, F.; Magnifico, M.; Dimino, I.; Concilio, A.

    2016-04-01

    Nature teaches that the flight of the birds succeeds perfectly since they are able to change the shape of their wings in a continuous manner. The careful observation of this phenomenon has re-introduced in the recent research topics the study of "metamorphic" wing structures; these innovative architectures allow for the controlled wing shape adaptation to different flight conditions with the ultimate goal of getting desirable improvements such as the increase of aerodynamic efficiency or load control effectiveness. In this framework, the European research project SARISTU aimed at combining morphing and smart ideas to the leading edge, the trailing edge and the winglet of a large commercial airplane (EASA CS25 category) while assessing integrated technologies validation through high-speed wind tunnel test on a true scale outer wing segment. The design process of the adaptive trailing edge (ATED) addressed by SARISTU is here outlined, from the conceptual definition of the camber-morphing architecture up to the assessment of the device executive layout. Rational design criteria were implemented in order to preliminarily define ATED structural layout and the general configuration of the embedded mechanisms enabling morphing under the action of aerodynamic loads. Advanced FE analyses were then carried out and the robustness of adopted structural arrangements was proven in compliance with applicable airworthiness requirements.

  5. Protein Secondary Structure Prediction Using Local Adaptive Techniques in Training Neural Networks

    NASA Astrophysics Data System (ADS)

    Aik, Lim Eng; Zainuddin, Zarita; Joseph, Annie

    2008-01-01

    One of the most significant problems in computer molecular biology today is how to predict a protein's three-dimensional structure from its one-dimensional amino acid sequence or generally call the protein folding problem and difficult to determine the corresponding protein functions. Thus, this paper involves protein secondary structure prediction using neural network in order to solve the protein folding problem. The neural network used for protein secondary structure prediction is multilayer perceptron (MLP) of the feed-forward variety. The training set are taken from the protein data bank which are 120 proteins while 60 testing set is the proteins which were chosen randomly from the protein data bank. Multiple sequence alignment (MSA) is used to get the protein similar sequence and Position Specific Scoring matrix (PSSM) is used for network input. The training process of the neural network involves local adaptive techniques. Local adaptive techniques used in this paper comprises Learning rate by sign changes, SuperSAB, Quickprop and RPROP. From the simulation, the performance for learning rate by Rprop and Quickprop are superior to all other algorithms with respect to the convergence time. However, the best result was obtained using Rprop algorithm.

  6. Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang

    2016-07-01

    The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only needs to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.

  7. Cold adaptation: structural and functional characterizations of psychrophilic and mesophilic acetate kinase.

    PubMed

    Tang, Md Abul Kashem; Motoshima, Hiroyuki; Watanabe, Keiichi

    2014-08-01

    Acetate kinase catalyzes the reversible magnesium-dependent phosphoryl transfer from ATP to acetate to form acetyl phosphate and ADP. Here, we report functional and some structural properties of cold-adapted psychrotrophic enzyme; acetate kinase with those from mesophilic counterpart in Escherichia coli K-12. Recombinant acetate kinase from Shewanella sp. AS-11 (SAK) and E. coli K-12 (EAK) were purified to homogeneity following affinity chromatography and followed by Super Q column chromatography as reported before [44]. Both purified enzymes are shared some of the common properties such as (similar molecular mass, amino acid sequence and similar optimum pH), but characterized shift in the apparent optimum temperature of specific activity to lower temperature as well as by a lower thermal stability compared with EAK. The functional comparisons reveal that SAK is a cold adapted enzyme, having a higher affinity to acetate than EAK. In the acetyl phosphate and ADP-forming direction, the catalytic efficiency (k(cat)/K(m)) for acetate was 8.0 times higher for SAK than EAK at 10 °C. The activity ratio of SAK to EAK was increased with decreasing temperature in both of the forward and backward reactions. Furthermore, the activation energy, enthalpy and entropy in both reaction directions that catalyzed by SAK were lower than those catalyzed by EAK. The model structure of SAK showed the significantly reduced numbers of salt bridges and cation-pi interactions as compared with EAK. These results suggest that weakening of intramolecular electrostatic interactions of SAK is involved in a more flexible structure which is likely to be responsible for its cold adaptation.

  8. A Note on the Use of Missing Auxiliary Variables in Full Information Maximum Likelihood-Based Structural Equation Models

    ERIC Educational Resources Information Center

    Enders, Craig K.

