Adaptive wall technology for minimization of wall interferences in transonic wind tunnels
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.
1988-01-01
Modern experimental techniques to improve free air simulations in transonic wind tunnels by use of adaptive wall technology are reviewed. Considered are the significant advantages of adaptive wall testing techniques with respect to wall interferences, Reynolds number, tunnel drive power, and flow quality. The application of these testing techniques relies on making the test section boundaries adjustable and using a rapid wall adjustment procedure. A historical overview shows how the disjointed development of these testing techniques, since 1938, is closely linked to available computer support. An overview of Adaptive Wall Test Section (AWTS) designs shows a preference for use of relatively simple designs with solid adaptive walls in 2- and 3-D testing. Operational aspects of AWTS's are discussed with regard to production type operation where adaptive wall adjustments need to be quick. Both 2- and 3-D data are presented to illustrate the quality of AWTS data over the transonic speed range. Adaptive wall technology is available for general use in 2-D testing, even in cryogenic wind tunnels. In 3-D testing, more refinement of the adaptive wall testing techniques is required before more widespread use can be planned.
Comparison of airfoil results from an adaptive wall test section and a porous wall test section
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.
1989-01-01
Two wind tunnel investigations were conducted to assess two different wall interference alleviation/correction techniques: adaptive test section walls and classical analytical corrections. The same airfoil model has been tested in the adaptive wall test section of the NASA-Langley 0.3 m Transonic Cryogenic Tunnel (TCT) and in the National Aeronautical Establishment (NAE) High Reynolds Number 2-D facility. The model has a 9 in. chord and a CAST 10-2/DOA 2 airfoil section. The 0.3 m TCT adaptive wall test section has four solid walls with flexible top and bottom walls. The NAE test section has porous top and bottom walls and solid side walls. The aerodynamic results corrected for top and bottom wall interference at Mach numbers from 0.3 to 0.8 at a Reynolds number of 10 by 1,000,000. Movement of the adaptive walls was used to alleviate the top and bottom wall interference in the test results from the NASA tunnel.
NASA Technical Reports Server (NTRS)
Rebstock, Rainer; Lee, Edwin E., Jr.
1989-01-01
An initial wind tunnel test was made to validate a new wall adaptation method for 3-D models in test sections with two adaptive walls. First part of the adaptation strategy is an on-line assessment of wall interference at the model position. The wall induced blockage was very small at all test conditions. Lift interference occurred at higher angles of attack with the walls set aerodynamically straight. The adaptation of the top and bottom tunnel walls is aimed at achieving a correctable flow condition. The blockage was virtually zero throughout the wing planform after the wall adjustment. The lift curve measured with the walls adapted agreed very well with interference free data for Mach 0.7, regardless of the vertical position of the wing in the test section. The 2-D wall adaptation can significantly improve the correctability of 3-D model data. Nevertheless, residual spanwise variations of wall interference are inevitable.
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Newman, Perry A.
1991-01-01
A nonlinear, four wall, post-test wall interference assessment/correction (WIAC) code was developed for transonic airfoil data from solid wall wind tunnels with flexibly adaptable top and bottom walls. The WIAC code was applied over a broad range of test conditions to four sets of NACA 0012 airfoil data, from two different adaptive wall wind tunnels. The data include many test points for fully adapted walls, as well as numerous partially adapted and unadapted test points, which together represent many different model/tunnel configurations and possible wall interference effects. Small corrections to the measured Mach numbers and angles of attack were obtained from the WIAC code even for fully adapted data; these corrections generally improve the correlation among the various sets of airfoil data and simultaneously improve the correlation of the data with calculations for a 2-D, free air, Navier-Stokes code. The WIAC corrections for airfoil data taken in fully adapted wall test sections are shown to be significantly smaller than those for comparable airfoil data from straight, slotted wall test sections. This indicates, as expected, a lesser degree of wall interference in the adapted wall tunnels relative to the slotted wall tunnels. Application of the WIAC code to this data was, however, somewhat more difficult and time consuming than initially expected from similar previous experience with WIAC applications to slotted wall data.
Residual interference and wind tunnel wall adaption
NASA Technical Reports Server (NTRS)
Mokry, Miroslav
1989-01-01
Measured flow variables near the test section boundaries, used to guide adjustments of the walls in adaptive wind tunnels, can also be used to quantify the residual interference. Because of a finite number of wall control devices (jacks, plenum compartments), the finite test section length, and the approximation character of adaptation algorithms, the unconfined flow conditions are not expected to be precisely attained even in the fully adapted stage. The procedures for the evaluation of residual wall interference are essentially the same as those used for assessing the correction in conventional, non-adaptive wind tunnels. Depending upon the number of flow variables utilized, one can speak of one- or two-variable methods; in two dimensions also of Schwarz- or Cauchy-type methods. The one-variable methods use the measured static pressure and normal velocity at the test section boundary, but do not require any model representation. This is clearly of an advantage for adaptive wall test section, which are often relatively small with respect to the test model, and for the variety of complex flows commonly encountered in wind tunnel testing. For test sections with flexible walls the normal component of velocity is given by the shape of the wall, adjusted for the displacement effect of its boundary layer. For ventilated test section walls it has to be measured by the Calspan pipes, laser Doppler velocimetry, or other appropriate techniques. The interface discontinuity method, also described, is a genuine residual interference assessment technique. It is specific to adaptive wall wind tunnels, where the computation results for the fictitious flow in the exterior of the test section are provided.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.
1992-01-01
A two dimensional airfoil model was tested in the adaptive wall test section of the NASA Langley 0.3 meter Transonic Cryogenic Tunnel (TCT) and in the ventilated test section of the National Aeronautical Establishment Two Dimensional High Reynold Number Facility (HRNF). The primary goal of the tests was to compare different techniques (adaptive test section walls and classical, analytical corrections) to account for wall interference. Tests were conducted over a Mach number range from 0.3 to 0.8 at chord Reynolds numbers of 10 x 10(exp 6), 15 x 10(exp 6), and 20 x 10(exp 6). The angle of attack was varied from about 12 degrees up to stall. Movement of the top and bottom test section walls was used to account for the wall interference in the HRNF tests. The test results are in good agreement.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Hill, Acquilla S.
1990-01-01
A 13 by 13 inch adaptive wall test section was installed in the 0.3 Meter Transonic Cryogenic Tunnel circuit. This new test section is configured for 2-D airfoil testing. It has four solid walls. The top and bottom walls are flexible and movable whereas the sidewalls are rigid and fixed. The wall adaptation strategy employed requires the test section wall shapes associated with uniform test section Mach number distributions. Calibration tests with the test section empty were conducted with the top and bottom walls linearly diverged to approach a uniform Mach number distribution. Pressure distributions were measured in the contraction cone, the test section, and the high speed diffuser at Mach numbers from 0.20 to 0.95 and Reynolds numbers from 10 to 100 x 10 (exp 6)/per foot.
Wall interference tests of a CAST 10-2/DOA 2 airfoil in an adaptive-wall test section
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.
1987-01-01
A wind-tunnel investigation of a CAST 10-2/DOA 2 airfoil model has been conducted in the adaptive-wall test section of the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT) and in the National Aeronautical Establishment High Reynolds Number Two-Dimensional Test Facility. The primary goal of the tests was to assess two different wall-interference correction techniques: adaptive test-section walls and classical analytical corrections. Tests were conducted over a Mach number range from 0.3 to 0.8 and over a chord Reynolds number range from 6 million to 70 million. The airfoil aerodynamic characteristics from the tests in the 0.3-m TCT have been corrected for wall interference by the movement of the adaptive walls. No additional corrections for any residual interference have been applied to the data, to allow comparison with the classically corrected data from the same model in the conventional National Aeronautical Establishment facility. The data are presented graphically in this report as integrated force-and-moment coefficients and chordwise pressure distributions.
NASA Technical Reports Server (NTRS)
Kilgore, Robert A.; Dress, David A.; Wolf, Stephen W. D.; Britcher, Colin P.
1989-01-01
The ability to get good experimental data in wind tunnels is often compromised by things seemingly beyond our control. Inadequate Reynolds number, wall interference, and support interference are three of the major problems in wind tunnel testing. Techniques for solving these problems are available. Cryogenic wind tunnels solve the problem of low Reynolds number. Adaptive wall test sections can go a long way toward eliminating wall interference. A magnetic suspension and balance system (MSBS) completely eliminates support interference. Cryogenic tunnels, adaptive wall test sections, and MSBS are surveyed. A brief historical overview is given and the present state of development and application in each area is described.
A swept wing panel in a low speed flexible walled test section
NASA Technical Reports Server (NTRS)
Goodyer, M. J.
1987-01-01
The testing of two-dimensional airfoil sections in adaptive wall tunnels is relatively widespread and has become routine at all speeds up to transonic. In contrast, the experience with the three-dimensional testing of swept panels in adaptive wall test sections is very limited, except for some activity in the 1940's at NPL, London. The current interest in testing swept wing panels led to the work covered by this report, which describes the design of an adaptive-wall swept-wing test section for a low speed wind tunnel and gives test results for a wing panel swept at 40 deg. The test section has rigid flat sidewalls supporting the panel, and features flexible top and bottom wall with ribs swept at the same angle as the wing. When streamlined, the walls form waves swept at the same angle as the wing. The C sub L (-) curve for the swept wing, determined from its pressure distributions taken with the walls streamlined, compare well with reference data which was taken on the same model, unswept, in a test section deep enough to avoid wall interference.
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.; Ray, Edward J.
1988-01-01
The unique combination of adaptive wall technology with a contonuous flow cryogenic wind tunnel is described. This powerful combination allows wind tunnel users to carry out 2-D tests at flight Reynolds numbers with wall interference essentially eliminated. Validation testing was conducted to support this claim using well tested symmetrical and cambered airfoils at transonic speeds and high Reynolds numbers. The test section hardware has four solid walls, with the floor and ceiling flexible. The method of adapting/shaping the floor and ceiling to eliminate top and bottom wall interference at its source is outlined. Data comparisons for different size models tested and others in several sophisticated 2-D wind tunnels are made. In addition, the effects of Reynolds number, testing at high lift with associated large flexible wall movements, the uniqueness of the adapted wall shapes, and the effects of sidewall boundary layer control are examined. The 0.3-m TCT is now the most advanced 2-D research facility anywhere.
Methods for assessing wall interference in the 2- by 2-foot adaptive-wall wind tunnel
NASA Technical Reports Server (NTRS)
Schairer, E. T.
1986-01-01
Discussed are two methods for assessing two-dimensional wall interference in the adaptive-wall test section of the NASA Ames 2 x 2-Foot Transonic Wind Tunnel: (1) a method for predicting free-air conditions near the walls of the test section (adaptive-wall methods); and (2) a method for estimating wall-induced velocities near the model (correction methods), both of which methods are based on measurements of either one or two components of flow velocity near the walls of the test section. Each method is demonstrated using simulated wind tunnel data and is compared with other methods of the same type. The two-component adaptive-wall and correction methods were found to be preferable to the corresponding one-component methods because: (1) they are more sensitive to, and give a more complete description of, wall interference; (2) they require measurements at fewer locations; (3) they can be used to establish free-stream conditions; and (4) they are independent of a description of the model and constants of integration.
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Mineck, Raymond E.; Barnwell, Richard W.; Kemp, William B., Jr.
1986-01-01
About a decade ago, interest in alleviating wind tunnel wall interference was renewed by advances in computational aerodynamics, concepts of adaptive test section walls, and plans for high Reynolds number transonic test facilities. Selection of NASA Langley cryogenic concept for the National Transonic Facility (NTF) tended to focus the renewed wall interference efforts. A brief overview and current status of some Langley sponsored transonic wind tunnel wall interference research are presented. Included are continuing efforts in basic wall flow studies, wall interference assessment/correction procedures, and adaptive wall technology.
An experimental study of an adaptive-wall wind tunnel
NASA Technical Reports Server (NTRS)
Celik, Zeki; Roberts, Leonard
1988-01-01
A series of adaptive wall ventilated wind tunnel experiments was carried out to demonstrate the feasibility of using the side wall pressure distribution as the flow variable for the assessment of compatibility with free air conditions. Iterative and one step convergence methods were applied using the streamwise velocity component, the side wall pressure distribution and the normal velocity component in order to investigate their relative merits. The advantage of using the side wall pressure as the flow variable is to reduce the data taking time which is one the major contributors to the total testing time. In ventilated adaptive wall wind tunnel testing, side wall pressure measurements require simple instrumentation as opposed to the Laser Doppler Velocimetry used to measure the velocity components. In ventilated adaptive wall tunnel testing, influence coefficients are required to determine the pressure corrections in the plenum compartment. Experiments were carried out to evaluate the influence coefficients from side wall pressure distributions, and from streamwise and normal velocity distributions at two control levels. Velocity measurements were made using a two component Laser Doppler Velocimeter system.
NASA Technical Reports Server (NTRS)
Rebstock, Rainer
1987-01-01
Numerical methods are developed for control of three dimensional adaptive test sections. The physical properties of the design problem occurring in the external field computation are analyzed, and a design procedure suited for solution of the problem is worked out. To do this, the desired wall shape is determined by stepwise modification of an initial contour. The necessary changes in geometry are determined with the aid of a panel procedure, or, with incident flow near the sonic range, with a transonic small perturbation (TSP) procedure. The designed wall shape, together with the wall deflections set during the tunnel run, are the input to a newly derived one-step formula which immediately yields the adapted wall contour. This is particularly important since the classical iterative adaptation scheme is shown to converge poorly for 3D flows. Experimental results obtained in the adaptive test section with eight flexible walls are presented to demonstrate the potential of the procedure. Finally, a method is described to minimize wall interference in 3D flows by adapting only the top and bottom wind tunnel walls.
NASA Technical Reports Server (NTRS)
Archambaud, J. P.; Dor, J. B.; Payry, M. J.; Lamarche, L.
1986-01-01
The top and bottom two-dimensional walls of the T2 wind tunnel are adapted through an iterative process. The adaptation calculation takes into account the flow three-dimensionally. This method makes it possible to start with any shape of walls. The tests were performed with a C5 axisymmetric model at ambient temperature. Comparisons are made with the results of a true three-dimensional adaptation.
Use of adaptive walls in 2D tests
NASA Technical Reports Server (NTRS)
Archambaud, J. P.; Chevallier, J. P.
1984-01-01
A new method for computing the wall effects gives precise answers to some questions arising in adaptive wall concept applications: length of adapted regions, fairings with up and downstream regions, residual misadjustments effects, reference conditions. The acceleration of the iterative process convergence and the development of an efficient technology used in CERT T2 wind tunnels give in a single run the required test conditions. Samples taken from CAST 7 tests demonstrate the efficiency of the whole process to obtain significant results with considerations of tridimensional case extension.
Adaptive wall research with two- and three-dimensional models in low speed and transonic tunnels
NASA Technical Reports Server (NTRS)
Lewis, M. C.; Neal, G.; Goodyer, M. J.
1988-01-01
This paper summarises recent research at the University of Southampton into adaptive wall technology and outlines the direction of current efforts. The work is aimed at developing techniques for use in test sections where the top and bottom walls may be adjusted in single curvature. Wall streamlining eliminates, as far as experimentally possible, the top and bottom wall interference in low speed and transonic aerofoil testing. A streamlining technique has been developed for low speeds which allows the testing of swept wing panels in low interference environments. At higher speeds, a comparison of several two-dimensional transonic streamlining algorithms has been made and a technique for streamlining with a choked test section has also been developed. Three-dimensional work has mainly concentrated on tests of sidewall mounted half-wings and the development of the software packages required to assess interference and to adjust the flexible walls. It has been demonstrated that two-dimensional wall adaptation can significantly modify the level of wall interference around relatively large three-dimensional models. The residual interferences are small and are probably amenable to standard post-test correction methods. Tests on a calibrated wing-body model are planned in the near future to further validate the proposed streamlining technique.
NASA Technical Reports Server (NTRS)
Schairer, Edward T.; Lee, George; Mcdevitt, T. Kevin
1989-01-01
The first tests conducted in the adaptive-wall test section of the Ames Research Center's 2- by 2-Foot Transonic Wind Tunnel are described. A procedure was demonstrated for reducing wall interference in transonic flow past a two-dimensional airfoil by actively controlling flow through the slotted walls of the test section. Flow through the walls was controlled by adjusting pressures in compartments of plenums above and below the test section. Wall interference was assessed by measuring (with a laser velocimeter) velocity distributions along a contour surrounding the model, and then checking those measurements for their compatibility with free-air far-field boundary conditions. Plenum pressures for minimum wall interference were determined from empirical influence coefficients. An NACA 0012 airfoil was tested at angles of attach of 0 and 2, and at Mach numbers between 0.70 and 0.85. In all cases the wall-setting procedure greatly reduced wall interference. Wall interference, however, was never completely eliminated, primarily because the effect of plenum pressure changes on the velocities along the contour could not be accurately predicted.
NASA Technical Reports Server (NTRS)
Everhart, J. L.
1983-01-01
A program called FLEXWAL for calculating wall modifications for solid, adaptive-wall wind tunnels is presented. The method used is the iterative technique of NASA TP-2081 and is applicable to subsonic and transonic test conditions. The program usage, program listing, and a sample case are given.
NASA Technical Reports Server (NTRS)
Blanchard, A.; Payry, M. J.; Breil, J. F.
1986-01-01
The results obtained on the AS 07 wing and the working section walls for three types of configurations are reported. The first, called non-adapted, corresponds to the divergent upper and lower rectilinear walls which compensate for limit layer thickening. It can serve as a basis for complete flow calculations. The second configuration corresponds to wall shapes determined from calculations which tend to minimize interference at the level of the fuselage. Finally, the third configuration, called two-dimensional adaptation, uses the standard method for T2 profile tests. This case was tested to determine the influence of wall shape and error magnitude. These results are not sufficient to validate the three-dimensional adaptation; they must be coordinated with calculations or with unlimited atmosphere tests.
Adaptive wall wind tunnels: A selected, annotated bibliography
NASA Technical Reports Server (NTRS)
Tuttle, M. H.; Mineck, R. E.
1986-01-01
This bibliography, with abstracts, consists of 257 citations arranged in chronological order. Selection of the citations was made for their value to researchers working to solve problems associated with reducing wall interference by the design, development, and operation of adaptive wall test sections. Author, source, and subject indexes are included.
NASA Technical Reports Server (NTRS)
Archambaud, J. P.; Dor, J. B.; Mignosi, A.; Lamarche, L.
1986-01-01
The test series was carried out at ONERA/CERT at the T2 wind tunnel in September 1984. The objective of this series was to minimize wall interference through a bidimensional adaptation around the models, inducing tridimensional flows. For this, three different models were used, measuring either the pressures or the forces and moment of pitch (balance). The adaptation was derived from a correction computation in the compressible axisymmetric tridimensional.
Residual interference assessment in adaptive wall wind tunnels
NASA Technical Reports Server (NTRS)
Murthy, A. V.
1989-01-01
A two-variable method is presented which is suitable for on-line calculation of residual interference in airfoil testing in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-M TCT). The method applies the Cauchy's integral formula to the closed contour formed by the contoured top and bottom walls, and the upstream and downstream ends. The measured top and bottom wall pressures and position are used to calculate the correction to the test Mach number and the airfoil angle of attack. Application to specific data obtained in the 0.3-M TCT adaptive wall test section demonstrates the need to assess residual interference to ensure that the desired level of wall streamlining is achieved. A FORTRAN computer program was developed for on-line calculation of the residual corrections during airfoil tests in the 0.3-M TCT.
Construction of a 2- by 2-foot transonic adaptive-wall test section at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Morgan, Daniel G.; Lee, George
1986-01-01
The development of a new production-size, two-dimensional, adaptive-wall test section with ventilated walls at the NASA Ames Research Center is described. The new facility incorporates rapid closed-loop operation, computer/sensor integration, and on-line interference assessment and wall corrections. Air flow through the test section is controlled by a series of plenum compartments and three-way slide vales. A fast-scan laser velocimeter was built to measure velocity boundary conditions for the interference assessment scheme. A 15.2-cm- (6.0-in.-) chord NACA 0012 airfoil model will be used in the first experiments during calibration of the facility.
An experimental study of wall adaptation and interference assessment using Cauchy integral formula
NASA Technical Reports Server (NTRS)
Murthy, A. V.
1991-01-01
This paper summarizes the results of an experimental study of combined wall adaptation and residual interference assessment using the Cauchy integral formula. The experiments were conducted on a supercritical airfoil model in the Langley 0.3-m Transonic Cryogenic Tunnel solid flexible wall test section. The ratio of model chord to test section height was about 0.7. The method worked satisfactorily in reducing the blockage interference and demonstrated the primary requirement for correcting for the blockage effects at high model incidences to correctly determine high lift characteristics. The studies show that the method has potential for reducing the residual interference to considerably low levels. However, corrections to blockage and upwash velocities gradients may still be required for the final adapted wall shapes.
Experiments in a three-dimensional adaptive-wall wind tunnel
NASA Technical Reports Server (NTRS)
Schairer, E. T.
1983-01-01
Three dimensional adaptive-wall experiments were performed in the Ames Research Center (ARC) 25- by 13-cm indraft wind tunnel. A semispan wing model was mounted to one sidewall of a test section with solid sidewalls, and slotted top and bottom walls. The test section had separate top and bottom plenums which were divided into streamwise and cross-stream compartments. An iterative procedure was demonstrated for measuring wall interference and for adjusting the plenum compartment pressures to eliminate such interference. The experiments were conducted at a freestream Mach number of 0.60 and model angles of attack between 0 and 6 deg. Although in all the experiments wall interference was reduced after the plenum pressures were adjusted, interference could not be completely eliminated.
NASA Technical Reports Server (NTRS)
Ziemann, J.
1982-01-01
The NACA 0012 profile at Mach 0.5 was investigated in a wind tunnel with adaptive walls. It is found that adaptation of the flexible walls is possible in the high angle of attack range on both sides of maximum lift. Oil film photographs of the flow at the profile surface show three dimensional effects in the region of the corners between the profile and the sidewall. It is concluded that pure two dimensional separated flow is not possible.
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.
1988-01-01
The Wall Adjustment Strategy (WAS) software provides successful on-line control of the 2-D flexible walled test section of the Langley 0.3-m Transonic Cryogenic Tunnel. This software package allows the level of operator intervention to be regulated as necessary for research and production type 2-D testing using and Adaptive Wall Test Section (AWTS). The software is designed to accept modification for future requirements, such as 3-D testing, with a minimum of complexity. The WAS software described is an attempt to provide a user friendly package which could be used to control any flexible walled AWTS. Control system constraints influence the details of data transfer, not the data type. Then this entire software package could be used in different control systems, if suitable interface software is available. A complete overview of the software highlights the data flow paths, the modular architecture of the software and the various operating and analysis modes available. A detailed description of the software modules includes listings of the code. A user's manual is provided to explain task generation, operating environment, user options and what to expect at execution.
Development of a process control computer device for the adaptation of flexible wind tunnel walls
NASA Technical Reports Server (NTRS)
Barg, J.
1982-01-01
In wind tunnel tests, the problems arise of determining the wall pressure distribution, calculating the wall contour, and controlling adjustment of the walls. This report shows how these problems have been solved for the high speed wind tunnel of the Technical University of Berlin.
NASA Technical Reports Server (NTRS)
Stanewsky, E.; Freimuth, P.
1989-01-01
A comparison of results from conventional and adaptive wall wind tunnels with regard to Reynolds number effects was carried out. The special objective of this comparison was to confirm or reject earlier conclusions, soley based on conventional wind tunnel results, concerning the influence of viscous effects on the characteristics of partially open wind tunnel walls, hence wall interference. The following postulations could be confirmed: (1) certain classes of supercritical airfoils exhibit a non-linear increase in lift which is, at least in part, related to viscous-inviscid interactions on the airfoil. This non-linear lift characteristic can erroneously be suppressed by sidewall interference effects in addition to being affected by changes in Reynolds number. Adaptive walls seem to relieve the influence of sidewall interference; (2) the degree of (horizontal) wall interference effects can be significantly affected by changes in Reynolds number, thus appearing as true Reynolds number effects; (3) perforated wall characteristics seem much more susceptible to viscous changes than the characteristics of slotted walls; here, blockage interference may be most severely influenced by viscous changes; and (4) real Reynolds number effects are present on the CAST 10-2/DOA 2 airfoil; they were shown to be appreciable also by the adaptive wall wind tunnel tests.
Modifications to Langley 0.3-m TCT adaptive wall software for heavy gas test medium, phase 1 studies
NASA Technical Reports Server (NTRS)
Murthy, A. V.
1992-01-01
The scheme for two-dimensional wall adaptation with sulfur hexafluoride (SF6) as test gas in the NASA Langley Research Center 0.3-m Transonic Cryogenic Tunnel (0.3-m TCT) is presented. A unified version of the wall adaptation software has been developed to function in a dual gas operation mode (nitrogen or SF6). The feature of ideal gas calculations for nitrogen operation is retained. For SF6 operation, real gas properties have been computed using the departure function technique. Installation of the software on the 0.3-m TCT ModComp-A computer and preliminary validation with nitrogen operation were found to be satisfactory. Further validation and improvements to the software will be undertaken when the 0.3-m TCT is ready for operation with SF6 gas.
Wind tunnel wall interference (January 1980 - May 1988): A selected, annotated bibliography
NASA Technical Reports Server (NTRS)
Tuttle, Marie H.; Cole, Karen L.
1988-01-01
This selected bibliography lists 423 entries on the subject of wall interference during testing in wind tunnels. It is the third in a series of bibliographies on the subject. The first, NASA TM-87639, August 1986, is concerned with the reduction of wall interference by the use of adaptive walls. The second, NASA TP-89066, December 1986, is on wall interference in V/STOL and high lift testing. This, the third in the series, covers the wall interference literature published during the period January 1980 through May 1988, generally excluding those topics covered in the first two parts.
NASA Technical Reports Server (NTRS)
Neal, G.
1988-01-01
Flexible walled wind tunnels have for some time been used to reduce wall interference effects at the model. A necessary part of the 3-D wall adjustment strategy being developed for the Transonic Self-Streamlining Wind Tunnel (TSWT) of Southampton University is the use of influence coefficients. The influence of a wall bump on the centerline flow in TSWT has been calculated theoretically using a streamline curvature program. This report details the experimental verification of these influence coefficients and concludes that it is valid to use the theoretically determined values in 3-D model testing.
NASA Technical Reports Server (NTRS)
Gumbert, Clyde R.; Green, Lawrence L.; Newman, Perry A.
1989-01-01
From the time that wind tunnel wall interference was recognized to be significant, researchers have been developing methods to alleviate or account for it. Despite the best effort so far, it appears that no method is available which completely eliminates the effects due to the wind tunnel walls. This report discusses procedures developed for slotted wall and adaptive wall test sections of the Langley 0.3-m Transonic Cryogenic Tunnel (TCT) to assess and correct for the residual interference by methods consistent with the transonic nature of the tests.
Construction and test of flexible walls for the throat of the ILR high-speed wind tunnel
NASA Technical Reports Server (NTRS)
Igeta, Y.
1983-01-01
Aerodynamic tests in wind tunnels are jeopardized by the lateral limitations of the throat. This influence expands with increasing size of the model in proportion to the cross-section of the throat. Wall interference of this type can be avoided by giving the wall the form of a stream surface that would be identical to the one observed during free flight. To solve this problem, flexible walls that can adapt to every contour of surface flow are needed.
Physicochemical properties and interfacial adaptation of root canal sealers.
Cañadas, Piedad S; Berástegui, Ester; Gaton-Hernández, Patrícia; Silva, Léa A B; Leite, Giselle A; Silva, Roberto S
2014-01-01
This study compared the physicochemical properties and interfacial adaptation to canal walls of Endo-CPM-Sealer, Sealapex and Activ GP with the well-established AH Plus sealer. The following analyses were performed: radiopacity, pH variation and solubility using samples of each material and scanning electron microscopy of root-filled bovine incisors to evaluate the interfacial adaptation. Data were analyzed by the parametric and no-parametric tests (α=0.05). All materials were in accordance with the ANSI/ADA requirements for radiopacity. Endo-CPM-Sealer presented the lowest radiopacity values and AH Plus was the most radiopaque sealer (p=0.0001). Except for ActiV GP, which was acidic, all other sealers had basic chemical nature and released hydroxyl ions. Regarding solubility, all materials met the ANSI/ADA recommendations, with no statistically significant difference between the sealers (p=0.0834). AH Plus presented the best adaptation to canal walls in the middle (p=0.0023) and apical (p=0.0012) thirds, while the sealers Activ GP and Endo-CPM-Sealer had poor adaptation to the canal walls. All sealers, except for ActiV GP, were alkaline and all of them fulfilled the ANSI/ADA requirements for radiopacity and solubility. Regarding the interfacial adaptation, AH Plus was superior to the others considering the adaptation to the bovine root canal walls.
NASA Technical Reports Server (NTRS)
Chevallier, J. P.; Vaucheret, X.
1986-01-01
A synthesis of current trends in the reduction and computation of wall effects is presented. Some of the points discussed include: (1) for the two-dimensional, transonic tests, various control techniques of boundary conditions are used with adaptive walls offering high precision in determining reference conditions and residual corrections. A reduction in the boundary layer effects of the lateral walls is obtained at T2; (2) for the three-dimensional tests, the methods for the reduction of wall effects are still seldom applied due to a lesser need and to their complexity; (3) the supports holding the model of the probes have to be taken into account in the estimation of perturbatory effects.
NASA Astrophysics Data System (ADS)
Breier, A.; Bittrich, L.; Hahn, J.; Spickenheuer, A.
2017-10-01
For the sustainable repair of abdominal wall hernia the application of hernia meshes is required. One reason for the relapse of hernia after surgery is seen in an inadequate adaption of the mechanical properties of the mesh to the movements of the abdominal wall. Differences in the stiffness of the mesh and the abdominal tissue cause tension, friction and stress resulting in a deficient tissue response and subsequently in a recurrence of a hernia, preferentially in the marginal area of the mesh. Embroidery technology enables a targeted influence on the mechanical properties of the generated textile structure by a directed thread deposition. Textile parameters like stitch density, alignment and angle can be changed easily and locally in the embroidery pattern to generate a space-resolved mesh with mechanical properties adapted to the requirement of the surrounding tissue. To determine those requirements the movements of the abdominal wall and the resulting distortions need to be known. This study was conducted to gain optical data of the abdominal wall movements by non-invasive ARAMIS-measurement on 39 test persons to estimate direction and value of the major strains.
NASA Technical Reports Server (NTRS)
Lewis, M. C.
1988-01-01
The first documented wind tunnel employing a flexible walled test section for the purpose of eliminating wall interference was constructed in England by the National Physical Laboratory (NPL) during the late 1930's. The tunnel was transonic and designed for two-dimensional testing. In an attempt to eliminate the top and bottom wall interference effects on the model NPL developed a strategy to adjust two flexible walls to streamlined shapes. This report covers an evaluation of the NPL wall adjustment strategy in a modern wind tunnel, e.g., the Transonic Self-Streamlining Wind Tunnel (TSWT) at the University of Southampton, England. The evaluation took the form of performance comparisons with other modern strategies which have been developed for use in, and proven in, the TSWT.
An engineering study of hybrid adaptation of wind tunnel walls for three-dimensional testing
NASA Technical Reports Server (NTRS)
Brown, Clinton; Kalumuck, Kenneth; Waxman, David
1987-01-01
Solid wall tunnels having only upper and lower walls flexing are described. An algorithm for selecting the wall contours for both 2 and 3 dimensional wall flexure is presented and numerical experiments are used to validate its applicability to the general test case of 3 dimensional lifting aircraft models in rectangular cross section wind tunnels. The method requires an initial approximate representation of the model flow field at a given lift with wallls absent. The numerical methods utilized are derived by use of Green's source solutions obtained using the method of images; first order linearized flow theory is employed with Prandtl-Glauert compressibility transformations. Equations are derived for the flexed shape of a simple constant thickness plate wall under the influence of a finite number of jacks in an axial row along the plate centerline. The Green's source methods are developed to provide estimations of residual flow distortion (interferences) with measured wall pressures and wall flow inclinations as inputs.
A wall interference assessment/correction system
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Overby, Glenn; Qian, Cathy X.; Sickles, W. L.; Ulbrich, N.
1992-01-01
A Wall Signature method originally developed by Hackett has been selected to be adapted for the Ames 12-ft Wind Tunnel WIAC system in the project. This method uses limited measurements of the static pressure at the wall, in conjunction with the solid wall boundary condition, to determine the strength and distribution of singularities representing the test article. The singularities are used in turn for estimating blockage wall interference. The lifting interference will be treated separately by representing in a horseshoe vortex system for the model's lifting effects. The development and implementation of a working prototype will be completed, delivered and documented with a software manual. The WIAC code will be validated by conducting numerically simulated experiments rather than actual wind tunnel experiments. The simulations will be used to generate both free-air and confined wind-tunnel flow fields for each of the test articles over a range of test configurations. Specifically, the pressure signature at the test section wall will be computed for the tunnel case to provide the simulated 'measured' data. These data will serve as the input for the WIAC method--Wall Signature method. The performance of the WIAC method then may be evaluated by comparing the corrected data with those of the free-air simulation.
Wind tunnels with adapted walls for reducing wall interference
NASA Technical Reports Server (NTRS)
Ganzer, U.
1979-01-01
The basic principle of adaptable wind tunnel walls is explained. First results of an investigation carried out at the Aero-Space Institute of Berlin Technical University are presented for two dimensional flexible walls and a NACA 0012 airfoil. With five examples exhibiting very different flow conditions it is demonstrated that it is possible to reduce wall interference and to avoid blockage at transonic speeds by wall adaptation.
An experimental comparison of two adaptation strategies in an adaptive-walls wind-tunnel
NASA Astrophysics Data System (ADS)
Russo, G. P.; Zuppardi, G.; Basciani, M.
1995-08-01
In the present work an experimental comparison is made between two adaptation strategies: the Judd's method and the Everhart's method. A NACA 0012 airfoil has been tested at Mach numbers up to 0.4: models with chords up to 200 mm have been tested in a 200 mm × 200 mm test section. The two strategies, though based on different theoretical approaches, show a fairly good agreement as far as c p distribution on the model, lift and drag curves and residual interference are concerned and agree, in terms of lift curve slope and drag coefficient at zero lift, with the McCroskey correlation.
A wall interference assessment/correction system
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Ulbrich, N.; Sickles, W. L.; Qian, Cathy X.
1992-01-01
A Wall Signature method, the Hackett method, has been selected to be adapted for the 12-ft Wind Tunnel wall interference assessment/correction (WIAC) system in the present phase. This method uses limited measurements of the static pressure at the wall, in conjunction with the solid wall boundary condition, to determine the strength and distribution of singularities representing the test article. The singularities are used in turn for estimating wall interferences at the model location. The Wall Signature method will be formulated for application to the unique geometry of the 12-ft Tunnel. The development and implementation of a working prototype will be completed, delivered and documented with a software manual. The WIAC code will be validated by conducting numerically simulated experiments rather than actual wind tunnel experiments. The simulations will be used to generate both free-air and confined wind-tunnel flow fields for each of the test articles over a range of test configurations. Specifically, the pressure signature at the test section wall will be computed for the tunnel case to provide the simulated 'measured' data. These data will serve as the input for the WIAC method-Wall Signature method. The performance of the WIAC method then may be evaluated by comparing the corrected parameters with those for the free-air simulation. Each set of wind tunnel/test article numerical simulations provides data to validate the WIAC method. A numerical wind tunnel test simulation is initiated to validate the WIAC methods developed in the project. In the present reported period, the blockage correction has been developed and implemented for a rectangular tunnel as well as the 12-ft Pressure Tunnel. An improved wall interference assessment and correction method for three-dimensional wind tunnel testing is presented in the appendix.
Gaikwad, Bhushan Satish; Nazirkar, Girish; Dable, Rajani; Singh, Shailendra
2018-01-01
The present study aims to compare and evaluate the marginal fit and axial wall adaptability of Co-Cr copings fabricated by metal laser sintering (MLS) and lost-wax (LW) techniques using a stereomicroscope. A stainless steel master die assembly was fabricated simulating a prepared crown; 40 replicas of master die were fabricated in gypsum type IV and randomly divided in two equal groups. Group A coping was fabrication by LW technique and the Group B coping fabrication by MLS technique. The copings were seated on their respective gypsum dies and marginal fit was measured using stereomicroscope and image analysis software. For evaluation of axial wall adaptability, the coping and die assembly were embedded in autopolymerizing acrylic resin and sectioned vertically. The discrepancies between the dies and copings were measured along the axial wall on each halves. The data were subjected to statistical analysis using unpaired t -test. The mean values of marginal fit for copings in Group B (MLS) were lower (24.6 μm) than the copings in Group A (LW) (39.53 μm), and the difference was statistically significant ( P < 0.05). The mean axial wall discrepancy value was lower for Group B (31.03 μm) as compared with Group A (54.49 μm) and the difference was statistically significant ( P < 0.05). The copings fabricated by MLS technique had better marginal fit and axial wall adaptability in comparison with copings fabricated by the LW technique. However, the values of marginal fit of copings fabricated that the two techniques were within the clinically acceptable limit (<50 μm).
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.; Goodyer, Michael J.
1988-01-01
Following the realization that a simple iterative strategy for bringing the flexible walls of two-dimensional test sections to streamline contours was too slow for practical use, Judd proposed, developed, and placed into service what was the first Predictive Strategy. The Predictive Strategy reduced by 75 percent or more the number of iterations of wall shapes, and therefore the tunnel run-time overhead attributable to the streamlining process, required to reach satisfactory streamlines. The procedures of the Strategy are embodied in the FORTRAN subroutine WAS (standing for Wall Adjustment Strategy) which is written in general form. The essentials of the test section hardware, followed by the underlying aerodynamic theory which forms the basis of the Strategy, are briefly described. The subroutine is then presented as the Appendix, broken down into segments with descriptions of the numerical operations underway in each, with definitions of variables.
Operating envelope charts for the Langley 0.3-meter transonic cryogenic wind tunnel
NASA Technical Reports Server (NTRS)
Rallo, R. A.; Dress, D. A.; Siegle, H. J. A.
1986-01-01
To take full advantage of the unique Reynolds number capabilities of the 0.3-meter Transonic Cryogenic Tunnel (0.3-m TCT) at the NASA Langley Research Center, it was designed to accommodate test sections other than the original, octagonal, three-dimensional test section. A 20- by 60-cm two-dimensional test section was installed in 1976 and was extensively used, primarily for airfoil testing, through the fall of 1984. The tunnel was inactive during 1985 so that a new test section and improved high speed diffuser could be installed in the tunnel circuit. The new test section has solid adaptive top and bottom walls to reduce or eliminate wall interference for two-dimensional testing. The test section is 33- by 33-cm in cross section at the entrance and is 142 cm long. In the planning and running of past airfoil tests in the 0.3-m TCT, the use of operating envelope charts have proven very useful. These charts give the variation of total temperature and pressure with Mach number and Reynolds number. The operating total temperature range of the 0.3-m TCT is from about 78 K to 327 K with total pressures ranging from about 17.5 psia to 88 psia. This report presents the operating envelope charts for the 0.3-m TCT with the adaptive wall tes t section installed. They were all generated based on a 1-foot chord model. The Mach numbers vary from 0.1 to 0.95.
An evaluation of three experimental processes for two-dimensional transonic tests
NASA Technical Reports Server (NTRS)
Zuppardi, Gennaro
1989-01-01
The aerodynamic measurements in conventional wind tunnels usually suffer from the interference effects of the sting supporting the model and the test section walls. These effects are particularly severe in the transonic regime. Sting interference effects can be overcome through the Magnetic Suspension technique. Wall effects can be alleviated by: testing airfoils in conventional, ventilated tunnels at relatively small model to tunnel size ratios; treatment of the tunnel wall boundary layers; or by utilization of the Adaptive Wall Test Section (AWTS) concept. The operating capabilities and results from two of the foremost two-dimensional, transonic, AWTS facilities in existence are assessed. These facilities are the NASA 0.3-Meter Transonic Cryogenic Tunnel and the ONERA T-2 facility located in Toulouse, France. In addition, the results derived from the well known conventional facility, the NAE 5 ft x 5 ft Canadian wind tunnel will be assessed. CAST10/D0A2 Airfoil results will be used in all of the evaluations.
NASA Technical Reports Server (NTRS)
Chu, Julio; Lawing, Pierce L.
1990-01-01
A high Reynolds number test of a 5 percent thick low aspect ratio semispan wing was conducted in the adaptive wall test section of the Langley 0.3 m Transonic Cryogenic Tunnel. The model tested had a planform and a NACA 64A-105 airfoil section that is similar to that of the pressure instrumented canard on the X-29 experimental aircraft. Chordwise pressure data for Mach numbers of 0.3, 0.7, and 0.9 were measured for an angle-of-attack range of -4 to 15 deg. The associated Reynolds numbers, based on the geometric mean chord, encompass most of the flight regime of the canard. This test was a free transition investigation. A summary of the wing pressures are presented without analysis as well as adapted test section top and bottom wall pressure signatures. However, the presented graphical data indicate Reynolds number dependent complex leading edge separation phenomena. This data set supplements the existing high Reynolds number database and are useful for computational codes comparison.
OROSCO, Fernando Accorsi; BRAMANTE, Clovis Monteiro; GARCIA, Roberto Brandão; BERNARDINELI, Norberti; de MORAES, Ivaldo Gomes
2010-01-01
Objective This study used dye leakage assay and scanning electron microscopy to evaluate, respectively, the sealing ability and marginal adaptation of three root-end filling materials used as apical plugs, as well as the possible correlation between these properties. Material and Methods Ninety-eight single-rooted human teeth were prepared to simulate an open apex. The teeth were allocated to three experimental groups (n = 30), which received a 5-mm thick apical plug of (1) gray MTA AngelusTM, (2) CPMTM and (3) MBPc, and two controls groups (n = 4). After immersion in 0.2% Rhodamine B solution for 48 h, the teeth were sectioned longitudinally and analyzed by Image Tool 3.0 software. The marginal adaptation between apical plugs and the root canal walls were analyzed by SEM. Results MBPc had significantly less (p<0.05) apical leakage than the other materials. Regarding marginal adaptation, CPMTM showed the best numerical results, though without statistical significance from the other materials (p<0.05). There was no correlation between the two properties. Conclusions When used as apical plugs, the tested root-end filling materials had similar marginal adaptation to the dentin walls, but MBPc had the best sealing ability, as demonstrated by the least apical leakage from all tested materials. PMID:20485923
Implementation of the WICS Wall Interference Correction System at the National Transonic Facility
NASA Technical Reports Server (NTRS)
Iyer, Venkit; Everhart, Joel L.; Bir, Pamela J.; Ulbrich, Norbert
2000-01-01
The Wall Interference Correction System (WICS) is operational at the National Transonic Facility (NTF) of NASA Langley Research Center (NASA LaRC) for semispan and full span tests in the solid wall (slots covered) configuration. The method is based on the wall pressure signature method for computing corrections to the measured parameters. It is an adaptation of the WICS code operational at the 12 ft pressure wind tunnel (12ft PWT) of NASA Ames Research Center (NASA ARC). This paper discusses the details of implementation of WICS at the NTF including tunnel calibration, code modifications for tunnel and support geometry, changes made for the NTF wall orifices layout, details of interfacing with the tunnel data processing system, and post-processing of results. Example results of applying WICS to a semispan test and a full span test are presented. Comparison with classical correction results and an analysis of uncertainty in the corrections are also given. As a special application of the code, the Mach number calibration data from a centerline pipe test was computed by WICS. Finally, future work for expanding the applicability of the code including online implementation is discussed.
Implementation of the WICS Wall Interference Correction System at the National Transonic Facility
NASA Technical Reports Server (NTRS)
Iyer, Venkit; Martin, Lockheed; Everhart, Joel L.; Bir, Pamela J.; Ulbrich, Norbert
2000-01-01
The Wall Interference Correction System (WICS) is operational at the National Transonic Facility (NTF) of NASA Langley Research Center (NASA LaRC) for semispan and full span tests in the solid wall (slots covered) configuration, The method is based on the wall pressure signature method for computing corrections to the measured parameters. It is an adaptation of the WICS code operational at the 12 ft pressure wind tunnel (12ft PWT) of NASA Ames Research Center (NASA ARC). This paper discusses the details of implementation of WICS at the NTF including, tunnel calibration, code modifications for tunnel and support geometry, changes made for the NTF wall orifices layout, details of interfacing with the tunnel data processing system, and post-processing of results. Example results of applying WICS to a semispan test and a full span test are presented. Comparison with classical correction results and an analysis of uncertainty in the corrections are also given. As a special application of the code, the Mach number calibration data from a centerline pipe test was computed by WICS. Finally, future work for expanding the applicability of the code including online implementation is discussed.
LES of Supersonic Turbulent Channel Flow at Mach Numbers 1.5 and 3
NASA Astrophysics Data System (ADS)
Raghunath, Sriram; Brereton, Giles
2009-11-01
LES of compressible, turbulent, body-force driven, isothermal-wall channel flows at Reτ of 190 and 395 at moderate supersonic speeds (Mach 1.5 and 3) are presented. Simulations are fully resolved in the wall-normal direction without the need for wall-layer models. SGS models for incompressible flows, with appropriate extensions for compressibility, are tested a priori/ with DNS results and used in LES. Convergence of the simulations is found to be sensitive to the initial conditions and to the choice of model (wall-normal damping) in the laminar sublayer. The Nicoud--Ducros wall adapting SGS model, coupled with a standard SGS heat flux model, is found to yield results in good agreement with DNS.
NASA Technical Reports Server (NTRS)
Amecke, Juergen
1986-01-01
A method for the direct calculation of the wall induced interference velocity in two dimensional flow based on Cauchy's integral formula was derived. This one-step method allows the calculation of the residual corrections and the required wall adaptation for interference-free flow starting from the wall pressure distribution without any model representation. Demonstrated applications are given.
NASA Technical Reports Server (NTRS)
Lewis, M. C.
1984-01-01
Validation data from the Transonic Self-Streamlining Wind Tunnel has proved the feasibility of streamlining two dimensional flexible walls at low speeds and up to transonic speeds, the upper limit being the speed where the flexible walls are just supercritical. At this condition, breakdown of the wall setting strategy is evident in that convergence is neither as rapid nor as stable as for lower speeds, and wall streamlining criteria are not always completely satisfied. The only major step necessary to permit the extension of two dimensional testing into higher transonic speeds is the provision of a rapid algorithm to solve for mixed flow in the imagery flow fields. The status of two dimensional high transonic testing in the Transonic Self-Streamlining Wind Tunnel is outlined and, in particular, the progress of adapting an algorithm, which solves the Transonic Small Perturbation Equation, for predicting the imagery flow fields is detailed.
Measurement of retinal wall-to-lumen ratio by adaptive optics retinal camera: a clinical research.
Meixner, Eva; Michelson, Georg
2015-11-01
To measure the wall-to-lumen ratio (WLR) and the cross-sectional area of the vascular wall (WCSA) of retinal arterioles by an Adaptive Optics (AO) retinal camera. Forty-seven human subjects were examined and their medical history was explored. WLR and WCSA were measured on the basis of retinal arteriolar wall thickness (VW), lumen diameter (LD) and vessel diameter (VD) assessed by rtx1 Adaptive Optics retinal camera. WLR was calculated by the formula [Formula: see text]. Arterio-venous ratio (AVR) and microvascular abnormalities were attained by quantitative and qualitative assessment of fundus photographs. Influence of age, arterial hypertension, body mass index (BMI) and retinal microvascular abnormalities on the WLR was examined. An age-adjusted WLR was created to test influences on WLR independently of age. Considering WLR and WCSA, a distinction between eutrophic and hypertrophic retinal remodeling processes was possible. The intra-observer variability (IOV) was 6 % ± 0.9 for arteriolar wall thickness and 2 % ± 0.2 for arteriolar wall thickness plus vessel lumen. WLR depended significantly on the wall thickness (r = 0.715; p < 0.01) of retinal arterioles, but was independent of the total vessel diameter (r = 0.052; p = 0.728). WLR correlated significantly with age (r = 0.769; p < 0.01). Arterial hypertension and a higher BMI were significantly associated with an increased age-adjusted WLR. WLR correlated significantly with the stage of microvascular abnormalities. 55 % of the hypertensive subjects and 11 % of the normotensive subjects showed eutrophic remodeling, while hypertrophic remodeling was not detectable. WLR correlated inversely with AVR. AVR was independent of the arteriolar wall thickness, age and arterial hypertension. The technique of AO retinal imaging allows a direct measurement of the retinal vessel wall and lumen diameter with good intra-observer variability. Age, arterial hypertension and an elevated BMI level are significantly associated with an increased WLR. The wall-to-lumen ratio measured by AO can be used to detect structural retinal microvascular alterations in an early stage of remodeling processes.
Simões, T.; Mira, N. P.; Fernandes, A. R.; Sá-Correia, Isabel
2006-01-01
The Saccharomyces cerevisiae SPI1 gene encodes a member of the glycosylphosphatidylinositol-anchored cell wall protein family. In this work we show results indicating that SPI1 expression protects the yeast cell from damage caused by weak acids used as food preservatives. This is documented by a less extended period of adaptation to growth in their presence and by a less inhibited specific growth rate for a parental strain compared with a mutant with SPI1 deleted. Maximal protection exerted by Spi1p against equivalent concentrations of the various weak acids tested was registered for the more lipophilic acids (octanoic acid, followed by benzoic acid) and was minimal for acetic acid. Weak-acid adaptation was found to involve the rapid activation of SPI1 transcription, which is dependent on the presence of the Msn2p transcription factor. Activation of SPI1 transcription upon acetic acid stress also requires Haa1p, whereas this recently described transcription factor has a negligible role in the adaptive response to benzoic acid. The expression of SPI1 was found to play a prominent role in the development of yeast resistance to 1,3-β-glucanase in benzoic acid-stressed cells, while its involvement in acetic acid-induced resistance to the cell wall-lytic enzyme is slighter. The results are consistent with the notion that Spi1p expression upon weak-acid stress leads to cell wall remodeling, especially for the more lipophilic acids, decreasing cell wall porosity. Decreased cell wall porosity, in turn, reduces access to the plasma membrane, reducing membrane damage, intracellular acidification, and viability loss. PMID:16980434
Simulation of RCC Crack Growth Due to Carbon Oxidation in High-Temperature Gas Environments
NASA Technical Reports Server (NTRS)
Titov, E. V.; Levin, D. A.; Picetti, Donald J.; Anderson, Brian P.
2009-01-01
The carbon wall oxidation technique coupled with a CFD technique was employed to study the flow in the expanding crack channel caused by the oxidation of the channel carbon walls. The recessing 3D surface morphing procedure was developed and tested in comparison with the arcjet experimental results. The multi-block structured adaptive meshing was used to model the computational domain changes due to the wall recession. Wall regression rates for a reinforced carbon-carbon (RCC) samples, that were tested in a high enthalpy arcjet environment, were computationally obtained and used to assess the channel expansion. The test geometry and flow conditions render the flow regime as the transitional to continuum, therefore Navier-Stokes gas dynamic approach with the temperature jump and velocity slip correction to the boundary conditions was used. The modeled mechanism for wall material loss was atomic oxygen reaction with bare carbon. The predicted channel growth was found to agree with arcjet observations. Local gas flow field results were found to affect the oxidation rate in a manner that cannot be predicted by previous mass loss correlations. The method holds promise for future modeling of materials gas-dynamic interactions for hypersonic flight.
Shedletzky, Esther; Shmuel, Miri; Trainin, Tali; Kalman, Sara; Delmer, Deborah
1992-01-01
Our previous work (E. Shedletzky, M. Shmuel, D.P. Delmer, D.T.A. Lamport [1990] Plant Physiol 94:980-987) showed that suspension-cultured tomato cells adapted to growth on the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB) have a markedly altered cell wall composition, most notably a markedly reduced level of the cellulose-xyloglucan network. This study compares the adaptation to DCB of two cell lines from dicots (tomato [Lycopersicon esculentum] and tobacco [Nicotiana tabacum]) and a Graminaceous monocot (barley [Hordeum bulbosum] endosperm). The difference in wall structures between the dicots and the monocot is reflected in the very different types of wall modifications induced by growth on DCB. The dicots, having reduced levels of cellulose and xyloglucan, possess walls the major integrity of which is provided by Ca2+-bridged pectates because protoplasts can be prepared from these cells simply by treatment with divalent cation chelator and a purified endopolygalacturonase. The tensile strength of these walls is considerably less than walls from nonadapted cells, but wall porosity is not altered. In contrast, walls from adapted barley cells contain very little pectic material and normal to elevated levels of noncellulosic polysaccharides compared with walls from nonadapted cells. Surprisingly, they have tensile strengths higher than their nonadapted counterpart, although cellulose levels are reduced by 70%. Evidence is presented that these walls obtain their additional strength by an altered pattern of cross-linking of polymers involving phenolic components. Such cross-linking may also explain the observation that the porosity of these walls is also considerably reduced. Cells of adapted lines of both the dicots and barley are resistant to plasmolysis, suggesting that they possess very strong connections between the wall and the plasma membrane. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:16652933
Wind Tunnel Wall Interference Assessment and Correction, 1983
NASA Technical Reports Server (NTRS)
Newman, P. A. (Editor); Barnwell, R. W. (Editor)
1984-01-01
Technical information focused upon emerging wall interference assessment/correction (WIAC) techniques applicable to transonic wind tunnels with conventional and passively or partially adapted walls is given. The possibility of improving the assessment and correction of data taken in conventional transonic wind tunnels by utilizing simultaneously obtained flow field data (generally taken near the walls) appears to offer a larger, nearer-term payoff than the fully adaptive wall concept. Development of WIAC procedures continues, and aspects related to validating the concept need to be addressed. Thus, the scope of wall interference topics discussed was somewhat limited.
Adaptive-Wall Wind-Tunnel Investigations
1981-02-01
boundary condition for unconfined flow. In this way, theory and experiment are combined to minimize wall interference. The concept of an adaptive wall...should be noted that although shock waves extend to the walls, the exterior-flow calculation was based on subcritical-flow theory . Goodyer’s configuration...and v by aerodynamic probes. Both subsonic and transonic small- disturbance theory were used, as appropriate, to evaluate the functional rela
A discrete mesoscopic particle model of the mechanics of a multi-constituent arterial wall.
Witthoft, Alexandra; Yazdani, Alireza; Peng, Zhangli; Bellini, Chiara; Humphrey, Jay D; Karniadakis, George Em
2016-01-01
Blood vessels have unique properties that allow them to function together within a complex, self-regulating network. The contractile capacity of the wall combined with complex mechanical properties of the extracellular matrix enables vessels to adapt to changes in haemodynamic loading. Homogenized phenomenological and multi-constituent, structurally motivated continuum models have successfully captured these mechanical properties, but truly describing intricate microstructural details of the arterial wall may require a discrete framework. Such an approach would facilitate modelling interactions between or the separation of layers of the wall and would offer the advantage of seamless integration with discrete models of complex blood flow. We present a discrete particle model of a multi-constituent, nonlinearly elastic, anisotropic arterial wall, which we develop using the dissipative particle dynamics method. Mimicking basic features of the microstructure of the arterial wall, the model comprises an elastin matrix having isotropic nonlinear elastic properties plus anisotropic fibre reinforcement that represents the stiffer collagen fibres of the wall. These collagen fibres are distributed evenly and are oriented in four directions, symmetric to the vessel axis. Experimental results from biaxial mechanical tests of an artery are used for model validation, and a delamination test is simulated to demonstrate the new capabilities of the model. © 2016 The Author(s).
Adaptive mesh refinement and load balancing based on multi-level block-structured Cartesian mesh
NASA Astrophysics Data System (ADS)
Misaka, Takashi; Sasaki, Daisuke; Obayashi, Shigeru
2017-11-01
We developed a framework for a distributed-memory parallel computer that enables dynamic data management for adaptive mesh refinement and load balancing. We employed simple data structure of the building cube method (BCM) where a computational domain is divided into multi-level cubic domains and each cube has the same number of grid points inside, realising a multi-level block-structured Cartesian mesh. Solution adaptive mesh refinement, which works efficiently with the help of the dynamic load balancing, was implemented by dividing cubes based on mesh refinement criteria. The framework was investigated with the Laplace equation in terms of adaptive mesh refinement, load balancing and the parallel efficiency. It was then applied to the incompressible Navier-Stokes equations to simulate a turbulent flow around a sphere. We considered wall-adaptive cube refinement where a non-dimensional wall distance y+ near the sphere is used for a criterion of mesh refinement. The result showed the load imbalance due to y+ adaptive mesh refinement was corrected by the present approach. To utilise the BCM framework more effectively, we also tested a cube-wise algorithm switching where an explicit and implicit time integration schemes are switched depending on the local Courant-Friedrichs-Lewy (CFL) condition in each cube.
Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian
Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi
2015-01-01
The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called “wall preference”. This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian “wall-preference” behavior only appears to be a “preference” behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then moving along it in the absence of environmental cues, and wigwag movements of the head. PMID:26539715
Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian.
Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi
2015-01-01
The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called "wall preference". This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian "wall-preference" behavior only appears to be a "preference" behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then moving along it in the absence of environmental cues, and wigwag movements of the head.
Vertical visual features have a strong influence on cuttlefish camouflage.
Ulmer, K M; Buresch, K C; Kossodo, M M; Mäthger, L M; Siemann, L A; Hanlon, R T
2013-04-01
Cuttlefish and other cephalopods use visual cues from their surroundings to adaptively change their body pattern for camouflage. Numerous previous experiments have demonstrated the influence of two-dimensional (2D) substrates (e.g., sand and gravel habitats) on camouflage, yet many marine habitats have varied three-dimensional (3D) structures among which cuttlefish camouflage from predators, including benthic predators that view cuttlefish horizontally against such 3D backgrounds. We conducted laboratory experiments, using Sepia officinalis, to test the relative influence of horizontal versus vertical visual cues on cuttlefish camouflage: 2D patterns on benthic substrates were tested versus 2D wall patterns and 3D objects with patterns. Specifically, we investigated the influence of (i) quantity and (ii) placement of high-contrast elements on a 3D object or a 2D wall, as well as (iii) the diameter and (iv) number of 3D objects with high-contrast elements on cuttlefish body pattern expression. Additionally, we tested the influence of high-contrast visual stimuli covering the entire 2D benthic substrate versus the entire 2D wall. In all experiments, visual cues presented in the vertical plane evoked the strongest body pattern response in cuttlefish. These experiments support field observations that, in some marine habitats, cuttlefish will respond to vertically oriented background features even when the preponderance of visual information in their field of view seems to be from the 2D surrounding substrate. Such choices highlight the selective decision-making that occurs in cephalopods with their adaptive camouflage capability.
