Baseline Adaptive Wavelet Thresholding Technique for sEMG Denoising
NASA Astrophysics Data System (ADS)
Bartolomeo, L.; Zecca, M.; Sessa, S.; Lin, Z.; Mukaeda, Y.; Ishii, H.; Takanishi, Atsuo
2011-06-01
The surface Electromyography (sEMG) signal is affected by different sources of noises: current technology is considerably robust to the interferences of the power line or the cable motion artifacts, but still there are many limitations with the baseline and the movement artifact noise. In particular, these sources have frequency spectra that include also the low-frequency components of the sEMG frequency spectrum; therefore, a standard all-bandwidth filtering could alter important information. The Wavelet denoising method has been demonstrated to be a powerful solution in processing white Gaussian noise in biological signals. In this paper we introduce a new technique for the denoising of the sEMG signal: by using the baseline of the signal before the task, we estimate the thresholds to apply to the Wavelet thresholding procedure. The experiments have been performed on ten healthy subjects, by placing the electrodes on the Extensor Carpi Ulnaris and Triceps Brachii on right upper and lower arms, and performing a flexion and extension of the right wrist. An Inertial Measurement Unit, developed in our group, has been used to recognize the movements of the hands to segment the exercise and the pre-task baseline. Finally, we show better performances of the proposed method in term of noise cancellation and distortion of the signal, quantified by a new suggested indicator of denoising quality, compared to the standard Donoho technique.
Wavelet-based acoustic emission detection method with adaptive thresholding
NASA Astrophysics Data System (ADS)
Menon, Sunil; Schoess, Jeffrey N.; Hamza, Rida; Busch, Darryl
2000-06-01
Reductions in Navy maintenance budgets and available personnel have dictated the need to transition from time-based to 'condition-based' maintenance. Achieving this will require new enabling diagnostic technologies. One such technology, the use of acoustic emission for the early detection of helicopter rotor head dynamic component faults, has been investigated by Honeywell Technology Center for its rotor acoustic monitoring system (RAMS). This ambitious, 38-month, proof-of-concept effort, which was a part of the Naval Surface Warfare Center Air Vehicle Diagnostics System program, culminated in a successful three-week flight test of the RAMS system at Patuxent River Flight Test Center in September 1997. The flight test results demonstrated that stress-wave acoustic emission technology can detect signals equivalent to small fatigue cracks in rotor head components and can do so across the rotating articulated rotor head joints and in the presence of other background acoustic noise generated during flight operation. This paper presents the results of stress wave data analysis of the flight-test dataset using wavelet-based techniques to assess background operational noise vs. machinery failure detection results.
Adaptive Threshold Neural Spike Detector Using Stationary Wavelet Transform in CMOS.
Yang, Yuning; Boling, C Sam; Kamboh, Awais M; Mason, Andrew J
2015-11-01
Spike detection is an essential first step in the analysis of neural recordings. Detection at the frontend eases the bandwidth requirement for wireless data transfer of multichannel recordings to extra-cranial processing units. In this work, a low power digital integrated spike detector based on the lifting stationary wavelet transform is presented and developed. By monitoring the standard deviation of wavelet coefficients, the proposed detector can adaptively set a threshold value online for each channel independently without requiring user intervention. A prototype 16-channel spike detector was designed and tested in an FPGA. The method enables spike detection with nearly 90% accuracy even when the signal-to-noise ratio is as low as 2. The design was mapped to 130 nm CMOS technology and shown to occupy 0.014 mm(2) of area and dissipate 1.7 μW of power per channel, making it suitable for implantable multichannel neural recording systems. PMID:25955990
Adaptive Threshold Neural Spike Detector Using Stationary Wavelet Transform in CMOS.
Yang, Yuning; Boling, C Sam; Kamboh, Awais M; Mason, Andrew J
2015-11-01
Spike detection is an essential first step in the analysis of neural recordings. Detection at the frontend eases the bandwidth requirement for wireless data transfer of multichannel recordings to extra-cranial processing units. In this work, a low power digital integrated spike detector based on the lifting stationary wavelet transform is presented and developed. By monitoring the standard deviation of wavelet coefficients, the proposed detector can adaptively set a threshold value online for each channel independently without requiring user intervention. A prototype 16-channel spike detector was designed and tested in an FPGA. The method enables spike detection with nearly 90% accuracy even when the signal-to-noise ratio is as low as 2. The design was mapped to 130 nm CMOS technology and shown to occupy 0.014 mm(2) of area and dissipate 1.7 μW of power per channel, making it suitable for implantable multichannel neural recording systems.
Bremer, P. -T.
2014-08-26
ADAPT is a topological analysis code that allow to compute local threshold, in particular relevance based thresholds for features defined in scalar fields. The initial target application is vortex detection but the software is more generally applicable to all threshold based feature definitions.
NASA Astrophysics Data System (ADS)
Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun
2016-05-01
The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.
Adaptive Multilinear Tensor Product Wavelets.
Weiss, Kenneth; Lindstrom, Peter
2016-01-01
Many foundational visualization techniques including isosurfacing, direct volume rendering and texture mapping rely on piecewise multilinear interpolation over the cells of a mesh. However, there has not been much focus within the visualization community on techniques that efficiently generate and encode globally continuous functions defined by the union of multilinear cells. Wavelets provide a rich context for analyzing and processing complicated datasets. In this paper, we exploit adaptive regular refinement as a means of representing and evaluating functions described by a subset of their nonzero wavelet coefficients. We analyze the dependencies involved in the wavelet transform and describe how to generate and represent the coarsest adaptive mesh with nodal function values such that the inverse wavelet transform is exactly reproduced via simple interpolation (subdivision) over the mesh elements. This allows for an adaptive, sparse representation of the function with on-demand evaluation at any point in the domain. We focus on the popular wavelets formed by tensor products of linear B-splines, resulting in an adaptive, nonconforming but crack-free quadtree (2D) or octree (3D) mesh that allows reproducing globally continuous functions via multilinear interpolation over its cells.
Adaptive wavelets and relativistic magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Hirschmann, Eric; Neilsen, David; Anderson, Matthe; Debuhr, Jackson; Zhang, Bo
2016-03-01
We present a method for integrating the relativistic magnetohydrodynamics equations using iterated interpolating wavelets. Such provide an adaptive implementation for simulations in multidimensions. A measure of the local approximation error for the solution is provided by the wavelet coefficients. They place collocation points in locations naturally adapted to the flow while providing expected conservation. We present demanding 1D and 2D tests includingthe Kelvin-Helmholtz instability and the Rayleigh-Taylor instability. Finally, we consider an outgoing blast wave that models a GRB outflow.
[An improved wavelet threshold algorithm for ECG denoising].
Liu, Xiuling; Qiao, Lei; Yang, Jianli; Dong, Bin; Wang, Hongrui
2014-06-01
Due to the characteristics and environmental factors, electrocardiogram (ECG) signals are usually interfered by noises in the course of signal acquisition, so it is crucial for ECG intelligent analysis to eliminate noises in ECG signals. On the basis of wavelet transform, threshold parameters were improved and a more appropriate threshold expression was proposed. The discrete wavelet coefficients were processed using the improved threshold parameters, the accurate wavelet coefficients without noises were gained through inverse discrete wavelet transform, and then more original signal coefficients could be preserved. MIT-BIH arrythmia database was used to validate the method. Simulation results showed that the improved method could achieve better denoising effect than the traditional ones. PMID:25219225
[Adaptive de-noising of ECG signal based on stationary wavelet transform].
Dong, Hong-sheng; Zhang, Ai-hua; Hao, Xiao-hong
2009-03-01
According to the limitations of wavelet threshold in de-noising method, we approached a combining algorithm of the stationary wavelet transform with adaptive filter. The stationary wavelet transformation can suppress Gibbs phenomena in traditional DWT effectively, and adaptive filter is introduced at the high scale wavelet coefficient of the stationary wavelet transformation. It would remove baseline wander and keep the shape of low frequency and low amplitude P wave, T wave and ST segment wave of ECG signal well. That is important for analyzing ECG signal of other feature information.
Wavelet image coding with parametric thresholding: application to JPEG2000
NASA Astrophysics Data System (ADS)
Zaid, Azza O.; Olivier, Christian; Marmoiton, Francois
2003-05-01
With the increasing use of multimedia technologies, image compression requires higher performance as well as new features. To address this need in the specific area of image coding, the latest ISO/IEC image compression standard, JPEG2000, has been developed. In part II of the standard, the Wavelet Trellis Coded Quantization (WTCQ) algorithm was adopted. It has been proved that this quantization design provides subjective image quality superior to other existing quantization techniques. In this paper we are aiming to improve the rate-distortion performance of WTCQ, by incorporating a thresholding process in JPEG2000 coding chain. The threshold decisions are derived in a Bayesian framework, and the prior used on the wavelet coefficients is the generalized Gaussian distribution (GGD). The threshold value depends on the parametric model estimation of the subband wavelet coefficient distribution. Our algorithm approaches the lowest possible memory usage by using line-based wavelet transform and a scan-based bit allocation technique. In our work, we investigate an efficient way to apply the TCQ to wavelet image coding with regard to both the computational complexity and the compression performance. Experimental results show that the proposed algorithm performs competitively with the best available coding algorithms reported in the literature in terms quality performance.
Electrocardiogram signal denoising based on a new improved wavelet thresholding
NASA Astrophysics Data System (ADS)
Han, Guoqiang; Xu, Zhijun
2016-08-01
Good quality electrocardiogram (ECG) is utilized by physicians for the interpretation and identification of physiological and pathological phenomena. In general, ECG signals may mix various noises such as baseline wander, power line interference, and electromagnetic interference in gathering and recording process. As ECG signals are non-stationary physiological signals, wavelet transform is investigated to be an effective tool to discard noises from corrupted signals. A new compromising threshold function called sigmoid function-based thresholding scheme is adopted in processing ECG signals. Compared with other methods such as hard/soft thresholding or other existing thresholding functions, the new algorithm has many advantages in the noise reduction of ECG signals. It perfectly overcomes the discontinuity at ±T of hard thresholding and reduces the fixed deviation of soft thresholding. The improved wavelet thresholding denoising can be proved to be more efficient than existing algorithms in ECG signal denoising. The signal to noise ratio, mean square error, and percent root mean square difference are calculated to verify the denoising performance as quantitative tools. The experimental results reveal that the waves including P, Q, R, and S waves of ECG signals after denoising coincide with the original ECG signals by employing the new proposed method.
Electrocardiogram signal denoising based on a new improved wavelet thresholding.
Han, Guoqiang; Xu, Zhijun
2016-08-01
Good quality electrocardiogram (ECG) is utilized by physicians for the interpretation and identification of physiological and pathological phenomena. In general, ECG signals may mix various noises such as baseline wander, power line interference, and electromagnetic interference in gathering and recording process. As ECG signals are non-stationary physiological signals, wavelet transform is investigated to be an effective tool to discard noises from corrupted signals. A new compromising threshold function called sigmoid function-based thresholding scheme is adopted in processing ECG signals. Compared with other methods such as hard/soft thresholding or other existing thresholding functions, the new algorithm has many advantages in the noise reduction of ECG signals. It perfectly overcomes the discontinuity at ±T of hard thresholding and reduces the fixed deviation of soft thresholding. The improved wavelet thresholding denoising can be proved to be more efficient than existing algorithms in ECG signal denoising. The signal to noise ratio, mean square error, and percent root mean square difference are calculated to verify the denoising performance as quantitative tools. The experimental results reveal that the waves including P, Q, R, and S waves of ECG signals after denoising coincide with the original ECG signals by employing the new proposed method. PMID:27587134
Parallel adaptive wavelet collocation method for PDEs
Nejadmalayeri, Alireza; Vezolainen, Alexei; Brown-Dymkoski, Eric; Vasilyev, Oleg V.
2015-10-01
A parallel adaptive wavelet collocation method for solving a large class of Partial Differential Equations is presented. The parallelization is achieved by developing an asynchronous parallel wavelet transform, which allows one to perform parallel wavelet transform and derivative calculations with only one data synchronization at the highest level of resolution. The data are stored using tree-like structure with tree roots starting at a priori defined level of resolution. Both static and dynamic domain partitioning approaches are developed. For the dynamic domain partitioning, trees are considered to be the minimum quanta of data to be migrated between the processes. This allows fully automated and efficient handling of non-simply connected partitioning of a computational domain. Dynamic load balancing is achieved via domain repartitioning during the grid adaptation step and reassigning trees to the appropriate processes to ensure approximately the same number of grid points on each process. The parallel efficiency of the approach is discussed based on parallel adaptive wavelet-based Coherent Vortex Simulations of homogeneous turbulence with linear forcing at effective non-adaptive resolutions up to 2048{sup 3} using as many as 2048 CPU cores.
Visualizing 3D Turbulence On Temporally Adaptive Wavelet Collocation Grids
NASA Astrophysics Data System (ADS)
Goldstein, D. E.; Kadlec, B. J.; Yuen, D. A.; Erlebacher, G.
2005-12-01
Today there is an explosion in data from high-resolution computations of nonlinear phenomena in many fields, including the geo- and environmental sciences. The efficient storage and subsequent visualization of these large data sets is a trade off in storage costs versus data quality. New dynamically adaptive simulation methodologies promise significant computational cost savings and have the added benefit of producing results on adapted grids that significantly reduce storage and data manipulation costs. Yet, with these adaptive simulation methodologies come new challenges in the visualization of temporally adaptive data sets. In this work turbulence data sets from Stochastic Coherent Adaptive Large Eddy Simulations (SCALES) are visualized with the open source tool ParaView, as a challenging case study. SCALES simulations use a temporally adaptive collocation grid defined by wavelet threshold filtering to resolve the most energetic coherent structures in a turbulence field. A subgrid scale model is used to account for the effect of unresolved subgrid scale modes. The results from the SCALES simulations are saved on a thresholded dyadic wavelet collocation grid, which by its nature does not include cell information. Paraview is an open source visualization package developed by KitWare(tm) that is based on the widely used VTK graphics toolkit. The efficient generation of cell information, required with current ParaView data formats, is explored using custom algorithms and VTK toolkit routines. Adaptive 3d visualizations using isosurfaces and volume visualizations are compared with non-adaptive visualizations. To explore the localized multiscale structures in the turbulent data sets the wavelet coefficients are also visualized allowing visualization of energy contained in local physical regions as well as in local wave number space.
Nonlinear adaptive wavelet analysis of electrocardiogram signals
NASA Astrophysics Data System (ADS)
Yang, H.; Bukkapatnam, S. T.; Komanduri, R.
2007-08-01
Wavelet representation can provide an effective time-frequency analysis for nonstationary signals, such as the electrocardiogram (EKG) signals, which contain both steady and transient parts. In recent years, wavelet representation has been emerging as a powerful time-frequency tool for the analysis and measurement of EKG signals. The EKG signals contain recurring, near-periodic patterns of P , QRS , T , and U waveforms, each of which can have multiple manifestations. Identification and extraction of a compact set of features from these patterns is critical for effective detection and diagnosis of various disorders. This paper presents an approach to extract a fiducial pattern of EKG based on the consideration of the underlying nonlinear dynamics. The pattern, in a nutshell, is a combination of eigenfunctions of the ensembles created from a Poincare section of EKG dynamics. The adaptation of wavelet functions to the fiducial pattern thus extracted yields two orders of magnitude (some 95%) more compact representation (measured in terms of Shannon signal entropy). Such a compact representation can facilitate in the extraction of features that are less sensitive to extraneous noise and other variations. The adaptive wavelet can also lead to more efficient algorithms for beat detection and QRS cancellation as well as for the extraction of multiple classical EKG signal events, such as widths of QRS complexes and QT intervals.
Adaptive wavelet Wiener filtering of ECG signals.
Smital, Lukáš; Vítek, Martin; Kozumplík, Jiří; Provazník, Ivo
2013-02-01
In this study, we focused on the reduction of broadband myopotentials (EMG) in ECG signals using the wavelet Wiener filtering with noise-free signal estimation. We used the dyadic stationary wavelet transform (SWT) in the Wiener filter as well as in estimating the noise-free signal. Our goal was to find a suitable filter bank and to choose other parameters of the Wiener filter with respect to the signal-to-noise ratio (SNR) obtained. Testing was performed on artificially noised signals from the standard CSE database sampled at 500 Hz. When creating an artificial interference, we started from the generated white Gaussian noise, whose power spectrum was modified according to a model of the power spectrum of an EMG signal. To improve the filtering performance, we used adaptive setting parameters of filtering according to the level of interference in the input signal. We were able to increase the average SNR of the whole test database by about 10.6 dB. The proposed algorithm provides better results than the classic wavelet Wiener filter.
Adaptive wavelet Wiener filtering of ECG signals.
Smital, Lukáš; Vítek, Martin; Kozumplík, Jiří; Provazník, Ivo
2013-02-01
In this study, we focused on the reduction of broadband myopotentials (EMG) in ECG signals using the wavelet Wiener filtering with noise-free signal estimation. We used the dyadic stationary wavelet transform (SWT) in the Wiener filter as well as in estimating the noise-free signal. Our goal was to find a suitable filter bank and to choose other parameters of the Wiener filter with respect to the signal-to-noise ratio (SNR) obtained. Testing was performed on artificially noised signals from the standard CSE database sampled at 500 Hz. When creating an artificial interference, we started from the generated white Gaussian noise, whose power spectrum was modified according to a model of the power spectrum of an EMG signal. To improve the filtering performance, we used adaptive setting parameters of filtering according to the level of interference in the input signal. We were able to increase the average SNR of the whole test database by about 10.6 dB. The proposed algorithm provides better results than the classic wavelet Wiener filter. PMID:23192472
Wavelet-Based Speech Enhancement Using Time-Adapted Noise Estimation
NASA Astrophysics Data System (ADS)
Lei, Sheau-Fang; Tung, Ying-Kai
Spectral subtraction is commonly used for speech enhancement in a single channel system because of the simplicity of its implementation. However, this algorithm introduces perceptually musical noise while suppressing the background noise. We propose a wavelet-based approach in this paper for suppressing the background noise for speech enhancement in a single channel system. The wavelet packet transform, which emulates the human auditory system, is used to decompose the noisy signal into critical bands. Wavelet thresholding is then temporally adjusted with the noise power by time-adapted noise estimation. The proposed algorithm can efficiently suppress the noise while reducing speech distortion. Experimental results, including several objective measurements, show that the proposed wavelet-based algorithm outperforms spectral subtraction and other wavelet-based denoising approaches for speech enhancement for nonstationary noise environments.
Adaptive wavelet simulation of global ocean dynamics
NASA Astrophysics Data System (ADS)
Kevlahan, N. K.-R.; Dubos, T.; Aechtner, M.
2015-07-01
In order to easily enforce solid-wall boundary conditions in the presence of complex coastlines, we propose a new mass and energy conserving Brinkman penalization for the rotating shallow water equations. This penalization does not lead to higher wave speeds in the solid region. The error estimates for the penalization are derived analytically and verified numerically for linearized one dimensional equations. The penalization is implemented in a conservative dynamically adaptive wavelet method for the rotating shallow water equations on the sphere with bathymetry and coastline data from NOAA's ETOPO1 database. This code could form the dynamical core for a future global ocean model. The potential of the dynamically adaptive ocean model is illustrated by using it to simulate the 2004 Indonesian tsunami and wind-driven gyres.
A New Adaptive Mother Wavelet for Electromagnetic Transient Analysis
NASA Astrophysics Data System (ADS)
Guillén, Daniel; Idárraga-Ospina, Gina; Cortes, Camilo
2016-01-01
Wavelet Transform (WT) is a powerful technique of signal processing, its applications in power systems have been increasing to evaluate power system conditions, such as faults, switching transients, power quality issues, among others. Electromagnetic transients in power systems are due to changes in the network configuration, producing non-periodic signals, which have to be identified to avoid power outages in normal operation or transient conditions. In this paper a methodology to develop a new adaptive mother wavelet for electromagnetic transient analysis is proposed. Classification is carried out with an innovative technique based on adaptive wavelets, where filter bank coefficients will be adapted until a discriminant criterion is optimized. Then, its corresponding filter coefficients will be used to get the new mother wavelet, named wavelet ET, which allowed to identify and to distinguish the high frequency information produced by different electromagnetic transients.
Haar wavelet processor for adaptive on-line image compression
NASA Astrophysics Data System (ADS)
Diaz, F. Javier; Buron, Angel M.; Solana, Jose M.
2005-06-01
An image coding processing scheme based on a variant of the Haar Wavelet Transform that uses only addition and subtraction is presented. After computing the transform, the selection and coding of the coefficients is performed using a methodology optimized to attain the lowest hardware implementation complexity. Coefficients are sorted in groups according to the number of pixels used in their computing. The idea behind it is to use a different threshold for each group of coefficients; these thresholds are obtained recurrently from an initial one. Parameter values used to achieve the desired compression level are established "on-line", adapting their values to each image, which leads to an improvement in the quality obtained for a preset compression level. Despite its adaptive characteristic, the coding scheme presented leads to a hardware implementation of markedly low circuit complexity. The compression reached for images of 512x512 pixels (256 grey levels) is over 22:1 (~0.4 bits/pixel) with a rmse of 8-10%. An image processor (excluding memory) prototype designed to compute the proposed transform has been implemented using FPGA chips. The processor for images of 256x256 pixels has been implemented using only one general-purpose low-cost FPGA chip, thus proving the design reliability and its relative simplicity.
NASA Astrophysics Data System (ADS)
Luo, Hongjun; Kolb, Dietmar; Flad, Heinz-Jurgen; Hackbusch, Wolfgang; Koprucki, Thomas
2002-08-01
We have studied various aspects concerning the use of hyperbolic wavelets and adaptive approximation schemes for wavelet expansions of correlated wave functions. In order to analyze the consequences of reduced regularity of the wave function at the electron-electron cusp, we first considered a realistic exactly solvable many-particle model in one dimension. Convergence rates of wavelet expansions, with respect to L2 and H1 norms and the energy, were established for this model. We compare the performance of hyperbolic wavelets and their extensions through adaptive refinement in the cusp region, to a fully adaptive treatment based on the energy contribution of individual wavelets. Although hyperbolic wavelets show an inferior convergence behavior, they can be easily refined in the cusp region yielding an optimal convergence rate for the energy. Preliminary results for the helium atom are presented, which demonstrate the transferability of our observations to more realistic systems. We propose a contraction scheme for wavelets in the cusp region, which reduces the number of degrees of freedom and yields a favorable cost to benefit ratio for the evaluation of matrix elements.
An adaptive morphological gradient lifting wavelet for detecting bearing defects
NASA Astrophysics Data System (ADS)
Li, Bing; Zhang, Pei-lin; Mi, Shuang-shan; Hu, Ren-xi; Liu, Dong-sheng
2012-05-01
This paper presents a novel wavelet decomposition scheme, named adaptive morphological gradient lifting wavelet (AMGLW), for detecting bearing defects. The adaptability of the AMGLW consists in that the scheme can select between two filters, mean the average filter and morphological gradient filter, to update the approximation signal based on the local gradient of the analyzed signal. Both a simulated signal and vibration signals acquired from bearing are employed to evaluate and compare the proposed AMGLW scheme with the traditional linear wavelet transform (LWT) and another adaptive lifting wavelet (ALW) developed in literature. Experimental results reveal that the AMGLW outperforms the LW and ALW obviously for detecting bearing defects. The impulsive components can be enhanced and the noise can be depressed simultaneously by the presented AMGLW scheme. Thus the fault characteristic frequencies of bearing can be clearly identified. Furthermore, the AMGLW gets an advantage over LW in computation efficiency. It is quite suitable for online condition monitoring of bearings and other rotating machineries.
Adaptive video compressed sampling in the wavelet domain
NASA Astrophysics Data System (ADS)
Dai, Hui-dong; Gu, Guo-hua; He, Wei-ji; Chen, Qian; Mao, Tian-yi
2016-07-01
In this work, we propose a multiscale video acquisition framework called adaptive video compressed sampling (AVCS) that involves sparse sampling and motion estimation in the wavelet domain. Implementing a combination of a binary DMD and a single-pixel detector, AVCS acquires successively finer resolution sparse wavelet representations in moving regions directly based on extended wavelet trees, and alternately uses these representations to estimate the motion in the wavelet domain. Then, we can remove the spatial and temporal redundancies and provide a method to reconstruct video sequences from compressed measurements in real time. In addition, the proposed method allows adaptive control over the reconstructed video quality. The numerical simulation and experimental results indicate that AVCS performs better than the conventional CS-based methods at the same sampling rate even under the influence of noise, and the reconstruction time and measurements required can be significantly reduced.
Compression of the electrocardiogram (ECG) using an adaptive orthonomal wavelet basis architecture
NASA Astrophysics Data System (ADS)
Anandkumar, Janavikulam; Szu, Harold H.
1995-04-01
This paper deals with the compression of electrocardiogram (ECG) signals using a large library of orthonormal bases functions that are translated and dilated versions of Daubechies wavelets. The wavelet transform has been implemented using quadrature mirror filters (QMF) employed in a sub-band coding scheme. Interesting transients and notable frequencies of the ECG are captured by appropriately scaled waveforms chosen in a parallel fashion from this collection of wavelets. Since there is a choice of orthonormal bases functions for the efficient transcription of the ECG, it is then possible to choose the best one by various criterion. We have imposed very stringent threshold conditions on the wavelet expansion coefficients, such as in maintaining a very large percentage of the energy of the current signal segment, and this has resulted in reconstructed waveforms with negligible distortion relative to the source signal. Even without the use of any specialized quantizers and encoders, the compression ratio numbers look encouraging, with preliminary results indicating compression ratios ranging from 40:1 to 15:1 at percentage rms distortions ranging from about 22% to 2.3%, respectively. Irrespective of the ECG lead chosen, or the signal deviations that may occur due to either noise or arrhythmias, only one wavelet family that correlates best with that particular portion of the signal, is chosen. The main reason for the compression is because the chosen mother wavelet and its variations match the shape of the ECG and are able to efficiently transcribe the source with few wavelet coefficients. The adaptive template matching architecture that carries out a parallel search of the transform domain is described, and preliminary simulation results are discussed. The adaptivity of the architecture comes from the fine tuning of the wavelet selection process that is based on localized constraints, such as shape of the signal and its energy.
Big data extraction with adaptive wavelet analysis (Presentation Video)
NASA Astrophysics Data System (ADS)
Qu, Hongya; Chen, Genda; Ni, Yiqing
2015-04-01
Nondestructive evaluation and sensing technology have been increasingly applied to characterize material properties and detect local damage in structures. More often than not, they generate images or data strings that are difficult to see any physical features without novel data extraction techniques. In the literature, popular data analysis techniques include Short-time Fourier Transform, Wavelet Transform, and Hilbert Transform for time efficiency and adaptive recognition. In this study, a new data analysis technique is proposed and developed by introducing an adaptive central frequency of the continuous Morlet wavelet transform so that both high frequency and time resolution can be maintained in a time-frequency window of interest. The new analysis technique is referred to as Adaptive Wavelet Analysis (AWA). This paper will be organized in several sections. In the first section, finite time-frequency resolution limitations in the traditional wavelet transform are introduced. Such limitations would greatly distort the transformed signals with a significant frequency variation with time. In the second section, Short Time Wavelet Transform (STWT), similar to Short Time Fourier Transform (STFT), is defined and developed to overcome such shortcoming of the traditional wavelet transform. In the third section, by utilizing the STWT and a time-variant central frequency of the Morlet wavelet, AWA can adapt the time-frequency resolution requirement to the signal variation over time. Finally, the advantage of the proposed AWA is demonstrated in Section 4 with a ground penetrating radar (GPR) image from a bridge deck, an analytical chirp signal with a large range sinusoidal frequency change over time, the train-induced acceleration responses of the Tsing-Ma Suspension Bridge in Hong Kong, China. The performance of the proposed AWA will be compared with the STFT and traditional wavelet transform.