    2008-01-01

    Recent missing data studies have argued in favor of an "inclusive analytic strategy" that incorporates auxiliary variables into the estimation routine, and Graham (2003) outlined methods for incorporating auxiliary variables into structural equation analyses. In practice, the auxiliary variables often have missing values, so it is reasonable to…

  9. Practical robust stabilization of PMAC servo drive based on continuous variable structure control

    SciTech Connect

    Grcar, B.; Cafuta, P.; Znidaric, M.

    1996-12-01

    In the paper the two stage control design of a high performance PMAC servo drive is described. In the first stage the nominal PMAC motor model is discussed as an analytical nonlinear system, transformed into the controllable canonical Brunovsky`s forms on the basis of input-output linearization. The influence of the load torque is considered implicitly by introducing the disturbance observer. Due to the sensitivity of the nominal model based control to parameter perturbations the linear tracking control is extended in the second stage by a continuous variable structure stabilizing control derived from Lyapunov`s function of the augmented feedback system. The design of the variable structure control requires no knowledge of the upper bounds of the perturbation function; instead, it considers the variable bounds of the available control signal. Undesired chattering of states and controlled variables are excluded. The introduced two stage control design assures practical robust stabilization for the class of bounded nonlinear perturbations satisfying the matching conditions without affecting the relative degree of the feedback system. Experimental results of the proposed PMAC servo drive control are presented.

  10. Thermocline Structure and ENSO Variability in the eastern equatorial Pacific during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Clark, S.; Koutavas, A.; Lynch-Stieglitz, J.; Rustic, G.

    2015-12-01

    The mean state and variability of the eastern equatorial Pacific (EEP) during the Last Glacial Maximum (LGM) are of great interest because of the region's role in the El Niño-Southern Oscillation (ENSO) and global climate. We investigated changes in thermocline structure between the Late Holocene (LH) and LGM with stable isotopes of planktonic foraminifera in sediment cores from the Galápagos. We measured δ18O in two species—Globigerinoides ruber, inhabiting the surface mixed layer, and Neogloboquadrina dutertrei, inhabiting the deep thermocline—in order to evaluate the vertical temperature contrast between the two species. We also measured δ18O of individual N. dutertrei from modern (late 20th century) and LGM sediments in order to assess thermocline temperature variability related to ENSO activity. Our data indicate a reduced vertical contrast in the upper ocean during the LGM, which is most consistent with a deeper thermocline and thicker mixed layer. Additionally, δ18O of individual N. dutertrei shells shows 2.5 times greater population variance in the LGM than in the modern sample. This large variance indicates that thermocline temperatures were more variable during the LGM than today, consistent with more active ENSO. Together, these results imply that the mean state of the EEP was characterized by a deeper thermocline and greater ENSO variability. The results further show the potential for reconstructing ENSO variability from deep-sea sediments of the EEP, where other geological archives of ENSO are currently extremely limited.

  11. Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams

    NASA Technical Reports Server (NTRS)

    Song, O.; Librescu, L.; Rogers, C. A.

    1992-01-01

    The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.

  12. The prediction of EEG signals using a feedback-structured adaptive rational function filter.

    PubMed

    Kim, H S; Kim, T S; Choi, Y H; Park, S H

    2000-08-01

    In this article, we present a feedback-structured adaptive rational function filter based on a recursive modified Gram-Schmidt algorithm and apply it to the prediction of an EEG signal that has nonlinear and nonstationary characteristics. For the evaluation of the prediction performance, the proposed filter is compared with other methods, where a single-step prediction and a multi-step prediction are considered for a short-term prediction, and the prediction performance is assessed in normalized mean square error. The experimental results show that the proposed filter shows better performance than other methods considered for the short-term prediction of EEG signals.

  13. An adaptive structure data acquisition system using a graphical-based programming language

    NASA Technical Reports Server (NTRS)

    Baroth, Edmund C.; Clark, Douglas J.; Losey, Robert W.

    1992-01-01

    An example of the implementation of data fusion using a PC and a graphical programming language is discussed. A schematic of the data acquisition system and user interface panel for an adaptive structure test are presented. The computer programs (a series of icons 'wired' together) are also discussed. The way in which using graphical-based programming software to control a data acquisition system can simplify analysis of data, promote multidisciplinary interaction, and provide users a more visual key to understanding their data are shown.