Preforming of polydioxanone sheets for orbital wall fractures - A technical note.
Kruber, Daniel; Hierl, Thomas; Doerfler, Hans-Martin; Huempfner-Hierl, Heike; Krause, Matthias
2018-07-01
Polydioxanone (PDS) sheets are commonly used in the treatment of orbital wall fractures. A potential drawback of PDS is that it may be difficult to adapt to the anatomy of the orbital walls. Therefore a study was conceived to test the feasibility of preforming PDS sheets. PDS sheet material was water-heated and preformed using a template based on a statistical anatomical model. Then the deformed sheet was cooled, stored and compared to the original model to investigate post-deformation changes. PDS sheet material could easily be deformed using a mould. No significant post-cooling shape changes were noticed. PDS sheet material can be preformed into complex geometric shapes. This could be a benefit in the treatment of orbital wall fractures. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Leach, Michelle D.; Budge, Susan; Walker, Louise; Munro, Carol; Cowen, Leah E.; Brown, Alistair J. P.
2012-01-01
Thermal adaptation is essential in all organisms. In yeasts, the heat shock response is commanded by the heat shock transcription factor Hsf1. Here we have integrated unbiased genetic screens with directed molecular dissection to demonstrate that multiple signalling cascades contribute to thermal adaptation in the pathogenic yeast Candida albicans. We show that the molecular chaperone heat shock protein 90 (Hsp90) interacts with and down-regulates Hsf1 thereby modulating short term thermal adaptation. In the longer term, thermal adaptation depends on key MAP kinase signalling pathways that are associated with cell wall remodelling: the Hog1, Mkc1 and Cek1 pathways. We demonstrate that these pathways are differentially activated and display cross talk during heat shock. As a result ambient temperature significantly affects the resistance of C. albicans cells to cell wall stresses (Calcofluor White and Congo Red), but not osmotic stress (NaCl). We also show that the inactivation of MAP kinase signalling disrupts this cross talk between thermal and cell wall adaptation. Critically, Hsp90 coordinates this cross talk. Genetic and pharmacological inhibition of Hsp90 disrupts the Hsf1-Hsp90 regulatory circuit thereby disturbing HSP gene regulation and reducing the resistance of C. albicans to proteotoxic stresses. Hsp90 depletion also affects cell wall biogenesis by impairing the activation of its client proteins Mkc1 and Hog1, as well as Cek1, which we implicate as a new Hsp90 client in this study. Therefore Hsp90 modulates the short term Hsf1-mediated activation of the classic heat shock response, coordinating this response with long term thermal adaptation via Mkc1- Hog1- and Cek1-mediated cell wall remodelling. PMID:23300438
CAST-10-2/DOA 2 Airfoil Studies Workshop Results
NASA Technical Reports Server (NTRS)
Ray, Edward J. (Compiler); Hill, Acquilla S. (Compiler)
1989-01-01
During the period of September 23 through 27, 1988, the Transonic Aerodynamics Division at the Langely Research Center hosted an International Workshop on CAST-10-2/DOA 2 Airfoil Studies. The CAST-10 studies were the outgrowth of several cooperative study agreements among the NASA, the NAE of Canada, the DLR of West Germany, and the ONERA of France. Both theoretical and experimental CAST-10 airfoil results that were obtained form an extensive series of tests and studies, were reviewed. These results provided an opportunity to make direct comparisons of adaptive wall test section (AWTS) results from the NASA 0.3-meter Transonic Cryogenic Tunnel and ONERA T-2 AWTS facilities with conventional ventilated wall wind tunnel results from the Canadian high Reynolds number two-dimensional test facility. Individual papers presented during the workshop are included.
NASA Technical Reports Server (NTRS)
Dean, P. D.
1978-01-01
A systems concept procedure is described for the optimization of acoustic duct liner design for both uniform and multisegment types. The concept was implemented by the use of a double reverberant chamber flow duct facility coupled with sophisticated computer control and acoustic analysis systems. The optimization procedure for liner insertion loss was based on the concept of variable liner impedance produced by bias air flow through a multilayer, resonant cavity liner. A multiple microphone technique for in situ wall impedance measurements was used and successfully adapted to produce automated measurements for all liner configurations tested. The complete validation of the systems concept was prevented by the inability to optimize the insertion loss using bias flow induced wall impedance changes. This inability appeared to be a direct function of the presence of a higher order energy carrying modes which were not influenced significantly by the wall impedance changes.
Porosity and test ultrastructure of costate and non-costate Bulimina species
NASA Astrophysics Data System (ADS)
Grunert, Patrick; Piller, Werner E.
2017-04-01
SEM-based investigations of porosity and test wall ultrastructure of Recent costate and non-costate Bulimina species reveal significant differences in pore diameter, pore density and ultrastructural architecture between these two groups. Costate tests of B. inflata and B. mexicana display low pore density, a large pore diameter, and test walls built by a single type of columnar ultrastructural elements. In contrast, non-costate tests of B. aculeata and B. marginata are characterized by significantly higher pore density, smaller pore diameter, and an additional type of ultrastructural elements formed by oblique, tabular crystallite units which encase the pore channels. We interpret the observed combination of traits in B. aculeata and B. marginata as a set of adaptations to poorly oxygenated, intermediate to deep infaunal microhabitats which they typically occupy today. The evolutionary trend towards increased pore density in this group seemingly involved a major modification of the biomineralisation process resulting in the lining of pore channels with a specific type of ultrastructural element to ensure stability of the densely perforated test.
Experimental Aerodynamic Facilities of the Aerodynamics Research and Concepts Assistance Section
1983-02-01
experimental data desired. Internal strain gage balances covering a range of sizes and load capabilities are available for static force and moment tests...tunnel. Both sting and side wall model mounts are available which can be adapted to a variety of internal strain gage balance systems for force and...model components or liquids in the test section. A selection of internal and external strain gage balances and associated mounting fixtures are
Load deflection characteristics of inflated structures
NASA Technical Reports Server (NTRS)
Baumgarten, J. R.
1983-01-01
A single, closed form relationship to relate load to the deformed dimensions of the horizontal torus was developed. Wall elasticity was included in the analysis, and special care was taken to predict the final footprint area of the loaded structure. The test fixture utilized is shown. The tori used for the bulk of the testing were rubber inner tubes for a 32 and 160 pneumatic tire. The inner tube being tested was plumbed, to a mercury-filled manometer, which had a 50 inch measurement capacity, by use of a special adapter. The adapter fit over the valve stem and allowed air to be added from a shop-air source and to be bled through the standard valve mechanism. In this fashion, tests requiring the maintenance of a constant indication of air pressure could be run with little difficulty.
Preparation and thermal insulation performance of cast-in-situ phosphogypsum wall.
Li, Yubo; Dai, Shaobin; Zhang, Yichao; Huang, Jun; Su, Ying; Ma, Baoguo
2018-01-01
The mass accumulation of phosphogypsum has caused serious environmental pollution, which has become a worldwide problem. Gypsum is a kind of green building material, which is lighter, has better heat and sound insulation performance, and is easier to recycle compared to cement. The application of cast-in-situ phosphogypsum wall could consume a large amount of pollutant, and improve the efficiency of building construction. The preparation and thermal insulation performance of cast-in-situ phosphogypsum wall were investigated. The property of phosphogypsum-fly ash-lime (PFL) triad cementing materials, the adaptability of retarders and superplasticizers, and the influences of vitrified microsphere as aggregates were explored. Thus, the optimum mix was proposed. Thermal insulation performance tests and ANSYS simulation of this material was carried out. Optimal structures based on heat channels and the method of calculation determining related parameters were proposed, which achieved a 12.3% reduction in the heat transfer coefficient of the wall. With good performance, phosphogypsum could be used in cast-in-situ walls. This paper provides the theoretical basis for the preparation and energy-saving application of phosphogypsum in the walls of buildings.
Tamac, Ece; Toksavul, Suna; Toman, Muhittin
2014-10-01
Metal ceramic crowns are widely used in clinical practice, but comparisons of the clinical adaptation of restorations made with different processing techniques are lacking. The purpose of this study was to compare the clinical marginal and internal adaptation of metal ceramic crowns fabricated with 3 different techniques: computer-aided design and computer-aided manufacturing (CAD/CAM) milling (CCM), direct metal laser sintering (DMLS), and traditional casting (TC). Twenty CCM, 20 DMLS, and 20 TC metal ceramic crowns were fabricated for 42 patients. Before luting the crowns, silicone replicas were obtained to measure marginal gap and internal adaptation that was evaluated at 3 regions: axial wall, axio-occlusal angle, and occlusal surface. Measurements were made with a reflected light binocular stereomicroscope at 20× magnification and analyzed with 1-way analysis of variance (ANOVA) and the Bonferroni post hoc test (α=.05). The mean marginal gap values were 86.64 μm for CCM, 96.23 μm for DMLS, and 75.92 μm for TC. The means at the axial wall region were 117.5 μm for the CCM group, 139.02 μm for the DMLS group, and 121.38 μm for the TC group. One-way ANOVA revealed no statistically significant differences among the groups for measurements at the marginal gap (P=.082) and the axial wall region (P=.114). The means at the axio-occlusal region were 142.1 μm for CCM, 188.12 μm for DMLS, and 140.63 μm for TC, and those at the occlusal surface region were 265.73 μm for CCM, 290.39 μm for DMLS, and 201.09 μm for TC. The mean values of group DMLS were significantly higher at the axio-occlusal region and the occlusal surface region than those of other groups (P<.05). CCM, DMLS and TC metal ceramic crowns performed similarly in terms of clinical marginal and axial wall adaptation. The cement film thickness at the occlusal region and axio-occlusal region were higher for DMLS crowns. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Investigation of Particle Deposition in Internal Cooling Cavities of a Nozzle Guide Vane
NASA Astrophysics Data System (ADS)
Casaday, Brian Patrick
Experimental and computational studies were conducted regarding particle deposition in the internal film cooling cavities of nozzle guide vanes. An experimental facility was fabricated to simulate particle deposition on an impingement liner and upstream surface of a nozzle guide vane wall. The facility supplied particle-laden flow at temperatures up to 1000°F (540°C) to a simplified impingement cooling test section. The heated flow passed through a perforated impingement plate and impacted on a heated flat wall. The particle-laden impingement jets resulted in the buildup of deposit cones associated with individual impingement jets. The deposit growth rate increased with increasing temperature and decreasing impinging velocities. For some low flow rates or high flow temperatures, the deposit cones heights spanned the entire gap between the impingement plate and wall, and grew through the impingement holes. For high flow rates, deposit structures were removed by shear forces from the flow. At low temperatures, deposit formed not only as individual cones, but as ridges located at the mid-planes between impinging jets. A computational model was developed to predict the deposit buildup seen in the experiments. The test section geometry and fluid flow from the experiment were replicated computationally and an Eulerian-Lagrangian particle tracking technique was employed. Several particle sticking models were employed and tested for adequacy. Sticking models that accurately predicted locations and rates in external deposition experiments failed to predict certain structures or rates seen in internal applications. A geometry adaptation technique was employed and the effect on deposition prediction was discussed. A new computational sticking model was developed that predicts deposition rates based on the local wall shear. The growth patterns were compared to experiments under different operating conditions. Of all the sticking models employed, the model based on wall shear, in conjunction with geometry adaptation, proved to be the most accurate in predicting the forms of deposit growth. It was the only model that predicted the changing deposition trends based on flow temperature or Reynolds number, and is recommended for further investigation and application in the modeling of deposition in internal cooling cavities.
NASA Technical Reports Server (NTRS)
Seraudie, A.; Blanchard, A.; Breil, J. F.
1985-01-01
Described are tests on the CAST 10 airfoil in tripped-transition, carried out in the cryogenic and transonic wind-tunnel T2 fitted with self-adaptive walls. These tests follow those which were performed in natural transition and were presented in a previous note. Firstly, a complement was realized to pinpoint the location of the natural transition on the upper surface of the airfoil; this was done by a longitudinal exploration in the boundary layer. Secondly, in a first stage, the transition was only tripped on the lower surface with a carborundum strip of 0.045 mm thickness, situated at 5% of chord (T 1/2 D). These tests were performed here to separate the phenomena in relation to the lower surface and those in relation to the upper surface which occur in natural transition (TN). In a second stage, the transition was normally tripped on both sides of the profile (TD), likewise at x/c = 5% and h = 0.045 mm. The test configurations of the previous serial were experimented again and results obtained in the three cases (TN), (T 1/2 N) and (TD) were compared, in particular those concerned with the effect of the Reynolds number on aerodynamic coefficients of the airfoil. The gathering of the experimental values around a Reynolds number of 20 millions is observed; but before this number, the evolutions of the curves in the three cases tested are different.
NASA Technical Reports Server (NTRS)
Chan, Y. Y.; Nishimura, Y.; Mineck, R. E.
1989-01-01
Results are reported from a NAE/NRC and NASA cooperative program on two-dimensional wind-tunnel wall-interference research, aimed at developing the technology for correcting or eliminating wall interference effects in two-dimensional transonic wind-tunnel investigations. Both NASA Langley and NAE facilities are described, along with a NASA-designed and fabricated airfoil model. It is shown that data from the NAE facility, corrected for wall interference, agree with those obtained from the NASA tunnel, which has adaptive walls; the comparison of surface pressure data shows that the flowfield conditions in which the model is investigated appear to be nearly identical under most conditions. It is concluded that both approaches, posttest correction and an adaptive wall, adequately eliminate the tunnel-wall interference effects.
1990-04-01
mensional Wall Adaptation. Dissertation, Universite Libre de Bruxelles, 1986. [4.22] Prandtl, L.: Experimentelle Prufung der [4.12] AshilI , P.R., Weeks...TR 86026 U, Feb.1986. May 1988. [6.29] Archambaud, J.P. and Chevallier, J.P., "Utilisation [6.91 AshilI , P.R. and Weeks, D.J., "A Method for Deter- de
Apparatus for observing a hostile environment
Nance, Thomas A.; Boylston, Micah L.; Robinson, Casandra W.; Sexton, William C.; Heckendorn, Frank M.
2000-01-01
An apparatus is provided for observing a hostile environment, comprising a housing and a camera capable of insertion within the housing. The housing is a double wall assembly with an inner and outer wall with an hermetically sealed chamber therebetween. A housing for an optical system used to observe a hostile environment is provided, comprising a transparent, double wall assembly. The double wall assembly has an inner wall and an outer wall with an hermetically sealed chamber therebetween. The double wall assembly has an opening and a void area in communication with the opening. The void area of the housing is adapted to accommodate the optical system within said void area. An apparatus for protecting an optical system used to observe a hostile environment is provided comprising a housing; a tube positioned within the housing; and a base for supporting the housing and the tube. The housing comprises a double wall assembly having an inner wall and an outerwall with an hermetically sealed chamber therebetween. The tube is adapted to house the optical system therein.
Improved animal models for testing gene therapy for atherosclerosis.
Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A
2014-04-01
Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long-term therapy from vascular endothelium without accelerating atherosclerotic disease.
The Tubular Penetration Depth and Adaption of Four Sealers: A Scanning Electron Microscopic Study
Chen, Huan; Zhao, Xinyuan; Qiu, Yu; Xu, Dengyou
2017-01-01
Background. The tubular penetration and adaptation of the sealer are important factors for successful root canal filling. The aim of this study was to evaluate the tubular penetration depth of four different sealers in the coronal, middle, and apical third of root canals as well as the adaptation of these sealers to root canal walls. Materials and Methods. 50 single-rooted teeth were prepared in this study. Forty-eight of them were filled with different sealers (Cortisomol, iRoot SP, AH-Plus, and RealSeal SE) and respective core filling materials. Then the specimens were sectioned and scanning electron microscopy was employed to assess the tubular penetration and adaptation of the sealers. Results. Our results demonstrated that the maximum penetration was exhibited by RealSeal SE, followed by AH-Plus, iRoot SP, and Cortisomol. As regards the adaptation property to root canal walls, AH-Plus has best adaptation capacity followed by iRoot SP, RealSeal SE, and Cortisomol. Conclusion. The tubular penetration and adaptation vary with the different sealers investigated. RealSeal SE showed the most optimal tubular penetration, whereas AH-Plus presented the best adaptation to the root canal walls. PMID:29479539
Charles R. Frihart; Daniel J. Yelle; John Ralph; Robert J. Moon; Donald S. Stone; Joseph E. Jakes
2008-01-01
Chemical additions to wood often change its bulk properties, which can be determined using conventional macroscopic mechanical tests. However, the controlling interactions between chemicals and wood take place at and below the scale of individual cells and cell walls. To better understand the effects of chemical additions to wood, we have adapted and extended two...
Marginal and Internal Adaptation of Zirconia Crowns: A Comparative Study of Assessment Methods.
Cunali, Rafael Schlögel; Saab, Rafaella Caramori; Correr, Gisele Maria; Cunha, Leonardo Fernandes da; Ornaghi, Bárbara Pick; Ritter, André V; Gonzaga, Carla Castiglia
2017-01-01
Marginal and internal adaptation is critical for the success of indirect restorations. New imaging systems make it possible to evaluate these parameters with precision and non-destructively. This study evaluated the marginal and internal adaptation of zirconia copings fabricated with two different systems using both silicone replica and microcomputed tomography (micro-CT) assessment methods. A metal master model, representing a preparation for an all-ceramic full crown, was digitally scanned and polycrystalline zirconia copings were fabricated with either Ceramill Zi (Amann-Girrbach) or inCoris Zi (Dentslpy-Sirona), n=10. For each coping, marginal and internal gaps were evaluated by silicone replica and micro-CT assessment methods. Four assessment points of each replica cross-section and micro-CT image were evaluated using imaging software: marginal gap (MG), axial wall (AW), axio-occlusal angle (AO) and mid-occlusal wall (MO). Data were statistically analyzed by factorial ANOVA and Tukey test (a=0.05). There was no statistically significant difference between the methods for MG and AW. For AO, there were significant differences between methods for Amann copings, while for Dentsply-Sirona copings similar values were observed. For MO, both methods presented statistically significant differences. A positive correlation was observed determined by the two assessment methods for MG values. In conclusion, the assessment method influenced the evaluation of marginal and internal adaptation of zirconia copings. Micro-CT showed lower marginal and internal gap values when compared to the silicone replica technique, although the difference was not always statistically significant. Marginal gap and axial wall assessment points showed the lower gap values, regardless of ceramic system and assessment method used.
Blood Vessel Adaptation with Fluctuations in Capillary Flow Distribution
Hu, Dan; Cai, David; Rangan, Aaditya V.
2012-01-01
Throughout the life of animals and human beings, blood vessel systems are continuously adapting their structures – the diameter of vessel lumina, the thickness of vessel walls, and the number of micro-vessels – to meet the changing metabolic demand of the tissue. The competition between an ever decreasing tendency of luminal diameters and an increasing stimulus from the wall shear stress plays a key role in the adaptation of luminal diameters. However, it has been shown in previous studies that the adaptation dynamics based only on these two effects is unstable. In this work, we propose a minimal adaptation model of vessel luminal diameters, in which we take into account the effects of metabolic flow regulation in addition to wall shear stresses and the decreasing tendency of luminal diameters. In particular, we study the role, in the adaptation process, of fluctuations in capillary flow distribution which is an important means of metabolic flow regulation. The fluctuation in the flow of a capillary group is idealized as a switch between two states, i.e., an open-state and a close-state. Using this model, we show that the adaptation of blood vessel system driven by wall shear stress can be efficiently stabilized when the open time ratio responds sensitively to capillary flows. As micro-vessel rarefaction is observed in our simulations with a uniformly decreased open time ratio of capillary flows, our results point to a possible origin of micro-vessel rarefaction, which is believed to induce hypertension. PMID:23029014
Simulation of a GOX-kerosene subscale rocket combustion chamber
NASA Astrophysics Data System (ADS)
Höglauer, Christoph; Kniesner, Björn; Knab, Oliver; Kirchberger, Christoph; Schlieben, Gregor; Kau, Hans-Peter
2011-12-01
In view of future film cooling tests at the Institute for Flight Propulsion (LFA) at Technische Universität München, the Astrium in-house spray combustion CFD tool Rocflam-II was validated against first test data gained from this rocket test bench without film cooling. The subscale rocket combustion chamber uses GOX and kerosene as propellants which are injected through a single double swirl element. Especially the modeling of the double swirl element and the measured wall roughness were adapted on the LFA hardware. Additionally, new liquid kerosene fluid properties were implemented and verified in Rocflam-II. Also the influences of soot deposition and hot gas radiation on the wall heat flux were analytically and numerically estimated. In context of reviewing the implemented evaporation model in Rocflam-II, the binary diffusion coefficient and its pressure dependency were analyzed. Finally simulations have been performed for different load points with Rocflam-II showing a good agreement compared to test data.
The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast
Sanz, Ana Belén; García, Raúl; Rodríguez-Peña, José M.; Arroyo, Javier
2017-01-01
Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI) pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies. PMID:29371494
Advanced experimental techniques for transonic wind tunnels - Final lecture
NASA Technical Reports Server (NTRS)
Kilgore, Robert A.
1987-01-01
A philosophy of experimental techniques is presented, suggesting that in order to be successful, one should like what one does, have the right tools, stick to the job, avoid diversions, work hard, interact with people, be informed, keep it simple, be self sufficient, and strive for perfection. Sources of information, such as bibliographies, newsletters, technical reports, and technical contacts and meetings are recommended. It is pointed out that adaptive-wall test sections eliminate or reduce wall interference effects, and magnetic suspension and balance systems eliminate support-interference effects, while the problem of flow quality remains with all wind tunnels. It is predicted that in the future it will be possible to obtain wind tunnel results at the proper Reynolds number, and the effects of flow unsteadiness, wall interference, and support interference will be eliminated or greatly reduced.
Standard surface grinder for precision machining of thin-wall tubing
NASA Technical Reports Server (NTRS)
Jones, A.; Kotora, J., Jr.; Rein, J.; Smith, S. V.; Strack, D.; Stuckey, D.
1967-01-01
Standard surface grinder performs precision machining of thin-wall stainless steel tubing by electrical discharge grinding. A related adaptation, a traveling wire electrode fixture, is used for machining slots in thin-walled tubing.
From microgravity to osmotic conditions: mechanical integration of plant cells in response to stress
NASA Astrophysics Data System (ADS)
Wojtaszek, Przemyslaw; Kasprowicz, Anna; Michalak, Michal; Janczara, Renata; Volkmann, Dieter; Baluska, Frantisek
Chemical reactions and interactions between molecules are commonly thought of as being at the basis of Life. Research of recent years, however, is more and more evidently indicating that physical forces are profoundly affecting the functioning of life at all levels of its organiza-tion. To detect and to respond to such forces, plant cells need to be integrated mechanically. Cell walls are the outermost functional zone of plant cells. They surround the individual cells, and also form a part of the apoplast. In cell suspensions, cell walls are embedded in the cul-ture medium which can be considered as a superapoplast. Through physical and chemical interactions they provide a basis for the structural and functional cell wall-plasma membrane-cytoskeleton (WMC) continuum spanning the whole cell. Here, the working of WMC contin-uum, and the participation of signalling molecules, like NO, would be presented in the context of plant responses to stress. In addition, the effects of the changing composition of WMC continuum will be considered, with particular attention paid to the modifications of the WMC components. Plant cells are normally adapted to changing osmotic conditions, resulting from variable wa-ter availability. The appearance of the osmotic stress activates adaptory mechanisms. If the strength of osmotic stress grows relatively slowly over longer period of time, the cells are able to adapt to conditions that are lethal to non-adapted cells. During stepwise adaptation of tobacco BY-2 suspension cells to the presence of various osmotically active agents, cells diverged into independent, osmoticum type-specific lines. In response to ionic agents (NaCl, KCl), the adhe-sive properties were increased and randomly dividing cells formed clumps, while cells adapted to nonionic osmotica (mannitol, sorbitol, PEG) revealed ordered pattern of precisely positioned cell divisions, resulting in the formation of long cell files. Changes in the growth patterns were accompanied by the alterations in the composition of wall proteins and polysaccharides. With respect to the cytoskeleton, in cells exposed to short-term osmotic stress significant rearrange-ments were observed. Surprisingly, the analyses of microfilaments and microtubules in adapted and in non-adapted, normal BY-2 cells, revealed no significant changes. It seems that upon prolonged exposure to osmotic stress conditions selective and adaptive alterations in wall com-position were occurring. Walls of cells grown in the presence of ionic agents were homogenous, while longitudinal walls and cross-walls in cells adapted to nonionic agents were significantly different. This might affect the anchorage of the cytoskeleton in the walls and modify the func-tioning of the whole WMC continuum. In this way, cell's mechanical balance restoration will be ensured and, in consequence, cells will be able to resist osmotic pressure and divide under severe stress conditions. In plants, cross-walls within cell files of axial organs exhibit specific properties that allow them to act as domains of contact and intense intercellular communica-tion, and the sites of the anchorage of cytoskeleton. As a further consequence, also cell-to-cell interactions would be affected. MM and RJ are students of biotechnology at Adam Mickiewicz University. The data coming from the authors' lab come from research supported by the DAAD scholarship to AK, and Alexander von Humboldt Research Fellowship and Polish Ministry of Science and Higher Edu-cation grants PBZ-KBN-110/P04/2004, N N303 294434, N N301 164435, and N N303 360735 to PW.
NASA Technical Reports Server (NTRS)
White, Jeffery A.; Baurle, Robert A.; Passe, Bradley J.; Spiegel, Seth C.; Nishikawa, Hiroaki
2017-01-01
The ability to solve the equations governing the hypersonic turbulent flow of a real gas on unstructured grids using a spatially-elliptic, 2nd-order accurate, cell-centered, finite-volume method has been recently implemented in the VULCAN-CFD code. This paper describes the key numerical methods and techniques that were found to be required to robustly obtain accurate solutions to hypersonic flows on non-hex-dominant unstructured grids. The methods and techniques described include: an augmented stencil, weighted linear least squares, cell-average gradient method, a robust multidimensional cell-average gradient-limiter process that is consistent with the augmented stencil of the cell-average gradient method and a cell-face gradient method that contains a cell skewness sensitive damping term derived using hyperbolic diffusion based concepts. A data-parallel matrix-based symmetric Gauss-Seidel point-implicit scheme, used to solve the governing equations, is described and shown to be more robust and efficient than a matrix-free alternative. In addition, a y+ adaptive turbulent wall boundary condition methodology is presented. This boundary condition methodology is deigned to automatically switch between a solve-to-the-wall and a wall-matching-function boundary condition based on the local y+ of the 1st cell center off the wall. The aforementioned methods and techniques are then applied to a series of hypersonic and supersonic turbulent flat plate unit tests to examine the efficiency, robustness and convergence behavior of the implicit scheme and to determine the ability of the solve-to-the-wall and y+ adaptive turbulent wall boundary conditions to reproduce the turbulent law-of-the-wall. Finally, the thermally perfect, chemically frozen, Mach 7.8 turbulent flow of air through a scramjet flow-path is computed and compared with experimental data to demonstrate the robustness, accuracy and convergence behavior of the unstructured-grid solver for a realistic 3-D geometry on a non-hex-dominant grid.
Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams
NASA Technical Reports Server (NTRS)
Song, O.; Librescu, L.; Rogers, C. A.
1992-01-01
The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.
Wireless transmission of biosignals for hyperbaric chamber applications
Perez-Vidal, Carlos; Gracia, Luis; Carmona, Cristian; Alorda, Bartomeu; Salinas, Antonio
2017-01-01
This paper presents a wireless system to send biosignals outside a hyperbaric chamber avoiding wires going through the chamber walls. Hyperbaric chambers are becoming more and more common due to new indications of hyperbaric oxygen treatments. Metallic walls physically isolate patients inside the chamber, where getting a patient’s vital signs turns into a painstaking task. The paper proposes using a ZigBee-based network to wirelessly transmit the patient's biosignals to the outside of the chamber. In particular, a wearable battery supported device has been designed, implemented and tested. Although the implementation has been conducted to transmit the electrocardiography signal, the device can be easily adapted to consider other biosignals. PMID:28296900
Use of Ultrasound to Improve the Effectiveness of a Permeable Treatment Wall
NASA Technical Reports Server (NTRS)
Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Reinhart, Debra R. (Inventor); Ruiz, Nancy (Inventor)
2000-01-01
A method for increasing the effectiveness of a permeable treatment wall is described. The method includes the introduction of ultrasonic radiation in or near the wall. A permeable treatment wall is also described which has an ultrasonic radiation generating transducer in or near the wall. Permeable treatment walls are described as having either a well vertically extending into the wall, or a rod vertically extending into the treatment wall. Additionally, a method for adapting a permeable treatment wall to allow for the introduction of ultrasonic radiation in or near the wall is described.
The Role of Candida albicans Transcription Factor RLM1 in Response to Carbon Adaptation.
Oliveira-Pacheco, João; Alves, Rosana; Costa-Barbosa, Augusto; Cerqueira-Rodrigues, Bruno; Pereira-Silva, Patricia; Paiva, Sandra; Silva, Sónia; Henriques, Mariana; Pais, Célia; Sampaio, Paula
2018-01-01
Candida albicans is the main causative agent of candidiasis and one of the most frequent causes of nosocomial infections worldwide. In order to establish an infection, this pathogen supports effective stress responses to counter host defenses and adapts to changes in the availability of important nutrients, such as alternative carbon sources. These stress responses have clear implications on the composition and structure of Candida cell wall. Therefore, we studied the impact of lactate, a physiologically relevant carbon source, on the activity of C. albicans RLM1 transcriptional factor. RLM1 is involved in the cell wall integrity pathway and plays an important role in regulating the flow of carbohydrates into cell wall biosynthesis pathways. The role of C. albicans RLM1 in response to lactate adaptation was assessed in respect to several virulence factors, such as the ability to grow under cell wall damaging agents, filament, adhere or form biofilm, as well as to immune recognition. The data showed that growth of C. albicans cells in the presence of lactate induces the secretion of tartaric acid, which has the potential to modulate the TCA cycle on both the yeast and the host cells. In addition, we found that adaptation of C. albicans cells to lactate reduces their internalization by immune cells and consequent % of killing, which could be correlated with a lower exposure of the cell wall β-glucans. In addition, absence of RLM1 has a minor impact on internalization, compared with the wild-type and complemented strains, but it reduces the higher efficiency of lactate grown cells at damaging phagocytic cells and induces a high amount of IL-10, rendering these cells more tolerable to the immune system. The data suggests that RLM1 mediates cell wall remodeling during carbon adaptation, impacting their interaction with immune cells.
Stress adapted embroidered meshes with a graded pattern design for abdominal wall hernia repair
NASA Astrophysics Data System (ADS)
Hahn, J.; Bittrich, L.; Breier, A.; Spickenheuer, A.
2017-10-01
Abdominal wall hernias are one of the most relevant injuries of the digestive system with 25 million patients in 2013. Surgery is recommended primarily using allogenic non-absorbable wrap-knitted meshes. These meshes have in common that their stress-strain behaviour is not adapted to the anisotropic behaviour of native abdominal wall tissue. The ideal mesh should possess an adequate mechanical behaviour and a suitable porosity at the same time. An alternative fabrication method to wrap-knitting is the embroidery technology with a high flexibility in pattern design and adaption of mechanical properties. In this study, a pattern generator was created for pattern designs consisting of a base and a reinforcement pattern. The embroidered mesh structures demonstrated different structural and mechanical characteristics. Additionally, the investigation of the mechanical properties exhibited an anisotropic mechanical behaviour for the embroidered meshes. As a result, the investigated pattern generator and the embroidery technology allow the production of stress adapted mesh structures that are a promising approach for hernia reconstruction.
Simoe, Bruno F; Sampaio, Filipa L.; Loew, Ellis R.; Sanders, Kate L.; Fisher, Robert N.; Hart, Nathan S.; Hunt, David M.; Partridge, Julian C.; Gower, David J.
2016-01-01
In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor ‘transmutation’. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels.
Sampaio, Filipa L.; Loew, Ellis R.; Sanders, Kate L.; Fisher, Robert N.; Hart, Nathan S.; Hunt, David M.; Partridge, Julian C.
2016-01-01
In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor ‘transmutation’. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels. PMID:26817768
Simões, Bruno F; Sampaio, Filipa L; Loew, Ellis R; Sanders, Kate L; Fisher, Robert N; Hart, Nathan S; Hunt, David M; Partridge, Julian C; Gower, David J
2016-01-27
In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor 'transmutation'. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels. © 2016 The Author(s).
A unified EM approach to bladder wall segmentation with coupled level-set constraints
Han, Hao; Li, Lihong; Duan, Chaijie; Zhang, Hao; Zhao, Yang; Liang, Zhengrong
2013-01-01
Magnetic resonance (MR) imaging-based virtual cystoscopy (VCys), as a non-invasive, safe and cost-effective technique, has shown its promising virtue for early diagnosis and recurrence management of bladder carcinoma. One primary goal of VCys is to identify bladder lesions with abnormal bladder wall thickness, and consequently a precise segmentation of the inner and outer borders of the wall is required. In this paper, we propose a unified expectation-maximization (EM) approach to the maximum-a-posteriori (MAP) solution of bladder wall segmentation, by integrating a novel adaptive Markov random field (AMRF) model and the coupled level-set (CLS) information into the prior term. The proposed approach is applied to the segmentation of T1-weighted MR images, where the wall is enhanced while the urine and surrounding soft tissues are suppressed. By introducing scale-adaptive neighborhoods as well as adaptive weights into the conventional MRF model, the AMRF model takes into account the local information more accurately. In order to mitigate the influence of image artifacts adjacent to the bladder wall and to preserve the continuity of the wall surface, we apply geometrical constraints on the wall using our previously developed CLS method. This paper not only evaluates the robustness of the presented approach against the known ground truth of simulated digital phantoms, but further compares its performance with our previous CLS approach via both volunteer and patient studies. Statistical analysis on experts’ scores of the segmented borders from both approaches demonstrates that our new scheme is more effective in extracting the bladder wall. Based on the wall thickness calibrated from the segmented single-layer borders, a three-dimensional virtual bladder model can be constructed and the wall thickness can be mapped on to the model, where the bladder lesions will be eventually detected via experts’ visualization and/or computer-aided detection. PMID:24001932
Douchkov, Dimitar; Lueck, Stefanie; Hensel, Goetz; Kumlehn, Jochen; Rajaraman, Jeyaraman; Johrde, Annika; Doblin, Monika S; Beahan, Cherie T; Kopischke, Michaela; Fuchs, René; Lipka, Volker; Niks, Rients E; Bulone, Vincent; Chowdhury, Jamil; Little, Alan; Burton, Rachel A; Bacic, Antony; Fincher, Geoffrey B; Schweizer, Patrick
2016-10-01
Cell walls and cellular turgor pressure shape and suspend the bodies of all vascular plants. In response to attack by fungal and oomycete pathogens, which usually breach their host's cell walls by mechanical force or by secreting lytic enzymes, plants often form local cell wall appositions (papillae) as an important first line of defence. The involvement of cell wall biosynthetic enzymes in the formation of these papillae is still poorly understood, especially in cereal crops. To investigate the role in plant defence of a candidate gene from barley (Hordeum vulgare) encoding cellulose synthase-like D2 (HvCslD2), we generated transgenic barley plants in which HvCslD2 was silenced through RNA interference (RNAi). The transgenic plants showed no growth defects but their papillae were more successfully penetrated by host-adapted, virulent as well as avirulent nonhost isolates of the powdery mildew fungus Blumeria graminis. Papilla penetration was associated with lower contents of cellulose in epidermal cell walls and increased digestion by fungal cell wall degrading enzymes. The results suggest that HvCslD2-mediated cell wall changes in the epidermal layer represent an important defence reaction both for nonhost and for quantitative host resistance against nonadapted wheat and host-adapted barley powdery mildew pathogens, respectively. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Ni, Ming-Jiu, E-mail: mjni@ucas.ac.cn
2014-01-01
The numerical simulation of Magnetohydrodynamics (MHD) flows with complex boundaries has been a topic of great interest in the development of a fusion reactor blanket for the difficulty to accurately simulate the Hartmann layers and side layers along arbitrary geometries. An adaptive version of a consistent and conservative scheme has been developed for simulating the MHD flows. Besides, the present study forms the first attempt to apply the cut-cell approach for irregular wall-bounded MHD flows, which is more flexible and conveniently implemented under adaptive mesh refinement (AMR) technique. It employs a Volume-of-Fluid (VOF) approach to represent the fluid–conducting wall interfacemore » that makes it possible to solve the fluid–solid coupling magnetic problems, emphasizing at how electric field solver is implemented when conductivity is discontinuous in cut-cell. For the irregular cut-cells, the conservative interpolation technique is applied to calculate the Lorentz force at cell-center. On the other hand, it will be shown how consistent and conservative scheme is implemented on fine/coarse mesh boundaries when using AMR technique. Then, the applied numerical schemes are validated by five test simulations and excellent agreement was obtained for all the cases considered, simultaneously showed good consistency and conservative properties.« less
Wallace, Simon; Chater, Caspar C; Kamisugi, Yasuko; Cuming, Andrew C; Wellman, Charles H; Beerling, David J; Fleming, Andrew J
2015-01-01
The early evolution of plants required the acquisition of a number of key adaptations to overcome physiological difficulties associated with survival on land. One of these was a tough sporopollenin wall that enclosed reproductive propagules and provided protection from desiccation and UV-B radiation. All land plants possess such walled spores (or their derived homologue, pollen). We took a reverse genetics approach, consisting of knock-out and complementation experiments to test the functional conservation of the sporopollenin-associated gene MALE STERILTY 2 (which is essential for pollen wall development in Arabidopsis thaliana) in the bryophyte Physcomitrella patens. Knock-outs of a putative moss homologue of the A. thaliana MS2 gene, which is highly expressed in the moss sporophyte, led to spores with highly defective walls comparable to that observed in the A. thaliana ms2 mutant, and extremely compromised germination. Conversely, the moss MS2 gene could not rescue the A. thaliana ms2 phenotype. The results presented here suggest that a core component of the biochemical and developmental pathway required for angiosperm pollen wall development was recruited early in land plant evolution but the continued increase in pollen wall complexity observed in angiosperms has been accompanied by divergence in MS2 gene function. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
A Wall-Distance-Free k-ω SST Turbulence Model
NASA Astrophysics Data System (ADS)
Gleize, Vincent; Burnley, Victor
2001-11-01
In the calculation of flows around aircraft and aerodynamic bodies, the Shear-Stress Transport (SST) model by Menter has been used extensively due to its good prediction of flows with adverse pressure gradients. One main drawback of this model is the need to calculate the distance from the wall. While this is not a serious drawback for steady state calculations on non-moving grids, this calculation can become very cumbersome and expensive for unsteady simulations, especially when using unstructured grids. In this case, the wall-distance needs to be determined after each iteration. To avoid this problem, a new model is proposed which provides the benefits of the SST correction and avoids the freestream dependency of the solution, while not requiring the wall-distance. The first results for a wide range of test cases show that this model produces very good agreement with experimental data for flows with adverse pressure gradients, separation zones and shock-boundary layer interactions, closely matching the results obtained with the original SST model. This model should be very useful for unsteady calculations, such as store separation, grid adaptation, and other practical flows.
Adaptive and Cognitive Ground and Wall Penetrating Radar System
2015-04-24
biosensing and active entangled photon radar. The concept behind the nonlinear biosensing is to the use the AC-GWPRS as a probe to measure the...the UVM campus that are willing to collaborate on this line of research. The active entangled photon radar concept centers around recent...Figure 44 Typical OFDM radar test results: a. Time domain OFDM signal with top trace original signal in time domain from Matlab , and bottom trace
NASA Technical Reports Server (NTRS)
Wolf, Stephen; Jenkins, Renaldo
1989-01-01
An experimental Adaptive Wall Test Section (AWTS) process is described. Comparisons of the ONERA T2 and the 0.3-m TCT (transonic cryogenic tunnel) AWTS data for the ONERA CAST-10 airfoil are presented. Most of the 0.3-m TCT data is new and preliminary and no sidewall boundary layer control is involved. No conclusions are given.
ERIC Educational Resources Information Center
Crowley, Julianne; Titmus, Morgan
2016-01-01
This article explores an alternative conception held by high school and first-year university biology students regarding the structure of the left and right ventricles of the heart and the significance of the left ventricular wall being thicker than the right. The left ventricular wall of the heart is thicker than the right ventricular wall due to…
NASA Technical Reports Server (NTRS)
Cliff, Susan E.; Elmiligui, A.; Aftosmis, M.; Morgenstern, J.; Durston, D.; Thomas, S.
2012-01-01
An innovative pressure rail concept for wind tunnel sonic boom testing of modern aircraft configurations with very low overpressures was designed with an adjoint-based solution-adapted Cartesian grid method. The computational method requires accurate free-air calculations of a test article as well as solutions modeling the influence of rail and tunnel walls. Specialized grids for accurate Euler and Navier-Stokes sonic boom computations were used on several test articles including complete aircraft models with flow-through nacelles. The computed pressure signatures are compared with recent results from the NASA 9- x 7-foot Supersonic Wind Tunnel using the advanced rail design.
TEST-HOLE CONSTRUCTION FOR A NEUTRONIC REACTOR
Ohlinger, L.A.; Seitz, F.; Young, G.J.
1959-02-17
Test-hole construction is described for a reactor which provides safe and ready access to the neutron flux region for specimen materials which are to be irradiated therein. An elongated tubular thimble adapted to be inserted in the access hole through the wall of the reactor is constructed of aluminum and is provided with a plurality of holes parallel to the axis of the thimble for conveying the test specimens into position for irradiation, and a conduit for the circulation of coolant. A laminated shield formed of alternate layers of steel and pressed wood fiber is disposed lengthwise of the thimble near the outer end thereof.
Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics
Mainwaring, Mark C; Deeming, D Charles; Jones, Chris I; Hartley, Ian R
2014-01-01
Nest construction is taxonomically widespread, yet our understanding of adaptive intraspecific variation in nest design remains poor. Nest characteristics are expected to vary adaptively in response to predictable variation in spring temperatures over large spatial scales, yet such variation in nest design remains largely overlooked, particularly amongst open-cup-nesting birds. Here, we systematically examined the effects of latitudinal variation in spring temperatures and precipitation on the morphology, volume, composition, and insulatory properties of open-cup-nesting Common Blackbirds’ Turdus merula nests to test the hypothesis that birds living in cooler environments at more northerly latitudes would build better insulated nests than conspecifics living in warmer environments at more southerly latitudes. As spring temperatures increased with decreasing latitude, the external diameter of nests decreased. However, as nest wall thickness also decreased, there was no variation in the diameter of the internal nest cups. Only the mass of dry grasses within nests decreased with warmer temperatures at lower latitudes. The insulatory properties of nests declined with warmer temperatures at lower latitudes and nests containing greater amounts of dry grasses had higher insulatory properties. The insulatory properties of nests decreased with warmer temperatures at lower latitudes, via changes in morphology (wall thickness) and composition (dry grasses). Meanwhile, spring precipitation did not vary with latitude, and none of the nest characteristics varied with spring precipitation. This suggests that Common Blackbirds nesting at higher latitudes were building nests with thicker walls in order to counteract the cooler temperatures. We have provided evidence that the nest construction behavior of open-cup-nesting birds systematically varies in response to large-scale spatial variation in spring temperatures. PMID:24683466
Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics.
Mainwaring, Mark C; Deeming, D Charles; Jones, Chris I; Hartley, Ian R
2014-03-01
Nest construction is taxonomically widespread, yet our understanding of adaptive intraspecific variation in nest design remains poor. Nest characteristics are expected to vary adaptively in response to predictable variation in spring temperatures over large spatial scales, yet such variation in nest design remains largely overlooked, particularly amongst open-cup-nesting birds. Here, we systematically examined the effects of latitudinal variation in spring temperatures and precipitation on the morphology, volume, composition, and insulatory properties of open-cup-nesting Common Blackbirds' Turdus merula nests to test the hypothesis that birds living in cooler environments at more northerly latitudes would build better insulated nests than conspecifics living in warmer environments at more southerly latitudes. As spring temperatures increased with decreasing latitude, the external diameter of nests decreased. However, as nest wall thickness also decreased, there was no variation in the diameter of the internal nest cups. Only the mass of dry grasses within nests decreased with warmer temperatures at lower latitudes. The insulatory properties of nests declined with warmer temperatures at lower latitudes and nests containing greater amounts of dry grasses had higher insulatory properties. The insulatory properties of nests decreased with warmer temperatures at lower latitudes, via changes in morphology (wall thickness) and composition (dry grasses). Meanwhile, spring precipitation did not vary with latitude, and none of the nest characteristics varied with spring precipitation. This suggests that Common Blackbirds nesting at higher latitudes were building nests with thicker walls in order to counteract the cooler temperatures. We have provided evidence that the nest construction behavior of open-cup-nesting birds systematically varies in response to large-scale spatial variation in spring temperatures.
Kamisaka, Seiichiro
2003-08-01
Organisms borne in the primitive sea about 30 million years ago had evolved in water without a large influence of gravity on earth. About 4 million years ago, the first terrestrial organisms, plants appeared on the land from the sea. The terrestrial plants have adapted to and evolved on the land environment so that they can extend their roots downward in soil and their shoots upward against 1 g gravity. At least two functions that were acquired during the process of evolution helped the terrestrial plants to adapt to gravity environment on earth. One is gravitropism. The other is the reinforcement of the cell wall, particularly the secondary cell wall. In the present feature articles, the molecular mechanism of the adaptation of terrestrial plants to gravity environment on earth will be reviewed, paying special attention to the mechanism of the genetic control of the signaling of gravity stimulus in gravitropism, automorphogenesis, genes involved in auxin transport, gravity effect on cell wall properties and gravimorphogenesis in terrestrial plants.
Apparatus for detecting leakage of liquid sodium
Himeno, Yoshiaki
1978-01-01
An apparatus for detecting the leakage of liquid sodium includes a cable-like sensor adapted to be secured to a wall of piping or other equipment having sodium on the opposite side of the wall, and the sensor includes a core wire electrically connected to the wall through a leak current detector and a power source. An accidental leakage of the liquid sodium causes the corrosion of a metallic layer and an insulative layer of the sensor by products resulted from a reaction of sodium with water or oxygen in the atmospheric air so as to decrease the resistance between the core wire and the wall. Thus, the leakage is detected as an increase in the leaking electrical current. The apparatus is especially adapted for use in detecting the leakage of liquid sodium from sodium-conveying pipes or equipment in a fast breeder reactor.
Gao, Shan; van 't Klooster, Ronald; Brandts, Anne; Roes, Stijntje D; Alizadeh Dehnavi, Reza; de Roos, Albert; Westenberg, Jos J M; van der Geest, Rob J
2017-01-01
To develop and evaluate a method that can fully automatically identify the vessel wall boundaries and quantify the wall thickness for both common carotid artery (CCA) and descending aorta (DAO) from axial magnetic resonance (MR) images. 3T MRI data acquired with T 1 -weighted gradient-echo black-blood imaging sequence from carotid (39 subjects) and aorta (39 subjects) were used to develop and test the algorithm. The vessel wall segmentation was achieved by respectively fitting a 3D cylindrical B-spline surface to the boundaries of lumen and outer wall. The tube-fitting was based on the edge detection performed on the signal intensity (SI) profile along the surface normal. To achieve a fully automated process, Hough Transform (HT) was developed to estimate the lumen centerline and radii for the target vessel. Using the outputs of HT, a tube model for lumen segmentation was initialized and deformed to fit the image data. Finally, lumen segmentation was dilated to initiate the adaptation procedure of outer wall tube. The algorithm was validated by determining: 1) its performance against manual tracing; 2) its interscan reproducibility in quantifying vessel wall thickness (VWT); 3) its capability of detecting VWT difference in hypertensive patients compared with healthy controls. Statistical analysis including Bland-Altman analysis, t-test, and sample size calculation were performed for the purpose of algorithm evaluation. The mean distance between the manual and automatically detected lumen/outer wall contours was 0.00 ± 0.23/0.09 ± 0.21 mm for CCA and 0.12 ± 0.24/0.14 ± 0.35 mm for DAO. No significant difference was observed between the interscan VWT assessment using automated segmentation for both CCA (P = 0.19) and DAO (P = 0.94). Both manual and automated segmentation detected significantly higher carotid (P = 0.016 and P = 0.005) and aortic (P < 0.001 and P = 0.021) wall thickness in the hypertensive patients. A reliable and reproducible pipeline for fully automatic vessel wall quantification was developed and validated on healthy volunteers as well as patients with increased vessel wall thickness. This method holds promise for helping in efficient image interpretation for large-scale cohort studies. 4 J. Magn. Reson. Imaging 2017;45:215-228. © 2016 International Society for Magnetic Resonance in Medicine.
On the Application of Contour Bumps for Transonic Drag Reduction(Invited)
NASA Technical Reports Server (NTRS)
Milholen, William E., II; Owens, Lewis R.
2005-01-01
The effect of discrete contour bumps on reducing the transonic drag at off-design conditions on an airfoil have been examined. The research focused on fully-turbulent flow conditions, at a realistic flight chord Reynolds number of 30 million. State-of-the-art computational fluid dynamics methods were used to design a new baseline airfoil, and a family of fixed contour bumps. The new configurations were experimentally evaluated in the 0.3-m Transonic Cryogenic Tunnel at the NASA Langley Research center, which utilizes an adaptive wall test section to minimize wall interference. The computational study showed that transonic drag reduction, on the order of 12% - 15%, was possible using a surface contour bump to spread a normal shock wave. The computational study also indicated that the divergence drag Mach number was increased for the contour bump applications. Preliminary analysis of the experimental data showed a similar contour bump effect, but this data needed to be further analyzed for residual wall interference corrections.
Exceptionally well-preserved Cretaceous microfossils reveal new biomineralization styles.
Wendler, Jens E; Bown, Paul
2013-01-01
Calcareous microplankton shells form the dominant components of ancient and modern pelagic sea-floor carbonates and are widely used in palaeoenvironmental reconstructions. The efficacy of these applications, however, is dependent upon minimal geochemical alteration during diagenesis, but these modifying processes are poorly understood. Here we report on new biomineralization architectures of previously unsuspected complexity in calcareous cell-wall coverings of extinct dinoflagellates (pithonellids) from a Tanzanian microfossil-lagerstätte. These Cretaceous 'calcispheres' have previously been considered biomineralogically unremarkable but our new observations show that the true nature of these tests has been masked by recrystallization. The pristine Tanzanian fossils are formed from fibre-like crystallites and show archeopyles and exquisitely constructed opercula, demonstrating the dinoflagellate affinity of pithonellids, which has long been uncertain. The interwoven fibre-like structures provide strength and flexibility enhancing the protective function of these tests. The low-density wall fabrics may represent specific adaptation for oceanic encystment life cycles, preventing the cells from rapid sinking.
Look up: Human adults use vertical height cues in reorientation.
Du, Yu; Spetch, Marcia L; Mou, Weimin
2016-11-01
Numerous studies have shown that people and other animals readily use horizontal geometry (distance and directional information) to reorient, and these cues sometimes dominate over other cues when reorienting in navigable environments. Our study investigated whether horizontal cues (distance/angle) dominate over vertical cues (wall height) when they are in conflict. Adult participants learned two locations (opposite corners) in either a rectangular room (with distance information) or a rhombus room (with angle information). Both training rooms had 2 opposite high walls as height cues. On each trial, participants were disoriented and then asked to locate the correct corners. In testing, the rooms were modified to provide (a) distance or angle cues only, (b) height cues only, and (c) both height and horizontal cues in conflict. Participants located the correct corners successfully with horizontal (distance/angle) or height cues alone. On conflict tests, participants did not show preference for the horizontal information (distance/angle) over the height cues. The results are discussed in terms of the geometric module theory and the adaptive combination theory.
Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli
Green, Daniel J.; Hopman, Maria T. E.; Padilla, Jaume; Laughlin, M. Harold; Thijssen, Dick H. J.
2017-01-01
On the 400th anniversary of Harvey's Lumleian lectures, this review focuses on “hemodynamic” forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity. PMID:28151424
A dynamical system that describes vein graft adaptation and failure.
Garbey, Marc; Berceli, Scott A
2013-11-07
Adaptation of vein bypass grafts to the mechanical stresses imposed by the arterial circulation is thought to be the primary determinant for lesion development, yet an understanding of how the various forces dictate local wall remodeling is lacking. We develop a dynamical system that summarizes the complex interplay between the mechanical environment and cell/matrix kinetics, ultimately dictating changes in the vein graft architecture. Based on a systematic mapping of the parameter space, three general remodeling response patterns are observed: (1) shear stabilized intimal thickening, (2) tension induced wall thinning and lumen expansion, and (3) tension stabilized wall thickening. Notable is our observation that the integration of multiple feedback mechanisms leads to a variety of non-linear responses that would be unanticipated by an analysis of each system component independently. This dynamic analysis supports the clinical observation that the majority of vein grafts proceed along an adaptive trajectory, where grafts dilate and mildly thicken in response to the increased tension and shear, but a small portion of the grafts demonstrate a maladaptive phenotype, where progressive inward remodeling and accentuated wall thickening lead to graft failure. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Campolina, Bruno L.
The prediction of aircraft interior noise involves the vibroacoustic modelling of the fuselage with noise control treatments. This structure is composed of a stiffened metallic or composite panel, lined with a thermal and acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a commercial lining panel (trim). The goal of this work aims at tailoring the noise control treatments taking design constraints such as weight and space optimization into account. For this purpose, a representative aircraft double-wall is modelled using the Statistical Energy Analysis (SEA) method. Laboratory excitations such as diffuse acoustic field and point force are addressed and trends are derived for applications under in-flight conditions, considering turbulent boundary layer excitation. The effect of the porous layer compression is firstly addressed. In aeronautical applications, compression can result from the installation of equipment and cables. It is studied analytically and experimentally, using a single panel and a fibrous uniformly compressed over 100% of its surface. When compression increases, a degradation of the transmission loss up to 5 dB for a 50% compression of the porous thickness is observed mainly in the mid-frequency range (around 800 Hz). However, for realistic cases, the effect should be reduced since the compression rate is lower and compression occurs locally. Then the transmission through structural connections between panels is addressed using a four-pole approach that links the force-velocity pair at each side of the connection. The modelling integrates experimental dynamic stiffness of isolators, derived using an adapted test rig. The structural transmission is then experimentally validated and included in the double-wall SEA model as an equivalent coupling loss factor (CLF) between panels. The tested structures being flat, only axial transmission is addressed. Finally, the dominant sound transmission paths are identified in the 100 Hz to 10 kHz frequency range for double-walls under diffuse acoustic field and under point-force excitations. Non-resonant transmission is higher at low frequencies (frequencies lower than 1 kHz) while the structure-borne and the airborne paths dominate at mid- and high-frequencies, around 1 kHz and higher, respectively. An experimental validation on double-walls shows that the model is able to predict changes in the overall transmission caused by different structural couplings (rigid coupling, coupling via isolators and structurally uncoupled). Noise reduction means adapted to each transmission path, such as absorption, dissipation and structural decoupling, may be then derived. Keywords: Statistical energy analysis, Vibration isolator, Double-wall, Transfer path analysis, Transmission Loss.
Hormone Purification by Isoelectric Focusing
NASA Technical Reports Server (NTRS)
Bier, M.
1985-01-01
Various ground-based research approaches are being applied to a more definitive evaluation of the natures and degrees of electroosmosis effects on the separation capabilities of the Isoelectric Focusing (IEF) process. A primary instrumental system for this work involves rotationally stabilized, horizontal electrophoretic columns specially adapted for the IEF process. Representative adaptations include segmentation, baffles/screens, and surface coatings. Comparative performance and development testing are pursued against the type of column or cell established as an engineering model. Previously developed computer simulation capabilities are used to predict low-gravity behavior patterns and performance for IEF apparatus geometries of direct project interest. Three existing mathematical models plus potential new routines for particular aspects of simulating instrument fluid patterns with varied wall electroosmosis influences are being exercised.
Rosenbaum, David; Mattina, Alessandro; Koch, Edouard; Rossant, Florence; Gallo, Antonio; Kachenoura, Nadjia; Paques, Michel; Redheuil, Alban; Girerd, Xavier
2016-06-01
In humans, adaptive optics camera enables precise large-scale noninvasive retinal microcirculation evaluation to assess ageing, blood pressure and antihypertensive treatments respective roles on retinal arterioles anatomy. We used adaptive optics camera rtx1 (Imagine-Eyes, Orsay, France) to measure wall thickness, internal diameter and to calculate wall-to-lumen ratio (WLR) and wall cross-sectional area of retinal arterioles. This assessment was repeated within a short period in two subgroups of hypertensive individuals without or with a drug-induced blood pressure drop. In 1000 individuals, mean wall thickness, lumen diameter and WLR were 23.2 ± 3.9, 78.0 ± 10.9 and 0.300 ± 0.054 μm, respectively. Blood pressure and age both independently increased WLR by thickening arterial wall. In opposite, hypertension narrowed lumen in younger as compared to older individuals (73.2 ± 9.0 vs. 81.7 ± 10.2 μm; P < 0.001), whereas age exerted no influence on lumen diameter. Short-term blood pressure drop (-29.3 ± 17.3/-14.4 ± 10.0 mmHg) induced a WLR decrease (-6.0 ± 8.0%) because of lumen dilatation (+4.4 ± 5.9%) without wall thickness changes. By contrast, no modifications were observed in individuals with stable blood pressure. In treated and controlled hypertensives under monotherapy WLR normalization was observed because of combined wall decrease and lumen dilatation independently of antihypertensive pharmacological classes. In multivariate analysis, hypertension drug regimen was not an independent predictor of any retinal anatomical indices. Retinal arteriolar remodeling comprised blood pressure and age-driven wall thickening as well as blood pressure-triggered lumen narrowing in younger individuals. Remodeling reversal observed in controlled hypertensives seems to include short-term functional and long-term structural changes.
Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport.