Wavelet-based adaptive denoising and baseline correction for MALDI TOF MS.
Shin, Hyunjin; Sampat, Mehul P; Koomen, John M; Markey, Mia K
2010-06-01
Proteomic profiling by MALDI TOF mass spectrometry (MS) is an effective method for identifying biomarkers from human serum/plasma, but the process is complicated by the presence of noise in the spectra. In MALDI TOF MS, the major noise source is chemical noise, which is defined as the interference from matrix material and its clusters. Because chemical noise is nonstationary and nonwhite, wavelet-based denoising is more effective than conventional noise reduction schemes based on Fourier analysis. However, current wavelet-based denoising methods for mass spectrometry do not fully consider the characteristics of chemical noise. In this article, we propose new wavelet-based high-frequency noise reduction and baseline correction methods that were designed based on the discrete stationary wavelet transform. The high-frequency noise reduction algorithm adaptively estimates the time-varying threshold for each frequency subband from multiple realizations of chemical noise and removes noise from mass spectra of samples using the estimated thresholds. The baseline correction algorithm computes the monotonically decreasing baseline in the highest approximation of the wavelet domain. The experimental results demonstrate that our algorithms effectively remove artifacts in mass spectra that are due to chemical noise while preserving informative features as compared to commonly used denoising methods.
Multi-focus image fusion algorithm based on adaptive PCNN and wavelet transform
NASA Astrophysics Data System (ADS)
Wu, Zhi-guo; Wang, Ming-jia; Han, Guang-liang
2011-08-01
Being an efficient method of information fusion, image fusion has been used in many fields such as machine vision, medical diagnosis, military applications and remote sensing. In this paper, Pulse Coupled Neural Network (PCNN) is introduced in this research field for its interesting properties in image processing, including segmentation, target recognition et al. and a novel algorithm based on PCNN and Wavelet Transform for Multi-focus image fusion is proposed. First, the two original images are decomposed by wavelet transform. Then, based on the PCNN, a fusion rule in the Wavelet domain is given. This algorithm uses the wavelet coefficient in each frequency domain as the linking strength, so that its value can be chosen adaptively. Wavelet coefficients map to the range of image gray-scale. The output threshold function attenuates to minimum gray over time. Then all pixels of image get the ignition. So, the output of PCNN in each iteration time is ignition wavelet coefficients of threshold strength in different time. At this moment, the sequences of ignition of wavelet coefficients represent ignition timing of each neuron. The ignition timing of PCNN in each neuron is mapped to corresponding image gray-scale range, which is a picture of ignition timing mapping. Then it can judge the targets in the neuron are obvious features or not obvious. The fusion coefficients are decided by the compare-selection operator with the firing time gradient maps and the fusion image is reconstructed by wavelet inverse transform. Furthermore, by this algorithm, the threshold adjusting constant is estimated by appointed iteration number. Furthermore, In order to sufficient reflect order of the firing time, the threshold adjusting constant αΘ is estimated by appointed iteration number. So after the iteration achieved, each of the wavelet coefficient is activated. In order to verify the effectiveness of proposed rules, the experiments upon Multi-focus image are done. Moreover
NASA Astrophysics Data System (ADS)
Li, Hao; Ma, Yong; Liang, Kun; Tian, Yong; Wang, Rui
2012-01-01
Wavelet parameters (e.g., wavelet type, level of decomposition) affect the performance of the wavelet denoising algorithm in hyperspectral applications. Current studies select the best wavelet parameters for a single spectral curve by comparing similarity criteria such as spectral angle (SA). However, the method to find the best parameters for a spectral library that contains multiple spectra has not been studied. In this paper, a criterion named normalized spectral angle (NSA) is proposed. By comparing NSA, the best combination of parameters for a spectral library can be selected. Moreover, a fast algorithm based on threshold constraint and machine learning is developed to reduce the time of a full search. After several iterations of learning, the combination of parameters that constantly surpasses a threshold is selected. The experiments proved that by using the NSA criterion, the SA values decreased significantly, and the fast algorithm could save 80% time consumption, while the denoising performance was not obviously impaired.
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Huang, Zhen
2015-08-01
Although the time-domain method, frequency-domain method and wavelet-domain method can used into signal denoising or filtering, the denoising of blood glucose photoacoustic signals are limited due to some advantages. In this paper, an improved wavelet threshold denoising method is used to remove the noise of the blood glucose photoacoustic signals. In order to overcome some drawbacks of classical wavelet threshold denoising, an improved wavelet threshold function was proposed. In the simulation experiments, the different denoising results are compared between this improved wavelet threshold function and other functions. And the experiments of this improved wavelet threshold function into the denoising of the time-resolved photoacoustic signals of glucose solution are performed. The experimental result verifies that the improved wavelet threshold function denoising is available. The improved wavelet threshold function has better flexibility than others due to the usage of two threshold values and two factors. So, the improved wavelet threshold function has the potential value in the denoising field of blood glucose photoacoustic signals.
Isotropic boundary adapted wavelets for coherent vorticity extraction in turbulent channel flows
NASA Astrophysics Data System (ADS)
Farge, Marie; Sakurai, Teluo; Yoshimatsu, Katsunori; Schneider, Kai; Morishita, Koji; Ishihara, Takashi
2015-11-01
We present a construction of isotropic boundary adapted wavelets, which are orthogonal and yield a multi-resolution analysis. We analyze DNS data of turbulent channel flow computed at a friction-velocity based Reynolds number of 395 and investigate the role of coherent vorticity. Thresholding of the wavelet coefficients allows to split the flow into two parts, coherent and incoherent vorticity. The statistics of the former, i.e., energy and enstrophy spectra, are close to the ones of the total flow, and moreover the nonlinear energy budgets are well preserved. The remaining incoherent part, represented by the large majority of the weak wavelet coefficients, corresponds to a structureless, i.e., noise-like, background flow and exhibits an almost equi-distribution of energy.
Research of fetal ECG extraction using wavelet analysis and adaptive filtering.
Wu, Shuicai; Shen, Yanni; Zhou, Zhuhuang; Lin, Lan; Zeng, Yanjun; Gao, Xiaofeng
2013-10-01
Extracting clean fetal electrocardiogram (ECG) signals is very important in fetal monitoring. In this paper, we proposed a new method for fetal ECG extraction based on wavelet analysis, the least mean square (LMS) adaptive filtering algorithm, and the spatially selective noise filtration (SSNF) algorithm. First, abdominal signals and thoracic signals were processed by stationary wavelet transform (SWT), and the wavelet coefficients at each scale were obtained. For each scale, the detail coefficients were processed by the LMS algorithm. The coefficient of the abdominal signal was taken as the original input of the LMS adaptive filtering system, and the coefficient of the thoracic signal as the reference input. Then, correlations of the processed wavelet coefficients were computed. The threshold was set and noise components were removed with the SSNF algorithm. Finally, the processed wavelet coefficients were reconstructed by inverse SWT to obtain fetal ECG. Twenty cases of simulated data and 12 cases of clinical data were used. Experimental results showed that the proposed method outperforms the LMS algorithm: (1) it shows improvement in case of superposition R-peaks of fetal ECG and maternal ECG; (2) noise disturbance is eliminated by incorporating the SSNF algorithm and the extracted waveform is more stable; and (3) the performance is proven quantitatively by SNR calculation. The results indicated that the proposed algorithm can be used for extracting fetal ECG from abdominal signals.
An Adaptive Digital Image Watermarking Algorithm Based on Morphological Haar Wavelet Transform
NASA Astrophysics Data System (ADS)
Huang, Xiaosheng; Zhao, Sujuan
At present, much more of the wavelet-based digital watermarking algorithms are based on linear wavelet transform and fewer on non-linear wavelet transform. In this paper, we propose an adaptive digital image watermarking algorithm based on non-linear wavelet transform--Morphological Haar Wavelet Transform. In the algorithm, the original image and the watermark image are decomposed with multi-scale morphological wavelet transform respectively. Then the watermark information is adaptively embedded into the original image in different resolutions, combining the features of Human Visual System (HVS). The experimental results show that our method is more robust and effective than the ordinary wavelet transform algorithms.
Adaptive thresholding of digital subtraction angiography images
NASA Astrophysics Data System (ADS)
Sang, Nong; Li, Heng; Peng, Weixue; Zhang, Tianxu
2005-10-01
In clinical practice, digital subtraction angiography (DSA) is a powerful technique for the visualization of blood vessels in the human body. Blood vessel segmentation is a main problem for 3D vascular reconstruction. In this paper, we propose a new adaptive thresholding method for the segmentation of DSA images. Each pixel of the DSA images is declared to be a vessel/background point with regard to a threshold and a few local characteristic limits depending on some information contained in the pixel neighborhood window. The size of the neighborhood window is set according to a priori knowledge of the diameter of vessels to make sure that each window contains the background definitely. Some experiments on cerebral DSA images are given, which show that our proposed method yields better results than global thresholding methods and some other local thresholding methods do.
Adaptive wavelet-based recognition of oscillatory patterns on electroencephalograms
NASA Astrophysics Data System (ADS)
Nazimov, Alexey I.; Pavlov, Alexey N.; Hramov, Alexander E.; Grubov, Vadim V.; Koronovskii, Alexey A.; Sitnikova, Evgenija Y.
2013-02-01
The problem of automatic recognition of specific oscillatory patterns on electroencephalograms (EEG) is addressed using the continuous wavelet-transform (CWT). A possibility of improving the quality of recognition by optimizing the choice of CWT parameters is discussed. An adaptive approach is proposed to identify sleep spindles (SS) and spike wave discharges (SWD) that assumes automatic selection of CWT-parameters reflecting the most informative features of the analyzed time-frequency structures. Advantages of the proposed technique over the standard wavelet-based approaches are considered.
Solution of Reactive Compressible Flows Using an Adaptive Wavelet Method
NASA Astrophysics Data System (ADS)
Zikoski, Zachary; Paolucci, Samuel; Powers, Joseph
2008-11-01
This work presents numerical simulations of reactive compressible flow, including detailed multicomponent transport, using an adaptive wavelet algorithm. The algorithm allows for dynamic grid adaptation which enhances our ability to fully resolve all physically relevant scales. The thermodynamic properties, equation of state, and multicomponent transport properties are provided by CHEMKIN and TRANSPORT libraries. Results for viscous detonation in a H2:O2:Ar mixture, and other problems in multiple dimensions, are included.
Improvement of wavelet threshold filtered back-projection image reconstruction algorithm
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Huang, Zhen
2014-11-01
Image reconstruction technique has been applied into many fields including some medical imaging, such as X ray computer tomography (X-CT), positron emission tomography (PET) and nuclear magnetic resonance imaging (MRI) etc, but the reconstructed effects are still not satisfied because original projection data are inevitably polluted by noises in process of image reconstruction. Although some traditional filters e.g., Shepp-Logan (SL) and Ram-Lak (RL) filter have the ability to filter some noises, Gibbs oscillation phenomenon are generated and artifacts leaded by back-projection are not greatly improved. Wavelet threshold denoising can overcome the noises interference to image reconstruction. Since some inherent defects exist in the traditional soft and hard threshold functions, an improved wavelet threshold function combined with filtered back-projection (FBP) algorithm was proposed in this paper. Four different reconstruction algorithms were compared in simulated experiments. Experimental results demonstrated that this improved algorithm greatly eliminated the shortcomings of un-continuity and large distortion of traditional threshold functions and the Gibbs oscillation. Finally, the availability of this improved algorithm was verified from the comparison of two evaluation criterions, i.e. mean square error (MSE), peak signal to noise ratio (PSNR) among four different algorithms, and the optimum dual threshold values of improved wavelet threshold function was gotten.
NASA Astrophysics Data System (ADS)
Palaniswamy, Sumithra; Duraisamy, Prakash; Alam, Mohammad Showkat; Yuan, Xiaohui
2012-04-01
Automatic speech processing systems are widely used in everyday life such as mobile communication, speech and speaker recognition, and for assisting the hearing impaired. In speech communication systems, the quality and intelligibility of speech is of utmost importance for ease and accuracy of information exchange. To obtain an intelligible speech signal and one that is more pleasant to listen, noise reduction is essential. In this paper a new Time Adaptive Discrete Bionic Wavelet Thresholding (TADBWT) scheme is proposed. The proposed technique uses Daubechies mother wavelet to achieve better enhancement of speech from additive non- stationary noises which occur in real life such as street noise and factory noise. Due to the integration of human auditory system model into the wavelet transform, bionic wavelet transform (BWT) has great potential for speech enhancement which may lead to a new path in speech processing. In the proposed technique, at first, discrete BWT is applied to noisy speech to derive TADBWT coefficients. Then the adaptive nature of the BWT is captured by introducing a time varying linear factor which updates the coefficients at each scale over time. This approach has shown better performance than the existing algorithms at lower input SNR due to modified soft level dependent thresholding on time adaptive coefficients. The objective and subjective test results confirmed the competency of the TADBWT technique. The effectiveness of the proposed technique is also evaluated for speaker recognition task under noisy environment. The recognition results show that the TADWT technique yields better performance when compared to alternate methods specifically at lower input SNR.
Solving Chemical Master Equations by an Adaptive Wavelet Method
Jahnke, Tobias; Galan, Steffen
2008-09-01
Solving chemical master equations is notoriously difficult due to the tremendous number of degrees of freedom. We present a new numerical method which efficiently reduces the size of the problem in an adaptive way. The method is based on a sparse wavelet representation and an algorithm which, in each time step, detects the essential degrees of freedom required to approximate the solution up to the desired accuracy.
NASA Astrophysics Data System (ADS)
Wang, Zhengzi; Ren, Zhong; Liu, Guodong
2015-10-01
Noninvasive measurement of blood glucose concentration has become a hotspot research in the world due to its characteristic of convenient, rapid and non-destructive etc. The blood glucose concentration monitoring based on photoacoustic technique has attracted many attentions because the detected signal is ultrasonic signals rather than the photo signals. But during the acquisition of the photoacoustic signals of glucose, the photoacoustic signals are not avoid to be polluted by some factors, such as the pulsed laser, electronic noises and circumstance noises etc. These disturbances will impact the measurement accuracy of the glucose concentration, So, the denoising of the glucose photoacoustic signals is a key work. In this paper, a wavelet shift-invariant threshold denoising method is improved, and a novel wavelet threshold function is proposed. For the novel wavelet threshold function, two threshold values and two different factors are set, and the novel function is high order derivative and continuous, which can be looked as the compromise between the wavelet soft threshold denoising and hard threshold denoising. Simulation experimental results illustrate that, compared with other wavelet threshold denoising, this improved wavelet shift-invariant threshold denoising has higher signal-to-noise ratio(SNR) and smaller root mean-square error (RMSE) value. And this improved denoising also has better denoising effect than others. Therefore, this improved denoising has a certain of potential value in the denoising of glucose photoacoustic signals.
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Zeng, Lvming; Huang, Zhen; Huang, Shuanggen
2008-12-01
In this paper, an improved wavelet threshold denoising with combined translation invariance(TI)method is adopted to remove noises existed in the bio-chemical spectrum. Meanwhile, a novel wavelet threshold function and an optimal threshold determination algorithm are proposed. The new function is continuous and high-order derivable, it can overcome the vibration phenomena generated by the classical threshold function and decrease the error of reconstructed spectrum. So, it is superior to the frequency-domain filtering methods, the soft- and hard-threshold function proposed by D.L. Donoho and the semisoft-threshold function proposed by Gao, etc. The experimental results show that the improved TI wavelet threshold(TI-WT) denoising method can availably eliminate the Pseudo-Gibbs phenomena generated by the traditional wavelet thresholding method. At the same time, the improved wavelet threshold function and the TI-WT method present lower root mean-square-error (RMSE) and higher signal-to-noise ratio(SNR) than the frequency-domain filtering, classical soft and hard-threshold denoising The SNR increasing from 17.3200 to 32.5609, the RMSE decreasing from 4.0244 to 0.6257. Otherwise, The improved denoising method not only makes the spectrum smooth, but also effectively preserves the edge characteristics of the original spectrum.
On the Use of Adaptive Wavelet-based Methods for Ocean Modeling and Data Assimilation Problems
NASA Astrophysics Data System (ADS)
Vasilyev, Oleg V.; Yousuff Hussaini, M.; Souopgui, Innocent
2014-05-01
Latest advancements in parallel wavelet-based numerical methodologies for the solution of partial differential equations, combined with the unique properties of wavelet analysis to unambiguously identify and isolate localized dynamically dominant flow structures, make it feasible to start developing integrated approaches for ocean modeling and data assimilation problems that take advantage of temporally and spatially varying meshes. In this talk the Parallel Adaptive Wavelet Collocation Method with spatially and temporarily varying thresholding is presented and the feasibility/potential advantages of its use for ocean modeling are discussed. The second half of the talk focuses on the recently developed Simultaneous Space-time Adaptive approach that addresses one of the main challenges of variational data assimilation, namely the requirement to have a forward solution available when solving the adjoint problem. The issue is addressed by concurrently solving forward and adjoint problems in the entire space-time domain on a near optimal adaptive computational mesh that automatically adapts to spatio-temporal structures of the solution. The compressed space-time form of the solution eliminates the need to save or recompute forward solution for every time slice, as it is typically done in traditional time marching variational data assimilation approaches. The simultaneous spacio-temporal discretization of both the forward and the adjoint problems makes it possible to solve both of them concurrently on the same space-time adaptive computational mesh reducing the amount of saved data to the strict minimum for a given a priori controlled accuracy of the solution. The simultaneous space-time adaptive approach of variational data assimilation is demonstrated for the advection diffusion problem in 1D-t and 2D-t dimensions.
Yi, Ting-Hua; Li, Hong-Nan; Zhao, Xiao-Yan
2012-01-01
In structural vibration tests, one of the main factors which disturb the reliability and accuracy of the results are the noise signals encountered. To overcome this deficiency, this paper presents a discrete wavelet transform (DWT) approach to denoise the measured signals. The denoising performance of DWT is discussed by several processing parameters, including the type of wavelet, decomposition level, thresholding method, and threshold selection rules. To overcome the disadvantages of the traditional hard- and soft-thresholding methods, an improved thresholding technique called the sigmoid function-based thresholding scheme is presented. The procedure is validated by using four benchmarks signals with three degrees of degradation as well as a real measured signal obtained from a three-story reinforced concrete scale model shaking table experiment. The performance of the proposed method is evaluated by computing the signal-to-noise ratio (SNR) and the root-mean-square error (RMSE) after denoising. Results reveal that the proposed method offers superior performance than the traditional methods no matter whether the signals have heavy or light noises embedded. PMID:23112652
Wavelet methods in multi-conjugate adaptive optics
NASA Astrophysics Data System (ADS)
Helin, T.; Yudytskiy, M.
2013-08-01
The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.
An Adaptive Threshold in Mammalian Neocortical Evolution
Kalinka, Alex T.; Tomancak, Pavel; Huttner, Wieland B.
2014-01-01
Expansion of the neocortex is a hallmark of human evolution. However, determining which adaptive mechanisms facilitated its expansion remains an open question. Here we show, using the gyrencephaly index (GI) and other physiological and life-history data for 102 mammalian species, that gyrencephaly is an ancestral mammalian trait. We find that variation in GI does not evolve linearly across species, but that mammals constitute two principal groups above and below a GI threshold value of 1.5, approximately equal to 109 neurons, which may be characterized by distinct constellations of physiological and life-history traits. By integrating data on neurogenic period, neuroepithelial founder pool size, cell-cycle length, progenitor-type abundances, and cortical neuron number into discrete mathematical models, we identify symmetric proliferative divisions of basal progenitors in the subventricular zone of the developing neocortex as evolutionarily necessary for generating a 14-fold increase in daily prenatal neuron production, traversal of the GI threshold, and thus establishment of two principal groups. We conclude that, despite considerable neuroanatomical differences, changes in the length of the neurogenic period alone, rather than any novel neurogenic progenitor lineage, are sufficient to explain differences in neuron number and neocortical size between species within the same principal group. PMID:25405475
A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.
Gur, M Berke; Niezrecki, Christopher
2011-04-01
Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation.
Efficient Combustion Simulation via the Adaptive Wavelet Collocation Method
NASA Astrophysics Data System (ADS)
Lung, Kevin; Brown-Dymkoski, Eric; Guerrero, Victor; Doran, Eric; Museth, Ken; Balme, Jo; Urberger, Bob; Kessler, Andre; Jones, Stephen; Moses, Billy; Crognale, Anthony
Rocket engine development continues to be driven by the intuition and experience of designers, progressing through extensive trial-and-error test campaigns. Extreme temperatures and pressures frustrate direct observation, while high-fidelity simulation can be impractically expensive owing to the inherent muti-scale, multi-physics nature of the problem. To address this cost, an adaptive multi-resolution PDE solver has been designed which targets the high performance, many-core architecture of GPUs. The adaptive wavelet collocation method is used to maintain a sparse-data representation of the high resolution simulation, greatly reducing the memory footprint while tightly controlling physical fidelity. The tensorial, stencil topology of wavelet-based grids lends itself to highly vectorized algorithms which are necessary to exploit the performance of GPUs. This approach permits efficient implementation of direct finite-rate kinetics, and improved resolution of steep thermodynamic gradients and the smaller mixing scales that drive combustion dynamics. Resolving these scales is crucial for accurate chemical kinetics, which are typically degraded or lost in statistical modeling approaches.
A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.
Gur, M Berke; Niezrecki, Christopher
2011-04-01
Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation. PMID:21476661
Adaptive segmentation of wavelet transform coefficients for video compression
NASA Astrophysics Data System (ADS)
Wasilewski, Piotr
2000-04-01
This paper presents video compression algorithm suitable for inexpensive real-time hardware implementation. This algorithm utilizes Discrete Wavelet Transform (DWT) with the new Adaptive Spatial Segmentation Algorithm (ASSA). The algorithm was designed to obtain better or similar decompressed video quality in compare to H.263 recommendation and MPEG standard using lower computational effort, especially at high compression rates. The algorithm was optimized for hardware implementation in low-cost Field Programmable Gate Array (FPGA) devices. The luminance and chrominance components of every frame are encoded with 3-level Wavelet Transform with biorthogonal filters bank. The low frequency subimage is encoded with an ADPCM algorithm. For the high frequency subimages the new Adaptive Spatial Segmentation Algorithm is applied. It divides images into rectangular blocks that may overlap each other. The width and height of the blocks are set independently. There are two kinds of blocks: Low Variance Blocks (LVB) and High Variance Blocks (HVB). The positions of the blocks and the values of the WT coefficients belonging to the HVB are encoded with the modified zero-tree algorithms. LVB are encoded with the mean value. Obtained results show that presented algorithm gives similar or better quality of decompressed images in compare to H.263, even up to 5 dB in PSNR measure.
Adaptive wavelet detection of transients using the bootstrap
NASA Astrophysics Data System (ADS)
Hewer, Gary A.; Kuo, Wei; Peterson, Lawrence A.
1996-03-01
A Daubechies wavelet-based bootstrap detection strategy based on the research of Carmona was applied to a set of test signals. The detector was a function of the d-scales. The adaptive detection statistics were derived using Efron's bootstrap methodology, which relieved us from having to make parametric assumptions about the underlying noise and offered a method of overcoming the constraints of modeling the detector statistics. The test set of signals used to evaluate the Daubechies/bootstrap pulse detector were generated with a Hewlett-Packard Fast Agile Signal Simulator (FASS). These video pulses, with varying signal-to-noise ratios (SNRs), included unmodulated, linear chirp, and Barker phase-code modulations baseband (IF) video pulses mixed with additive white Gaussian noise. Simulated examples illustrating the bootstrap methodology are presented, along with a complete set of constant false alarm rate (CFAR) detection statistics for the test signals. The CFAR curves clearly show that the wavelet bootstrap can adaptively detect transient pulses at low SNRs.
Adaptive directional wavelet transform based on directional prefiltering.
Tanaka, Yuichi; Hasegawa, Madoka; Kato, Shigeo; Ikehara, Masaaki; Nguyen, Truong Q
2010-04-01
This paper proposes an efficient approach for adaptive directional wavelet transform (WT) based on directional prefiltering. Although the adaptive directional WT is able to transform an image along diagonal orientations as well as traditional horizontal and vertical directions, it sacrifices computation speed for good image coding performance. We present two efficient methods to find the best transform directions by prefiltering using 2-D filter bank or 1-D directional WT along two fixed directions. The proposed direction calculation methods achieve comparable image coding performance comparing to the conventional one with less complexity. Furthermore, transform direction data of the proposed method can be used for content-based image retrieval to increase retrieval ratio. PMID:20028625
Lahmiri, Salim
2014-09-01
Hybrid denoising models based on combining empirical mode decomposition (EMD) and discrete wavelet transform (DWT) were found to be effective in removing additive Gaussian noise from electrocardiogram (ECG) signals. Recently, variational mode decomposition (VMD) has been proposed as a multiresolution technique that overcomes some of the limits of the EMD. Two ECG denoising approaches are compared. The first is based on denoising in the EMD domain by DWT thresholding, whereas the second is based on noise reduction in the VMD domain by DWT thresholding. Using signal-to-noise ratio and mean of squared errors as performance measures, simulation results show that the VMD-DWT approach outperforms the conventional EMD-DWT. In addition, a non-local means approach used as a reference technique provides better results than the VMD-DWT approach. PMID:26609387
Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding
Resnik, Andrey; Celikel, Tansu; Englitz, Bernhard
2016-01-01
Neural processing rests on the intracellular transformation of information as synaptic inputs are translated into action potentials. This transformation is governed by the spike threshold, which depends on the history of the membrane potential on many temporal scales. While the adaptation of the threshold after spiking activity has been addressed before both theoretically and experimentally, it has only recently been demonstrated that the subthreshold membrane state also influences the effective spike threshold. The consequences for neural computation are not well understood yet. We address this question here using neural simulations and whole cell intracellular recordings in combination with information theoretic analysis. We show that an adaptive spike threshold leads to better stimulus discrimination for tight input correlations than would be achieved otherwise, independent from whether the stimulus is encoded in the rate or pattern of action potentials. The time scales of input selectivity are jointly governed by membrane and threshold dynamics. Encoding information using adaptive thresholds further ensures robust information transmission across cortical states i.e. decoding from different states is less state dependent in the adaptive threshold case, if the decoding is performed in reference to the timing of the population response. Results from in vitro neural recordings were consistent with simulations from adaptive threshold neurons. In summary, the adaptive spike threshold reduces information loss during intracellular information transfer, improves stimulus discriminability and ensures robust decoding across membrane states in a regime of highly correlated inputs, similar to those seen in sensory nuclei during the encoding of sensory information. PMID:27304526
Adaptive variable-fidelity wavelet-based eddy-capturing approaches for compressible turbulence
NASA Astrophysics Data System (ADS)
Brown-Dymkoski, Eric; Vasilyev, Oleg V.
2015-11-01
Multiresolution wavelet methods have been developed for efficient simulation of compressible turbulence. They rely upon a filter to identify dynamically important coherent flow structures and adapt the mesh to resolve them. The filter threshold parameter, which can be specified globally or locally, allows for a continuous tradeoff between computational cost and fidelity, ranging seamlessly between DNS and adaptive LES. There are two main approaches to specifying the adaptive threshold parameter. It can be imposed as a numerical error bound, or alternatively, derived from real-time flow phenomena to ensure correct simulation of desired turbulent physics. As LES relies on often imprecise model formulations that require a high-quality mesh, this variable-fidelity approach offers a further tool for improving simulation by targeting deficiencies and locally increasing the resolution. Simultaneous physical and numerical criteria, derived from compressible flow physics and the governing equations, are used to identify turbulent regions and evaluate the fidelity. Several benchmark cases are considered to demonstrate the ability to capture variable density and thermodynamic effects in compressible turbulence. This work was supported by NSF under grant No. CBET-1236505.