  14. Changes in fractal structure of heart rate variability during a nap in one case.

    PubMed

    Shono, H; Shono, M; Takasaki, M; Iwasaka, T; Sugimori, H

    2001-06-01

    The objective of the present study was to analyze fractal structures of adult heart rate (HR) variability during a nap. Fractal analysis was carried out in one case over consecutive 10-min time series of HR, which were simultaneously recorded with electroencephalogram. Scaling relationships showed cross-over patterns characterized by alphas and alphal (i.e. slopes above and below a cross-over point). The alphas and alphal were black and white noise at Stage 4 of NREM sleep, and black and 1/f noise in REM sleep. Cross-over points changed from the first to second sleep cycle. We demonstrate the multifractal structures of HR variability during a nap in the present case.

  15. The Flow Structure in the Vicinity of the Inner Lagrangian Point in Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Isakova, P. B.; Zhilkin, A. G.; Bisikalo, D. V.

    2017-03-01

    The mass transfer between the components of the magnetic cataclysmic variables occurs through the inner Lagrangian point. The results of 3D numerical simulations of the flow structure in magnetic cataclysmic variables show that the magnetic field of the accretor essentially influences the flow structure. In polars (with magnetic fields of 10–100 MG at the surface of the white dwarf) the material streaming from the donor splits into the several flows as soon as it leaves the inner Lagrangian point. These flows move along the magnetic field lines and reach the magnetic poles of the accretor. This picture does not correspond to the classical situation of the flow formation when material flows from the donor into the Roche lobe of the accretor along the ballistic trajectory. The aim of our study is to investigate in detail the features of the flow splitting in the vicinity of the inner Lagrangian point in classic polars.

  16. Variability of the Structural Coloration in Two Butterfly Species with Different Prezygotic Mating Strategies

    PubMed Central

    Kertész, Krisztián; Bálint, Zsolt; Biró, László Péter

    2016-01-01

    Structural coloration variability was investigated in two Blue butterfly species that are common in Hungary. The males of Polyommatus icarus (Common Blue) and Plebejus argus (Silver-studded Blue) use their blue wing coloration for conspecific recognition. Despite living in the same type of habitat, these two species display differences in prezygotic mating strategy: the males of P. icarus are patrolling, while P. argus males have sedentary behavior. Therefore, the species-specific photonic nanoarchitecture, which is the source of the structural coloration, may have been subjected to different evolutionary effects. Despite the increasing interest in photonic nanoarchitectures of biological origin, there is a lack of studies focused on the biological variability of structural coloration that examine a statistically relevant number of individuals from the same species. To investigate possible structural color variation within the same species in populations separated by large geographical distances, climatic differences, or applied experimental conditions, one has to be able to compare these variations to the normal biological variability within a single population. The structural coloration of the four wings of 25 male individuals (100 samples for each species) was measured and compared using different light-collecting setups: perpendicular and with an integrating sphere. Significant differences were found in the near UV wavelength region that are perceptible by these polyommatine butterflies but are invisible to human observers. The differences are attributed to the differences in the photonic nanoarchitecture in the scales of these butterflies. Differences in the intensity of structural coloration were also observed and were tentatively attributed to the different prezygotic mating strategies of these insects. Despite the optical complexity of the scale covered butterfly wings, for sufficiently large sample batches, the averaged normal incidence measurements and

  17. Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness

    NASA Astrophysics Data System (ADS)

    Danilov, P. A.; Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Nguyen, T. T. H.; Rudenko, A. A.; Saraeva, I. N.; Kuchmizhak, A. A.; Vitrik, O. B.; Kulchin, Yu. N.

    2016-04-01

    Submicron dimensions, nanoscale crystalline structure, and fabrication mechanisms of microcones on silver films of variable (50-380 nm) thickness deposited onto glass substrates by single strongly focused femtosecond laser pulses of different fluences are experimentally studied using scanning electron microscopy. Fabrication mechanisms for nanoholes and microcones are discussed for films of the different thickness, as well as the extraordinary shapes of their constituent nanocrystallites, strongly elongated along the melt flow direction in thin films.

  18. An ultrasonic transducer transient compensator design based on a simplified Variable Structure Control algorithm.

    PubMed

    Ma, Shaodong; Wilkinson, Antony J; Paulson, Kevin S

    2014-02-01

    A non-linear control method, known as Variable Structure Control (VSC), is employed to reduce the duration of ultrasonic (US) transducer transients. A physically realizable system using a simplified form of the VSC algorithm is proposed for standard piezoelectric transducers and simulated. Results indicate a VSC-controlled transmitter reduces the transient duration to less than a carrier wave cycle. Applications include high capacity ultrasound communication and localization systems.