Behr, Jürgen; Gänzle, Michael G; Vogel, Rudi F
2006-10-01
Resistance to hops is a prerequisite for lactic acid bacteria to spoil beer. In this study we analyzed mechanisms of hop resistance of Lactobacillus brevis at the metabolism, membrane physiology, and cell wall composition levels. The beer-spoiling organism L. brevis TMW 1.465 was adapted to high concentrations of hop compounds and compared to a nonadapted strain. Upon adaptation to hops the metabolism changed to minimize ethanol stress. Fructose was used predominantly as a carbon source by the nonadapted strain but served as an electron acceptor upon adaptation to hops, with concomitant formation of acetate instead of ethanol. Furthermore, hop adaptation resulted in higher levels of lipoteichoic acids (LTA) incorporated into the cell wall and altered composition and fluidity of the cytoplasmic membrane. The putative transport protein HitA and enzymes of the arginine deiminase pathway were overexpressed upon hop adaptation. HorA was not expressed, and the transport of hop compounds from the membrane to the extracellular space did not account for increased resistance to hops upon adaptation. Accordingly, hop resistance is a multifactorial dynamic property, which can develop during adaptation. During hop adaptation, arginine catabolism contributes to energy and generation of the proton motive force until a small fraction of the population has established structural improvements. This acquired hop resistance is energy independent and involves an altered cell wall composition. LTA shields the organism from accompanying stresses and provides a reservoir of divalent cations, which are otherwise scarce as a result of their complexation by hop acids. Some of the mechanisms involved in hop resistance overlap with mechanisms of pH resistance and ethanol tolerance and as a result enable beer spoilage by L. brevis.
A new parallelization scheme for adaptive mesh refinement
Loffler, Frank; Cao, Zhoujian; Brandt, Steven R.; ...
2016-05-06
Here, we present a new method for parallelization of adaptive mesh refinement called Concurrent Structured Adaptive Mesh Refinement (CSAMR). This new method offers the lower computational cost (i.e. wall time x processor count) of subcycling in time, but with the runtime performance (i.e. smaller wall time) of evolving all levels at once using the time step of the finest level (which does more work than subcycling but has less parallelism). We demonstrate our algorithm's effectiveness using an adaptive mesh refinement code, AMSS-NCKU, and show performance on Blue Waters and other high performance clusters. For the class of problem considered inmore » this paper, our algorithm achieves a speedup of 1.7-1.9 when the processor count for a given AMR run is doubled, consistent with our theoretical predictions.« less
A new parallelization scheme for adaptive mesh refinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loffler, Frank; Cao, Zhoujian; Brandt, Steven R.
Here, we present a new method for parallelization of adaptive mesh refinement called Concurrent Structured Adaptive Mesh Refinement (CSAMR). This new method offers the lower computational cost (i.e. wall time x processor count) of subcycling in time, but with the runtime performance (i.e. smaller wall time) of evolving all levels at once using the time step of the finest level (which does more work than subcycling but has less parallelism). We demonstrate our algorithm's effectiveness using an adaptive mesh refinement code, AMSS-NCKU, and show performance on Blue Waters and other high performance clusters. For the class of problem considered inmore » this paper, our algorithm achieves a speedup of 1.7-1.9 when the processor count for a given AMR run is doubled, consistent with our theoretical predictions.« less
Bench vise adapter grips tubing securely and safely
NASA Technical Reports Server (NTRS)
Howland, B. T.; Jones, A. S., Jr.
1966-01-01
Plastic self-compressing adapter with grooves, attached to the jaws of a bench vise, secures thin-wall tubing vertically or horizontally during cutting and flaring operations without marring or damaging it. Magnets incorporated in both sections of the adapter prevent detachment from the jaws when the vise is opened.
NASA Technical Reports Server (NTRS)
Everhart, J. L.
1983-01-01
The theoretical development of a simple and consistent method for removing the interference in adaptive-wall wind tunnels is reported. A Cauchy integral formulation of the velocities in an imaginary infinite extension of the real wind-tunnel flow is obtained and evaluated on a closed contour dividing the real and imaginary flow. The contour consists of the upper and lower effective wind-tunnel walls (wall plus boundary-layer displacement thickness) and upstream and downstream boundaries perpendicular to the axial tunnel flow. The resulting integral expressions for the streamwise and normal perturbation velocities on the contour are integrated by assuming a linear variation of the velocities between data-measurement stations along the contour. In an iterative process, the velocity components calculated on the upper and lower boundaries are then used to correct the shape of the wall to remove the interference. Convergence of the technique is shown numerically for the cases of a circular cylinder and a lifting and nonlifting NACA 0012 airfoil in incompressible flow. Experimental convergence at a transonic Mach number is demonstrated by using an NACA 0012 airfoil at zero lift.
Jones, R B
1982-03-01
Early environmental enrichment was evaluated by its effect on the behavior of 7-day-old male and female domestic chicks in an open field or novel environment and in a hole-in-the-wall test of timidity. The chicks were housed in same-sex groups of 10. The bare environments contained wood litter, food, and water, whereas the enriched boxes also contained various objects. In the open field, immobility was lower while feeding, walking, jumping and vocalization were higher in the enriched birds than in those reared in the bare environment. Enrichment also decreased emergence latencies in the hole-in-the-wall box. The increased stimulation provided by environmental enrichment may decrease fearfulness in subsequent fear-inducing situations and may enhance the ability of animals to adapt to novelty.
Sierad, Leslie Neil; Shaw, Eliza Laine; Bina, Alexander; Brazile, Bryn; Rierson, Nicholas; Patnaik, Sourav S.; Kennamer, Allison; Odum, Rebekah; Cotoi, Ovidiu; Terezia, Preda; Branzaniuc, Klara; Smallwood, Harrison; Deac, Radu; Egyed, Imre; Pavai, Zoltan; Szanto, Annamaria; Harceaga, Lucian; Suciu, Horatiu; Raicea, Victor; Olah, Peter; Simionescu, Agneta; Liao, Jun; Movileanu, Ionela
2015-01-01
There is a great need for living valve replacements for patients of all ages. Such constructs could be built by tissue engineering, with perspective of the unique structure and biology of the aortic root. The aortic valve root is composed of several different tissues, and careful structural and functional consideration has to be given to each segment and component. Previous work has shown that immersion techniques are inadequate for whole-root decellularization, with the aortic wall segment being particularly resistant to decellularization. The aim of this study was to develop a differential pressure gradient perfusion system capable of being rigorous enough to decellularize the aortic root wall while gentle enough to preserve the integrity of the cusps. Fresh porcine aortic roots have been subjected to various regimens of perfusion decellularization using detergents and enzymes and results compared to immersion decellularized roots. Success criteria for evaluation of each root segment (cusp, muscle, sinus, wall) for decellularization completeness, tissue integrity, and valve functionality were defined using complementary methods of cell analysis (histology with nuclear and matrix stains and DNA analysis), biomechanics (biaxial and bending tests), and physiologic heart valve bioreactor testing (with advanced image analysis of open–close cycles and geometric orifice area measurement). Fully acellular porcine roots treated with the optimized method exhibited preserved macroscopic structures and microscopic matrix components, which translated into conserved anisotropic mechanical properties, including bending and excellent valve functionality when tested in aortic flow and pressure conditions. This study highlighted the importance of (1) adapting decellularization methods to specific target tissues, (2) combining several methods of cell analysis compared to relying solely on histology, (3) developing relevant valve-specific mechanical tests, and (4) in vitro testing of valve functionality. PMID:26467108
Retinal Arterioles in Hypo-, Normo-, and Hypertensive Subjects Measured Using Adaptive Optics.
Hillard, Jacob G; Gast, Thomas J; Chui, Toco Y P; Sapir, Dan; Burns, Stephen A
2016-08-01
Small artery and arteriolar walls thicken due to elevated blood pressure. Vascular wall thickness show a correlation with hypertensive subject history and risk for stroke and cardiovascular events. The inner and outer diameter of retinal arterioles from less than 10 to over 150 μm were measured using a multiply scattered light adaptive optics scanning laser ophthalmoscope (AOSLO). These measurements were made on three populations, one with habitual blood pressures less than 100/70 mm Hg, one with normal blood pressures without medication, and one with managed essential hypertension. The wall to lumen ratio was largest for the smallest arterioles for all three populations. Data from the hypotensive group had a linear relationship between outer and inner diameters ( r 2 = 0.99) suggesting a similar wall structure in individuals prior to elevated blood pressures. Hypertensive subjects fell below the 95% confidence limits for the hypotensive relationship and had larger wall to lumen ratios and the normotensive group results fell between the other two groups. High-resolution retinal imaging of subjects with essential hypertension showed a significant decrease in vessel inner diameter for a given outer diameter, and increases in wall to lumen ratio and wall cross-sectional areas over the entire range of vessel diameters and suggests that correcting for vessel size may improve the ability to identify significant vascular changes. High-resolution imaging allows precise measurement of vasculature and by comparing results across risk populations may allow improved identification of individuals undergoing hypertensive arterial wall remodeling.
Aerofoil testing in a self-streamlining flexible walled wind tunnel. Ph.D. Thesis - Jul. 1987
NASA Technical Reports Server (NTRS)
Lewis, Mark Charles
1988-01-01
Two-dimensional self-streamlining flexible walled test sections eliminate, as far as experimentally possible, the top and bottom wall interference effects in transonic airfoil testing. The test section sidewalls are rigid, while the impervious top and bottom walls are flexible and contoured to streamline shapes by a system of jacks, without reference to the airfoil model. The concept of wall contouring to eliminate or minimize test section boundary interference in 2-D testing was first demonstrated by NPL in England during the early 40's. The transonic streamlining strategy proposed, developed and used by NPL has been compared with several modern strategies. The NPL strategy has proved to be surprisingly good at providing a wall interference-free test environment, giving model performance indistinguishable from that obtained using the modern strategies over a wide range of test conditions. In all previous investigations the achievement of wall streamlining in flexible walled test sections has been limited to test sections up to those resulting in the model's shock just extending to a streamlined wall. This work however, has also successfully demonstrated the feasibility of 2-D wall streamlining at test conditions where both model shocks have reached and penetrated through their respective flexible walls. Appropriate streamlining procedures have been established and are uncomplicated, enabling flexible walled test sections to cope easily with these high transonic flows.
NASA Technical Reports Server (NTRS)
Bartunek, J.; Weinberg, E. O.; Tajima, M.; Rohrbach, S.; Katz, S. E.; Douglas, P. S.; Lorell, B. H.; Schneider, M. (Principal Investigator)
2000-01-01
BACKGROUND: Chronic N(G)-nitro-L-arginine methyl ester (L-NAME), which inhibits nitric oxide synthesis, causes hypertension and would therefore be expected to induce robust cardiac hypertrophy. However, L-NAME has negative metabolic effects on protein synthesis that suppress the increase in left ventricular (LV) mass in response to sustained pressure overload. In the present study, we used L-NAME-induced hypertension to test the hypothesis that adaptation to pressure overload occurs even when hypertrophy is suppressed. METHODS AND RESULTS: Male rats received L-NAME (50 mg. kg(-1). d(-1)) or no drug for 6 weeks. Rats with L-NAME-induced hypertension had levels of systolic wall stress similar to those of rats with aortic stenosis (85+/-19 versus 92+/-16 kdyne/cm). Rats with aortic stenosis developed a nearly 2-fold increase in LV mass compared with controls. In contrast, in the L-NAME rats, no increase in LV mass (1. 00+/-0.03 versus 1.04+/-0.04 g) or hypertrophy of isolated myocytes occurred (3586+/-129 versus 3756+/-135 microm(2)) compared with controls. Nevertheless, chronic pressure overload was not accompanied by the development of heart failure. LV systolic performance was maintained by mechanisms of concentric remodeling (decrease of in vivo LV chamber dimension relative to wall thickness) and augmented myocardial calcium-dependent contractile reserve associated with preserved expression of alpha- and beta-myosin heavy chain isoforms and sarcoplasmic reticulum Ca(2+) ATPase (SERCA-2). CONCLUSIONS: When the expected compensatory hypertrophic response is suppressed during L-NAME-induced hypertension, severe chronic pressure overload is associated with a successful adaptation to maintain systolic performance; this adaptation depends on both LV remodeling and enhanced contractility in response to calcium.
Araki, Tadashi; Jain, Pankaj K; Suri, Harman S; Londhe, Narendra D; Ikeda, Nobutaka; El-Baz, Ayman; Shrivastava, Vimal K; Saba, Luca; Nicolaides, Andrew; Shafique, Shoaib; Laird, John R; Gupta, Ajay; Suri, Jasjit S
2017-01-01
Stroke risk stratification based on grayscale morphology of the ultrasound carotid wall has recently been shown to have a promise in classification of high risk versus low risk plaque or symptomatic versus asymptomatic plaques. In previous studies, this stratification has been mainly based on analysis of the far wall of the carotid artery. Due to the multifocal nature of atherosclerotic disease, the plaque growth is not restricted to the far wall alone. This paper presents a new approach for stroke risk assessment by integrating assessment of both the near and far walls of the carotid artery using grayscale morphology of the plaque. Further, this paper presents a scientific validation system for stroke risk assessment. Both these innovations have never been presented before. The methodology consists of an automated segmentation system of the near wall and far wall regions in grayscale carotid B-mode ultrasound scans. Sixteen grayscale texture features are computed, and fed into the machine learning system. The training system utilizes the lumen diameter to create ground truth labels for the stratification of stroke risk. The cross-validation procedure is adapted in order to obtain the machine learning testing classification accuracy through the use of three sets of partition protocols: (5, 10, and Jack Knife). The mean classification accuracy over all the sets of partition protocols for the automated system in the far and near walls is 95.08% and 93.47%, respectively. The corresponding accuracies for the manual system are 94.06% and 92.02%, respectively. The precision of merit of the automated machine learning system when compared against manual risk assessment system are 98.05% and 97.53% for the far and near walls, respectively. The ROC of the risk assessment system for the far and near walls is close to 1.0 demonstrating high accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ferri, A.; Roffe, G.
1975-01-01
A series of experiments were performed to evaluate the effectiveness of a three-dimensional land and groove wall geometry and a variable permeability distribution to reduce the interference produced by the porous walls of a supercritical transonic test section. The three-dimensional wall geometry was found to diffuse the pressure perturbations caused by small local mismatches in wall porosity permitting the use of a relatively coarse wall porosity control to reduce or eliminate wall interference effects. The wall porosity distribution required was found to be a sensitive function of Mach number requiring that the Mach number repeatability characteristics of the test apparatus be quite good. The effectiveness of a variable porosity wall is greatest in the upstream region of the test section where the pressure differences across the wall are largest. An effective variable porosity wall in the down stream region of the test section requires the use of a slightly convergent test section geometry.
The composition of cell walls from grape skin in Vitis vinifera intraspecific hybrids.
Apolinar-Valiente, Rafael; Gómez-Plaza, Encarna; Terrier, Nancy; Doco, Thierry; Ros-García, José María
2017-09-01
Monastrell is a red grape cultivar adapted to the dry environmental conditions of Murcia, SE Spain. Its berries seem to be characterized by a rigid cell wall structure, which could make difficult the winemaking process. Cabernet Sauvignon cultivar is used to complement Monastrell wines in this region owing to its high phenolic content with high extractability. This study explores the skin cell wall composition of grapes from plants resulting from intraspecific crosses of Vitis vinifera cultivars Monastrell × Cabernet Sauvignon. Moreover, the morphology of the cell wall material (CWM) from some representative samples was visualized by transmission optical microscopy. The total sugar content of CWM from nine out of ten genotypes of the progeny was lower than that from Monastrell. Seven out of ten genotypes showed lower phenolic content than Cabernet Sauvignon. The CWM from nine out of ten hybrids presented lower protein content than that from Monastrell. This study confirms that skin cell walls from Monastrell × Cabernet Sauvignon hybrid grapes presented major differences in composition compared with their parents. These data could help in the development of new cultivars adapted to the dry conditions of SE Spain and with a cell wall composition favouring extractability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Souley, Mountaka; Lopez, Philippe; Boulon, Marc; Thoraval, Alain
2015-05-01
The experimental device previously used to study the hydromechanical behaviour of individual fractures on a laboratory scale, was adapted to make it possible to measure flow through porous rock mass samples in addition to fracture flows. A first series of tests was performed to characterize the hydromechanical behaviour of the fracture individually as well as the porous matrix (sandstone) comprising the fracture walls. A third test in this series was used to validate the experimental approach. These tests showed non-linear evolution of the contact area on the fracture walls with respect to effective normal stress. Consequently, a non-linear relationship was noted between the hydraulic aperture on the one hand, and the effective normal stress and mechanical opening on the other hand. The results of the three tests were then analysed by numerical modelling. The VIPLEF/HYDREF numerical codes used take into account the dual-porosity of the sample (fracture + rock matrix) and can be used to reproduce hydromechanical loading accurately. The analyses show that the relationship between the hydraulic aperture of the fracture and the mechanical closure has a significant effect on fracture flow rate predictions. By taking simultaneous measurements of flow in both fracture and rock matrix, we were able to carry out a global evaluation of the conceptual approach used.
Investigation of Liner Characteristics in the NASA Langley Curved Duct Test Rig
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Brown, Martha C.; Watson, Willie R.; Jones, Michael G.
2007-01-01
The Curved Duct Test Rig (CDTR), which is designed to investigate propagation of sound in a duct with flow, has been developed at NASA Langley Research Center. The duct incorporates an adaptive control system to generate a tone in the duct at a specific frequency with a target Sound Pressure Level and a target mode shape. The size of the duct, the ability to isolate higher order modes, and the ability to modify the duct configuration make this rig unique among experimental duct acoustics facilities. An experiment is described in which the facility performance is evaluated by measuring the sound attenuation by a sample duct liner. The liner sample comprises one wall of the liner test section. Sound in tones from 500 to 2400 Hz, with modes that are parallel to the liner surface of order 0 to 5, and that are normal to the liner surface of order 0 to 2, can be generated incident on the liner test section. Tests are performed in which sound is generated without axial flow in the duct and with flow at a Mach number of 0.275. The attenuation of the liner is determined by comparing the sound power in a hard wall section downstream of the liner test section to the sound power in a hard wall section upstream of the liner test section. These experimentally determined attenuations are compared to numerically determined attenuations calculated by means of a finite element analysis code. The code incorporates liner impedance values educed from measured data from the NASA Langley Grazing Incidence Tube, a test rig that is used for investigating liner performance with flow and with (0,0) mode incident grazing. The analytical and experimental results compare favorably, indicating the validity of the finite element method and demonstrating that finite element prediction tools can be used together with experiment to characterize the liner attenuation.
SU-E-J-67: Evaluation of Adaptive MLC Morphing for Online Correction of Prostate Cancer Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, R; Qin, A; Yan, D
Purpose: Online adaptive MLC morphing is desirable over translational couch shifts to accommodate target position as well as anatomic changes. A reliable method of adaptive MLC segment to target during prostate cancer IMRT treatment is proposed and evaluated by comparison with daily online-image guidance (IGRT) correction and online-IMRT planning. Methods: The MLC adaptive algorithm involves following steps; move the MLC segments according to target translational shifts, and then morph the segment shape to maintain the spatial relationship between the planning-target contour and MLC segment. Efficacy of this method was evaluated retrospectively using daily-CBCT images on seven prostate patients treated withmore » seven-beam IMRT treatment to deliver 64Gy in 20 fractions. Daily modification was simulated with three approaches; daily-IGRT correction based on implanted radio-markers, adaptive MLC morphing, and online-IMRT planning, with no-residual variation. The selected dosimetric endpoints and nEUD (normalized equivalent uniform dose to online-IMRT planning) of each organ of interest were determined for evaluation and comparison. Results: For target(prostate), bladder and rectal-wall, the mean±sd of nEUD were 97.6%+3.2%, 103.9%±4.9% and 97.4%±1.1% for daily-IGRT correction; and 100.2%+0.2%, 108.9%±5.1% and 99.8%±1.2% for adaptive MLC morphing, respectively. For daily-IGRT correction, adaptive MLC morphing and online-IMRT planning, target D99 was <95% of the prescription dose in 30%, 0% and 0% of 140 fractions, respectively. For the rectal-wall, D5 exceeded 105% of the planned-D5 in 2.8%, 11.4% and 0% of 140 fractions, respectively. For the bladder, Dmax exceeded 105% of the planned-D5 in 2.8%, 5.6% and 0% of 140 fractions, respectively. D30 of bladder and rectal-wall were well within the planned-D30 for all three approaches. Conclusion: The proposed method of adaptive MLC morphing can be beneficial for the prostate patient population with large deformation and rotation. It is superior to the daily-IGRT correction, and comparable to the online-IMRT planning for dose to the target and rectal-wall.« less
NASA Astrophysics Data System (ADS)
Serrano, S.; de Gracia, A.; Pérez, G.; Cabeza, L. F.
2017-10-01
The building envelope has high potential to reduce the energy consumption of buildings according to the International Energy Agency (IEA) because it is involved along all the building process: design, construction, use, and end-of-life. The present study compares the thermal behavior of seven different building prototypes tested under Mediterranean climate: two of them were built with sustainable earth-based construction systems and the other five, with conventional brick construction systems. The tested earth-based construction systems consist of rammed earth walls and wooden green roofs, which have been adapted to contemporary requirements by reducing their thickness. In order to balance the thermal response, wooden insulation panels were placed in one of the earth prototypes. All building prototypes have the same inner dimensions and orientation, and they are fully monitored to register inner temperature and humidity, surface walls temperatures and temperatures inside walls. Furthermore, all building prototypes are equipped with a heat pump and an electricity meter to measure the electrical energy consumed to maintain a certain level of comfort. The experimentation was performed along a whole year by carrying out several experiments in free floating and controlled temperature conditions. This study aims at demonstrating that sustainable construction systems can behave similarly or even better than conventional ones under summer and winter conditions. Results show that thermal behavior is strongly penalized when rammed earth wall thickness is reduced. However, the addition of 6 cm of wooden insulation panels in the outer surface of the building prototype successfully improves the thermal response.
Accurate segmentation framework for the left ventricle wall from cardiac cine MRI
NASA Astrophysics Data System (ADS)
Sliman, H.; Khalifa, F.; Elnakib, A.; Soliman, A.; Beache, G. M.; Gimel'farb, G.; Emam, A.; Elmaghraby, A.; El-Baz, A.
2013-10-01
We propose a novel, fast, robust, bi-directional coupled parametric deformable model to segment the left ventricle (LV) wall borders using first- and second-order visual appearance features. These features are embedded in a new stochastic external force that preserves the topology of LV wall to track the evolution of the parametric deformable models control points. To accurately estimate the marginal density of each deformable model control point, the empirical marginal grey level distributions (first-order appearance) inside and outside the boundary of the deformable model are modeled with adaptive linear combinations of discrete Gaussians (LCDG). The second order visual appearance of the LV wall is accurately modeled with a new rotationally invariant second-order Markov-Gibbs random field (MGRF). We tested the proposed segmentation approach on 15 data sets in 6 infarction patients using the Dice similarity coefficient (DSC) and the average distance (AD) between the ground truth and automated segmentation contours. Our approach achieves a mean DSC value of 0.926±0.022 and AD value of 2.16±0.60 compared to two other level set methods that achieve 0.904±0.033 and 0.885±0.02 for DSC; and 2.86±1.35 and 5.72±4.70 for AD, respectively.
Lusk, Christopher H; Onoda, Yusuke; Kooyman, Robert; Gutiérrez-Girón, Alba
2010-04-01
*When grown in a common light environment, the leaves of shade-tolerant evergreen trees have a larger leaf mass per unit area (LMA) than their light-demanding counterparts, associated with differences in lifespan. Yet plastic responses of LMA run counter to this pattern: shade leaves have smaller LMA than sun leaves, despite often living longer. *We measured LMA and cell wall content, and conducted punch and shear tests, on sun and shade leaves of 13 rainforest evergreens of differing shade tolerance, in order to understand adaptation vs plastic responses of leaf structure and biomechanics to shade. *Species shade tolerance and leaf mechanical properties correlated better with cell wall mass per unit area than with LMA. Growth light environment had less effect on leaf mechanics than on LMA: shade leaves had, on average, 40% lower LMA than sun leaves, but differences in work-to-shear, and especially force-to-punch, were smaller. This was associated with a slightly larger cell wall fraction in shade leaves. *The persistence of shade leaves might reflect unattractiveness to herbivores because they yield smaller benefits (cell contents per area) per unit fracture force than sun leaves. In forest trees, cell wall fraction and force-to-punch are more robust correlates of species light requirements than LMA.
Duruflé, Harold; Hervé, Vincent; Ranocha, Philippe; Balliau, Thierry; Zivy, Michel; Chourré, Josiane; San Clemente, Hélène; Burlat, Vincent; Albenne, Cécile; Déjean, Sébastien; Jamet, Elisabeth; Dunand, Christophe
2017-10-01
With the global temperature change, plant adaptations are predicted, but little is known about the molecular mechanisms underlying them. Arabidopsis thaliana is a model plant adapted to various environmental conditions, in particular able to develop along an altitudinal gradient. Two ecotypes, Columbia (Col) growing at low altitude, and Shahdara (Sha) growing at 3400m, have been studied at optimal and sub-optimal growth temperature (22°C vs 15°C). Macro- and micro-phenotyping, cell wall monosaccharides analyses, cell wall proteomics, and transcriptomics have been performed in order to accomplish an integrative analysis. The analysis has been focused on cell walls (CWs) which are assumed to play roles in response to environmental changes. At 15°C, both ecotypes presented characteristic morphological traits of low temperature growth acclimation such as reduced rosette diameter, increased number of leaves, modifications of their CW composition and cuticle reinforcement. Altogether, the integrative analysis has allowed identifying several candidate genes/proteins possibly involved in the cell wall modifications observed during the temperature acclimation response. Copyright © 2017 Elsevier B.V. All rights reserved.
Structural and Acoustic Damping Characteristics of Polyimide Microspheres
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.; Park, Junhong
2005-01-01
A broad range of tests have been performed to evaluate the capability of tiny lightweight polyimide spheres to reduce sound and vibration. The types of testing includes impedance tube measurement of propagation constant, sound power insertion loss for single and double wall systems, particle frame wave characterization and beam vibration reduction. The tests were performed using spheres made of two types of polyimide and with varying diameter. Baseline results were established using common noise reduction treatment materials such as fiberglass and foam. The spheres were difficult to test due to their inherent mobility. Most tests required some adaptation to contain the spheres. One test returned obvious non-linear behavior, a result which has come to be expected for treatments of this type. The polyimide spheres are found to be a competent treatment for both sound and vibration energy with the reservation that more work needs to be done to better characterize the non-linear behavior.
Materials for Adaptive Structural Acoustic Controls
1994-01-31
non -184T walls are possibly active under a weak cternial driving field. I. INTRODUCTION sic and extrinsic contributions from tile experimental data...increased activity in non - I 8Or wall in PZT-500, The experimental methods presented in this however, the disproportionate increase in e. may refiect be...Electromechanical Nonlinearity of Ferroelecuic Ceramic and Related non 180" Domain Wall Motion. Feaoelectrics 139,25- 49 (1993). 14. Jiang, Q., W. Cao, and L E
Adaptive optimal stochastic state feedback control of resistive wall modes in tokamaks
NASA Astrophysics Data System (ADS)
Sun, Z.; Sen, A. K.; Longman, R. W.
2006-01-01
An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least-square method with exponential forgetting factor and covariance resetting is used to identify (experimentally determine) the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time-dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used.
Adaptive Optimal Stochastic State Feedback Control of Resistive Wall Modes in Tokamaks
NASA Astrophysics Data System (ADS)
Sun, Z.; Sen, A. K.; Longman, R. W.
2007-06-01
An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least square method with exponential forgetting factor and covariance resetting is used to identify the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used.
2018-01-01
Objectives This study evaluated the effect of ultrasonic agitation of mineral trioxide aggregate (MTA), calcium silicate-based cement (CSC), and Sealer 26 (S26) on adaptation at the cement/dentin interface and push-out bond strength. Materials and Methods Sixty maxillary canines were divided into 6 groups (n = 10): MTA, S26, and CSC, with or without ultrasonic activation (US). After obturation, the apical portions of the teeth were sectioned, and retrograde cavities were prepared and filled with cement by hand condensation. In the US groups, the cement was activated for 60 seconds: 30 seconds in the mesio-distal direction and 30 seconds in the buccal-lingual direction, using a mini Irrisonic insert coupled with the ultrasound transducer. After the materials set, 1.5-mm thick sections were obtained from the apexes. The presence of gaps and the bond between cement and dentin were analyzed using low-vacuum scanning electron microscopy. Push-out bond strength was measured using a universal testing machine. Results Ultrasonic agitation increased the interfacial adaptation of the cements. The S26 US group showed a higher adaptation value than MTA (p < 0.05). US improved the push-out bond strength for all the cements (p < 0.05). Conclusions The US of retrograde filling cements enhanced the bond to the dentin wall of the root-end filling materials tested. PMID:29765903
Alcalde, Murilo Priori; Vivan, Rodrigo Ricci; Marciano, Marina Angélica; Duque, Jussaro Alves; Fernandes, Samuel Lucas; Rosseto, Mariana Bailo; Duarte, Marco Antonio Hungaro
2018-05-01
This study evaluated the effect of ultrasonic agitation of mineral trioxide aggregate (MTA), calcium silicate-based cement (CSC), and Sealer 26 (S26) on adaptation at the cement/dentin interface and push-out bond strength. Sixty maxillary canines were divided into 6 groups ( n = 10): MTA, S26, and CSC, with or without ultrasonic activation (US). After obturation, the apical portions of the teeth were sectioned, and retrograde cavities were prepared and filled with cement by hand condensation. In the US groups, the cement was activated for 60 seconds: 30 seconds in the mesio-distal direction and 30 seconds in the buccal-lingual direction, using a mini Irrisonic insert coupled with the ultrasound transducer. After the materials set, 1.5-mm thick sections were obtained from the apexes. The presence of gaps and the bond between cement and dentin were analyzed using low-vacuum scanning electron microscopy. Push-out bond strength was measured using a universal testing machine. Ultrasonic agitation increased the interfacial adaptation of the cements. The S26 US group showed a higher adaptation value than MTA ( p < 0.05). US improved the push-out bond strength for all the cements ( p < 0.05). The US of retrograde filling cements enhanced the bond to the dentin wall of the root-end filling materials tested.
NASA Technical Reports Server (NTRS)
Melton, Patrick B. (Inventor)
1989-01-01
A device is disclosed for sealing and clamping a cylindrical element which is to be attached to an object such as a wall, a pressurized vessel or another cylindrical element. The device includes a gland having an inner cylindrical wall, which is threaded at one end and is attached at a bendable end to a deformable portion, which in turn is attached to one end of a conical cantilever structure. The other end of the cantilever structure connects at a bendable area to one end of an outer cylindrical wall. The opposite end of cylindrical wall terminates in a thickened portion, the radially outer surface of which is adapted to accommodate a tool for rotating the gland. The terminal end of cylindrical wall also includes an abutment surface, which is adapted to engage a seal, which in turn engages a surface of a receiver. The receiver further includes a threaded portion for engagement with the threaded portion of gland whereby a tightening rotation of gland relative to receiver will cause relative movement between cylindrical walls and of gland. This movement causes a rotation of the conical structure and thus a bending action at bending area and at the bending end of the upper end of inner cylindrical wall. These rotational and bending actions result in a forcing of the deformable portion radially inwardly so as to contact and deform a pipe. This forcible contact creates a seal between gland and pipe, and simultaneously clamps the pipe in position.
Vaginal estrogen: a dual-edged sword in postoperative healing of the vaginal wall.
Ripperda, Christopher M; Maldonado, Pedro Antonio; Acevedo, Jesus F; Keller, Patrick W; Akgul, Yucel; Shelton, John M; Word, Ruth Ann
2017-07-01
Reconstructive surgery for pelvic organ prolapse is plagued with high failure rates possibly due to impaired healing or regeneration of the vaginal wall. Here, we tested the hypothesis that postoperative administration of local estrogen, direct injection of mesenchymal stem cells (MSCs), or both lead to improved wound healing of the injured vagina in a menopausal rat model. Ovariectomized rats underwent surgical injury to the posterior vaginal wall and were randomized to treatment with placebo (n = 41), estrogen cream (n = 47), direct injection of MSCs (n = 39), or both (n = 43). MSCs did not survive after injection and had no appreciable effects on healing of the vaginal wall. Acute postoperative administration of vaginal estrogen altered the response of the vaginal wall to injury with decreased stiffness, decreased collagen content, and decreased expression of transcripts for matrix components in the stromal compartment. Conversely, vaginal estrogen resulted in marked proliferation of the epithelial layer and increased expression of genes related to epithelial barrier function and protease inhibition. Transcripts for genes involved in chronic inflammation and adaptive immunity were also down-regulated in the estrogenized epithelium. Collectively, these data indicate that, in contrast to the reported positive effects of preoperative estrogen on the uninjured vagina, acute administration of postoperative vaginal estrogen has adverse effects on the early phase of healing of the stromal layer. In contrast, postoperative estrogen plays a positive role in healing of the vaginal epithelium after injury.
Vaginal estrogen: a dual-edged sword in postoperative healing of the vaginal wall
Ripperda, Christopher M.; Maldonado, Pedro Antonio; Acevedo, Jesus F.; Keller, Patrick W.; Akgul, Yucel; Shelton, John M.; Word, Ruth Ann
2017-01-01
Abstract Objective: Reconstructive surgery for pelvic organ prolapse is plagued with high failure rates possibly due to impaired healing or regeneration of the vaginal wall. Here, we tested the hypothesis that postoperative administration of local estrogen, direct injection of mesenchymal stem cells (MSCs), or both lead to improved wound healing of the injured vagina in a menopausal rat model. Methods: Ovariectomized rats underwent surgical injury to the posterior vaginal wall and were randomized to treatment with placebo (n = 41), estrogen cream (n = 47), direct injection of MSCs (n = 39), or both (n = 43). Results: MSCs did not survive after injection and had no appreciable effects on healing of the vaginal wall. Acute postoperative administration of vaginal estrogen altered the response of the vaginal wall to injury with decreased stiffness, decreased collagen content, and decreased expression of transcripts for matrix components in the stromal compartment. Conversely, vaginal estrogen resulted in marked proliferation of the epithelial layer and increased expression of genes related to epithelial barrier function and protease inhibition. Transcripts for genes involved in chronic inflammation and adaptive immunity were also down-regulated in the estrogenized epithelium. Conclusions: Collectively, these data indicate that, in contrast to the reported positive effects of preoperative estrogen on the uninjured vagina, acute administration of postoperative vaginal estrogen has adverse effects on the early phase of healing of the stromal layer. In contrast, postoperative estrogen plays a positive role in healing of the vaginal epithelium after injury. PMID:28169915
Tissue adaptations to gravitational stress - Newborn versus adult giraffes
NASA Technical Reports Server (NTRS)
Hargens, Alan R; Gershuni, David H.; Danzig, Larry A.; Millard, Ronald W.; Pettersson, Knut
1988-01-01
Preliminary results on developmental alterations in load-bearing tissues of newborn and adult giraffes are presented. Attention is focused on vascular wall thickness in relation to local blood pressure, and on meniscal adaptations to increased load bearing in the developing giraffe. It is believed that the developing giraffe provides an excellent model for investigations of adaptive mechanisms of increased weight bearing.
Tripp, Erin A; Fatimah, Siti
2012-06-01
Anatomical and morphological features of Satanocrater were studied to test hypotheses of xeric adaptations in the genus, which is endemic to arid tropical Africa. These features, together with molecular data, were used to test the phylogenetic placement of Satanocrater within the large plant family Acanthaceae. We undertook a comparative study of four species of Satanocrater. Carbon isotope ratios were generated to test a hypothesis of C(4) photosynthesis. Molecular data from chloroplast (trnG-trnS, trnG-trnR, psbA-trnH) and nuclear (Eif3E) loci were used to test the placement of Satanocrater within Acanthaceae. Anatomical features reflecting xeric adaptations of species of Satanocrater included a thick-walled epidermis, thick cuticle, abundant trichomes and glandular scales, stomata overarched by subsidiary cells, tightly packed mesophyll cells, and well-developed palisade parenchyma on both leaf surfaces. Although two species had enlarged bundle sheath cells, a feature often implicated in C(4) photosynthesis, isotope ratios indicated all species of Satanocrater use the C(3) pathway. Molecular data resolved Satanocrater within tribe Ruellieae with strong support. Within Ruellieae, our data suggest that pollen morphology of Satanocrater may represent an intermediate stage in a transition series. Anatomical and morphological features of Satanocrater reflect adaptation to xeric environments and add new information about the biology of xerophytes. Morphological and molecular data place Satanocrater in the tribe Ruellieae with confidence. This study adds to our capacity to test hypotheses of broad evolutionary and ecological interest in a diverse and important family of flowering plants.
Büchi, Dominik L; Ebler, Sabine; Hämmerle, Christoph H F; Sailer, Irena
2014-01-01
To test whether or not different types of CAD/CAM systems, processing zirconia in the densely and in the pre-sintered stage, lead to differences in the accuracy of 4-unit anterior fixed dental prosthesis (FDP) frameworks, and to evaluate the efficiency. 40 curved anterior 4-unit FDP frameworks were manufactured with four different CAD/CAM systems: DCS Precident (DCS) (control group), Cercon (DeguDent) (test group 1), Cerec InLab (Sirona) (test group 2), Kavo Everest (Kavo) (test group 3). The DCS System was chosen as the control group because the zirconia frameworks are processed in its densely sintered stage and there is no shrinkage of the zirconia during the manufacturing process. The initial fit of the frameworks was checked and adjusted to a subjectively similar level of accuracy by one dental technician, and the time taken for this was recorded. After cementation, the frameworks were embedded into resin and the abutment teeth were cut in mesiodistal and orobuccal directions in four specimens. The thickness of the cement gap was measured at 50× (internal adaptation) and 200× (marginal adaptation) magnification. The measurement of the accuracy was performed at four sites. Site 1: marginal adaptation, the marginal opening at the point of closest perpendicular approximation between the die and framework margin. Site 2: Internal adaptation at the chamfer. Site 3: Internal adaptation at the axial wall. Site 4: Internal adaptation in the occlusal area. The data were analyzed descriptively using the ANOVA and Bonferroni/ Dunn tests. The mean marginal adaptation (site 1) of the control group was 107 ± 26 μm; test group 1, 140 ± 26 μm; test group 2, 104 ± 40 μm; and test group 3, 95 ± 31 μm. Test group 1 showed a tendency to exhibit larger marginal gaps than the other groups, however, this difference was only significant when test groups 1 and 3 were compared (P = .0022; Bonferroni/Dunn test). Significantly more time was needed for the adjustment of the frameworks of test group 1 compared to the other test groups and the control group (21.1 min vs 3.8 min) (P < .0001; Bonferroni/Dunn test). For the adjustment of the frameworks of test groups 2 and 3, the same time was needed as for the frameworks of the control group. No differences of the framework accuracy resulting from the different CAM and CAD/CAM procedures were found; however, only after adjustment of the fit by an experienced dental technician. Hence, the influence of a manual correction of the fit was crucial, and the efforts differed for the tested systems. The CAM system led to lower initial accuracy of the frameworks than the CAD/CAM systems, which may be crucial for the dental laboratory. The stage of the zirconia materials used for the different CAD/CAM procedures, ie presintered or densely sintered, exhibited no influence.
"The Fly on the Wall" Reflecting Team Supervision.
ERIC Educational Resources Information Center
Prest, Layne E.; And Others
1990-01-01
Adapts reflecting team concept, a practical application of constructivist ideas, for use in group supervision. Evolving model includes a focus on the unique "fly on the wall" perspective of the reflecting team. Trainees are introduced to a multiverse of new ideas and perspectives in a context which integrates some of the most challenging…
Functional duality of the cell wall.
Latgé, Jean-Paul; Beauvais, Anne
2014-08-01
The polysaccharide cell wall is the extracellular armour of the fungal cell. Although essential in the protection of the fungal cell against aggressive external stresses, the biosynthesis of the polysaccharide core is poorly understood. For a long time it was considered that this cell wall skeleton was a fixed structure whose role was only to be sensed as non-self by the host and consequently trigger the defence response. It is now known that the cell wall polysaccharide composition and localization continuously change to adapt to their environment and that these modifications help the fungus to escape from the immune system. Moreover, cell wall polysaccharides could function as true virulence factors. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wolf, S. W. D.
1984-01-01
Self streamlining two dimensional flexible walled test sections eliminate the uncertainties found in data from conventional test sections particularly at transonic speeds. The test section sidewalls are rigid, while the floor and ceiling are flexible and are positioned to streamline shapes by a system of jacks, without reference to the model. The walls are therefore self streamlining. Data are taken from the model when the walls are good streamlines such that the inevitable residual wall induced interference is acceptably small and correctable. Successful two dimensional validation testing at low speeds has led to the development of a new transonic flexible walled test section. Tunnel setting times are minimized by the development of a rapid wall setting strategy coupled with on line computer control of wall shapes using motorized jacks. Two dimensional validation testing using symmetric and cambered aerofoils in the Mach number range up to about 0.85 where the walls are just supercritical, shows good agreement with reference data using small height-chord ratios between 1.5 and unity.
Diverter/bop system and method for a bottom supported offshore drilling rig
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roche, J.R.; Alexander, G.G.; Carbaugh, W.L.
1986-07-01
A system is described adapted for alternative use as a diverter or a blowout preventer for a bottom supported drilling rig and adapted for connection to a permanent housing attached to rig structural members beneath a drilling rig rotary table, the permanent housing having an outlet connectable to a rig fluid system flow line. The system consists of: a fluid flow controller having a controller housing with a lower cylindrical opening and an upper cylindrical opening and a vertical path therebetween and a first outlet passage and a second outlet passage provided in its wall, a packing element disposed withinmore » the controller housing, and annular piston means adapted for moving from a first position to a second position, whereby in the first position the piston means wall prevents interior fluid from communicating with the outlet passages in the controller housing wall and in the second position the piston means wall allows fluid communication of interior fluid with the outlet passages and urges the annular packing element to close about an object extending through the bore of the controller housing or to close the vertical flow path through through the controller housing in the absence of any object in the vertical flow path, means for connecting a vent line to the outlet passage provided in the controller housing wall, a lower telescoping spool having a lower joining means at its lower end for joining alternatively to structural casing or to a mandrel connected to a conductor string cemented within the structural casing and an upper connection means at its upper end for connection to the lower cylindrical opening of the fluid flow controller, and an upper telescoping spool having a lower connection means for connection to the upper cylindrical opening of the fluid flow controller.« less
Calculation of wall effects of flow on a perforated wall with a code of surface singularities
NASA Astrophysics Data System (ADS)
Piat, J. F.
1994-07-01
Simplifying assumptions are inherent in the analytic method previously used for the determination of wall interferences on a model in a wind tunnel. To eliminate these assumptions, a new code based on the vortex lattice method was developed. It is suitable for processing any shape of test sections with limited areas of porous wall, the characteristic of which can be nonlinear. Calculation of wall effects in S3MA wind tunnel, whose test section is rectangular 0.78 m x 0.56 m, and fitted with two or four perforated walls, have been performed. Wall porosity factors have been adjusted to obtain the best fit between measured and computed pressure distributions on the test section walls. The code was checked by measuring nearly equal drag coefficients for a model tested in S3MA wind tunnel (after wall corrections) and in S2MA wind tunnel whose test section is seven times larger (negligible wall corrections).
A New Method for the Adaptive Control of Vortex-Wall Interactions
NASA Technical Reports Server (NTRS)
Koumoutsakos, P.
1996-01-01
The control of vortical flows is gaining significance in the design of aeronautical and marine structures. While passive devices have been used effectively in the past, active control strategies have the potential of allowing a leap in the performance of future configurations. The efficiency of control schemes is strongly dependent on the development of accurate flow models that can be devised using information that is available not only from numerical solutions of the governing Navier-Stokes equations but also can be measured experimentally. In that context it is desirable to construct adaptive control schemes using information that can be measured at the wall.
Solar energy receiver for a Stirling engine
NASA Technical Reports Server (NTRS)
Selcuk, M. K. (Inventor)
1980-01-01
A solar energy receiver includes a separable endless wall formed of a ceramic material in which a cavity of substantially cylindrical configuration is defined for entrapping solar flux. An acceptance aperture is adapted to admit to the cavity a concentrated beam of solar energy. The wall is characterized by at least one pair of contiguously related segments separated by lines of cleavage intercepting the aperture. At least one of the segments is supported for pivotal displacement. A thermal-responsive actuator is adapted to respond to excessive temperatures within the cavity for initiating pivoted displacement of one segment, whereby thermal flux is permitted to escape from the cavity.
Research Status on Bonding Behavior of Prefabricated Concrete Shear Wall
NASA Astrophysics Data System (ADS)
Wang, Donghui; Liu, Xudong; Wang, Sheng; Li, Shanshan
2018-03-01
Prefabricated shear wall structure adapts to the development and requirements of China’s residential industrialization. The key to the prefabricated concrete shear wall structure is the connection between the prefabricated members, where the reliability of the connection of the concrete joint is related to the overall performance and seismic effect of the structure. In this paper, the microstructures of the joint surface and shear properties are analysed, and the formula for calculating the shear strength of the joint is obtained.
Phase separation in the six-vertex model with a variety of boundary conditions
NASA Astrophysics Data System (ADS)
Lyberg, I.; Korepin, V.; Ribeiro, G. A. P.; Viti, J.
2018-05-01
We present numerical results for the six-vertex model with a variety of boundary conditions. Adapting an algorithm for domain wall boundary conditions, proposed in the work of Allison and Reshetikhin [Ann. Inst. Fourier 55(6), 1847-1869 (2005)], we examine some modifications of these boundary conditions. To be precise, we discuss partial domain wall boundary conditions, reflecting ends, and half turn boundary conditions (domain wall boundary conditions with half turn symmetry). Dedicated to the memory of Ludwig Faddeev
Explosive Joining for Nuclear-Reactor Repair
NASA Technical Reports Server (NTRS)
Bement, L. J.; Bailey, J. W.
1983-01-01
In explosive joining technique, adapter flange from fuel channel machined to incorporate a V-notch interface. Ribbon explosive, 1/2 inch (1.3 cm) in width, drives V-notched wall of adapter into bellows assembly, producing atomic-level metallurgical bond. Ribbon charge yields joint with double parent metal strength.
Patro, Lichita; Mohapatra, Pranab Kishor; Biswal, Udaya Chand; Biswal, Basanti
2014-08-01
The physiology of loss of photosynthetic production of sugar and the consequent cellular sugar reprogramming during senescence of leaves experiencing environmental stress largely remains unclear. We have shown that leaf senescence in Arabidopsis thaliana causes a significant reduction in the rate of oxygen evolution and net photosynthetic rate (Pn). The decline in photosynthesis is further aggravated by dehydration. During dehydration, primary photochemical reaction of thylakoids and net photosynthesis decrease in parallel with the increase in water deficit. Senescence induced loss in photosynthesis is accompanied by a significant increase in the activity of cell wall hydrolyzing enzyme such as β-glucosidase associated with cell wall catabolism. The activity of this enzyme is further enhanced when the senescing leaves experience dehydration stress. It is possible that both senescence and stress separately or in combination result in the loss in photosynthesis which could be a signal for an enhancement in the activity of β-glucosidase that breaks down cell wall polysaccharides to sugar to sustain respiration for metabolic activities of plants experiencing stress. Thus dehydration response of cell wall hydrolases of senescing leaves is considered as plants' strategy to have cell wall polysaccharides as an alternative energy source for completion of energy requiring senescence process, stress survival and maintenance of recovery potential of energy deficit cells in the background of loss in photosynthesis. Withdrawal of stress (rehydration) distinctly exhibits recovery of photosynthesis and suppression of enzyme activity. Retention of the signaling for sugar reprogramming through breakdown of cell wall polysaccharides in the senescing leaves exposed to severe drought stress suggests that senescing leaves like mature ones possess potential for stress recovery. The precise mechanism of stress adaptation of senescing leaves is yet to be known. A significant accumulation of anthocyanin and flavonoids may be an indicator of stress adaptation of senescing leaves. In addition, stress induced enhancement of nonphotochemical quenching (NPQ), a stress protection provision in green plants, also suggests the potential of the leaves to develop adaptational mechanism to counter the dehydration stress. Copyright © 2014 Elsevier B.V. All rights reserved.
Residual stresses in a stainless steel - titanium alloy joint made with the explosive technique
NASA Astrophysics Data System (ADS)
Taran, Yu V.; Balagurov, A. M.; Sabirov, B. M.; Evans, A.; Davydov, V.; Venter, A. M.
2012-02-01
Joining of pipes from stainless steel (SS) and titanium (Ti) alloy still experience serious technical problems. Recently, reliable and hermetic joining of SS and Ti pipes has been achieved with the explosive bonding technique in the Russian Federal Nuclear Center. Such adapters are earmarked for use at the future International Linear Collider. The manufactured SS-Ti adapters have excellent mechanical behavior at room and liquid nitrogen temperatures, during high-pressure tests and thermal cycling. We here report the first neutron diffraction investigation of the residual stresses in a SS-Ti adapter on the POLDI instrument at the SINQ spallation source. The strain scanning across the adapter walls into the SS-SS and SS-Ti pipes sections encompassed measurement of the axial, radial and hoop strain components, which were transformed into residual stresses. The full stress information was successfully determined for the three steel pipes involved in the joint. The residual stresses do not exceed 300 MPa in magnitude. All stress components have tensile values close to the adapter internal surface, whilst they are compressive close to the outer surface. The strong incoherent and weak coherent neutron scattering cross-sections of Ti did not allow for the reliable determination of stresses inside the titanic pipe.
Computing nonhydrostatic shallow-water flow over steep terrain
Denlinger, R.P.; O'Connell, D. R. H.
2008-01-01
Flood and dambreak hazards are not limited to moderate terrain, yet most shallow-water models assume that flow occurs over gentle slopes. Shallow-water flow over rugged or steep terrain often generates significant nonhydrostatic pressures, violating the assumption of hydrostatic pressure made in most shallow-water codes. In this paper, we adapt a previously published nonhydrostatic granular flow model to simulate shallow-water flow, and we solve conservation equations using a finite volume approach and an Harten, Lax, Van Leer, and Einfeldt approximate Riemann solver that is modified for a sloping bed and transient wetting and drying conditions. To simulate bed friction, we use the law of the wall. We test the model by comparison with an analytical solution and with results of experiments in flumes that have steep (31??) or shallow (0.3??) slopes. The law of the wall provides an accurate prediction of the effect of bed roughness on mean flow velocity over two orders of magnitude of bed roughness. Our nonhydrostatic, law-of-the-wall flow simulation accurately reproduces flume measurements of front propagation speed, flow depth, and bed-shear stress for conditions of large bed roughness. ?? 2008 ASCE.
NASA Astrophysics Data System (ADS)
Krimi, Abdelkader; Rezoug, Mehdi; Khelladi, Sofiane; Nogueira, Xesús; Deligant, Michael; Ramírez, Luis
2018-04-01
In this work, a consistent Smoothed Particle Hydrodynamics (SPH) model to deal with interfacial multiphase fluid flows simulation is proposed. A modification to the Continuum Stress Surface formulation (CSS) [1] to enhance the stability near the fluid interface is developed in the framework of the SPH method. A non-conservative first-order consistency operator is used to compute the divergence of stress surface tensor. This formulation benefits of all the advantages of the one proposed by Adami et al. [2] and, in addition, it can be applied to more than two phases fluid flow simulations. Moreover, the generalized wall boundary conditions [3] are modified in order to be well adapted to multiphase fluid flows with different density and viscosity. In order to allow the application of this technique to wall-bounded multiphase flows, a modification of generalized wall boundary conditions is presented here for using the SPH method. In this work we also present a particle redistribution strategy as an extension of the damping technique presented in [3] to smooth the initial transient phase of gravitational multiphase fluid flow simulations. Several computational tests are investigated to show the accuracy, convergence and applicability of the proposed SPH interfacial multiphase model.
A dynamic wall model for Large-Eddy simulations of wind turbine dedicated airfoils
NASA Astrophysics Data System (ADS)
J, Calafell; O, Lehmkuhl; A, Carmona; D, Pérez-Segarra C.; A, Oliva
2014-06-01
This work aims at modelling the flow behavior past a wind turbine dedicated airfoil at high Reynolds number and large angle of attack (AoA). The DU-93-W-210 airfoil has been selected. To do this, Large Eddy Simulations (LES) have been performed. Momentum equations have been solved with a parallel unstructured symmetry preserving formulation while the wall-adapting local-eddy viscosity model within a variational multi-scale framework (VMS- WALE) is used as the subgrid-scales model. Since LES calculations are still very expensive at high Reynolds Number, specially at the near-wall region, a dynamic wall model has been implemented in order to overcome this limitation. The model has been validated with a very unresolved Channel Flow case at Reτ = 2000. Afterwards, the model is also tested with the Ahmed Car case, that from the flow physics point of view is more similar to an stalled airfoil than the Channel Flow is, including flow features as boundary layer detachment and recirculations. This case has been selected because experimental results of mean velocity profiles are available. Finally, a flow around a DU-93-W-210 airfoil is computed at Re = 3 x 106 and with an AoA of 15°. Numerical results are presented in comparison with Direct Numerical Simulation (DNS) or experimental data for all cases.
NASA Technical Reports Server (NTRS)
Ladson, Charles L.; Ray, Edward J.
1987-01-01
Presented is a review of the development of the world's first cryogenic pressure tunnel, the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). Descriptions of the instrumentation, data acquisition systems, and physical features of the two-dimensional 8- by 24-in, (20.32 by 60.96 cm) and advanced 13- by 13-in (33.02 by 33.02 cm) adaptive-wall test-section inserts of the 0.3-m TCT are included. Basic tunnel-empty Mach number distributions, stagnation temperature distributions, and power requirements are included. The Mach number capability of the facility is from about 0.20 to 0.90. Stagnation pressure can be varied from about 80 to 327 K.
Groesbeck, Amy S.; Rowell, Kirsten; Lepofsky, Dana; Salomon, Anne K.
2014-01-01
Maintaining food production while sustaining productive ecosystems is among the central challenges of our time, yet, it has been for millennia. Ancient clam gardens, intertidal rock-walled terraces constructed by humans during the late Holocene, are thought to have improved the growing conditions for clams. We tested this hypothesis by comparing the beach slope, intertidal height, and biomass and density of bivalves at replicate clam garden and non-walled clam beaches in British Columbia, Canada. We also quantified the variation in growth and survival rates of littleneck clams (Leukoma staminea) we experimentally transplanted across these two beach types. We found that clam gardens had significantly shallower slopes than non-walled beaches and greater densities of L. staminea and Saxidomus giganteus, particularly at smaller size classes. Overall, clam gardens contained 4 times as many butter clams and over twice as many littleneck clams relative to non-walled beaches. As predicted, this relationship varied as a function of intertidal height, whereby clam density and biomass tended to be greater in clam gardens compared to non-walled beaches at relatively higher intertidal heights. Transplanted juvenile L. staminea grew 1.7 times faster and smaller size classes were more likely to survive in clam gardens than non-walled beaches, specifically at the top and bottom of beaches. Consequently, we provide strong evidence that ancient clam gardens likely increased clam productivity by altering the slope of soft-sediment beaches, expanding optimal intertidal clam habitat, thereby enhancing growing conditions for clams. These results reveal how ancient shellfish aquaculture practices may have supported food security strategies in the past and provide insight into tools for the conservation, management, and governance of intertidal seascapes today. PMID:24618748
North American forest disturbance mapped from a decadal Landsat record
Jeffrey G. Masek; Chengquan Huang; Robert Wolfe; Warren Cohen; Forrest Hall; Jonathan Kutler; Peder Nelson
2008-01-01
Forest disturbance and recovery are critical ecosystem processes, but the spatial pattern of disturbance has never been mapped across North America. The LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System) project has assembled a wall-to-wall record of stand-clearing disturbance (clearcut harvest, fire) for the United States and Canada for the period 1990-...
Computer-aided detection of initial polyp candidates with level set-based adaptive convolution
NASA Astrophysics Data System (ADS)
Zhu, Hongbin; Duan, Chaijie; Liang, Zhengrong
2009-02-01
In order to eliminate or weaken the interference between different topological structures on the colon wall, adaptive and normalized convolution methods were used to compute the first and second order spatial derivatives of computed tomographic colonography images, which is the beginning of various geometric analyses. However, the performance of such methods greatly depends on the single-layer representation of the colon wall, which is called the starting layer (SL) in the following text. In this paper, we introduce a level set-based adaptive convolution (LSAC) method to compute the spatial derivatives, in which the level set method is employed to determine a more reasonable SL. The LSAC was applied to a computer-aided detection (CAD) scheme to detect the initial polyp candidates, and experiments showed that it benefits the CAD scheme in both the detection sensitivity and specificity as compared to our previous work.
Apparatus and method for continuous separation of magnetic particles from non-magnetic fluids
Oder, Robin R.; Jamison, Russell E.
2010-02-09
A magnetic separator vessel (1) for separating magnetic particles from non-magnetic fluid includes a separation chamber having an interior and exterior wall, a top and bottom portion; a magnet (3) having first and second poles (2) positioned adjacent to the exterior wall, wherein the first pole is substantially diametrically opposed to the second pole; a inlet port (5) is directed into the top portion of the separation chamber, wherein the inlet port (5) is positioned adjacent to one of the first and second poles (2), wherein the inlet port (5) is adapted to transfer a mixture into the separation chamber; an underflow port (6) in communication with the bottom portion, wherein the underflow port (6) is adapted to receive the magnetic particles; and an overflow port (9) in communication with the separation chamber, wherein the overflow port (9) is adapted to receive the non-magnetic fluid.
DOT National Transportation Integrated Search
2004-07-01
The test wall was constructed to evaluate the behavior of MSE walls constructed with silty-clay soils through comparison between predicted and field measurements. The primary objectives of the construction of the LTRC reinforced test wall were to mon...
NASA Technical Reports Server (NTRS)
Langston, L. S.
1980-01-01
Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.
Building a plant cell wall at a glance.