NASA Technical Reports Server (NTRS)
Momoh, James A.; Wang, Yanchun; Dolce, James L.
1997-01-01
This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.
Hybrid-Thresholding based Image Super-Resolution Technique by the use of Triplet Half-Band Wavelets
NASA Astrophysics Data System (ADS)
Chopade, Pravin B.; Rahulkar, Amol D.; Patil, Pradeep M.
2016-06-01
This paper presents a modified image super-resolution scheme based on the wavelet coefficients hybrid-thresholding by the use of triplet half-band wavelets (THW) derived from the generalized half-band polynomial. At first, discrete wavelet transform (DWT) is obtained from triplet half-band kernels and it applied on the low-resolution image to obtain the high frequency sub-bands. These high frequency sub-bands and the original low-resolution image are interpolated to enhance the resolution. Second, stationary wavelet transform is obtained by using THW, which is employed to minimize the loss due to the use of DWT. In addition, hybrid thresholding scheme on wavelet coefficients scheme is proposed on these estimated high-frequency sub-bands in order to reduce the spatial domain noise. These sub-bands are combined together by inverse discrete wavelet transform obtained from THW to generate a high-resolution image. The proposed approach is validated by comparing the quality metrics with existing filter banks and well-known super-resolution scheme.
Fast Fourier and Wavelet Transforms for Wavefront Reconstruction in Adaptive Optics
Dowla, F U; Brase, J M; Olivier, S S
2000-07-28
Wavefront reconstruction techniques using the least-squares estimators are computationally quite expensive. We compare wavelet and Fourier transforms techniques in addressing the computation issues of wavefront reconstruction in adaptive optics. It is shown that because the Fourier approach is not simply a numerical approximation technique unlike the wavelet method, the Fourier approach might have advantages in terms of numerical accuracy. However, strictly from a numerical computations viewpoint, the wavelet approximation method might have advantage in terms of speed. To optimize the wavelet method, a statistical study might be necessary to use the best basis functions or ''approximation tree.''
NASA Astrophysics Data System (ADS)
Bhowmik, Deepayan; Abhayaratne, Charith
2009-02-01
A framework for evaluating wavelet based watermarking schemes against scalable coded visual media content adaptation attacks is presented. The framework, Watermark Evaluation Bench for Content Adaptation Modes (WEBCAM), aims to facilitate controlled evaluation of wavelet based watermarking schemes under MPEG-21 part-7 digital item adaptations (DIA). WEBCAM accommodates all major wavelet based watermarking in single generalised framework by considering a global parameter space, from which the optimum parameters for a specific algorithm may be chosen. WEBCAM considers the traversing of media content along various links and required content adaptations at various nodes of media supply chains. In this paper, the content adaptation is emulated by the JPEG2000 coded bit stream extraction for various spatial resolution and quality levels of the content. The proposed framework is beneficial not only as an evaluation tool but also as design tool for new wavelet based watermark algorithms by picking and mixing of available tools and finding the optimum design parameters.
Morphology analysis of EKG R waves using wavelets with adaptive parameters derived from fuzzy logic
NASA Astrophysics Data System (ADS)
Caldwell, Max A.; Barrington, William W.; Miles, Richard R.
1996-03-01
Understanding of the EKG components P, QRS (R wave), and T is essential in recognizing cardiac disorders and arrhythmias. An estimation method is presented that models the R wave component of the EKG by adaptively computing wavelet parameters using fuzzy logic. The parameters are adaptively adjusted to minimize the difference between the original EKG waveform and the wavelet. The R wave estimate is derived from minimizing the combination of mean squared error (MSE), amplitude difference, spread difference, and shift difference. We show that the MSE in both non-noise and additive noise environment is less using an adaptive wavelet than a static wavelet. Research to date has focused on the R wave component of the EKG signal. Extensions of this method to model P and T waves are discussed.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang
2016-02-01
Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses
Detailed resolution of the nonlinear Schrodinger equation using the full adaptive wavelet transform
NASA Astrophysics Data System (ADS)
Stedham, Mark A.; Banerjee, Partha P.
2000-04-01
The propagation of optical pulses in nonlinear optical fibers is described by the nonlinear Schrodinger (NLS) equation. This equation can generally be solved exactly using the inverse scattering method, or for more detailed analysis, through the use of numerical techniques. Perhaps the best known numerical technique for solving he NLS equation is the split-step Fourier method, which effects a solution by assuming that the dispersion and nonlinear effects act independently during pulse propagation along the fiber. In this paper we describe an alternative numerical solution to the NLS equation using an adaptive wavelet transform technique, done entirely in the wavelet domain. This technique differs form previous work involving wavelet solutions tithe NLS equation in that these previous works used a 'split-step wavelet' method in which the linear analysis was performed in the wavelet domain while the nonlinear portion was done in the space domain. Our method takes ful advantage of the set of wavelet coefficients, thus allowing the flexibility to investigate pulse propagation entirely in either the wavelet or the space domain. Additionally, this method is fully adaptive in that it is capable of accurately tracking steep gradients which may occur during the numerical simulation.
NASA Technical Reports Server (NTRS)
Jawerth, Bjoern; Sweldens, Wim
1993-01-01
We present ideas on how to use wavelets in the solution of boundary value ordinary differential equations. Rather than using classical wavelets, we adapt their construction so that they become (bi)orthogonal with respect to the inner product defined by the operator. The stiffness matrix in a Galerkin method then becomes diagonal and can thus be trivially inverted. We show how one can construct an O(N) algorithm for various constant and variable coefficient operators.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Lian, Jijian; Liu, Fang
2016-02-01
Modal parameter identification is a core issue in the health monitoring and damage detection of hydraulic structures. The parameters are mainly obtained from the measured vibrational response under ambient excitation. However, the response signal is mixed with noise and interference signals, which will cover the structure vibration information; therefore, the parameter cannot be identified. This paper proposes an improved filtering method based on an ensemble empirical mode decomposition (EEMD) and wavelet threshold method. A 'noise index' is presented to estimate the noise degree of the components decomposed by the EEMD, and this index is related to the wavelet threshold calculation. In addition, the improved filtering method combined with an eigensystem realization algorithm (ERA) and a singular entropy (SE) is applied to an operational modal identification of a roof overflow powerhouse with a bulb tubular unit.
Zhang, Yudong; Yang, Jiquan; Yang, Jianfei; Liu, Aijun; Sun, Ping
2016-01-01
Aim. It can help improve the hospital throughput to accelerate magnetic resonance imaging (MRI) scanning. Patients will benefit from less waiting time. Task. In the last decade, various rapid MRI techniques on the basis of compressed sensing (CS) were proposed. However, both computation time and reconstruction quality of traditional CS-MRI did not meet the requirement of clinical use. Method. In this study, a novel method was proposed with the name of exponential wavelet iterative shrinkage-thresholding algorithm with random shift (abbreviated as EWISTARS). It is composed of three successful components: (i) exponential wavelet transform, (ii) iterative shrinkage-thresholding algorithm, and (iii) random shift. Results. Experimental results validated that, compared to state-of-the-art approaches, EWISTARS obtained the least mean absolute error, the least mean-squared error, and the highest peak signal-to-noise ratio. Conclusion. EWISTARS is superior to state-of-the-art approaches. PMID:27066068
Zhang, Yudong; Yang, Jiquan; Yang, Jianfei; Liu, Aijun; Sun, Ping
2016-01-01
Aim. It can help improve the hospital throughput to accelerate magnetic resonance imaging (MRI) scanning. Patients will benefit from less waiting time. Task. In the last decade, various rapid MRI techniques on the basis of compressed sensing (CS) were proposed. However, both computation time and reconstruction quality of traditional CS-MRI did not meet the requirement of clinical use. Method. In this study, a novel method was proposed with the name of exponential wavelet iterative shrinkage-thresholding algorithm with random shift (abbreviated as EWISTARS). It is composed of three successful components: (i) exponential wavelet transform, (ii) iterative shrinkage-thresholding algorithm, and (iii) random shift. Results. Experimental results validated that, compared to state-of-the-art approaches, EWISTARS obtained the least mean absolute error, the least mean-squared error, and the highest peak signal-to-noise ratio. Conclusion. EWISTARS is superior to state-of-the-art approaches. PMID:27066068
Ye, Linlin; Yang, Dan; Wang, Xu
2014-06-01
A de-noising method for electrocardiogram (ECG) based on ensemble empirical mode decomposition (EEMD) and wavelet threshold de-noising theory is proposed in our school. We decomposed noised ECG signals with the proposed method using the EEMD and calculated a series of intrinsic mode functions (IMFs). Then we selected IMFs and reconstructed them to realize the de-noising for ECG. The processed ECG signals were filtered again with wavelet transform using improved threshold function. In the experiments, MIT-BIH ECG database was used for evaluating the performance of the proposed method, contrasting with de-noising method based on EEMD and wavelet transform with improved threshold function alone in parameters of signal to noise ratio (SNR) and mean square error (MSE). The results showed that the ECG waveforms de-noised with the proposed method were smooth and the amplitudes of ECG features did not attenuate. In conclusion, the method discussed in this paper can realize the ECG denoising and meanwhile keep the characteristics of original ECG signal. PMID:25219236
Ye, Linlin; Yang, Dan; Wang, Xu
2014-06-01
A de-noising method for electrocardiogram (ECG) based on ensemble empirical mode decomposition (EEMD) and wavelet threshold de-noising theory is proposed in our school. We decomposed noised ECG signals with the proposed method using the EEMD and calculated a series of intrinsic mode functions (IMFs). Then we selected IMFs and reconstructed them to realize the de-noising for ECG. The processed ECG signals were filtered again with wavelet transform using improved threshold function. In the experiments, MIT-BIH ECG database was used for evaluating the performance of the proposed method, contrasting with de-noising method based on EEMD and wavelet transform with improved threshold function alone in parameters of signal to noise ratio (SNR) and mean square error (MSE). The results showed that the ECG waveforms de-noised with the proposed method were smooth and the amplitudes of ECG features did not attenuate. In conclusion, the method discussed in this paper can realize the ECG denoising and meanwhile keep the characteristics of original ECG signal.
Schlenke, Jan; Hildebrand, Lars; Moros, Javier; Laserna, J Javier
2012-11-19
Spectral signals are often corrupted by noise during their acquisition and transmission. Signal processing refers to a variety of operations that can be carried out on measurements in order to enhance the quality of information. In this sense, signal denoising is used to reduce noise distortions while keeping alterations of the important signal features to a minimum. The minimization of noise is a highly critical task since, in many cases, there is no prior knowledge of the signal or of the noise. In the context of denoising, wavelet transformation has become a valuable tool. The present paper proposes a noise reduction technique for suppressing noise in laser-induced breakdown spectroscopy (LIBS) signals using wavelet transform. An extension of the Donoho's scheme, which uses a redundant form of wavelet transformation and an adaptive threshold estimation method, is suggested. Capabilities and results achieved on denoising processes of artificial signals and actual spectroscopic data, both corrupted by noise with changing intensities, are presented. In order to better consolidate the gains so far achieved by the proposed strategy, a comparison with alternative approaches, as well as with traditional techniques, is also made.
Improved visual background extractor using an adaptive distance threshold
NASA Astrophysics Data System (ADS)
Han, Guang; Wang, Jinkuan; Cai, Xi
2014-11-01
Camouflage is a challenging issue in moving object detection. Even the recent and advanced background subtraction technique, visual background extractor (ViBe), cannot effectively deal with it. To better handle camouflage according to the perception characteristics of the human visual system (HVS) in terms of minimum change of intensity under a certain background illumination, we propose an improved ViBe method using an adaptive distance threshold, named IViBe for short. Different from the original ViBe using a fixed distance threshold for background matching, our approach adaptively sets a distance threshold for each background sample based on its intensity. Through analyzing the performance of the HVS in discriminating intensity changes, we determine a reasonable ratio between the intensity of a background sample and its corresponding distance threshold. We also analyze the impacts of our adaptive threshold together with an update mechanism on detection results. Experimental results demonstrate that our method outperforms ViBe even when the foreground and background share similar intensities. Furthermore, in a scenario where foreground objects are motionless for several frames, our IViBe not only reduces the initial false negatives, but also suppresses the diffusion of misclassification caused by those false negatives serving as erroneous background seeds, and hence shows an improved performance compared to ViBe.
Serial identification of EEG patterns using adaptive wavelet-based analysis
NASA Astrophysics Data System (ADS)
Nazimov, A. I.; Pavlov, A. N.; Nazimova, A. A.; Grubov, V. V.; Koronovskii, A. A.; Sitnikova, E.; Hramov, A. E.
2013-10-01
A problem of recognition specific oscillatory patterns in the electroencephalograms with the continuous wavelet-transform is discussed. Aiming to improve abilities of the wavelet-based tools we propose a serial adaptive method for sequential identification of EEG patterns such as sleep spindles and spike-wave discharges. This method provides an optimal selection of parameters based on objective functions and enables to extract the most informative features of the recognized structures. Different ways of increasing the quality of patterns recognition within the proposed serial adaptive technique are considered.
NASA Technical Reports Server (NTRS)
Sjoegreen, B.; Yee, H. C.
2001-01-01
The recently developed essentially fourth-order or higher low dissipative shock-capturing scheme of Yee, Sandham and Djomehri (1999) aimed at minimizing nu- merical dissipations for high speed compressible viscous flows containing shocks, shears and turbulence. To detect non smooth behavior and control the amount of numerical dissipation to be added, Yee et al. employed an artificial compression method (ACM) of Harten (1978) but utilize it in an entirely different context than Harten originally intended. The ACM sensor consists of two tuning parameters and is highly physical problem dependent. To minimize the tuning of parameters and physical problem dependence, new sensors with improved detection properties are proposed. The new sensors are derived from utilizing appropriate non-orthogonal wavelet basis functions and they can be used to completely switch to the extra numerical dissipation outside shock layers. The non-dissipative spatial base scheme of arbitrarily high order of accuracy can be maintained without compromising its stability at all parts of the domain where the solution is smooth. Two types of redundant non-orthogonal wavelet basis functions are considered. One is the B-spline wavelet (Mallat & Zhong 1992) used by Gerritsen and Olsson (1996) in an adaptive mesh refinement method, to determine regions where re nement should be done. The other is the modification of the multiresolution method of Harten (1995) by converting it to a new, redundant, non-orthogonal wavelet. The wavelet sensor is then obtained by computing the estimated Lipschitz exponent of a chosen physical quantity (or vector) to be sensed on a chosen wavelet basis function. Both wavelet sensors can be viewed as dual purpose adaptive methods leading to dynamic numerical dissipation control and improved grid adaptation indicators. Consequently, they are useful not only for shock-turbulence computations but also for computational aeroacoustics and numerical combustion. In addition, these
Mouse EEG spike detection based on the adapted continuous wavelet transform
NASA Astrophysics Data System (ADS)
Tieng, Quang M.; Kharatishvili, Irina; Chen, Min; Reutens, David C.
2016-04-01
Objective. Electroencephalography (EEG) is an important tool in the diagnosis of epilepsy. Interictal spikes on EEG are used to monitor the development of epilepsy and the effects of drug therapy. EEG recordings are generally long and the data voluminous. Thus developing a sensitive and reliable automated algorithm for analyzing EEG data is necessary. Approach. A new algorithm for detecting and classifying interictal spikes in mouse EEG recordings is proposed, based on the adapted continuous wavelet transform (CWT). The construction of the adapted mother wavelet is founded on a template obtained from a sample comprising the first few minutes of an EEG data set. Main Result. The algorithm was tested with EEG data from a mouse model of epilepsy and experimental results showed that the algorithm could distinguish EEG spikes from other transient waveforms with a high degree of sensitivity and specificity. Significance. Differing from existing approaches, the proposed approach combines wavelet denoising, to isolate transient signals, with adapted CWT-based template matching, to detect true interictal spikes. Using the adapted wavelet constructed from a predefined template, the adapted CWT is calculated on small EEG segments to fit dynamical changes in the EEG recording.
An image adaptive, wavelet-based watermarking of digital images
NASA Astrophysics Data System (ADS)
Agreste, Santa; Andaloro, Guido; Prestipino, Daniela; Puccio, Luigia
2007-12-01
In digital management, multimedia content and data can easily be used in an illegal way--being copied, modified and distributed again. Copyright protection, intellectual and material rights protection for authors, owners, buyers, distributors and the authenticity of content are crucial factors in solving an urgent and real problem. In such scenario digital watermark techniques are emerging as a valid solution. In this paper, we describe an algorithm--called WM2.0--for an invisible watermark: private, strong, wavelet-based and developed for digital images protection and authenticity. Using discrete wavelet transform (DWT) is motivated by good time-frequency features and well-matching with human visual system directives. These two combined elements are important in building an invisible and robust watermark. WM2.0 works on a dual scheme: watermark embedding and watermark detection. The watermark is embedded into high frequency DWT components of a specific sub-image and it is calculated in correlation with the image features and statistic properties. Watermark detection applies a re-synchronization between the original and watermarked image. The correlation between the watermarked DWT coefficients and the watermark signal is calculated according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has shown to be resistant against geometric, filtering and StirMark attacks with a low rate of false alarm.
NASA Astrophysics Data System (ADS)
Coifman, Ronald R.; Woog, Lionel J.
1995-09-01
Adapted wave form analysis, refers to a collection of FFT like adapted transform algorithms. Given an image these methods provide special matched collections of templates (orthonormal bases) enabling an efficient coding of the image. Perhaps the closest well known example of such coding method is provided by musical notation, where each segment of music is represented by a musical score made up of notes (templates) characterised by their duration, pitch, location and amplitude, our method corresponds to transcribing the music in as few notes as possible. The extension to images and video is straightforward we describe the image by collections of oscillatory patterns (paint brush strokes)of various sizes locations and amplitudes using a variety of orthogonal bases. These selected basis functions are chosen inside predefined libraries of oscillatory localized functions (trigonometric and wavelet-packets waveforms) so as to optimize the number of parameters needed to describe our object. These algorithms are of complexity N log N opening the door for a large range of applications in signal and image processing, such as compression, feature extraction denoising and enhancement. In particular we describe a class of special purpose compressions for fingerprint irnages, as well as denoising tools for texture and noise extraction. We start by relating traditional Fourier methods to wavelet, wavelet-packet based algorithms using a recent refinement of the windowed sine and cosine transforms. We will then derive an adapted local sine transform show it's relation to wavelet and wavelet-packet analysis and describe an analysis toolkit illustrating the merits of different adaptive and nonadaptive schemes.
A study of interceptor attitude control based on adaptive wavelet neural networks
NASA Astrophysics Data System (ADS)
Li, Da; Wang, Qing-chao
2005-12-01
This paper engages to study the 3-DOF attitude control problem of the kinetic interceptor. When the kinetic interceptor enters into terminal guidance it has to maneuver with large angles. The characteristic of interceptor attitude system is nonlinearity, strong-coupling and MIMO. A kind of inverse control approach based on adaptive wavelet neural networks was proposed in this paper. Instead of using one complex neural network as the controller, the nonlinear dynamics of the interceptor can be approximated by three independent subsystems applying exact feedback-linearization firstly, and then controllers for each subsystem are designed using adaptive wavelet neural networks respectively. This method avoids computing a large amount of the weights and bias in one massive neural network and the control parameters can be adaptive changed online. Simulation results betray that the proposed controller performs remarkably well.
Adaptive inpainting algorithm based on DCT induced wavelet regularization.
Li, Yan-Ran; Shen, Lixin; Suter, Bruce W
2013-02-01
In this paper, we propose an image inpainting optimization model whose objective function is a smoothed l(1) norm of the weighted nondecimated discrete cosine transform (DCT) coefficients of the underlying image. By identifying the objective function of the proposed model as a sum of a differentiable term and a nondifferentiable term, we present a basic algorithm inspired by Beck and Teboulle's recent work on the model. Based on this basic algorithm, we propose an automatic way to determine the weights involved in the model and update them in each iteration. The DCT as an orthogonal transform is used in various applications. We view the rows of a DCT matrix as the filters associated with a multiresolution analysis. Nondecimated wavelet transforms with these filters are explored in order to analyze the images to be inpainted. Our numerical experiments verify that under the proposed framework, the filters from a DCT matrix demonstrate promise for the task of image inpainting.
Chu, Kai Chuan
2012-01-01
Objectives Noise reduction using wavelet thresholding of multitaper estimators (WTME) and geometric approach to spectral subtraction (GASS) can improve speech quality of noisy sound for speech coding strategy. This study used Perceptual Evaluation of Speech Quality (PESQ) to assess the performance of the WTME and GASS for speech coding strategy. Methods This study included 25 Mandarin sentences as test materials. Environmental noises including the air-conditioner, cafeteria and multi-talker were artificially added to test materials at signal to noise ratio (SNR) of -5, 0, 5, and 10 dB. HiRes 120 vocoder WTME and GASS noise reduction process were used in this study to generate sound outputs. The sound outputs were measured by the PESQ to evaluate sound quality. Results Two figures and three tables were used to assess the speech quality of the sound output of the WTME and GASS. Conclusion There is no significant difference between the overall performance of sound quality in both methods, but the geometric approach to spectral subtraction method is slightly better than the wavelet thresholding of multitaper estimators. PMID:22701151
NASA Astrophysics Data System (ADS)
Wang, Kun-Ching
Traditional wavelet-based speech enhancement algorithms are ineffective in the presence of highly non-stationary noise because of the difficulties in the accurate estimation of the local noise spectrum. In this paper, a simple method of noise estimation employing the use of a voice activity detector is proposed. We can improve the output of a wavelet-based speech enhancement algorithm in the presence of random noise bursts according to the results of VAD decision. The noisy speech is first preprocessed using bark-scale wavelet packet decomposition (BSWPD) to convert a noisy signal into wavelet coefficients (WCs). It is found that the VAD using bark-scale spectral entropy, called as BS-Entropy, parameter is superior to other energy-based approach especially in variable noise-level. The wavelet coefficient threshold (WCT) of each subband is then temporally adjusted according to the result of VAD approach. In a speech-dominated frame, the speech is categorized into either a voiced frame or an unvoiced frame. A voiced frame possesses a strong tone-like spectrum in lower subbands, so that the WCs of lower-band must be reserved. On the contrary, the WCT tends to increase in lower-band if the speech is categorized as unvoiced. In a noise-dominated frame, the background noise can be almost completely removed by increasing the WCT. The objective and subjective experimental results are then used to evaluate the proposed system. The experiments show that this algorithm is valid on various noise conditions, especially for color noise and non-stationary noise conditions.
Refinement trajectory and determination of eigenstates by a wavelet based adaptive method
Pipek, Janos; Nagy, Szilvia
2006-11-07
The detail structure of the wave function is analyzed at various refinement levels using the methods of wavelet analysis. The eigenvalue problem of a model system is solved in granular Hilbert spaces, and the trajectory of the eigenstates is traced in terms of the resolution. An adaptive method is developed for identifying the fine structure localization regions, where further refinement of the wave function is necessary.
Adaptive threshold harvesting and the suppression of transients.
Segura, Juan; Hilker, Frank M; Franco, Daniel
2016-04-21
Fluctuations in population size are in many cases undesirable, as they can induce outbreaks and extinctions or impede the optimal management of populations. We propose the strategy of adaptive threshold harvesting (ATH) to control fluctuations in population size. In this strategy, the population is harvested whenever population size has grown beyond a certain proportion in comparison to the previous generation. Taking such population increases into account, ATH intervenes also at smaller population sizes than the strategy of threshold harvesting. Moreover, ATH is the harvesting version of adaptive limiter control (ALC) that has recently been shown to stabilize population oscillations in both experiments and theoretical studies. We find that ATH has similar stabilization properties as ALC and thus offers itself as a harvesting alternative for the control of pests, exploitation of biological resources, or when restocking interventions required from ALC are unfeasible. We present numerical simulations of ATH to illustrate its performance in the presence of noise, lattice effect, and Allee effect. In addition, we propose an adjustment to both ATH and ALC that restricts interventions when control seems unnecessary, i.e. when population size is too small or too large, respectively. This adjustment cancels prolonged transients. PMID:26854876
Tankanag, Arina V; Chemeris, Nikolay K
2009-10-01
The paper describes an original method for analysis of the peripheral blood flow oscillations measured with the laser Doppler flowmetry (LDF) technique. The method is based on the continuous wavelet transform and adaptive wavelet theory and applies an adaptive wavelet filtering to the LDF data. The method developed allows one to examine the dynamics of amplitude oscillations in a wide frequency range (from 0.007 to 2 Hz) and to process both stationary and non-stationary short (6 min) signals. The capabilities of the method have been demonstrated by analyzing LDF signals registered in the state of rest and upon humeral occlusion. The paper shows the main advantage of the method proposed, which is the significant reduction of 'border effects', as compared to the traditional wavelet analysis. It was found that the low-frequency amplitudes obtained by adaptive wavelets are significantly higher than those obtained by non-adaptive ones. The method suggested would be useful for the analysis of low-frequency components of the short-living transitional processes under the conditions of functional tests. The method of adaptive wavelet filtering can be used to process stationary and non-stationary biomedical signals (cardiograms, encephalograms, myograms, etc), as well as signals studied in the other fields of science and engineering.
Webster, Clayton G; Zhang, Guannan; Gunzburger, Max D
2012-10-01
Accurate predictive simulations of complex real world applications require numerical approximations to first, oppose the curse of dimensionality and second, converge quickly in the presence of steep gradients, sharp transitions, bifurcations or finite discontinuities in high-dimensional parameter spaces. In this paper we present a novel multi-dimensional multi-resolution adaptive (MdMrA) sparse grid stochastic collocation method, that utilizes hierarchical multiscale piecewise Riesz basis functions constructed from interpolating wavelets. The basis for our non-intrusive method forms a stable multiscale splitting and thus, optimal adaptation is achieved. Error estimates and numerical examples will used to compare the efficiency of the method with several other techniques.
Adaptive Wavelet Techniques, Wigner Distributions and the Direct Simulation of the Vlasov Equation
NASA Astrophysics Data System (ADS)
Afeyan, Bedros; Douglas, Melissa; Spielman, Rick
2000-10-01
The formal analogy between the quantum Liouville equation satisfied by the Wigner function in Quantum Mechanics, and the Vlasov equation satisfied by the single particle distribution function in plasma physics is exploited in order to study the long term evolution of nonlinear electrostatic wave phenomena dictated by the Vlasov-Poisson equations. Adaptive wavelet techniques are used to tile phase space in an optimal manner so as to minimize computational domain sizes and simultaneously to retain accuracy over disparate scales. Traditional MHD calculations will also be analyzed with our wavelet techniques to show the favorable data compression and feature extraction capabilities of multiresolution analysis. Specifically Z51 and Z179 will be compared to show the nature of the improvements in double wire array (Z179) implosions on Z to those obtained with a single wire array (Z51).
Perceptually Lossless Wavelet Compression
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Yang, Gloria Y.; Solomon, Joshua A.; Villasenor, John
1996-01-01
The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter, which we call DWT uniform quantization noise. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2(exp -1), where r is display visual resolution in pixels/degree, and L is the wavelet level. Amplitude thresholds increase rapidly with spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from low-pass to horizontal/vertical to diagonal. We propose a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a 'perceptually lossless' quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.