  19. Designing stable finite state machine behaviors using phase plane analysis and variable structure control

    SciTech Connect

    Feddema, J.T.; Robinett, R.D.; Driessen, B.J.

    1998-03-10

    This paper discusses how phase plane analysis can be used to describe the overall behavior of single and multiple autonomous robotic vehicles with finite state machine rules. The importance of this result is that one can begin to design provably asymptotically stable group behaviors from a set of simple control laws and appropriate switching points with decentralized variable structure control. The ability to prove asymptotically stable group behavior is especially important for applications such as locating military targets or land mines.

  20. An innovations-based noise cancelling technique on inverse kepstrum whitening filter and adaptive FIR filter in beamforming structure.

    PubMed

    Jeong, Jinsoo

    2011-01-01

    This paper presents an acoustic noise cancelling technique using an inverse kepstrum system as an innovations-based whitening application for an adaptive finite impulse response (FIR) filter in beamforming structure. The inverse kepstrum method uses an innovations-whitened form from one acoustic path transfer function between a reference microphone sensor and a noise source so that the rear-end reference signal will then be a whitened sequence to a cascaded adaptive FIR filter in the beamforming structure. By using an inverse kepstrum filter as a whitening filter with the use of a delay filter, the cascaded adaptive FIR filter estimates only the numerator of the polynomial part from the ratio of overall combined transfer functions. The test results have shown that the adaptive FIR filter is more effective in beamforming structure than an adaptive noise cancelling (ANC) structure in terms of signal distortion in the desired signal and noise reduction in noise with nonminimum phase components. In addition, the inverse kepstrum method shows almost the same convergence level in estimate of noise statistics with the use of a smaller amount of adaptive FIR filter weights than the kepstrum method, hence it could provide better computational simplicity in processing. Furthermore, the rear-end inverse kepstrum method in beamforming structure has shown less signal distortion in the desired signal than the front-end kepstrum method and the front-end inverse kepstrum method in beamforming structure.

  1. Adaptive Responses of Field-grown Common Lambsquarters (Chenopodium album) to Variable Light Quality and Quantity Environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were conducted during 2004 and 2005 to determine whether exposure to reduced red:far-red light ratios (R:FR) during the vegetative growth stage, in the absence of shading among plants, was associated with adaptive changes in morphology, biomass production, and fecundity of common l...

  2. The Influence of Auditory Acuity on Acoustic Variability and the Use of Motor Equivalence during Adaptation to a Perturbation

    ERIC Educational Resources Information Center

    Brunner, Jana; Ghosh, Satrajit; Hoole, Philip; Matthies, Melanie; Tiede, Mark; Perkell, Joseph

    2011-01-01

    Purpose: The aim of this study was to relate speakers' auditory acuity for the sibilant contrast, their use of motor equivalent trading relationships in producing the sibilant /[esh]/, and their produced acoustic distance between the sibilants /s/ and /[esh]/. Specifically, the study tested the hypotheses that during adaptation to a perturbation…

  3. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 2. Model validation for a tropical upland mixed cropping system

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I. J. M.; Bruijnzeel, L. A.

    2001-07-01

    To improve the description of rainfall partitioning by a vegetation canopy that changes in time a number of adaptations to the revised analytical model for rainfall interception by sparse canopies [J. Hydrol., 170 (1995) 79] was proposed in the first of two papers. The current paper presents an application of this adapted analytical model to simulate throughfall, stemflow and interception as measured in a mixed agricultural cropping system involving cassava, maize and rice during two seasons of growth and serial harvesting in upland West Java, Indonesia. Measured interception losses were 18 and 8% during the two measuring periods, while stemflow fractions were estimated at 2 and 4%, respectively. The main reasons for these discrepancies were differences in vegetation density and composition, as well as differences in the exposure of the two sites used in the two respective years. Functions describing the development of the leaf area index of each of the component crops in time were developed. Leaf area index (ranging between 0.7 and 3.8) was related to canopy cover fraction (0.41-0.94). Using average values and time series of the respective parameters, interception losses were modelled using both the revised analytical model and the presently adapted version. The results indicate that the proposed model adaptations substantially improve the performance of the analytical model and provide a more solid base for parameterisation of the analytical model in vegetation of variable density.

  4. Climate variability and change and their potential health effects in small island states: information for adaptation planning in the health sector.