Lampugnani, Edwin R; Khan, Ghazanfar Abbas; Somssich, Marc; Persson, Staffan
2018-01-29
Plant cells are surrounded by a strong polysaccharide-rich cell wall that aids in determining the overall form, growth and development of the plant body. Indeed, the unique shapes of the 40-odd cell types in plants are determined by their walls, as removal of the cell wall results in spherical protoplasts that are amorphic. Hence, assembly and remodeling of the wall is essential in plant development. Most plant cell walls are composed of a framework of cellulose microfibrils that are cross-linked to each other by heteropolysaccharides. The cell walls are highly dynamic and adapt to the changing requirements of the plant during growth. However, despite the importance of plant cell walls for plant growth and for applications that we use in our daily life such as food, feed and fuel, comparatively little is known about how they are synthesized and modified. In this Cell Science at a Glance article and accompanying poster, we aim to illustrate the underpinning cell biology of the synthesis of wall carbohydrates, and their incorporation into the wall, in the model plant Arabidopsis . © 2018. Published by The Company of Biologists Ltd.
L-phase variants of Agromyces ramosus. [cell wall defectives in soil
NASA Technical Reports Server (NTRS)
Horwitz, A. H.; Casida, L. E., Jr.
1975-01-01
Earlier results suggested that Agromyces ramosus possibly might exist naturally in soil as a cell-wall-defective form. The purpose of the present study was to test this hypothesis by determining whether the laboratory-adapted strains of A. ramosus could be artificially induced into the L-phase and, if so, to examine some parameters affecting induction and the stability of the L-forms. The hypothesis was also tested by attempting to revert the laboratory L-phase strains by subjecting them to the technique originally used for isolation of the bacterial form from soil. It is shown that A. ramosus is easily induced into the L-phase by growing it on an agar media containing low levels of penicillin or glycine. The L-forms are found to be stable after initial contact with the inducing agent and to be unable to be reverted to the bacterial form. However, this lack of reversion does not completely negate the hypothesis that L-forms might occur in nature, because it is possible that L-forms existing in the natural state are less stable than those found in the laboratory where there is little selective pressure toward reversion.
Plant cell wall proteomics: the leadership of Arabidopsis thaliana
Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth
2013-01-01
Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions. PMID:23641247
Evaluation of marginal adaptation of root-end filling materials using scanning electron microscopy.
Oliveira, Helder Fernandes; Gonçalves Alencar, Ana Helena; Poli Figueiredo, José Antônio; Guedes, Orlando Aguirre; de Almeida Decurcio, Daniel; Estrela, Carlos
2013-01-01
The importance of perfect apical seal in endodontics, more specifically in periradicular surgery, is the motivation/reason for development of root-end filling materials with favorable physical, chemical and biological characteristics. The aim of this in vitro study was to evaluate the marginal adaptation of root-end filling materials using scanning electron microscopy. Twenty five human maxillary anterior teeth were prepared using a K-File #50 to 1 mm short of the apical foramen and filled with gutta-percha and Sealapex using the lateral compaction technique. The apical 3 mm of the roots were sectioned perpendicularly to the long axis of the teeth. A 3-mm-deep root-end cavity was prepared using ultrasonic tips powered by an Enac ultrasonic unit. The teeth were randomly assigned to five groups according to the materials tested including IRM, amalgam, ProRoot MTA, Super-EBA and Epiphany/Resilon. Root-end cavities were filled with the materials prepared according to the manufacturers' instructions. The root apices were carefully prepared for sputter coating and later evaluation using Scanning Electron Microscope (SEM). The images of root-end fillings were divided into four quadrants and distributed into five categories according to the level of marginal adaptation between the root-end material and the root canal walls. The Fisher exact test with Bonferroni correction was used for statistical analysis. The level of significance was set at P = 0.005. SEM images showed the presence of gaps in the root-end filling materials. No significant difference was observed between the tested materials (P > 0.005). ProRoot MTA, IRM, amalgam, Super-EBA and Epiphany/Resilon showed similar marginal adaptation as root-end filling materials.
Ene, Iuliana V; Adya, Ashok K; Wehmeier, Silvia; Brand, Alexandra C; MacCallum, Donna M; Gow, Neil A R; Brown, Alistair J P
2012-01-01
The survival of all microbes depends upon their ability to respond to environmental challenges. To establish infection, pathogens such as Candida albicans must mount effective stress responses to counter host defences while adapting to dynamic changes in nutrient status within host niches. Studies of C. albicans stress adaptation have generally been performed on glucose-grown cells, leaving the effects of alternative carbon sources upon stress resistance largely unexplored. We have shown that growth on alternative carbon sources, such as lactate, strongly influence the resistance of C. albicans to antifungal drugs, osmotic and cell wall stresses. Similar trends were observed in clinical isolates and other pathogenic Candida species. The increased stress resistance of C. albicans was not dependent on key stress (Hog1) and cell integrity (Mkc1) signalling pathways. Instead, increased stress resistance was promoted by major changes in the architecture and biophysical properties of the cell wall. Glucose- and lactate-grown cells displayed significant differences in cell wall mass, ultrastructure, elasticity and adhesion. Changes in carbon source also altered the virulence of C. albicans in models of systemic candidiasis and vaginitis, confirming the importance of alternative carbon sources within host niches during C. albicans infections. PMID:22587014
Air actuated clutch for four wheel drive vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clohessy, K.E.
1986-12-09
A control system is described for selectively engaging and disengaging a vehicle wheel and a vehicle drive mechanism comprising; a spindle having inside and outside rotative support surfaces, the spindle adapted to be mounted to a vehicle frame, an axle portion rotatably supported on the inside support surface, and drive means for selectively and rotatively driving the axle portion relative to the spindle; a wheel hub assembly adapted to carry a vehicle wheel, the hub assembly rotatively supported on the outside support surface of the spindle; a sealed expansion chamber defined in part by the spindle, the axle portion, themore » hub assembly and a movable wall carried by the hub assembly, venting means venting the outer side of the movable wall to atmospheric pressure, the clutch ring engaged by the movable wall for movement of the clutch ring with movement of the movable wall as induced by a pressure difference generated within the chamber, and pressurizing means for selectively pressurizing and depressurizing the expansion chamber to thereby selectively shift the clutch ring between the positions of interlocking the axle portion and hub assembly and unlocking the axle portion and hub assembly.« less
Bioactive nanocomposite for chest-wall replacement: Cellular response in a murine model.
Jungraithmayr, Wolfgang; Laube, Isabelle; Hild, Nora; Stark, Wendelin J; Mihic-Probst, Daniela; Weder, Walter; Buschmann, Johanna
2014-07-01
Chest-wall invading malignancies usually necessitate the resection of the respective part of the thoracic wall. Gore-Tex® is the material of choice that is traditionally used to repair thoracic defects. This material is well accepted by the recipient; however, though not rejected, it is an inert material and behaves like a 'foreign body' within the thoracic wall. By contrast, there are materials that have the potential to physiologically integrate into the host, and these materials are currently under in vitro and also in vivo investigation. These materials offer a gradual but complete biodegradation over time, and severe adverse inflammatory responses can be avoided. Here, we present a novel material that is a biodegradable nanocomposite based on poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles in comparison to the traditionally employed Gore-Tex® being the standard for chest-wall replacement. On a mouse model of thoracic wall resection, that resembles the technique and localization applied in humans, poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles and Gore-Tex® were implanted subcutaneously and additionally tested in a separate series as a chest-wall graft. After 1, 2, 4 and 8 weeks cell infiltration into the respective materials, inflammatory reactions as well as neo-vascularization (endothelial cells) were determined in six different zones. While Gore-Tex® allowed for cell infiltration only at the outer surface, electrospun poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles were completely penetrated by infiltrating cells. These cells were composed mainly by macrophages, with only 4% of giant cells and lymphocytes. Total macrophage count increased by time while the number of IL1-β-expressing macrophages decreased, indicating a protective state towards the graft. As such, poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles seem to develop ideal characteristics as a material for chest-wall replacement by (a) having the advantage of full biodegradation, (b) displaying stable chest-wall structures and (c) adapting a physiological and integrating graft compared to Gore-Tex®. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Dynamics of High Sound-Speed Metal Confiners Driven By Non-Ideal High-Explosive Detonation
Short, Mark; Jackson, Scott I.
2015-01-23
Here, the results of 14 tests examining the behavior of aluminum (Al) conifners driven by non-ideal ANFO detonation in a cylinder test configuration are presented. In each test, the measured detonation phase velocity is slower than the aluminum sound speed. Thus, in the detonation reference frame, the ow in the Al is both shockless and subsonic. The tests involve: 3-inch inner diameter (ID) cylinders with Al wall thicknesses of 1/4, 3/8, 1/2, 1 and 2 inches; a 4-inch ID cylinder with a 1/2-inch Al wall thickness; and 6-inch ID cylinders with Al wall thicknesses of 1/2, 1 and 2 inches.more » The ANFO detonation velocity is seen to increase with increasing wall thickness for both the 3- and 6-inch ID tests, with no limiting velocity reached for the wall thicknesses used. The motion of the outer Al wall due to precursor elastic waves in the Al running ahead of the detonation is also measured at various axial locations along the cylinders. It is found that the magnitude of the outer wall motion due to the precursor elastic waves is small, while the associated wall motion is unsteady and decays in amplitude as the elastic disturbances move further ahead of the detonation front. The variations in the expansion history of the main outer wall motion of the cylinders are presented for increasing wall thickness at fixed ID, and for increasing cylinder inner diameter at a fixed wall thickness. Finally, we also explore the existence of a geometric similarity scaling of the wall expansion history for three geometrically scaled tests (3- and 6-inch ID cylinders with 1/4- and 1/2-inch walls respectively, 3- and 6-inch ID cylinders with 1/2- and 1-inch walls and 3- and 6-inch ID cylinders with 1- and 2-inch walls respectively). We find that the wall velocity histories for each of the three scaled tests, when plotted directly against time relative to start of main motion of the wall, are similar over a certain range of wall velocities without any geometric based rescaling in time. The range of wall velocities where the overlap occurs increases as the ratio of the wall thickness to inner diameter decreases. In conclusion, this is in contrast to ideal high explosives, where the outer wall velocity histories are only similar when the geometric scale factor (in this case a factor of 2) is applied to the wall velocity motion.« less
Dynamics of High Sound-Speed Metal Confiners Driven By Non-Ideal High-Explosive Detonation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Short, Mark; Jackson, Scott I.
Here, the results of 14 tests examining the behavior of aluminum (Al) conifners driven by non-ideal ANFO detonation in a cylinder test configuration are presented. In each test, the measured detonation phase velocity is slower than the aluminum sound speed. Thus, in the detonation reference frame, the ow in the Al is both shockless and subsonic. The tests involve: 3-inch inner diameter (ID) cylinders with Al wall thicknesses of 1/4, 3/8, 1/2, 1 and 2 inches; a 4-inch ID cylinder with a 1/2-inch Al wall thickness; and 6-inch ID cylinders with Al wall thicknesses of 1/2, 1 and 2 inches.more » The ANFO detonation velocity is seen to increase with increasing wall thickness for both the 3- and 6-inch ID tests, with no limiting velocity reached for the wall thicknesses used. The motion of the outer Al wall due to precursor elastic waves in the Al running ahead of the detonation is also measured at various axial locations along the cylinders. It is found that the magnitude of the outer wall motion due to the precursor elastic waves is small, while the associated wall motion is unsteady and decays in amplitude as the elastic disturbances move further ahead of the detonation front. The variations in the expansion history of the main outer wall motion of the cylinders are presented for increasing wall thickness at fixed ID, and for increasing cylinder inner diameter at a fixed wall thickness. Finally, we also explore the existence of a geometric similarity scaling of the wall expansion history for three geometrically scaled tests (3- and 6-inch ID cylinders with 1/4- and 1/2-inch walls respectively, 3- and 6-inch ID cylinders with 1/2- and 1-inch walls and 3- and 6-inch ID cylinders with 1- and 2-inch walls respectively). We find that the wall velocity histories for each of the three scaled tests, when plotted directly against time relative to start of main motion of the wall, are similar over a certain range of wall velocities without any geometric based rescaling in time. The range of wall velocities where the overlap occurs increases as the ratio of the wall thickness to inner diameter decreases. In conclusion, this is in contrast to ideal high explosives, where the outer wall velocity histories are only similar when the geometric scale factor (in this case a factor of 2) is applied to the wall velocity motion.« less
Soft Thermal Sensor with Mechanical Adaptability.
Yang, Hui; Qi, Dianpeng; Liu, Zhiyuan; Chandran, Bevita K; Wang, Ting; Yu, Jiancan; Chen, Xiaodong
2016-11-01
A soft thermal sensor with mechanical adaptability is fabricated by the combination of single-wall carbon nanotubes with carboxyl groups and self-healing polymers. This study demonstrates that this soft sensor has excellent thermal response and mechanical adaptability. It shows tremendous promise for improving the service life of soft artificial-intelligence robots and protecting thermally sensitive electronics from the risk of damage by high temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tilney, Patricia M.; van Wyk, Abraham E.; van der Merwe, Chris F.
2014-01-01
Secondary pollen presentation is a well-known phenomenon in the Rubiaceae with particularly conspicuous pollen presenters occurring in the tribe Vanguerieae. These knob-like structures are formed by a modification of the upper portion of the style and stigma, together known as the stylar head complex. In the flower bud and shortly before anthesis, the anthers surrounding the stylar head complex dehisce and release pollen grains which adhere to the pollen presenter. The epidermal cells of the pollen presenter facing the anthers are radially elongated with a characteristic wall thickening encircling the anticlinal walls of each cell towards the distal end. These cells were studied in the pollen presenter of Vangueria infausta using electron and light microscopy in conjunction with histochemical tests and immunohistochemical methods. Other prominent thickenings of the cell wall were also observed on the distal and proximal walls. All these thickenings were found to be rich in pectin and possibly xyloglucan. The terms “thickenings of Igersheim” and “bands of Igersheim” are proposed to refer, respectively, to these wall structures in general and those encircling the anticlinal walls of each cell near the distal end. The epidermal cells have an intricate ultrastructure with an abundance of organelles, including smooth and rough endoplasmic reticulum, Golgi apparatus, mitochondria and secretory vesicles. This indicates that these cells are likely to have an active physiological role. The pollen grains possess prominent protruding onci and observations were made on their structure and development. Walls of the protruding onci are also rich in pectin. Pectins are hydrophilic and known to be involved in the dehydration and rehydration of pollen grains. We hypothesise that the thickenings of Igersheim, as well as the protruding onci of the pollen grains, are functionally associated and part of the adaptive syndrome of secondary pollen presentation, at least in the Vanguerieae. PMID:24804803
At the border: the plasma membrane-cell wall continuum.
Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara
2015-03-01
Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Empty test section streamlining of the transonic self-streamlining wind tunnel fitted with new walls
NASA Technical Reports Server (NTRS)
Lewis, M. C.
1988-01-01
The original flexible top and bottom walls of the Transonic Self-Streamlining Wind Tunnel (TSWT), at the University of Southampton, have been replaced with new walls featuring a larger number of static pressure tappings and detailed mechanical improvements. This report describes the streamling method, results, and conclusions of a series of tests aimed at defining sets of aerodynamically straight wall contours for the new flexible walls. This procedure is a necessary prelude to model testing. The quality of data obtained compares favorably with the aerodynamically straight data obtained with the old walls. No operational difficulties were experienced with the new walls.
On the calculation of turbulent heat transport downstream from an abrupt pipe expansion
NASA Technical Reports Server (NTRS)
Chieng, C. C.; Launder, B. E.
1980-01-01
A numerical study is reported of flow and heat transfer in the separated flow region created by an abrupt pipe expansion. Computations employed an adaptation of the TEACH-2E computer program with the standard model of turbulence. Emphasis is given to the simulation, from both a physical and numerical viewpoint, of the region in the immediate vicinity of the wall where turbulent transport gives way to molecular conduction and diffusion. Wall resistance laws or wall functions used to bridge this near-wall region are based on the idea that, beyond the viscous sublayer, the turbulent length scale is universal, increasing linearly with distance from the wall. Predictions of expermental data for a diameter ratio of 0.54 show generally encouraging agreement with experiment. At a diameter of 0.43 different trends are discernible between measurement and calculation though this appears to be due to effects unconnected with the wall region studied.
Cell wall integrity signaling in plants: "To grow or not to grow that's the question".
Voxeur, Aline; Höfte, Herman
2016-09-01
Plants, like yeast, have the ability to monitor alterations in the cell wall architecture that occur during normal growth or in changing environments and to trigger compensatory changes in the cell wall. We discuss how recent advances in our understanding of the cell wall architecture provide new insights into the role of cell wall integrity sensing in growth control. Next we review the properties of membrane receptor-like kinases that have roles in pH control, mechano-sensing and reactive oxygen species accumulation in growing cells and which may be the plant equivalents of the yeast cell wall integrity (CWI) sensors. Finally, we discuss recent findings showing an increasing role for CWI signaling in plant immunity and the adaptation to changes in the ionic environment of plant cells. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Gallo, A; Mattina, A; Rosenbaum, D; Koch, E; Paques, M; Girerd, X
2016-06-01
To research a retinal arterioles wall-to-lumen ratio or lumen diameter cut-off that would discriminate hypertensive from normal subjects using adaptive optics camera. One thousand and five hundred subjects were consecutively recruited and Adaptive Optics Camera rtx1™ (Imagine-Eyes, Orsay, France) was used to measure wall thickness, internal diameter, to calculate wall-to-lumen ratio (WLR) and wall cross-sectional area of retinal arterioles. Sitting office blood pressure was measured once, just before retinal measurements and office blood pressure was defined as systolic blood pressure>=140mmHg and diastolic blood pressure>=90mmHg. ROC curves were constructed to determine cut-off values for retinal parameters to diagnose office hypertension. In another population of 276 subjects office BP, retinal arterioles evaluation and home blood pressure monitoring were obtained. The applicability of retinal WLR or diameter cut-off values were compared in patients with controlled, masked, white-coat and sustained hypertension. In 1500 patients, a WLR>0.31 discriminated office hypertensive subjects with a 0.57 sensitivity and 0.71 specificity. Lumen diameter<78.2μm discriminated office hypertension with a 0.73 sensitivity and a 0.52 specificity. In the other 276 patients, WLR was higher in sustained hypertension vs normotensive patients (0.330±0.06 vs 0.292±0.05; P<0.001) and diameter was narrower in masked hypertensive vs normotensive subjects (73.0±11.2 vs 78.5±11.6μm; P<0.005). A WLR higher than 0.31 is in favour of office arterial hypertension; a diameter under<78μm may indicate a masked hypertension. Retinal arterioles analysis through adaptive optics camera may help the diagnosis of arterial hypertension, in particular in case of masked hypertension. Copyright © 2016. Published by Elsevier SAS.
27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL ...
27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL FRAMING ELEVATIONS." Specifications No. ENG-04353-55-72; Drawing No. 60-09-12; sheet 27 of 148; file no. 1320/78. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, Rev. B; date: 15 April 1957. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Hybrid LES RANS technique based on a one-equation near-wall model
NASA Astrophysics Data System (ADS)
Breuer, M.; Jaffrézic, B.; Arora, K.
2008-05-01
In order to reduce the high computational effort of wall-resolved large-eddy simulations (LES), the present paper suggests a hybrid LES RANS approach which splits up the simulation into a near-wall RANS part and an outer LES part. Generally, RANS is adequate for attached boundary layers requiring reasonable CPU-time and memory, where LES can also be applied but demands extremely large resources. Contrarily, RANS often fails in flows with massive separation or large-scale vortical structures. Here, LES is without a doubt the best choice. The basic concept of hybrid methods is to combine the advantages of both approaches yielding a prediction method, which, on the one hand, assures reliable results for complex turbulent flows, including large-scale flow phenomena and massive separation, but, on the other hand, consumes much fewer resources than LES, especially for high Reynolds number flows encountered in technical applications. In the present study, a non-zonal hybrid technique is considered (according to the signification retained by the authors concerning the terms zonal and non-zonal), which leads to an approach where the suitable simulation technique is chosen more or less automatically. For this purpose the hybrid approach proposed relies on a unique modeling concept. In the LES mode a subgrid-scale model based on a one-equation model for the subgrid-scale turbulent kinetic energy is applied, where the length scale is defined by the filter width. For the viscosity-affected near-wall RANS mode the one-equation model proposed by Rodi et al. (J Fluids Eng 115:196 205, 1993) is used, which is based on the wall-normal velocity fluctuations as the velocity scale and algebraic relations for the length scales. Although the idea of combined LES RANS methods is not new, a variety of open questions still has to be answered. This includes, in particular, the demand for appropriate coupling techniques between LES and RANS, adaptive control mechanisms, and proper subgrid-scale and RANS models. Here, in addition to the study on the behavior of the suggested hybrid LES RANS approach, special emphasis is put on the investigation of suitable interface criteria and the adjustment of the RANS model. To investigate these issues, two different test cases are considered. Besides the standard plane channel flow test case, the flow over a periodic arrangement of hills is studied in detail. This test case includes a pressure-induced flow separation and subsequent reattachment. In comparison with a wall-resolved LES prediction encouraging results are achieved.
Three-Dimensional Unsteady Separation at Low Reynolds Numbers
1990-07-01
novel, robust adaptive- grid technique for incompressible flow (Shen & Reed 1990a "Shepard’s Interpolation for Solution-Adaptive Methods" submitted to...3-D adaptive- grid schemes developed for flat plate for full, unsteady, incompressible Navier Stokes. 4. 2-D and 3-D unsteady, vortex-lattice code...perforated to tailor suction through wall. Honeycomb and contractiong uide flow uniformly crons "a dn muwet a m Fiur32 c ic R n R ev lving -disc seals
[Use and versatility of titanium for the reconstruction of the thoracic wall].
Córcoles Padilla, Juan Manuel; Bolufer Nadal, Sergio; Kurowski, Krzysztof; Gálvez Muñoz, Carlos; Rodriguez Paniagua, José Manuel
2014-02-01
Chest wall deformities/defects and chest wall resections, as well as complex rib fractures require reconstruction with various prosthetic materials to ensure the basic functions of the chest wall. Titanium provides many features that make it an ideal material for this surgery. The aim is to present our initial results with this material in several diseases. From 2008 to 2012, 14 patients were operated on and titanium was used for reconstruction of the chest wall. A total of 7 patients had chest wall tumors, 2 with sternal resection, 4 patients with chest wall deformities/defects and 3 patients with severe rib injury due to traffic accident. The reconstruction was successful in all cases, with early extubation without detecting problems in the functionality of the chest wall at a respiratory level. Patients with chest wall tumors including sternal resections were extubated in the operating room as well as the chest wall deformities. Chest trauma cases were extubated within 24h from internal rib fixation. There were no complications related to the material used and the method of implementation. Titanium is an ideal material for reconstruction of the chest wall in several clinical situations allowing for great versatility and adaptability in different chest wall reconstructions. Copyright © 2013 AEC. Published by Elsevier Espana. All rights reserved.
LES FOR SIMULATING THE GAS EXCHANGE PROCESS IN A SPARK IGNITION ENGINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameen, Muhsin M; yang, xiaofeng; kuo, tang-wei
2015-01-01
The gas exchange process is known to be a significant source of cyclic variability in Internal Combustion Engines (ICE). Traditionally, Large Eddy Simulations (LES) are expected to capture these cycle-to-cycle variations. This paper reports a numerical effort to establish best practices for capturing cyclic variability with LES tools in a Transparent Combustion Chamber (TCC) spark ignition engine. The main intention is to examine the sensitivity of cycle averaged mean and Root Mean Square (RMS) flow fields and Proper Orthogonal Decomposition (POD) modes to different computational hardware, adaptive mesh refinement (AMR) and LES sub-grid scale (SGS) models, since these aspects havemore » received little attention in the past couple of decades. This study also examines the effect of near-wall resolution on the predicted wall shear stresses. LES is pursued with commercially available CONVERGE code. Two different SGS models are tested, a one-equation eddy viscosity model and dynamic structure model. The results seem to indicate that both mean and RMS fields without any SGS model are not much different than those with LES models, either one-equation eddy viscosity or dynamic structure model. Computational hardware results in subtle quantitative differences, especially in RMS distributions. The influence of AMR on both mean and RMS fields is negligible. The predicted shear stresses near the liner walls is also found to be relatively insensitive to near-wall resolution except in the valve curtain region.« less
NASA Technical Reports Server (NTRS)
1985-01-01
Developments related to laser Doppler velocimetry are discussed, taking into account a three-component dual beam laser-Doppler-anemometer to be operated in large wind tunnels, a new optical system for three-dimensional laser-Doppler-anemometry using an argon-ion and a dye laser, and a two-component laser Doppler velocimeter by switching fringe orientation. Other topics studied are concerned with facilities, instrumentation, control, hot wire/thin film measurements, optical diagnostic techniques, signal and data processing, facilities and adaptive wall test sections, data acquisition and processing, ballistic instrument systems, dynamic testing and material deformation measurements, optical flow measurements, test techniques, force measurement systems, and holography. Attention is given to nonlinear calibration of integral wind tunnel balances, a microcomputer system for real time digitized image compression, and two phase flow diagnostics in propulsion systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Shiyuan, E-mail: redaple@bit.edu.cn; Sun, Haoyu, E-mail: redaple@bit.edu.cn; Xu, Chunguang, E-mail: redaple@bit.edu.cn
The echo signal energy is directly affected by the incident sound beam eccentricity or angle for thick-walled pipes inner longitudinal cracks detection. A method for analyzing the relationship between echo signal energy between the values of incident eccentricity is brought forward, which can be used to estimate echo signal energy when testing inside wall longitudinal crack of pipe, using mode-transformed compression wave adaptation of shear wave with water-immersion method, by making a two-dimension integration of “energy coefficient” in both circumferential and axial directions. The calculation model is founded for cylinder sound beam case, in which the refraction and reflection energymore » coefficients of different rays in the whole sound beam are considered different. The echo signal energy is calculated for a particular cylinder sound beam testing different pipes: a beam with a diameter of 0.5 inch (12.7mm) testing a φ279.4mm pipe and a φ79.4mm one. As a comparison, both the results of two-dimension integration and one-dimension (circumferential direction) integration are listed, and only the former agrees well with experimental results. The estimation method proves to be valid and shows that the usual method of simplifying the sound beam as a single ray for estimating echo signal energy and choosing optimal incident eccentricity is not so appropriate.« less
NASA Astrophysics Data System (ADS)
Zhou, Shiyuan; Sun, Haoyu; Xu, Chunguang; Cao, Xiandong; Cui, Liming; Xiao, Dingguo
2015-03-01
The echo signal energy is directly affected by the incident sound beam eccentricity or angle for thick-walled pipes inner longitudinal cracks detection. A method for analyzing the relationship between echo signal energy between the values of incident eccentricity is brought forward, which can be used to estimate echo signal energy when testing inside wall longitudinal crack of pipe, using mode-transformed compression wave adaptation of shear wave with water-immersion method, by making a two-dimension integration of "energy coefficient" in both circumferential and axial directions. The calculation model is founded for cylinder sound beam case, in which the refraction and reflection energy coefficients of different rays in the whole sound beam are considered different. The echo signal energy is calculated for a particular cylinder sound beam testing different pipes: a beam with a diameter of 0.5 inch (12.7mm) testing a φ279.4mm pipe and a φ79.4mm one. As a comparison, both the results of two-dimension integration and one-dimension (circumferential direction) integration are listed, and only the former agrees well with experimental results. The estimation method proves to be valid and shows that the usual method of simplifying the sound beam as a single ray for estimating echo signal energy and choosing optimal incident eccentricity is not so appropriate.
Guarded Flat Plate Cryogenic Test Apparatus and Calorimeter
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Johnson, Wesley L. (Inventor)
2017-01-01
A test apparatus for thermal energy measurement of disk-shaped test specimens has a cold mass assembly locatable within a sealable chamber with a guard vessel having a guard chamber to receive a liquid fluid and a bottom surface to contact a cold side of a test specimen, and a test vessel having a test chamber to receive a liquid fluid and encompassed on one side by a center portion of the bottom surface shared with the guard vessel. A lateral wall assembly of the test vessel is closed by a vessel top, the lateral wall assembly comprising an outer wall and an inner wall having opposing surfaces that define a thermal break including a condensable vapor pocket to inhibit heat transfer through the lateral wall from the guard vessel to the test vessel. A warm boundary temperature surface is in thermal communication with a lower surface of the test specimen.
Single-pass incremental force updates for adaptively restrained molecular dynamics.
Singh, Krishna Kant; Redon, Stephane
2018-03-30
Adaptively restrained molecular dynamics (ARMD) allows users to perform more integration steps in wall-clock time by switching on and off positional degrees of freedoms. This article presents new, single-pass incremental force updates algorithms to efficiently simulate a system using ARMD. We assessed different algorithms for speedup measurements and implemented them in the LAMMPS MD package. We validated the single-pass incremental force update algorithm on four different benchmarks using diverse pair potentials. The proposed algorithm allows us to perform simulation of a system faster than traditional MD in both NVE and NVT ensembles. Moreover, ARMD using the new single-pass algorithm speeds up the convergence of observables in wall-clock time. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Fujinami, Shun; Ito, Masahiro
2018-01-01
It is well known that the Na + cycle and the cell wall are essential for alkaline adaptation of Na + -dependent alkaliphilic Bacillus species. In Bacillus pseudofirmus OF4, surface layer protein A (SlpA), the most abundant protein in the surface layer (S-layer) of the cell wall, is involved in alkaline adaptation, especially under low Na + concentrations. The presence of a large number of genes that encode S-layer homology (SLH) domain-containing proteins has been suggested from the genome sequence of B. pseudofirmus OF4. However, other than SlpA, the functions of SLH domain-containing proteins are not well known. Therefore, a deletion mutant of the csaB gene, required for the retention of SLH domain-containing proteins on the cell wall, was constructed to investigate its physiological properties. The csaB mutant strain of B. pseudofirmus OF4 had a chained morphology and alkaline sensitivity even under a 230 mM Na + concentration at which there is no growth difference between the parental strain and the slpA mutant strain. Ultra-thin section transmission electron microscopy showed that a csaB mutant strain lacked an S-layer part, and its peptidoglycan (PG) layer was disturbed. The slpA mutant strain also lacked an S-layer part, although its PG layer was not disturbed. These results suggested that the surface layer homology domain-containing proteins of B. pseudofirmus OF4 play an important role in alkaline adaptation via peptidoglycan synthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-09-01
ADEPT Project: Georgia Tech is creating compact, low-profile power adapters and power bricks using materials and tools adapted from other industries and from grid-scale power applications. Adapters and bricks convert electrical energy into useable power for many types of electronic devices, including laptop computers and mobile phones. These converters are often called wall warts because they are big, bulky, and sometimes cover up an adjacent wall socket that could be used to power another electronic device. The magnetic components traditionally used to make adapters and bricks have reached their limits; they can't be made any smaller without sacrificing performance. Georgiamore » Tech is taking a cue from grid-scale power converters that use iron alloys as magnetic cores. These low-cost alloys can handle more power than other materials, but the iron must be stacked in insulated plates to maximize energy efficiency. In order to create compact, low-profile power adapters and bricks, these stacked iron plates must be extremely thin-only hundreds of nanometers in thickness, in fact. To make plates this thin, Georgia Tech is using manufacturing tools used in microelectromechanics and other small-scale industries.« less
Aeroacoustic Simulation of Nose Landing Gear on Adaptive Unstructured Grids With FUN3D
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Khorrami, Mehdi R.; Park, Michael A.; Lockard, David P.
2013-01-01
Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D, developed at NASA Langley Research center, is used to compute the unsteady flow field for this configuration. Starting with a coarse grid, a series of successively finer grids were generated using the adaptive gridding methodology available in the FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. In general, the correlation with the experimental data improves with grid refinement. A similar trend is observed for sound pressure levels obtained by using these CFD solutions as input to a FfowcsWilliams-Hawkings noise propagation code to compute the farfield noise levels. In general, the numerical solutions obtained on adapted grids compare well with the hand-tuned enriched fine grid solutions and experimental data. In addition, the grid adaption strategy discussed here simplifies the grid generation process, and results in improved computational efficiency of CFD simulations.
Hamann, Thorsten
2015-04-01
Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pidgeon, Sean E; Pires, Marcos M
2017-07-21
Drug-resistant bacterial infections threaten to overburden our healthcare system and disrupt modern medicine. A large class of potent antibiotics, including vancomycin, operate by interfering with bacterial cell wall biosynthesis. Vancomycin-resistant enterococci (VRE) evade the blockage of cell wall biosynthesis by altering cell wall precursors, rendering them drug insensitive. Herein, we reveal the phenotypic plasticity and cell wall remodeling of VRE in response to vancomycin in live bacterial cells via a metabolic probe. A synthetic cell wall analog was designed and constructed to monitor cell wall structural alterations. Our results demonstrate that the biosynthetic pathway for vancomycin-resistant precursors can be hijacked by synthetic analogs to track the kinetics of phenotype induction. In addition, we leveraged this probe to interrogate the response of VRE cells to vancomycin analogs and a series of cell wall-targeted antibiotics. Finally, we describe a proof-of-principle strategy to visually inspect drug resistance induction. Based on our findings, we anticipate that our metabolic probe will play an important role in further elucidating the interplay among the enzymes involved in the VRE biosynthetic rewiring.
Direction selective structural-acoustic coupled radiator
NASA Astrophysics Data System (ADS)
Seo, Hee-Seon; Kim, Yang-Hann
2005-04-01
This paper presents a method of designing a structural-acoustic coupled radiator that can emit sound in the desired direction. The structural-acoustic coupled system is consisted of acoustic spaces and wall. The wall composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. An equation is developed that predicts energy distribution and energy flow in the two spaces separated by the wall, and its computational examples are presented including near field acoustic characteristics. To design the directional coupled radiator, Pareto optimization method is adapted. An objective is selected to maximize radiation power on a main axis and minimize a side lobe level and a subjective is selected direction of the main axis and dimensions of the walls geometry. Pressure and intensity distribution of the designed radiator is also presented.
Vaginal wall weakness in parous ewes: a potential preclinical model of pelvic organ prolapse.
Young, Natharnia; Rosamilia, Anna; Arkwright, John; Lee, Joseph; Davies-Tuck, Miranda; Melendez, Joan; Werkmeister, Jerome; Gargett, Caroline E
2017-07-01
Ewes develop pelvic organ prolapse (POP) and may be a suitable model for preclinical studies evaluating cell-based therapies for POP. The aim of this study was to establish a clinical score of vaginal weakness and to compare POP Quantification System (POP-Q) values in conscious nulliparous and parous ewes and determine whether ewes are a suitable POP model. Ewes (n = 114) were examined while conscious, without sedation, and standing in a V conveyer by adapting the human POP-Q measurement. Ovine POP was defined as descent to the introitus from POP-Q points Aa 3 cm above the introitus on the anterior wall, Ap 3 cm above the introitus on the posterior wall, or increased Ba anterior wall descent above the urethra (≥0). A test-retest showed good inter- and intrarater reliability. There was no evidence of tissue mobility at Aa, Ap, Ba (all -3 cm) in nulliparous ewes (n = 14). In contrast, multiparous ewes had a median of -1 and interquartile range (IQR) (-2 to 0) for Aa, [0 (-1 to 0)] for Ap and [0 (-2.75 to 0)] for Ba (n = 33; P < 0.0001 in comparison with nulliparous) ewes. Ovine vaginal displacement was seen in 50.9 % of parous ewes and was strongly associated with parity (P = 0.003). A modified POP-Q in conscious ewes was established showing that the vaginal wall of parous animals has similar regions of weakness as do women and may be similarly related to parity. Ewes appear to be a representative preclinical model of human vaginal prolapse.
Ballistic Limit Equation for Single Wall Titanium
NASA Technical Reports Server (NTRS)
Ratliff, J. M.; Christiansen, Eric L.; Bryant, C.
2009-01-01
Hypervelocity impact tests and hydrocode simulations were used to determine the ballistic limit equation (BLE) for perforation of a titanium wall, as a function of wall thickness. Two titanium alloys were considered, and separate BLEs were derived for each. Tested wall thicknesses ranged from 0.5mm to 2.0mm. The single-wall damage equation of Cour-Palais [ref. 1] was used to analyze the Ti wall's shielding effectiveness. It was concluded that the Cour-Palais single-wall equation produced a non-conservative prediction of the ballistic limit for the Ti shield. The inaccurate prediction was not a particularly surprising result; the Cour-Palais single-wall BLE contains shield material properties as parameters, but it was formulated only from tests of different aluminum alloys. Single-wall Ti shield tests were run (thicknesses of 2.0 mm, 1.5 mm, 1.0 mm, and 0.5 mm) on Ti 15-3-3-3 material custom cut from rod stock. Hypervelocity impact (HVI) tests were used to establish the failure threshold empirically, using the additional constraint that the damage scales with impact energy, as was indicated by hydrocode simulations. The criterion for shield failure was defined as no detached spall from the shield back surface during HVI. Based on the test results, which confirmed an approximately energy-dependent shield effectiveness, the Cour-Palais equation was modified.
Participation of blood vessel cells in human adaptive immune responses.
Pober, Jordan S; Tellides, George
2012-01-01
Circulating T cells contact blood vessels either when they extravasate across the walls of microvessels into inflamed tissues or when they enter into the walls of larger vessels in inflammatory diseases such as atherosclerosis. The blood vessel wall is largely composed of three cell types: endothelial cells lining the entire vascular tree; pericytes supporting the endothelium of microvessels; and smooth muscle cells forming the bulk of large vessel walls. Each of these cell types interacts with and alters the behavior of infiltrating T cells in different ways, making these cells active participants in the processes of immune-mediated inflammation. In this review, we compare and contrast what is known about the nature of these interactions in humans. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fuentes, Sara; Pires, Nuno; Østergaard, Lars
2010-08-01
The evolution of plant vascular tissue is tightly linked to the evolution of specialised cell walls. Mutations in the QUASIMODO2 (QUA2) gene from Arabidopsis thaliana were previously shown to result in cell adhesion defects due to reduced levels of the cell wall component homogalacturonic acid. In this study, we provide additional information about the role of QUA2 and its closest paralogues, QUASIMODO2 LIKE1 (QUL1) and QUL2. Within the extensive QUA2 family, our phylogenetic analysis shows that these three genes form a clade that evolved with vascular plants. Consistent with a possible role of this clade in vasculature development, QUA2 is highly expressed in the vascular tissue of embryos and inflorescence stems and overexpression of QUA2 resulted in temperature-sensitive xylem collapse. Moreover, in-depth characterisation of qua2 qul1 qul2 triple mutant and 35S::QUA2 overexpression plants revealed contrasting temperature-dependent stem development with dramatic effects on stem width. Taken together, our results suggest that the QUA2-specific clade contributed to the evolution of vasculature and illustrate the important role that modification of cell wall composition plays in the adaptation to changing environmental conditions, including changes in temperature.
NASA Astrophysics Data System (ADS)
Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William
2018-02-01
The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.
Characterization of the Test Section Walls at the 14- by 22-Foot Subsonic Tunnel
NASA Technical Reports Server (NTRS)
Lunsford, Charles B.; Graves, Sharon S.
2003-01-01
The test section walls of the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel are known to move under thermal and pressure loads. Videogrammetry was used to measure wall motion during the summer of 2002. In addition, a laser distancemeter was used to measure the relative distance between the test section walls at a single point. Distancemeter and videogrammetry results were consistent. Data were analyzed as a function of temperature and pressure to determine their effects on wall motion. Data were collected between 50 and 100 F, 0 and 0.315 Mach, and dynamic pressures of 0 and 120 psf. The overall motion of each wall was found to be less than 0.25 in. and less than facility personnel anticipated. The results show how motion depends on the temperature and pressure inside the test section as well is the position of the boundary layer vane. The repeatability of the measurements was +/-0.06 in. This report describes the methods used to record the motion of the test section walls and the results of the data analysis. Future facility plans include the development of a suitable wall restraint system and the determination of the effects of the wall motion on tunnel calibration.
Arata, Paula X.; Alberghina, Josefina; Confalonieri, Viviana; Errea, María I.; Estevez, José M.; Ciancia, Marina
2017-01-01
The presence of sulfated polysaccharides in cell walls of seaweeds is considered to be a consequence of the physiological adaptation to the high salinity of the marine environment. Recently, it was found that sulfated polysaccharides were present in certain freshwater Cladophora species and some vascular plants. Cladophora (Ulvophyceae, Chlorophyta) is one of the largest genera of green algae that are able to grow in both, seas and freshwater courses. Previous studies carried out on the water-soluble polysaccharides of the marine species C. falklandica established the presence of sulfated xylogalactoarabinans constituted by a backbone of 4-linked β-L-arabinopyranose units partially sulfated mainly on C3 and also on C2 with partial glycosylation, mostly on C2, with terminal β-D-xylopyranose or β-D-galactofuranose units. Besides, minor amounts of 3-, 6- and/or 3,6-linked β-D-galactan structures, with galactose in the pyranosic form were detected. In this work, the main water soluble cell wall polysaccharides from the freshwater alga Cladophora surera were characterized. It was found that this green alga biosynthesizes sulfated polysaccharides, with a structure similar to those found in marine species of this genus. Calibration of molecular clock with fossil data suggests that colonization of freshwater environments occurred during the Miocene by its ancestor. Therefore, the presence of sulfated polysaccharides in the freshwater green macroalga C. surera could be, in this case, an adaptation to transient desiccation and changes in ionic strength. Retention of sulfated polysaccharides at the cell walls may represent a snapshot of an evolutionary event, and, thus constitutes an excellent model for further studies on the mechanisms of sulfation on cell wall polysaccharides and environmental stress co-evolution. PMID:29181012
Arata, Paula X; Alberghina, Josefina; Confalonieri, Viviana; Errea, María I; Estevez, José M; Ciancia, Marina
2017-01-01
The presence of sulfated polysaccharides in cell walls of seaweeds is considered to be a consequence of the physiological adaptation to the high salinity of the marine environment. Recently, it was found that sulfated polysaccharides were present in certain freshwater Cladophora species and some vascular plants. Cladophora (Ulvophyceae, Chlorophyta) is one of the largest genera of green algae that are able to grow in both, seas and freshwater courses. Previous studies carried out on the water-soluble polysaccharides of the marine species C. falklandica established the presence of sulfated xylogalactoarabinans constituted by a backbone of 4-linked β-L-arabinopyranose units partially sulfated mainly on C3 and also on C2 with partial glycosylation, mostly on C2, with terminal β-D-xylopyranose or β-D-galactofuranose units. Besides, minor amounts of 3-, 6- and/or 3,6-linked β-D-galactan structures, with galactose in the pyranosic form were detected. In this work, the main water soluble cell wall polysaccharides from the freshwater alga Cladophora surera were characterized. It was found that this green alga biosynthesizes sulfated polysaccharides, with a structure similar to those found in marine species of this genus. Calibration of molecular clock with fossil data suggests that colonization of freshwater environments occurred during the Miocene by its ancestor. Therefore, the presence of sulfated polysaccharides in the freshwater green macroalga C. surera could be, in this case, an adaptation to transient desiccation and changes in ionic strength. Retention of sulfated polysaccharides at the cell walls may represent a snapshot of an evolutionary event, and, thus constitutes an excellent model for further studies on the mechanisms of sulfation on cell wall polysaccharides and environmental stress co-evolution.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) is in a clean room with protective walls secured around it. The adapter will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Salt stress induces the formation of a novel type of 'pressure wood' in two Populus species.
Janz, Dennis; Lautner, Silke; Wildhagen, Henning; Behnke, Katja; Schnitzler, Jörg-Peter; Rennenberg, Heinz; Fromm, Jörg; Polle, Andrea
2012-04-01
• Salinity causes osmotic stress and limits biomass production of plants. The goal of this study was to investigate mechanisms underlying hydraulic adaptation to salinity. • Anatomical, ecophysiological and transcriptional responses to salinity were investigated in the xylem of a salt-sensitive (Populus × canescens) and a salt-tolerant species (Populus euphratica). • Moderate salt stress, which suppressed but did not abolish photosynthesis and radial growth in P. × canescens, resulted in hydraulic adaptation by increased vessel frequencies and decreased vessel lumina. Transcript abundances of a suite of genes (FLA, COB-like, BAM, XET, etc.) previously shown to be activated during tension wood formation, were collectively suppressed in developing xylem, whereas those for stress and defense-related genes increased. A subset of cell wall-related genes was also suppressed in salt-exposed P. euphratica, although this species largely excluded sodium and showed no anatomical alterations. Salt exposure influenced cell wall composition involving increases in the lignin : carbohydrate ratio in both species. • In conclusion, hydraulic stress adaptation involves cell wall modifications reciprocal to tension wood formation that result in the formation of a novel type of reaction wood in upright stems named 'pressure wood'. Our data suggest that transcriptional co-regulation of a core set of genes determines reaction wood composition. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Preliminary study on detection technology of the cladding weld of spent fuel storage pool
NASA Astrophysics Data System (ADS)
Qi, Pan; Cui, Hongyan; Feng, Meiming; Shao, Wenbin; Liao, Shusheng; Li, Wei
2018-04-01
As the first barrier of the Spent fuel storage pool, the steel cladding using different sizes (length×width) of 304L stainless steel with 3˜6mm thickness plate argon arc welded together which is direct contacted with boric acid water. Environmental humidity between the back of steel cladding and concrete, makes phosphate, chloride ion overflowed from the concrete that corroded on the weld zone with different mechanism. Part of the corrosion defects can penetrate leaded to leakage of boric acid water in penetration position accelerated crack propagation. In view of the above situation and combined with the actual needs of the power plant, the development of effective underwater nondestructive testing means of the weld area for periodic inspection and monitoring is necessary. A single method may lead to the missing of defects detection due to weld reinforcement unpolished. In this paper, eddy current array (ARRAY) and Alternating Current Field Measurement (ACFM) are adapted to test the limit sensitivity and resolution through by the specimens with artificial defects which make their detection abilities close to satisfy engineering requirements. The preliminary study found that Φ0.5mm through-wall hole and with 2mm length and 0.3mm width through-wall crack in the weld can be good inspected.
A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence
NASA Technical Reports Server (NTRS)
Kibbey, Timothy P.
2014-01-01
A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.
Hermatically sealed motor blower unit with stator inside hollow armature
Donelian, Khatchik O.
1976-01-20
13. A hermetically sealed motor blower unit comprising, in combination, a sealed housing having a thrust plate mounted therein and having a re-entrant wall forming a central cavity in said housing, a rotor within said housing, said rotor comprising an impeller, a hollow shaft embracing said cavity and a thrust collar adapted to cooperate with said thrust plate to support the axial thrust of said shaft, one or more journal bearings within said housing for supporting the radial load of said shaft and electric motor means for rotating said rotor, said motor means comprising a motor-stator located within said cavity and adapted to cooperate through a portion of said re-entrant wall with a motor-rotor mounted within said hollow shaft, the portion of said re-entrant wall located between said motor-stator and said motor-rotor being made relatively thin to reduce electrical losses, the bearing surfaces of said thrust plate, thrust collar and journal bearings being in communication with the discharge of said impeller, whereby fluid pumped by said impeller can flow directly to said bearing surfaces to lubricate them.
An Arabidopsis Gene Regulatory Network for Secondary Cell Wall Synthesis
Taylor-Teeples, M; Lin, L; de Lucas, M; Turco, G; Toal, TW; Gaudinier, A; Young, NF; Trabucco, GM; Veling, MT; Lamothe, R; Handakumbura, PP; Xiong, G; Wang, C; Corwin, J; Tsoukalas, A; Zhang, L; Ware, D; Pauly, M; Kliebenstein, DJ; Dehesh, K; Tagkopoulos, I; Breton, G; Pruneda-Paz, JL; Ahnert, SE; Kay, SA; Hazen, SP; Brady, SM
2014-01-01
Summary The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. Here, we present a protein-DNA network between Arabidopsis transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. These interactions will serve as a foundation for understanding the regulation of a complex, integral plant component. PMID:25533953
NASA Astrophysics Data System (ADS)
Sudan Acharya, Madhu
2010-05-01
The crib retaining structures made of wooden/bamboo logs with live plants inside are called vegetative crib walls which are now becoming popular due to their advantages over conventional civil engineering walls. Conventionally, wooden crib walls were dimensioned based on past experiences. At present, there are several guidelines and design standards for machine finished wooden crib walls, but only few guidelines for the design and construction of vegetative log crib walls are available which are generally not sufficient for an economic engineering design of such walls. Analytical methods are generally used to determine the strength of vegetated crib retaining walls. The crib construction is analysed statically by satisfying the condition of static equilibrium with acceptable level of safety. The crib wall system is checked for internal and external stability using conventional monolithic and silo theories. Due to limitations of available theories, the exact calculation of the strength of vegetated wooden/bamboo crib wall cannot be made in static calculation. Therefore, experimental measurements are generally done to verify the static analysis. In this work, a model crib construction (1:20) made of bamboo elements is tested in the centrifuge machine to determine the strength behaviour of the slope supported by vegetated crib retaining wall. A geotechnical centrifuge is used to conduct model tests to study geotechnical problems such as the strength, stiffness and bearing capacity of different structures, settlement of embankments, stability of slopes, earth retaining structures etc. Centrifuge model testing is particularly well suited to modelling geotechnical events because the increase in gravitational force creates stresses in the model that are equivalent to the much larger prototype and hence ensures that the mechanisms of ground movements observed in the tests are realistic. Centrifuge model testing provides data to improve our understanding of basic mechanisms of deformation and failure and provides benchmarks useful for verification of numerical models. In this case this test is mainly carried out to verify the stability analysis and deformation characteristics of a bamboo crib wall. Models of crib wall of dimensions 37x13x10 cm and 37x13x14cm were placed inside a Plexiglas box of internal dimensions of 42.5x42.5x30 cm and slope was formed leaving a space about 10 cm in the front. The model crib wall tests were all performed at 40-70 times earth's gravity. This means that the 5 mm diameters bamboo rods in model used represents a prototype diameter of 20-35 cm. The horizontal and vertical displacements were measured with the help of three displacements sensor fixed horizontally and one sensor fixed vertically at the top of the model crib wall. All together nine tests were carried out with varying model parameters. Standard medium sand and coarse sand were used as fill material in the testing. Two wall heights variations and three slopes variations were used in the testing. The test model was constructed either compacted or uncompacted. The compaction in the model was carried out by hand to about 90% of the Proctor density. Three slopes inclinations were used. For flat slope the slope angle was less than 25° , and for steep slope it was 25° -35° and for extremely steep slope it was > 35° . The test results and conclusions are presented in this paper.
Space vehicle acoustics prediction improvement for payloads. [space shuttle
NASA Technical Reports Server (NTRS)
Dandridge, R. E.
1979-01-01
The modal analysis method was extensively modified for the prediction of space vehicle noise reduction in the shuttle payload enclosure, and this program was adapted to the IBM 360 computer. The predicted noise reduction levels for two test cases were compared with experimental results to determine the validity of the analytical model for predicting space vehicle payload noise environments in the 10 Hz one-third octave band regime. The prediction approach for the two test cases generally gave reasonable magnitudes and trends when compared with the measured noise reduction spectra. The discrepancies in the predictions could be corrected primarily by improved modeling of the vehicle structural walls and of the enclosed acoustic space to obtain a more accurate assessment of normal modes. Techniques for improving and expandng the noise prediction for a payload environment are also suggested.
Adapting the Law of Armed Conflict to Autonomous Weapon Systems
2014-01-01
ORGANIZATION NAME(S) AND ADDRESS(ES) U. S. Naval War College,Newport,RI,02841 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY...3. Kenneth Anderson & Matthew Waxman, Op-Ed, Killer Robots and the Laws of War, WALL STREET JOURNAL, Nov. 4, 2013, at A19...future, see Werner J. A. Dahm, Op-Ed, Killer Drones Are Science Fiction, WALL STREET JOURNAL (Feb. 15, 2012), http://online.wsj.com/news/articles
Measure Guideline. Deep Energy Enclosure Retrofit for Zero Energy Ready House Flat Roofs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loomis, H.; Pettit, B.
2015-05-29
This Measure Guideline provides design and construction information for a deep energy enclosure retrofit solution of a flat roof assembly. It describes the strategies and procedures for an exterior retrofit of a flat wood-framed roof with brick masonry exterior walls using exterior and interior (framing cavity) insulation. The approach supported in this guide could also be adapted for use with flat wood-framed roofs with wood-framed exterior walls.
Numerical simulation of liquid jet impact on a rigid wall
NASA Astrophysics Data System (ADS)
Aganin, A. A.; Guseva, T. S.
2016-11-01
Basic points of a numerical technique for computing high-speed liquid jet impact on a rigid wall are presented. In the technique the flows of the liquid and the surrounding gas are governed by the equations of gas dynamics in the density, velocity, and pressure, which are integrated by the CIP-CUP method on dynamically adaptive grids without explicitly tracking the gas-liquid interface. The efficiency of the technique is demonstrated by the results of computing the problems of impact of the liquid cone and the liquid wedge on a wall in the mode with the shockwave touching the wall by its edge. Numerical solutions of these problems are compared with the analytical solution of the problem of impact of the plane liquid flow on a wall. Applicability of the technique to the problems of the high-speed liquid jet impact on a wall is illustrated by the results of computing a problem of impact of a cylindrical liquid jet with the hemispherical end on a wall covered by a layer of the same liquid.
Duct attachment and extension for an air conditioning unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, R.D.; Frenia, F.J.
1986-12-16
An apparatus is described for attaching a fixed duct extension to the discharge opening of an air conditioning unit, the unit slidably inserted in and removed from a fixed through-the-wall sleeve, for supplying conditioned air to the space containing the unit and an adjacent space comprising: a discharge plenum assembly adapted to be connected to the unit encase the discharge opening. The discharge plenum assembly defines an air flow path for the conditioned air discharged from the unit and includes a first housing member having a forward wall, a rear wall, and a pair of opposed side walls joining themore » front wall to the rear wall, and a second housing member having a top wall connected to a front wall. The top wall and the front wall are fixedly attached to the rear wall and the forward wall respectively of the first housing member and forming a duct outlet in one of the side walls. The top wall and the front wall of the second housing member and one of the pair of opposed side walls of the lower housing member having longitudinal flanges extending therefrom forming a C-like flange; a bracket removably secured to the through the wall sleeve having an outwardly extending flange member at the top of the bracket; and a duct extension means secured to the outwardly extending flange of the bracket near one end and to the wall of the adjacent space at the opposite end. The duct extension means has a collar at one end configured to engage with the C-like flange whereby the unit with the discharge plenum assembly attached thereto slidably engages with and disengages from the through-the-wall sleeve while the duct extension is secured to the bracket.« less
Kerckhoffs, Roy C.P.; Omens, Jeffrey; McCulloch, Andrew D.
2011-01-01
Adult cardiac muscle adapts to mechanical changes in the environment by growth and remodeling (G&R) via a variety of mechanisms. Hypertrophy develops when the heart is subjected to chronic mechanical overload. In ventricular pressure overload (e.g. due to aortic stenosis) the heart typically reacts by concentric hypertrophic growth, characterized by wall thickening due to myocyte radial growth when sarcomeres are added in parallel. In ventricular volume overload, an increase in filling pressure (e.g. due to mitral regurgitation) leads to eccentric hypertrophy as myocytes grow axially by adding sarcomeres in series leading to ventricular cavity enlargement that is typically accompanied by some wall thickening. The specific biomechanical stimuli that stimulate different modes of ventricular hypertrophy are still poorly understood. In a recent study, based on in-vitro studies in micropatterned myocyte cell cultures subjected to stretch, we proposed that cardiac myocytes grow longer to maintain a preferred sarcomere length in response to increased fiber strain and grow thicker to maintain interfilament lattice spacing in response to increased cross-fiber strain. Here, we test whether this growth law is able to predict concentric and eccentric hypertrophy in response to aortic stenosis and mitral valve regurgitation, respectively, in a computational model of the adult canine heart coupled to a closed loop model of circulatory hemodynamics. A non-linear finite element model of the beating canine ventricles coupled to the circulation was used. After inducing valve alterations, the ventricles were allowed to adapt in shape in response to mechanical stimuli over time. The proposed growth law was able to reproduce major acute and chronic physiological responses (structural and functional) when integrated with comprehensive models of the pressure-overloaded and volume-overloaded canine heart, coupled to a closed-loop circulation. We conclude that strain-based biomechanical stimuli can drive cardiac growth, including wall thickening during pressure overload. PMID:22639476
Horner, Harry T.
2012-01-01
Background and Aims Leaves of succulent Peperomia obtusifolia (Piperaceae), and its related species, contain a large multilayered hypodermis (epidermis) subtended by a very small single-layered photosynthetic palisade parenchyma, the latter containing spherical aggregates of crystals called druses. Each druse is in a central vacuole surrounded by chloroplasts. All hypodermal cell walls are thin, except for thick lowermost periclinal walls associated with the upper periclinal walls of the subtending palisade cells. These thick walls display ‘quilted’ impressions (mounds) formed by many subtending palisade cells. Conspicuous depressions occur in most mounds, and each depression contains what appear to be many plasmodesmata. These depressions are opposite similar regions in adjacent thin palisade periclinal walls, and they can be considered special pit fields that represent thin translucent regions (‘windows’ or ‘skylights’). Druses in the vacuoles of palisade cells occur below these pit field regions and are surrounded by conspicuous cytoplasmic chloroplasts with massive grana oriented perpendicular to the crystals, probably providing for an efficient photosynthetic system under low-intensity light. Methods Leaf clearings and fractures, light microscopy and crossed polarizers, general and histochemical staining, and transmission and scanning electron microscopy were used to examine these structures. Key Results Druses in the vacuoles of palisade cells occur below the thin pit field regions in the wall interface, suggesting an interesting physical relationship that could provide a pathway for light waves, filtered through the multiple hypodermis. The light waves pass into the palisade cells and are collected and dispersed by the druses to surrounding chloroplasts with large grana. Conclusions These results imply an intriguing possible efficient photosynthetic adaptation for species growing in low-light environments, and provide an opportunity for future research on how evolution through environmental adaptation aids plants containing crystals associated with photosynthetic tissues to exist under low-light intensity and with other stresses. PMID:22539541
Horner, Harry T
2012-06-01
Leaves of succulent Peperomia obtusifolia (Piperaceae), and its related species, contain a large multilayered hypodermis (epidermis) subtended by a very small single-layered photosynthetic palisade parenchyma, the latter containing spherical aggregates of crystals called druses. Each druse is in a central vacuole surrounded by chloroplasts. All hypodermal cell walls are thin, except for thick lowermost periclinal walls associated with the upper periclinal walls of the subtending palisade cells. These thick walls display 'quilted' impressions (mounds) formed by many subtending palisade cells. Conspicuous depressions occur in most mounds, and each depression contains what appear to be many plasmodesmata. These depressions are opposite similar regions in adjacent thin palisade periclinal walls, and they can be considered special pit fields that represent thin translucent regions ('windows' or 'skylights'). Druses in the vacuoles of palisade cells occur below these pit field regions and are surrounded by conspicuous cytoplasmic chloroplasts with massive grana oriented perpendicular to the crystals, probably providing for an efficient photosynthetic system under low-intensity light. Leaf clearings and fractures, light microscopy and crossed polarizers, general and histochemical staining, and transmission and scanning electron microscopy were used to examine these structures. Druses in the vacuoles of palisade cells occur below the thin pit field regions in the wall interface, suggesting an interesting physical relationship that could provide a pathway for light waves, filtered through the multiple hypodermis. The light waves pass into the palisade cells and are collected and dispersed by the druses to surrounding chloroplasts with large grana. These results imply an intriguing possible efficient photosynthetic adaptation for species growing in low-light environments, and provide an opportunity for future research on how evolution through environmental adaptation aids plants containing crystals associated with photosynthetic tissues to exist under low-light intensity and with other stresses.