Design of adaptive fuzzy wavelet neural sliding mode controller for uncertain nonlinear systems.
Shahriari kahkeshi, Maryam; Sheikholeslam, Farid; Zekri, Maryam
2013-05-01
This paper proposes novel adaptive fuzzy wavelet neural sliding mode controller (AFWN-SMC) for a class of uncertain nonlinear systems. The main contribution of this paper is to design smooth sliding mode control (SMC) for a class of high-order nonlinear systems while the structure of the system is unknown and no prior knowledge about uncertainty is available. The proposed scheme composed of an Adaptive Fuzzy Wavelet Neural Controller (AFWNC) to construct equivalent control term and an Adaptive Proportional-Integral (A-PI) controller for implementing switching term to provide smooth control input. Asymptotical stability of the closed loop system is guaranteed, using the Lyapunov direct method. To show the efficiency of the proposed scheme, some numerical examples are provided. To validate the results obtained by proposed approach, some other methods are adopted from the literature and applied for comparison. Simulation results show superiority and capability of the proposed controller to improve the steady state performance and transient response specifications by using less numbers of fuzzy rules and on-line adaptive parameters in comparison to other methods. Furthermore, control effort has considerably decreased and chattering phenomenon has been completely removed.
Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.
2002-01-01
Enhanced false color images from mid-IR, near-IR (NIR), and visible bands of the Landsat thematic mapper (TM) are commonly used for visually interpreting land cover type. Described here is a technique for sharpening or fusion of NIR with higher resolution panchromatic (Pan) that uses a shift-invariant implementation of the discrete wavelet transform (SIDWT) and a reported pixel-based selection rule to combine coefficients. There can be contrast reversals (e.g., at soil-vegetation boundaries between NIR and visible band images) and consequently degraded sharpening and edge artifacts. To improve performance for these conditions, I used a local area-based correlation technique originally reported for comparing image-pyramid-derived edges for the adaptive processing of wavelet-derived edge data. Also, using the redundant data of the SIDWT improves edge data generation. There is additional improvement because sharpened subband imagery is used with the edge-correlation process. A reported technique for sharpening three-band spectral imagery used forward and inverse intensity, hue, and saturation transforms and wavelet-based sharpening of intensity. This technique had limitations with opposite contrast data, and in this study sharpening was applied to single-band multispectral-Pan image pairs. Sharpening used simulated 30-m NIR imagery produced by degrading the spatial resolution of a higher resolution reference. Performance, evaluated by comparison between sharpened and reference image, was improved when sharpened subband data were used with the edge correlation.
A wavelet-optimized, very high order adaptive grid and order numerical method
NASA Technical Reports Server (NTRS)
Jameson, Leland
1996-01-01
Differencing operators of arbitrarily high order can be constructed by interpolating a polynomial through a set of data followed by differentiation of this polynomial and finally evaluation of the polynomial at the point where a derivative approximation is desired. Furthermore, the interpolating polynomial can be constructed from algebraic, trigonometric, or, perhaps exponential polynomials. This paper begins with a comparison of such differencing operator construction. Next, the issue of proper grids for high order polynomials is addressed. Finally, an adaptive numerical method is introduced which adapts the numerical grid and the order of the differencing operator depending on the data. The numerical grid adaptation is performed on a Chebyshev grid. That is, at each level of refinement the grid is a Chebvshev grid and this grid is refined locally based on wavelet analysis.
Adaptations to training at the individual anaerobic threshold.
Keith, S P; Jacobs, I; McLellan, T M
1992-01-01
The individual anaerobic threshold (Th(an)) is the highest metabolic rate at which blood lactate concentrations can be maintained at a steady-state during prolonged exercise. The purpose of this study was to test the hypothesis that training at the Th(an) would cause a greater change in indicators of training adaptation than would training "around" the Th(an). Three groups of subjects were evaluated before, and again after 4 and 8 weeks of training: a control group, a group which trained continuously for 30 min at the Th(an) intensity (SS), and a group (NSS) which divided the 30 min of training into 7.5-min blocks at intensities which alternated between being below the Th(an) [Th(an) -30% of the difference between Th(an) and maximal oxygen consumption (VO2max)] and above the Th(an) (Th(an) +30% of the difference between Th(an) and VO2max). The VO2max increased significantly from 4.06 to 4.27 l.min-1 in SS and from 3.89 to 4.06 l.min-1 in NSS. The power output (W) at Th(an) increased from 70.5 to 79.8% VO2max in SS and from 71.1 to 80.7% VO2max in NSS. The magnitude of change in VO2max, W at Th(an), % VO2max at Th(an) and in exercise time to exhaustion at the pretraining Th(an) was similar in both trained groups. Vastus lateralis citrate synthase and 3-hydroxyacyl-CoA-dehydrogenase activities increased to the same extent in both trained groups. While all of these training-induced adaptations were statistically significant (P < 0.05), there were no significant changes in any of these variables for the control subjects.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1425631
NASA Astrophysics Data System (ADS)
Xie, Hua; Bosshard, John C.; Hill, Jason E.; Wright, Steven M.; Mitra, Sunanda
2016-03-01
Magnetic Resonance Imaging (MRI) offers noninvasive high resolution, high contrast cross-sectional anatomic images through the body. The data of the conventional MRI is collected in spatial frequency (Fourier) domain, also known as kspace. Because there is still a great need to improve temporal resolution of MRI, Compressed Sensing (CS) in MR imaging is proposed to exploit the sparsity of MR images showing great potential to reduce the scan time significantly, however, it poses its own unique problems. This paper revisits wavelet-encoded MR imaging which replaces phase encoding in conventional MRI data acquisition with wavelet encoding by applying wavelet-shaped spatially selective radiofrequency (RF) excitation, and keeps the readout direction as frequency encoding. The practicality of wavelet encoded MRI by itself is limited due to the SNR penalties and poor time resolution compared to conventional Fourier-based MRI. To compensate for those disadvantages, this paper first introduces an undersampling scheme named significance map for sparse wavelet-encoded k-space to speed up data acquisition as well as allowing for various adaptive imaging strategies. The proposed adaptive wavelet-encoded undersampling scheme does not require prior knowledge of the subject to be scanned. Multiband (MB) parallel imaging is also incorporated with wavelet-encoded MRI by exciting multiple regions simultaneously for further reduction in scan time desirable for medical applications. The simulation and experimental results are presented showing the feasibility of the proposed approach in further reduction of the redundancy of the wavelet k-space data while maintaining relatively high quality.
Visibility of wavelet quantization noise
NASA Technical Reports Server (NTRS)
Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.
1997-01-01
The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.
Spike-Threshold Adaptation Predicted by Membrane Potential Dynamics In Vivo
Fontaine, Bertrand; Peña, José Luis; Brette, Romain
2014-01-01
Neurons encode information in sequences of spikes, which are triggered when their membrane potential crosses a threshold. In vivo, the spiking threshold displays large variability suggesting that threshold dynamics have a profound influence on how the combined input of a neuron is encoded in the spiking. Threshold variability could be explained by adaptation to the membrane potential. However, it could also be the case that most threshold variability reflects noise and processes other than threshold adaptation. Here, we investigated threshold variation in auditory neurons responses recorded in vivo in barn owls. We found that spike threshold is quantitatively predicted by a model in which the threshold adapts, tracking the membrane potential at a short timescale. As a result, in these neurons, slow voltage fluctuations do not contribute to spiking because they are filtered by threshold adaptation. More importantly, these neurons can only respond to input spikes arriving together on a millisecond timescale. These results demonstrate that fast adaptation to the membrane potential captures spike threshold variability in vivo. PMID:24722397
Research of adaptive threshold edge detection algorithm based on statistics canny operator
NASA Astrophysics Data System (ADS)
Xu, Jian; Wang, Huaisuo; Huang, Hua
2015-12-01
The traditional Canny operator cannot get the optimal threshold in different scene, on this foundation, an improved Canny edge detection algorithm based on adaptive threshold is proposed. The result of the experiment pictures indicate that the improved algorithm can get responsible threshold, and has the better accuracy and precision in the edge detection.
Adaptive wavelet simulation of global ocean dynamics using a new Brinkman volume penalization
NASA Astrophysics Data System (ADS)
Kevlahan, N. K.-R.; Dubos, T.; Aechtner, M.
2015-12-01
In order to easily enforce solid-wall boundary conditions in the presence of complex coastlines, we propose a new mass and energy conserving Brinkman penalization for the rotating shallow water equations. This penalization does not lead to higher wave speeds in the solid region. The error estimates for the penalization are derived analytically and verified numerically for linearized one-dimensional equations. The penalization is implemented in a conservative dynamically adaptive wavelet method for the rotating shallow water equations on the sphere with bathymetry and coastline data from NOAA's ETOPO1 database. This code could form the dynamical core for a future global ocean model. The potential of the dynamically adaptive ocean model is illustrated by using it to simulate the 2004 Indonesian tsunami and wind-driven gyres.
EEG Artifact Removal Using a Wavelet Neural Network
NASA Technical Reports Server (NTRS)
Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom
2011-01-01
!n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.
A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov Maxwell system
NASA Astrophysics Data System (ADS)
Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain; Sonnendrücker, Eric; Bertrand, Pierre
2008-08-01
In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strong laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to
Goffin, Mark A.; Buchan, Andrew G.; Dargaville, Steven; Pain, Christopher C.; Smith, Paul N.; Smedley-Stevenson, Richard P.
2015-01-15
A method for applying goal-based adaptive methods to the angular resolution of the neutral particle transport equation is presented. The methods are applied to an octahedral wavelet discretisation of the spherical angular domain which allows for anisotropic resolution. The angular resolution is adapted across both the spatial and energy dimensions. The spatial domain is discretised using an inner-element sub-grid scale finite element method. The goal-based adaptive methods optimise the angular discretisation to minimise the error in a specific functional of the solution. The goal-based error estimators require the solution of an adjoint system to determine the importance to the specified functional. The error estimators and the novel methods to calculate them are described. Several examples are presented to demonstrate the effectiveness of the methods. It is shown that the methods can significantly reduce the number of unknowns and computational time required to obtain a given error. The novelty of the work is the use of goal-based adaptive methods to obtain anisotropic resolution in the angular domain for solving the transport equation. -- Highlights: •Wavelet angular discretisation used to solve transport equation. •Adaptive method developed for the wavelet discretisation. •Anisotropic angular resolution demonstrated through the adaptive method. •Adaptive method provides improvements in computational efficiency.
Singh, Omkar; Sunkaria, Ramesh Kumar
2015-01-01
Separating an information-bearing signal from the background noise is a general problem in signal processing. In a clinical environment during acquisition of an electrocardiogram (ECG) signal, The ECG signal is corrupted by various noise sources such as powerline interference (PLI), baseline wander and muscle artifacts. This paper presents novel methods for reduction of powerline interference in ECG signals using empirical wavelet transform (EWT) and adaptive filtering. The proposed methods are compared with the empirical mode decomposition (EMD) based PLI cancellation methods. A total of six methods for PLI reduction based on EMD and EWT are analysed and their results are presented in this paper. The EWT-based de-noising methods have less computational complexity and are more efficient as compared with the EMD-based de-noising methods. PMID:25412942
Adaptive local thresholding for robust nucleus segmentation utilizing shape priors
NASA Astrophysics Data System (ADS)
Wang, Xiuzhong; Srinivas, Chukka
2016-03-01
This paper describes a novel local thresholding method for foreground detection. First, a Canny edge detection method is used for initial edge detection. Then, tensor voting is applied on the initial edge pixels, using a nonsymmetric tensor field tailored to encode prior information about nucleus size, shape, and intensity spatial distribution. Tensor analysis is then performed to generate the saliency image and, based on that, the refined edge. Next, the image domain is divided into blocks. In each block, at least one foreground and one background pixel are sampled for each refined edge pixel. The saliency weighted foreground histogram and background histogram are then created. These two histograms are used to calculate a threshold by minimizing the background and foreground pixel classification error. The block-wise thresholds are then used to generate the threshold for each pixel via interpolation. Finally, the foreground is obtained by comparing the original image with the threshold image. The effective use of prior information, combined with robust techniques, results in far more reliable foreground detection, which leads to robust nucleus segmentation.
Adaptive thresholding for reliable topological inference in single subject fMRI analysis.
Gorgolewski, Krzysztof J; Storkey, Amos J; Bastin, Mark E; Pernet, Cyril R
2012-01-01
Single subject fMRI has proved to be a useful tool for mapping functional areas in clinical procedures such as tumor resection. Using fMRI data, clinicians assess the risk, plan and execute such procedures based on thresholded statistical maps. However, because current thresholding methods were developed mainly in the context of cognitive neuroscience group studies, most single subject fMRI maps are thresholded manually to satisfy specific criteria related to single subject analyzes. Here, we propose a new adaptive thresholding method which combines Gamma-Gaussian mixture modeling with topological thresholding to improve cluster delineation. In a series of simulations we show that by adapting to the signal and noise properties, the new method performs well in terms of total number of errors but also in terms of the trade-off between false negative and positive cluster error rates. Similarly, simulations show that adaptive thresholding performs better than fixed thresholding in terms of over and underestimation of the true activation border (i.e., higher spatial accuracy). Finally, through simulations and a motor test-retest study on 10 volunteer subjects, we show that adaptive thresholding improves reliability, mainly by accounting for the global signal variance. This in turn increases the likelihood that the true activation pattern can be determined offering an automatic yet flexible way to threshold single subject fMRI maps.
Adaptive thresholding for reliable topological inference in single subject fMRI analysis.
Gorgolewski, Krzysztof J; Storkey, Amos J; Bastin, Mark E; Pernet, Cyril R
2012-01-01
Single subject fMRI has proved to be a useful tool for mapping functional areas in clinical procedures such as tumor resection. Using fMRI data, clinicians assess the risk, plan and execute such procedures based on thresholded statistical maps. However, because current thresholding methods were developed mainly in the context of cognitive neuroscience group studies, most single subject fMRI maps are thresholded manually to satisfy specific criteria related to single subject analyzes. Here, we propose a new adaptive thresholding method which combines Gamma-Gaussian mixture modeling with topological thresholding to improve cluster delineation. In a series of simulations we show that by adapting to the signal and noise properties, the new method performs well in terms of total number of errors but also in terms of the trade-off between false negative and positive cluster error rates. Similarly, simulations show that adaptive thresholding performs better than fixed thresholding in terms of over and underestimation of the true activation border (i.e., higher spatial accuracy). Finally, through simulations and a motor test-retest study on 10 volunteer subjects, we show that adaptive thresholding improves reliability, mainly by accounting for the global signal variance. This in turn increases the likelihood that the true activation pattern can be determined offering an automatic yet flexible way to threshold single subject fMRI maps. PMID:22936908
Application of wavelet analysis in laser Doppler vibration signal denoising
NASA Astrophysics Data System (ADS)
Lan, Yu-fei; Xue, Hui-feng; Li, Xin-liang; Liu, Dan
2010-10-01
Large number of experiments show that, due to external disturbances, the measured surface is too rough and other factors make use of laser Doppler technique to detect the vibration signal contained complex information, low SNR, resulting in Doppler frequency shift signals unmeasured, can not be demodulated Doppler phase and so on. This paper first analyzes the laser Doppler signal model and feature in the vibration test, and studies the most commonly used three ways of wavelet denoising techniques: the modulus maxima wavelet denoising method, the spatial correlation denoising method and wavelet threshold denoising method. Here we experiment with the vibration signals and achieve three ways by MATLAB simulation. Processing results show that the wavelet modulus maxima denoising method at low laser Doppler vibration SNR, has an advantage for the signal which mixed with white noise and contained more singularities; the spatial correlation denoising method is more suitable for denoising the laser Doppler vibration signal which noise level is not very high, and has a better edge reconstruction capacity; wavelet threshold denoising method has a wide range of adaptability, computational efficiency, and good denoising effect. Specifically, in the wavelet threshold denoising method, we estimate the original noise variance by spatial correlation method, using an adaptive threshold denoising method, and make some certain amendments in practice. Test can be shown that, compared with conventional threshold denoising, this method is more effective to extract the feature of laser Doppler vibration signal.
Visibility of Wavelet Quantization Noise
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Yang, Gloria Y.; Solomon, Joshua A.; Villasenor, John; Null, Cynthia H. (Technical Monitor)
1995-01-01
The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter, which we call DWT uniform quantization noise. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2(exp)-L , where r is display visual resolution in pixels/degree, and L is the wavelet level. Amplitude thresholds increase rapidly with spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from low-pass to horizontal/vertical to diagonal. We describe a mathematical model to predict DWT noise detection thresholds as a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.
Bauer, Robert; Gharabaghi, Alireza
2015-01-01
Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation. In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting. PMID:25729347
Bauer, Robert; Gharabaghi, Alireza
2015-01-01
Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation. In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting.
Bauer, Robert; Gharabaghi, Alireza
2015-01-01
Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation. In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting. PMID:25729347
Hejč, Jakub; Vítek, Martin; Ronzhina, Marina; Nováková, Marie; Kolářová, Jana
2015-09-01
We present a novel wavelet-based ECG delineation method with robust classification of P wave and T wave. The work is aimed on an adaptation of the method to long-term experimental electrograms (EGs) measured on isolated rabbit heart and to evaluate the effect of global ischemia in experimental EGs on delineation performance. The algorithm was tested on a set of 263 rabbit EGs with established reference points and on human signals using standard Common Standards for Quantitative Electrocardiography Standard Database (CSEDB). On CSEDB, standard deviation (SD) of measured errors satisfies given criterions in each point and the results are comparable to other published works. In rabbit signals, our QRS detector reached sensitivity of 99.87% and positive predictivity of 99.89% despite an overlay of spectral components of QRS complex, P wave and power line noise. The algorithm shows great performance in suppressing J-point elevation and reached low overall error in both, QRS onset (SD = 2.8 ms) and QRS offset (SD = 4.3 ms) delineation. T wave offset is detected with acceptable error (SD = 12.9 ms) and sensitivity nearly 99%. Variance of the errors during global ischemia remains relatively stable, however more failures in detection of T wave and P wave occur. Due to differences in spectral and timing characteristics parameters of rabbit based algorithm have to be highly adaptable and set more precisely than in human ECG signals to reach acceptable performance. PMID:26577367
Chamanzar, Alireza; Malekmohammadi, Alireza; Bahrani, Masih; Shabany, Mahdi
2015-01-01
The outlook of brain-computer interfacing (BCI) is very bright. The real-time, accurate detection of a motor movement task is critical in BCI systems. The poor signal-to-noise-ratio (SNR) of EEG signals and the ambiguity of noise generator sources in brain renders this task quite challenging. In this paper, we demonstrate a novel algorithm for precise detection of the onset of a motor movement through identification of event-related-desynchronization (ERD) patterns. Using an adaptive matched filter technique implemented based on an optimized continues Wavelet transform by selecting an appropriate basis, we can detect single-trial ERDs. Moreover, we use a maximum-likelihood (ML), electrooculography (EOG) artifact removal method to remove eye-related artifacts to significantly improve the detection performance. We have applied this technique to our locally recorded Emotiv(®) data set of 6 healthy subjects, where an average detection selectivity of 85 ± 6% and sensitivity of 88 ± 7.7% is achieved with a temporal precision in the range of -1250 to 367 ms in onset detections of single-trials.
Adaptive Wavelet-Based Direct Numerical Simulations of Rayleigh-Taylor Instability
NASA Astrophysics Data System (ADS)
Reckinger, Scott J.
The compressible Rayleigh-Taylor instability (RTI) occurs when a fluid of low molar mass supports a fluid of higher molar mass against a gravity-like body force or in the presence of an accelerating front. Intrinsic to the problem are highly stratified background states, acoustic waves, and a wide range of physical scales. The objective of this thesis is to develop a specialized computational framework that addresses these challenges and to apply the advanced methodologies for direct numerical simulations of compressible RTI. Simulations are performed using the Parallel Adaptive Wavelet Collocation Method (PAWCM). Due to the physics-based adaptivity and direct error control of the method, PAWCM is ideal for resolving the wide range of scales present in RTI growth. Characteristics-based non-reflecting boundary conditions are developed for highly stratified systems to be used in conjunction with PAWCM. This combination allows for extremely long domains, which is necessary for observing the late time growth of compressible RTI. Initial conditions that minimize acoustic disturbances are also developed. The initialization is consistent with linear stability theory, where the background state consists of two diffusively mixed stratified fluids of differing molar masses. The compressibility effects on the departure from the linear growth, the onset of strong non-linear interactions, and the late-time behavior of the fluid structures are investigated. It is discovered that, for the thermal equilibrium case, the background stratification acts to suppress the instability growth when the molar mass difference is small. A reversal in this monotonic behavior is observed for large molar mass differences, where stratification enhances the bubble growth. Stratification also affects the vortex creation and the associated induced velocities. The enhancement and suppression of the RTI growth has important consequences for a detailed understanding of supernovae flame front
Reinforcement learning by Hebbian synapses with adaptive thresholds.
Pennartz, C M
1997-11-01
A central problem in learning theory is how the vertebrate brain processes reinforcing stimuli in order to master complex sensorimotor tasks. This problem belongs to the domain of supervised learning, in which errors in the response of a neural network serve as the basis for modification of synaptic connectivity in the network and thereby train it on a computational task. The model presented here shows how a reinforcing feedback can modify synapses in a neuronal network according to the principles of Hebbian learning. The reinforcing feedback steers synapses towards long-term potentiation or depression by critically influencing the rise in postsynaptic calcium, in accordance with findings on synaptic plasticity in mammalian brain. An important feature of the model is the dependence of modification thresholds on the previous history of reinforcing feedback processed by the network. The learning algorithm trained networks successfully on a task in which a population vector in the motor output was required to match a sensory stimulus vector presented shortly before. In another task, networks were trained to compute coordinate transformations by combining different visual inputs. The model continued to behave well when simplified units were replaced by single-compartment neurons equipped with several conductances and operating in continuous time. This novel form of reinforcement learning incorporates essential properties of Hebbian synaptic plasticity and thereby shows that supervised learning can be accomplished by a learning rule similar to those used in physiologically plausible models of unsupervised learning. The model can be crudely correlated to the anatomy and electrophysiology of the amygdala, prefrontal and cingulate cortex and has predictive implications for further experiments on synaptic plasticity and learning processes mediated by these areas.
Unipolar terminal-attractor based neural associative memory with adaptive threshold
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor); Barhen, Jacob (Inventor); Farhat, Nabil H. (Inventor); Wu, Chwan-Hwa (Inventor)
1993-01-01
A unipolar terminal-attractor based neural associative memory (TABAM) system with adaptive threshold for perfect convergence is presented. By adaptively setting the threshold values for the dynamic iteration for the unipolar binary neuron states with terminal-attractors for the purpose of reducing the spurious states in a Hopfield neural network for associative memory and using the inner product approach, perfect convergence and correct retrieval is achieved. Simulation is completed with a small number of stored states (M) and a small number of neurons (N) but a large M/N ratio. An experiment with optical exclusive-OR logic operation using LCTV SLMs shows the feasibility of optoelectronic implementation of the models. A complete inner-product TABAM is implemented using a PC for calculation of adaptive threshold values to achieve a unipolar TABAM (UIT) in the case where there is no crosstalk, and a crosstalk model (CRIT) in the case where crosstalk corrupts the desired state.
Unipolar Terminal-Attractor Based Neural Associative Memory with Adaptive Threshold
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor); Barhen, Jacob (Inventor); Farhat, Nabil H. (Inventor); Wu, Chwan-Hwa (Inventor)
1996-01-01
A unipolar terminal-attractor based neural associative memory (TABAM) system with adaptive threshold for perfect convergence is presented. By adaptively setting the threshold values for the dynamic iteration for the unipolar binary neuron states with terminal-attractors for the purpose of reducing the spurious states in a Hopfield neural network for associative memory and using the inner-product approach, perfect convergence and correct retrieval is achieved. Simulation is completed with a small number of stored states (M) and a small number of neurons (N) but a large M/N ratio. An experiment with optical exclusive-OR logic operation using LCTV SLMs shows the feasibility of optoelectronic implementation of the models. A complete inner-product TABAM is implemented using a PC for calculation of adaptive threshold values to achieve a unipolar TABAM (UIT) in the case where there is no crosstalk, and a crosstalk model (CRIT) in the case where crosstalk corrupts the desired state.
Adapting to a changing environment: non-obvious thresholds in multi-scale systems.
Perryman, Clare; Wieczorek, Sebastian
2014-10-01
Many natural and technological systems fail to adapt to changing external conditions and move to a different state if the conditions vary too fast. Such 'non-adiabatic' processes are ubiquitous, but little understood. We identify these processes with a new nonlinear phenomenon-an intricate threshold where a forced system fails to adiabatically follow a changing stable state. In systems with multiple time scales, we derive existence conditions that show such thresholds to be generic, but non-obvious, meaning they cannot be captured by traditional stability theory. Rather, the phenomenon can be analysed using concepts from modern singular perturbation theory: folded singularities and canard trajectories, including composite canards. Thus, non-obvious thresholds should explain the failure to adapt to a changing environment in a wide range of multi-scale systems including: tipping points in the climate system, regime shifts in ecosystems, excitability in nerve cells, adaptation failure in regulatory genes and adiabatic switching in technology. PMID:25294963
Adapting to a changing environment: non-obvious thresholds in multi-scale systems
Perryman, Clare; Wieczorek, Sebastian
2014-01-01
Many natural and technological systems fail to adapt to changing external conditions and move to a different state if the conditions vary too fast. Such ‘non-adiabatic’ processes are ubiquitous, but little understood. We identify these processes with a new nonlinear phenomenon—an intricate threshold where a forced system fails to adiabatically follow a changing stable state. In systems with multiple time scales, we derive existence conditions that show such thresholds to be generic, but non-obvious, meaning they cannot be captured by traditional stability theory. Rather, the phenomenon can be analysed using concepts from modern singular perturbation theory: folded singularities and canard trajectories, including composite canards. Thus, non-obvious thresholds should explain the failure to adapt to a changing environment in a wide range of multi-scale systems including: tipping points in the climate system, regime shifts in ecosystems, excitability in nerve cells, adaptation failure in regulatory genes and adiabatic switching in technology. PMID:25294963
NASA Astrophysics Data System (ADS)
Rastigejev, Y.; Semakin, A. N.
2013-12-01
Accurate numerical simulations of global scale three-dimensional atmospheric chemical transport models (CTMs) are essential for studies of many important atmospheric chemistry problems such as adverse effect of air pollutants on human health, ecosystems and the Earth's climate. These simulations usually require large CPU time due to numerical difficulties associated with a wide range of spatial and temporal scales, nonlinearity and large number of reacting species. In our previous work we have shown that in order to achieve adequate convergence rate and accuracy, the mesh spacing in numerical simulation of global synoptic-scale pollution plume transport must be decreased to a few kilometers. This resolution is difficult to achieve for global CTMs on uniform or quasi-uniform grids. To address the described above difficulty we developed a three-dimensional Wavelet-based Adaptive Mesh Refinement (WAMR) algorithm. The method employs a highly non-uniform adaptive grid with fine resolution over the areas of interest without requiring small grid-spacing throughout the entire domain. The method uses multi-grid iterative solver that naturally takes advantage of a multilevel structure of the adaptive grid. In order to represent the multilevel adaptive grid efficiently, a dynamic data structure based on indirect memory addressing has been developed. The data structure allows rapid access to individual points, fast inter-grid operations and re-gridding. The WAMR method has been implemented on parallel computer architectures. The parallel algorithm is based on run-time partitioning and load-balancing scheme for the adaptive grid. The partitioning scheme maintains locality to reduce communications between computing nodes. The parallel scheme was found to be cost-effective. Specifically we obtained an order of magnitude increase in computational speed for numerical simulations performed on a twelve-core single processor workstation. We have applied the WAMR method for numerical
Olfactory Detection Thresholds and Adaptation in Adults with Autism Spectrum Condition
ERIC Educational Resources Information Center
Tavassoli, T.; Baron-Cohen, S.