    PubMed

    Ebi, Kristie L; Lewis, Nancy D; Corvalan, Carlos

    2006-12-01

    Small island states are likely the countries most vulnerable to climate variability and longterm climate change. Climate models suggest that small island states will experience warmer temperatures and changes in rainfall, soil moisture budgets, prevailing winds (speed and direction), and patterns of wave action. El Niño events likely will strengthen shortterm and interannual climate variations. In addition, global mean sea level is projected to increase by 0.09-0.88 m by 2100, with variable effects on regional and local sea level. To better understand the potential human health consequences of these projected changes, a series of workshops and a conference organized by the World Health Organization, in partnership with the World Meteorological Organization and the United Nations Environment Programme, addressed the following issues: the current distribution and burden of climate-sensitive diseases in small island states, the potential future health impacts of climate variability and change, the interventions currently used to reduce the burden of climate-sensitive diseases, additional interventions that are needed to adapt to current and future health impacts, and the health implications of climate variability and change in other sectors. Information on these issues is synthesized and key recommendations are identified for improving the capacity of the health sector to anticipate and prepare for climate variability and change in small island states.

  5. Climate Variability and Change and Their Potential Health Effects in Small Island States: Information for Adaptation Planning in the Health Sector

    PubMed Central

    Ebi, Kristie L.; Lewis, Nancy D.; Corvalan, Carlos

    2006-01-01

    Small island states are likely the countries most vulnerable to climate variability and long-term climate change. Climate models suggest that small island states will experience warmer temperatures and changes in rainfall, soil moisture budgets, prevailing winds (speed and direction), and patterns of wave action. El Niño events likely will strengthen short-term and interannual climate variations. In addition, global mean sea level is projected to increase by 0.09–0.88 m by 2100, with variable effects on regional and local sea level. To better understand the potential human health consequences of these projected changes, a series of workshops and a conference organized by the World Health Organization, in partnership with the World Meteorological Organization and the United Nations Environment Programme, addressed the following issues: the current distribution and burden of climate-sensitive diseases in small island states, the potential future health impacts of climate variability and change, the interventions currently used to reduce the burden of climate-sensitive diseases, additional interventions that are needed to adapt to current and future health impacts, and the health implications of climate variability and change in other sectors. Information on these issues is synthesized and key recommendations are identified for improving the capacity of the health sector to anticipate and prepare for climate variability and change in small island states. PMID:17185291

  6. Crystal structure of alkaline cellulase K: insight into the alkaline adaptation of an industrial enzyme.

    PubMed

    Shirai, T; Ishida, H; Noda, J; Yamane, T; Ozaki, K; Hakamada, Y; Ito, S

    2001-07-27

    The crystal structure of the catalytic domain of alkaline cellulase K was determined at 1.9 A resolution. Because of the most alkaliphilic nature and it's highest activity at pH 9.5, it is used commercially in laundry detergents. An analysis of the structural bases of the alkaliphilic character of the enzyme suggested a mechanism similar to that previously proposed for alkaline proteases, that is, an increase in the number of Arg, His, and Gln residues, and a decrease in Asp and Lys residues. Some ion pairs were formed by the gained Arg residues, which is similar to what has been found in the alkaline proteases. Lys-Asp ion pairs are disfavored and partly replaced with Arg-Asp ion pairs. The alkaline adaptation appeared to be a remodeling of ion pairs so that the charge balance is kept in the high pH range.

  7. [Night sleep structural alteration as a function of individual strategy of adapting to 520-isolation].

    PubMed

    Zavalko, I M; Boritko, Ya S; Kovrov, G V; Vinokhodova, A G; Chekalina, A I; Smoleevsky, A E

    2014-01-01

    Purpose of the work was to establish a relationship between trends in sleep alteration and individual adaptation to the stress-factors in the 520-day isolation study. Psychological evaluations using a battery of motivation tests and L. Sobchik's modification of the Luscher personality test, and Mirror coordinograph enabled to differentiate groups reacting to the stress on the pattern of "control" (G-1) or "search" (G-2) manifested in individual styles of behavior and operator's activity. The 2 groups showed different dynamics of the night sleep structure. Difficulties with falling asleep in G-1 arose on the eve of "landing onto Mars" and end of the experiment, whereas in G-2 they were evident prior to the end only. Besides, the micro- and segmental sleep structures were more stable in G-1 suggesting the integrity of somnogenic mechanisms despite difficult sleep initiation.