Coroller, Thibaud P; Mak, Raymond H; Lewis, John H; Baldini, Elizabeth H; Chen, Aileen B; Colson, Yolonda L; Hacker, Fred L; Hermann, Gretchen; Kozono, David; Mannarino, Edward; Molodowitch, Christina; Wee, Jon O; Sher, David J; Killoran, Joseph H
2014-01-01
To examine the frequency and potential of dose-volume predictors for chest wall (CW) toxicity (pain and/or rib fracture) for patients receiving lung stereotactic body radiotherapy (SBRT) using treatment planning methods to minimize CW dose and a risk-adapted fractionation scheme. We reviewed data from 72 treatment plans, from 69 lung SBRT patients with at least one year of follow-up or CW toxicity, who were treated at our center between 2010 and 2013. Treatment plans were optimized to reduce CW dose and patients received a risk-adapted fractionation of 18 Gy×3 fractions (54 Gy total) if the CW V30 was less than 30 mL or 10-12 Gy×5 fractions (50-60 Gy total) otherwise. The association between CW toxicity and patient characteristics, treatment parameters and dose metrics, including biologically equivalent dose, were analyzed using logistic regression. With a median follow-up of 20 months, 6 (8.3%) patients developed CW pain including three (4.2%) grade 1, two (2.8%) grade 2 and one (1.4%) grade 3. Five (6.9%) patients developed rib fractures, one of which was symptomatic. No significant associations between CW toxicity and patient and dosimetric variables were identified on univariate nor multivariate analysis. Optimization of treatment plans to reduce CW dose and a risk-adapted fractionation strategy of three or five fractions based on the CW V30 resulted in a low incidence of CW toxicity. Under these conditions, none of the patient characteristics or dose metrics we examined appeared to be predictive of CW pain.
Abou Karam, Anthony; Bagherpour, Arya; Calleros, Jesus; Laks, Shaked
2018-04-04
Acute pancreatitis is a frequent entity encountered by radiologists. In 2012, the Atlanta criteria were revised to help radiologists use a common nomenclature when describing acute pancreatitis and its complications. One delayed complication of acute necrotizing pancreatitis in walled-off necrosis, a collection seen at least 4 weeks after an episode of acute pancreatic necrosis and/or acute peripancreatic necrosis. Multiple treatments have been adapted in the setting of walled-off necrosis, including endoscopic cystogastrostomy. The focus of this article is to familiarize the radiologist with the imaging appearance of this procedure as well as, review the outcomes and potential complications of endoscopic cystogastrostomy.
Self-contained instrument for measuring subterranean tunnel wall deflection
Rasmussen, Donald Edgar; Hof, Jr., Peter John
1978-01-01
The deflection of a subterranean tunnel is measured with a rod-like, self-contained instrument that is adapted to be inserted into a radially extending bore of the tunnel adjacent an end of the tunnel where the tunnel is being dug. One end of the instrument is anchored at the end of the bore remote from the tunnel wall, while the other end of the intrument is anchored adjacent the end of the wall in proximity to the tunnel wall. The two ends of the instrument are linearly displaceable relative to each other; the displacement is measured by a transducer means mounted on the instrument. Included in the instrument is a data storage means including a paper tape recorder periodically responsive to a parallel binary signal indicative of the measured displacement.
Plant metabolism and cell wall formation in space (microgravity) and on Earth
NASA Technical Reports Server (NTRS)
Lewis, Norman G.
1994-01-01
Variations in cell wall chemistry provide vascular plants with the ability to withstand gravitational forces, as well as providing facile mechanisms for correctional responses to various gravitational stimuli, e.g., in reaction wood formation. A principal focus of our current research is to precisely and systematically dissect the essentially unknown mechanism(s) of vascular plant cell wall assembly, particularly with respect to formation of its phenolic constituents, i.e., lignins and suberins, and how gravity impacts upon these processes. Formation of these phenolic polymers is of particular interest, since it appears that elaboration of their biochemical pathways was essential for successful land adaptation. By extrapolation, we are also greatly intrigued as to how the microgravity environment impacts upon 'normal' cell wall assembly mechanisms/metabolism.
Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas
2015-01-01
Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.
NASA Technical Reports Server (NTRS)
Beutner, Thomas John
1993-01-01
Porous wall wind tunnels have been used for several decades and have proven effective in reducing wall interference effects in both low speed and transonic testing. They allow for testing through Mach 1, reduce blockage effects and reduce shock wave reflections in the test section. Their usefulness in developing computational fluid dynamics (CFD) codes has been limited, however, by the difficulties associated with modelling the effect of a porous wall in CFD codes. Previous approaches to modelling porous wall effects have depended either upon a simplified linear boundary condition, which has proven inadequate, or upon detailed measurements of the normal velocity near the wall, which require extensive wind tunnel time. The current work was initiated in an effort to find a simple, accurate method of modelling a porous wall boundary condition in CFD codes. The development of such a method would allow data from porous wall wind tunnels to be used more readily in validating CFD codes. This would be beneficial when transonic validations are desired, or when large models are used to achieve high Reynolds numbers in testing. A computational and experimental study was undertaken to investigate a new method of modelling solid and porous wall boundary conditions in CFD codes. The method utilized experimental measurements at the walls to develop a flow field solution based on the method of singularities. This flow field solution was then imposed as a pressure boundary condition in a CFD simulation of the internal flow field. The effectiveness of this method in describing the effect of porosity changes on the wall was investigated. Also, the effectiveness of this method when only sparse experimental measurements were available has been investigated. The current work demonstrated this approach for low speed flows and compared the results with experimental data obtained from a heavily instrumented variable porosity test section. The approach developed was simple, computationally inexpensive, and did not require extensive or intrusive measurements of the boundary conditions during the wind tunnel test. It may be applied to both solid and porous wall wind tunnel tests.
1980-06-05
N-231 High Reynolds Number Channel II Facility In this timeframe the test section was designed specifically to test two-dimensional airfoil models. It is equipped with 'through-the-wall' turntables that remotely position the airfoil, with flexible upper and lower walls that can be adjusted to minimize wall interference. Porous side-wall panels provide boundary-layer removal.
NASA Astrophysics Data System (ADS)
Ghorbanirenani, Iman
This thesis presents two experimental programs together with companion numerical studies that were carried out on reinforced concrete shear walls: static tests and dynamic (shake table) tests. The first series of experiments were monotonic and cyclic quasi-static testing on ductile reinforced concrete shear wall specimens designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The tests were carried out on full-scale and 1:2.37 reduced scale wall specimens to evaluate the seismic design provisions and similitude law and determine the appropriate scaling factor that could be applied for further studies such as dynamic tests. The second series of experiments were shake table tests conducted on two identical 1:2.33 scaled, 8-storey moderately ductile reinforced concrete shear wall specimens to investigate the effects of higher modes on the inelastic response of slender walls under high frequency ground motions expected in Eastern North America. The walls were designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The objectives were to validate and understand the inelastic response and interaction of shear, flexure and axial loads in plastic hinge zones of the walls considering the higher mode effects and to investigate the formation of second hinge in upper part of the wall due to higher mode responses. Second mode response significantly affected the response of the walls. This caused inelastic flexural response to develop at the 6th level with approximately the same rotation ductility compared to that observed at the base. Dynamic amplification of the base shear forces was also observed in both walls. Numerical modeling of these two shake table tests was performed to evaluate the test results and validate current modeling approaches. Nonlinear time history analyses were carried out by the reinforced concrete fibre element (OpenSees program) and finite element (VecTor2 program) methods using the shake table feedback signals as input. Good agreement was generally obtained between numerical and experimental results. Both computer programs were able to predict the natural frequency of the walls in the undamaged and damaged conditions. Both modeling techniques could predict that the maximum bending moment at the base of the walls reached the actual wall moment capacity. The inelastic response and the dual plastic hinge behaviour of the walls could be adequately reproduced using the fibre element and finite element analysis programs. The fibre element method is a good alternative in terms of computing time. It produces reasonable results in comparison with the finite element method, although particular attention needs to be given to the selection of the damping ratios. The different parametric analyses performed in this thesis showed that, for both models, adding a small amount of global viscous damping in combination with a refined reinforced concrete hysteretic model could predict better the seismic behaviour of the tested structures. For the VecTor2 program, a viscous damping of 1% led to reasonable results for the studied RC walls. For the OpenSees program, 2% damping resulted in a good match between test and predictions for the 100% EQ test on the initially undamaged wall. When increasing the earthquake intensities, the damping had to be reduced between 1.5% and 1% to achieve good results for a damaged wall with elongated vibration periods. According to the experimental results and numerical analyses on reinforced concrete shear walls subjected to ground motions from Eastern North America earthquakes, there is a high possibility of having a second plastic hinge forming in the upper part of walls in addition to the one assumed in design at the base. This second hinge could dissipate the earthquake energy more effectively and decrease the force demand on the wall. A dual plastic hinge design approach in which the structures become plastic in the upper wall segment as well as the base could be therefore more appropriate. Preliminary design recommendations considering higher mode effects on dual hinge response and base shear forces for ductile slender shear walls are given in this thesis. (Abstract shortened by UMI.)
Adapting TESLA technology for future cw light sources using HoBiCaT
NASA Astrophysics Data System (ADS)
Kugeler, O.; Neumann, A.; Anders, W.; Knobloch, J.
2010-07-01
The HoBiCaT facility has been set up and operated at the Helmholtz-Zentrum-Berlin and BESSY since 2005. Its purpose is testing superconducting cavities in cw mode of operation and it was successfully demonstrated that TESLA pulsed technology can be used for cw mode of operation with only minor changes. Issues that were addressed comprise of elevated dynamic thermal losses in the cavity walls, necessary modifications in the cryogenics and the cavity processing, the optimum choice of operational parameters such as cavity temperature or bandwidth, the characterization of higher order modes in the cavity, and the usability of existing tuners and couplers for cw.
Zhang, Liguo; Sun, Jianguo; Yin, Guisheng; Zhao, Jing; Han, Qilong
2015-01-01
In non-destructive testing (NDT) of metal welds, weld line tracking is usually performed outdoors, where the structured light sources are always disturbed by various noises, such as sunlight, shadows, and reflections from the weld line surface. In this paper, we design a cross structured light (CSL) to detect the weld line and propose a robust laser stripe segmentation algorithm to overcome the noises in structured light images. An adaptive monochromatic space is applied to preprocess the image with ambient noises. In the monochromatic image, the laser stripe obtained is recovered as a multichannel signal by minimum entropy deconvolution. Lastly, the stripe centre points are extracted from the image. In experiments, the CSL sensor and the proposed algorithm are applied to guide a wall climbing robot inspecting the weld line of a wind power tower. The experimental results show that the CSL sensor can capture the 3D information of the welds with high accuracy, and the proposed algorithm contributes to the weld line inspection and the robot navigation. PMID:26110403
Fast algorithms for chiral fermions in 2 dimensions
NASA Astrophysics Data System (ADS)
Hyka (Xhako), Dafina; Osmanaj (Zeqirllari), Rudina
2018-03-01
In lattice QCD simulations the formulation of the theory in lattice should be chiral in order that symmetry breaking happens dynamically from interactions. In order to guarantee this symmetry on the lattice one uses overlap and domain wall fermions. On the other hand high computational cost of lattice QCD simulations with overlap or domain wall fermions remains a major obstacle of research in the field of elementary particles. We have developed the preconditioned GMRESR algorithm as fast inverting algorithm for chiral fermions in U(1) lattice gauge theory. In this algorithm we used the geometric multigrid idea along the extra dimension.The main result of this work is that the preconditioned GMRESR is capable to accelerate the convergence 2 to 12 times faster than the other optimal algorithms (SHUMR) for different coupling constant and lattice 32x32. Also, in this paper we tested it for larger lattice size 64x64. From the results of simulations we can see that our algorithm is faster than SHUMR. This is a very promising result that this algorithm can be adapted also in 4 dimension.
Study of an experimental methodology for thermal properties diagnostic of building envelop
NASA Astrophysics Data System (ADS)
Yang, Yingying; Sempy, Alain; Vogt Wu, Tingting; Sommier, Alain; Dumoulin, Jean; Batsale, Jean Christophe
2017-04-01
The building envelope plays a critical role in determining levels of comfort and building efficiency. Its real thermal properties characterization is of major interest to be able to diagnose energy efficiency performance of buildings (new construction and retrofitted existing old building). Research and development on a possible methodology for energy diagnostic of the building envelop is a hot topic and necessary trend. Many kinds of sensors and instruments are used for the studies. The application of infrared (IR) thermography in non-destructive evaluation has been widely employed for qualitative evaluations for building diagnostics; meanwhile, the IR thermography technology also has a large potentiality for the evaluation of the thermal characteristics of the building envelope. Some promising recent research studies have been carried out with such contactless measurement technique. Nevertheless, research efforts are still required for in situ measurements under natural environmental conditions. In order to develop new solutions for non-intrusive evaluation of local thermal performance, enabling quantitative assessment of thermal properties of buildings and materials, experiments were carried out on a multi-layer pratical scale wall fixed on a caisson placed in a climatic chamber. Six halogen lamps (1.5 kW for each lamp) placed in front of objective wall were used to emulate sunny conditions. The radiative heat flux emitted was monitored and modulated with time according to typical weather data set encountered in France. Both steady state and transient regime heat transfer were studied during these experiments. Contact sensors (thermocouples, heat flux meters, Peltier sensors) and non-contact sensors (thermal IR camera, pyranometer) were used to measure the temperatures and heat flux density evolution. It has to be noticed that the Peltier sensors have been tuned and used with a specific processing to set them compliant for heat flux density measurements. The measured data from different sensors were analysed and compared. The emissivity of wall surface and treated sensor surfaces were evaluated by using an IR camera with an adapted post-processing. Then, convective and radiative heat fluxes, at wall level, were estimated. Finally, the wall thermal properties can be calculated by using the measured temperatures and estimated heat fluxes using a dedicated thermal quadrupoles heat transfer model and an inverse method. This study aims at providing some guidelines for the choice of sensors, measurements protocol and adapted inverse model to be tested in real conditions on pilot situ scale. Aknowledgments : The Authors are very grateful to H2020 Built2Spec project for supporting this work.
Computer-aided detection of bladder wall thickening in CT urography (CTU)
NASA Astrophysics Data System (ADS)
Cha, Kenny H.; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon Z.; Gordon, Marshall N.; Samala, Ravi K.
2018-02-01
We are developing a computer-aided detection system for bladder cancer in CT urography (CTU). Bladder wall thickening is a manifestation of bladder cancer and its detection is more challenging than the detection of bladder masses. We first segmented the inner and outer bladder walls using our method that combined deep-learning convolutional neural network with level sets. The non-contrast-enhanced region was separated from the contrast-enhanced region with a maximum-intensity-projection-based method. The non-contrast region was smoothed and gray level threshold was applied to the contrast and non-contrast regions separately to extract the bladder wall and potential lesions. The bladder wall was transformed into a straightened thickness profile, which was analyzed to identify regions of wall thickening candidates. Volume-based features of the wall thickening candidates were analyzed with linear discriminant analysis (LDA) to differentiate bladder wall thickenings from false positives. A data set of 112 patients, 87 with wall thickening and 25 with normal bladders, was collected retrospectively with IRB approval, and split into independent training and test sets. Of the 57 training cases, 44 had bladder wall thickening and 13 were normal. Of the 55 test cases, 43 had wall thickening and 12 were normal. The LDA classifier was trained with the training set and evaluated with the test set. FROC analysis showed that the system achieved sensitivities of 93.2% and 88.4% for the training and test sets, respectively, at 0.5 FPs/case.
NEUTRON ABSORPTION AND SHIELDING DEVICE
Axelrad, I.R.
1960-06-21
A neutron absorption and shielding device is described which is adapted for mounting in a radiation shielding wall surrounding a radioactive area through which instrumentation leads and the like may safely pass without permitting gamma or neutron radiation to pass to the exterior. The shielding device comprises a container having at least one nonrectilinear tube or passageway means extending therethrough, which is adapted to contain instrumentation leads or the like, a layer of a substance capable of absorbing gamma rays, and a solid resinous composition adapted to attenuate fast-moving neutrons and capture slow- moving or thermal neutrons.
Measure Guideline: Deep Energy Enclosure Retrofit for Zero Energy Ready House Flat Roofs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loomis, H.; Pettit, B.
2015-05-01
This Measure Guideline provides design and construction information for a deep energy enclosure retrofit (DEER) solution of a flat roof assembly. It describes the strategies and procedures for an exterior retrofit of a flat, wood-framed roof with brick masonry exterior walls, using exterior and interior (framing cavity) insulation. The approach supported in this guide could also be adapted for use with flat, wood-framed roofs with wood-framed exterior walls.
Lateral load performance of SIP walls with full bearing
Boren Yeh; Tom Skaggs; Xiping Wang; Tom Williamson
2018-01-01
The purpose of this study was to develop test data needed to characterize lateral load performance of structural insulated panel (SIP) walls with full bearing (restrained). The research program involved structural testing of 29 full-size SIP walls (8 ft tall by 8 ft long) of various configurations that bracket a range of SIP wall configurations commonly used in the...
Isolated development of inner (wall) caries like lesions in a bacterial-based in vitro model.
Diercke, K; Lussi, A; Kersten, T; Seemann, R
2009-12-01
The study conducted in a bacterial-based in vitro caries model aimed to determine whether typical inner secondary caries lesions can be detected at cavity walls of restorations with selected gap widths when the development of outer lesions is inhibited. Sixty bovine tooth specimens were randomly assigned to the following groups: test group 50 (TG50; gap, 50 microm), test group 100 (TG100; gap, 100 microm), test group 250 (TG250; gap, 250 microm) and a control group (CG; gap, 250 microm). The outer tooth surface of the test group specimens was covered with an acid-resistant varnish to inhibit the development of an outer caries lesion. After incubation in the caries model, the area of demineralization at the cavity wall was determined by confocal laser scanning microscopy. All test group specimens demonstrated only wall lesions. The CG specimens developed outer and wall lesions. The TG250 specimens showed significantly less wall lesion area compared to the CG (p < 0.05). In the test groups, a statistically significant increase (p < 0.05) in lesion area could be detected in enamel between TG50 and TG250 and in dentine between TG50 and TG100. In conclusion, the inner wall lesions of secondary caries can develop without the presence of outer lesions and therefore can be regarded as an entity on their own. The extent of independently developed wall lesions increased with gap width in the present setting.
NASA Technical Reports Server (NTRS)
Jedlovec, Gary; Srikishen, Jayanthi; Edwards, Rita; Cross, David; Welch, Jon; Smith, Matt
2013-01-01
The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of "big data" available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Shortterm Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video-teleconferences, presentation slides, documents, spreadsheets or laptop screens. SAGE is cross-platform, community-driven, open-source visualization and collaboration middleware that utilizes shared national and international cyberinfrastructure for the advancement of scientific research and education.
NASA Astrophysics Data System (ADS)
Jedlovec, G.; Srikishen, J.; Edwards, R.; Cross, D.; Welch, J. D.; Smith, M. R.
2013-12-01
The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of 'big data' available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Short-term Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video-teleconferences, presentation slides, documents, spreadsheets or laptop screens. SAGE is cross-platform, community-driven, open-source visualization and collaboration middleware that utilizes shared national and international cyberinfrastructure for the advancement of scientific research and education.
Wall interference correction improvements for the ONERA main wind tunnels
NASA Technical Reports Server (NTRS)
Vaucheret, X.
1982-01-01
This paper describes improved methods of calculating wall interference corrections for the ONERA large windtunnels. The mathematical description of the model and its sting support have become more sophisticated. An increasing number of singularities is used until an agreement between theoretical and experimental signatures of the model and sting on the walls of the closed test section is obtained. The singularity decentering effects are calculated when the model reaches large angles of attack. The porosity factor cartography on the perforated walls deduced from the measured signatures now replaces the reference tests previously carried out in larger tunnels. The porosity factors obtained from the blockage terms (signatures at zero lift) and from the lift terms are in good agreement. In each case (model + sting + test section), wall corrections are now determined, before the tests, as a function of the fundamental parameters M, CS, CZ. During the windtunnel tests, the corrections are quickly computed from these functions.
Validation of Blockage Interference Corrections in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Walker, Eric L.
2007-01-01
A validation test has recently been constructed for wall interference methods as applied to the National Transonic Facility (NTF). The goal of this study was to begin to address the uncertainty of wall-induced-blockage interference corrections, which will make it possible to address the overall quality of data generated by the facility. The validation test itself is not specific to any particular modeling. For this present effort, the Transonic Wall Interference Correction System (TWICS) as implemented at the NTF is the mathematical model being tested. TWICS uses linear, potential boundary conditions that must first be calibrated. These boundary conditions include three different classical, linear. homogeneous forms that have been historically used to approximate the physical behavior of longitudinally slotted test section walls. Results of the application of the calibrated wall boundary conditions are discussed in the context of the validation test.
Description and evaluation of an interference assessment for a slotted-wall wind tunnel
NASA Technical Reports Server (NTRS)
Kemp, William B., Jr.
1991-01-01
A wind-tunnel interference assessment method applicable to test sections with discrete finite-length wall slots is described. The method is based on high order panel method technology and uses mixed boundary conditions to satisfy both the tunnel geometry and wall pressure distributions measured in the slotted-wall region. Both the test model and its sting support system are represented by distributed singularities. The method yields interference corrections to the model test data as well as surveys through the interference field at arbitrary locations. These results include the equivalent of tunnel Mach calibration, longitudinal pressure gradient, tunnel flow angularity, wall interference, and an inviscid form of sting interference. Alternative results which omit the direct contribution of the sting are also produced. The method was applied to the National Transonic Facility at NASA Langley Research Center for both tunnel calibration tests and tests of two models of subsonic transport configurations.
Clinical determinants and consequences of left ventricular hypertrophy.
Messerli, F H
1983-09-26
The left ventricle adapts to an increased afterload such as that produced by arterial hypertension with concentric left ventricular hypertrophy. However, this adaptive process can be modified by a variety of physiologic and pathophysiologic states. Progressive aging, black race, and perhaps disorders with an increased sympathetic outflow seem to accelerate left ventricular hypertrophy. Obesity and other high cardiac output states predominantly produce dilatation of the left ventricle, and their combination with arterial hypertension results in eccentric left ventricular hypertrophy. Similarly, endurance exercise increases left ventricular volume more than wall thickness, whereas isometric exercise produces an increase in wall thickness only. The presence or absence of some physiologic and pathogenetic factors has direct implication on the assessment of what constitutes a "normal" left ventricular structure and function. Left ventricular hypertrophy has been shown to increase ventricular ectopic impulse generation and to put patients at a high risk of sudden death. Moreover, the increase in myocardial mass lowers coronary reserve and enhances cardiac oxygen requirements. Thus, the presence of left ventricular hypertrophy has to be considered as an ominous sign rather than as a benign adaptive process.
Enhanced cold wall CVD reactor growth of horizontally aligned single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Mu, Wei; Kwak, Eun-Hye; Chen, Bingan; Huang, Shirong; Edwards, Michael; Fu, Yifeng; Jeppson, Kjell; Teo, Kenneth; Jeong, Goo-Hwan; Liu, Johan
2016-05-01
HASynthesis of horizontally-aligned single-walled carbon nanotubes (HA-SWCNTs) by chemical vapor deposition (CVD) directly on quartz seems very promising for the fabrication of future nanoelectronic devices. In comparison to hot-wall CVD, synthesis of HA-SWCNTs in a cold-wall CVD chamber not only means shorter heating, cooling and growth periods, but also prevents contamination of the chamber. However, since most synthesis of HA-SWCNTs is performed in hot-wall reactors, adapting this well-established process to a cold-wall chamber becomes extremely crucial. Here, in order to transfer the CVD growth technology from a hot-wall to a cold-wall chamber, a systematic investigation has been conducted to determine the influence of process parameters on the HA-SWCNT's growth. For two reasons, the cold-wall CVD chamber was upgraded with a top heater to complement the bottom substrate heater; the first reason to maintain a more uniform temperature profile during HA-SWCNTs growth, and the second reason to preheat the precursor gas flow before projecting it onto the catalyst. Our results show that the addition of a top heater had a significant effect on the synthesis. Characterization of the CNTs shows that the average density of HA-SWCNTs is around 1 - 2 tubes/ μm with high growth quality as shown by Raman analysis. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, D.C.; Ober, D.G.; Goodrow, J.T.
1995-09-01
ASTM E 283 ad ASTM E 1424 in conjunction with ASTM C 976 were used to study the effect of airflow on thermal performance of the wall. A typical residential 2 {times} 4 stud wall was constructed and placed on top of a subfloor, making a 2.44 {times} 2.74 m (8 by 9 ft) test specimen. This base wall assembly was then covered with two types of XPS sheathing, various housewraps, a 15{number_sign} felt, and a polyethylene vapor retarder film in 40 different configurations and tested individually per ASTM E 283 and per ASTM C 976. For 24 of themore » 40 C 976 tests, a differential pressure was induced across the test wall as per and ASTM E 1424. Airflows ranged from undetectable airflow at 0 {center_dot} Pa {Delta}P to 1.63 L/s {center_dot} m{sup 2} for the base wall assembly alone. Difference in airflow resistance performance between the ASTM E 283 and ASTM E 1424 test methods were noted. Thermal testing results incorporating both ASTM C 976 and ASTM E 1424 for tests 1--28 produced apparent thermal conductances (C-values) in the range of 0.40 W/m{sup 2} {center_dot} K for a nondetectable airflow level to 1.81 W/m{sup 2} {center_dot} K for an airflow of 1.53 L/s {center_dot} m{sup 2} for the base wall assembly alone with a 20-Pa {Delta}P. The calculated C-value for this base wall assembly was 0.40 W/m{sup 2} {center_dot} K. Test results reveal that airflow rates as low as 0.2 L/s {center_dot} m{sup 2} could produce a 46% increase in apparent C-value. Similar thermal performance differences were revealed when thicker shiplap XPS sheathing was used. Tests were also conducted using an Air-Tight Drywall configuration showing the effect of wind washing on thermal performance. By sealing the gypsum drywall on the base wall assembly tested, the apparent C-value, when exposed to a 12.5 Pa wind pressure, was found to be equivalent to a base wall assembly configuration which allows 0.15 L/s {center_dot} m{sup 2} airflow to penetrate completely through.« less
Jeyapalina, Sujee; Beck, James Peter; Bachus, Kent N; Chalayon, Ornusa; Bloebaum, Roy D
2014-10-01
Percutaneous osseointegrated prostheses (POPs) are being investigated as an alternative to conventional socket suspension and require a radiographic followup in translational studies to confirm that design objectives are being met. In this 12-month animal study, we determined (1) radiographic signs of osseointegration and (2) radiographic signs of periprosthetic bone hypertrophy and resorption (adaptation) and (3) confirmed them with the histologic evidence of host bone osseointegration and adaptation around a novel, distally porous-coated titanium POP with a collar. A POP device was designed to fit the right metacarpal bone of sheep. Amputation and implantation surgeries (n = 14) were performed, and plane-film radiographs were collected quarterly for 12 months. Radiographs were assessed for osseointegration (fixation) and bone adaptation (resorption and hypertrophy). The cortical wall and medullary canal widths were used to compute the cortical index and expressed as a percentage. Based on the cortical index changes and histologic evaluations, bone adaptation was quantified. Radiographic data showed signs of osseointegration including those with incomplete seating against the collar attachment. Cortical index data indicated distal cortical wall thinning if the collar was not seated distally. When implants were bound proximally, bone resorbed distally and the diaphyseal cortex hypertrophied. Histopathologic evidence and cortical index measurements confirmed the radiographic indications of adaptation and osseointegration. Distal bone loading, through collar attachment and porous coating, limited the distal bone resorption. Serial radiographic studies, in either animal models or preclinical trials for new POP devices, will help to determine which designs are likely to be safe over time and avoid implant failures.
NASA Technical Reports Server (NTRS)
Shinoda, Patrick M.
1994-01-01
A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. This wind tunnel test generated a unique and extensive data base covering a wide range of rotor shaft angles-of-attack and rotor thrust conditions from 0 to 100 knots. Three configurations were tested: (1) empty tunnel; (2) test stand body (fuselage) and support system; and (3) fuselage and support system with rotor installed. Empty tunnel wall pressure data are evaluated as a function of tunnel speed to understand the baseline characteristics. Aerodynamic interaction effects between the fuselage and the walls of the tunnel are investigated by comparing wall, ceiling, and floor pressures for various tunnel velocities and fuselage angles-of-attack. Aerodynamic interaction effects between the rotor and the walls of the tunnel are also investigated by comparing wall, ceiling, and floor pressures for various rotor shaft angles, rotor thrust conditions, and tunnel velocities. Empty tunnel wall pressure data show good repeatability and are not affected by tunnel speed. In addition, the tunnel wall pressure profiles are not affected by the presence of the fuselage apart from a pressure shift. Results do not indicate that the tunnel wall pressure profiles are affected by the presence of the rotor. Significant changes in the wall, ceiling, and floor pressure profiles occur with changing tunnel speeds for constant rotor thrust and shaft angle conditions. Significant changes were also observed when varying rotor thrust or rotor shaft angle-of-attack. Other results indicate that dynamic rotor loads and blade motion are influenced by the presence of the tunnel walls at very low tunnel velocity and, together with the wall pressure data, provide a good indication of flow breakdown.
Lateral resistance of piles near vertical MSE abutment walls.
DOT National Transportation Integrated Search
2013-03-01
Full scale lateral load tests were performed on eight piles located at various distances behind MSE walls. The objective of the testing was to determine the effect of spacing from the wall on the lateral resistance of the piles and on the force induc...
Airfoil for a turbine of a gas turbine engine
Liang, George
2010-12-21
An airfoil for a turbine of a gas turbine engine is provided. The airfoil comprises a main body comprising a wall structure defining an inner cavity adapted to receive a cooling air. The wall structure includes a first diffusion region and at least one first metering opening extending from the inner cavity to the first diffusion region. The wall structure further comprises at least one cooling circuit comprising a second diffusion region and at least one second metering opening extending from the first diffusion region to the second diffusion region. The at least one cooling circuit may further comprise at least one third metering opening, at least one third diffusion region and a fourth diffusion region.
The finite layer method for modelling the sound transmission through double walls
NASA Astrophysics Data System (ADS)
Díaz-Cereceda, Cristina; Poblet-Puig, Jordi; Rodríguez-Ferran, Antonio
2012-10-01
The finite layer method (FLM) is presented as a discretisation technique for the computation of noise transmission through double walls. It combines a finite element method (FEM) discretisation in the direction perpendicular to the wall with trigonometric functions in the two in-plane directions. It is used for solving the Helmholtz equation at the cavity inside the double wall, while the wall leaves are modelled with the thin plate equation and solved with modal analysis. Other approaches to this problem are described here (and adapted where needed) in order to compare them with the FLM. They range from impedance models of the double wall behaviour to different numerical methods for solving the Helmholtz equation in the cavity. For the examples simulated in this work (impact noise and airborne sound transmission), the former are less accurate than the latter at low frequencies. The main advantage of FLM over the other discretisation techniques is the possibility of extending it to multilayered structures without changing the interpolation functions and with an affordable computational cost. This potential is illustrated with a calculation of the noise transmission through a multilayered structure: a double wall partially filled with absorbing material.
Lewandowski, Edward F.; Anderson, Petrus A.
1978-01-01
A portable punch and die jig includes a U-shaped jig of predetermined width having a slot of predetermined width in the base thereof extending completely across the width of the jig adapted to fit over the walls of rectangular tubes and a punch and die assembly disposed in a hole extending through the base of the jig communicating with the slot in the base of the jig for punching a hole in the walls of the rectangular tubes at precisely determined locations.
HVI Ballistic Performance Characterization of Non-Parallel Walls
NASA Technical Reports Server (NTRS)
Bohl, William; Miller, Joshua; Christiansen, Eric
2012-01-01
The Double-Wall, "Whipple" Shield [1] has been the subject of many hypervelocity impact studies and has proven to be an effective shield system for Micro-Meteoroid and Orbital Debris (MMOD) impacts for spacecraft. The US modules of the International Space Station (ISS), with their "bumper shields" offset from their pressure holding rear walls provide good examples of effective on-orbit use of the double wall shield. The concentric cylinder shield configuration with its large radius of curvature relative to separation distance is easily and effectively represented for testing and analysis as a system of two parallel plates. The parallel plate double wall configuration has been heavily tested and characterized for shield performance for normal and oblique impacts for the ISS and other programs. The double wall shield and principally similar Stuffed Whipple Shield are very common shield types for MMOD protection. However, in some locations with many spacecraft designs, the rear wall cannot be modeled as being parallel or concentric with the outer bumper wall. As represented in Figure 1, there is an included angle between the two walls. And, with a cylindrical outer wall, the effective included angle constantly changes. This complicates assessment of critical spacecraft components located within outer spacecraft walls when using software tools such as NASA's BumperII. In addition, the validity of the risk assessment comes into question when using the standard double wall shield equations, especially since verification testing of every set of double wall included angles is impossible.
Some ideas and opportunities concerning three-dimensional wind-tunnel wall corrections
NASA Technical Reports Server (NTRS)
Rubbert, P. E.
1982-01-01
Opportunities for improving the accuracy and reliability of wall corrections in conventional ventilated test sections are presented. The approach encompasses state-of-the-art technology in transonic computational methods combined with the measurement of tunnel-wall pressures. The objective is to arrive at correction procedures of known, verifiable accuracy that are practical within a production testing environment. It is concluded that: accurate and reliable correction procedures can be developed for cruise-type aerodynamic testing for any wall configuration; passive walls can be optimized for minimal interference for cruise-type aerodynamic testing (tailored slots, variable open area ratio, etc.); monitoring and assessment of noncorrectable interference (buoyancy and curvature in a transonic stream) can be an integral part of a correction procedure; and reasonably good correction procedures can probably be developd for complex flows involving extensive separation and other unpredictable phenomena.
Melato, F A; Mokgalaka, N S; McCrindle, R I
2016-01-01
Vetiver grass (Chrysopogon zizanioides) was investigated for its potential use in the rehabilitation of gold mine tailings, its ability to extract and accumulate toxic metals from the tailings and its metal tolerant strategies. Vetiver grass was grown on gold mine tailings soil, in a hothouse, and monitored for sixteen weeks. The mine tailings were highly acidic and had high electrical conductivity. Vetiver grass was able to grow and adapt well on gold mine tailings. The results showed that Vetiver grass accumulated large amounts of metals in the roots and restricted their translocation to the shoots. This was confirmed by the bioconcentration factor of Zn, Cu, and Ni of >1 and the translocation factor of <1 for all the metals. This study revealed the defense mechanisms employed by Vetiver grass against metal stress that include: chelation of toxic metals by phenolics, glutathione S-tranferase, and low molecular weight thiols; sequestration and accumulation of metals within the cell wall that was revealed by the scanning electron microscopy that showed closure of stomata and thickened cell wall and was confirmed by high content of cell wall bound phenolics. Metal induced reactive oxygen species are reduced or eliminated by catalase, superoxide dismutase and peroxidase dismutase.
Pectin methylesterase31 positively regulates salt stress tolerance in Arabidopsis.
Yan, Jingwei; He, Huan; Fang, Lin; Zhang, Aying
2018-02-05
The alteration of cell wall component and structure is an important adaption to saline environment. Pectins, a major cell wall component, are often present in a highly methylesterified form. The level of methyl esterification determined by pectin methylesterases (PMEs) influences many important wall properties that are believed to relate to the adaption to saline stress. However, little is known about the function of PMEs in response to salt stress. Here, we established a link between pectin methylesterase31 (PME31) and salt stress tolerance. Salt stress significantly increases PME31 expression. PME31 is located in the plasma membrane and the expression level of PME31 was high in dry seeds. Knock-down mutants in PME31 conferred hypersensitive phenotypes to salt stress in seed germination and post-germination growth. Real-time PCR analysis revealed that the transcript levels of several stress genes (DREB2A, RD29A and RD29B) are lower in pme31-2 mutant than that in the wild type in response to salt stress. These results suggested that PME31 could positively modulate salt stress tolerance. Copyright © 2018 Elsevier Inc. All rights reserved.
Electrical resisitivity of mechancially stablized earth wall backfill
NASA Astrophysics Data System (ADS)
Snapp, Michael; Tucker-Kulesza, Stacey; Koehn, Weston
2017-06-01
Mechanically stabilized earth (MSE) retaining walls utilized in transportation projects are typically backfilled with coarse aggregate. One of the current testing procedures to select backfill material for construction of MSE walls is the American Association of State Highway and Transportation Officials standard T 288: ;Standard Method of Test for Determining Minimum Laboratory Soil Resistivity.; T 288 is designed to test a soil sample's electrical resistivity which correlates to its corrosive potential. The test is run on soil material passing the No. 10 sieve and believed to be inappropriate for coarse aggregate. Therefore, researchers have proposed new methods to measure the electrical resistivity of coarse aggregate samples in the laboratory. There is a need to verify that the proposed methods yield results representative of the in situ conditions; however, no in situ measurement of the electrical resistivity of MSE wall backfill is established. Electrical resistivity tomography (ERT) provides a two-dimensional (2D) profile of the bulk resistivity of backfill material in situ. The objective of this study was to characterize bulk resistivity of in-place MSE wall backfill aggregate using ERT. Five MSE walls were tested via ERT to determine the bulk resistivity of the backfill. Three of the walls were reinforced with polymeric geogrid, one wall was reinforced with metallic strips, and one wall was a gravity retaining wall with no reinforcement. Variability of the measured resistivity distribution within the backfill may be a result of non-uniform particle sizes, thoroughness of compaction, and the presence of water. A quantitative post processing algorithm was developed to calculate mean bulk resistivity of in-situ backfill. Recommendations of the study were that the ERT data be used to verify proposed testing methods for coarse aggregate that are designed to yield data representative of in situ conditions. A preliminary analysis suggests that ERT may be utilized as construction quality assurance for thoroughness of compaction in MSE construction; however more data are needed at this time.
An Arabidopsis gene regulatory network for secondary cell wall synthesis
Taylor-Teeples, M.; Lin, L.; de Lucas, M.; ...
2014-12-24
The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. In this paper, we present a protein–DNA network between Arabidopsis thaliana transcription factors and secondary cell wall metabolic genes with gene expression regulated bymore » a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. Finally, these interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.« less
Cell Wall Metabolism in Response to Abiotic Stress
Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine
2015-01-01
This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320
Scale resolving computation of submerged wall jets on flat wall with different roughness heights
NASA Astrophysics Data System (ADS)
Paik, Joongcheol; Bombardelli, Fabian
2014-11-01
Scale-adaptive simulation is used to investigate the response of velocity and turbulence in submerged wall jets to abrupt changes from smooth to rough beds. The submerged wall jets were experimentally investigated by Dey and Sarkar [JFM, 556, 337, 2006] at the Reynolds number of 17500 the Froude number of 4.09 and the submergence ratio of 1.12 on different rough beds that were generated by uniform sediments of different median diameters The SAS is carried out by means of a second-order-accurate finite volume method in space and time and the effect of bottom roughness is treated by the approach of Cebeci (2004). The evolution of free surface is captured by employing the two-phase volume of fluid (VOF) technique. The numerical results obtained by the SAS approach, incorporated with the VOF and the rough wall treatment, are in good agreement with the experimental measurements. The computed turbulent boundary layer grows more quickly and the depression of the free surface is more increased on the rough wall than those on smooth wall. The size of the fully developed zone shrinks and the decay rate of maximum streamwise velocity and Reynolds stress components are faster with increase in the wall roughness. Supported by NSF and NRF of Korea.
Tested R-value for straw bale walls and performance modeling for straw bale homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Commins, T.R.; Stone, N.I.
1998-07-01
Since the late 1800's, houses have been built of straw. Contrary to nursery rhymes, these houses have proved sturdy and comfortable and not at all easy to blow down. In the last several years, as people have experimented with new and old building materials and looked for ways to halt rice field stubble burning, there has been a resurgence of homes built with straw. Unfortunately, there has been very little testing to determine the thermal performance of straw bale walls or to discover how these walls affect a home's heating and cooling energy consumption. Reported R-values for straw bale wallsmore » range from R-17 to R-54, depending on the test procedure, the type of straw used and the type of straw bale wall system. This paper reports on a test set-up by the California Energy Commission (Commission) and conducted in a nationally accredited lab, Architectural Testing Inc. (ATI) in Fresno, California. The paper describes the tested straw bale wall assemblies, the testing process, and problems encountered in the construction and testing of the walls. The paper also gives a reasonable R-value to use in calculating thermal performance of straw bale houses and presents findings that show that straw bale construction can decrease the heating and cooling energy usage of a typical house by up to a third over conventional practice.« less
DOT National Transportation Integrated Search
2004-01-01
This report presents the construction and performance evaluation of the LTRC reinforced-soil test wall. The 20 ft. high, 160 ft. long wall was constructed using low quality backfill. Its vertical front facing was constructed with modular blocks. It c...
MEASURING AND MODELING DISINFECTION WALL DEMAND IN METALLIC PIPES
A field test procedure was developed and implemented in Detroit to estimate chlorine loss due to wall demand in older 6" (152 mm) and 8" (203 mm) diameter, unlined cast iron pipes. The test results produced extremely high wall reaction rate coefficients that increased significan...
NASA Astrophysics Data System (ADS)
Epackachi, Siamak
The seismic performance of rectangular steel-plate concrete (SC) composite shear walls is assessed for application to buildings and mission-critical infrastructure. The SC walls considered in this study were composed of two steel faceplates and infill concrete. The steel faceplates were connected together and to the infill concrete using tie rods and headed studs, respectively. The research focused on the in-plane behavior of flexure- and flexure-shear-critical SC walls. An experimental program was executed in the NEES laboratory at the University at Buffalo and was followed by numerical and analytical studies. In the experimental program, four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure- and flexure-shear critical. The progression of damage in the four walls was identical, namely, cracking and crushing of the infill concrete at the toes of the walls, outward buckling and yielding of the steel faceplates near the base of the wall, and tearing of the faceplates at their junctions with the baseplate. A robust finite element model was developed in LS-DYNA for nonlinear cyclic analysis of the flexure- and flexure-shear-critical SC walls. The DYNA model was validated using the results of the cyclic tests of the four SC walls. The validated and benchmarked models were then used to conduct a parametric study, which investigated the effects of wall aspect ratio, reinforcement ratio, wall thickness, and uniaxial concrete compressive strength on the in-plane response of SC walls. Simplified analytical models, suitable for preliminary analysis and design of SC walls, were developed, validated, and implemented in MATLAB. Analytical models were proposed for monotonic and cyclic simulations of the in-plane response of flexure- and flexure-shear-critical SC wall piers. The model for cyclic analysis was developed by modifying the Ibarra-Krawinler Pinching (IKP) model. The analytical models were verified using the results of the parametric study and validated using the test data.
Experimental Verification of Same Simple Equilibrium Models of Masonry Shear Walls
NASA Astrophysics Data System (ADS)
Radosław, Jasiński
2017-10-01
This paper contains theoretical fundamentals of strut and tie models, used in unreinforced horizontal shear walls. Depending on support conditions and wall loading, we can distinguish models with discrete bars when point load is applied to the wall (type I model) or with continuous bars (type II model) when load is uniformly distributed at the wall boundary. The main part of this paper compares calculated results with the own tests on horizontal shear walls made of solid brick, silicate elements and autoclaved aerated concrete. The tests were performed in Poland. The model required some modifications due to specific load and static diagram.
Numerical design of streamlined tunnel walls for a two-dimensional transonic test
NASA Technical Reports Server (NTRS)
Newman, P. A.; Anderson, E. C.
1978-01-01
An analytical procedure is discussed for designing wall shapes for streamlined, nonporous, two-dimensional, transonic wind tunnels. It is based upon currently available 2-D inviscid transonic and boundary layer analysis computer programs. Predicted wall shapes are compared with experimental data obtained from the NASA Langley 6 by 19 inch Transonic Tunnel where the slotted walls were replaced by flexible nonporous walls. Comparisons are presented for the empty tunnel operating at a Mach number of 0.9 and for a supercritical test of an NACA 0012 airfoil at zero lift. Satisfactory agreement is obtained between the analytically and experimentally determined wall shapes.
Tracking Solar Energy Conersion Unit Adapted For Field Assembly
Kaminar, Neil R.; Ross, III, James G.; Carrie, Peter J.
2000-02-01
A modular solar energy collector having elongated V-shaped side walls formed by a pair of coplanar panels for each side wall. The upper panels, occupying most of the wall area are diffusely reflective, but the lower panels are specularly reflective. A Fresnel lens, having a snap fit relation to the side walls focuses some light on the lower specularly reflective panels which direct light to the solar cells at the base of the V-shaped walls. A heat sink provides support for the two panels with two opposed, upwardly extending wings terminating in opposed linear clips located near the lengthwise seam of the coplanar panels, each clip holding two coplanar panels in parallel alignment. The clips not only provide support for the panels, but also transfer heat to the remainder of the heat sink. The clips are shaped so that edges of the panels engage each clip by a snap fit, outside of the clip in one embodiment and inside of the clip in another embodiment. End caps are also formed with structures which snap to the wall panels. Since all junctions of components snap together, the collector of the present invention is easily assembled without specialized tools. Using side walls which are only partly specularly reflective permits a large angle of acceptance, yet provides an economical wall design because the entire wall need not be specularly reflective.
Shepherd, N A; Healey, C J; Warren, B F; Richman, P I; Thomson, W H; Wilkinson, S P
1993-01-01
The mucosa of the pelvic ileal reservoir undergoes adaptive changes--inflammatory, architectural, and metaplastic--on exposure to the faecal stream. Twenty three quadruple loop ileal pouches constructed for ulcerative colitis (20 patients) and familial adenomatous polyposis (FAP) (three patients) were studied. No patient fulfilled clinical, endoscopic, or histopathological criteria for pouchitis. Standard duplicate biopsy specimens were taken from the proximal limb, the anterior wall, the posterior wall, and the body of the reservoir. An established scoring system was used and showed a highly significant increase in inflammatory scores in posterior wall biopsy specimens compared with those from the anterior wall. These results suggest that the adaptive changes are the direct result of contact with static faecal contents. One patient only showed significant inflammation in the proximal limb. There was no evidence of mucosal prolapse in any anterior wall biopsy specimen. Patients with colitis showed substantially more inflammatory and architectural changes than those with FAP. Ninety six per cent of pouches showed some colonic phenotypic expression as defined by mucin histochemical and PR 3A5 immunohistochemical studies. Our results suggest, however, that there may not be complete colonic metaplasia and that the mucin changes and other phenotypic alterations may represent a non-specific response to pouch inflammation and not a prerequisite for the development of pouchitis. The focal nature of the inflammatory and architectural changes, which may be the result of direct contact with static faecal residue, are clearly shown. A single random biopsy specimen of pouch mucosa is of limited value in assessing pathological changes and screening for potential neoplastic change within the reservoir. Images Figure 2 Figure 4 PMID:8381756
Effect of wall roughness on liquid oscillations damping in rectangular tanks
NASA Technical Reports Server (NTRS)
Bugg, F. M.
1970-01-01
Tests were conducted in two rectangular glass tanks using silicon carbide grit bonded to walls to determine effect of wall roughness for damping liquid oscillations. Tests included effects of roughness height, roughness location, roughness at various values, amplitude decay, Reynolds number, and boundary layer thickness.
NASA Astrophysics Data System (ADS)
Mahmoudzadeh Akherat, S. M. Javid; Cassel, Kevin; Hammes, Mary; Boghosian, Michael; Illinois Institute of Technology Team; University of Chicago Team
2016-11-01
Venous stenosis developed after the growth of excessive neointimal hyperplasia (NH) in chronic dialysis treatment is a major cause of mortality in renal failure patients. It has been hypothesized that the low wall shear stress (WSS) triggers an adaptive response in patients' venous system that through the growth of neointimal hyperplastic lesions restores WSS and transmural pressure, which also regulates the blood flow rate back to physiologically acceptable values which is violated by dialysis treatment. A strong coupling of three-dimensional CFD and shape optimization analyses were exploited to elucidate and forecast this adaptive response which correlates very well topographically with patient-specific clinical data. Based on the framework developed, a medical protocol is suggested to predict and prevent dialysis treatment failure in clinical practice. Supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (R01 DK90769).
Palaeo-adaptive properties of the xylem of Metasequoia: mechanical/hydraulic compromises.
Jagels, Richard; Visscher, George E; Lucas, John; Goodell, Barry
2003-07-01
The xylem of Metasequoia glyptostroboides Hu et Cheng is characterized by very low density (average specific gravity = 0.27) and tracheids with relatively large dimensions (length and diameter). The microfibril angle in the S2 layer of tracheid walls is large, even in outer rings, suggesting a cambial response to compressive rather than tensile stresses. In some cases, this compressive stress is converted to irreversible strain (plastic deformation), as evidenced by cell wall corrugations. The heartwood is moderately decay resistant, helping to prevent Brazier buckling. These xylem properties are referenced to the measured bending properties of modulus of rupture and modulus of elasticity, and compared with other low-to-moderate density conifers. The design strategy for Metasequoia is to produce a mechanically weak but hydraulically efficient xylem that permits rapid height growth and crown development to capture and dominate a wet site environment. The adaptability of these features to a high-latitude Eocene palaeoenvironment is discussed.
12. NBS LOWER ROOM. BEHIND FAR GLASS WALL IS VIDEO ...
12. NBS LOWER ROOM. BEHIND FAR GLASS WALL IS VIDEO TAPE EQUIPMENT AND VOICE INTERCOM EQUIPMENT. THE MONITORS ABOVE GLASS WALL DISPLAY UNDERWATER TEST VIDEO TO CONTROL ROOM. FARTHEST CONSOLE ROW CONTAINS CAMERA SWITCHING, PANNING, TILTING, FOCUSING, AND ZOOMING. MIDDLE CONSOLE ROW CONTAINS TEST CONDUCTOR CONSOLES FOR MONITORING TEST ACTIVITIES AND DATA. THE CLOSEST CONSOLE ROW IS NBS FACILITY CONSOLES FOR TEST DIRECTOR, SAFETY AND QUALITY ASSURANCE REPRESENTATIVES. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
13. NBS LOWER ROOM. BEHIND FAR GLASS WALL IS VIDEO ...
13. NBS LOWER ROOM. BEHIND FAR GLASS WALL IS VIDEO TAPE EQUIPMENT AND VOICE INTERCOM EQUIPMENT. THE MONITORS ABOVE GLASS WALL DISPLAY UNDERWATER TEST VIDEO TO CONTROL ROOM. FARTHEST CONSOLE ROW CONTAINS CAMERA SWITCHING, PANNING, TILTING, FOCUSING, AND ZOOMING. MIDDLE CONSOLE ROW CONTAINS TEST CONDUCTOR CONSOLES FOR MONITORING TEST ACTIVITIES AND DATA. THE CLOSEST CONSOLE ROW IS NBC FACILITY CONSOLES FOR TEST DIRECTOR, SAFETY AND QUALITY ASSURANCE REPRESENTATIVES. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert; Boone, Alan R.
2003-01-01
Data from the test of a large semispan model was used to perform a direct validation of a wall interference correction system for a transonic slotted wall wind tunnel. At first, different sets of uncorrected aerodynamic coefficients were generated by physically changing the boundary condition of the test section walls. Then, wall interference corrections were computed and applied to all data points. Finally, an interpolation of the corrected aerodynamic coefficients was performed. This interpolation made sure that the corrected Mach number of a given run would be constant. Overall, the agreement between corresponding interpolated lift, drag, and pitching moment coefficient sets was very good. Buoyancy corrections were also investigated. These studies showed that the accuracy goal of one drag count may only be achieved if reliable estimates of the wall interference induced buoyancy correction are available during a test.
The self streamlining wind tunnel. [wind tunnel walls
NASA Technical Reports Server (NTRS)
Goodyer, M. J.
1975-01-01
A two dimensional test section in a low speed wind tunnel capable of producing flow conditions free from wall interference is presented. Flexible top and bottom walls, and rigid sidewalls from which models were mounted spanning the tunnel are shown. All walls were unperforated, and the flexible walls were positioned by screw jacks. To eliminate wall interference, the wind tunnel itself supplied the information required in the streamlining process, when run with the model present. Measurements taken at the flexible walls were used by the tunnels computer check wall contours. Suitable adjustments based on streamlining criteria were then suggested by the computer. The streamlining criterion adopted when generating infinite flowfield conditions was a matching of static pressures in the test section at a wall with pressures computed for an imaginary inviscid flowfield passing over the outside of the same wall. Aerodynamic data taken on a cylindrical model operating under high blockage conditions are presented to illustrate the operation of the tunnel in its various modes.
Plant cell walls throughout evolution: towards a molecular understanding of their design principles.
Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred
2009-01-01
Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche, which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.
Small-Scale Metal Tanks for High Pressure Storage of Fluids
NASA Technical Reports Server (NTRS)
London, Adam (Inventor)
2016-01-01
Small scale metal tanks for high-pressure storage of fluids having tank factors of more than 5000 meters and volumes of ten cubic inches or less featuring arrays of interconnected internal chambers having at least inner walls thinner than gage limitations allow. The chambers may be arranged as multiple internal independent vessels. Walls of chambers that are also portions of external tank walls may be arcuate on the internal and/or external surfaces, including domed. The tanks may be shaped adaptively and/or conformally to an application, including, for example, having one or more flat outer walls and/or having an annular shape. The tanks may have dual-purpose inlet/outlet conduits of may have separate inlet and outlet conduits. The tanks are made by fusion bonding etched metal foil layers patterned from slices of a CAD model of the tank. The fusion bonded foil stack may be further machined.
NASA Astrophysics Data System (ADS)
Abramski, Marcin
2017-10-01
Porous concrete is commonly used in civil engineering due to its good thermal insulation properties in comparison with normal concrete and high compression strength in comparison with other building materials. Reducing of the concrete density can be obviously obtained by using lightweight aggregate (e.g. pumice). The concrete density can be further minimized by using specially graded coarse aggregate and little-to-no fine aggregates. In this way a large number of air voids arise. The aggregate particles are coated by a cement paste and bonded together with it just in contact points. Such an extremely porous concrete, called ‘lightweight aggregate concrete with open structure’ (LAC), is used in some German plants to produce prefabricated wall components. They are used mainly in hall buildings, e.g. supermarkets. The need of improving thermal insulation properties was an inspiration for the prefabrication plant managers, engineers and a scientific staff of the Technical University of Kaiserslautern / Germany to realise an interesting project. Its aim was to reduce the heat transfer coefficient for the wall components. Three different wall structure types were designed and compared in full-scale laboratory tests with originally produced wall components in terms of load-carrying capacity and stiffness. The load was applied perpendicularly to the wall plane. As the components are not originally used for load-bearing walls, but for curtain walls only, the wind load is the main load for them. The wall components were tested in horizontal position and the load was applied vertically. Totally twelve wall components 8.00 × 2.00 × 0.25m (three for every series) were produced in the prefabrication plant and tested in the University of Kaiserslautern laboratory. The designed and tested components differed from each other in the amount of expanded polystyrene (EPS), which was placed in the plant inside the wall structure. The minimal amount of it was designed in the original wall component type. Besides, two improved types of prefabricated wall had built-in steel lattice girders. The failure mode was the same for all the tested components: diagonal cracks occurred on the sides of each component due to their insufficient shear-force-capacity. The span deflection was measured during all the tests by means of LVDTs. Load-carrying capacities obtained in the tests were for all wall structure types similar and much higher (many times) than internal forces (i.e. bending moments and shear forces) calculated for a wind load acting on a typical hall building according to the German codes. An increased amount of EPS (up to 30 per cent in volume) did not influence significantly the wall structural strength. The use of the steel lattice girders caused some technological problems and led to a quality loss of the produced components. The future use of the lattice girders would require a change in the production process: it would have to be more labour consuming.
Failure of flight feathers under uniaxial compression.
Schelestow, Kristina; Troncoso, Omar P; Torres, Fernando G
2017-09-01
Flight feathers are light weight engineering structures. They have a central shaft divided in two parts: the calamus and the rachis. The rachis is a thinly walled conical shell filled with foam, while the calamus is a hollow tube-like structure. Due to the fact that bending loads are produced during birds' flight, the resistance to bending of feathers has been reported in different studies. However, the analysis of bent feathers has shown that compression could induce failure by buckling. Here, we have studied the compression of feathers in order to assess the failure mechanisms involved. Axial compression tests were carried out on the rachis and the calamus of dove and pelican feathers. The failure mechanisms and folding structures that resulted from the compression tests were observed from images obtained by scanning electron microscopy (SEM). The rachis and calamus fail due to structural instability. In the case of the calamus, this instability leads to a progressive folding process. In contrast, the rachis undergoes a typical Euler column-type buckling failure. The study of failed specimens showed that delamination buckling, cell collapse and cell densification are the primary failure mechanisms of the rachis structure. The role of the foam is also discussed with regard to the mechanical response of the samples and the energy dissipated during the compression tests. Critical stress values were calculated using delamination buckling models and were found to be in very good agreement with the experimental values measured. Failure analysis and mechanical testing have confirmed that flight feathers are complex thin walled structures with mechanical adaptations that allow them to fulfil their functions. Copyright © 2017 Elsevier B.V. All rights reserved.
7. ENGINE TEST CELL BUILDING INTERIOR. WALL MAP IN CENTRAL ...
7. ENGINE TEST CELL BUILDING INTERIOR. WALL MAP IN CENTRAL BASEMENT OFFICE AREA. LOOKING SOUTHWEST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA
A survey of some solar energy retrofits.