2012-01-01
Sensory issues have been widely reported in Autism Spectrum Conditions (ASC). Since olfaction is one of the least investigated senses in ASC, the current studies explore olfactory detection thresholds and adaptation to olfactory stimuli in adults with ASC. 80 participants took part, 38 (18 females, 20 males) with ASC and 42 control participants…
Rosa, Thiago S.; Simões, Herbert G.; Rogero, Marcelo M.; Moraes, Milton R.; Denadai, Benedito S.; Arida, Ricardo M.; Andrade, Marília S.; Silva, Bruno M.
2016-01-01
Severe obesity affects metabolism with potential to influence the lactate and glycemic response to different exercise intensities in untrained and trained rats. Here we evaluated metabolic thresholds and maximal aerobic capacity in rats with severe obesity and lean counterparts at pre- and post-training. Zucker rats (obese: n = 10, lean: n = 10) were submitted to constant treadmill bouts, to determine the maximal lactate steady state, and an incremental treadmill test, to determine the lactate threshold, glycemic threshold and maximal velocity at pre and post 8 weeks of treadmill training. Velocities of the lactate threshold and glycemic threshold agreed with the maximal lactate steady state velocity on most comparisons. The maximal lactate steady state velocity occurred at higher percentage of the maximal velocity in Zucker rats at pre-training than the percentage commonly reported and used for training prescription for other rat strains (i.e., 60%) (obese = 78 ± 9% and lean = 68 ± 5%, P < 0.05 vs. 60%). The maximal lactate steady state velocity and maximal velocity were lower in the obese group at pre-training (P < 0.05 vs. lean), increased in both groups at post-training (P < 0.05 vs. pre), but were still lower in the obese group at post-training (P < 0.05 vs. lean). Training-induced increase in maximal lactate steady state, lactate threshold and glycemic threshold velocities was similar between groups (P > 0.05), whereas increase in maximal velocity was greater in the obese group (P < 0.05 vs. lean). In conclusion, lactate threshold, glycemic threshold and maximal lactate steady state occurred at similar exercise intensity in Zucker rats at pre- and post-training. Severe obesity shifted metabolic thresholds to higher exercise intensity at pre-training, but did not attenuate submaximal and maximal aerobic training adaptations. PMID:27148063
NASA Astrophysics Data System (ADS)
Luo, G. Y.; Osypiw, D.; Irle, M.
2003-05-01
The dynamic behaviour of wood machining processes affects the surface finish quality of machined workpieces. In order to meet the requirements of increased production efficiency and improved product quality, surface quality information is needed for enhanced process control. However, current methods using high price devices or sophisticated designs, may not be suitable for industrial real-time application. This paper presents a novel approach of surface quality evaluation by on-line vibration analysis using an adaptive spline wavelet algorithm, which is based on the excellent time-frequency localization of B-spline wavelets. A series of experiments have been performed to extract the feature, which is the correlation between the relevant frequency band(s) of vibration with the change of the amplitude and the surface quality. The graphs of the experimental results demonstrate that the change of the amplitude in the selective frequency bands with variable resolution (linear and non-linear) reflects the quality of surface finish, and the root sum square of wavelet power spectrum is a good indication of surface quality. Thus, surface quality can be estimated and quantified at an average level in real time. The results can be used to regulate and optimize the machine's feed speed, maintaining a constant spindle motor speed during cutting. This will lead to higher level control and machining rates while keeping dimensional integrity and surface finish within specification.
A New Adaptive Image Denoising Method Based on Neighboring Coefficients
NASA Astrophysics Data System (ADS)
Biswas, Mantosh; Om, Hari
2016-03-01
Many good techniques have been discussed for image denoising that include NeighShrink, improved adaptive wavelet denoising method based on neighboring coefficients (IAWDMBNC), improved wavelet shrinkage technique for image denoising (IWST), local adaptive wiener filter (LAWF), wavelet packet thresholding using median and wiener filters (WPTMWF), adaptive image denoising method based on thresholding (AIDMT). These techniques are based on local statistical description of the neighboring coefficients in a window. These methods however do not give good quality of the images since they cannot modify and remove too many small wavelet coefficients simultaneously due to the threshold. In this paper, a new image denoising method is proposed that shrinks the noisy coefficients using an adaptive threshold. Our method overcomes these drawbacks and it has better performance than the NeighShrink, IAWDMBNC, IWST, LAWF, WPTMWF, and AIDMT denoising methods.
A Threshold-Adaptive Reputation System on Mobile Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Tsai, Hsiao-Chien; Lo, Nai-Wei; Wu, Tzong-Chen
In recent years huge potential benefits from novel applications in mobile ad hoc networks (MANET) have been discussed extensively. However, without robust security mechanisms and systems to provide safety shell through the MANET infrastructure, MANET applications can be vulnerable and hammered by malicious attackers easily. In order to detect misbehaved message routing and identify malicious attackers in MANET, schemes based on reputation concept have shown their advantages in this area in terms of good scalability and simple threshold-based detection strategy. We observed that previous reputation schemes generally use predefined thresholds which do not take into account the effect of behavior dynamics between nodes in a period of time. In this paper, we propose a Threshold-Adaptive Reputation System (TARS) to overcome the shortcomings of static threshold strategy and improve the overall MANET performance under misbehaved routing attack. A fuzzy-based inference engine is introduced to evaluate the trustiness of a node's one-hop neighbors. Malicious nodes whose trust values are lower than the adaptive threshold, will be detected and filtered out by their honest neighbors during trustiness evaluation process. The results of network simulation show that the TARS outperforms other compared schemes under security attacks in most cases and at the same time reduces the decrease of total packet delivery ratio by 67% in comparison with MANET without reputation system.
Adaptive dynamic inversion robust control for BTT missile based on wavelet neural network
NASA Astrophysics Data System (ADS)
Li, Chuanfeng; Wang, Yongji; Deng, Zhixiang; Wu, Hao
2009-10-01
A new nonlinear control strategy incorporated the dynamic inversion method with wavelet neural networks is presented for the nonlinear coupling system of Bank-to-Turn(BTT) missile in reentry phase. The basic control law is designed by using the dynamic inversion feedback linearization method, and the online learning wavelet neural network is used to compensate the inversion error due to aerodynamic parameter errors, modeling imprecise and external disturbance in view of the time-frequency localization properties of wavelet transform. Weights adjusting laws are derived according to Lyapunov stability theory, which can guarantee the boundedness of all signals in the whole system. Furthermore, robust stability of the closed-loop system under this tracking law is proved. Finally, the six degree-of-freedom(6DOF) simulation results have shown that the attitude angles can track the anticipant command precisely under the circumstances of existing external disturbance and in the presence of parameter uncertainty. It means that the dependence on model by dynamic inversion method is reduced and the robustness of control system is enhanced by using wavelet neural network(WNN) to reconstruct inversion error on-line.
Anatomically-adapted graph wavelets for improved group-level fMRI activation mapping.
Behjat, Hamid; Leonardi, Nora; Sörnmo, Leif; Van De Ville, Dimitri
2015-12-01
A graph based framework for fMRI brain activation mapping is presented. The approach exploits the spectral graph wavelet transform (SGWT) for the purpose of defining an advanced multi-resolutional spatial transformation for fMRI data. The framework extends wavelet based SPM (WSPM), which is an alternative to the conventional approach of statistical parametric mapping (SPM), and is developed specifically for group-level analysis. We present a novel procedure for constructing brain graphs, with subgraphs that separately encode the structural connectivity of the cerebral and cerebellar gray matter (GM), and address the inter-subject GM variability by the use of template GM representations. Graph wavelets tailored to the convoluted boundaries of GM are then constructed as a means to implement a GM-based spatial transformation on fMRI data. The proposed approach is evaluated using real as well as semi-synthetic multi-subject data. Compared to SPM and WSPM using classical wavelets, the proposed approach shows superior type-I error control. The results on real data suggest a higher detection sensitivity as well as the capability to capture subtle, connected patterns of brain activity.
Future temperature in southwest Asia projected to exceed a threshold for human adaptability
NASA Astrophysics Data System (ADS)
Pal, Jeremy S.; Eltahir, Elfatih A. B.
2016-02-01
A human body may be able to adapt to extremes of dry-bulb temperature (commonly referred to as simply temperature) through perspiration and associated evaporative cooling provided that the wet-bulb temperature (a combined measure of temperature and humidity or degree of `mugginess’) remains below a threshold of 35 °C. (ref. ). This threshold defines a limit of survivability for a fit human under well-ventilated outdoor conditions and is lower for most people. We project using an ensemble of high-resolution regional climate model simulations that extremes of wet-bulb temperature in the region around the Arabian Gulf are likely to approach and exceed this critical threshold under the business-as-usual scenario of future greenhouse gas concentrations. Our results expose a specific regional hotspot where climate change, in the absence of significant mitigation, is likely to severely impact human habitability in the future.
NASA Astrophysics Data System (ADS)
Krasichkov, Alexander S.; Grigoriev, Eugene B.; Bogachev, Mikhail I.; Nifontov, Eugene M.
2015-10-01
We suggest an analytical approach to the adaptive thresholding in a shape anomaly detection problem. We find an analytical expression for the distribution of the cosine similarity score between a reference shape and an observational shape hindered by strong measurement noise that depends solely on the noise level and is independent of the particular shape analyzed. The analytical treatment is also confirmed by computer simulations and shows nearly perfect agreement. Using this analytical solution, we suggest an improved shape anomaly detection approach based on adaptive thresholding. We validate the noise robustness of our approach using typical shapes of normal and pathological electrocardiogram cycles hindered by additive white noise. We show explicitly that under high noise levels our approach considerably outperforms the conventional tactic that does not take into account variations in the noise level.
NASA Astrophysics Data System (ADS)
Rangel, T.; Caliste, D.; Genovese, L.; Torrent, M.
2016-11-01
We present a Projector Augmented-Wave (PAW) method based on a wavelet basis set. We implemented our wavelet-PAW method as a PAW library in the ABINIT package [http://www.abinit.org] and into BigDFT [http://www.bigdft.org]. We test our implementation in prototypical systems to illustrate the potential usage of our code. By using the wavelet-PAW method, we can simulate charged and special boundary condition systems with frozen-core all-electron precision. Furthermore, our work paves the way to large-scale and potentially order- N simulations within a PAW method.
Weak transient fault feature extraction based on an optimized Morlet wavelet and kurtosis
NASA Astrophysics Data System (ADS)
Qin, Yi; Xing, Jianfeng; Mao, Yongfang
2016-08-01
Aimed at solving the key problem in weak transient detection, the present study proposes a new transient feature extraction approach using the optimized Morlet wavelet transform, kurtosis index and soft-thresholding. Firstly, a fast optimization algorithm based on the Shannon entropy is developed to obtain the optimized Morlet wavelet parameter. Compared to the existing Morlet wavelet parameter optimization algorithm, this algorithm has lower computation complexity. After performing the optimized Morlet wavelet transform on the analyzed signal, the kurtosis index is used to select the characteristic scales and obtain the corresponding wavelet coefficients. From the time-frequency distribution of the periodic impulsive signal, it is found that the transient signal can be reconstructed by the wavelet coefficients at several characteristic scales, rather than the wavelet coefficients at just one characteristic scale, so as to improve the accuracy of transient detection. Due to the noise influence on the characteristic wavelet coefficients, the adaptive soft-thresholding method is applied to denoise these coefficients. With the denoised wavelet coefficients, the transient signal can be reconstructed. The proposed method was applied to the analysis of two simulated signals, and the diagnosis of a rolling bearing fault and a gearbox fault. The superiority of the method over the fast kurtogram method was verified by the results of simulation analysis and real experiments. It is concluded that the proposed method is extremely suitable for extracting the periodic impulsive feature from strong background noise.
Impact of sub and supra-threshold adaptation currents in networks of spiking neurons.
Colliaux, David; Yger, Pierre; Kaneko, Kunihiko
2015-12-01
Neuronal adaptation is the intrinsic capacity of the brain to change, by various mechanisms, its dynamical responses as a function of the context. Such a phenomena, widely observed in vivo and in vitro, is known to be crucial in homeostatic regulation of the activity and gain control. The effects of adaptation have already been studied at the single-cell level, resulting from either voltage or calcium gated channels both activated by the spiking activity and modulating the dynamical responses of the neurons. In this study, by disentangling those effects into a linear (sub-threshold) and a non-linear (supra-threshold) part, we focus on the the functional role of those two distinct components of adaptation onto the neuronal activity at various scales, starting from single-cell responses up to recurrent networks dynamics, and under stationary or non-stationary stimulations. The effects of slow currents on collective dynamics, like modulation of population oscillation and reliability of spike patterns, is quantified for various types of adaptation in sparse recurrent networks.
Impact of sub and supra-threshold adaptation currents in networks of spiking neurons.
Colliaux, David; Yger, Pierre; Kaneko, Kunihiko
2015-12-01
Neuronal adaptation is the intrinsic capacity of the brain to change, by various mechanisms, its dynamical responses as a function of the context. Such a phenomena, widely observed in vivo and in vitro, is known to be crucial in homeostatic regulation of the activity and gain control. The effects of adaptation have already been studied at the single-cell level, resulting from either voltage or calcium gated channels both activated by the spiking activity and modulating the dynamical responses of the neurons. In this study, by disentangling those effects into a linear (sub-threshold) and a non-linear (supra-threshold) part, we focus on the the functional role of those two distinct components of adaptation onto the neuronal activity at various scales, starting from single-cell responses up to recurrent networks dynamics, and under stationary or non-stationary stimulations. The effects of slow currents on collective dynamics, like modulation of population oscillation and reliability of spike patterns, is quantified for various types of adaptation in sparse recurrent networks. PMID:26400658
NASA Astrophysics Data System (ADS)
Elmi, Omid; Javad Tourian, Mohammad; Sneeuw, Nico
2015-04-01
The importance of river discharge monitoring is critical for e.g., water resource planning, climate change, hazard monitoring. River discharge has been measured at in situ gauges for more than a century. Despite various attempts, some basins are still ungauged. Moreover, a reduction in the number of worldwide gauging stations increases the interest to employ remote sensing data for river discharge monitoring. Finding an empirical relationship between simultaneous in situ measurements of discharge and river widths derived from satellite imagery has been introduced as a straightforward remote sensing alternative. Classifying water and land in an image is the primary task for defining the river width. Water appears dark in the near infrared and infrared bands in satellite images. As a result low values in the histogram usually represent the water content. In this way, applying a threshold on the image histogram and separating into two different classes is one of the most efficient techniques to build a water mask. Beside its simple definition, finding the appropriate threshold value in each image is the most critical issue. The threshold is variable due to changes in the water level, river extent, atmosphere, sunlight radiation, onboard calibration of the satellite over time. These complexities in water body classification are the main source of error in river width estimation. In this study, we are looking for the most efficient adaptive threshold algorithm to estimate the river discharge. To do this, all cloud free MODIS images coincident with the in situ measurement are collected. Next a number of automatic threshold selection techniques are employed to generate different dynamic water masks. Then, for each of them a separate empirical relationship between river widths and discharge measurements are determined. Through these empirical relationships, we estimate river discharge at the gauge and then validate our results against in situ measurements and also
A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system
Besse, Nicolas Latu, Guillaume Ghizzo, Alain Sonnendruecker, Eric Bertrand, Pierre
2008-08-10
In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strong laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to
Wavelet Transform for Real-Time Detection of Action Potentials in Neural Signals
Quotb, Adam; Bornat, Yannick; Renaud, Sylvie
2011-01-01
We present a study on wavelet detection methods of neuronal action potentials (APs). Our final goal is to implement the selected algorithms on custom integrated electronics for on-line processing of neural signals; therefore we take real-time computing as a hard specification and silicon area as a price to pay. Using simulated neural signals including APs, we characterize an efficient wavelet method for AP extraction by evaluating its detection rate and its implementation cost. We compare software implementation for three methods: adaptive threshold, discrete wavelet transform (DWT), and stationary wavelet transform (SWT). We evaluate detection rate and implementation cost for detection functions dynamically comparing a signal with an adaptive threshold proportional to its SD, where the signal is the raw neural signal, respectively: (i) non-processed; (ii) processed by a DWT; (iii) processed by a SWT. We also use different mother wavelets and test different data formats to set an optimal compromise between accuracy and silicon cost. Detection accuracy is evaluated together with false negative and false positive detections. Simulation results show that for on-line AP detection implemented on a configurable digital integrated circuit, APs underneath the noise level can be detected using SWT with a well-selected mother wavelet, combined to an adaptive threshold. PMID:21811455
Wavelet transform for real-time detection of action potentials in neural signals.
Quotb, Adam; Bornat, Yannick; Renaud, Sylvie
2011-01-01
We present a study on wavelet detection methods of neuronal action potentials (APs). Our final goal is to implement the selected algorithms on custom integrated electronics for on-line processing of neural signals; therefore we take real-time computing as a hard specification and silicon area as a price to pay. Using simulated neural signals including APs, we characterize an efficient wavelet method for AP extraction by evaluating its detection rate and its implementation cost. We compare software implementation for three methods: adaptive threshold, discrete wavelet transform (DWT), and stationary wavelet transform (SWT). We evaluate detection rate and implementation cost for detection functions dynamically comparing a signal with an adaptive threshold proportional to its SD, where the signal is the raw neural signal, respectively: (i) non-processed; (ii) processed by a DWT; (iii) processed by a SWT. We also use different mother wavelets and test different data formats to set an optimal compromise between accuracy and silicon cost. Detection accuracy is evaluated together with false negative and false positive detections. Simulation results show that for on-line AP detection implemented on a configurable digital integrated circuit, APs underneath the noise level can be detected using SWT with a well-selected mother wavelet, combined to an adaptive threshold.
NASA Astrophysics Data System (ADS)
Grenga, Temistocle
The aim of this research is to further develop a dynamically adaptive algorithm based on wavelets that is able to solve efficiently multi-dimensional compressible reactive flow problems. This work demonstrates the great potential for the method to perform direct numerical simulation (DNS) of combustion with detailed chemistry and multi-component diffusion. In particular, it addresses the performance obtained using a massive parallel implementation and demonstrates important savings in memory storage and computational time over conventional methods. In addition, fully-resolved simulations of challenging three dimensional problems involving mixing and combustion processes are performed. These problems are particularly challenging due to their strong multiscale characteristics. For these solutions, it is necessary to combine the advanced numerical techniques applied to modern computational resources.
Avci, Derya; Leblebicioglu, Mehmet Kemal; Poyraz, Mustafa; Dogantekin, Esin
2014-02-01
So far, analysis and classification of urine cells number has become an important topic for medical diagnosis of some diseases. Therefore, in this study, we suggest a new technique based on Adaptive Discrete Wavelet Entropy Energy and Neural Network Classifier (ADWEENN) for Recognition of Urine Cells from Microscopic Images Independent of Rotation and Scaling. Some digital image processing methods such as noise reduction, contrast enhancement, segmentation, and morphological process are used for feature extraction stage of this ADWEENN in this study. Nowadays, the image processing and pattern recognition topics have come into prominence. The image processing concludes operation and design of systems that recognize patterns in data sets. In the past years, very difficulty in classification of microscopic images was the deficiency of enough methods to characterize. Lately, it is seen that, multi-resolution image analysis methods such as Gabor filters, discrete wavelet decompositions are superior to other classic methods for analysis of these microscopic images. In this study, the structure of the ADWEENN method composes of four stages. These are preprocessing stage, feature extraction stage, classification stage and testing stage. The Discrete Wavelet Transform (DWT) and adaptive wavelet entropy and energy is used for adaptive feature extraction in feature extraction stage to strengthen the premium features of the Artificial Neural Network (ANN) classifier in this study. Efficiency of the developed ADWEENN method was tested showing that an avarage of 97.58% recognition succes was obtained.
Lifting wavelet method of target detection
NASA Astrophysics Data System (ADS)
Han, Jun; Zhang, Chi; Jiang, Xu; Wang, Fang; Zhang, Jin
2009-11-01
Image target recognition plays a very important role in the areas of scientific exploration, aeronautics and space-to-ground observation, photography and topographic mapping. Complex environment of the image noise, fuzzy, all kinds of interference has always been to affect the stability of recognition algorithm. In this paper, the existence of target detection in real-time, accuracy problems, as well as anti-interference ability, using lifting wavelet image target detection methods. First of all, the use of histogram equalization, the goal difference method to obtain the region, on the basis of adaptive threshold and mathematical morphology operations to deal with the elimination of the background error. Secondly, the use of multi-channel wavelet filter wavelet transform of the original image de-noising and enhancement, to overcome the general algorithm of the noise caused by the sensitive issue of reducing the rate of miscarriage of justice will be the multi-resolution characteristics of wavelet and promotion of the framework can be designed directly in the benefits of space-time region used in target detection, feature extraction of targets. The experimental results show that the design of lifting wavelet has solved the movement of the target due to the complexity of the context of the difficulties caused by testing, which can effectively suppress noise, and improve the efficiency and speed of detection.
Impact of slow K(+) currents on spike generation can be described by an adaptive threshold model.
Kobayashi, Ryota; Kitano, Katsunori
2016-06-01
A neuron that is stimulated by rectangular current injections initially responds with a high firing rate, followed by a decrease in the firing rate. This phenomenon is called spike-frequency adaptation and is usually mediated by slow K(+) currents, such as the M-type K(+) current (I M ) or the Ca(2+)-activated K(+) current (I AHP ). It is not clear how the detailed biophysical mechanisms regulate spike generation in a cortical neuron. In this study, we investigated the impact of slow K(+) currents on spike generation mechanism by reducing a detailed conductance-based neuron model. We showed that the detailed model can be reduced to a multi-timescale adaptive threshold model, and derived the formulae that describe the relationship between slow K(+) current parameters and reduced model parameters. Our analysis of the reduced model suggests that slow K(+) currents have a differential effect on the noise tolerance in neural coding. PMID:27085337
Fine tuning of the threshold of T cell selection by the Nck adapters.
Roy, Edwige; Togbe, Dieudonnée; Holdorf, Amy; Trubetskoy, Dmitry; Nabti, Sabrina; Küblbeck, Günter; Schmitt, Sabine; Kopp-Schneider, Annette; Leithäuser, Frank; Möller, Peter; Bladt, Friedhelm; Hämmerling, Günter J; Arnold, Bernd; Pawson, Tony; Tafuri, Anna
2010-12-15
Thymic selection shapes the T cell repertoire to ensure maximal antigenic coverage against pathogens while preventing autoimmunity. Recognition of self-peptides in the context of peptide-MHC complexes by the TCR is central to this process, which remains partially understood at the molecular level. In this study we provide genetic evidence that the Nck adapter proteins are essential for thymic selection. In vivo Nck deletion resulted in a reduction of the thymic cellularity, defective positive selection of low-avidity T cells, and impaired deletion of thymocytes engaged by low-potency stimuli. Nck-deficient thymocytes were characterized by reduced ERK activation, particularly pronounced in mature single positive thymocytes. Taken together, our findings identify a crucial role for the Nck adapters in enhancing TCR signal strength, thereby fine-tuning the threshold of thymocyte selection and shaping the preimmune T cell repertoire.
Fine tuning of the threshold of T cell selection by the Nck adapters.
Roy, Edwige; Togbe, Dieudonnée; Holdorf, Amy; Trubetskoy, Dmitry; Nabti, Sabrina; Küblbeck, Günter; Schmitt, Sabine; Kopp-Schneider, Annette; Leithäuser, Frank; Möller, Peter; Bladt, Friedhelm; Hämmerling, Günter J; Arnold, Bernd; Pawson, Tony; Tafuri, Anna
2010-12-15
Thymic selection shapes the T cell repertoire to ensure maximal antigenic coverage against pathogens while preventing autoimmunity. Recognition of self-peptides in the context of peptide-MHC complexes by the TCR is central to this process, which remains partially understood at the molecular level. In this study we provide genetic evidence that the Nck adapter proteins are essential for thymic selection. In vivo Nck deletion resulted in a reduction of the thymic cellularity, defective positive selection of low-avidity T cells, and impaired deletion of thymocytes engaged by low-potency stimuli. Nck-deficient thymocytes were characterized by reduced ERK activation, particularly pronounced in mature single positive thymocytes. Taken together, our findings identify a crucial role for the Nck adapters in enhancing TCR signal strength, thereby fine-tuning the threshold of thymocyte selection and shaping the preimmune T cell repertoire. PMID:21078909
Issac, Ashish; Partha Sarathi, M; Dutta, Malay Kishore
2015-11-01
Glaucoma is an optic neuropathy which is one of the main causes of permanent blindness worldwide. This paper presents an automatic image processing based method for detection of glaucoma from the digital fundus images. In this proposed work, the discriminatory parameters of glaucoma infection, such as cup to disc ratio (CDR), neuro retinal rim (NRR) area and blood vessels in different regions of the optic disc has been used as features and fed as inputs to learning algorithms for glaucoma diagnosis. These features which have discriminatory changes with the occurrence of glaucoma are strategically used for training the classifiers to improve the accuracy of identification. The segmentation of optic disc and cup based on adaptive threshold of the pixel intensities lying in the optic nerve head region. Unlike existing methods the proposed algorithm is based on an adaptive threshold that uses local features from the fundus image for segmentation of optic cup and optic disc making it invariant to the quality of the image and noise content which may find wider acceptability. The experimental results indicate that such features are more significant in comparison to the statistical or textural features as considered in existing works. The proposed work achieves an accuracy of 94.11% with a sensitivity of 100%. A comparison of the proposed work with the existing methods indicates that the proposed approach has improved accuracy of classification glaucoma from a digital fundus which may be considered clinically significant.
Positive–negative corresponding normalized ghost imaging based on an adaptive threshold
NASA Astrophysics Data System (ADS)
Li, G. L.; Zhao, Y.; Yang, Z. H.; Liu, X.
2016-11-01
Ghost imaging (GI) technology has attracted increasing attention as a new imaging technique in recent years. However, the signal-to-noise ratio (SNR) of GI with pseudo-thermal light needs to be improved before it meets engineering application demands. We therefore propose a new scheme called positive–negative correspondence normalized GI based on an adaptive threshold (PCNGI-AT) to achieve a good performance with less amount of data. In this work, we use both the advantages of normalized GI (NGI) and positive–negative correspondence GI (P–NCGI). The correctness and feasibility of the scheme were proved in theory before we designed an adaptive threshold selection method, in which the parameter of object signal selection conditions is replaced by the normalizing value. The simulation and experimental results reveal that the SNR of the proposed scheme is better than that of time-correspondence differential GI (TCDGI), avoiding the calculation of the matrix of correlation and reducing the amount of data used. The method proposed will make GI far more practical in engineering applications.
Perthame, Benoît; Gauduchon, Mathias
2010-09-01
Deterministic population models for adaptive dynamics are derived mathematically from individual-centred stochastic models in the limit of large populations. However, it is common that numerical simulations of both models fit poorly and give rather different behaviours in terms of evolution speeds and branching patterns. Stochastic simulations involve extinction phenomenon operating through demographic stochasticity, when the number of individual 'units' is small. Focusing on the class of integro-differential adaptive models, we include a similar notion in the deterministic formulations, a survival threshold, which allows phenotypical traits in the population to vanish when represented by few 'individuals'. Based on numerical simulations, we show that the survival threshold changes drastically the solution; (i) the evolution speed is much slower, (ii) the branching patterns are reduced continuously and (iii) these patterns are comparable to those obtained with stochastic simulations. The rescaled models can also be analysed theoretically. One can recover the concentration phenomena on well-separated Dirac masses through the constrained Hamilton-Jacobi equation in the limit of small mutations and large observation times. PMID:19734200
Detection of fiducial points in ECG waves using iteration based adaptive thresholds.