  8. Carbon fiber-ZnO nanowire hybrid structures for flexible and adaptable strain sensors.

    PubMed

    Liao, Qingliang; Mohr, Markus; Zhang, Xiaohui; Zhang, Zheng; Zhang, Yue; Fecht, Hans-Jörg

    2013-12-21

    We report the flexible piezotronic strain sensors fabricated using carbon fiber-ZnO nanowire hybrid structures by a novel and reliable method. The I-V characteristic of the sensor shows high sensitivity to external strain due to the change in Schottky barrier height (SBH), which has a linear relationship with strain. This fabricated strain sensor has a quick, real-time current response under both static and dynamic mechanical loads. The change in SBH resulted from the strain-induced piezoelectric potential is investigated by band gap theory. In this work we develop a new feasible method to fabricate a flexible strain sensor within the fabric adapted to textile structures, able to measure their strain.

  9. Spiders in motion: demonstrating adaptation, structure-function relationships, and trade-offs in invertebrates.

    PubMed

    Bowlin, Melissa S; McLeer, Dorothy F; Danielson-Francois, Anne M

    2014-03-01

    Evolutionary history and structural considerations constrain all aspects of animal physiology. Constraints on invertebrate locomotion are especially straightforward for students to observe and understand. In this exercise, students use spiders to investigate the concepts of adaptation, structure-function relationships, and trade-offs. Students measure burst and endurance performance in several taxonomic families of spiders whose ecological niches have led to different locomotory adaptations. Based on observations of spiders in their natural habitat and prior background information, students make predictions about spider performance. Students then construct their own knowledge by performing a hands-on, inquiry-based scientific experiment where the results are not necessarily known. Depending on the specific families chosen, students can observe that web-dwelling spiders have more difficulty navigating complex terrestrial terrain than ground-dwelling spiders and that there is a trade-off between burst performance and endurance performance in spiders. Our inexpensive runway design allows for countless variations on this basic experiment; for example, we have successfully used runways to show students how the performance of heterothermic ectotherms varies with temperature. High levels of intra- and interindividual variation in performance underscore the importance of using multiple trials and statistical tests. Finally, this laboratory activity can be completely student driven or standardized, depending on the instructor's preference.

  10. Auto-adaptive statistical procedure for tracking structural health monitoring data

    NASA Astrophysics Data System (ADS)

    Smith, R. Lowell; Jannarone, Robert J.

    2004-07-01

    Whatever specific methods come to be preferred in the field of structural health/integrity monitoring, the associated raw data will eventually have to provide inputs for appropriate damage accumulation models and decision making protocols. The status of hardware under investigation eventually will be inferred from the evolution in time of the characteristics of this kind of functional figure of merit. Irrespective of the specific character of raw and processed data, it is desirable to develop simple, practical procedures to support damage accumulation modeling, status discrimination, and operational decision making in real time. This paper addresses these concerns and presents an auto-adaptive procedure developed to process data output from an array of many dozens of correlated sensors. These represent a full complement of information channels associated with typical structural health monitoring applications. What the algorithm does is learn in statistical terms the normal behavior patterns of the system, and against that backdrop, is configured to recognize and flag departures from expected behavior. This is accomplished using standard statistical methods, with certain proprietary enhancements employed to address issues of ill conditioning that may arise. Examples have been selected to illustrate how the procedure performs in practice. These are drawn from the fields of nondestructive testing, infrastructure management, and underwater acoustics. The demonstrations presented include the evaluation of historical electric power utilization data for a major facility, and a quantitative assessment of the performance benefits of net-centric, auto-adaptive computational procedures as a function of scale.

  11. Densified network glasses and liquids with thermodynamically reversible and structurally adaptive behaviour.

    PubMed

    Bauchy, M; Micoulaut, M

    2015-03-09

    If crystallization can be avoided during cooling, a liquid will display a substantial increase of its viscosity, and will form a glass that behaves as a solid with a relaxation time that grows exponentially with decreasing temperature. Given this 'off-equilibrium' nature, a hysteresis loop appears when a cooling/heating cycle is performed across the glass transition. Here we report on molecular dynamics simulations of densified glass-forming liquids that follow this kind of cycle. Over a finite pressure interval, minuscule thermal changes are found, revealing glasses of 'thermally reversible' character with optimal volumetric or enthalpic recovery. By analysing the topology of the atomic network structure, we find that corresponding liquids adapt under the pressure-induced increasing stress by experiencing larger bond-angle excursions. The analysis of the dynamic behaviour reveals that the structural relaxation time is substantially reduced in these adaptive liquids, and also drives the reversible character of the glass transition. Ultimately, the results substantiate the notion of stress-free (Maxwell isostatic) rigidity in disordered molecular systems, while also revealing new implications for the topological engineering of complex materials.