DOT National Transportation Integrated Search
1981-01-01
The report briefly describes a survey of some solar energy retrofits, such as solar heaters and Trombe walls, that can be easily adapted into existing buildings belonging to the Department. With their relatively high cost, commercial solar heaters ha...
Nonlinear analysis of composite thin-walled helicopter blades
NASA Astrophysics Data System (ADS)
Kalfon, J. P.; Rand, O.
Nonlinear theoretical modeling of laminated thin-walled composite helicopter rotor blades is presented. The derivation is based on nonlinear geometry with a detailed treatment of the body loads in the axial direction which are induced by the rotation. While the in-plane warping is neglected, a three-dimensional generic out-of-plane warping distribution is included. The formulation may also handle varying thicknesses and mass distribution along the cross-sectional walls. The problem is solved by successive iterations in which a system of equations is constructed and solved for each cross-section. In this method, the differential equations in the spanwise directions are formulated and solved using a finite-differences scheme which allows simple adaptation of the spanwise discretization mesh during iterations.
Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls
Currivan-Incorvia, J. A.; Siddiqui, S.; Dutta, S.; Evarts, E. R.; Zhang, J.; Bono, D.; Ross, C. A.; Baldo, M. A.
2016-01-01
Spintronic computing promises superior energy efficiency and nonvolatility compared to conventional field-effect transistor logic. But, it has proven difficult to realize spintronic circuits with a versatile, scalable device design that is adaptable to emerging material physics. Here we present prototypes of a logic device that encode information in the position of a magnetic domain wall in a ferromagnetic wire. We show that a single three-terminal device can perform inverter and buffer operations. We demonstrate one device can drive two subsequent gates and logic propagation in a circuit of three inverters. This prototype demonstration shows that magnetic domain wall logic devices have the necessary characteristics for future computing, including nonlinearity, gain, cascadability, and room temperature operation. PMID:26754412
NASA Astrophysics Data System (ADS)
Schonberg, William P.
Traditional perforation-resistant wall design for long-duration spacecraft consists of a "bumper" that is placed a small distance away from the main "pressure wall" of a spacecraft compartment or module. This concept has been studied extensively as a means of reducing the perforation threat of hypervelocity projectiles such as meteoroids and orbital debris. If a dual-wall system is employed on an earth-orbiting spacecraft, then a blanket of multi-layer insulation (MLI) will typically be included within the dual-wall system for thermal protection purposes. This paper presents the results of an experimental study in which aluminum dual-wall structures were tested under a variety of high-speed impact conditions to study the effect of MLI thickness and location on perforation resistance. The results presented consist of test-by-test comparisons of the damage sustained by similar dual-wall systems with blanket MLI of various thicknesses and at various locations within the dual-wall systems under similar impact loading conditions. The analyses performed revealed that the placement of the MLI had a significant effect on the ballistic limit of the dual-wall structures considered while reducing the thickness of the MLI by as much as 1/3 did not.
Reconstruction and Modelling of Cylinder Test Wall Expansion from Heterodyne Velocimetry Data
NASA Astrophysics Data System (ADS)
Hodgson, Alexander
2015-06-01
The `cylinder test' is comprised of a cylinder of explosive encased in a copper tube and detonated at one end. Analysis of the copper wall expansion can be used to generate a JWL equation of state for the explosive. The wall arrival times are traditionally measured using angled probe boards. These times are converted to radial expansion times using the measured steady state detonation velocity. This expansion represents the intersection of the wall with a radial line, hence its differential is the radial intersection velocity. The true radial wall velocity is different due to the small component of particle velocity along the axis. Wall velocities can be directly measured using a Heterodyne Velocimetry (HetV) diagnostic, to a high degree of temporal resolution. However, the wall profile cannot be reconstructed from a standard HetV probe due to a lack of spatial information. This work describes how velocity traces from two HetV probes at different angles can be combined to evaluate the path of a particle on the copper wall, and how the wall profile may then be reconstructed. The method is applied to data from cylinder test experiments on a conventional high explosive. Results are validated using hydrocode modelling coupled with Detonation Shock Dynamics theory.
Iodine Beam Dump Design and Fabrication
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Bradley, D. E.
2017-01-01
During the testing of electric thrusters, high-energy ions impacting the walls of a vacuum chamber can cause corrosion and/or sputtering of the wall materials, which can damage the chamber walls. The sputtering can also introduce the constituent materials of the chamber walls into an experiment, with those materials potentially migrating back to the test article and coating it with contaminants over time. The typical method employed in this situation is to install a beam dump fabricated from materials that have a lower sputter yield, thus reducing the amount of foreign material that could migrate towards the test article or deposit on anything else present in the vacuum facility.
High-Resolution CT and Angiographic Evaluation of NexStent Wall Adaptation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemes, Balazs, E-mail: nembal@freemail.hu; Lukacs, Levente; Balazs, Gyoergy
2009-05-15
Carotid stenting is a minimally invasive treatment for extracranial carotid artery stenosis. Stent design may affect technical success and complications in a certain subgroup of patients. We examined the wall adaptability of a new closed-cell carotid stent (NexStent), which has a unique rolled sheet design. Forty-one patients had 42 carotid arteries treated with angioplasty and stenting for internal carotid artery stenosis. The mean patient age was 65 {+-} 10 years. All patients underwent high-resolution computed tomographic angiography after the stent implantation. Data analysis included pre- and postprocedural stenosis, procedure complications, plaque calcification, and stent apposition. We reviewed the angiographic andmore » computed tomographic images for plaque coverage and stent expansion. All procedures were technically successful. Mean stenosis was reduced from 84 {+-} 8% before the procedure to 15.7 {+-} 7% after stenting. Two patients experienced transient ischemic attack; one patient had bradycardia and hypotension. Stent induced kinking was observed in one case. Good plaque coverage and proper overlapping of the rolled sheet was achieved in all cases. There was weak correlation between the residual stenosis and the amount of calcification. The stent provides adequate expansion and adaptation to the tapering anatomy of the bifurcation.« less
Protective sheath for a continuous measurement thermocouple
Phillippi, R.M.
1991-12-03
Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device. 4 figures.
Protective sheath for a continuous measurement thermocouple
Phillippi, R. Michael
1991-01-01
Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device.
On the interpretation of combined torsion and tension tests of thin-wall tubes
NASA Technical Reports Server (NTRS)
Prager, W
1948-01-01
General ways of testing thin-wall tubes under combined tension and torsion as a means of checking the various theories of plasticity are discussed. Suggestions also are given for the interpretation of the tests.
The Real-Time Wall Interference Correction System of the NASA Ames 12-Foot Pressure Wind Tunnel
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert
1998-01-01
An improved version of the Wall Signature Method was developed to compute wall interference effects in three-dimensional subsonic wind tunnel testing of aircraft models in real-time. The method may be applied to a full-span or a semispan model. A simplified singularity representation of the aircraft model is used. Fuselage, support system, propulsion simulator, and separation wake volume blockage effects are represented by point sources and sinks. Lifting effects are represented by semi-infinite line doublets. The singularity representation of the test article is combined with the measurement of wind tunnel test reference conditions, wall pressure, lift force, thrust force, pitching moment, rolling moment, and pre-computed solutions of the subsonic potential equation to determine first order wall interference corrections. Second order wall interference corrections for pitching and rolling moment coefficient are also determined. A new procedure is presented that estimates a rolling moment coefficient correction for wings with non-symmetric lift distribution. Experimental data obtained during the calibration of the Ames Bipod model support system and during tests of two semispan models mounted on an image plane in the NASA Ames 12 ft. Pressure Wind Tunnel are used to demonstrate the application of the wall interference correction method.
49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the formula: S = PD / 4tE Where: S = Wall stress in psi; P = Test pressure prescribed for water jacket... stainless steel sphere (two seamless hemispheres) or circumferentially welded cylinder both with a water... thickness. The minimum wall thickness must be such that the wall stress at the minimum specified test...
ETR BUILDING, TRA642, INTERIOR. BASEMENT. CORRIDOR ALONG WEST WALL OF ...
ETR BUILDING, TRA-642, INTERIOR. BASEMENT. CORRIDOR ALONG WEST WALL OF BUILDING, WHICH IS AT RIGHT OF VIEW. AUDIO ALARM IS ALONG WALL AT RIGHT. CAMERA FACES SOUTH. INL NEGATIVE NO. HD46-30-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Determination of seismic performance factors for CLT shear wall systems
M. Omar Amini; John W. van de Lindt; Douglas Rammer; Shiling Pei; Philip Line; Marjan Popovski
2016-01-01
This paper presents selected results of connector testing and wall testing which were part of a Forest Products Lab-funded project undertaken at Colorado State University in an effort to determine seismic performance factors for cross laminated timber (CLT) shear walls in the United States. Archetype development, which is required as part of the process, is also...
NASA Astrophysics Data System (ADS)
Pradhan, Aniruddhe; Akhavan, Rayhaneh
2017-11-01
Effect of collision model, subgrid-scale model and grid resolution in Large Eddy Simulation (LES) of wall-bounded turbulent flows with the Lattice Boltzmann Method (LBM) is investigated in turbulent channel flow. The Single Relaxation Time (SRT) collision model is found to be more accurate than Multi-Relaxation Time (MRT) collision model in well-resolved LES. Accurate LES requires grid resolutions of Δ+ <= 4 in the near-wall region, which is comparable to Δ+ <= 2 required in DNS. At larger grid resolutions SRT becomes unstable, while MRT remains stable but gives unacceptably large errors. LES with no model gave errors comparable to the Dynamic Smagorinsky Model (DSM) and the Wall Adapting Local Eddy-viscosity (WALE) model. The resulting errors in the prediction of the friction coefficient in turbulent channel flow at a bulk Reynolds Number of 7860 (Reτ 442) with Δ+ = 4 and no-model, DSM and WALE were 1.7%, 2.6%, 3.1% with SRT, and 8.3% 7.5% 8.7% with MRT, respectively. These results suggest that LES of wall-bounded turbulent flows with LBM requires either grid-embedding in the near-wall region, with grid resolutions comparable to DNS, or a wall model. Results of LES with grid-embedding and wall models will be discussed.
Lancaster, W C; Henson, O W
1995-01-01
We investigated the structure of the abdominal wall of Pteronotus parnellii and made comparisons with eight other species of Microchiroptera and one megachiropteran. Similar to other mammals, the abdominal wall of bats consists of the three flank muscles laterally and the m. rectus abdominis ventrally. In Microchiroptera, flank muscles are mostly confined to dorsal portions of the wall. The mm. transversus abdominis and obliquus internus abdominis form the bulk of the wall; the m. obliquus externus is poorly developed. Ventrolaterally, a large portion of the wall is a dense, bilaminar aponeurosis, composed of collagen, elastin, and fibroblasts. The thicker, superficial lamina derives from the mm. obliquus internus and transversus abdominis. The deep lamina is a continuation of the transversalis fascia. Collagen fibers of the two fused laminae are oriented orthogonally, resulting in a resilient, composite fabric. Fascicles of the flank muscles are oriented along the margins of the aponeurosis so that their forces appear to be concentrated onto the aponeurosis. We suggest that this system is adapted for the regulation and generation of intra-abdominal pressure. The abdominal wall of Pteropus, the one megachiropteran examined, lacks the derived aponeurosis and is similar to other mammals. We consider the abdominal wall of Microchiroptera to be analogous to the diaphragma, in that it functions in the regulation of pressure within body cavities and facilitates biosonar vocalization.
Outside-in control -Does plant cell wall integrity regulate cell cycle progression?
Gigli-Bisceglia, Nora; Hamann, Thorsten
2018-04-13
During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity while, simultaneously, cell wall integrity can influence cellular processes. In yeast and animal cells such a bi-directional relationship also exists between the yeast/animal extra-cellular matrices and the cell cycle. In yeast, the cell wall integrity maintenance mechanism and a dedicated plasmamembrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extra cellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant cell wall integrity maintenance mechanism might also control cell cycle activity in plant cells. This article is protected by copyright. All rights reserved.
Cell wall proteome analysis of Arabidopsis thaliana mature stems.
Duruflé, Harold; Clemente, Hélène San; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth
2017-04-01
Plant stems carry flowers necessary for species propagation and need to be adapted to mechanical disturbance and environmental factors. The stem cell walls are different from other organs and can modify their rigidity or viscoelastic properties for the integrity and the robustness required to withstand mechanical impacts and environmental stresses. Plant cell wall is composed of complex polysaccharide networks also containing cell wall proteins (CWPs) crucial to perceive and limit the environmental effects. The CWPs are fundamental players in cell wall remodeling processes, and today, only 86 have been identified from the mature stems of the model plant Arabidopsis thaliana. With a destructive method, this study has enlarged its coverage to 302 CWPs. This new proteome is mainly composed of 27.5% proteins acting on polysaccharides, 16% proteases, 11.6% oxido-reductases, 11% possibly related to lipid metabolism and 11% of proteins with interacting domains with proteins or polysaccharides. Compared to stem cell wall proteomes already available (Brachypodium distachyon, Sacharum officinarum, Linum usitatissimum, Medicago sativa), that of A. thaliana stems has a higher proportion of proteins acting on polysaccharides and of proteases, but a lower proportion of oxido-reductases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Will, Torsten; Steckbauer, Kathrin; Hardt, Martin; van Bel, Aart J. E.
2012-01-01
In order to separate and analyze saliva types secreted during stylet propagation and feeding, aphids were fed on artificial diets. Gel saliva was deposited as chains of droplets onto Parafilm membranes covering the diets into which watery saliva was secreted. Saliva compounds collected from the diet fluid were separated by SDS-PAGE, while non-soluble gel saliva deposits were processed in a novel manner prior to protein separation by SDS-PAGE. Soluble (watery saliva) and non-soluble (gel saliva) protein fractions were significantly different. To test the effect of the stylet milieu on saliva secretion, aphids were fed on various diets. Hardening of gel saliva is strongly oxygen-dependent, probably owing to formation of sulfide bridges by oxidation of sulphydryl groups. Surface texture of gel saliva deposits is less pronounced under low-oxygen conditions and disappears in dithiothreitol containing diet. Using diets mimicking sieve-element sap and cell-wall fluid respectively showed that the soluble protein fraction was almost exclusively secreted in sieve elements while non-soluble fraction was preferentially secreted at cell wall conditions. This indicates that aphids are able to adapt salivary secretion in dependence of the stylet milieu. PMID:23056521
Shake-table testing of a self-centering precast reinforced concrete frame with shear walls
NASA Astrophysics Data System (ADS)
Lu, Xilin; Yang, Boya; Zhao, Bin
2018-04-01
The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination of unbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions.
Study of the integration of wind tunnel and computational methods for aerodynamic configurations
NASA Technical Reports Server (NTRS)
Browne, Lindsey E.; Ashby, Dale L.
1989-01-01
A study was conducted to determine the effectiveness of using a low-order panel code to estimate wind tunnel wall corrections. The corrections were found by two computations. The first computation included the test model and the surrounding wind tunnel walls, while in the second computation the wind tunnel walls were removed. The difference between the force and moment coefficients obtained by comparing these two cases allowed the determination of the wall corrections. The technique was verified by matching the test-section, wall-pressure signature from a wind tunnel test with the signature predicted by the panel code. To prove the viability of the technique, two cases were considered. The first was a two-dimensional high-lift wing with a flap that was tested in the 7- by 10-foot wind tunnel at NASA Ames Research Center. The second was a 1/32-scale model of the F/A-18 aircraft which was tested in the low-speed wind tunnel at San Diego State University. The panel code used was PMARC (Panel Method Ames Research Center). Results of this study indicate that the proposed wind tunnel wall correction method is comparable to other methods and that it also inherently includes the corrections due to model blockage and wing lift.
NASA Technical Reports Server (NTRS)
Pessin, R.
1983-01-01
Tool locally expands small-diameter tubes. Tube expander locally expands and deforms tube: Compressive lateral stress induced in elastomeric sleeve by squeezing axially between two metal tool parts. Adaptable to situations in which tube must have small bulge for mechanical support or flow control.
Plant cell walls throughout evolution: towards a molecular understanding of their design principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred
Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche,which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell wallsmore » display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.« less
Roycewicz, Peter S; Malamy, Jocelyn E
2014-05-01
Plants adapt to their unique soil environments by altering the number and placement of lateral roots post-embryonic. Mutants were identified in Arabidopsis thaliana that exhibit increased lateral root formation. Eight mutants were characterized in detail and were found to have increased lateral root formation due to at least three distinct mechanisms. The causal mutation in one of these mutants was found in the XEG113 gene, recently shown to be involved in plant cell wall biosynthesis. Lateral root primordia initiation is unaltered in this mutant. In contrast, synchronization of lateral root initiation demonstrated that mutation of XEG113 increases the rate at which lateral root primordia develop and emerge to form lateral roots. The effect of the XEG113 mutation was specific to the root system and had no apparent effect on shoot growth. Screening of 17 additional cell wall mutants, altering a myriad of cell wall components, revealed that many (but not all) types of cell wall defects promote lateral root formation. These results suggest that proper cell wall biosynthesis is necessary to constrain lateral root primordia emergence. While previous reports have shown that lateral root emergence is accompanied by active remodelling of cell walls overlying the primordia, this study is the first to demonstrate that alteration of the cell wall is sufficient to promote lateral root formation. Therefore, inherent cell wall properties may play a previously unappreciated role in regulation of root system architecture.
Improvement of Subsonic Basic Research Tunnel Flow Quality as Applied to Wall Mounted Testing
NASA Technical Reports Server (NTRS)
Howerton, Brian M.
1995-01-01
A survey to determine the characteristics of a boundary layer that forms on the wall of the Subsonic Basic Research Tunnel has been performed. Early results showed significant differences in the velocity profiles as measured spanwise across the wall. An investigation of the flow in the upstream contraction revealed the presence of a separation bubble at the beginning of the contraction which caused much of the observed unsteadiness. Vortex generators were successfully applied to the contraction inlet to alleviate the separation. A final survey of the wall boundary layer revealed variations in the displacement and momentum thicknesses to be less than +/- 5% for all but the most upper portion of the wall. The flow quality was deemed adequate to continue the planned follow-on tests to help develop the semi-span test technique.
The effect of wind tunnel wall interference on the performance of a fan-in-wing VTOL model
NASA Technical Reports Server (NTRS)
Heyson, H. H.
1974-01-01
A fan-in-wing model with a 1.07-meter span was tested in seven different test sections with cross-sectional areas ranging from 2.2 sq meters to 265 sq meters. The data from the different test sections are compared both with and without correction for wall interference. The results demonstrate that extreme care must be used in interpreting uncorrected VTOL data since the wall interference may be so large as to invalidate even trends in the data. The wall interference is particularly large at the tail, a result which is in agreement with recently published comparisons of flight and large scale wind tunnel data for a propeller-driven deflected-slipstream configuration. The data verify the wall-interference theory even under conditions of extreme interference. A method yields reasonable estimates for the onset of Rae's minimum-speed limit. The rules for choosing model sizes to produce negligible wall effects are considerably in error and permit the use of excessively large models.
NASA Technical Reports Server (NTRS)
Sawada, H.; Sakakibara, S.; Sato, M.; Kanda, H.; Karasawa, T.
1984-01-01
A quantitative evaluation method of the suction effect from a suction plate on side walls is explained. It is found from wind tunnel tests that the wall interference is basically described by the summation form of wall interferences in the case of two dimensional flow and the interference of side walls.
Rocker, Andrea; Peschke, Madeleine; Kittilä, Tiia; Sakson, Roman; Brieke, Clara; Meinhart, Anton
2018-04-27
Bacterial toxin-antitoxin complexes are emerging as key players modulating bacterial physiology as activation of toxins induces stasis or programmed cell death by interference with vital cellular processes. Zeta toxins, which are prevalent in many bacterial genomes, were shown to interfere with cell wall formation by perturbing peptidoglycan synthesis in Gram-positive bacteria. Here, we characterize the epsilon/zeta toxin-antitoxin (TA) homologue from the Gram-negative pathogen Neisseria gonorrhoeae termed ng_ɛ1 / ng_ζ1. Contrary to previously studied streptococcal epsilon/zeta TA systems, ng_ɛ1 has an epsilon-unrelated fold and ng_ζ1 displays broader substrate specificity and phosphorylates multiple UDP-activated sugars that are precursors of peptidoglycan and lipopolysaccharide synthesis. Moreover, the phosphorylation site is different from the streptococcal zeta toxins, resulting in a different interference with cell wall synthesis. This difference most likely reflects adaptation to the individual cell wall composition of Gram-negative and Gram-positive organisms but also the distinct involvement of cell wall components in virulence.
Process for making silicon from halosilanes and halosilicons
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1988-01-01
A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1987-01-01
A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.
Auer, George K; Weibel, Douglas B
2017-07-25
Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.
Explosives screening on a vehicle surface
Parmeter, John E.; Brusseau, Charles A.; Davis, Jerry D.; Linker, Kevin L.; Hannum, David W.
2005-02-01
A system for detecting particles on the outer surface of a vehicle has a housing capable of being placed in a test position adjacent to, but not in contact with, a portion of the outer surface of the vehicle. An elongate sealing member is fastened to the housing along a perimeter surrounding the wall, and the elongate sealing member has a contact surface facing away from the wall to contact the outer surface of the vehicle to define a test volume when the wall is in the test position. A gas flow system has at least one gas inlet extending through the wall for providing a gas stream against the surface of the vehicle within the test volume. This gas stream, which preferably is air, dislodges particles from the surface of the vehicle covered by the housing. The gas stream exits the test volume through a gas outlet and particles in the stream are detected.
Chest Wall Motion during Speech Production in Patients with Advanced Ankylosing Spondylitis
ERIC Educational Resources Information Center
Kalliakosta, Georgia; Mandros, Charalampos; Tzelepis, George E.
2007-01-01
Purpose: To test the hypothesis that ankylosing spondylitis (AS) alters the pattern of chest wall motion during speech production. Method: The pattern of chest wall motion during speech was measured with respiratory inductive plethysmography in 6 participants with advanced AS (5 men, 1 woman, age 45 plus or minus 8 years, Schober test 1.45 plus or…
NASA Technical Reports Server (NTRS)
Wolf, S. W. D.; Goodyer, M. J.
1982-01-01
Operation of the Transonic Self-Streamlining Wind Tunnel (TSWT) involved on-line data acquisition with automatic wall adjustment. A tunnel run consisted of streamlining the walls from known starting contours in iterative steps and acquiring model data. Each run performs what is described as a streamlining cycle. The associated software is presented.
Spall Damage of Concrete Structures
1988-06-01
structures prediction Structural response Cased charges Scabbing Tests Concrete walls--testing . emi -hardened Upgrading Conventional weapons Spall Weapon...recording devices in a trailer approximately 750 feet from the test pit. Up to 30 channels were recorded on a Sangamo Model III, 32-channel FM magnetic tape...6.7"’DEEP 23.6" N 21’.6" 0.114? 4000 0 73670636 RATx.000620 RAT%.000520 SHEILD WALL DESTROYED MAIM WALL 0.2611 4000 0.S9001025 RAT-.000S29 RATa.000S20
Strength Tests on Thin-walled Duralumin Cylinders in Torsion
NASA Technical Reports Server (NTRS)
Lundquist, Eugene E
1932-01-01
This report is the first of a series presenting the results of strength tests on thin-walled cylinders and truncated cones of circular and elliptical section; it comprises the results obtained to date from torsion (pure shear) tests on 65 thin-walled duralumin cylinders of circular section with ends clamped to rigid bulkheads. The effect of variations in the length/radius and radius/thickness ratios on the type of failure is indicated, and a semi-empirical equation for the shearing stress at maximum load is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubica, Jan; Kwiecien, Arkadiusz; Zajac, Boguslaw
2008-07-08
There are many methods of crack repairing in masonry structures. One of them is repair and strengthening by using of superficial fixed laminates, especially in case of masonry walls with plastering on their both sides. The initial laboratory tests of three different types of strengthening of diagonal cracked masonry wallettes are presented. Tests concerned three clay brick masonry walls subjected to horizontal shearing with two levels of precompression and strengthened by flexible polymer injection, superficial glass fixed by polymer fibre laminate plates and using of CRFP strips stiff fixed to the wall surface by polymer and stiff resin epoxy fixingmore » are presented and discussed.« less
Code of Federal Regulations, 2011 CFR
2011-10-01
... elastic expansion was determined at the time of the last test or retest by the water jacket method. (3) Either the average wall stress or the maximum wall stress does not exceed the wall stress limitation shown in the following table: Type of steel Average wall stress limitation Maximum wall stress...
Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun
2014-08-19
Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.
Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun
2014-01-01
Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied. PMID:28788170
LPT. Low power test control building (TAN641) interior. Camera facing ...
LPT. Low power test control building (TAN-641) interior. Camera facing northeast at what remains of control room console. Cut in wall at right of view shows west wall of northern test cell. INEEL negative no. HD-40-4-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Full-season demographics (pelagic births and deaths, diapause egg production) provide valuable insights into species persistence and dispersal success. The spiny cladoceran (Bythotrephes) possesses morphological adaptations (spines and thick-walled diapause eggs) that lessen impa...
Zimmermann, Moritz; Valcanaia, Andre; Neiva, Gisele; Mehl, Albert; Fasbinder, Dennis
2017-11-30
Several methods for the evaluation of fit of computer-aided design/computer-assisted manufacture (CAD/CAM)-fabricated restorations have been described. In the study, digital models were recorded with an intraoral scanning device and were measured using a new three-dimensional (3D) computer technique to evaluate restoration internal fit. The aim of the study was to evaluate the internal adaptation and fit of chairside CAD/CAM-fabricated zirconia-reinforced lithium silicate ceramic crowns fabricated with different post-milling protocols. The null hypothesis was that different post-milling protocols did not influence the fitting accuracy of zirconia-reinforced lithium silicate restorations. A master all-ceramic crown preparation was completed on a maxillary right first molar on a typodont. Twenty zirconia-reinforced lithium silicate ceramic crowns (Celtra Duo, Dentsply Sirona) were designed and milled using a chairside CAD/CAM system (CEREC Omnicam, Dentsply Sirona). The 20 crowns were randomly divided into two groups based on post-milling protocols: no manipulation after milling (Group MI) and oven fired-glazing after milling (Group FG). A 3D computer method was used to evaluate the internal adaptation of the crowns. This was based on a subtractive analysis of a digital scan of the crown preparation and a digital scan of the thickness of the cement space over the crown preparation as recorded by a polyvinylsiloxane (PVS) impression material. The preparation scan and PVS scan were matched in 3D and a 3D difference analysis was performed with a software program (OraCheck, Cyfex). Three areas of internal adaptation and fit were selected for analysis: margin (MA), axial wall (AX), and occlusal surface (OC). Statistical analysis was performed using 80% percentile and one-way ANOVA with post-hoc Scheffé test (P = .05). The closest internal adaptation of the crowns was measured at the axial wall with 102.0 ± 11.7 µm for group MI-AX and 106.3 ± 29.3 µm for group FG-AX. The largest internal adaptation of the crowns was measured for the occlusal surface with 258.9 ± 39.2 µm for group MI-OC and 260.6 ± 55.0 µm for group FG-OC. No statistically significant differences were found for the post-milling protocols (P > .05). The 3D difference pattern was visually analyzed for each area with a color-coded scheme. Post-milling processing did not affect the internal adaptation of zirconia-reinforced lithium silicate crowns fabricated with a chairside CAD/CAM technique. The new 3D computer technique for the evaluation of fit of restorations may be highly promising and has the opportunity to be applied to clinical studies.
Immersion Refractometry of Isolated Bacterial Cell Walls
Marquis, Robert E.
1973-01-01
Immersion-refractometric and light-scattering measurements were adapted to determinations of average refractive indices and physical compactness of isolated bacterial cell walls. The structures were immersed in solutions containing various concentrations of polymer molecules that cannot penetrate into wall pores, and then an estimate was made of the polymer concentration or the refractive index of the polymer solution in which light scattering was reduced to zero. Because each wall preparation was heterogeneous, the refractive index of the medium for zero light scattering had to be estimated by extrapolation. Refractive indices for walls suspended in bovine serum albumin solutions ranged from 1.348 for walls of the rod form of Arthrobacter crystallopoietes to 1.382 for walls of the teichoic acid deficient, 52A5 strain of Staphylococcus aureus. These indices were used to calculate approximate values for solids content per milliliter, and the calculated values agreed closely with those estimated from a knowledge of dextran-impermeable volumes per gram, dry weight, of the walls. When large molecules such as dextrans or serum albumin were used for immersion refractometry, the refractive indices obtained were for entire walls, including both wall polymers and wall water. When smaller molecules that can penetrate wall pores to various extents were used with Micrococcus lysodeikticus walls, the average, apparent refractive index of the structures increased as the molecular size of probing molecules was decreased. It was possible to obtain an estimate of 1.45 to 1.46 for the refractive index of wall polymers, predominantly peptidoglycans in this case, by extrapolating the curve for refractive index versus molecular radius to a value of 0.2 nm, the approximate radius of a water molecule. This relatively low value for polymer refractive index was interpreted as evidence in favor of the amorphous, elastic model of peptidoglycan structure and against the crystalline, rigid model. PMID:4201772
Energy Conversion in High Enthalpy Flows and Non-equilibrium Plasmas
2014-01-01
walls of the supersonic test section after the nozzle exit diverge at a 1.5 degree angle each to provide boundary- layer relief. The static pressure in...the supersonic section is measured using a wall pressure tap in the side wall at the end of the nozzle . A 4 cm long, 5 mm diameter quartz cylinder...model is mounted in the center of the 7 cm long supersonic test section, i.e., 3.5 cm downstream of the end of the nozzle . The model extends wall-to
Failure Behavior of Elbows with Local Wall Thinning
NASA Astrophysics Data System (ADS)
Lee, Sung-Ho; Lee, Jeong-Keun; Park, Jai-Hak
Wall thinning defect due to corrosion is one of major aging phenomena in carbon steel pipes in most plant industries, and it results in reducing load carrying capacity of the piping components. A failure test system was set up for real scale elbows containing various simulated wall thinning defects, and monotonic in-plane bending tests were performed under internal pressure to find out the failure behavior of them. The failure behavior of wall-thinned elbows was characterized by the circumferential angle of thinned region and the loading conditions to the piping system.
Experimental Investigations on Axially and Eccentrically Loaded Masonry Walls
NASA Astrophysics Data System (ADS)
Keshava, Mangala; Raghunath, Seshagiri Rao
2017-12-01
In India, un-reinforced masonry walls are often used as main structural components in load bearing structures. Indian code on masonry accounts the reduction in strength of walls by using stress reduction factors in its design philosophy. This code was introduced in 1987 and reaffirmed in 1995. The present study investigates the use of these factors for south Indian masonry. Also, with the gaining popularity in block work construction, the aim of this study was to find out the suitability of these factors given in the Indian code to block work masonry. Normally, the load carrying capacity of masonry walls can be assessed in three ways, namely, (1) tests on masonry constituents, (2) tests on masonry prisms and (3) tests on full-scale wall specimens. Tests on bricks/blocks, cement-sand mortar, brick/block masonry prisms and 14 full-scale brick/block masonry walls formed the experimental investigation. The behavior of the walls was investigated under varying slenderness and eccentricity ratios. Hollow concrete blocks normally used as in-fill masonry can be considered as load bearing elements as its load carrying capacity was found to be high when compared to conventional brick masonry. Higher slenderness and eccentricity ratios drastically reduced the strength capacity of south Indian brick masonry walls. The reduction in strength due to slenderness and eccentricity is presented in the form of stress reduction factors in the Indian code. These factors obtained through experiments on eccentrically loaded brick masonry walls was lower while that of brick/block masonry under axial loads was higher than the values indicated in the Indian code. Also the reduction in strength is different for brick and block work masonry thus indicating the need for separate stress reduction factors for these two masonry materials.
Reinforcement mechanism of multi-anchor wall with double wall facing
NASA Astrophysics Data System (ADS)
Suzuki, Kouta; Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo
2017-10-01
The reinforced soil wall has high seismic performance as generally known. However, the seismic behavior has not been clarified accurately yet, especially on multi-anchor wall with double wall facing. Indefinite behavior of reinforced soil wall during earthquake make us complicated in case with adopting to the abutment, because of arrangement of anchor plate as reinforcement often different according to the width of roads. In this study, a series of centrifuge model tests were carried out to investigate the reinforcement mechanism of multi anchor wall with double wall facing from the perspective of the vertical earth pressure. Several types of reinforce arrangement and rigid wall were applied in order to verify the arch function in the reinforced regions. The test results show unique behavior of vertical earth pressure, which was affected by arch action. All the vertical earth pressure placed behind facing panel, are larger than that of middle part between facing panel despite of friction between backfill and facing panel. Similar results were obtained in case using rigid wall. On the other hands, the vertical earth pressure, which were measured at the 3cm high from bottom of model container, shows larger than that of bottom. This results show the existence of arch action between double walls. In addition, it implies that the wall facing of such soil structure confined the backfill as pseudo wall, which is very reason that the multi anchor wall with double wall facing has high seismic performance.
LiveWall Operational Evaluation: Seattle Law Enforcement Pilot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barr, Jonathan L.; Burtner, Edwin R.; Stein, Steven L.
2013-10-01
The LiveWall concept envisioned as an outgrowth of the Precision Information Environment (PIE) project allows communications between separate groups using interactive video, audio, and a shared desktop environment; this allows everyone to participate and collaborate in real time, regardless of location. The LiveWall concept provides a virtual window to other locations, where all parties can interact and collaboratively work with each other. This functionality is intended to improve multi-site coordination amongst emergency operations centers (EOC), field operations sites and across organizations and jurisdictions to accommodate communications during routine and emergency events. For the initial LiveWall operational evaluation PNNL partnered withmore » the Seattle Police Department (SPD). This partnership allowed for the creation of an excellent LiveWall test bed specific to law enforcement. This partnership made it possible to test the LiveWall concept with scenarios involving the many facets of the law enforcement work done by SPD. PNNL and SPD agreed that integrating the systems into operations for a real event would be the best test of the technology and give SPD staff greater visibility into the functionality and benefits offered by the LiveWall concept.« less
Gould, Billie; McCouch, Susan; Geber, Monica
2014-12-01
Studies of the wild grass Anthoxanthum odoratum at the long-term Park Grass Experiment (PGE, Harpenden, UK) document a well-known example of rapid plant evolution in response to environmental change. Repeated fertilizer applications have acidified the soil in some experimental plots over the past 150+ years, and Anthoxanthum subpopulations have quickly become locally adapted. Early reciprocal transplants showed subpopulation differentiation specifically in response to soil aluminium (Al) toxicity across the experiment, even at small (30 m) spatial scales. Almost 40 years after its original measurement, we reassessed the degree of local adaptation to soil Al at the PGE using updated phenotyping methods and identified genes with variation linked to the tolerance trait. Root growth assays show that plants are locally adapted to soil Al at both the seedling and adult growth stages, but to a smaller extent than previously inferred. Among a large suite of candidate loci that were previously shown to have Al-sensitive expression differences between sensitive and tolerant plants, three loci contained SNPs that are associated with both Al tolerance and soil acidity: an Al-sensitive malate transporter (ALMT), a tonoplast intrinsic protein (TIP) and the putative homolog of the rice cell-wall modification gene STAR1. Natural genetic variation at these loci is likely to have contributed to the recent rapid evolution at PGE. Continued study of Al tolerance variants in Anthoxanthum will allow us to test hypotheses about the nature and source of genetic variation that enables some species to adapt to soil acidification and other types of rapid environmental change. © 2014 John Wiley & Sons Ltd.
Assessment of Marginal Adaptation and Sealing Ability of Root Canal Sealers: An in vitro Study.
Remy, Vimal; Krishnan, Vineesh; Job, Tisson V; Ravisankar, Madhavankutty S; Raj, C V Renjith; John, Seena
2017-12-01
This study aims to compare the marginal adaptation and sealing ability [mineral trioxide aggregate (MTA)-Fillapex, AH Plus, Endofill sealers] of root canal sealers. In the present study, the inclusion criteria include 45 single-rooted extracted mandibular premolar teeth, with single canal and complete root formation. The sectioning of the samples was done at the cementoenamel junction using a low-speed diamond disc. Step-back technique was used to prepare root canals manually. The MTA-Fillapex, AH Plus, and Endofill sealers were the three experimental sealer groups to which 45 teeth were distributed. Under scanning electron microscope (SEM), marginal gap at sealer and root dentin interface were examined at coronal and apical halves of root canal. Among the three maximum marginal adaptations were seen with AH Plus sealer (4.10 ± 0.10) which is followed by Endofill sealer (1.44 ± 0.18) and MTA-Fillapex sealer (0.80 ± 0.22). Between the coronal and apical marginal adaptation, significant statistical difference (p = 0.001) was seen in AH Plus sealer. When a Mann-Whitney U-test was done on MTA-Fillapex sealer vs AH Plus sealer and AH Plus sealer vs Endofill sealer, there was a statistically significant difference (p < 0.05) found between the above two groups at coronal and apical third. The present study proves that AH Plus sealer has a better marginal adaptation when compared with other sealers used. For sealing space of crown wall and main cone in root canal treatment, sealers play an important role. The other advantages of sealers are that they are used to fill voids and irregularities in root channel, secondary, lateral channels, and space between applied gutta-percha cones and also act as tripper during filling.
NASA Technical Reports Server (NTRS)
Goodyer, M. J.
1985-01-01
This report covers work done in a transonic wind tunnel towards providing data on the influence of the movement of wall-control jacks on the Mach number perturbations along the test section. The data is derived using an existing streamline-curvature program, and in application is reduced to matrices of influence coefficients.
Room fire test for fire growth modeling : a sensitivity study
H. C. Tran; M. L. Janssens
1989-01-01
A room test designed according to the ASTM draft standard was used to investigate the effect of various parameters on the contribution of wall and corner fires to compartment fire growth. Location of the burner (against a wall or in a corner), power program of the gas burner ignition source, and combination of wall linings were varied, An initial series of calibration...
Man, V; Polzer, S; Gasser, T C; Novotny, T; Bursa, J
2018-03-01
Biomechanics-based assessment of Abdominal Aortic Aneurysm (AAA) rupture risk has gained considerable scientific and clinical momentum. However, computation of peak wall stress (PWS) using state-of-the-art finite element models is time demanding. This study investigates which features of the constitutive description of AAA wall are decisive for achieving acceptable stress predictions in it. Influence of five different isotropic constitutive descriptions of AAA wall is tested; models reflect realistic non-linear, artificially stiff non-linear, or artificially stiff pseudo-linear constitutive descriptions of AAA wall. Influence of the AAA wall model is tested on idealized (n=4) and patient-specific (n=16) AAA geometries. Wall stress computations consider a (hypothetical) load-free configuration and include residual stresses homogenizing the stresses across the wall. Wall stress differences amongst the different descriptions were statistically analyzed. When the qualitatively similar non-linear response of the AAA wall with low initial stiffness and subsequent strain stiffening was taken into consideration, wall stress (and PWS) predictions did not change significantly. Keeping this non-linear feature when using an artificially stiff wall can save up to 30% of the computational time, without significant change in PWS. In contrast, a stiff pseudo-linear elastic model may underestimate the PWS and is not reliable for AAA wall stress computations. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2006-01-01
Topics covered include: Magnetic-Field-Response Measurement-Acquisition System; Platform for Testing Robotic Vehicles on Simulated Terrain; Interferometer for Low-Uncertainty Vector Metrology; Rayleigh Scattering for Measuring Flow in a Nozzle Testing Facility; "Virtual Feel" Capaciflectors; FETs Based on Doped Polyaniline/Polyethylene Oxide Fibers; Miniature Housings for Electronics With Standard Interfaces; Integrated Modeling Environment; Modified Recursive Hierarchical Segmentation of Data; Sizing Structures and Predicting Weight of a Spacecraft; Stress Testing of Data-Communication Networks; Framework for Flexible Security in Group Communications; Software for Collaborative Use of Large Interactive Displays; Microsphere Insulation Panels; Single-Wall Carbon Nanotube Anodes for Lithium Cells; Tantalum-Based Ceramics for Refractory Composites; Integral Flexure Mounts for Metal Mirrors for Cryogenic Use; Templates for Fabricating Nanowire/Nanoconduit- Based Devices; Measuring Vapors To Monitor the State of Cure of a Resin; Partial-Vacuum-Gasketed Electrochemical Corrosion Cell; Theodolite Ring Lights; Integrating Terrain Maps Into a Reactive Navigation Strategy; Reducing Centroid Error Through Model-Based Noise Reduction; Adaptive Modeling Language and Its Derivatives; Stable Satellite Orbits for Global Coverage of the Moon; and Low-Cost Propellant Launch From a Tethered Balloon
Tomei, M Concetta; Mosca Angelucci, Domenica; Daugulis, Andrew J
2017-02-01
A continuous two-phase partitioning bioreactor (C-TPPB), operated with coiled tubing made of the DuPont polymer Hytrel 8206, was tested for the bioremediation of 4-chlorophenol, as a model toxic compound. The tubing was immersed in the aqueous phase, with the contaminated water flowing tube-side, and an adapted microbial culture suspended in the bioreactor itself, with the metabolic demand of the cells creating a concentration gradient to cause the substrate to diffuse into the bioreactor for biodegradation. The system was operated over a range of loadings (tubing influent concentration 750-1500 mg L -1 ), with near-complete substrate removal in all cases. Distribution of the contaminant at the end of the tests (96 h) highlighted biological removal in the range of 87-95%, while the amount retained in the polymer ranged from ∼1 to 8%. Mass transfer of the substrate across the tubing wall was not limiting, and the polymer demonstrated the capacity to buffer the substrate loadings and to adapt to microbial metabolism. The impact of C-TPPB operation on biomass activity was also investigated by a kinetic characterization of the microbial culture, which showed better resistance to substrate inhibition after C-TPPB operation, thereby confirming the beneficial effect of sub-inhibitory controlled conditions, characteristic of TPPB systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Turbulent Output-Based Anisotropic Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.; Carlson, Jan-Renee
2010-01-01
Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.
Palaeo‐adaptive Properties of the Xylem of Metasequoia: Mechanical/Hydraulic Compromises
JAGELS, RICHARD; VISSCHER, GEORGE E.; LUCAS, JOHN; GOODELL, BARRY
2003-01-01
The xylem of Metasequoia glyptostroboides Hu et Cheng is characterized by very low density (average specific gravity = 0·27) and tracheids with relatively large dimensions (length and diameter). The microfibril angle in the S2 layer of tracheid walls is large, even in outer rings, suggesting a cambial response to compressive rather than tensile stresses. In some cases, this compressive stress is converted to irreversible strain (plastic deformation), as evidenced by cell wall corrugations. The heartwood is moderately decay resistant, helping to prevent Brazier buckling. These xylem properties are referenced to the measured bending properties of modulus of rupture and modulus of elasticity, and compared with other low‐to‐moderate density conifers. The design strategy for Metasequoia is to produce a mechanically weak but hydraulically efficient xylem that permits rapid height growth and crown development to capture and dominate a wet site environment. The adaptability of these features to a high‐latitude Eocene palaeoenvironment is discussed. PMID:12763758
RIGHT AND LEFT VENTRICULAR DIASTOLIC PRESSURE–VOLUME RELATIONS: A COMPREHENSIVE REVIEW
Pasipoularides, Ares
2012-01-01
Ventricular compliance alterations can affect cardiac performance and adaptations. Moreover, diastolic mechanics are important in assessing both diastolic and systolic function, since any filling impairment can compromise systolic function. A sigmoidal passive filling pressure-volume relationship, developed using chronically instrumented, awake-animal disease models, is clinically adaptable to evaluating diastolic dynamics using subject-specific micromanometric and volumetric data from the entire filling period of any heartbeat(s). This innovative relationship is the global, integrated expression of chamber geometry, wall thickness, and passive myocardial wall properties. Chamber and myocardial compliance curves of both ventricles can be computed by the sigmoidal methodology over the entire filling period and plotted over appropriate filling pressure ranges. Important characteristics of the compliance curves can be examined and compared between the right and the left ventricle, and for different physiological and pathological conditions. The sigmoidal paradigm is more accurate and, therefore, a better alternative to the conventional exponential pressure-volume approximation. PMID:23179133
Lakatos, Bálint; Tősér, Zoltán; Tokodi, Márton; Doronina, Alexandra; Kosztin, Annamária; Muraru, Denisa; Badano, Luigi P; Kovács, Attila; Merkely, Béla
2017-03-27
Three major mechanisms contribute to right ventricular (RV) pump function: (i) shortening of the longitudinal axis with traction of the tricuspid annulus towards the apex; (ii) inward movement of the RV free wall; (iii) bulging of the interventricular septum into the RV and stretching the free wall over the septum. The relative contribution of the aforementioned mechanisms to RV pump function may change in different pathological conditions.Our aim was to develop a custom method to separately assess the extent of longitudinal, radial and anteroposterior displacement of the RV walls and to quantify their relative contribution to global RV ejection fraction using 3D data sets obtained by echocardiography.Accordingly, we decomposed the movement of the exported RV beutel wall in a vertex based manner. The volumes of the beutels accounting for the RV wall motion in only one direction (either longitudinal, radial, or anteroposterior) were calculated at each time frame using the signed tetrahedron method. Then, the relative contribution of the RV wall motion along the three different directions to global RV ejection fraction was calculated either as the ratio of the given direction's ejection fraction to global ejection fraction and as the frame-by-frame RV volume change (∆V/∆t) along the three motion directions.The ReVISION (Right VentrIcular Separate wall motIon quantificatiON) method may contribute to a better understanding of the pathophysiology of RV mechanical adaptations to different loading conditions and diseases.
Geijsen, Debby E.; Zum Vörde Sive Vörding, Paul J.; Schooneveldt, Gerben; Sijbrands, Jan; Hulshof, Maarten C.; de la Rosette, Jean; de Reijke, Theo M.; Crezee, Hans
2013-01-01
Abstract Background and Purpose: The effectiveness of locoregional hyperthermia combined with intravesical instillation of mitomycin C to reduce the risk of recurrence and progression of intermediate- and high-risk nonmuscle-invasive bladder cancer is currently investigated in clinical trials. Clinically effective locoregional hyperthermia delivery necessitates adequate thermal dosimetry; thus, optimal thermometry methods are needed to monitor accurately the temperature distribution throughout the bladder wall. The aim of the study was to evaluate the technical feasibility of a novel intravesical device (multi-sensor probe) developed to monitor the local bladder wall temperatures during loco-regional C-HT. Materials and Methods: A multisensor thermocouple probe was designed for deployment in the human bladder, using special sensors to cover the bladder wall in different directions. The deployment of the thermocouples against the bladder wall was evaluated with visual, endoscopic, and CT imaging in bladder phantoms, porcine models, and human bladders obtained from obduction for bladder volumes and different deployment sizes of the probe. Finally, porcine bladders were embedded in a phantom and subjected to locoregional heating to compare probe temperatures with additional thermometry inside and outside the bladder wall. Results: The 7.5 cm thermocouple probe yielded optimal bladder wall contact, adapting to different bladder volumes. Temperature monitoring was shown to be accurate and representative for the actual bladder wall temperature. Conclusions: Use of this novel multisensor probe could yield a more accurate monitoring of the bladder wall temperature during locoregional chemohyperthermia. PMID:24112045
Light-Frame Wall Systems: Performance and Predictability.
David S. Gromala
1983-01-01
This paper compares results of all wall tests with analytical predictions of performance.Conventional wood-stud walls of one configuration failed at bending loads that were 4 to 6 times design load.The computer model overpredicted wall strength by and average of 10 percent and deflection by an average of 6 percent.
Transmission loss of double wall panels containing Helmholtz resonators
NASA Technical Reports Server (NTRS)
Prydz, R. A.; Kuntz, H. L.; Morrow, D. L.; Wirt, L. S.
1988-01-01
Data and an analysis are presented on the use of Helholtz resonators in double wall panels (i.e., aircraft sidewalls). Several wall materials and resonator configurations were tested, and the resonators were found to substantially increase the transmission loss of the double wall system at the tuning frequency.
Transmission loss of double wall panels containing Helmholtz resonators
NASA Astrophysics Data System (ADS)
Prydz, R. A.; Kuntz, H. L.; Morrow, D. L.; Wirt, L. S.
Data and an analysis are presented on the use of Helholtz resonators in double wall panels (i.e., aircraft sidewalls). Several wall materials and resonator configurations were tested, and the resonators were found to substantially increase the transmission loss of the double wall system at the tuning frequency.
Growth and cell wall changes in stem organs under microgravity and hypergravity conditions
NASA Astrophysics Data System (ADS)
Hoson, Takayuki; Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro
Gravity strongly influences plant growth and development, which is fundamentally brought about by modifications to the properties of the cell wall. We have examined the changes in growth and cell wall properties in seedling organs under hypergravity conditions produced by centrifugation and under microgravity conditions in space. Hypergravity stimuli have been shown to decrease the growth rate of various seedling organs. When hypergravity suppressed elongation growth, a decrease in cell wall extensibility (an increase in cell wall rigidity) was induced. Hypergravity has also been shown to increase cell wall thickness in various mate-rials. In addition, a polymerization of certain matrix polysaccharides was brought about by hypergravity: in dicotyledons hypergravity increased the molecular size of xyloglucans, whereas hypergravity increased that of 1,3,1,4-β-glucans in monocotyledonous Gramineae. These mod-ifications to cell wall metabolism may be responsible for a decrease in cell wall extensibility, leading to growth suppression under hypergravity conditions. How then does microgravity in-fluence growth and cell wall properties? Here, there was a possibility that microgravity might induce changes similar to those by hypergravity, because plants have evolved and adapted to 1 g condition for more than 400 million years. However, the changes observed under microgravity conditions in space were just opposite to those induced by hypergravity: stimulation of elonga-tion growth, an increase in cell wall extensibility, and a decrease in cell wall thickness as well as depolymerization of cell wall polysaccharides were brought about in space. Furthermore, growth and cell wall properties varied in proportion to the logarithm of the magnitude of grav-ity in the range from microgravity to hypergravity, as shown in the dose-response relation in light and hormonal responses. Thus, microgravity may be a `stress-less' environment for plant seedlings to grow and develop. Preliminary results obtained by recent Space Seed experiment in the Kibo Module on the International Space Station (PI: S. Kamisaka) suggest that this hypothesis is also applicable to mature Arabidopsis plants.
[Research on developping the spectral dataset for Dunhuang typical colors based on color constancy].
Liu, Qiang; Wan, Xiao-Xia; Liu, Zhen; Li, Chan; Liang, Jin-Xing
2013-11-01
The present paper aims at developping a method to reasonably set up the typical spectral color dataset for different kinds of Chinese cultural heritage in color rendering process. The world famous wall paintings dating from more than 1700 years ago in Dunhuang Mogao Grottoes was taken as typical case in this research. In order to maintain the color constancy during the color rendering workflow of Dunhuang culture relics, a chromatic adaptation based method for developping the spectral dataset of typical colors for those wall paintings was proposed from the view point of human vision perception ability. Under the help and guidance of researchers in the art-research institution and protection-research institution of Dunhuang Academy and according to the existing research achievement of Dunhuang Research in the past years, 48 typical known Dunhuang pigments were chosen and 240 representative color samples were made with reflective spectral ranging from 360 to 750 nm was acquired by a spectrometer. In order to find the typical colors of the above mentioned color samples, the original dataset was devided into several subgroups by clustering analysis. The grouping number, together with the most typical samples for each subgroup which made up the firstly built typical color dataset, was determined by wilcoxon signed rank test according to the color inconstancy index comprehensively calculated under 6 typical illuminating conditions. Considering the completeness of gamut of Dunhuang wall paintings, 8 complementary colors was determined and finally the typical spectral color dataset was built up which contains 100 representative spectral colors. The analytical calculating results show that the median color inconstancy index of the built dataset in 99% confidence level by wilcoxon signed rank test was 3.28 and the 100 colors are distributing in the whole gamut uniformly, which ensures that this dataset can provide reasonable reference for choosing the color with highest color constancy during the color rendering process of Dunhuang cultural heritage.
Braestrup, C.B.; Mooney, R.T.
1964-01-21
This invention relates to a portable radiation monitor containing two concentric ionization chambers which permit the use of standard charging and reading devices. It is particularly adapted as a personnel x-ray dosimeter and to this end comprises a small thin walled, cylindrical conductor forming an inner energy dependent chamber, a small thin walled, cylindrical conductor forming an outer energy independent chamber, and polymeric insulation means which insulates said chambers from each other and holds the chambers together with exposed connections in a simple, trouble-free, and compact assembly substantially without variation in directional response. (AEC)
Congenital anomalies of the breast.
Caouette-Laberge, Louise; Borsuk, Daniel
2013-02-01
Poland syndrome is a combination of chest wall deformity and absent or hypoplastic pectoralis muscle and breast associated with shortening and brachysyndactyly of the upper limb. Clinical presentation varies widely; therefore, reconstructive procedures have to be adapted to the deformity, ranging from chest wall stabilization or augmentation, dynamic muscle transfer, nipple and areola repositioning, and breast augmentation using prosthesis or autologous tissue transfer. Other congenital breast anomalies include supernumerary nipple and areola (polythelia) and breast (polymastia), which can generally be found on the embryonic mammary ridge. Absence of the nipple, areola (athelia), or the breast tissue (amastia) is less frequent.
Congenital Anomalies of the Breast
Caouette-Laberge, Louise; Borsuk, Daniel
2013-01-01
Poland syndrome is a combination of chest wall deformity and absent or hypoplastic pectoralis muscle and breast associated with shortening and brachysyndactyly of the upper limb. Clinical presentation varies widely; therefore, reconstructive procedures have to be adapted to the deformity, ranging from chest wall stabilization or augmentation, dynamic muscle transfer, nipple and areola repositioning, and breast augmentation using prosthesis or autologous tissue transfer. Other congenital breast anomalies include supernumerary nipple and areola (polythelia) and breast (polymastia), which can generally be found on the embryonic mammary ridge. Absence of the nipple, areola (athelia), or the breast tissue (amastia) is less frequent. PMID:24872738
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandhauer, Todd; Deri, Robert J.; Elmer, John W.
A laser diode package includes a heat pipe having a fluid chamber enclosed in part by a heat exchange wall for containing a fluid. Wicking channels in the fluid chamber is adapted to wick a liquid phase of the fluid from a condensing section of the heat pipe to an evaporating section of the heat exchanger, and a laser diode is connected to the heat exchange wall at the evaporating section of the heat exchanger so that heat produced by the laser diode is removed isothermally from the evaporating section to the condensing section by a liquid-to-vapor phase change ofmore » the fluid.« less
Turbulent flow near the wall of a conical diffuser
NASA Astrophysics Data System (ADS)
Satyaprakash, B. R.; Azad, R. S.; Nagabushana, K. A.; Kassab, S. Z.
The turbulent flow in a conical diffuser is predicted adapting the boundary layer calculation method of Bradshaw, Ferris and Atwell. The predicted mean velocity and shear stress profiles, using the experimental data as initial input, agree well with the measured profiles. The universal low of the wall present at the inlet vahishes in the initial region and reappears later, but the width of validity is diminished considerably. The effect of divergence is present in the initial region of the diffuser only. This technique fails to predict beyond one half the total length of the diffuser.
Recessed impingement insert metering plate for gas turbine nozzles
Itzel, Gary Michael; Burdgick, Steven Sebastian
2002-01-01
An impingement insert sleeve is provided that is adapted to be disposed in a coolant cavity defined through a stator vane. The insert has a generally open inlet end and first and second diametrically opposed, perforated side walls. A metering plate having at least one opening defined therethrough for coolant flow is mounted to the side walls to generally transverse a longitudinal axis of the insert, and is disposed downstream from said inlet end. The metering plate improves flow distribution while reducing ballooning stresses within the insert and allowing for a more flexible insert attachment.
Method of producing silicon. [gas phase reactor multiple injector liquid feed system
NASA Technical Reports Server (NTRS)
Wolf, C. B.; Meyer, T. N. (Inventor)
1980-01-01
A liquid reactant injector assembly suited for the injection of liquid reactant into a high temperature metal reductant vapor and carrier gas stream for the production of metal is presented. The assembly is especially adapted for the continuous production of high purity silicon by the reduction of SiCl4 with sodium. The assembly includes a refractory-lined, hollow metal shell having ten equally-spaced, concentric, radially directed ports provided in the shell and wall. A hydraulic, atomizing type spray nozzle is mounted in each of the ports recessed from the inner wall surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.
The rotational motion of inertia-free spheroids has been studied in a numerically simulated turbulent channel flow. Although inertia-free spheroids were translated as tracers with the flow, neither the disk-like nor the rod-like particles adapted to the fluid rotation. The flattest disks preferentially aligned their symmetry axes normal to the wall, whereas the longest rods were parallel with the wall. The shape-dependence of the particle orientations carried over to the particle rotation such that the mean spin was reduced with increasing departure from sphericity. The streamwise spin fluctuations were enhanced due to asphericity, but substantially more for prolate than for oblatemore » spheroids.« less
Wall and corner fire tests on selected wood products
H. C. Tran; M. L. Janssens
1991-01-01
As part of a fire growth program to develop and validate a compartment fire model, several bench-scale and full-scale tests were conducted. This paper reports the full-scale wall and corner test results of step 2 of this study. A room fire test following the ASTM proposed standard specifications was used for these full-scale tests. In step 1, we investigated the...
Simulating wall and corner fire tests on wood products with the OSU room fire model
H. C. Tran
1994-01-01
This work demonstrates the complexity of modeling wall and corner fires in a compartment. The model chosen for this purpose is the Ohio State University (OSU) room fire model. This model was designed to simulate fire growth on walls in a compartment and therefore lends itself to direct comparison with standard room test results. The model input were bench-scale data...