Wonjune Kang; Kyunguen Byun; Hong-Goo Kang
2015-08-01
This paper presents an algorithm for the detection of fiducial points in electrocardiogram (ECG) waves using iteration based adaptive thresholds. By setting the search range of the processing frame to the interval between two consecutive R peaks, the peaks of T and P waves are used as reference salient points (RSPs) to detect the fiducial points. The RSPs are selected from candidates whose slope variation factors are larger than iteratively defined adaptive thresholds. Considering the fact that the number of RSPs varies depending on whether the ECG wave is normal or not, the proposed algorithm proceeds with a different methodology for determining fiducial points based on the number of detected RSPs. Testing was performed using twelve records from the MIT-BIH Arrhythmia Database that were manually marked for comparison with the estimated locations of the fiducial points. The means of absolute distances between the true locations and the points estimated by the algorithm are 12.2 ms and 7.9 ms for the starting points of P and Q waves, and 9.3 ms and 13.9 ms for the ending points of S and T waves. Since the computational complexity of the proposed algorithm is very low, it is feasible for use in mobile devices. PMID:26736854
Basis Selection for Wavelet Regression
NASA Technical Reports Server (NTRS)
Wheeler, Kevin R.; Lau, Sonie (Technical Monitor)
1998-01-01
A wavelet basis selection procedure is presented for wavelet regression. Both the basis and the threshold are selected using cross-validation. The method includes the capability of incorporating prior knowledge on the smoothness (or shape of the basis functions) into the basis selection procedure. The results of the method are demonstrated on sampled functions widely used in the wavelet regression literature. The results of the method are contrasted with other published methods.
Lesmes, Luis A; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A; Albright, Thomas D
2015-01-01
Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold-the signal intensity corresponding to a pre-defined sensitivity level (d' = 1)-in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks-(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection-the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10-0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods.
Motion Estimation Based on Mutual Information and Adaptive Multi-Scale Thresholding.
Xu, Rui; Taubman, David; Naman, Aous Thabit
2016-03-01
This paper proposes a new method of calculating a matching metric for motion estimation. The proposed method splits the information in the source images into multiple scale and orientation subbands, reduces the subband values to a binary representation via an adaptive thresholding algorithm, and uses mutual information to model the similarity of corresponding square windows in each image. A moving window strategy is applied to recover a dense estimated motion field whose properties are explored. The proposed matching metric is a sum of mutual information scores across space, scale, and orientation. This facilitates the exploitation of information diversity in the source images. Experimental comparisons are performed amongst several related approaches, revealing that the proposed matching metric is better able to exploit information diversity, generating more accurate motion fields.
Implementation for temporal noise identification using adaptive threshold of infrared imaging system
NASA Astrophysics Data System (ADS)
Lim, Inok
2007-10-01
Bad pixels are spatial or temporal noise which arise from dead pixels by fixed signal levels or blinking pixels by variable signal levels that go beyond the bounds of normal pixel levels at the temperature. Because bad pixels are the false targets over infrared imaging system for tracking, those must be corrected. Main contribution to the number of bad pixels is fixed pattern noise (FPN) according to increasing array size. And it is more simple to establish whether FPN is or not through analyzing of accumulated frames. But it needs to calculate with more complex implementation such standard deviation from frame to frame in case of the temporal noise. Both cases it is very important to establish the threshold levels for identifying at variable operating temperatures. In this paper, we propose a more efficient data analysis method and a temporal noise identification method using adaptive threshold for infrared imaging system, and the hardware is implemented to identify and replace bad pixels. And its result is confirmed visually by bad pixel map images.
Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding.
Lai, Hong; Zhang, Jun; Luo, Ming-Xing; Pan, Lei; Pieprzyk, Josef; Xiao, Fuyuan; Orgun, Mehmet A
2016-01-01
With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m-bonacci sequences to detect eavesdropping. Meanwhile, we encode m-bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications. PMID:27515908
Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding.
Lai, Hong; Zhang, Jun; Luo, Ming-Xing; Pan, Lei; Pieprzyk, Josef; Xiao, Fuyuan; Orgun, Mehmet A
2016-01-01
With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m-bonacci sequences to detect eavesdropping. Meanwhile, we encode m-bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications.
Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding
Lai, Hong; Zhang, Jun; Luo, Ming-Xing; Pan, Lei; Pieprzyk, Josef; Xiao, Fuyuan; Orgun, Mehmet A.
2016-01-01
With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m-bonacci sequences to detect eavesdropping. Meanwhile, we encode m-bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications. PMID:27515908
Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding
NASA Astrophysics Data System (ADS)
Lai, Hong; Zhang, Jun; Luo, Ming-Xing; Pan, Lei; Pieprzyk, Josef; Xiao, Fuyuan; Orgun, Mehmet A.
2016-08-01
With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m-bonacci sequences to detect eavesdropping. Meanwhile, we encode m-bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications.
Graham, Ryan B.; Wachowiak, Mark P.; Gurd, Brendon J.
2015-01-01
Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a transcription factor co-activator that helps coordinate mitochondrial biogenesis within skeletal muscle following exercise. While evidence gleaned from submaximal exercise suggests that intracellular pathways associated with the activation of PGC-1α, as well as the expression of PGC-1α itself are activated to a greater extent following higher intensities of exercise, we have recently shown that this effect does not extend to supramaximal exercise, despite corresponding increases in muscle activation amplitude measured with electromyography (EMG). Spectral analyses of EMG data may provide a more in-depth assessment of changes in muscle electrophysiology occurring across different exercise intensities, and therefore the goal of the present study was to apply continuous wavelet transforms (CWTs) to our previous data to comprehensively evaluate: 1) differences in muscle electrophysiological properties at different exercise intensities (i.e. 73%, 100%, and 133% of peak aerobic power), and 2) muscular effort and fatigue across a single interval of exercise at each intensity, in an attempt to shed mechanistic insight into our previous observations that the increase in PGC-1α is dissociated from exercise intensity following supramaximal exercise. In general, the CWTs revealed that localized muscle fatigue was only greater than the 73% condition in the 133% exercise intensity condition, which directly matched the work rate results. Specifically, there were greater drop-offs in frequency, larger changes in burst power, as well as greater changes in burst area under this intensity, which were already observable during the first interval. As a whole, the results from the present study suggest that supramaximal exercise causes extreme localized muscular fatigue, and it is possible that the blunted PGC-1α effects observed in our previous study are the result of fatigue-associated increases in
NASA Astrophysics Data System (ADS)
Mousavi, Seyyed Hossein; Noroozi, Navid; Safavi, Ali Akbar; Ebadat, Afrooz
2011-09-01
This paper proposes an observer based self-structuring robust adaptive fuzzy wave-net (FWN) controller for a class of nonlinear uncertain multi-input multi-output systems. The control signal is comprised of two parts. The first part arises from an adaptive fuzzy wave-net based controller that approximates the system structural uncertainties. The second part comes from a robust H∞ based controller that is used to attenuate the effect of function approximation error and disturbance. Moreover, a new self structuring algorithm is proposed to determine the location of basis functions. Simulation results are provided for a two DOF robot to show the effectiveness of the proposed method.
Lesmes, Luis A.; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A.; Albright, Thomas D.
2015-01-01
Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold—the signal intensity corresponding to a pre-defined sensitivity level (d′ = 1)—in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks—(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection—the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10–0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods. PMID:26300798
A fast and efficient adaptive threshold rate control scheme for remote sensing images.
Chen, Xiao; Xu, Xiaoqing
2012-01-01
The JPEG2000 image compression standard is ideal for processing remote sensing images. However, its algorithm is complex and it requires large amounts of memory, making it difficult to adapt to the limited transmission and storage resources necessary for remote sensing images. In the present study, an improved rate control algorithm for remote sensing images is proposed. The required coded blocks are sorted downward according to their numbers of bit planes prior to entropy coding. An adaptive threshold computed from the combination of the minimum number of bit planes, along with the minimum rate-distortion slope and the compression ratio, is used to truncate passes of each code block during Tier-1 encoding. This routine avoids the encoding of all code passes and improves the coding efficiency. The simulation results show that the computational cost and working buffer memory size of the proposed algorithm reach only 18.13 and 7.81%, respectively, of the same parameters in the postcompression rate distortion algorithm, while the peak signal-to-noise ratio across the images remains almost the same. The proposed algorithm not only greatly reduces the code complexity and buffer requirements but also maintains the image quality.
Portal imaging: Performance improvement in noise reduction by means of wavelet processing.
González-López, Antonio; Morales-Sánchez, Juan; Larrey-Ruiz, Jorge; Bastida-Jumilla, María-Consuelo; Verdú-Monedero, Rafael
2016-01-01
This paper discusses the suitability, in terms of noise reduction, of various methods which can be applied to an image type often used in radiation therapy: the portal image. Among these methods, the analysis focuses on those operating in the wavelet domain. Wavelet-based methods tested on natural images--such as the thresholding of the wavelet coefficients, the minimization of the Stein unbiased risk estimator on a linear expansion of thresholds (SURE-LET), and the Bayes least-squares method using as a prior a Gaussian scale mixture (BLS-GSM method)--are compared with other methods that operate on the image domain--an adaptive Wiener filter and a nonlocal mean filter (NLM). For the assessment of the performance, the peak signal-to-noise ratio (PSNR), the structural similarity index (SSIM), the Pearson correlation coefficient, and the Spearman rank correlation (ρ) coefficient are used. The performance of the wavelet filters and the NLM method are similar, but wavelet filters outperform the Wiener filter in terms of portal image denoising. It is shown how BLS-GSM and NLM filters produce the smoothest image, while keeping soft-tissue and bone contrast. As for the computational cost, filters using a decimated wavelet transform (decimated thresholding and SURE-LET) turn out to be the most efficient, with calculation times around 1 s. PMID:26602966
NASA Astrophysics Data System (ADS)
Henner, V. K.; Davis, C. L.; Belozerova, T. S.
2015-10-01
The first part of our analysis uses the wavelet method to compare the quantum chromodynamic (QCD) prediction for the ratio of hadronic to muon cross sections in electron-positron collisions, R, with experimental data for R over a center of mass energy range up to about 7 GeV. A direct comparison of the raw experimental data and the QCD prediction is difficult because the data have a wide range of structures and large statistical errors and the QCD description contains sharp quark-antiquark thresholds. However, a meaningful comparison can be made if a type of "smearing" procedure is used to smooth out rapid variations in both the theoretical and experimental values of R. A wavelet analysis (WA) can be used to achieve this smearing effect. The second part of the analysis concentrates on the 3.0-6.0 GeV energy region which includes the relatively wide charmonium resonances ψ (1^-). We use the wavelet methodology to distinguish these resonances from experimental noise, background and from each other, allowing a reliable determination of the parameters of these states. Both analyses are examples of the usefulness of WA in extracting information in a model independent way from high energy physics data.
NASA Astrophysics Data System (ADS)
Bagwari, A.; Tomar, G. S.
2014-04-01
In Cognitive radio networks, spectrum sensing is used to sense the unused spectrum in an opportunistic manner. In this paper, multiple antennas based energy detector utilizing adaptive double-threshold for spectrum sensing is proposed, which enhances detection performance and overcomes sensing failure problem as well. The detection threshold is made adaptive to the fluctuation of the received signal power in each local detector of cognitive radio (CR) user. Numerical results show that by using multiple antennas at the CRs, it is possible to significantly improve detection performance at very low signal-to-noise ratio (SNR). Further, the scheme was analyzed in conjunction with cooperative spectrum sensing (CSS), where CRs utilize selection combining of the decision statistics obtained by an adaptive double-threshold energy detector for making a binary decision of the presence or absence of a primary user. The decision of each CR is forwarded over error free orthogonal channels to the fusion centre, which takes the final decision of a spectrum hole. It is further found that CSS with multiple antenna-based energy detector with adaptive double-threshold improves detection performance around 26.8 % as compared to hierarchical with quantization method at -12 dB SNR, under the condition that a small number of sensing nodes are used in spectrum sensing.
NASA Astrophysics Data System (ADS)
Ren, Zhiming; Liu, Yang; Zhang, Qunshan
2014-05-01
Full waveform inversion (FWI) has the potential to provide preferable subsurface model parameters. The main barrier of its applications to real seismic data is heavy computational amount. Numerical modelling methods are involved in both forward modelling and backpropagation of wavefield residuals, which spend most of computational time in FWI. We develop a time-space domain finite-difference (FD) method and adaptive variable-length spatial operator scheme in numerical simulation of viscoacoustic equation and extend them into the viscoacoustic FWI. Compared with conventional FD methods, different operator lengths are adopted for different velocities and quality factors, which can reduce the amount of computation without reducing accuracy. Inversion algorithms also play a significant role in FWI. In conventional single-scale methods, it is likely to converge to local minimums especially when the initial model is far from the real model. To tackle the problem, we introduce the second generation wavelet transform to implement the multiscale FWI. Compared to other multiscale methods, our method has advantages of ease of implementation and better time-frequency local analysis ability. The L2 norm is widely used in FWI and gives invalid model estimates when the data is contaminated with strong non-uniform noises. We apply the L1-norm and the Huber-norm criteria in the time-domain FWI to improve its antinoise ability. Our strategies have been successfully applied in synthetic experiments to both onshore and offshore reflection seismic data. The results of the viscoacoustic Marmousi example indicate that our new FWI scheme consumes smaller computer resources. In addition, the viscoacoustic Overthrust example shows its better convergence and more reasonable velocity and quality factor structures. All these results demonstrate that our method can improve inversion accuracy and computational efficiency of FWI.
Presepsin (sCD14-ST) in emergency department: the need for adapted threshold values?
Chenevier-Gobeaux, Camille; Trabattoni, Eloise; Roelens, Marie; Borderie, Didier; Claessens, Yann-Erick
2014-01-01
Presepsin is elevated in patients developing infections and increases in a severity-dependent manner. We aimed to evaluate circulating values of this new biomarker in a population free of any acute infectious disorder. We recruited 144 consecutive patients presenting at the emergency department (ED) without acute infection or acute/unstable disorder, and 54 healthy participants. Presepsin plasmatic concentrations were measured on the PATHFAST point-of-care analyzer. The 95th percentile of presepsin values in the ED population is 750ng/L. Presepsin was significantly increased in patients aged ≥70years vs. younger patients (470 [380-601] ng/L vs. 300 [201-457] ng/L, p<0.001). Prevalence of elevated presepsin values was increased in patients in comparison to controls (80% vs.13%, p<0.001), and in patients aged ≥70years in comparison to younger patients (87% vs. 47%, p<0.001). Presepsin concentrations were significantly increased in patients with kidney dysfunction. Aging was an independent predictor of an elevated presepsin value. In conclusion, presepsin concentrations increase with age and kidney dysfunction. Therefore interpretation of presepsin concentrations might be altered in the elderly or in patients with impaired renal function. Adapted thresholds are needed for specific populations.
Multichannel spike detector with an adaptive threshold based on a Sigma-delta control loop.
Gagnon-Turcotte, G; Gosselin, B
2015-08-01
In this paper, we present a digital spike detector using an adaptive threshold which is suitable for real time processing of 32 electrophysiological channels in parallel. Such a new scheme is based on a Sigma-delta control loop that precisely estimates the standard deviation of the amplitude of the noise of the input signal to optimize the detection rate. Additionally, it is not dependent on the amplitude of the input signal thanks to a robust algorithm. The spike detector is implemented inside a Spartan-6 FPGA using low resources, only FPGA basic logic blocks, and is using a low clock frequency under 6 MHz for minimal power consumption. We present a comparison showing that the proposed system can compete with a dedicated off-line spike detection software. The whole system achieves up to 100% of true positive detection rate for SNRs down to 5 dB while achieving 62.3% of true positive detection rate for an SNR as low as -2 dB at a 150 AP/s firing rate. PMID:26737934
NASA Technical Reports Server (NTRS)
Kempel, Leo C.
1992-01-01
Wavelets are an exciting new topic in applied mathematics and signal processing. This paper will provide a brief review of wavelets which are also known as families of functions with an emphasis on interpretation rather than rigor. We will derive an indirect use of wavelets for the solution of integral equations based techniques adapted from image processing. Examples for resistive strips will be given illustrating the effect of these techniques as well as their promise in reducing dramatically the requirement in order to solve an integral equation for large bodies. We also will present a direct implementation of wavelets to solve an integral equation. Both methods suggest future research topics and may hold promise for a variety of uses in computational electromagnetics.
ERIC Educational Resources Information Center
Wang, Wen-Chung; Liu, Chen-Wei; Wu, Shiu-Lien
2013-01-01
The random-threshold generalized unfolding model (RTGUM) was developed by treating the thresholds in the generalized unfolding model as random effects rather than fixed effects to account for the subjective nature of the selection of categories in Likert items. The parameters of the new model can be estimated with the JAGS (Just Another Gibbs…
NASA Astrophysics Data System (ADS)
Harrison, Melanie; Looper, Jared; Armato, Samuel G.
2016-03-01
Radiologists frequently use chest radiographs acquired at different times to diagnose a patient by identifying regions of change. Temporal subtraction (TS) images are formed when a computer warps a radiographic image to register and then subtract one image from the other, accentuating regions of change. The purpose of this study was to create a computeraided diagnostic (CAD) system to threshold chest TS images and identify candidate regions of pathologic change. Each thresholding technique created two different candidate regions: light and dark. Light regions have a high gray-level mean, while dark regions have a low gray-level mean; areas with no change appear as medium-gray pixels. Ten different thresholding techniques were examined and compared. By thresholding light and dark candidate regions separately, the number of properly thresholded regions improved. The thresholding of light and dark regions separately produced fewer overall candidate regions that included more regions of actual pathologic change than global thresholding of the image. Overall, the moment-preserving method produced the best results for light regions, while the normal distribution method produced the best results for dark regions. Separation of light and dark candidate regions by thresholding shows potential as the first step in creating a CAD system to detect pathologic change in chest TS images.
Wavelet-based compression of medical images: filter-bank selection and evaluation.
Saffor, A; bin Ramli, A R; Ng, K H
2003-06-01
Wavelet-based image coding algorithms (lossy and lossless) use a fixed perfect reconstruction filter-bank built into the algorithm for coding and decoding of images. However, no systematic study has been performed to evaluate the coding performance of wavelet filters on medical images. We evaluated the best types of filters suitable for medical images in providing low bit rate and low computational complexity. In this study a variety of wavelet filters are used to compress and decompress computed tomography (CT) brain and abdomen images. We applied two-dimensional wavelet decomposition, quantization and reconstruction using several families of filter banks to a set of CT images. Discreet Wavelet Transform (DWT), which provides efficient framework of multi-resolution frequency was used. Compression was accomplished by applying threshold values to the wavelet coefficients. The statistical indices such as mean square error (MSE), maximum absolute error (MAE) and peak signal-to-noise ratio (PSNR) were used to quantify the effect of wavelet compression of selected images. The code was written using the wavelet and image processing toolbox of the MATLAB (version 6.1). This results show that no specific wavelet filter performs uniformly better than others except for the case of Daubechies and bi-orthogonal filters which are the best among all. MAE values achieved by these filters were 5 x 10(-14) to 12 x 10(-14) for both CT brain and abdomen images at different decomposition levels. This indicated that using these filters a very small error (approximately 7 x 10(-14)) can be achieved between original and the filtered image. The PSNR values obtained were higher for the brain than the abdomen images. For both the lossy and lossless compression, the 'most appropriate' wavelet filter should be chosen adaptively depending on the statistical properties of the image being coded to achieve higher compression ratio. PMID:12956184
Longmire, M S; Milton, A F; Takken, E H
1982-11-01
Several 1-D signal processing techniques have been evaluated by simulation with a digital computer using high-spatial-resolution (0.15 mrad) noise data gathered from back-lit clouds and uniform sky with a scanning data collection system operating in the 4.0-4.8-microm spectral band. Two ordinary bandpass filters and a least-mean-square (LMS) spatial filter were evaluated in combination with a fixed or adaptive threshold algorithm. The combination of a 1-D LMS filter and a 1-D adaptive threshold sensor was shown to reject extreme cloud clutter effectively and to provide nearly equal signal detection in a clear and cluttered sky, at least in systems whose NEI (noise equivalent irradiance) exceeds 1.5 x 10(-13) W/cm(2) and whose spatial resolution is better than 0.15 x 0.36 mrad. A summary gives highlights of the work, key numerical results, and conclusions.
NASA Astrophysics Data System (ADS)
Hortos, William S.
2008-04-01
Proposed distributed wavelet-based algorithms are a means to compress sensor data received at the nodes forming a wireless sensor network (WSN) by exchanging information between neighboring sensor nodes. Local collaboration among nodes compacts the measurements, yielding a reduced fused set with equivalent information at far fewer nodes. Nodes may be equipped with multiple sensor types, each capable of sensing distinct phenomena: thermal, humidity, chemical, voltage, or image signals with low or no frequency content as well as audio, seismic or video signals within defined frequency ranges. Compression of the multi-source data through wavelet-based methods, distributed at active nodes, reduces downstream processing and storage requirements along the paths to sink nodes; it also enables noise suppression and more energy-efficient query routing within the WSN. Targets are first detected by the multiple sensors; then wavelet compression and data fusion are applied to the target returns, followed by feature extraction from the reduced data; feature data are input to target recognition/classification routines; targets are tracked during their sojourns through the area monitored by the WSN. Algorithms to perform these tasks are implemented in a distributed manner, based on a partition of the WSN into clusters of nodes. In this work, a scheme of collaborative processing is applied for hierarchical data aggregation and decorrelation, based on the sensor data itself and any redundant information, enabled by a distributed, in-cluster wavelet transform with lifting that allows multiple levels of resolution. The wavelet-based compression algorithm significantly decreases RF bandwidth and other resource use in target processing tasks. Following wavelet compression, features are extracted. The objective of feature extraction is to maximize the probabilities of correct target classification based on multi-source sensor measurements, while minimizing the resource expenditures at
Application of wavelet analysis on thin-film wideband monitoring system
NASA Astrophysics Data System (ADS)
Han, Jun; Wang, Song; Shang, Xiaoyan; An, Yuying
2009-05-01
In the thin-film thickness wideband monitoring system, an accurate measurement of the spectral intensity signal is critical to improving precision of coating. Because of electron gun, ion source and baking, vacuum chamber is a complex environment with background light. Together with the inherent noise of linear CCD and quantization noise of A/D conversion, which are main factors affecting accurate measurement of spectrum intensity. This paper uses time and frequency multi-resolution properties of wavelet transform, adaptive threshold adjustment method is designed. According to the different characteristics of signal and the random noise processed by wavelet transform in different scales, the fine adjustment factor is added when the threshold is determined, on the hand, which makes the adaptive threshold of wavelet coefficient with positive Lipschitz index decrease, this is beneficial to preserve real signals of wavelet coefficient; on the other hand, which makes the one with negative Lipschitz index increase, this is favorable to filter out noise signal. By this method, both rejecting true probability and false declaration probability are reduced, the random noise is suppressed effectively, a very good filtering result is achieved, and finally the analysis accuracy of spectrum signal and the precision of systematic decision pause are improved.
An adaptive threshold method for improving astrometry of space debris CCD images
NASA Astrophysics Data System (ADS)
Sun, Rong-yu; Zhao, Chang-yin
2014-06-01
Optical survey is a main technique for observing space debris, and precisely measuring the positions of space debris is of great importance. Due to several factors, e.g. the angle object normal to the observer, the shape as well as the attitude of the object, the variations of observed characteristics for low earth orbital space debris are distinct. When we look at optical CCD images of observed objects, the size and brightness are varying, hence it’s difficult to decide the threshold during centroid measurement and precise astrometry. Traditionally the threshold is given empirically and constantly in data reduction, and obviously it’s not suitable for data reduction of space debris. Here we offer a solution to provide the threshold. Our method assumes that the PSF (point spread function) is Gaussian and estimates the signal flux by a directly two-dimensional Gaussian fit, then a cubic spline interpolation is performed to divide each initial pixel into several sub-pixels, at last the threshold is determined by the estimation of signal flux and the sub-pixels above threshold are separated to estimate the centroid. A trail observation of the fast spinning satellite Ajisai is made and the CCD frames are obtained to test our algorithm. The calibration precision of various threshold is obtained through the comparison between the observed equatorial position and the reference one, the latter are obtained from the precise ephemeris of the satellite. The results indicate that our method reduces the total errors of measurements, it works effectively in improving the centering precision of space debris images.
An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures.
Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Tian, Yun; Duan, Fuqing; Pan, Yutong
2016-01-01
Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels. PMID:27597878
An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures
Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Duan, Fuqing; Pan, Yutong
2016-01-01
Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels.
An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures
Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Duan, Fuqing; Pan, Yutong
2016-01-01
Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels. PMID:27597878
Class of Fibonacci-Daubechies-4-Haar wavelets with applicability to ECG denoising
NASA Astrophysics Data System (ADS)
Smith, Christopher B.; Agaian, Sos S.
2004-05-01
The presented paper introduces a new class of wavelets that includes the simplest Haar wavelet (Daubechies-2) as well as the Daubechies-4 wavelet. This class is shown to have several properties similar to the Daubechies wavelets. In application, the new class of wavelets has been shown to effectively denoise ECG signals. In addition, the paper introduces a new polynomial soft threshold technique for denoising through wavelet shrinkage. The polynomial soft threshold technique is able to represent a wide class of polynomial behaviors, including classical soft thresholding.
Sikström, Sverker
2006-03-01
An item that stands out (is isolated) from its context is better remembered than an item consistent with the context. This isolation effect cannot be accounted for by increased attention, because it occurs when the isolated item is presented as the first item, or by impoverished memory of nonisolated items, because the isolated item is better remembered than a control list consisting of equally different items. The isolation effect is seldom experimentally or theoretically related to the primacy or the recency effects-that is, the improved performance on the first few and last items, respectively, on the serial position curve. The primacy effect cannot easily be accounted for by rehearsal in short-term memory because it occurs when rehearsal is eliminated. This article suggests that the primacy, the recency, and the isolation effects can be accounted for by experience-dependent synaptic plasticity in neural cells. Neurological empirical data suggest that the threshold that determines whether cells will show long-term potentiation (LTP) or long-term depression (LTD) varies as a function of recent postsynaptic activity and that synaptic plasticity is bounded. By implementing an adaptive LTP-LTD threshold in an artificial neural network, the various aspects of the isolation, the primacy, and the recency effects are accounted for, whereas none of these phenomena are accounted for if the threshold is constant. This theory suggests a possible link between the cognitive and the neurological levels.
Informativeness of the threshold adaptation and fatigue for assessment of the auditory health risk.
Tzaneva, L
1997-09-01
The management and control of modern automated productions evidence the elevated role of the auditory system as one of the distant sensor communication systems. The present study informs about the auditory adaptation and fatigue at the end of the working shift of 385 operators at control boards in "Kremikovtzi" State Company. The results of the monitoring of the dynamic changes show significant changes, expressed in aggravation of the auditory fatigue manifestation by moderate to significant disturbance of the adaptation-recovery processes. The analysis established a significant positive correlation between the changes in auditory fatigue and the duration of service. The frequencies of the speech range are preserved for a long time. The elevated auditory fatigue is observed in the injured hearing band 4,000 Hz, followed by 6,000 Hz and continuous dissemination to the middle frequencies of the speech band-2,000 and 1,000 Hz. The results of the study of the adaptation-recovery processes are characterised by statistically significant reliability, single direction and reproducibility and can be applied as informative criteria for assessment of the auditory health risk.