  12. Densified network glasses and liquids with thermodynamically reversible and structurally adaptive behaviour

    NASA Astrophysics Data System (ADS)

    Bauchy, M.; Micoulaut, M.

    2015-03-01

    If crystallization can be avoided during cooling, a liquid will display a substantial increase of its viscosity, and will form a glass that behaves as a solid with a relaxation time that grows exponentially with decreasing temperature. Given this ‘off-equilibrium’ nature, a hysteresis loop appears when a cooling/heating cycle is performed across the glass transition. Here we report on molecular dynamics simulations of densified glass-forming liquids that follow this kind of cycle. Over a finite pressure interval, minuscule thermal changes are found, revealing glasses of ‘thermally reversible’ character with optimal volumetric or enthalpic recovery. By analysing the topology of the atomic network structure, we find that corresponding liquids adapt under the pressure-induced increasing stress by experiencing larger bond-angle excursions. The analysis of the dynamic behaviour reveals that the structural relaxation time is substantially reduced in these adaptive liquids, and also drives the reversible character of the glass transition. Ultimately, the results substantiate the notion of stress-free (Maxwell isostatic) rigidity in disordered molecular systems, while also revealing new implications for the topological engineering of complex materials.

  13. Dynamic modeling, property investigation, and adaptive controller design of serial robotic manipulators modeled with structural compliance

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Tosunoglu, Sabri; Lin, Shyng-Her

    1990-01-01

    Research results on general serial robotic manipulators modeled with structural compliances are presented. Two compliant manipulator modeling approaches, distributed and lumped parameter models, are used in this study. System dynamic equations for both compliant models are derived by using the first and second order influence coefficients. Also, the properties of compliant manipulator system dynamics are investigated. One of the properties, which is defined as inaccessibility of vibratory modes, is shown to display a distinct character associated with compliant manipulators. This property indicates the impact of robot geometry on the control of structural oscillations. Example studies are provided to illustrate the physical interpretation of inaccessibility of vibratory modes. Two types of controllers are designed for compliant manipulators modeled by either lumped or distributed parameter techniques. In order to maintain the generality of the results, neither linearization is introduced. Example simulations are given to demonstrate the controller performance. The second type controller is also built for general serial robot arms and is adaptive in nature which can estimate uncertain payload parameters on-line and simultaneously maintain trajectory tracking properties. The relation between manipulator motion tracking capability and convergence of parameter estimation properties is discussed through example case studies. The effect of control input update delays on adaptive controller performance is also studied.

  14. PACS—Realization of an adaptive concept using pressure actuated cellular structures

    NASA Astrophysics Data System (ADS)

    Gramüller, B.; Boblenz, J.; Hühne, C.

    2014-10-01

    A biologically inspired concept is investigated which can be utilized to develop energy efficient, lightweight and applicational flexible adaptive structures. Building a real life morphing unit is an ambitious task as the numerous works in the particular field show. Summarizing fundamental demands and barriers regarding shape changing structures, the basic challenges of designing morphing structures are listed. The concept of Pressure Actuated Cellular Structures (PACS) is arranged within the recent morphing activities and it is shown that it complies with the underlying demands. Systematically divided into energy-related and structural subcomponents the working principle is illuminated and relationships between basic design parameters are expressed. The analytical background describing the physical mechanisms of PACS is presented in concentrated manner. This work focuses on the procedure of dimensioning, realizing and experimental testing of a single cell and a single row cantilever made of PACS. The experimental outcomes as well as the results from the FEM computations are used for evaluating the analytical methods. The functionality of the basic principle is thus validated and open issues are determined pointing the way ahead.

  15. Adaptability of Protein Structures to Enable Functional Interactions and Evolutionary Implications

    PubMed Central

    Haliloglu, Turkan; Bahar, Ivet

    2015-01-01

    Several studies in recent years have drawn attention to the ability of proteins to adapt to intermolecular interactions by conformational changes along structure-encoded collective modes of motions. These so-called soft modes, primarily driven by entropic effects, facilitate, if not enable, functional interactions. They represent excursions on the conformational space along principal low-ascent directions/paths away from the original free energy minimum, and they are accessible to the protein even prior to protein-protein/ligand interactions. An emerging concept from these studies is the evolution of structures or modular domains to favor such modes of motion that will be recruited or integrated for enabling functional interactions. Structural dynamics, including the allosteric switches in conformation that are often stabilized upon formation of complexes and multimeric assemblies, emerge as key properties that are evolutionarily maintained to accomplish biological activities, consistent with the paradigm sequence → structure → dynamics → function where ‘dynamics’ bridges structure and function. PMID:26254902

  16. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium.