Oliveira, Carol; Zamakhshary, Mohammed; Alfadda, Tariq; Alhabshan, Fahad; Alshalaan, Hisham; Miller, Stephen; Kim, Peter C W
2012-05-01
Herein, we describe a new surgical approach for chest wall reconstruction using a native supporting rib and Surgisis. A retrospective review of 3 cases from 2 tertiary pediatric health care centers presenting with chest wall defects in the neonatal period was performed. Perioperative data were collected. Two chest wall deformities were diagnosed at birth (Poland syndrome and cleft sternum). One patient was diagnosed prenatally with a mediastinal mass. The first infant had absent ribs 2 through 9. He underwent chest wall reconstruction at 4 weeks of life because of difficulty weaning from ventilation related to paradoxical breathing. The hamartoma of the second asymptomatic patient was removed at 6 weeks. The third patient's V-shaped sternal defect encompassed through the upper two thirds of the sternum and was repaired at 6 months of age with intraoperative transesophageal echocardiogram monitoring. In all cases, Surgisis (collagen matrix) was used as an onlay patch. In 2 cases, a swinging rib acted supportive. Neither patient had intraoperative complications. Surgisis is useful in pediatric chest wall reconstruction, particularly in combination with swinging ribs. The capacity for adaptation to the child's growth of this approach is crucial. Short-term safety is shown, but long-term assessment is required. Copyright © 2012 Elsevier Inc. All rights reserved.
Crystalline and amorphous cellulose in the secondary walls of Arabidopsis.
Ruel, Katia; Nishiyama, Yoshiharu; Joseleau, Jean-Paul
2012-09-01
In the cell walls of higher plants, cellulose chains are present in crystalline microfibril, with an amorphous part at the surface, or present as amorphous material. To assess the distribution and relative occurrence of the two forms of cellulose in the inflorescence stem of Arabidopsis, we used two carbohydrate-binding modules, CBM3a and CBM28, specific for crystalline and amorphous cellulose, respectively, with immunogold detection in TEM. The binding of the two CBMs displayed specific patterns suggesting that the synthesis of cellulose leads to variable nanodomains of cellulose structures according to cell type. In developing cell walls, only CBM3a bound significantly to the incipient primary walls, indicating that at the onset of its deposition cellulose is in a crystalline structure. As the secondary wall develops, the labeling with both CBMs becomes more intense. The variation of the labeling pattern by CBM3a between transverse and longitudinal sections appeared related to microfibril orientation and differed between fibers and vessels. Although the two CBMs do not allow the description of the complete status of cellulose microstructures, they revealed the dynamics of the deposition of crystalline and amorphous forms of cellulose during wall formation and between cell types adapting cellulose microstructures to the cell function. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Reciprocal Interactions between Cadmium-Induced Cell Wall Responses and Oxidative Stress in Plants
Loix, Christophe; Huybrechts, Michiel; Vangronsveld, Jaco; Gielen, Marijke; Keunen, Els; Cuypers, Ann
2017-01-01
Cadmium (Cd) pollution renders many soils across the world unsuited or unsafe for food- or feed-orientated agriculture. The main mechanism of Cd phytotoxicity is the induction of oxidative stress, amongst others through the depletion of glutathione. Oxidative stress can damage lipids, proteins, and nucleic acids, leading to growth inhibition or even cell death. The plant cell has a variety of tools to defend itself against Cd stress. First and foremost, cell walls might prevent Cd from entering and damaging the protoplast. Both the primary and secondary cell wall have an array of defensive mechanisms that can be adapted to cope with Cd. Pectin, which contains most of the negative charges within the primary cell wall, can sequester Cd very effectively. In the secondary cell wall, lignification can serve to immobilize Cd and create a tougher barrier for entry. Changes in cell wall composition are, however, dependent on nutrients and conversely might affect their uptake. Additionally, the role of ascorbate (AsA) as most important apoplastic antioxidant is of considerable interest, due to the fact that oxidative stress is a major mechanism underlying Cd toxicity, and that AsA biosynthesis shares several links with cell wall construction. In this review, modifications of the plant cell wall in response to Cd exposure are discussed. Focus lies on pectin in the primary cell wall, lignification in the secondary cell wall and the importance of AsA in the apoplast. Regarding lignification, we attempt to answer the question whether increased lignification is merely a consequence of Cd toxicity, or rather an elicited defense response. We propose a model for lignification as defense response, with a central role for hydrogen peroxide as substrate and signaling molecule. PMID:29163592
Local and systemic effects of leg cycling training on arterial wall thickness in healthy humans.
Thijssen, Dick H J; Dawson, Ellen A; van den Munckhof, Inge C L; Birk, Gurpreet K; Timothy Cable, N; Green, Daniel J
2013-08-01
Exercise training is associated with direct effects on conduit artery function and structure. Cross-sectional studies suggest the presence of systemic changes in wall thickness as a result of exercise in healthy subjects, but no previous study has examined this question in humans undertaking exercise training. To examine the change in superficial femoral (SFA, i.e. local effect) and carotid (CA, i.e. systemic effect) artery wall thickness across 8 weeks of lower limb cycle training in healthy young men. Fourteen healthy young male subjects were assigned to an 8-week training study of cycling exercise (n = 9) or a control period (n = 5). Before, during (2, 4 and 6 weeks) and after training, SFA and CA wall thickness was examined using automated edge-detection of high resolution ultrasound images. We also measured resting diameter and calculated the wall:lumen(W:L)-ratio. Exercise training did not alter CA or SFA baseline diameter (P = 0.14), but was associated with gradual, consistent and significant decreases in wall thickness and W:L-ratio in both the CA and SFA (P < 0.001 and 0.002, respectively). Two-way ANOVA revealed a comparable magnitude of decrease in wall thickness and W:L-ratio in both arteries across the 8-week period (interaction-effect; P = 0.29 and 0.12, respectively). No changes in artery diameter, wall thickness or W:L-ratio were apparent in controls (0.82, 0.38 and 0.52, respectively). We found that cycle exercise training in healthy young individuals is associated with modest, but significant, decreases in wall thickness in the superficial femoral and carotid arteries. These findings suggest that exercise training causes systemic adaptation of the arterial wall in healthy young subjects. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Miyamoto, Masahiko; Furuichi, Yasuhiro; Komiyama, Tadazumi
2012-11-01
Fps1p is an aquaglyceroporin important for turgor regulation of Saccharomyces cerevisiae. Previously we reported the involvement of Fps1p in the yeast-killing action of killer toxin HM-1. The fps1 cells showed a high HM-1-resistant phenotype in hypotonic medium and an HM-1-susceptible phenotype in hypertonic medium. This osmotic dependency in HM-1 susceptibility was similar to those observed in Congo red, but different from those observed in other cell wall-disturbing agents. These results indicate that HM-1 exerts fungicidal activity mainly by binding and inserting into the yeast cell wall structure, rather than by inhibiting 1,3-β-glucan synthase. We next determined HM-1-susceptibility and diphospho-MAP kinase inductions in S. cerevisiae. In the wild-type cell, expressions of diphospho-Hog1p and -Slt2p, and mRNA transcription of CWP1 and HOR2, were induced within 1 h after an addition of HM-1. ssk1 and pbs2 cells, but not sho1 and hkr1 cells, showed HM-1-sensitive phenotypes and lacked inductions of phospho-Hog1p in response to HM-1. mid2, rom2 and bck1 cells showed HM-1-sensitive phenotypes and decreased inductions of phospho-Slt2p in response to HM-1. From these results, we postulated that the Sln1-Ypd1-Ssk1 branch of the high-osmolality glycerol (HOG) pathway and plasma membrane sensors of the cell wall integrity (CWI) pathway detect cell wall stresses caused by HM-1. We further suggested that activations of both HOG and CWI pathways have an important role in the adaptive response to HM-1 toxicity. Copyright © 2012 John Wiley & Sons, Ltd.
Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams
NASA Astrophysics Data System (ADS)
Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang
2013-12-01
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.
WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. ...
WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. INL NEGATIVE NO. 3925. Unknown Photographer, 12/14/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
The development of a self-streamlining flexible walled transonic test section
NASA Technical Reports Server (NTRS)
Goodyer, M. J.; Wolf, S. W. D.
1980-01-01
This design eliminates the uncertainties in data from conventional transonic test sections. Sidewalls are rigid, and the flexible floor and ceiling are positioned by motorized jacks controlled by on-line computer to minimize run times. The tunnel-computer combination is self-streamlining without reference to the model. Data is taken from the model only when the walls are good streamlines, and is corrected for the small, known but inevitable residual interferences. Two-dimensional validation testing in the Mach range up to about 0.85 where the walls are just supercritical shows good agreement with reference data using a height:chord ratio of 1.5. Techniques are under development to extend Mach number above 1. This work has demonstrated the feasibility of almost eliminating wall interferences, improving flow quality, and reducing power requirements or increasing Reynolds number. Extensions to three-dimensional testing are outlined.
An Analysis of Minimum System Requirements to Support Computerized Adaptive Testing.
1986-09-01
adaptive test ( CAT ); adaptive test ing A;4SRAC:’ (Continue on reverie of necessary and ident4f by block number) % This pape-r discusses the minimum system...requirements needed to develop a computerized adaptive test ( CAT ). It lists some of the benefits of adaptive testing, establishes a set of...discusses the minimum system requirements needed to develop a computerized adaptive test ( CAT ). It lists some of the benefits of adaptive testing
2015-01-01
Sexual signals used in intraspecific communication are expected to evolve to maximize efficacy under a given climatic condition. Thus, chemical secretions of lizards might evolve in the evolutionary time to ensure that signals are perfectly tuned to local humidity and temperature conditions affecting their volatility and therefore their persistence and transmission through the environment. We tested experimentally whether interpopulational altitudinal differences in chemical composition of femoral gland secretions of male Iberian wall lizards (Podarcis hispanicus) have evolved to maximize efficacy of chemical signals in different environmental conditions. Chemical analyses first showed that the characteristics of chemical signals of male lizards differed between two populations inhabiting environments with different climatic conditions in spite of the fact that these two populations are closely related genetically. We also examined experimentally whether the temporal attenuation of the chemical stimuli depended on simulated climatic conditions. Thus, we used tongue-flick essays to test whether female lizards were able to detect male scent marks maintained under different conditions of temperature and humidity by chemosensory cues alone. Chemosensory tests showed that chemical signals of males had a lower efficacy (i.e. detectability and persistence) when temperature and dryness increase, but that these effects were more detrimental for signals of the highest elevation population, which occupies naturally colder and more humid environments. We suggest that the abiotic environment may cause a selective pressure on the form and expression of sexual chemical signals. Therefore, interpopulational differences in chemical profiles of femoral secretions of male P. hispanicus lizards may reflect adaptation to maximize the efficacy of the chemical signal in different climates. PMID:26121693
Martín, José; Ortega, Jesús; López, Pilar
2015-01-01
Sexual signals used in intraspecific communication are expected to evolve to maximize efficacy under a given climatic condition. Thus, chemical secretions of lizards might evolve in the evolutionary time to ensure that signals are perfectly tuned to local humidity and temperature conditions affecting their volatility and therefore their persistence and transmission through the environment. We tested experimentally whether interpopulational altitudinal differences in chemical composition of femoral gland secretions of male Iberian wall lizards (Podarcis hispanicus) have evolved to maximize efficacy of chemical signals in different environmental conditions. Chemical analyses first showed that the characteristics of chemical signals of male lizards differed between two populations inhabiting environments with different climatic conditions in spite of the fact that these two populations are closely related genetically. We also examined experimentally whether the temporal attenuation of the chemical stimuli depended on simulated climatic conditions. Thus, we used tongue-flick essays to test whether female lizards were able to detect male scent marks maintained under different conditions of temperature and humidity by chemosensory cues alone. Chemosensory tests showed that chemical signals of males had a lower efficacy (i.e. detectability and persistence) when temperature and dryness increase, but that these effects were more detrimental for signals of the highest elevation population, which occupies naturally colder and more humid environments. We suggest that the abiotic environment may cause a selective pressure on the form and expression of sexual chemical signals. Therefore, interpopulational differences in chemical profiles of femoral secretions of male P. hispanicus lizards may reflect adaptation to maximize the efficacy of the chemical signal in different climates.
Computation of wind tunnel wall effects for complex models using a low-order panel method
NASA Technical Reports Server (NTRS)
Ashby, Dale L.; Harris, Scott H.
1994-01-01
A technique for determining wind tunnel wall effects for complex models using the low-order, three dimensional panel method PMARC (Panel Method Ames Research Center) has been developed. Initial validation of the technique was performed using lift-coefficient data in the linear lift range from tests of a large-scale STOVL fighter model in the National Full-Scale Aerodynamics Complex (NFAC) facility. The data from these tests served as an ideal database for validating the technique because the same model was tested in two wind tunnel test sections with widely different dimensions. The lift-coefficient data obtained for the same model configuration in the two test sections were different, indicating a significant influence of the presence of the tunnel walls and mounting hardware on the lift coefficient in at least one of the two test sections. The wind tunnel wall effects were computed using PMARC and then subtracted from the measured data to yield corrected lift-coefficient versus angle-of-attack curves. The corrected lift-coefficient curves from the two wind tunnel test sections matched very well. Detailed pressure distributions computed by PMARC on the wing lower surface helped identify the source of large strut interference effects in one of the wind tunnel test sections. Extension of the technique to analysis of wind tunnel wall effects on the lift coefficient in the nonlinear lift range and on drag coefficient will require the addition of boundary-layer and separated-flow models to PMARC.
Growing Organic Crystals By The Czochralski Method
NASA Technical Reports Server (NTRS)
Shields, Angela; Frazier, Donald O.; Penn, Benjamin G.; Aggarwal, M. D.; Wang, W. S.
1994-01-01
Apparatus grows high-quality single crystals of organic compounds by Czochralski method. In Czochralski process, growing crystal lifted from middle of molten material without touching walls. Because of low melting temperatures of organic crystals, glass vessels usable. Traditional method for inorganic semiconductors adapted to optically nonlinear organic materials.
Comparative studies on the influence of "simulated weigthlessness" on fish otolith growth
NASA Astrophysics Data System (ADS)
Brungs, Sonja; Hendrik Anken, Ralf; Li, Xiao-Yan; Hauslage, Jens; Wang, Gaohong; Liu, Yongding; Hilbig, Reinhard; Hemmersbach, Ruth
Stimulus dependence is a general feature of all developing sensory systems. Concerning the vestibular organ of fish, it has been shown earlier that the growth of inner ear otoliths of developing Cichlid fish (Oreochromis mossambicus) and Zebrafish (Danio rerio) is slowed down by increased gravity (hypergravity) as an adaptation. Several studies proposed that otolith growth actively is adjusted via a feedback mechanism to produce a test mass of the appropriate physical capacity. Applying diminished gravity such as microgravity during spaceflight yielded an opposite effect, i.e., larger than normal otoliths in swordtails Xiphophorus helleri. Since there are no data on spaceflown early larval stages of the Cichlid fish and the Zebrafish available, these model organisms were subjected to simulated weightlessness using a submersed clinostat with one axis of rotation (O. mossambicus) and rotating-wall vessels (RWVs; O. mossambicus was maintained within a submersed RWV, which was recently developed at DLR, whereas D. rerio was kept within a modified RWV, developed by NASA). Developmental stages were subjected to clinorotation (60 rpm) and wall vessel rotation (Cichlid fish: 44 rpm; Zebrafish: 12.5 rpm; at these speeds, the larvae did neither sediment nor were they centrifuged away from the center of the RWVs) at a point of time when inner ear otolith mineralisation began. The experimental runs were discontinued when the animals hatched (O. mossambicus, stage 12, reached after 2-3 days at 22° C) or when they began to actively move within the devices (D. rerio, after 6 days at 28° C). After clinostat exposure, both utricular and saccular otoliths (Lapilli and Sagittae, respectively) of the Cichlids were significantly larger as compared to otoliths from the 1g controls. A similar result was obtained after wall vessel rotation for 3 and 6 days of the Zebrafish. These results support the idea that a feedback mechanism correlates the gravity level with the physical capacity of an otolithic test mass during early development and after calcification of otoliths has begun. Interestingly, wall vessel rotation had no effects on Cichlid fish otolith growth. In contrast to D. rerio, O. mossambicus is a mouth-breeding species: the mother animal turns around the larvae in her mouth for supply with fresh (aerated) water. Possibly, wall vessel rotation (rather than clinorotation) mimics this passive, natural movement, which likely will not be perceived as "weightlessness" by the offspring. In the course of further studies, Zebrafish should be subjected to clinorotation and experiments using further devices to simulate weightlessness (e.g., Levitron) should be carried out.
Application of Pressure-Based Wall Correction Methods to Two NASA Langley Wind Tunnels
NASA Technical Reports Server (NTRS)
Iyer, V.; Everhart, J. L.
2001-01-01
This paper is a description and status report on the implementation and application of the WICS wall interference method to the National Transonic Facility (NTF) and the 14 x 22-ft subsonic wind tunnel at the NASA Langley Research Center. The method calculates free-air corrections to the measured parameters and aerodynamic coefficients for full span and semispan models when the tunnels are in the solid-wall configuration. From a data quality point of view, these corrections remove predictable bias errors in the measurement due to the presence of the tunnel walls. At the NTF, the method is operational in the off-line and on-line modes, with three tests already computed for wall corrections. At the 14 x 22-ft tunnel, initial implementation has been done based on a test on a full span wing. This facility is currently scheduled for an upgrade to its wall pressure measurement system. With the addition of new wall orifices and other instrumentation upgrades, a significant improvement in the wall correction accuracy is expected.
Ott, Beat; Constantinescu, Mihai A; Erni, Dominique; Banic, Andrej; Schaffner, Thomas; Frenz, Martin
2004-01-01
Current laser-assisted end-to-end anastomoses are performed by irradiating the vessel wall from outside after additional fixation with three to six sutures. These sutures are needed to provide adequate approximation of the vessel stumps. We present a new laser soldering technique that is based on an intraluminal laser light source centered in a balloon catheter, and external application of a solder. This technique was applied in vivo in order to test its feasibility under clinical conditions. Seven white pigs were treated with a total of fourteen end-to-end laser-anastomoses of their saphenous arteries having outer diameters of 2 mm. The vessels were stented over an intraluminal balloon catheter, which was maximally dilated and which allowed for a precise approximation of the vascular stumps. An 808 nm diode laser was coupled into a specially designed optical fiber producing a 360 degrees radiation ring inside the balloon catheter. An indocyanine green (ICG) doped liquid albumin solder was applied on the external surface of the vascular stumps. Laser soldering was achieved by irradiating with a 808 nm laser diode for 75 seconds. Tightness of the anastomoses was evaluated by clamping the artery distal to the anastomosis for 1 hour, and patency was tested over an observation period of 3 hours, during which the animals were heparinized. Thereafter, the anastomoses were harvested for histomorphological examination. All anastomoses remained patent over the entire observation period. Some leakage was observed in three anastomoses, which was explained by a deviation of the illumination fiber from the center of the balloon leading to an inhomogeneous irradiation of the vessel wall. Histology revealed perfect adaptation of the vascular stumps. A segment of denaturated vascular collagen was observed, that corresponded to the irradiated, solder-covered zone. Patent, maximally dilated and well adapted microvascular anastomoses could be obtained without the need of stay sutures. A well centered laser light source is indispensable for avoiding inhomogenous welding, thus causing leakage. (c) 2004 Wiley-Liss, Inc.
Rotational actuator of motor based on carbon nanotubes
Zettl, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.
2008-11-18
A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.
Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion.
Hopke, Alex; Brown, Alistair J P; Hall, Rebecca A; Wheeler, Robert T
2018-04-01
Deadly infections from opportunistic fungi have risen in frequency, largely because of the at-risk immunocompromised population created by advances in modern medicine and the HIV/AIDS pandemic. This review focuses on dynamics of the fungal polysaccharide cell wall, which plays an outsized role in fungal pathogenesis and therapy because it acts as both an environmental barrier and as the major interface with the host immune system. Human fungal pathogens use architectural strategies to mask epitopes from the host and prevent immune surveillance, and recent work elucidates how biotic and abiotic stresses present during infection can either block or enhance masking. The signaling components implicated in regulating fungal immune recognition can teach us how cell wall dynamics are controlled, and represent potential targets for interventions designed to boost or dampen immunity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rotational actuator or motor based on carbon nanotubes
Zetti, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.
2006-05-30
A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.
NASA Technical Reports Server (NTRS)
Xu, W.; Purugganan, M. M.; Polisensky, D. H.; Antosiewicz, D. M.; Fry, S. C.; Braam, J.
1995-01-01
Adaptation of plants to environmental conditions requires that sensing of external stimuli be linked to mechanisms of morphogenesis. The Arabidopsis TCH (for touch) genes are rapidly upregulated in expression in response to environmental stimuli, but a connection between this molecular response and developmental alterations has not been established. We identified TCH4 as a xyloglucan endotransglycosylase by sequence similarity and enzyme activity. Xyloglucan endotransglycosylases most likely modify cell walls, a fundamental determinant of plant form. We determined that TCH4 expression is regulated by auxin and brassinosteroids, by environmental stimuli, and during development, by a 1-kb region. Expression was restricted to expanding tissues and organs that undergo cell wall modification. Regulation of genes encoding cell wall-modifying enzymes, such as TCH4, may underlie plant morphogenetic responses to the environment.
Contact forces between a particle and a wet wall at both quasi-static and dynamic state
NASA Astrophysics Data System (ADS)
Zhang, Huang; Chen, Sheng; Li, Shuiqing
2017-06-01
The contact regime of particle-wall is investigated by the atomic force microscope (AFM) and theoretical models. First, AFM is used to measure the cohesive force between a micron-sized grain and a glass plate at quasi-static state under various humidity. It is found out that the cohesive force starts to grow slowly and suddenly increase rapidly beyond a critical Relative Humidity (RH). Second, mathematical models of contacting forces are presented to depict the dynamic process that a particle impacts on a wet wall. Then the energy loss of a falling grain is calculated in comparison with the models and the experimental data from the previous references. The simulation results show that the force models presented here are adaptive for both low and high viscosity fluid films with different thickness.
141. NITROGEN TEST PANEL ON EAST WALL OF AGENA TRANSFER ...
141. NITROGEN TEST PANEL ON EAST WALL OF AGENA TRANSFER AREA SHELTER (117A), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
PRECAST CONCRETE WALL PANELS ARE LIFTED INTO PLACE ON MTR ...
PRECAST CONCRETE WALL PANELS ARE LIFTED INTO PLACE ON MTR STEEL FRAME STRUCTURE. INL NEGATIVE NO. 1330. Unknown Photographer, 1/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
FAST CHOPPER BUILDING, TRA665, INTERIOR. UPPER LEVEL. CONCRETE WALLS. INL ...
FAST CHOPPER BUILDING, TRA-665, INTERIOR. UPPER LEVEL. CONCRETE WALLS. INL NEGATIVE NO. HD42-2. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
The Role of Item Feedback in Self-Adapted Testing.
ERIC Educational Resources Information Center
Roos, Linda L.; And Others
1997-01-01
The importance of item feedback in self-adapted testing was studied by comparing feedback and no feedback conditions for computerized adaptive tests and self-adapted tests taken by 363 college students. Results indicate that item feedback is not necessary to realize score differences between self-adapted and computerized adaptive testing. (SLD)
49 CFR 107.807 - Approval of non-domestic chemical analyses and tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... performed; (2) Complete details concerning the dimensions, materials of construction, wall thickness, water... calculations for cylinder wall stress and wall thickness, which may be shown on a drawing or on separate sheets...
49 CFR 107.807 - Approval of non-domestic chemical analyses and tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... performed; (2) Complete details concerning the dimensions, materials of construction, wall thickness, water... calculations for cylinder wall stress and wall thickness, which may be shown on a drawing or on separate sheets...
Adaptation of all-ceramic fixed partial dentures.
Borba, Márcia; Cesar, Paulo F; Griggs, Jason A; Della Bona, Álvaro
2011-11-01
To measure the marginal and internal fit of three-unit fixed partial dentures (FPDs) using the micro-CT technique, testing the null hypothesis that there is no difference in the adaptation between the ceramic systems studied. Stainless steel models of prepared abutments were fabricated to design the FPDs. Ten FPDs were produced from each framework ceramic (YZ - Vita In-Ceram YZ and IZ - Vita In-Ceram Zirconia) using CEREC inLab according to the manufacturer instructions. All FPDs were veneered using the recommended porcelain. Each FPD was seated on the original model and scanned using micro-CT. Files were processed using NRecon and CTAn software. Adobe Photoshop and Image J software were used to analyze the cross-sections images. Five measuring locations were used as follows: MG - marginal gap; CA - chamfer area; AW - axial wall; AOT - axio-occlusal transition area; OA - occlusal area. The horizontal marginal discrepancy (HMD) was evaluated in another set of images. Results were statistically analyzed using ANOVA and Tukey tests (α=0.05). The mean values for MG, CA, AW, OA and HMD were significantly different for all tested groups (p<0.05). IZ exhibited greater mean values than YZ for all measuring locations except for AW and AOT. OA showed the greatest mean gap values for both ceramic systems. MG and AW mean gap values were low for both systems. The ceramic systems evaluated showed different levels of marginal and internal fit, rejecting the study hypothesis. Yet, both ceramic systems showed clinically acceptable marginal and internal fit. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Adaptation of all-ceramic fixed partial dentures
Borba, Márcia; Cesar, Paulo F.; Griggs, Jason A.; Della Bona, Álvaro
2011-01-01
Objectives To measure the marginal and internal fit of three-unit fixed partial dentures (FPDs) using the micro-CT technique, testing the null hypothesis that there is no difference in the adaptation between the ceramic systems studied. Methods Stainless steel models of prepared abutments were fabricated to design the FPDs. Ten FPDs were produced from each framework ceramic (YZ - Vita In-Ceram YZ and IZ - Vita In-Ceram Zirconia) using CEREC inLab according to the manufacturer instructions. All FPDs were veneered using the recommended porcelain. Each FPD was seated on the original model and scanned using micro-CT. Files were processed using NRecon and CTAn software. Adobe Photoshop and Image J software were used to analyze the cross-sections images. Five measuring locations were used as follows: MG – marginal gap; CA - chamfer area; AW - axial wall; AOT - axio-occlusal transition area; OA - occlusal area. The horizontal marginal discrepancy (HMD) was evaluated in another set of images. Results were statistically analyzed using ANOVA and Tukey tests (α=0.05). Results The mean values for MG, CA, AW, OA and HMD were significantly different for all tested groups (p<0.05). IZ exhibited greater mean values than YZ for all measuring locations except for AW and AOT. OA showed the greatest mean gap values for both ceramic systems. MG and AW mean gap values were low for both systems. Significance The ceramic systems evaluated showed different levels of marginal and internal fit, rejecting the study hypothesis. Yet, both ceramic systems showed clinically acceptable marginal and internal fit. PMID:21920595
Structural and mechanical design of tissue interfaces in the giant reed Arundo donax.
Rüggeberg, Markus; Burgert, Ingo; Speck, Thomas
2010-03-06
The culms of the giant reed Arundo donax represent slender tube-like structures. Several nodes along the culm, a ring of sclerenchymatous fibres in the periphery of the culm wall and numerous isolated vascular bundles enclosed by fibre rings in the culm wall function as stiffening elements. The bundles are embedded in lignified parenchyma. Micromechanical analysis indicated differences in stiffness between the individual tissues of more than one order of magnitude. In case of abrupt transitions in stiffness at the interfaces, stress discontinuities arise under dynamic loads. This eventually leads to critical shear stresses at cell ends, and culm failure may be initiated at these points. Pronounced mechanical differences between individual tissues can be compromised by gradual transitions at their interfaces. Ultrastructural and spectroscopic investigations with high spatial resolution revealed a gradual transition of cell parameters (cell wall area fraction and cell length). However, cell wall parameters (cellulose microfibril angle and lignin content) showed abrupt transitions or remained almost constant across the interfaces between various tissues. The design principles found at the interfaces between tissues in the culm walls of A. donax are discussed as an adaptation strategy to mechanical loads at different levels of hierarchy.
Structural and mechanical design of tissue interfaces in the giant reed Arundo donax
Rüggeberg, Markus; Burgert, Ingo; Speck, Thomas
2010-01-01
The culms of the giant reed Arundo donax represent slender tube-like structures. Several nodes along the culm, a ring of sclerenchymatous fibres in the periphery of the culm wall and numerous isolated vascular bundles enclosed by fibre rings in the culm wall function as stiffening elements. The bundles are embedded in lignified parenchyma. Micromechanical analysis indicated differences in stiffness between the individual tissues of more than one order of magnitude. In case of abrupt transitions in stiffness at the interfaces, stress discontinuities arise under dynamic loads. This eventually leads to critical shear stresses at cell ends, and culm failure may be initiated at these points. Pronounced mechanical differences between individual tissues can be compromised by gradual transitions at their interfaces. Ultrastructural and spectroscopic investigations with high spatial resolution revealed a gradual transition of cell parameters (cell wall area fraction and cell length). However, cell wall parameters (cellulose microfibril angle and lignin content) showed abrupt transitions or remained almost constant across the interfaces between various tissues. The design principles found at the interfaces between tissues in the culm walls of A. donax are discussed as an adaptation strategy to mechanical loads at different levels of hierarchy. PMID:19726440
Salinity stress inhibits bean leaf expansion by reducing turgor, not wall extensibility
NASA Technical Reports Server (NTRS)
Neumann, P. M.; Van Volkenburgh, E.; Cleland, R. E.
1988-01-01
Treatment of bean (Phaseolus vulgaris L.) seedlings with low levels of salinity (50 or 100 millimolar NaCl) decreased the rate of light-induced leaf cell expansion in the primary leaves over a 3 day period. This decrease could be due to a reduction in one or both of the primary cellular growth parameters: wall extensibility and cell turgor. Wall extensibility was assessed by the Instron technique. Salinity did not decrease extensibility and caused small increases relative to the controls after 72 hours. On the other hand, 50 millimolar NaCl caused a significant reduction in leaf bulk turgor at 24 hours; adaptive decreases in leaf osmotic potential (osmotic adjustment) were more than compensated by parallel decreases in xylem tension potential and the leaf apoplastic solute potential, resulting in a decreased leaf water potential. It is concluded that in bean seedlings, mild salinity initially affects leaf growth rate by a decrease in turgor rather than by a reduction in wall extensibility. Moreover, long-term salinization (10 days) resulted in an apparent mechanical adjustment, i.e. an increase in wall extensibility, which may help counteract reductions in turgor and maintain leaf growth rates.
Sorsby, Eleanor; Mahtey, Nabeel; Brown, Ian
2017-01-01
Candida albicans is able to proliferate in environments that vary dramatically in ambient pH, a trait required for colonising niches such as the stomach, vaginal mucosal and the GI tract. Here we show that growth in acidic environments involves cell wall remodelling which results in enhanced chitin and β-glucan exposure at the cell wall periphery. Unmasking of the underlying immuno-stimulatory β-glucan in acidic environments enhanced innate immune recognition of C. albicans by macrophages and neutrophils, and induced a stronger proinflammatory cytokine response, driven through the C-type lectin-like receptor, Dectin-1. This enhanced inflammatory response resulted in significant recruitment of neutrophils in an intraperitoneal model of infection, a hallmark of symptomatic vaginal colonisation. Enhanced chitin exposure resulted from reduced expression of the cell wall chitinase Cht2, via a Bcr1-Rim101 dependent signalling cascade, while increased β-glucan exposure was regulated via a non-canonical signalling pathway. We propose that this “unmasking” of the cell wall may induce non-protective hyper activation of the immune system during growth in acidic niches, and may attribute to symptomatic vaginal infection. PMID:28542528
The Bbgas3 β-glucanosyltransferase contributes to fungal adaptation to extreme alkaline pH.
Luo, Zhibing; Zhang, Tongbing; Liu, Pengfei; Bai, Yuting; Chen, Qiyan; Zhang, Yongjun; Keyhani, Nemat O
2018-05-25
Fungal β-1,3-glucanosyltransferases are cell wall remodeling enzymes implicated in stress response, cell wall integrity, and virulence, with most fungal genomes containing multiple members. The insect pathogenic fungus Beauveria bassiana displays robust growth over a wide pH range (pH = 4-10). Random insertion mutant library screening for increased sensitivity to alkaline (pH 10) growth conditions resulted in the identification and mapping of a mutant to a β-1,3-glucanosyltransferase gene ( Bbgas3 ). Bbgas3 expression was pH dependent and regulated by the PacC transcription factor, that activates genes in response to neutral/alkaline growth conditions. Targeted gene-knockout of Bbgas3 resulted in reduced growth under alkaline conditions, with only minor effects of increased sensitivity to cell wall stress (Congo Red and calcofluor white), and no significant effects on fungal sensitivity to oxidative or osmotic stress. The cell walls of ΔBbgas3 aerial conidia were thinner than wild type and complemented strains in response to alkaline conditions, and β-1,3-glucan antibody and lectin staining revealed alterations in cell surface carbohydrate epitopes. The ΔBbgas3 mutant displayed alterations in cell wall chitin and carbohydrate content in response to alkaline pH. Insect bioassays revealed impaired virulence for the ΔBbgas3 mutant depending upon the pH of the media on which the conidia were grown and harvested. Unexpectedly, a decreased lethal time to kill (LT 50 , i.e. increased virulence) was seen for the mutant using intra-hemocoel injection assays using conidia grown at acidic pH (5.6). These data show that BbGas3 acts as a pH-responsive cell wall remodeling enzyme involved in resistance to extreme pH (>9). Importance Little is known about adaptations required for growth at high (>9) pH. Here, we show that a specific fungal membrane remodelling β-1,3-glucanosyltransferase ( Bbgas3 ), regulated by the pH-responsive PacC transcription factor forms a critical aspect of the ability of the insect pathogenic fungus, Beauveria bassiana to grow at extreme pH. Loss of Bbgas3 resulted in a unique decreased ability to grow at high pH, with little to no effects seen with respect to other stress conditions, i.e. cell wall integrity, osmotic, and oxidative stress. However, pH-dependent alternations in cell wall properties and virulence were noted for the ΔBbg as3 mutant. These data provide a mechanistic insight into the importance of specific cell wall structure required to stabilize the cell at high pH and link it to the PacC/Pal/Rim pH-sensor and regulatory system. Copyright © 2018 American Society for Microbiology.
Eiken, Ola; Mekjavic, Igor B; Kölegård, Roger
2014-03-01
Recent studies are reviewed, concerning the in vivo wall stiffness of arteries and arterioles in healthy humans, and how these properties adapt to iterative increments or sustained reductions in local intravascular pressure. A novel technique was used, by which arterial and arteriolar stiffness was determined as changes in arterial diameter and flow, respectively, during graded increments in distending pressure in the blood vessels of an arm or a leg. Pressure-induced increases in diameter and flow were smaller in the lower leg than in the arm, indicating greater stiffness in the arteries/arterioles of the leg. A 5-week period of intermittent intravascular pressure elevations in one arm reduced pressure distension and pressure-induced flow in the brachial artery by about 50%. Conversely, prolonged reduction of arterial/arteriolar pressure in the lower body by 5 weeks of sustained horizontal bedrest, induced threefold increases of the pressure-distension and pressure-flow responses in a tibial artery. Thus, the wall stiffness of arteries and arterioles are plastic properties that readily adapt to changes in the prevailing local intravascular pressure. The discussion concerns mechanisms underlying changes in local arterial/arteriolar stiffness as well as whether stiffness is altered by changes in myogenic tone and/or wall structure. As regards implications, regulation of local arterial/arteriolar stiffness may facilitate control of arterial pressure in erect posture and conditions of exaggerated intravascular pressure gradients. That increased intravascular pressure leads to increased arteriolar wall stiffness also supports the notion that local pressure loading may constitute a prime mover in the development of vascular changes in hypertension.
An integrated study for mapping the moisture distribution in an ancient damaged wall painting.
Capitani, Donatella; Proietti, Noemi; Gobbino, Marco; Soroldoni, Luigi; Casellato, Umberto; Valentini, Massimo; Rosina, Elisabetta
2009-12-01
An integrated study of microclimate monitoring, IR thermography (IRT), gravimetric tests and portable unilateral nuclear magnetic resonance (NMR) was applied in the framework of planning emergency intervention on a very deteriorated wall painting in San Rocco church, Cornaredo (Milan, Italy). The IRT investigation supported by gravimetric tests showed that the worst damage, due to water infiltration, was localized on the wall painting of the northern wall. Unilateral NMR, a new non-destructive technique which measures the hydrogen signal of the moisture and that was applied directly to the wall, allowed a detailed map of the distribution of the moisture in the plaster underlying the wall panting to be obtained. With a proper calibration of the integral of the recorded signal with suitable specimens, each area of the map corresponded to an accurate amount of moisture. IRT, gravimetric tests and unilateral NMR applied to investigate the northern wall painting showed the presence of two wet areas separated by a dry area. The moisture found in the lower area was ascribed to the occurrence of rising damp at the bottom of the wall due to the slope of the garden soil towards the northern exterior. The moisture found in the upper area was ascribed to condensation phenomena associated with the presence of a considerable amount of soluble, hygroscopic salts. In the framework of this integrated study, IRT investigation and gravimetric methods validated portable unilateral NMR as a new analytical tool for measuring in situ and without any sampling of the distribution and amount of moisture in wall paintings.
Wind tunnel wall interference in V/STOL and high lift testing: A selected, annotated bibliography
NASA Technical Reports Server (NTRS)
Tuttle, M. H.; Mineck, R. E.; Cole, K. L.
1986-01-01
This bibliography, with abstracts, consists of 260 citations of interest to persons involved in correcting aerodynamic data, from high lift or V/STOL type configurations, for the interference arising from the wind tunnel test section walls. It provides references which may be useful in correcting high lift data from wind tunnel to free air conditions. References are included which deal with the simulation of ground effect, since it could be viewed as having interference from three tunnel walls. The references could be used to design tests from the standpoint of model size and ground effect simulation, or to determine the available testing envelope with consideration of the problem of flow breakdown. The arrangement of the citations is chronological by date of publication in the case of reports or books, and by date of presentation in the case of papers. Included are some documents of historical interest in the development of high lift testing techniques and wall interference correction methods. Subject, corporate source, and author indices, by citation numbers, have been provided to assist the users. The appendix includes citations of some books and documents which may not deal directly with high lift or V/STOL wall interference, but include additional information which may be helpful.
Wall Interference Study of the NTF Slotted Tunnel Using Bodies of Revolution Wall Signature Data
NASA Technical Reports Server (NTRS)
Iyer, Venkit; Kuhl, David D.; Walker, Eric L.
2004-01-01
This paper is a description of the analysis of blockage corrections for bodies of revolution for the slotted-wall configuration of the National Transonic Facility (NTF) at the NASA Langley Research Center (LaRC). A wall correction method based on the measured wall signature is used. Test data from three different-sized blockage bodies and four wall ventilation settings were analyzed at various Mach numbers and unit Reynolds numbers. The results indicate that with the proper selection of the boundary condition parameters, the wall correction method can predict blockage corrections consistent with the wall measurements for Mach numbers as high as 0.95.
Aureobasidium pullulans morphology: two adapted polysaccharide stains.
Oller, Anna R
2005-12-01
Morphological stages of Aureobasidium pullulans were investigated utilizing different media ingredients and were visualized by bright-field microscopy. A polysaccharide stain was developed to stain chlamydospores, cell walls, hyphae, and conidia, since current staining techniques do not reveal subcellular details to identify fungi, especially those that exhibit polysaccharide secretions.
16. Interior view of Test Cell 8 (oxidizer) in Components ...
16. Interior view of Test Cell 8 (oxidizer) in Components Test Laboratory (T-27), showing east wall. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. The windows in the wall enable personnel in the control room to observe component testing in the cell. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
49 CFR 178.45 - Specification 3T seamless steel cylinder.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and service pressure. A DOT 3T cylinder is a seamless steel cylinder with a minimum water capacity of...) Wall thickness. The minimum wall thickness must be such that the wall stress at the minimum specified... the physical tests required in paragraphs (j) and (k) of this section. A wall stress of more than 90...
Evaluation of the High-Heel Roof-to-Wall Connection with Extended OSB Wall Sheathing
Andrew DeRenzis; Vladimir Kochkin; Xiping Wang
2013-01-01
A recently completed testing project conducted to evaluate optimized structural roof-to-wall attachment solutions demonstrated the effectiveness of wood structural panels in restraining high-heel trusses against rotation. This study was designed to further evaluate the performance of OSB wall sheathing panels extended over the high-heel truss in resisting combined...
NASA Astrophysics Data System (ADS)
Davis, L. L.; Hill, L. G.
2002-07-01
Cylinder test data is reported for commercially available prilled ANFO (ammonium-nitrate/fuel-oil) at 0.93 g/cc density and ambient temperature. The tests were four-inch inner diameter, with wall-thickness and length scaled from the standard one-inch test (0.4 inch and 48 inch, respectively). The wall expansion was measured with a rotating mirror streak camera and the velocity was measured by fine-wire pin switches, in the standard manner. The wall expansion trajectory is much smoother than for conventional explosives, which show a pronounced jump-off with subsequent ring-up. This observation is consistent with a broadened detonation shock in the granular bed. The data is analyzed for equation-of-state information and JWL parameters are given.
NASA Astrophysics Data System (ADS)
Davis, Lloyd; Hill, Larry
2001-06-01
Cylinder test data is reported for commercially available prilled ANFO (ammonium nitrate - fuel oil) at ca. 0.93 g/cc density and ambient temperature. The tests were four-inch inner diameter, with wall-thickness and length scaled from the standard one-inch test (0.4 inch and 48 inch, respectively). The wall expansion was measured with a rotating mirror streak camera and the velocity was measured by fine-wire pin switches, in the standard manner. The wall expansion trajectory is much smoother than for conventional explosives, which show a pronounced jump-off with subsequent ring-up. This observation is indicative of an extended reaction zone. The data is analyzed for equation-of-state information and JWL parameters are given.
Experimental investigation of internal short circuits in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Poramapojana, Poowanart
With outstanding performance of Lithium-ion batteries, they have been widely used in many applications. For hybrid electric vehicles and electric vehicles, customer concerns of battery safety have been raised as a number of car accidents were reported. To evaluate safety performance of these batteries, a nail penetration test is used to simulate and induce internal short circuits instantaneously. Efforts to explain failure mechanisms of the penetration using electrochemical-thermal coupled models have been proposed. However, there is no experimental validation because researchers lack of a diagnostic tool to acquire important cell characteristics at a shorting location, such as shorting current and temperature. In this present work, diagnostic nails have been developed to acquire nail center temperatures and shorting current flow through the nails during nail penetration tests. Two types of cylindrical wall structures are used to construct the nails: a double-layered stainless steel wall and a composite cylindrical wall. An inner hollow cylinder functions as a sensor holder where two wires and one thermocouple are installed. To study experimental reproducibility and repeatability of experimental results, two nail penetration tests are conducted using two diagnostic nails with the double-layered wall. Experimental data shows that the shorting resistance at the initial stage is a critical parameter to obtain repeatable results. The average shorting current for both tests is approximately 40 C-rate. The fluctuation of the shorting current is due to random sparks and fire caused loose contacts between the nail and the cell components. Moreover, comparative experimental results between the two wall structures reveal that the wall structure does not affect the cell characteristics and Ohmic heat generation of the nail. The wall structure effects to current measurements inside the nail. With the composite wall, the actual current redistribution into the inner wall is found to be a sinusoidal waveform.
Flight in slow motion: aerodynamics of the pterosaur wing.
Palmer, Colin
2011-06-22
The flight of pterosaurs and the extreme sizes of some taxa have long perplexed evolutionary biologists. Past reconstructions of flight capability were handicapped by the available aerodynamic data, which was unrepresentative of possible pterosaur wing profiles. I report wind tunnel tests on a range of possible pterosaur wing sections and quantify the likely performance for the first time. These sections have substantially higher profile drag and maximum lift coefficients than those assumed before, suggesting that large pterosaurs were aerodynamically less efficient and could fly more slowly than previously estimated. In order to achieve higher efficiency, the wing bones must be faired, which implies extensive regions of pneumatized tissue. Whether faired or not, the pterosaur wings were adapted to low-speed flight, unsuited to marine style dynamic soaring but adapted for thermal/slope soaring and controlled, low-speed landing. Because their thin-walled bones were susceptible to impact damage, slow flight would have helped to avoid injury and may have contributed to their attaining much larger sizes than fossil or extant birds. The trade-off would have been an extreme vulnerability to strong or turbulent winds both in flight and on the ground, akin to modern-day paragliders.
Esher, Shannon K; Ost, Kyla S; Kohlbrenner, Maria A; Pianalto, Kaila M; Telzrow, Calla L; Campuzano, Althea; Nichols, Connie B; Munro, Carol; Wormley, Floyd L; Alspaugh, J Andrew
2018-06-01
The human fungal pathogen, Cryptococcus neoformans, dramatically alters its cell wall, both in size and composition, upon entering the host. This cell wall remodeling is essential for host immune avoidance by this pathogen. In a genetic screen for mutants with changes in their cell wall, we identified a novel protein, Mar1, that controls cell wall organization and immune evasion. Through phenotypic studies of a loss-of-function strain, we have demonstrated that the mar1Δ mutant has an aberrant cell surface and a defect in polysaccharide capsule attachment, resulting in attenuated virulence. Furthermore, the mar1Δ mutant displays increased staining for exposed cell wall chitin and chitosan when the cells are grown in host-like tissue culture conditions. However, HPLC analysis of whole cell walls and RT-PCR analysis of cell wall synthase genes demonstrated that this increased chitin exposure is likely due to decreased levels of glucans and mannans in the outer cell wall layers. We observed that the Mar1 protein differentially localizes to cellular membranes in a condition dependent manner, and we have further shown that the mar1Δ mutant displays defects in intracellular trafficking, resulting in a mislocalization of the β-glucan synthase catalytic subunit, Fks1. These cell surface changes influence the host-pathogen interaction, resulting in increased macrophage activation to microbial challenge in vitro. We established that several host innate immune signaling proteins are required for the observed macrophage activation, including the Card9 and MyD88 adaptor proteins, as well as the Dectin-1 and TLR2 pattern recognition receptors. These studies explore novel mechanisms by which a microbial pathogen regulates its cell surface in response to the host, as well as how dysregulation of this adaptive response leads to defective immune avoidance.
Design and Fabrication of a Ring-Stiffened Graphite-Epoxy Corrugated Cylindrical Shell
NASA Technical Reports Server (NTRS)
Johnson, R., Jr.
1978-01-01
Design and fabrication of supplement test panels that represent key portions of the cylinder are described, as are supporting tests of coupons, sample joints, and stiffening ring elements. The cylindrical shell is a ring-stiffened, open corrugation design that uses T300/5208 graphite-epoxy tape as the basic material for the shell wall and stiffening rings. The test cylinder is designed to withstand bending loads producing the relatively low maximum load intensity in the shell wall of 1,576 N/cm. The resulting shell wall weight, including stiffening rings and fasteners, is 0.0156 kg/m. The shell weight achieved in the graphite-epoxy cylinder represents a weight saving of approximately 23 percent, compared to a comparable aluminum shell. A unique fabrication approach was used in which the cylinder wall was built in three flat segments, which were then wrapped to the cylindrical shape. Such an approach, made possible by the flexibility of the thin corrugated wall in a radial direction, proved to be a simple approach to building the test cylinder. Based on tooling and fabrication methods in this program, the projected costs of a production run of 100 units are reported.
Proseus, Timothy E; Boyer, John S
2012-06-01
Pectin is a normal constituent of cell walls of green plants. When supplied externally to live cells or walls isolated from the large-celled green alga Chara corallina, pectin removes calcium from load-bearing cross-links in the wall, loosening the structure and allowing it to deform more rapidly under the action of turgor pressure. New Ca(2+) enters the vacated positions in the wall and the externally supplied pectin binds to the wall, depositing new wall material that strengthens the wall. A calcium pectate cycle has been proposed for these sub-reactions. In the present work, the cycle was tested in C. corallina by depriving the wall of external Ca(2+) while allowing the cycle to run. The prediction is that growth would eventually be disrupted by a lack of adequate deposition of new wall. The test involved adding pectate or the calcium chelator EGTA to the Ca(2+)-containing culture medium to bind the calcium while the cycle ran in live cells. After growth accelerated, turgor and growth eventually decreased, followed by an abrupt turgor loss and growth cessation. The same experiment with isolated walls suggested the walls of live cells became unable to support the plasma membrane. If instead the pectate or EGTA was replaced with fresh Ca(2+)-containing culture medium during the initial acceleration in live cells, growth was not disrupted and returned to the original rates. The operation of the cycle was thus confirmed, providing further evidence that growth rates and wall biosynthesis are controlled by these sub-reactions in plant cell walls.
Spray Foam Exterior Insulation with Stand-Off Furring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herk, Anastasia; Baker, Richard; Prahl, Duncan
IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizesmore » physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using 'L' clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and 'picture framing' the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.« less
Spray Foam Exterior Insulation with Stand-Off Furring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herk, Anatasia; Baker, Richard; Prahl, Duncan
IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizesmore » physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using "L" clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and "picture framing" the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.« less
Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.
Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P
2015-07-28
The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by a network of cell wall polysaccharides, which are remodeled in response to growth conditions and environmental stress. However, little is known about how cell wall elasticity is regulated and how it affects adaptation to stresses such as sudden changes in osmolarity. We show that elasticity is critical for survival under conditions of osmotic shock, before stress signaling pathways have time to induce gene expression and drive glycerol accumulation. Critical cell wall remodeling enzymes control cell wall flexibility, and its regulation is strongly dependent on host nutritional inputs. We also demonstrate an entirely new level of cell wall dynamism, where significant architectural changes and structural realignment occur within seconds of an osmotic shock. Copyright © 2015 Ene et al.
An experimental investigation of a two and a three-dimensional low speed turbulent boundary layer
NASA Technical Reports Server (NTRS)
Winkelmann, A. E.; Melnik, W. L.
1976-01-01
Experimental studies of a two and a three-dimensional low speed turbulent boundary layer were conducted on the side wall of a boundary layer wind tunnel. The 20 ft. long test section, with a rectangular cross section measuring 17.5 in. x 46 in., produced a 3.5 in. thick turbulent boundary layer at a free stream Reynolds number. The three-dimensional turbulent boundary layer was produced by a 30 deg swept wing-like model faired into the side wall of the test section. Preliminary studies in the two-dimensional boundary layer indicated that the flow was nonuniform on the 46 in. wide test wall. The nonuniform boundary layer is characterized by transverse variations in the wall shear stress and is primarily caused by nonuniformities in the inlet damping screens.
Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration
NASA Astrophysics Data System (ADS)
de Rango, P.; Marty, P.; Fruchart, D.
2016-02-01
The paper reviews the state of the art of hydrogen storage systems based on magnesium hydride, emphasizing the role of thermal management, whose effectiveness depends on the effective thermal conductivity of the hydride, but also depends of other limiting factors such as wall contact resistance and convective exchanges with the heat transfer fluid. For daily cycles, the use of phase change material to store the heat of reaction appears to be the most effective solution. The integration with fuel cells (1 kWe proton exchange membrane fuel cell and solid oxide fuel cell) highlights the dynamic behaviour of these systems, which is related to the thermodynamic properties of MgH2. This allows for "self-adaptive" systems that do not require control of the hydrogen flow rate at the inlet of the fuel cell.
NASA Tech Briefs, December 2003
NASA Technical Reports Server (NTRS)
2003-01-01
Topics covered include: Organic/Inorganic Hybrid Polymer/Clay Nanocomposites; Less-Toxic Coatings for Inhibiting Corrosion of Aluminum; Liquid Coatings for Reducing Corrosion of Steel in Concrete; Processable Polyimides Containing APB and Reactive End Caps; Rod/Coil Block Copolyimides for Ion-Conducting Membranes; Techniques for Characterizing Microwave Printed Antennas; Cylindrical Antenna With Partly Adaptive Phased-Array Feed; Command Interface ASIC - Analog Interface ASIC Chip Set; Predicting Accumulations of Ice on Aerodynamic Surfaces; Analyzing Aeroelasticity in Turbomachines; Software for Allocating Resources in the Deep Space Network; Expert Seeker; High-Speed Recording of Test Data on Hard Disks; Functionally Graded Nanophase Beryllium/Carbon Composites; Thin Thermal-Insulation Blankets for Very High Temperatures; Aerostructures Test Wing; Flight-Test Evaluation of Flutter-Prediction Methods; Piezoelectrically Actuated Microvalve for Liquid Effluents; Larger-Stroke Piezoelectrically Actuated Microvalve; Innovative, High-Pressure, Cryogenic Control Valve: Short Face-to-Face, Reduced Cost; Safer Roadside Crash Walls Would Limit Deceleration; Improved Interactive Medical-Imaging System; Scanning Microscopes Using X Rays and Microchannels; Slotting Fins of Heat Exchangers to Provide Thermal Breaks; Methane Clathrate Hydrate Prospecting; Automated Monitoring with a BSP Fault-Detection Test; Automated Monitoring with a BCP Fault-Decision Test; Vector-Ordering Filter Procedure for Data Reduction; Remote Sensing and Information Technology for Large Farms; Developments at the Advanced Design Technologies Testbed; Spore-Forming Bacteria that Resist Sterilization; and Acoustical Applications of the HHT Method.
13. Interior view of Test Cell 9 (fuel) in Components ...
13. Interior view of Test Cell 9 (fuel) in Components Test Laboratory (T-27), showing west and north walls. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. Two windows in the wall to the left enable personnel in the control room to observe component testing in the cell. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
15. Interior view of Test Cell 10 (environmental) in Components ...
15. Interior view of Test Cell 10 (environmental) in Components Test Laboratory (T-27), showing north and east walls. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. The window in the wall to the left enables personnel in the control room to observe component testing in the cell. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Czarny, T. L.; Perri, A. L.; French, S.
2014-01-01
The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. PMID:24687489
A wall interference assessment/correction interface measurement system for the NASA/ARC 12-ft PWT
NASA Technical Reports Server (NTRS)
1989-01-01
Development of complex air vehicle configurations is placing increasing demands on wind tunnel testing capabilities. A major area of concern is wall induced interference. Recent developments in wall interference technology provide a means for assessing and correcting for the wall induced interference using information contained in the distribution of flow variables measured at, or near, the wall. The restoration of the NASA-ARC 12-ft pressure wind tunnel (PWT) provides an opportunity to incorporate a measurement system with which wall interference assessment/correction (WIAC) technology can be applied. In this first phase of the development of a WIAC system for the PWT, the design criteria for the placement and the geometry of wall static pressure orifices were determined with a three step approach. First, the operational environment of the PWT was analyzed as to the requirements for the WIAC system. Second, appropriate wall interference theories were evaluated against the requirements determined from the operational environment. Third, the flow about representative models in the PWT was calculated and, specifically, the pressure signatures at the location of the test section wall were obtained. The number of discrete pressure measurements and their locations were determined by curve fitting the pressure distribution through the discrete measurements and evaluating the resulting error.
Diaz, Aaron A.; Burghard, Brion J.; Skorpik, James R.; Pappas, Richard A.; Mullen, O. Dennis; Samuel, Todd J.; Reid, Larry D.; Harris, Joe C.; Valencia, Juan D.; Smalley, Jonathan T.; Shepard, Chester L.; Taylor, Theodore T.
2005-09-06
An ultrasound inspection apparatus particularly adapted to examine containers (sealed or unsealed) containing a liquid or solid bulk material. The apparatus has an overall configuration of a hand held pistol with a front transducer contact surface that is positioned against a front wall of the container. An ultrasound pulse is transmitted from the apparatus to be reflected from a back wall of a container being investigated. The received echo pulse is converted to a digital waveform. The waveform is analyzed relative to temperature, travel distance of the pulse(s), and time of travel to ascertain characteristics of the liquid or other materials and to provide identification of the same.
Fegert, J M; Geiken, G; Lenz, K
1992-12-01
The fall of the Berlin wall caused a sudden increase in migration from East-Germany to West-Berlin. In our sample we compared 155 Berlin elementary school children to 17 children from East-Germany now living in Berlin and 25 immigrant children most oft them coming from Turkey and Poland. Although many authors expected short-term disorders of adaptation, we found a constancy of psychiatric diagnosis in the migration group. We noticed important differences particularly in the new psychosocial situation of the former East German mothers, with many single-mother-families, where the mothers now were often unemployed.
Hydraulic balancing of a control component within a nuclear reactor
Marinos, D.; Ripfel, H.C.F.
1975-10-14
A reactor control component includes an inner conduit, for instance containing neutron absorber elements, adapted for longitudinal movement within an outer guide duct. A transverse partition partially encloses one end of the conduit and meets a transverse wall within the guide duct when the conduit is fully inserted into the reactor core. A tube piece extends from the transverse partition and is coaxially aligned to be received within a tubular receptacle which extends from the transverse wall. The tube piece and receptacle cooperate in engagement to restrict the flow and pressure of coolant beneath the transverse partition and thereby minimize upward forces tending to expel the inner conduit.
Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates.
Qiao, Qiyun; Cao, Wanlin; Qian, Zhiwei; Li, Xiangyu; Zhang, Wenwen; Liu, Wenchao
2017-12-07
In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC) shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA) and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA) had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.
NASA Astrophysics Data System (ADS)
Pan, Peng; Wu, Shoujun; Wang, Haishen; Nie, Xin
2018-04-01
Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism. This damage mode results in poor ductility and limited energy dissipation. Continuous components offer alternatives that may avoid such failures. A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics. Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used. However, a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported. In this study, a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing. Critical joints were designed and verified. Numerical models were established and calibrated to estimate frame shear forces. The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms. Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall. Drift distribution becomes more uniform with height. Concrete cracks and damage occurs in desired areas. The infilled rocking wall frame offers a promising approach to achieving seismic resilience.