Wavelet-based polarimetry analysis
NASA Astrophysics Data System (ADS)
Ezekiel, Soundararajan; Harrity, Kyle; Farag, Waleed; Alford, Mark; Ferris, David; Blasch, Erik
2014-06-01
Wavelet transformation has become a cutting edge and promising approach in the field of image and signal processing. A wavelet is a waveform of effectively limited duration that has an average value of zero. Wavelet analysis is done by breaking up the signal into shifted and scaled versions of the original signal. The key advantage of a wavelet is that it is capable of revealing smaller changes, trends, and breakdown points that are not revealed by other techniques such as Fourier analysis. The phenomenon of polarization has been studied for quite some time and is a very useful tool for target detection and tracking. Long Wave Infrared (LWIR) polarization is beneficial for detecting camouflaged objects and is a useful approach when identifying and distinguishing manmade objects from natural clutter. In addition, the Stokes Polarization Parameters, which are calculated from 0°, 45°, 90°, 135° right circular, and left circular intensity measurements, provide spatial orientations of target features and suppress natural features. In this paper, we propose a wavelet-based polarimetry analysis (WPA) method to analyze Long Wave Infrared Polarimetry Imagery to discriminate targets such as dismounts and vehicles from background clutter. These parameters can be used for image thresholding and segmentation. Experimental results show the wavelet-based polarimetry analysis is efficient and can be used in a wide range of applications such as change detection, shape extraction, target recognition, and feature-aided tracking.
NASA Astrophysics Data System (ADS)
Orjuela-Vargas, S. A.; Triana-Martinez, J.; Yañez, J. P.; Philips, W.
2014-03-01
Video analysis in real time requires fast and efficient algorithms to extract relevant information from a considerable number, commonly 25, of frames per second. Furthermore, robust algorithms for outdoor visual scenes may retrieve correspondent features along the day where a challenge is to deal with lighting changes. Currently, Local Binary Pattern (LBP) techniques are widely used for extracting features due to their robustness to illumination changes and the low requirements for implementation. We propose to compute an automatic threshold based on the distribution of the intensity residuals resulting from the pairwise comparisons when using LBP techniques. The intensity residuals distribution can be modelled by a Generalized Gaussian Distribution (GGD). In this paper we compute the adaptive threshold using the parameters of the GGD. We present a CUDA implementation of our proposed algorithm. We use the LBPSYM technique. Our approach is tested on videos of four different urban scenes with mobilities captured during day and night. The extracted features can be used in a further step to determine patterns, identify objects or detect background. However, further research must be conducted for blurring correction since the scenes at night are commonly blurred due to artificial lighting.
Muckley, Matthew J; Noll, Douglas C; Fessler, Jeffrey A
2015-02-01
Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms.
Noll, Douglas C.; Fessler, Jeffrey A.
2014-01-01
Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms. PMID:25330484
NASA Astrophysics Data System (ADS)
Sayadi, Omid; Shamsollahi, Mohammad B.
2007-12-01
We present a new modified wavelet transform, called the multiadaptive bionic wavelet transform (MABWT), that can be applied to ECG signals in order to remove noise from them under a wide range of variations for noise. By using the definition of bionic wavelet transform and adaptively determining both the center frequency of each scale together with the[InlineEquation not available: see fulltext.]-function, the problem of desired signal decomposition is solved. Applying a new proposed thresholding rule works successfully in denoising the ECG. Moreover by using the multiadaptation scheme, lowpass noisy interference effects on the baseline of ECG will be removed as a direct task. The method was extensively clinically tested with real and simulated ECG signals which showed high performance of noise reduction, comparable to those of wavelet transform (WT). Quantitative evaluation of the proposed algorithm shows that the average SNR improvement of MABWT is 1.82 dB more than the WT-based results, for the best case. Also the procedure has largely proved advantageous over wavelet-based methods for baseline wandering cancellation, including both DC components and baseline drifts.
Mühler, Roland; Mentzel, Katrin; Verhey, Jesko
2012-01-01
This paper describes the estimation of hearing thresholds in normal-hearing and hearing-impaired subjects on the basis of multiple-frequency auditory steady-state responses (ASSRs). The ASSR was measured using two new techniques: (i) adaptive stimulus patterns and (ii) narrow-band chirp stimuli. ASSR thresholds in 16 normal-hearing and 16 hearing-impaired adults were obtained simultaneously at both ears at 500, 1000, 2000, and 4000 Hz, using a multiple-frequency stimulus built up of four one-octave-wide narrow-band chirps with a repetition rate of 40 Hz. A statistical test in the frequency domain was used to detect the response. The recording of the steady-state responses was controlled in eight independent recording channels with an adaptive, semiautomatic algorithm. The average differences between the behavioural hearing thresholds and the ASSR threshold estimate were 10, 8, 13, and 15 dB for test frequencies of 500, 1000, 2000, and 4000 Hz, respectively. The average overall test duration of 18.6 minutes for the threshold estimations at the four frequencies and both ears demonstrates the benefit of an adaptive recording algorithm and the efficiency of optimised narrow-band chirp stimuli. PMID:22619622
Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo
2013-06-01
In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.
Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo
2013-06-01
In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery. PMID:23761849
Seidel, David Ulrich; Flemming, Tobias Angelo; Park, Jonas Jae-Hyun; Remmert, Stephan
2015-01-01
Objective hearing threshold estimation by auditory steady-state responses (ASSR) can be accelerated by the use of narrow-band chirps and adaptive stimulus patterns. This modification has been examined in only a few clinical studies. In this study, clinical data is validated and extended, and the applicability of the method in audiological diagnostics routine is examined. In 60 patients (normal hearing and hearing impaired), ASSR and pure tone audiometry (PTA) thresholds were compared. ASSR were evoked by binaural multi-frequent narrow-band chirps with adaptive stimulus patterns. The precision and required testing time for hearing threshold estimation were determined. The average differences between ASSR and PTA thresholds were 18, 12, 17 and 19 dB for normal hearing (PTA ≤ 20 dB) and 5, 9, 9 and 11 dB for hearing impaired (PTA > 20 dB) at the frequencies of 500, 1,000, 2,000 and 4,000 Hz, respectively, and the differences were significant in all frequencies with the exception of 1 kHz. Correlation coefficients between ASSR and PTA thresholds were 0.36, 0.47, 0.54 and 0.51 for normal hearing and 0.73, 0.74, 0.72 and 0.71 for hearing impaired at 500, 1,000, 2,000 and 4,000 Hz, respectively. Mean ASSR testing time was 33 ± 8 min. In conclusion, auditory steady-state responses with narrow-band-chirps and adaptive stimulus patterns is an efficient method for objective frequency-specific hearing threshold estimation. Precision of threshold estimation is most limited for slighter hearing loss at 500 Hz. The required testing time is acceptable for the application in everyday clinical routine. PMID:24305781
Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo
2013-01-01
In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery. PMID:23761849
Wavelet-based pavement image compression and noise reduction
NASA Astrophysics Data System (ADS)
Zhou, Jian; Huang, Peisen S.; Chiang, Fu-Pen
2005-08-01
For any automated distress inspection system, typically a huge number of pavement images are collected. Use of an appropriate image compression algorithm can save disk space, reduce the saving time, increase the inspection distance, and increase the processing speed. In this research, a modified EZW (Embedded Zero-tree Wavelet) coding method, which is an improved version of the widely used EZW coding method, is proposed. This method, unlike the two-pass approach used in the original EZW method, uses only one pass to encode both the coordinates and magnitudes of wavelet coefficients. An adaptive arithmetic encoding method is also implemented to encode four symbols assigned by the modified EZW into binary bits. By applying a thresholding technique to terminate the coding process, the modified EZW coding method can compress the image and reduce noise simultaneously. The new method is much simpler and faster. Experimental results also show that the compression ratio was increased one and one-half times compared to the EZW coding method. The compressed and de-noised data can be used to reconstruct wavelet coefficients for off-line pavement image processing such as distress classification and quantification.
Elsayed, Alaaeldin M.; Hunter, Lisa L.; Keefe, Douglas H.; Feeney, M. Patrick; Brown, David K.; Meinzen-Derr, Jareen K.; Baroch, Kelly; Sullivan-Mahoney, Maureen; Francis, Kara; Schaid, Leigh G.
2015-01-01
Objective To study normative thresholds and latencies for click and tone-burst auditory brainstem response (TB-ABR) for air and bone conduction in normal infants and those discharged from neonatal intensive care units (NICU), who passed newborn hearing screening and follow-up DPOAE. An evoked potential system (Vivosonic Integrity™) that incorporates Bluetooth electrical isolation and Kalman-weighted adaptive processing to improve signal to noise ratios was employed for this study. Results were compared with other published data. Research Design One hundred forty-five infants who passed two-stage hearing screening with transient-evoked otoacoustic emission (OAE) or automated ABR were assessed with clicks at 70 dB nHL and threshold TB-ABR. Tone-bursts at frequencies between 500 to 4000 Hz were employed for air and bone conduction ABR testing using a specified staircase threshold search to establish threshold levels and Wave V peak latencies. Results Median air conduction hearing thresholds using TB-ABR ranged from 0-20 dB nHL, depending on stimulus frequency. Median bone conduction thresholds were 10 dB nHL across all frequencies, and median air-bone gaps were 0 dB across all frequencies. There was no significant threshold difference between left and right ears and no significant relationship between thresholds and hearing loss risk factors, ethnicity or gender. Older age was related to decreased latency for air conduction. Compared to previous studies, mean air conduction thresholds were found at slightly lower (better) levels, while bone conduction levels were better at 2000 Hz and higher at 500 Hz. Latency values were longer at 500 Hz than previous studies using other instrumentation. Sleep state did not affect air or bone conduction thresholds. Conclusions This study demonstrated slightly better Wave V thresholds for air conduction than previous infant studies. The differences found in the current study, while statistically significant, were within the test
NASA Astrophysics Data System (ADS)
Yang, Huijuan; Guan, Cuntai; Sui Geok Chua, Karen; San Chok, See; Wang, Chuan Chu; Kok Soon, Phua; Tang, Christina Ka Yin; Keng Ang, Kai
2014-06-01
Objective. Detection of motor imagery of hand/arm has been extensively studied for stroke rehabilitation. This paper firstly investigates the detection of motor imagery of swallow (MI-SW) and motor imagery of tongue protrusion (MI-Ton) in an attempt to find a novel solution for post-stroke dysphagia rehabilitation. Detection of MI-SW from a simple yet relevant modality such as MI-Ton is then investigated, motivated by the similarity in activation patterns between tongue movements and swallowing and there being fewer movement artifacts in performing tongue movements compared to swallowing. Approach. Novel features were extracted based on the coefficients of the dual-tree complex wavelet transform to build multiple training models for detecting MI-SW. The session-to-session classification accuracy was boosted by adaptively selecting the training model to maximize the ratio of between-classes distances versus within-class distances, using features of training and evaluation data. Main results. Our proposed method yielded averaged cross-validation (CV) classification accuracies of 70.89% and 73.79% for MI-SW and MI-Ton for ten healthy subjects, which are significantly better than the results from existing methods. In addition, averaged CV accuracies of 66.40% and 70.24% for MI-SW and MI-Ton were obtained for one stroke patient, demonstrating the detectability of MI-SW and MI-Ton from the idle state. Furthermore, averaged session-to-session classification accuracies of 72.08% and 70% were achieved for ten healthy subjects and one stroke patient using the MI-Ton model. Significance. These results and the subjectwise strong correlations in classification accuracies between MI-SW and MI-Ton demonstrated the feasibility of detecting MI-SW from MI-Ton models.
Wavelet shrinkage of a noisy dynamical system with non-linear noise impact
NASA Astrophysics Data System (ADS)
Garcin, Matthieu; Guégan, Dominique
2016-06-01
By filtering wavelet coefficients, it is possible to construct a good estimate of a pure signal from noisy data. Especially, for a simple linear noise influence, Donoho and Johnstone (1994) have already defined an optimal filter design in the sense of a minimization of the error made when estimating the pure signal. We set here a different framework where the influence of the noise is non-linear. In particular, we propose a method to filter the wavelet coefficients of a discrete dynamical system disrupted by a weak noise, in order to construct good estimates of the pure signal, including Bayes' estimate, minimax estimate, oracular estimate or thresholding estimate. We present the example of a logistic and a Lorenz chaotic dynamical system as well as an adaptation of our technique in order to show empirically the robustness of the thresholding method in presence of leptokurtic noise. Moreover, we test both the hard and the soft thresholding and also another kind of smoother thresholding which seems to have almost the same reconstruction power as the hard thresholding. Finally, besides the tests on an estimated dataset, the method is tested on financial data: oil prices and NOK/USD exchange rate.
[An adaptive threshloding segmentation method for urinary sediment image].
Li, Yongming; Zeng, Xiaoping; Qin, Jian; Han, Liang
2009-02-01
In this paper is proposed a new method to solve the segmentation of the complicated defocusing urinary sediment image. The main points of the method are: (1) using wavelet transforms and morphology to erase the effect of defocusing and realize the first segmentation, (2) using adaptive threshold processing in accordance to the subimages after wavelet processing, and (3) using 'peel off' algorithm to deal with the overlapped cells' segmentations. The experimental results showed that this method was not affected by the defocusing, and it made good use of many kinds of characteristics of the images. So this new mehtod can get very precise segmentation; it is effective for defocusing urinary sediment image segmentation.
Wavelet analysis deformation monitoring data of high-speed railway bridge
NASA Astrophysics Data System (ADS)
Tang, ShiHua; Huang, Qing; Zhou, Conglin; Xu, HongWei; Liu, YinTao; Li, FeiDa
2015-12-01
Deformation monitoring data of high-speed railway bridges will inevitably be affected because of noise pollution, A deformation monitoring point of high-speed railway bridge was measurd by using sokkia SDL30 electronic level for a long time,which got a large number of deformation monitoring data. Based on the characteristics of the deformation monitoring data of high-speed railway bridge, which contain lots of noise. Based on the MATLAB software platform, 120 groups of deformation monitoring data were applied to analysis of wavelet denoising.sym6,db6 wavelet basis function were selected to analyze and remove the noise.The original signal was broken into three layers wavelet,which contain high frequency coefficients and low frequency coefficients.However, high frequency coefficient have plenty of noise.Adaptive method of soft and hard threshold were used to handle in the high frequency coefficient.Then,high frequency coefficient that was removed much of noise combined with low frequency coefficient to reconstitute and obtain reconstruction wavelet signal.Root Mean Square Error (RMSE) and Signal-To-Noise Ratio (SNR) were regarded as evaluation index of denoising,The smaller the root mean square error and the greater signal-to-noise ratio indicate that them have a good effect in denoising. We can surely draw some conclusions in the experimental analysis:the db6 wavelet basis function has a good effect in wavelet denoising by using a adaptive soft threshold method,which root mean square error is minimum and signal-to-noise ratio is maximum.Moreover,the reconstructed image are more smooth than original signal denoising after wavelet denoising, which removed noise and useful signal are obtained in the original signal.Compared to the other three methods, this method has a good effect in denoising, which not only retain useful signal in the original signal, but aiso reach the goal of removing noise. So, it has a strong practical value in a actual deformation monitoring
Image Watermarking Based on Adaptive Models of Human Visual Perception
NASA Astrophysics Data System (ADS)
Khawne, Amnach; Hamamoto, Kazuhiko; Chitsobhuk, Orachat
This paper proposes a digital image watermarking based on adaptive models of human visual perception. The algorithm exploits the local activities estimated from wavelet coefficients of each subband to adaptively control the luminance masking. The adaptive luminance is thus delicately combined with the contrast masking and edge detection and adopted as a visibility threshold. With the proposed combination of adaptive visual sensitivity parameters, the proposed perceptual model can be more appropriate to the different characteristics of various images. The weighting function is chosen such that the fidelity, imperceptibility and robustness could be preserved without making any perceptual difference to the image quality.
Wavelet-based verification of the quantitative precipitation forecast
NASA Astrophysics Data System (ADS)
Yano, Jun-Ichi; Jakubiak, Bogumil
2016-06-01
This paper explores the use of wavelets for spatial verification of quantitative precipitation forecasts (QPF), and especially the capacity of wavelets to provide both localization and scale information. Two 24-h forecast experiments using the two versions of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) on 22 August 2010 over Poland are used to illustrate the method. Strong spatial localizations and associated intermittency of the precipitation field make verification of QPF difficult using standard statistical methods. The wavelet becomes an attractive alternative, because it is specifically designed to extract spatially localized features. The wavelet modes are characterized by the two indices for the scale and the localization. Thus, these indices can simply be employed for characterizing the performance of QPF in scale and localization without any further elaboration or tunable parameters. Furthermore, spatially-localized features can be extracted in wavelet space in a relatively straightforward manner with only a weak dependence on a threshold. Such a feature may be considered an advantage of the wavelet-based method over more conventional "object" oriented verification methods, as the latter tend to represent strong threshold sensitivities. The present paper also points out limits of the so-called "scale separation" methods based on wavelets. Our study demonstrates how these wavelet-based QPF verifications can be performed straightforwardly. Possibilities for further developments of the wavelet-based methods, especially towards a goal of identifying a weak physical process contributing to forecast error, are also pointed out.
NASA Technical Reports Server (NTRS)
Smith, Paul L.; VonderHaar, Thomas H.
1996-01-01
The principal goal of this project is to establish relationships that would allow application of area-time integral (ATI) calculations based upon satellite data to estimate rainfall volumes. The research is being carried out as a collaborative effort between the two participating organizations, with the satellite data analysis to determine values for the ATIs being done primarily by the STC-METSAT scientists and the associated radar data analysis to determine the 'ground-truth' rainfall estimates being done primarily at the South Dakota School of Mines and Technology (SDSM&T). Synthesis of the two separate kinds of data and investigation of the resulting rainfall-versus-ATI relationships is then carried out jointly. The research has been pursued using two different approaches, which for convenience can be designated as the 'fixed-threshold approach' and the 'adaptive-threshold approach'. In the former, an attempt is made to determine a single temperature threshold in the satellite infrared data that would yield ATI values for identifiable cloud clusters which are closely related to the corresponding rainfall amounts as determined by radar. Work on the second, or 'adaptive-threshold', approach for determining the satellite ATI values has explored two avenues: (1) attempt involved choosing IR thresholds to match the satellite ATI values with ones separately calculated from the radar data on a case basis; and (2) an attempt involved a striaghtforward screening analysis to determine the (fixed) offset that would lead to the strongest correlation and lowest standard error of estimate in the relationship between the satellite ATI values and the corresponding rainfall volumes.
A Supervised Wavelet Transform Algorithm for R Spike Detection in Noisy ECGs
NASA Astrophysics Data System (ADS)
de Lannoy, G.; de Decker, A.; Verleysen, M.
The wavelet transform is a widely used pre-filtering step for subsequent R spike detection by thresholding of the coefficients. The time-frequency decomposition is indeed a powerful tool to analyze non-stationary signals. Still, current methods use consecutive wavelet scales in an a priori restricted range and may therefore lack adaptativity. This paper introduces a supervised learning algorithm which learns the optimal scales for each dataset using the annotations provided by physicians on a small training set. For each record, this method allows a specific set of non consecutive scales to be selected, based on the record's characteristics. The selected scales are then used for the decomposition of the original long-term ECG signal recording and a hard thresholding rule is applied on the derivative of the wavelet coefficients to label the R spikes. This algorithm has been tested on the MIT-BIH arrhythmia database and obtains an average sensitivity rate of 99.7% and average positive predictivity rate of 99.7%.
Understanding wavelet analysis and filters for engineering applications
NASA Astrophysics Data System (ADS)
Parameswariah, Chethan Bangalore
parameters---number of data points and the sampling frequency---and the selection of these is critical to qualitative analysis of signals. A wavelet seismic event detection method is presented which has been successfully applied to detect the P phase and the S phase waves of earthquakes. This method uses wavelets to classify the seismic signal to different frequency bands and then a simple threshold trigger method is applied to the rms values calculated on one of the wavelet bands. Further research on the understanding of wavelets is encouraged through this research to provide qualified and clearly understood wavelet solutions to real world problems. The wavelets are a promising tool that will complement the existing signal processing methods and are open for research and exploration.
Wavelet Approximation in Data Assimilation
NASA Technical Reports Server (NTRS)
Tangborn, Andrew; Atlas, Robert (Technical Monitor)
2002-01-01
Estimation of the state of the atmosphere with the Kalman filter remains a distant goal because of high computational cost of evolving the error covariance for both linear and nonlinear systems. Wavelet approximation is presented here as a possible solution that efficiently compresses both global and local covariance information. We demonstrate the compression characteristics on the the error correlation field from a global two-dimensional chemical constituent assimilation, and implement an adaptive wavelet approximation scheme on the assimilation of the one-dimensional Burger's equation. In the former problem, we show that 99%, of the error correlation can be represented by just 3% of the wavelet coefficients, with good representation of localized features. In the Burger's equation assimilation, the discrete linearized equations (tangent linear model) and analysis covariance are projected onto a wavelet basis and truncated to just 6%, of the coefficients. A nearly optimal forecast is achieved and we show that errors due to truncation of the dynamics are no greater than the errors due to covariance truncation.
Review of wavelet transforms for pattern recognitions
NASA Astrophysics Data System (ADS)
Szu, Harold H.
1996-03-01
After relating the adaptive wavelet transform to the human visual and hearing systems, we exploit the synergism between such a smart sensor processing with brain-style neural network computing. The freedom of choosing an appropriate kernel of a linear transform, which is given to us by the recent mathematical foundation of the wavelet transform, is exploited fully and is generally called the adaptive wavelet transform (WT). However, there are several levels of adaptivity: (1) optimum coefficients: adjustable transform coefficients chosen with respect to a fixed mother kernel for better invariant signal representation, (2) super-mother: grouping different scales of daughter wavelets of same or different mother wavelets at different shift location into a new family called a superposition mother kernel for better speech signal classification, (3) variational calculus to determine ab initio a constraint optimization mother for a specific task. The tradeoff between the mathematical rigor of the complete orthonormality and the speed of order (N) with the adaptive flexibility is finally up to the user's needs. Then, to illustrate (1), a new invariant optoelectronic architecture of a wedge- shape filter in the WT domain is given for scale-invariant signal classification by neural networks.
NASA Astrophysics Data System (ADS)
Kotnik, Bojan; Kačič, Zdravko
2007-12-01
This paper concerns the problem of automatic speech recognition in noise-intense and adverse environments. The main goal of the proposed work is the definition, implementation, and evaluation of a novel noise robust speech signal parameterization algorithm. The proposed procedure is based on time-frequency speech signal representation using wavelet packet decomposition. A new modified soft thresholding algorithm based on time-frequency adaptive threshold determination was developed to efficiently reduce the level of additive noise in the input noisy speech signal. A two-stage Gaussian mixture model (GMM)-based classifier was developed to perform speech/nonspeech as well as voiced/unvoiced classification. The adaptive topology of the wavelet packet decomposition tree based on voiced/unvoiced detection was introduced to separately analyze voiced and unvoiced segments of the speech signal. The main feature vector consists of a combination of log-root compressed wavelet packet parameters, and autoregressive parameters. The final output feature vector is produced using a two-staged feature vector postprocessing procedure. In the experimental framework, the noisy speech databases Aurora 2 and Aurora 3 were applied together with corresponding standardized acoustical model training/testing procedures. The automatic speech recognition performance achieved using the proposed noise robust speech parameterization procedure was compared to the standardized mel-frequency cepstral coefficient (MFCC) feature extraction procedures ETSI ES 201 108 and ETSI ES 202 050.
Digital audio signal filtration based on the dual-tree wavelet transform
NASA Astrophysics Data System (ADS)
Yaseen, A. S.; Pavlov, A. N.
2015-07-01
A new method of digital audio signal filtration based on the dual-tree wavelet transform is described. An adaptive approach is proposed that allows the automatic adjustment of parameters of the wavelet filter to be optimized. A significant improvement of the quality of signal filtration is demonstrated in comparison to the traditionally used filters based on the discrete wavelet transform.
Rotation and Scale Invariant Wavelet Feature for Content-Based Texture Image Retrieval.
ERIC Educational Resources Information Center
Lee, Moon-Chuen; Pun, Chi-Man
2003-01-01
Introduces a rotation and scale invariant log-polar wavelet texture feature for image retrieval. The underlying feature extraction process involves a log-polar transform followed by an adaptive row shift invariant wavelet packet transform. Experimental results show that this rotation and scale invariant wavelet feature is quite effective for image…
Wavelet based image visibility enhancement of IR images
NASA Astrophysics Data System (ADS)
Jiang, Qin; Owechko, Yuri; Blanton, Brendan
2016-05-01
Enhancing the visibility of infrared images obtained in a degraded visibility environment is very important for many applications such as surveillance, visual navigation in bad weather, and helicopter landing in brownout conditions. In this paper, we present an IR image visibility enhancement system based on adaptively modifying the wavelet coefficients of the images. In our proposed system, input images are first filtered by a histogram-based dynamic range filter in order to remove sensor noise and convert the input images into 8-bit dynamic range for efficient processing and display. By utilizing a wavelet transformation, we modify the image intensity distribution and enhance image edges simultaneously. In the wavelet domain, low frequency wavelet coefficients contain original image intensity distribution while high frequency wavelet coefficients contain edge information for the original images. To modify the image intensity distribution, an adaptive histogram equalization technique is applied to the low frequency wavelet coefficients while to enhance image edges, an adaptive edge enhancement technique is applied to the high frequency wavelet coefficients. An inverse wavelet transformation is applied to the modified wavelet coefficients to obtain intensity images with enhanced visibility. Finally, a Gaussian filter is used to remove blocking artifacts introduced by the adaptive techniques. Since wavelet transformation uses down-sampling to obtain low frequency wavelet coefficients, histogram equalization of low-frequency coefficients is computationally more efficient than histogram equalization of the original images. We tested the proposed system with degraded IR images obtained from a helicopter landing in brownout conditions. Our experimental results show that the proposed system is effective for enhancing the visibility of degraded IR images.
Mera, David; Cotos, José M; Varela-Pet, José; Garcia-Pineda, Oscar
2012-10-01
Satellite Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillage on the ocean's surface. Several surveillance applications have been developed based on this technology. Environmental variables such as wind speed should be taken into account for better SAR image segmentation. This paper presents an adaptive thresholding algorithm for detecting oil spills based on SAR data and a wind field estimation as well as its implementation as a part of a functional prototype. The algorithm was adapted to an important shipping route off the Galician coast (northwest Iberian Peninsula) and was developed on the basis of confirmed oil spills. Image testing revealed 99.93% pixel labelling accuracy. By taking advantage of multi-core processor architecture, the prototype was optimized to get a nearly 30% improvement in processing time.