    PubMed

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-08-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4(+) T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses.

  17. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium

    PubMed Central

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-01-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4+ T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses. PMID:21631497

  18. Structural adaptation of tooth enamel protein amelogenin in the presence of SDS micelles

    PubMed Central

    Chandrababu, Karthik Balakrishna; Dutta, Kaushik; Lokappa, Sowmya Bekshe; Ndao, Moise; Evans, John Spencer; Moradian-Oldak, Janet

    2014-01-01

    Amelogenin, the major extracellular matrix protein of developing tooth enamel is intrinsically disordered. Through its interaction with other proteins and mineral, amelogenin assists enamel biomineralization by controlling the formation of highly organized enamel crystal arrays. We used circular dichroism (CD), dynamic light scattering (DLS), fluorescence and NMR spectroscopy to investigate the folding propensity of recombinant porcine amelogenin rP172 following its interaction with SDS, at levels above critical micelle concentration. The rP172-SDS complex formation was confirmed by DLS, while an increase in the structure moiety of rP172 was noted through CD and fluorescence experiments. Fluorescence quenching analyses performed on several rP172 mutants where all but one Trp was replaced by Tyr at different sequence regions confirmed that the interaction of amelogenin with SDS micelles occurs via the N-terminal region close to Trp25 where helical segments can be detected by NMR. NMR spectroscopy and structural refinement calculations using CS-Rosetta modelling confirm that the highly conserved N-terminal domain is prone to form helical structure when bound to SDS micelles. Our findings reported here reveal interactions leading to significant changes in the secondary structure of rP172 upon treatment with SDS. These interactions may reflect the physiological relevance of the flexible nature of amelogenin and its sequence specific helical propensity that might enable it to structurally adapt with charged and potential targets such as cell surface, mineral, and other proteins during enamel biomineralization. PMID:24114119

  19. Structural characterization of metal binding to a cold-adapted frataxin.

    PubMed

    Noguera, Martín E; Roman, Ernesto A; Rigal, Juan B; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier

    2015-06-01

    Frataxin is an evolutionary conserved protein that participates in iron metabolism. Deficiency of this small protein in humans causes a severe neurodegenerative disease known as Friedreich's ataxia. A number of studies indicate that frataxin binds iron and regulates Fe-S cluster biosynthesis. Previous structural studies showed that metal binding occurs mainly in a region of high density of negative charge. However, a comprehensive characterization of the binding sites is required to gain further insights into the mechanistic details of frataxin function. In this work, we have solved the X-ray crystal structures of a cold-adapted frataxin from a psychrophilic bacterium in the presence of cobalt or europium ions. We have identified a number of metal-binding sites, mainly solvent exposed, several of which had not been observed in previous studies on mesophilic homologues. No major structural changes were detected upon metal binding, although the structures exhibit significant changes in crystallographic B-factors. The analysis of these B-factors, in combination with crystal packing and RMSD among structures, suggests the existence of localized changes in the internal motions. Based on these results, we propose that bacterial frataxins possess binding sites of moderate affinity for a quick capture and transfer of iron to other proteins and for the regulation of Fe-S cluster biosynthesis, modulating interactions with partner proteins.

  20. Spatial Structure and Climatic Adaptation in African Maize Revealed by Surveying SNP Diversity in Relation to Global Breeding and Landrace Panels

    PubMed Central

    Westengen, Ola T.; Berg, Paul R.; Kent, Matthew P.; Brysting, Anne K.

    2012-01-01

    Background Climate change threatens maize productivity in sub-Saharan Africa. To ensure food security, access to locally adapted genetic resources and varieties is an important adaptation measure. Most of the maize grown in Africa is a genetic mix of varieties introduced at different historic times following the birth of the trans-Atlantic economy, and knowledge about geographic structure and local adaptations is limited. Methodology A panel of 48 accessions of maize representing various introduction routes and sources of historic and recent germplasm introductions in Africa was genotyped with the MaizeSNP50 array. Spatial genetic structure and genetic relationships in the African panel were analysed separately and in the context of a panel of 265 inbred lines representing global breeding material (based on 26,900 SNPs) and a panel of 1127 landraces from the Americas (270 SNPs). Environmental as