NASA Astrophysics Data System (ADS)
Kramer, Kevin James
This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 mum of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb 83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by the same radial flibe flow that travels through perforated ODS walls to the reflector blanket. This reflector blanket is 75 cm thick comprised of 2 cm diameter graphite pebbles cooled by flibe. The flibe extraction plenum surrounds the reflector bed. Detailed neutronics designs studies are performed to arrive at the described design. The LFFH engine thermal power is controlled using a technique of adjusting the 6Li/7Li enrichment in the primary and secondary coolants. The enrichment adjusts system thermal power in the design by increasing tritium production while reducing fission. To perform the simulations and design of the LFFH engine, a new software program named LFFH Nuclear Control (LNC) was developed in C++ to extend the functionality of existing neutron transport and depletion software programs. Neutron transport calculations are performed with MCNP5. Depletion calculations are performed using Monteburns 2.0, which utilizes ORIGEN 2.0 and MCNP5 to perform a burnup calculation. LNC supports many design parameters and is capable of performing a full 3D system simulation from initial startup to full burnup. It is able to iteratively search for coolant 6Li enrichments and resulting material compositions that meet user defined performance criteria. LNC is utilized throughout this study for time dependent simulation of the LFFH engine. Two additional methods were developed to improve the computation efficiency of LNC calculations. These methods, termed adaptive time stepping and adaptive mesh refinement were incorporated into a separate stand alone C++ library name the Adaptive Burnup Library (ABL). The ABL allows for other client codes to call and utilize its functionality. Adaptive time stepping is useful for automatically maximizing the size of the depletion time step while maintaining a desired level of accuracy. Adaptive meshing allows for analysis of fixed fuel configurations that would normally require a computationally burdensome number of depletion zones. Alternatively, Adaptive Mesh Refinement (AMR) adjusts the depletion zone size according to the variation in flux across the zone or fractional contribution to total absorption or fission. A parametric analysis on a fully mixed fuel core was performed using the LNC and ABL code suites. The resulting system parameters are found to optimize performance metrics using a 20 MT DU fuel load with a 20% TRISO packing and a 300 im kernel diameter operated with a fusion input power of 500 MW and a fission blanket gain of 4.0. LFFH potentially offers a proliferation resistant technology relative to other nuclear energy systems primarily because of no need for fuel enrichment or reprocessing. A figure of merit of the material attractiveness is examined and it is found that the fuel is effectively contaminated to an unattractive level shortly after the system is started due to fission product and minor actinide build up.
NASA Technical Reports Server (NTRS)
Feng, Hui-Yu; VanderWijngaart, Rob; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2001-01-01
We describe the design of a new method for the measurement of the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. The method involves the solution of a stylized heat transfer problem on an unstructured, adaptive grid. A Spectral Element Method (SEM) with an adaptive, nonconforming mesh is selected to discretize the transport equation. The relatively high order of the SEM lowers the fraction of wall clock time spent on inter-processor communication, which eases the load balancing task and allows us to concentrate on the memory accesses. The benchmark is designed to be three-dimensional. Parallelization and load balance issues of a reference implementation will be described in detail in future reports.
He, Cunfu; Yan, Lyu; Zhang, Haijun
2018-01-01
It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the −3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ−3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth. PMID:29498636
Lee, Ji-Hye; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2016-01-01
To evaluate the effect of implant coronal wall thickness on load-bearing capacity and screw joint stability. Experimental implants were customized after investigation of the thinnest coronal wall thickness of commercially available implant systems with a regular platform diameter. Implants with four coronal wall thicknesses (0.2, 0.3, 0.4, and 0.5 mm) were fabricated. Three sets of tests were performed. The first set was a failure test to evaluate load-bearing capacity and elastic limit. The second and third sets were cyclic and static loading tests. After abutment screw tightening of each implant, vertical cyclic loading of 250 N or static loading from 250 to 800 N was applied. Coronal diameter expansion, axial displacement, and removal torque values of the implants were compared. Repeated measures analysis of variance (ANOVA) was used for statistical analysis (α = .05). Implants with 0.2-mm coronal wall thickness demonstrated significantly low load-bearing capacity and elastic limit (both P < .05). These implants also showed significantly large coronal diameter expansion and axial displacement after screw tightening (both P < .05). Greater vertical load and thinner coronal wall thickness significantly increased coronal diameter expansion of the implant, axial displacement of the abutment, and removal torque loss of the abutment screw (all P < .05). Implant coronal wall thickness of 0.2 mm produces significantly inferior load-bearing capacity and screw joint stability.
Zhao, Huamin; He, Cunfu; Yan, Lyu; Zhang, Haijun
2018-03-02
It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the -3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ -3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth.
Spors, Sascha; Buchner, Herbert; Rabenstein, Rudolf; Herbordt, Wolfgang
2007-07-01
The acoustic theory for multichannel sound reproduction systems usually assumes free-field conditions for the listening environment. However, their performance in real-world listening environments may be impaired by reflections at the walls. This impairment can be reduced by suitable compensation measures. For systems with many channels, active compensation is an option, since the compensating waves can be created by the reproduction loudspeakers. Due to the time-varying nature of room acoustics, the compensation signals have to be determined by an adaptive system. The problems associated with the successful operation of multichannel adaptive systems are addressed in this contribution. First, a method for decoupling the adaptation problem is introduced. It is based on a generalized singular value decomposition and is called eigenspace adaptive filtering. Unfortunately, it cannot be implemented in its pure form, since the continuous adaptation of the generalized singular value decomposition matrices to the variable room acoustics is numerically very demanding. However, a combination of this mathematical technique with the physical description of wave propagation yields a realizable multichannel adaptation method with good decoupling properties. It is called wave domain adaptive filtering and is discussed here in the context of wave field synthesis.
Wall Boundary Layer Measurements for the NASA Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Wieseman, Carol D.; Bennett, Robert M.
2007-01-01
Measurements of the boundary layer parameters in the NASA Langley Transonic Dynamics tunnel were conducted during extensive calibration activities following the facility conversion from a Freon-12 heavy-gas test medium to R-134a. Boundary-layer rakes were mounted on the wind-tunnel walls, ceiling, and floor. Measurements were made over the range of tunnel operation envelope in both heavy gas and air and without a model in the test section at three tunnel stations. Configuration variables included open and closed east sidewall wall slots, for air and R134a test media, reentry flap settings, and stagnation pressures over the full range of tunnel operation. The boundary layer thickness varied considerably for the six rakes. The thickness for the east wall was considerably larger that the other rakes and was also larger than previously reported. There generally was some reduction in thickness at supersonic Mach numbers, but the effect of stagnation pressure, and test medium were not extensive.
Identification of thermal properties distribution in building wall using infrared thermography
NASA Astrophysics Data System (ADS)
Brouns, Jordan; Dumoulin, Jean
2016-04-01
In the construction sector, most of the measurements carried out from IR camera devices are exploited in a qualitative way (e.g. observation of thermal bridges). However, unless a quantitative analysis is realized, it is not possible to assess the impact of the observed phenomena. Most of research efforts and proposed solutions to identify quantified thermal properties (e.g. U-values) have to be completed, adapted to the built environment and validated in experimental and real conditions to allow quantified assessment of materials thermal properties thanks to IR camera devices [1]. We still need several steps in terms of scientific and technical developments for such technological progress. The H2020 European Built2Spec research project (http://built2spec-project.eu/) aims at giving highlights on that. Heat transfer through the walls are generally model by 1D heat equation in the wall depth. The built is composed by a multilayer domain representing the construction process. In this context, the thermal parameters of the wall are piecewise constant space functions. We propose a methodology to recover the vector of the wall thermal properties (conductivity and capacity) from boundary measurements obtained from an IR camera. It formulates as an inverse problem where the unknown are sought as minimizers of a cost function evaluating the gap between the measures and the model response. This optimization problem is non linear, and we solve it with the Levenberg-Marquardt algorithm coupled with the conjugate gradient method [2-3]. To shorten the time of the identification process, we use the adjoint method coming from the control theory [4]. This method fasten the gradient computation by solving an associated model, named the adjoint model. We study the ability of the procedure to reconstruct internal wall constitution from different environmental conditions. Furthermore, we propose a controlled experimental test to evaluate the method in laboratory conditions. References [1] L. Ibos, J-P. Monchau, V. Feuillet, Y. Candau, A comparative study of in-situ measurement methods of a building wall thermal resistance using infrared thermography, in Proc. SPIE 9534, Twelfth International Conference on Quality Control by Artificial Vision 2015, 95341I (April 30, 2015); doi:10.1117/12.2185126 [2] Nassiopoulos, A., Bourquin, F., On-site building walls characterization, Numerical Heat Transfer, Part A : Applications, 63(3) :179 :200, 2013 [3] J. Brouns, Développement d'outils numériques pour l'audit énergétique des bâtiments, PhD thesis, Université Paris-Est, SIE, 2014 [4] J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Book, Dunod editor, 1968.
Toll-Like Receptor 2 and Mincle Cooperatively Sense Corynebacterial Cell Wall Glycolipids.
Schick, Judith; Etschel, Philipp; Bailo, Rebeca; Ott, Lisa; Bhatt, Apoorva; Lepenies, Bernd; Kirschning, Carsten; Burkovski, Andreas; Lang, Roland
2017-07-01
Nontoxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans cause invasive disease in humans and animals. Host sensing of corynebacteria is largely uncharacterized, albeit the recognition of lipoglycans by Toll-like receptor 2 (TLR2) appears to be important for macrophage activation by corynebacteria. The members of the order Corynebacterineae (e.g., mycobacteria, nocardia, and rhodococci) share a glycolipid-rich cell wall dominated by mycolic acids (termed corynomycolic acids in corynebacteria). The mycolic acid-containing cord factor of mycobacteria, trehalose dimycolate, activates the C-type lectin receptor (CLR) Mincle. Here, we show that glycolipid extracts from the cell walls of several pathogenic and nonpathogenic Corynebacterium strains directly bound to recombinant Mincle in vitro Macrophages deficient in Mincle or its adapter protein Fc receptor gamma chain (FcRγ) produced severely reduced amounts of granulocyte colony-stimulating factor (G-CSF) and of nitric oxide (NO) upon challenge with corynebacterial glycolipids. Consistently, cell wall extracts of a particular C. diphtheriae strain (DSM43989) lacking mycolic acid esters neither bound Mincle nor activated macrophages. Furthermore, TLR2 but not TLR4 was critical for sensing of cell wall extracts and whole corynebacteria. The upregulation of Mincle expression upon encountering corynebacteria required TLR2. Thus, macrophage activation by the corynebacterial cell wall relies on TLR2-driven robust Mincle expression and the cooperative action of both receptors. Copyright © 2017 American Society for Microbiology.
Toll-Like Receptor 2 and Mincle Cooperatively Sense Corynebacterial Cell Wall Glycolipids
Schick, Judith; Etschel, Philipp; Bailo, Rebeca; Ott, Lisa; Bhatt, Apoorva; Lepenies, Bernd; Kirschning, Carsten
2017-01-01
ABSTRACT Nontoxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans cause invasive disease in humans and animals. Host sensing of corynebacteria is largely uncharacterized, albeit the recognition of lipoglycans by Toll-like receptor 2 (TLR2) appears to be important for macrophage activation by corynebacteria. The members of the order Corynebacterineae (e.g., mycobacteria, nocardia, and rhodococci) share a glycolipid-rich cell wall dominated by mycolic acids (termed corynomycolic acids in corynebacteria). The mycolic acid-containing cord factor of mycobacteria, trehalose dimycolate, activates the C-type lectin receptor (CLR) Mincle. Here, we show that glycolipid extracts from the cell walls of several pathogenic and nonpathogenic Corynebacterium strains directly bound to recombinant Mincle in vitro. Macrophages deficient in Mincle or its adapter protein Fc receptor gamma chain (FcRγ) produced severely reduced amounts of granulocyte colony-stimulating factor (G-CSF) and of nitric oxide (NO) upon challenge with corynebacterial glycolipids. Consistently, cell wall extracts of a particular C. diphtheriae strain (DSM43989) lacking mycolic acid esters neither bound Mincle nor activated macrophages. Furthermore, TLR2 but not TLR4 was critical for sensing of cell wall extracts and whole corynebacteria. The upregulation of Mincle expression upon encountering corynebacteria required TLR2. Thus, macrophage activation by the corynebacterial cell wall relies on TLR2-driven robust Mincle expression and the cooperative action of both receptors. PMID:28483856
Computation of turbulent boundary layers employing the defect wall-function method. M.S. Thesis
NASA Technical Reports Server (NTRS)
Brown, Douglas L.
1994-01-01
In order to decrease overall computational time requirements of spatially-marching parabolized Navier-Stokes finite-difference computer code when applied to turbulent fluid flow, a wall-function methodology, originally proposed by R. Barnwell, was implemented. This numerical effort increases computational speed and calculates reasonably accurate wall shear stress spatial distributions and boundary-layer profiles. Since the wall shear stress is analytically determined from the wall-function model, the computational grid near the wall is not required to spatially resolve the laminar-viscous sublayer. Consequently, a substantially increased computational integration step size is achieved resulting in a considerable decrease in net computational time. This wall-function technique is demonstrated for adiabatic flat plate test cases from Mach 2 to Mach 8. These test cases are analytically verified employing: (1) Eckert reference method solutions, (2) experimental turbulent boundary-layer data of Mabey, and (3) finite-difference computational code solutions with fully resolved laminar-viscous sublayers. Additionally, results have been obtained for two pressure-gradient cases: (1) an adiabatic expansion corner and (2) an adiabatic compression corner.
NASA Technical Reports Server (NTRS)
Al-Saadi, Jassim A.
1993-01-01
A computational simulation of a transonic wind tunnel test section with longitudinally slotted walls is developed and described herein. The nonlinear slot model includes dynamic pressure effects and a plenum pressure constraint, and each slot is treated individually. The solution is performed using a finite-difference method that solves an extended transonic small disturbance equation. The walls serve as the outer boundary conditions in the relaxation technique, and an interaction procedure is used at the slotted walls. Measured boundary pressures are not required to establish the wall conditions but are currently used to assess the accuracy of the simulation. This method can also calculate a free-air solution as well as solutions that employ the classical homogeneous wall conditions. The simulation is used to examine two commercial transport aircraft models at a supercritical Mach number for zero-lift and cruise conditions. Good agreement between measured and calculated wall pressures is obtained for the model geometries and flow conditions examined herein. Some localized disagreement is noted, which is attributed to improper simulation of viscous effects in the slots.
HOT CELL BUILDING, TRA632. WHILE STEEL BEAMS DEFINE FUTURE WALLS ...
HOT CELL BUILDING, TRA-632. WHILE STEEL BEAMS DEFINE FUTURE WALLS OF THE BUILDING, SHEET STEEL DEFINES THE HOT CELL "BOX" ITSELF. THREE OPERATING WINDOWS ON LEFT; ONE VIEWING WINDOW ON RIGHT. TUBES WILL CONTAIN SERVICE AND CONTROL LEADS. SPACE BETWEEN INNER AND OUTER BOX WALLS WILL BE FILLED WITH SHIELDED WINDOWS AND BARETES CONCRETE. CAMERA FACES SOUTHEAST. INL NEGATIVE NO. 7933. Unknown Photographer, ca. 5/1953 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Rotating shielded crane system
Commander, John C.
1988-01-01
A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.
Theory of the interface between a classical plasma and a hard wall
NASA Astrophysics Data System (ADS)
Ballone, P.; Pastore, G.; Tosi, M. P.
1983-09-01
The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody selfconsistently into the theory a contact theorem, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. The interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.
Theory of the interface between a classical plasma and a hard wall
NASA Astrophysics Data System (ADS)
Ballone, P.; Pastore, G.; Tosi, M. P.
1984-12-01
The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody self-consistently into the theory a “contact theorem”, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. It is also shown that the interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.
Auxiliary reactor for a hydrocarbon reforming system
Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.
2006-01-17
An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.
NASA Astrophysics Data System (ADS)
Takahashi, Hiroki; Hasegawa, Hideyuki; Kanai, Hiroshi
2013-07-01
For the facilitation of analysis and elimination of the operator dependence in estimating the myocardial function in echocardiography, we have previously developed a method for automated identification of the heart wall. However, there are misclassified regions because the magnitude-squared coherence (MSC) function of echo signals, which is one of the features in the previous method, is sensitively affected by the clutter components such as multiple reflection and off-axis echo from external tissue or the nearby myocardium. The objective of the present study is to improve the performance of automated identification of the heart wall. For this purpose, we proposed a method to suppress the effect of the clutter components on the MSC of echo signals by applying an adaptive moving target indicator (MTI) filter to echo signals. In vivo experimental results showed that the misclassified regions were significantly reduced using our proposed method in the longitudinal axis view of the heart.
Engineering membrane and cell-wall programs for tolerance to toxic chemicals: Beyond solo genes.
Sandoval, Nicholas R; Papoutsakis, Eleftherios T
2016-10-01
Metabolite toxicity in microbes, particularly at the membrane, remains a bottleneck in the production of fuels and chemicals. Under chemical stress, native adaptation mechanisms combat hyper-fluidization by modifying the phospholipids in the membrane. Recent work in fluxomics reveals the mechanism of how membrane damage negatively affects energy metabolism while lipidomic and transcriptomic analyses show that strains evolved to be tolerant maintain membrane fluidity under stress through a variety of mechanisms such as incorporation of cyclopropanated fatty acids, trans-unsaturated fatty acids, and upregulation of cell wall biosynthesis genes. Engineered strains with modifications made in the biosynthesis of fatty acids, peptidoglycan, and lipopolysaccharide have shown increased tolerance to exogenous stress as well as increased production of desired metabolites of industrial importance. We review recent advances in elucidation of mechanisms or toxicity and tolerance as well as efforts to engineer the bacterial membrane and cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.
Johnston, Roger G.; Garcia, Anthony R. E.; Martinez, Ronald K.
2001-09-25
The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
...)] / (D2 − d2) Where: S = wall stress in psi; P = minimum test pressure prescribed for water jacket test or... seams that are forged lap-welded or brazed and with water capacity (nominal) not over 1,000 pounds and a... calculated wall stress at minimum test pressure (paragraph (i)(4) of this section) may not exceed the...
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
...)] / (D2 − d2) Where: S = wall stress in psi; P = minimum test pressure prescribed for water jacket test or... longitudinal seams that are forged lap-welded or brazed and with water capacity (nominal) not over 1,000 pounds... calculated wall stress at minimum test pressure (paragraph (i)(4) of this section) may not exceed the...
8. BUILDING NO. 611. INTERIOR OF ARMOR PLATELINED TESTING CHAMBER. ...
8. BUILDING NO. 611. INTERIOR OF ARMOR PLATE-LINED TESTING CHAMBER. 1/2' THICK ARMOR PLATING BOLTED TO WALLS, FLOOR AND CEILING. WALLS CONSTRUCTED OF 24' THICK REINFORCED CONCRETE. VENTS IN CEILING EXHAUST SMOKE FROM EXPLOSIONS. SMALLEST WHEELED VEHICLES HOLD DUDS. - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ
Presence of mycobacterial L-forms in human blood: Challenge of BCG vaccination
Markova, Nadya; Slavchev, Georgi; Michailova, Lilia
2015-01-01
Possible persistence of bacteria in human blood as cell wall deficient forms (L-forms) represents a top research priority for microbiologists. Application of live BCG vaccine and L-form transformation of vaccine strain may display a new intriguing aspect concerning the opportunity for occurrence of unpredictable colonization inside the human body by unusual microbial life forms. L-form cultures were isolated from 141 blood samples of people previously vaccinated with BCG, none with a history of exposure to tuberculosis. Innovative methodology to access the unusual L-form elements derived from human blood was developed. The methodology outlines the path of transformation of non- cultivable L-form element to cultivable bacteria and their adaptation for growth in vitro. All isolates showed typical L-forms growth features (“fried eggs” colonies and biofilm). Electron microscopy revealed morphology evidencing peculiar characteristics of bacterial L-form population (cell wall deficient polymorphic elements of variable shape and size). Regular detection of acid fast bacteria in smears of isolated blood L-form cultures, led us to start their identification by using specific Mycobactrium spp. genetic tests. Forty five of 97 genetically tested blood cultures provided specific positive signals for mycobacteria, confirmed by at least one of the 3 specific assays (16S rRNA PCR; IS6110 Real Time PCR and spoligotyping). In conclusion, the obtained genetic evidence suggests that these L-forms are of mycobacterial origin. As the investigated people had been vaccinated with BCG, we can assume that the identified mycobacterial L-forms may be produced by persisting live BCG vaccine. PMID:25874947
Bacterial immunostat: Mycobacterium tuberculosis lipids and their role in the host immune response.
Queiroz, Adriano; Riley, Lee W
2017-01-01
The lipid-rich cell wall of Mycobacterium tuberculosis is a dynamic structure that is involved in the regulation of the transport of nutrients, toxic host-cell effector molecules, and anti-tuberculosis drugs. It is therefore postulated to contribute to the long-term bacterial survival in an infected human host. Accumulating evidence suggests that M. tuberculosis remodels the lipid composition of the cell wall as an adaptive mechanism against host-imposed stress. Some of these lipid species (trehalose dimycolate, diacylated sulphoglycolipid, and mannan-based lipoglycans) trigger an immunopathologic response, whereas others (phthiocerol dimycocerosate, mycolic acids, sulpholipid-1, and di-and polyacyltrehalose) appear to dampen the immune responses. These lipids appear to be coordinately expressed in the cell wall of M. tuberculosis during different phases of infection, ultimately determining the clinical fate of the infection. This review summarizes the current state of knowledge on the metabolism, transport, and homeostatic or immunostatic regulation of the cell wall lipids, and their orchestrated interaction with host immune responses that results in bacterial clearance, persistence, or tuberculosis.
Contrasting mechanisms of growth in two model rod-shaped bacteria
Billaudeau, Cyrille; Chastanet, Arnaud; Yao, Zhizhong; Cornilleau, Charlène; Mirouze, Nicolas; Fromion, Vincent; Carballido-López, Rut
2017-01-01
How cells control their shape and size is a long-standing question in cell biology. Many rod-shaped bacteria elongate their sidewalls by the action of cell wall synthesizing machineries that are associated to actin-like MreB cortical patches. However, little is known about how elongation is regulated to enable varied growth rates and sizes. Here we use total internal reflection fluorescence microscopy and single-particle tracking to visualize MreB isoforms, as a proxy for cell wall synthesis, in Bacillus subtilis and Escherichia coli cells growing in different media and during nutrient upshift. We find that these two model organisms appear to use orthogonal strategies to adapt to growth regime variations: B. subtilis regulates MreB patch speed, while E. coli may mainly regulate the production capacity of MreB-associated cell wall machineries. We present numerical models that link MreB-mediated sidewall synthesis and cell elongation, and argue that the distinct regulatory mechanism employed might reflect the different cell wall integrity constraints in Gram-positive and Gram-negative bacteria. PMID:28589952
Personal Radiation Protection System
NASA Technical Reports Server (NTRS)
McDonald, Mark; Vinci, Victoria
2004-01-01
A report describes the personal radiation protection system (PRPS), which has been invented for use on the International Space Station and other spacecraft. The PRPS comprises walls that can be erected inside spacecraft, where and when needed, to reduce the amount of radiation to which personnel are exposed. The basic structural modules of the PRPS are pairs of 1-in. (2.54-cm)-thick plates of high-density polyethylene equipped with fasteners. The plates of each module are assembled with a lap joint. The modules are denoted bricks because they are designed to be stacked with overlaps, in a manner reminiscent of bricks, to build 2-in. (5.08-cm)-thick walls of various lengths and widths. The bricks are of two varieties: one for flat wall areas and one for corners. The corner bricks are specialized adaptations of the flat-area bricks that make it possible to join walls perpendicular to each other. Bricks are attached to spacecraft structures and to each other by use of straps that can be tightened to increase the strengths and stiffnesses of joints.
Predicting multi-wall structural response to hypervelocity impact using the hull code
NASA Technical Reports Server (NTRS)
Schonberg, William P.
1993-01-01
Previously, multi-wall structures have been analyzed extensively, primarily through experiment, as a means of increasing the meteoroid/space debris impact protection of spacecraft. As structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative to experimental testing, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under different impact loading conditions. The results of comparing experimental tests to Hull Hydrodynamic Computer Code predictions are reported. Also, the results of a numerical parametric study of multi-wall structural response to hypervelocity cylindrical projectile impact are presented.
NASA Technical Reports Server (NTRS)
Judd, M.; Wolf, S. W. D.; Goodyer, M. J.
1976-01-01
A method has been developed for accurately computing the imaginary flow fields outside a flexible walled test section, applicable to lifting and non-lifting models. The tolerances in the setting of the flexible walls introduce only small levels of aerodynamic interference at the model. While it is not possible to apply corrections for the interference effects, they may be reduced by improving the setting accuracy of the portions of wall immediately above and below the model. Interference effects of the truncation of the length of the streamlined portion of a test section are brought to an acceptably small level by the use of a suitably long test section with the model placed centrally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, L. L.; Hill, L. G.
2001-01-01
Cylinder test data is reported for commercially available prilled ANFO (ammonium-nitrate/fuel-oil) at 0.93 ,g/cc density and ambient temperature. The tests were four-inch inner diameter, with wall-thickness and length scaled from the standard one-inch test (0.4 inch and 48 inch, respectively). The wall expansion was measured with a rotating mirror streak camera and the velocity was measured by fine-wire pin switches, in the standard manner. The wall expansion trajectory is much smoother than for conventional explosives, which show a pronounced jump-off with subs uent ring-up. This observation is consistent with a broadened detohation shock in the granular bed. ?he data ismore » analyzed for equation-of-state information and JWL parameters are given.« less
Experimental Tests of Nonlocal Rheology in Dense Granular Flows
NASA Astrophysics Data System (ADS)
Tang, Zhu; Brzinski, Ted; Shearer, Michael; Daniels, Karen
Several nonlocal granular rheology models have been proposed to address shortcomings in local rheology models. One such model, developed by Kamrin & Koval, is based on extending a local Bagnold-type granular flow law by including a Laplacian term that accounts for the grain size and cooperative effects. We perform experiments to test this model in a quasi-2D annular shear geometry with a fixed outer wall and a rotating inner wall. We obtain the speed profile by particle tracking. We measure the inner wall torque, and calculate the pressure and shear stress on the outer wall using deformable laser-cut leaf springs. This allows us to calculate the relationship between the stress ratio μ and the inertial number I at different inner wall rotation speeds and packing fractions. The results are compared with nonlocal models.
Channel Wall Nozzle Hot-fire Tests
2018-03-16
A subscale channel wall nozzle is hot-fire tested in November 2017 at NASA's Marshall Space Flight Center. The nozzle was fabricated using three separate, state-of-the-art, advanced manufacturing technologies including a new process called Laser Wire Direct Closeout that was co-developed and advanced at Marshall.
Developmental adaptations to gravity in animals
NASA Technical Reports Server (NTRS)
Hargens, Alan R.
1991-01-01
Terrestrial animals have adapted to a constant gravitational stress over millions of years. Tissues of the cardiovascular system and lumbar spine in tall species of animals such as the giraffe are particularly well adapted to high and variable vectors of gravitational force. Swelling of the leg tissues in the giraffe is prevented by a variety of physiological mechanisms including (1) a natural 'antigravity suit', (2) impermeable capillaries, (3) arterial-wall hypertrophy, (4) variable blood pressures during normal activity, and (5) a large-capacity lymphatic system. These adaptations, as well as a natural hypertension, maintain blood perfusion to the giraffe's brain. The intervertebral disk is another tissue that is uniquely adapted to gravitational stress. Tall and large terrestrial animals have higher swelling pressures than their smaller or aquatic counterparts. Finally, the meniscus of the rabbit knee provides information on the effects of aging and load-bearing on cartilaginous tissues. Such tissues within the joints of animals are important for load-bearing on Earth; these connective tissues may degenerate during long-duration space flight.
Taking Root in Foreign Soil: Adaptation Processes of Imported Universities
ERIC Educational Resources Information Center
Graham, Terrece F.
2016-01-01
The fall of the Berlin Wall in 1989 ushered in a period of change in higher-education systems across the former Eastern bloc. Reform-minded leaders in the region sought to introduce western models and policies promoted by foreign development aid agendas. Private higher-education institutions emerged. This qualitative multiple case study examines…
Estimating Instantaneous Energetic Cost During Gait Adaptation
2014-08-31
process of habituation to treadmill walking at different velocities. 430 Ergonomics 23: 425–435, 1980 . 431 34. WALL JC, Charteris J. A kinematic...study of long-term habituation to treadmill walking. 432 Ergonomics 24: 531–542, 1981. 433 35. Waters RL, Hislop HJ, Perry J, Antonelli D
Design curves for circular and annular duct silencers
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Ramakrishnan, R.
1989-01-01
Conventional models of sound propagation between porous walls (Scott, 1946) are adapted in order to calculate design curves for the lined circular and annular-duct silencers used in HVAC systems. The derivation of the governing equations is outlined, and results for two typical cases are presented graphically. Good agreement with published experimental data is demonstrated.
A modular approach to adaptive structures.
Pagitz, Markus; Pagitz, Manuel; Hühne, Christian
2014-10-07
A remarkable property of nastic, shape changing plants is their complete fusion between actuators and structure. This is achieved by combining a large number of cells whose geometry, internal pressures and material properties are optimized for a given set of target shapes and stiffness requirements. An advantage of such a fusion is that cell walls are prestressed by cell pressures which increases, decreases the overall structural stiffness, weight. Inspired by the nastic movement of plants, Pagitz et al (2012 Bioinspir. Biomim. 7) published a novel concept for pressure actuated cellular structures. This article extends previous work by introducing a modular approach to adaptive structures. An algorithm that breaks down any continuous target shapes into a small number of standardized modules is presented. Furthermore it is shown how cytoskeletons within each cell enhance the properties of adaptive modules. An adaptive passenger seat and an aircrafts leading, trailing edge is used to demonstrate the potential of a modular approach.
Behavior of Steel-Sheathed Shear Walls Subjected to Seismic and Fire Loads.
Hoehler, Matthew S; Smith, Christopher M; Hutchinson, Tara C; Wang, Xiang; Meacham, Brian J; Kamath, Praveen
2017-07-01
A series of tests was conducted on six 2.7 m × 3.7 m shear wall specimens consisting of cold-formed steel framing sheathed on one side with sheet steel adhered to gypsum board and on the opposite side with plain gypsum board. The specimens were subjected to various sequences of simulated seismic shear deformation and fire exposure to study the influence of multi-hazard interactions on the lateral load resistance of the walls. The test program was designed to complement a parallel effort at the University of California, San Diego to investigate a six-story building subjected to earthquakes and fires. The test results reported here indicate that the fire exposure caused a shift in the failure mode of the walls from local buckling of the sheet steel in cases without fire exposure, to global buckling of the sheet steel with an accompanying 35 % reduction in lateral load capacity after the wall had been exposed to fire. This behavior appears to be predictable, which is encouraging from the standpoint of residual lateral load capacity under these severe multi-hazard actions.
Leite, K R B; França, F; Scatena, V I
2012-02-01
Temporary lakes are common in the semi-arid region of the State of Bahia and form water mirrors in the rainy season. In this period, various vegetal species appear having different life forms adapted to the seasonality conditions of the rainfall regime. This work surveyed the adaptive anatomical structures of some emergent and amphibious monocot species occurring in these lakes. We studied the anatomy of roots, rhizomes, leaves and scapes of Cyperus odoratus, Oxycaryum cubense, Pycreus macrostachyos (Cyperaceae) - amphibious species; and of Echinodorus grandiflorus (Alismataceae), Eichhornia paniculata (Pontederiaceae) and Habenaria repens (Orchidaceae) - emergent species. The anatomical features of the dermal, fundamental and vascular systems confirming the tendency of the adaptive convergence of these plants to temporary lacustrine the environment include: single layered epidermal cells with a thin cuticle layer in the aerial organs; the presence of air canals in all the organs; few or no supporting tissues; and less numerous conducting elements and thinner cell walls in the xylem. The reduction of the supporting tissues, the number of stomata, which can even be absent, and the number of conducting elements and the degree of cell wall lignification in the xylem of the emergent species is more accentuated than that of the amphibious species. The pattern of distribution of aerenchyma in the roots of the studied species was considered important to distinguish between amphibious and emergent life forms.
Baltanás, Rodrigo; Bush, Alan; Couto, Alicia; Durrieu, Lucía; Hohmann, Stefan; Colman-Lerner, Alejandro
2013-01-01
Environmental and internal conditions expose cells to a multiplicity of stimuli whose consequences are difficult to predict. Here, we investigate the response to mating pheromone of yeast cells adapted to high osmolarity. Events downstream of pheromone binding involve two mitogen-activated protein kinase (MAPK) cascades: the pheromone response (PR) and the cell-wall integrity response (CWI). Although these MAPK pathways share components with each and a third MAPK pathway, the high osmolarity response (HOG), they are normally only activated by distinct stimuli, a phenomenon called insulation. We found that in cells adapted to high osmolarity, PR activated the HOG pathway in a pheromone- and osmolarity- dependent manner. Activation of HOG by the PR was not due to loss of insulation, but rather a response to a reduction in internal osmolarity, which resulted from an increase in glycerol release caused by the PR. By analyzing single-cell time courses, we found that stimulation of HOG occurred in discrete bursts that coincided with the “shmooing” morphogenetic process. Activation required the polarisome, the cell wall integrity MAPK Slt2, and the aquaglyceroporin Fps1. HOG activation resulted in high glycerol turnover that improved adaptability to rapid changes in osmolarity. Our work shows how a differentiation signal can recruit a second, unrelated sensory pathway to enable responses to yeast to multiple stimuli. PMID:23612707
49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.
Code of Federal Regulations, 2010 CFR
2010-10-01
... both with a water capacity of not over 100 pounds and a service pressure of at least 500 but not over... (b) of this section. (f) Wall thickness. The minimum wall thickness must be such that the wall stress...) Calculation for sphere must be made by the formula: S = PD / 4tE Where: S = Wall stress in psi; P = Test...
William H. Cooke; Andrew J. Hartsell
2000-01-01
Wall-to-wall Landsat TM classification efforts in Georgia require field validation. Validation uslng FIA data was testing by developing a new crown modeling procedure. A methodology is under development at the Southern Research Station to model crown diameter using Forest Health monitoring data. These models are used to simulate the proportion of tree crowns that...
The Enhancement of Composite Scarf Joint Interface Strength Through Carbon Nanotube Reinforcement
2007-06-01
includes single walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes ( MWCNT ) with varying length, purity, and concentration levels along the...OF PAGES 106 14. SUBJECT TERMS Carbon Nanotubes, CNT, SWCNT, MWCNT , Bamboo, Polymer Composite, Joint Strength Enhancement, Reinforcement 16...variables concerning the carbon nanotube application. The testing includes single walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes ( MWCNT
Hernández-Morera, Pablo; Castaño-González, Irene; Travieso-González, Carlos M.; Mompeó-Corredera, Blanca; Ortega-Santana, Francisco
2016-01-01
Purpose To develop a digital image processing method to quantify structural components (smooth muscle fibers and extracellular matrix) in the vessel wall stained with Masson’s trichrome, and a statistical method suitable for small sample sizes to analyze the results previously obtained. Methods The quantification method comprises two stages. The pre-processing stage improves tissue image appearance and the vessel wall area is delimited. In the feature extraction stage, the vessel wall components are segmented by grouping pixels with a similar color. The area of each component is calculated by normalizing the number of pixels of each group by the vessel wall area. Statistical analyses are implemented by permutation tests, based on resampling without replacement from the set of the observed data to obtain a sampling distribution of an estimator. The implementation can be parallelized on a multicore machine to reduce execution time. Results The methods have been tested on 48 vessel wall samples of the internal saphenous vein stained with Masson’s trichrome. The results show that the segmented areas are consistent with the perception of a team of doctors and demonstrate good correlation between the expert judgments and the measured parameters for evaluating vessel wall changes. Conclusion The proposed methodology offers a powerful tool to quantify some components of the vessel wall. It is more objective, sensitive and accurate than the biochemical and qualitative methods traditionally used. The permutation tests are suitable statistical techniques to analyze the numerical measurements obtained when the underlying assumptions of the other statistical techniques are not met. PMID:26761643
NORTH BASEMENT WALL. IBEAM COLUMNS HAVE BEEN ENCASED IN CONCRETE. ...
NORTH BASEMENT WALL. I-BEAM COLUMNS HAVE BEEN ENCASED IN CONCRETE. STEEL BEAMS LAY ACROSS FIRST FLOOR AWAITING CONCRETE POUR. CAMERA LOOKS SOUTHWEST. INL NEGATIVE NO. 735. Unknown Photographer, 10/6/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Lu, Xiaoxu; Li, Yinsheng; Thunders, Michelle; Cavanagh, Jo; Matthew, Cory; Wang, Xiuhong; Zhou, Xinchu; Qiu, Jiangping
2017-03-01
Cytochrome P450 (CYP450) is a hemoprotein superfamily, among which CYP1, CYP2 and CYP3 play a major role in the metabolism of vast array of xenobiotics and endobiotics. This paper reports on three CYP enzyme variants (CYP1A2, CYP2E1 and CYP3A4) in three species of earthworm (Eisenia fetida, Metaphire guillelmi and Amynthas carnosus). The relative expression levels and localization of the three associated proteins were investigated at three life-cycle points (juvenile, sub-adult and adult), through comparison of anterior and posterior body tissue and between specific organs (body wall, intestine and reproductive tissues) using western blot analysis. This study confirmed the presence of CYP3A4, CYP1A2 and CYP2E1 in all three species of earthworm tested. The levels of expression varied with earthworm species, age, and body location. These differences in occurrence of the three CYP enzymes appeared to reflect the ecological niche (the spatial and temporal location and functional relationship of each individual or population in populations or communities), and the likelihood of contact with soil contaminants of the respective species. These results may help to explain why earthworms are capable of adapting to very different and extensively polluted soil environments and provide important data for subsequent ecotoxicology and ecological adaptability studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Transient Three-Dimensional Startup Side Load Analysis of a Regeneratively Cooled Nozzle
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2008-01-01
The objective of this effort is to develop a computational methodology to capture the startup side load physics and to anchor the computed aerodynamic side loads with the available data from a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, a transient 5 s inlet history based on an engine system simulation, and a wall temperature distribution to reflect the effect of regenerative cooling. To understand the effect of regenerative wall cooling, two transient computations were performed using the boundary conditions of adiabatic and cooled walls, respectively. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with the pulsation of shocks across the lip, although the combustion wave is commonly eliminated with the sparklers during actual test. The test measured two side load events: a secondary and lower side load, followed by a primary and peak side load. Results from both wall boundary conditions captured the free-shock separation to restricted-shock separation transition with computed side loads matching the measured secondary side load. For the primary side load, the cooled wall transient produced restricted-shock pulsation across the nozzle lip with peak side load matching that of the test, while the adiabatic wall transient captured shock transitions and free-shock pulsation across the lip with computed peak side load 50% lower than that of the measurement. The computed dominant pulsation frequency of the cooled wall nozzle agrees with that of a separate test, while that of the adiabatic wall nozzle is more than 50% lower than that of the measurement. The computed teepee-like formation and the tangential motion of the shocks during lip pulsation also qualitatively agree with those of test observations. Moreover, a third transient computation was performed with a proportionately shortened 1 s sequence, and lower side loads were obtained with the higher ramp rate.
2011-05-01
ER D C/ CH L TR -1 1- 3 Flood and Coastal Storm Damage Reduction R& D Program Adaptation of the Levee Erosional Equivalence Method for the...of vertical wall [-] γw Specific weight of water [kN/m3] γβ Reduction factor for influence of angle of wave attack [-] θ Landward-side levee ...stress multiplied by the flow velocity. Thus, from Equation (4) stream power has the form ERDC/CHL TR-11-3 9 S o D D dW P τ u ρ f u u ρ f u dt
Bandyopadhyay, Promode R.; Hellum, Aren M.
2014-01-01
Many slow-moving biological systems like seashells and zebrafish that do not contend with wall turbulence have somewhat organized pigmentation patterns flush with their outer surfaces that are formed by underlying autonomous reaction-diffusion (RD) mechanisms. In contrast, sharks and dolphins contend with wall turbulence, are fast swimmers, and have more organized skin patterns that are proud and sometimes vibrate. A nonlinear spatiotemporal analytical model is not available that explains the mechanism underlying control of flow with such proud patterns, despite the fact that shark and dolphin skins are major targets of reverse engineering mechanisms of drag and noise reduction. Comparable to RD, a minimal self-regulation model is given for wall turbulence regeneration in the transitional regime—laterally coupled, diffusively—which, although restricted to pre-breakdown durations and to a plane close and parallel to the wall, correctly reproduces many experimentally observed spatiotemporal organizations of vorticity in both laminar-to-turbulence transitioning and very low Reynolds number but turbulent regions. We further show that the onset of vorticity disorganization is delayed if the skin organization is treated as a spatiotemporal template of olivo-cerebellar phase reset mechanism. The model shows that the adaptation mechanisms of sharks and dolphins to their fluid environment have much in common. PMID:25338940
Bandyopadhyay, Promode R; Hellum, Aren M
2014-10-23
Many slow-moving biological systems like seashells and zebrafish that do not contend with wall turbulence have somewhat organized pigmentation patterns flush with their outer surfaces that are formed by underlying autonomous reaction-diffusion (RD) mechanisms. In contrast, sharks and dolphins contend with wall turbulence, are fast swimmers, and have more organized skin patterns that are proud and sometimes vibrate. A nonlinear spatiotemporal analytical model is not available that explains the mechanism underlying control of flow with such proud patterns, despite the fact that shark and dolphin skins are major targets of reverse engineering mechanisms of drag and noise reduction. Comparable to RD, a minimal self-regulation model is given for wall turbulence regeneration in the transitional regime--laterally coupled, diffusively--which, although restricted to pre-breakdown durations and to a plane close and parallel to the wall, correctly reproduces many experimentally observed spatiotemporal organizations of vorticity in both laminar-to-turbulence transitioning and very low Reynolds number but turbulent regions. We further show that the onset of vorticity disorganization is delayed if the skin organization is treated as a spatiotemporal template of olivo-cerebellar phase reset mechanism. The model shows that the adaptation mechanisms of sharks and dolphins to their fluid environment have much in common.
Transport Equation Based Wall Distance Computations Aimed at Flows With Time-Dependent Geometry
NASA Technical Reports Server (NTRS)
Tucker, Paul G.; Rumsey, Christopher L.; Bartels, Robert E.; Biedron, Robert T.
2003-01-01
Eikonal, Hamilton-Jacobi and Poisson equations can be used for economical nearest wall distance computation and modification. Economical computations may be especially useful for aeroelastic and adaptive grid problems for which the grid deforms, and the nearest wall distance needs to be repeatedly computed. Modifications are directed at remedying turbulence model defects. For complex grid structures, implementation of the Eikonal and Hamilton-Jacobi approaches is not straightforward. This prohibits their use in industrial CFD solvers. However, both the Eikonal and Hamilton-Jacobi equations can be written in advection and advection-diffusion forms, respectively. These, like the Poisson s Laplacian, are commonly occurring industrial CFD solver elements. Use of the NASA CFL3D code to solve the Eikonal and Hamilton-Jacobi equations in advective-based forms is explored. The advection-based distance equations are found to have robust convergence. Geometries studied include single and two element airfoils, wing body and double delta configurations along with a complex electronics system. It is shown that for Eikonal accuracy, upwind metric differences are required. The Poisson approach is found effective and, since it does not require offset metric evaluations, easiest to implement. The sensitivity of flow solutions to wall distance assumptions is explored. Generally, results are not greatly affected by wall distance traits.
Transport Equation Based Wall Distance Computations Aimed at Flows With Time-Dependent Geometry
NASA Technical Reports Server (NTRS)
Tucker, Paul G.; Rumsey, Christopher L.; Bartels, Robert E.; Biedron, Robert T.
2003-01-01
Eikonal, Hamilton-Jacobi and Poisson equations can be used for economical nearest wall distance computation and modification. Economical computations may be especially useful for aeroelastic and adaptive grid problems for which the grid deforms, and the nearest wall distance needs to be repeatedly computed. Modifications are directed at remedying turbulence model defects. For complex grid structures, implementation of the Eikonal and Hamilton-Jacobi approaches is not straightforward. This prohibits their use in industrial CFD solvers. However, both the Eikonal and Hamilton-Jacobi equations can be written in advection and advection-diffusion forms, respectively. These, like the Poisson's Laplacian, are commonly occurring industrial CFD solver elements. Use of the NASA CFL3D code to solve the Eikonal and Hamilton-Jacobi equations in advective-based forms is explored. The advection-based distance equations are found to have robust convergence. Geometries studied include single and two element airfoils, wing body and double delta configurations along with a complex electronics system. It is shown that for Eikonal accuracy, upwind metric differences are required. The Poisson approach is found effective and, since it does not require offset metric evaluations, easiest to implement. The sensitivity of flow solutions to wall distance assumptions is explored. Generally, results are not greatly affected by wall distance traits.
Simulations of vertical disruptions with VDE code: Hiro and Evans currents
NASA Astrophysics Data System (ADS)
Li, Xujing; Di Hu Team; Leonid Zakharov Team; Galkin Team
2014-10-01
The recently created numerical code VDE for simulations of vertical instability in tokamaks is presented. The numerical scheme uses the Tokamak MHD model, where the plasma inertia is replaced by the friction force, and an adaptive grid numerical scheme. The code reproduces well the surface currents generated at the plasma boundary by the instability. Five regimes of the vertical instability are presented: (1) Vertical instability in a given plasma shaping field without a wall; (2) The same with a wall and magnetic flux ΔΨ|plX< ΔΨ|Xwall(where X corresponds to the X-point of a separatrix); (3) The same with a wall and magnetic flux ΔΨ|plX> ΔΨ|Xwall; (4) Vertical instability without a wall with a tile surface at the plasma path; (5) The same in the presence of a wall and a tile surface. The generation of negative Hiro currents along the tile surface, predicted earlier by the theory and measured on EAST in 2012, is well-reproduced by simulations. In addition, the instability generates the force-free Evans currents at the free plasma surface. The new pattern of reconnection of the plasma with the vacuum magnetic field is discovered. This work is supported by US DoE Contract No. DE-AC02-09-CH11466.
Brooks, Steven D; DeVallance, Evan; d'Audiffret, Alexandre C; Frisbee, Stephanie J; Tabone, Lawrence E; Shrader, Carl D; Frisbee, Jefferson C; Chantler, Paul D
2015-12-01
The metabolic syndrome (MetS) is highly prevalent in the North American population and is associated with increased risk for development of cerebrovascular disease. This study determined the structural and functional changes in the middle cerebral arteries (MCA) during the progression of MetS and the effects of chronic pharmacological interventions on mitigating vascular alterations in obese Zucker rats (OZR), a translationally relevant model of MetS. The reactivity and wall mechanics of ex vivo pressurized MCA from lean Zucker rats (LZR) and OZR were determined at 7-8, 12-13, and 16-17 wk of age under control conditions and following chronic treatment with pharmacological agents targeting specific systemic pathologies. With increasing age, control OZR demonstrated reduced nitric oxide bioavailability, impaired dilator (acetylcholine) reactivity, elevated myogenic properties, structural narrowing, and wall stiffening compared with LZR. Antihypertensive therapy (e.g., captopril or hydralazine) starting at 7-8 wk of age blunted the progression of arterial stiffening compared with OZR controls, while treatments that reduced inflammation and oxidative stress (e.g., atorvastatin, rosiglitazone, and captopril) improved NO bioavailability and vascular reactivity compared with OZR controls and had mixed effects on structural remodeling. These data identify specific functional and structural cerebral adaptations that limit cerebrovascular blood flow in MetS patients, contributing to increased risk of cognitive decline, cerebral hypoperfusion, and ischemic stroke; however, these pathological adaptations could potentially be blunted if treated early in the progression of MetS. Copyright © 2015 the American Physiological Society.
ERIC Educational Resources Information Center
Ponsoda, Vicente; Olea, Julio; Rodriguez, Maria Soledad; Revuelta, Javier
1999-01-01
Compared easy and difficult versions of self-adapted tests (SAT) and computerized adapted tests. No significant differences were found among the tests for estimated ability or posttest state anxiety in studies with 187 Spanish high school students, although other significant differences were found. Discusses implications for interpreting test…
Czarny, T L; Perri, A L; French, S; Brown, E D
2014-06-01
The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Morrow, William S.; Carpenter, Phillip J.; Adams, Ryan F.
2015-01-01
The water gun is a tool adapted from deep marine geophysical surveys that is being evaluated for use as an acoustic fish deterrent to control the movement of invasive marine species. The water gun creates a seismic signal by using a compressed air discharge to move a piston rapidly within the water, resulting in an implosion. This energy pulse may be able to modify fish behavior or destroy marine life, such as the Asian carp, at some distance. The effects of this energy pulse on structures in the Chicago Sanitary and Ship Canal (CSSC), such as canal walls, shore lines, and lock structures, are not known. The potential effects of the use of a water gun on structures was identified as a concern in the CSSC and was assessed relative to existing background sources during this study. During September 2011, two water guns with piston sizes of 80 and 343 cubic inches, respectively, were tested in the CSSC at varying pressures and distances from a canal wall consisting of dolomite and dolomite setblock. Seismic data were collected during these water gun firings using geophones on land, in boreholes, and at the canal wall interface. Data were collected at varying depths in the canal water using hydrophones. Seismic data were also collected during the occurrences of barge traffic, railroad traffic located near the electric fish barrier in Lemont, and coal-loading operations at a coal power plant near the electric fish barrier. In general, energy produced by barge and railroad sources was less than energy created by the water gun. Energy levels produced by coal-loading operations at least 200 feet from geophones were approximately four times lower than energy levels measured during water gun operations.
Varela-Centelles, P; Loira-Gago, M; Seoane-Romero, J M; Takkouche, B; Monteiro, L; Seoane, J
2015-11-01
A systematic search of MEDLINE, Embase, and Proceedings Web of Science was undertaken to assess the prevalence of the posterior superior alveolar artery (PSAA) in the lateral sinus wall in sinus lift patients, as identified using computed tomography (CT)/cone beam computed tomography (CBCT). For inclusion, the article had to report PSAA detection in the bony wall using CT and/or CBCT in patients with subsinus edentulism. Studies on post-mortem findings, mixed samples (living and cadaveric), those presenting pooled results only, or studies performed for a sinus pathology were excluded. Heterogeneity was checked using an adapted version of the DerSimonian and Laird Q test, and quantified by calculating the proportion of the total variance due to between-study variance (Ri statistic). Eight hundred and eleven single papers were reviewed and filtered according to the inclusion/exclusion criteria. Ten studies were selected (1647 patients and 2740 maxillary sinuses (study unit)). The pooled prevalence of PSAA was 62.02 (95% confidence interval (CI) 46.33-77.71). CBCT studies detected PSAA more frequently (78.12, 95% CI 61.25-94.98) than CT studies (51.19, 95% CI 42.33-60.05). Conventional CT revealed thicker arteries than CBCT. It is concluded that PSAA detection is more frequent when CBCT explorations are used. Additional comparative studies controlling for potential confounding factors are needed to ascertain the actual diagnostic value of radiographic explorations for assessing the PSAA prior to sinus floor elevation procedures. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Size effect and cylinder test on several commercial explosives
NASA Astrophysics Data System (ADS)
Souers, P. Clark; Lauderbach, Lisa; Moua, Kou; Garza, Raul
2012-03-01
Some size (diameter) effect and the Cylinder test results for Kinepak (ammonium nitrate/nitromethane), Semtex 1, Semtex H and urea nitrate are presented. Cylinder test data appears normal despite faster sound speeds in the copper wall. Most explosives come to steady state in the Cylinder test as expected, but Kinepak shows a steadily increasing wall velocity with distance down the cylinder. Some data on powder densities as a function of loading procedure are also given.
NASA Technical Reports Server (NTRS)
Goodyer, M. J.
1982-01-01
Data obtained from the boundary of a test section provides information on the model contained within it. A method for extracting some of this data in two dimensional testing is described. Examples of model data are included on lift, pitching moment and wake displacement thickness. A FORTRAN listing is also described, having a form suitable for incorporation into the software package used in the running of such a test section.
Exposure Control Using Adaptive Multi-Stage Item Bundles.
ERIC Educational Resources Information Center
Luecht, Richard M.
This paper presents a multistage adaptive testing test development paradigm that promises to handle content balancing and other test development needs, psychometric reliability concerns, and item exposure. The bundled multistage adaptive testing (BMAT) framework is a modification of the computer-adaptive sequential testing framework introduced by…
NASA Astrophysics Data System (ADS)
Ikemoto, Toshikazu; Mori, Masashi; Miyajima, Masakatsu; Hashimoto, Takao; Murata, Akira
There are many earthquake damages of kenchi block masonry wall. So, we carried out experimental studies on the collapse mechanism of kenchi block masonry wall during earthquake. From these experimental data, i.e. acceleration response magnification, displacement and soil pressure were found to destroy the central wall vibrations caused by the subsidence of the embankment.
Applications of a new wall function to turbulent flow computations
NASA Astrophysics Data System (ADS)
Chen, Y. S.
1986-01-01
A new wall function approach is developed based on a wall law suitable for incompressible turbulent boundary layers under strong adverse pressure gradients. This wall law was derived from a one-dimensional analysis of the turbulent kinetic energy equation with gradient diffusion concept employed in modeling the near-wall shear stress gradient. Numerical testing cases for the present wall functions include turbulent separating flows around an airfoil and turbulent recirculating flows in several confined regions. Improvements on the predictions using the present wall functions are illustrated. For cases of internal recirculating flows, one modification factor for improving the performance of the k-epsilon turbulence model in the flow recirculation regions is also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, D.K.; Christian, J.E.
1985-01-01
Eight one-room test buildings, 20 ft (6.1 m) square and 7.5 ft (2.3 m) high, were constructed on a high desert site near Tesuque Pueblo, New Mexico, to study the influence of wall dynamic heat transfer characteristics on building heating requirements (the ''thermal mass effect''). The buildings are nominally identical except for the walls (adobe, concrete and masonry unit, wood-frame, and log) and are constructed so as to isolate the effects of the walls. The amount of mass in the walls varies from 240 lb/ft/sup 2/ (1171 kg/m/sup 2/) for the 2 ft (.61 m) thick adobe wall to 4.3more » lb/ft/sup 2/ (21 kg/m/sup 2/) for the insulated wood-frame wall. The roof, floor, and stem walls are all well insulated and the buildings were constructed with infiltration rates less than 0.4 air change per hour. The site is instrumented to record building component temperatures and heat fluxes, outside weather conditions, and heating energy use. Data were collected for two heating seasons from midwinter to late spring with the buildings in two configurations, with and without windows. Four computer codes were used to simulate the performance of the test buildings without windows, using site weather data. The codes used were DOE-2.1A, DOE-2.1C, BLAST, and DEROB. Each code was run by a different analyst. Simulations were done for midwinter, late winter, and spring. Two of the test cell comparisons are discussed; the insulated frame and an 11-in. (.28 m) adobe. This work presents a quantitative and qualitative critical comparison of the modeling and experimental results. Cumulative heating loads, wall heat fluxes, and air surface temperatures are compared, as well as input assumptions to the models. Explanations of differences and difficulties encountered are reported. The principal findings were that cumulative heating loads and the characteristic influences of wall thermal mass on hourly behavior were reproduced by the models.« less
Development of a new connection for precast concrete walls subjected to cyclic loading
NASA Astrophysics Data System (ADS)
Vaghei, Ramin; Hejazi, Farzad; Taheri, Hafez; Jaafar, Mohd Saleh; Aziz, Farah Nora Aznieta Abdul
2017-01-01
The Industrialized Building System (IBS) was recently introduced to minimize the time and cost of project construction. Accordingly, ensuring the integration of the connection of precast components in IBS structures is an important factor that ensures stability of buildings subjected to dynamic loads from earthquakes, vehicles, and machineries. However, structural engineers still lack knowledge on the proper connection and detailed joints of IBS structure construction. Therefore, this study proposes a special precast concrete wall-to-wall connection system for dynamic loads that resists multidirectional imposed loads and reduces vibration effects (PI2014701723). This system is designed to connect two adjacent precast wall panels by using two steel U-shaped channels (i.e., male and female joints). During casting, each joint is adapted for incorporation into a respective wall panel after considering the following conditions: one side of the steel channel opens into the thickness face of the panel; a U-shaped rubber is implemented between the two channels to dissipate the vibration effect; and bolts and nuts are used to create an extension between the two U-shaped male and female steel channels. The developed finite element model of the precast wall is subjected to cyclic loads to evaluate the performance of the proposed connection during an imposed dynamic load. Connection performance is then compared with conventional connections based on the energy dissipation, stress, deformation, and concrete damage in the plastic range. The proposed precast connection is capable of exceeding the energy absorption of precast walls subjected to dynamic load, thereby improving its resistance behavior in all principal directions.
Falter, Christian; Ellinger, Dorothea; von Hülsen, Behrend; Heim, René; Voigt, Christian A.
2015-01-01
The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape – liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant–microbe interaction with their potential outreach into crop breeding. PMID:25870605
Falter, Christian; Ellinger, Dorothea; von Hülsen, Behrend; Heim, René; Voigt, Christian A
2015-01-01
The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape - liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.
Experimental Study on Tsunami Risk Reduction on Coastal Building Fronted by Sea Wall
Khan, M. T. R.; Shirazi, S. M.
2014-01-01
This experimental study was conducted to idealize the efficacy of sea wall in controlling the tsunami forces on onshore structures. Different types of sea walls were placed in front of the building model. The tsunami forces and the wave heights were measured with and without the sea wall conditions. Types of sea wall, wall height, and wall positions were varied simultaneously to quantify the force reductions. Maximum of 41% forces was reduced by higher sea wall, positioned closer proximity to the model whereas this reduction was about 27% when the wall height was half of the high wall. Experimental investigations revealed that wall with adequate height and placed closer to the structures enables a satisfactory predictor of the force reduction on onshore structures. Another set of tests were performed with perforated wall placing near the building model. Less construction cost makes the provision of perforated sea wall interesting. The overall results showed that the efficacy of perforated wall is almost similar to solid wall. Hence, it can be efficiently used instead of solid wall. Moreover, overtopped water that is stuck behind the wall is readily gone back to the sea through perforations releasing additional forces on the nearby structures. PMID:24790578
An experimental study on compressive behavior of rubble stone walls retrofitted with BFRP grids
NASA Astrophysics Data System (ADS)
Huang, Hui; Jia, Bin; Li, Wenjing; Liu, Xiao; Yang, Dan; Deng, Chuanli
2018-03-01
An experimental study was conducted to investigate the compressive behavior of rubble stone walls retrofitted with BFRP grids. The experimental program consisted of four rubble stone walls: one unretrofitted rubble stone wall (reference wall) and three BFRP grids retrofitted rubble stone walls. The main purpose of the tests was to gain a better understanding of the compressive behavior of rubble stone walls retrofitted with different amount of BFRP grids. The experimental results showed that the reference wall failed with out-of-plane collapse due to poor connection between rubble stone blocks and the three BFRP grids retrofitted walls failed with BFRP grids rupture followed by out-of-plane collapse. The measured compressive strength of the BFRP grids retrofitted walls is about 1.4 to 2.5 times of that of the reference wall. Besides, the rubble stone wall retrofitted with the maximum amount of BFRP grids showed the minimum vertical and out-of-plane displacements under the same load.