NASA Astrophysics Data System (ADS)
Gong, He; Fan, Yubo; Zhang, Ming
2008-04-01
The objective of this paper is to identify the effects of mechanical disuse and basic multi-cellular unit (BMU) activation threshold on the form of trabecular bone during menopause. A bone adaptation model with mechanical- biological factors at BMU level was integrated with finite element analysis to simulate the changes of trabecular bone structure during menopause. Mechanical disuse and changes in the BMU activation threshold were applied to the model for the period from 4 years before to 4 years after menopause. The changes in bone volume fraction, trabecular thickness and fractal dimension of the trabecular structures were used to quantify the changes of trabecular bone in three different cases associated with mechanical disuse and BMU activation threshold. It was found that the changes in the simulated bone volume fraction were highly correlated and consistent with clinical data, and that the trabecular thickness reduced significantly during menopause and was highly linearly correlated with the bone volume fraction, and that the change trend of fractal dimension of the simulated trabecular structure was in correspondence with clinical observations. The numerical simulation in this paper may help to better understand the relationship between the bone morphology and the mechanical, as well as biological environment; and can provide a quantitative computational model and methodology for the numerical simulation of the bone structural morphological changes caused by the mechanical environment, and/or the biological environment.
The application study of wavelet packet transformation in the de-noising of dynamic EEG data.
Li, Yifeng; Zhang, Lihui; Li, Baohui; Wei, Xiaoyang; Yan, Guiding; Geng, Xichen; Jin, Zhao; Xu, Yan; Wang, Haixia; Liu, Xiaoyan; Lin, Rong; Wang, Quan
2015-01-01
This paper briefly describes the basic principle of wavelet packet analysis, and on this basis introduces the general principle of wavelet packet transformation for signal den-noising. The dynamic EEG data under +Gz acceleration is made a de-noising treatment by using wavelet packet transformation, and the de-noising effects with different thresholds are made a comparison. The study verifies the validity and application value of wavelet packet threshold method for the de-noising of dynamic EEG data under +Gz acceleration. PMID:26405863
Background Subtraction Based on Three-Dimensional Discrete Wavelet Transform
Han, Guang; Wang, Jinkuan; Cai, Xi
2016-01-01
Background subtraction without a separate training phase has become a critical task, because a sufficiently long and clean training sequence is usually unavailable, and people generally thirst for immediate detection results from the first frame of a video. Without a training phase, we propose a background subtraction method based on three-dimensional (3D) discrete wavelet transform (DWT). Static backgrounds with few variations along the time axis are characterized by intensity temporal consistency in the 3D space-time domain and, hence, correspond to low-frequency components in the 3D frequency domain. Enlightened by this, we eliminate low-frequency components that correspond to static backgrounds using the 3D DWT in order to extract moving objects. Owing to the multiscale analysis property of the 3D DWT, the elimination of low-frequency components in sub-bands of the 3D DWT is equivalent to performing a pyramidal 3D filter. This 3D filter brings advantages to our method in reserving the inner parts of detected objects and reducing the ringing around object boundaries. Moreover, we make use of wavelet shrinkage to remove disturbance of intensity temporal consistency and introduce an adaptive threshold based on the entropy of the histogram to obtain optimal detection results. Experimental results show that our method works effectively in situations lacking training opportunities and outperforms several popular techniques. PMID:27043570
Background Subtraction Based on Three-Dimensional Discrete Wavelet Transform.
Han, Guang; Wang, Jinkuan; Cai, Xi
2016-01-01
Background subtraction without a separate training phase has become a critical task, because a sufficiently long and clean training sequence is usually unavailable, and people generally thirst for immediate detection results from the first frame of a video. Without a training phase, we propose a background subtraction method based on three-dimensional (3D) discrete wavelet transform (DWT). Static backgrounds with few variations along the time axis are characterized by intensity temporal consistency in the 3D space-time domain and, hence, correspond to low-frequency components in the 3D frequency domain. Enlightened by this, we eliminate low-frequency components that correspond to static backgrounds using the 3D DWT in order to extract moving objects. Owing to the multiscale analysis property of the 3D DWT, the elimination of low-frequency components in sub-bands of the 3D DWT is equivalent to performing a pyramidal 3D filter. This 3D filter brings advantages to our method in reserving the inner parts of detected objects and reducing the ringing around object boundaries. Moreover, we make use of wavelet shrinkage to remove disturbance of intensity temporal consistency and introduce an adaptive threshold based on the entropy of the histogram to obtain optimal detection results. Experimental results show that our method works effectively in situations lacking training opportunities and outperforms several popular techniques. PMID:27043570
Optimization of wavelet- and curvelet-based denoising algorithms by multivariate SURE and GCV
NASA Astrophysics Data System (ADS)
Mortezanejad, R.; Gholami, A.
2016-06-01
One of the most crucial challenges in seismic data processing is the reduction of noise in the data or improving the signal-to-noise ratio (SNR). Wavelet- and curvelet-based denoising algorithms have become popular to address random noise attenuation for seismic sections. Wavelet basis, thresholding function, and threshold value are three key factors of such algorithms, having a profound effect on the quality of the denoised section. Therefore, given a signal, it is necessary to optimize the denoising operator over these factors to achieve the best performance. In this paper a general denoising algorithm is developed as a multi-variant (variable) filter which performs in multi-scale transform domains (e.g. wavelet and curvelet). In the wavelet domain this general filter is a function of the type of wavelet, characterized by its smoothness, thresholding rule, and threshold value, while in the curvelet domain it is only a function of thresholding rule and threshold value. Also, two methods, Stein’s unbiased risk estimate (SURE) and generalized cross validation (GCV), evaluated using a Monte Carlo technique, are utilized to optimize the algorithm in both wavelet and curvelet domains for a given seismic signal. The best wavelet function is selected from a family of fractional B-spline wavelets. The optimum thresholding rule is selected from general thresholding functions which contain the most well known thresholding functions, and the threshold value is chosen from a set of possible values. The results obtained from numerical tests show high performance of the proposed method in both wavelet and curvelet domains in comparison to conventional methods when denoising seismic data.
Denoising solar radiation data using coiflet wavelets
Karim, Samsul Ariffin Abdul Janier, Josefina B. Muthuvalu, Mohana Sundaram; Hasan, Mohammad Khatim; Sulaiman, Jumat; Ismail, Mohd Tahir
2014-10-24
Signal denoising and smoothing plays an important role in processing the given signal either from experiment or data collection through observations. Data collection usually was mixed between true data and some error or noise. This noise might be coming from the apparatus to measure or collect the data or human error in handling the data. Normally before the data is use for further processing purposes, the unwanted noise need to be filtered out. One of the efficient methods that can be used to filter the data is wavelet transform. Due to the fact that the received solar radiation data fluctuates according to time, there exist few unwanted oscillation namely noise and it must be filtered out before the data is used for developing mathematical model. In order to apply denoising using wavelet transform (WT), the thresholding values need to be calculated. In this paper the new thresholding approach is proposed. The coiflet2 wavelet with variation diminishing 4 is utilized for our purpose. From numerical results it can be seen clearly that, the new thresholding approach give better results as compare with existing approach namely global thresholding value.
Ishii, Ryouhei; Canuet, Leonides; Aoki, Yasunori; Ikeda, Shunichiro; Hata, Masahiro; Iwase, Masao; Takeda, Masatoshi
2013-01-01
Adaptive nonlinear beamformer technique for analyzing magnetoencephalography (MEG) data has been proved to be powerful tool for both brain research and clinical applications. A general method of analyzing multiple subject data with a formal statistical treatment for the group data has been developed and applied for various types of MEG data. Our latest application of this method was frontal midline theta rhythm (Fmθ), which indicates focused attention and appears widely distributed over medial prefrontal areas in EEG recordings. To localize cortical generators of the magnetic counterpart of Fmθ precisely and identify cortical sources and underlying neural activity associated with mental calculation processing (i.e., arithmetic subtraction), we applied adaptive nonlinear beamformer and permutation analysis on MEG data. As a result, it was indicated that Fmθ is generated in the dorsal anterior cingulate and adjacent medial prefrontal cortex. Gamma event-related synchronization is as an index of activation in right parietal regions subserving mental subtraction associated with basic numerical processing and number-based spatial attention. Gamma desynchronization appeared in the right lateral prefrontal cortex, likely representing a mechanism to interrupt neural activity that can interfere with the ongoing cognitive task. We suggest that the combination of adaptive nonlinear beamformer and permutation analysis on MEG data is quite powerful tool to reveal the oscillatory neuronal dynamics in human brain. PMID:24110810
Wavelet based detection of manatee vocalizations
NASA Astrophysics Data System (ADS)
Gur, Berke M.; Niezrecki, Christopher
2005-04-01
The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of watercraft collisions in Florida's coastal waterways. Several boater warning systems, based upon manatee vocalizations, have been proposed to reduce the number of collisions. Three detection methods based on the Fourier transform (threshold, harmonic content and autocorrelation methods) were previously suggested and tested. In the last decade, the wavelet transform has emerged as an alternative to the Fourier transform and has been successfully applied in various fields of science and engineering including the acoustic detection of dolphin vocalizations. As of yet, no prior research has been conducted in analyzing manatee vocalizations using the wavelet transform. Within this study, the wavelet transform is used as an alternative to the Fourier transform in detecting manatee vocalizations. The wavelet coefficients are analyzed and tested against a specified criterion to determine the existence of a manatee call. The performance of the method presented is tested on the same data previously used in the prior studies, and the results are compared. Preliminary results indicate that using the wavelet transform as a signal processing technique to detect manatee vocalizations shows great promise.
Wavelet Analyses and Applications
ERIC Educational Resources Information Center
Bordeianu, Cristian C.; Landau, Rubin H.; Paez, Manuel J.
2009-01-01
It is shown how a modern extension of Fourier analysis known as wavelet analysis is applied to signals containing multiscale information. First, a continuous wavelet transform is used to analyse the spectrum of a nonstationary signal (one whose form changes in time). The spectral analysis of such a signal gives the strength of the signal in each…
Ultsch, Alfred; Thrun, Michael C; Hansen-Goos, Onno; Lötsch, Jörn
2015-10-28
Biomedical data obtained during cell experiments, laboratory animal research, or human studies often display a complex distribution. Statistical identification of subgroups in research data poses an analytical challenge. Here were introduce an interactive R-based bioinformatics tool, called "AdaptGauss". It enables a valid identification of a biologically-meaningful multimodal structure in the data by fitting a Gaussian mixture model (GMM) to the data. The interface allows a supervised selection of the number of subgroups. This enables the expectation maximization (EM) algorithm to adapt more complex GMM than usually observed with a noninteractive approach. Interactively fitting a GMM to heat pain threshold data acquired from human volunteers revealed a distribution pattern with four Gaussian modes located at temperatures of 32.3, 37.2, 41.4, and 45.4 °C. Noninteractive fitting was unable to identify a meaningful data structure. Obtained results are compatible with known activity temperatures of different TRP ion channels suggesting the mechanistic contribution of different heat sensors to the perception of thermal pain. Thus, sophisticated analysis of the modal structure of biomedical data provides a basis for the mechanistic interpretation of the observations. As it may reflect the involvement of different TRP thermosensory ion channels, the analysis provides a starting point for hypothesis-driven laboratory experiments.
Spike detection using the continuous wavelet transform.
Nenadic, Zoran; Burdick, Joel W
2005-01-01
This paper combines wavelet transforms with basic detection theory to develop a new unsupervised method for robustly detecting and localizing spikes in noisy neural recordings. The method does not require the construction of templates, or the supervised setting of thresholds. We present extensive Monte Carlo simulations, based on actual extracellular recordings, to show that this technique surpasses other commonly used methods in a wide variety of recording conditions. We further demonstrate that falsely detected spikes corresponding to our method resemble actual spikes more than the false positives of other techniques such as amplitude thresholding. Moreover, the simplicity of the method allows for nearly real-time execution. PMID:15651566
An image fusion method based on biorthogonal wavelet
NASA Astrophysics Data System (ADS)
Li, Jianlin; Yu, Jiancheng; Sun, Shengli
2008-03-01
Image fusion could process and utilize the source images, with complementing different image information, to achieve the more objective and essential understanding of the identical object. Recently, image fusion has been extensively applied in many fields such as medical imaging, micro photographic imaging, remote sensing, and computer vision as well as robot. There are various methods have been proposed in the past years, such as pyramid decomposition and wavelet transform algorithm. As for wavelet transform algorithm, due to the virtue of its multi-resolution, wavelet transform has been applied in image processing successfully. Another advantage of wavelet transform is that it can be much more easily realized in hardware, because its data format is very simple, so it could save a lot of resources, besides, to some extent, it can solve the real-time problem of huge-data image fusion. However, as the orthogonal filter of wavelet transform doesn't have the characteristics of linear phase, the phase distortion will lead to the distortion of the image edge. To make up for this shortcoming, the biorthogonal wavelet is introduced here. So, a novel image fusion scheme based on biorthogonal wavelet decomposition is presented in this paper. As for the low-frequency and high-frequency wavelet decomposition coefficients, the local-area-energy-weighted-coefficient fusion rule is adopted and different thresholds of low-frequency and high-frequency are set. Based on biorthogonal wavelet transform and traditional pyramid decomposition algorithm, an MMW image and a visible image are fused in the experiment. Compared with the traditional pyramid decomposition, the fusion scheme based biorthogonal wavelet is more capable to retain and pick up image information, and make up the distortion of image edge. So, it has a wide application potential.
Periodized Daubechies wavelets
Restrepo, J.M.; Leaf, G.K.; Schlossnagle, G.
1996-03-01
The properties of periodized Daubechies wavelets on [0,1] are detailed and counterparts which form a basis for L{sup 2}(R). Numerical examples illustrate the analytical estimates for convergence and demonstrated by comparison with Fourier spectral methods the superiority of wavelet projection methods for approximations. The analytical solution to inner products of periodized wavelets and their derivatives, which are known as connection coefficients, is presented, and their use ius illustrated in the approximation of two commonly used differential operators. The periodization of the connection coefficients in Galerkin schemes is presented in detail.
2013-01-01
The comparative study of the results of various segmentation methods for the digital images of the follicular lymphoma cancer tissue section is described in this paper. The sensitivity and specificity and some other parameters of the following adaptive threshold methods of segmentation: the Niblack method, the Sauvola method, the White method, the Bernsen method, the Yasuda method and the Palumbo method, are calculated. Methods are applied to three types of images constructed by extraction of the brown colour information from the artificial images synthesized based on counterpart experimentally captured images. This paper presents usefulness of the microscopic image synthesis method in evaluation as well as comparison of the image processing results. The results of thoughtful analysis of broad range of adaptive threshold methods applied to: (1) the blue channel of RGB, (2) the brown colour extracted by deconvolution and (3) the ’brown component’ extracted from RGB allows to select some pairs: method and type of image for which this method is most efficient considering various criteria e.g. accuracy and precision in area detection or accuracy in number of objects detection and so on. The comparison shows that the White, the Bernsen and the Sauvola methods results are better than the results of the rest of the methods for all types of monochromatic images. All three methods segments the immunopositive nuclei with the mean accuracy of 0.9952, 0.9942 and 0.9944 respectively, when treated totally. However the best results are achieved for monochromatic image in which intensity shows brown colour map constructed by colour deconvolution algorithm. The specificity in the cases of the Bernsen and the White methods is 1 and sensitivities are: 0.74 for White and 0.91 for Bernsen methods while the Sauvola method achieves sensitivity value of 0.74 and the specificity value of 0.99. According to Bland-Altman plot the Sauvola method selected objects are segmented without
Tree-structured wavelet transform signature for classification of melanoma
NASA Astrophysics Data System (ADS)
Patwardhan, Sachin V.; Dhawan, Atam P.; Relue, Patricia A.
2002-05-01
The purpose of this work is to evaluate the use of a wavelet transform based tree structure in classifying skin lesion images in to melanoma and dysplastic nevus based on the spatial/frequency information. The classification is done using the wavelet transform tree structure analysis. Development of the tree structure in the proposed method uses energy ratio thresholds obtained from a statistical analysis of the coefficients in the wavelet domain. The method is used to obtain a tree structure signature of melanoma and dysplastic nevus, which is then used to classify the data set in to the two classes. Images are classified by using a semantic comparison of the wavelet transform tree structure signatures. Results show that the proposed method is effective and simple for classification based on spatial/frequency information, which also includes the textural information.
A wavelet approach to binary blackholes with asynchronous multitasking
NASA Astrophysics Data System (ADS)
Lim, Hyun; Hirschmann, Eric; Neilsen, David; Anderson, Matthew; Debuhr, Jackson; Zhang, Bo
2016-03-01
Highly accurate simulations of binary black holes and neutron stars are needed to address a variety of interesting problems in relativistic astrophysics. We present a new method for the solving the Einstein equations (BSSN formulation) using iterated interpolating wavelets. Wavelet coefficients provide a direct measure of the local approximation error for the solution and place collocation points that naturally adapt to features of the solution. Further, they exhibit exponential convergence on unevenly spaced collection points. The parallel implementation of the wavelet simulation framework presented here deviates from conventional practice in combining multi-threading with a form of message-driven computation sometimes referred to as asynchronous multitasking.
Chen, Szi-Wen; Chen, Yuan-Ho
2015-01-01
In this paper, a discrete wavelet transform (DWT) based de-noising with its applications into the noise reduction for medical signal preprocessing is introduced. This work focuses on the hardware realization of a real-time wavelet de-noising procedure. The proposed de-noising circuit mainly consists of three modules: a DWT, a thresholding, and an inverse DWT (IDWT) modular circuits. We also proposed a novel adaptive thresholding scheme and incorporated it into our wavelet de-noising procedure. Performance was then evaluated on both the architectural designs of the software and. In addition, the de-noising circuit was also implemented by downloading the Verilog codes to a field programmable gate array (FPGA) based platform so that its ability in noise reduction may be further validated in actual practice. Simulation experiment results produced by applying a set of simulated noise-contaminated electrocardiogram (ECG) signals into the de-noising circuit showed that the circuit could not only desirably meet the requirement of real-time processing, but also achieve satisfactory performance for noise reduction, while the sharp features of the ECG signals can be well preserved. The proposed de-noising circuit was further synthesized using the Synopsys Design Compiler with an Artisan Taiwan Semiconductor Manufacturing Company (TSMC, Hsinchu, Taiwan) 40 nm standard cell library. The integrated circuit (IC) synthesis simulation results showed that the proposed design can achieve a clock frequency of 200 MHz and the power consumption was only 17.4 mW, when operated at 200 MHz. PMID:26501290
Wavelet-domain TI Wiener-like filtering for complex MR data denoising.
Hu, Kai; Cheng, Qiaocui; Gao, Xieping
2016-10-01
Magnetic resonance (MR) images are affected by random noises, which degrade many image processing and analysis tasks. It has been shown that the noise in magnitude MR images follows a Rician distribution. Unlike additive Gaussian noise, the noise is signal-dependent, and consequently difficult to reduce, especially in low signal-to-noise ratio (SNR) images. Wirestam et al. in [20] proposed a Wiener-like filtering technique in wavelet-domain to reduce noise before construction of the magnitude MR image. Based on Wirestam's study, we propose a wavelet-domain translation-invariant (TI) Wiener-like filtering algorithm for noise reduction in complex MR data. The proposed denoising algorithm shows the following improvements compared with Wirestam's method: (1) we introduce TI property into the Wiener-like filtering in wavelet-domain to suppress artifacts caused by translations of the signal; (2) we integrate one Stein's Unbiased Risk Estimator (SURE) thresholding with two Wiener-like filters to make the hard-thresholding scale adaptive; and (3) the first Wiener-like filtering is used to filter the original noisy image in which the noise obeys Gaussian distribution and it provides more reasonable results. The proposed algorithm is applied to denoise the real and imaginary parts of complex MR images. To evaluate our proposed algorithm, we conduct extensive denoising experiments using T1-weighted simulated MR images, diffusion-weighted (DW) phantom and in vivo data. We compare our algorithm with other popular denoising methods. The results demonstrate that our algorithm outperforms others in term of both efficiency and robustness. PMID:27238055
Wavelet-domain TI Wiener-like filtering for complex MR data denoising.
Hu, Kai; Cheng, Qiaocui; Gao, Xieping
2016-10-01
Magnetic resonance (MR) images are affected by random noises, which degrade many image processing and analysis tasks. It has been shown that the noise in magnitude MR images follows a Rician distribution. Unlike additive Gaussian noise, the noise is signal-dependent, and consequently difficult to reduce, especially in low signal-to-noise ratio (SNR) images. Wirestam et al. in [20] proposed a Wiener-like filtering technique in wavelet-domain to reduce noise before construction of the magnitude MR image. Based on Wirestam's study, we propose a wavelet-domain translation-invariant (TI) Wiener-like filtering algorithm for noise reduction in complex MR data. The proposed denoising algorithm shows the following improvements compared with Wirestam's method: (1) we introduce TI property into the Wiener-like filtering in wavelet-domain to suppress artifacts caused by translations of the signal; (2) we integrate one Stein's Unbiased Risk Estimator (SURE) thresholding with two Wiener-like filters to make the hard-thresholding scale adaptive; and (3) the first Wiener-like filtering is used to filter the original noisy image in which the noise obeys Gaussian distribution and it provides more reasonable results. The proposed algorithm is applied to denoise the real and imaginary parts of complex MR images. To evaluate our proposed algorithm, we conduct extensive denoising experiments using T1-weighted simulated MR images, diffusion-weighted (DW) phantom and in vivo data. We compare our algorithm with other popular denoising methods. The results demonstrate that our algorithm outperforms others in term of both efficiency and robustness.
Chen, Szi-Wen; Chen, Yuan-Ho
2015-01-01
In this paper, a discrete wavelet transform (DWT) based de-noising with its applications into the noise reduction for medical signal preprocessing is introduced. This work focuses on the hardware realization of a real-time wavelet de-noising procedure. The proposed de-noising circuit mainly consists of three modules: a DWT, a thresholding, and an inverse DWT (IDWT) modular circuits. We also proposed a novel adaptive thresholding scheme and incorporated it into our wavelet de-noising procedure. Performance was then evaluated on both the architectural designs of the software and. In addition, the de-noising circuit was also implemented by downloading the Verilog codes to a field programmable gate array (FPGA) based platform so that its ability in noise reduction may be further validated in actual practice. Simulation experiment results produced by applying a set of simulated noise-contaminated electrocardiogram (ECG) signals into the de-noising circuit showed that the circuit could not only desirably meet the requirement of real-time processing, but also achieve satisfactory performance for noise reduction, while the sharp features of the ECG signals can be well preserved. The proposed de-noising circuit was further synthesized using the Synopsys Design Compiler with an Artisan Taiwan Semiconductor Manufacturing Company (TSMC, Hsinchu, Taiwan) 40 nm standard cell library. The integrated circuit (IC) synthesis simulation results showed that the proposed design can achieve a clock frequency of 200 MHz and the power consumption was only 17.4 mW, when operated at 200 MHz. PMID:26501290
Chen, Szi-Wen; Chen, Yuan-Ho
2015-01-01
In this paper, a discrete wavelet transform (DWT) based de-noising with its applications into the noise reduction for medical signal preprocessing is introduced. This work focuses on the hardware realization of a real-time wavelet de-noising procedure. The proposed de-noising circuit mainly consists of three modules: a DWT, a thresholding, and an inverse DWT (IDWT) modular circuits. We also proposed a novel adaptive thresholding scheme and incorporated it into our wavelet de-noising procedure. Performance was then evaluated on both the architectural designs of the software and. In addition, the de-noising circuit was also implemented by downloading the Verilog codes to a field programmable gate array (FPGA) based platform so that its ability in noise reduction may be further validated in actual practice. Simulation experiment results produced by applying a set of simulated noise-contaminated electrocardiogram (ECG) signals into the de-noising circuit showed that the circuit could not only desirably meet the requirement of real-time processing, but also achieve satisfactory performance for noise reduction, while the sharp features of the ECG signals can be well preserved. The proposed de-noising circuit was further synthesized using the Synopsys Design Compiler with an Artisan Taiwan Semiconductor Manufacturing Company (TSMC, Hsinchu, Taiwan) 40 nm standard cell library. The integrated circuit (IC) synthesis simulation results showed that the proposed design can achieve a clock frequency of 200 MHz and the power consumption was only 17.4 mW, when operated at 200 MHz.
Application of Wavelet Analysis Technique in the Signal Denoising of Life Sign Detection
NASA Astrophysics Data System (ADS)
Zhen, Zhang; Fang, LIU.
In life sign detection, radar echo signal is very weak and hard to extract. For solve this problem, weak life signal de-noising based on wavelet transform is studied. Through the studies of wavelet threshold de-noising method, the use of it in weak life signal de-noising in strong noise background, and the verification of simulation by Matlab, the results shows that wavelet threshold de-noising method can remove the noise signal from weak life signal effectively and be an effective de-noising and extraction method for weak life signal.
NASA Astrophysics Data System (ADS)
Wang, Yu-Ping
2005-08-01
Genetic image analysis is an interdisciplinary area, which combines microscope image processing techniques with the use of biochemical probes for the detection of genetic aberrations responsible for cancers and genetic diseases. Recent years have witnessed parallel and significant progress in both image processing and genetics. On one hand, revolutionary multiscale wavelet techniques have been developed in signal processing and applied mathematics in the last decade, providing sophisticated tools for genetic image analysis. On the other hand, reaping the fruit of genome sequencing, high resolution genetic probes have been developed to facilitate accurate detection of subtle and cryptic genetic aberrations. In the meantime, however, they bring about computational challenges for image analysis. In this paper, we review the fruitful interaction between wavelets and genetic imaging. We show how wavelets offer a perfect tool to address a variety of chromosome image analysis problems. In fact, the same word "subband" has been used in the nomenclature of cytogenetics to describe the multiresolution banding structure of the chromosome, even before its appearance in the wavelet literature. The application of wavelets to chromosome analysis holds great promise in addressing several computational challenges in genetics. A variety of real world examples such as the chromosome image enhancement, compression, registration and classification will be demonstrated. These examples are drawn from fluorescence in situ hybridization (FISH) and microarray (gene chip) imaging experiments, which indicate the impact of wavelets on the diagnosis, treatments and prognosis of cancers and genetic diseases.
Boix, Macarena; Cantó, Begoña
2013-04-01
Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.
Wavelet methods for spike detection in mouse renal sympathetic nerve activity.
Brychta, Robert J; Tuntrakool, Sunti; Appalsamy, Martin; Keller, Nancy R; Robertson, David; Shiavi, Richard G; Diedrich, André
2007-01-01
Abnormal autonomic nerve traffic has been associated with a number of peripheral neuropathies and cardiovascular disorders prompting the development of genetically altered mice to study the genetic and molecular components of these diseases. Autonomic function in mice can be assessed by directly recording sympathetic nerve activity. However, murine sympathetic spikes are typically detected using a manually adjusted voltage threshold and no unsupervised detection methods have been developed for the mouse. Therefore, we tested the performance of several unsupervised spike detection algorithms on simulated murine renal sympathetic nerve recordings, including an automated amplitude discriminator and wavelet-based detection methods which used both the discrete wavelet transform (DWT) and the stationary wavelet transform (SWT) and several wavelet threshold rules. The parameters of the wavelet methods were optimized by comparing basal sympathetic activity to postmortem recordings and recordings made during pharmacological suppression and enhancement of sympathetic activity. In general, SWT methods were found to outperform amplitude discriminators and DWT methods with similar wavelet coefficient thresholding algorithms when presented with simulations with varied mean spike rates and signal-to-noise ratios. A SWT method which estimates the noise level using a "noise-only" wavelet scale and then selectively thresholds scales containing the physiologically important signal information was found to have the most robust spike detection. The proposed noise-level estimation method was also successfully validated during pharmacological interventions.
Wavelet Methods for Spike Detection in Mouse Renal Sympathetic Nerve Activity
Brychta, Robert J.; Tuntrakool, Sunti; Appalsamy, Martin; Keller, Nancy R.; Robertson, David; Shiavi, Richard G.; Diedrich, André
2007-01-01
Abnormal autonomic nerve traffic has been associated with a number of peripheral neuropathies and cardiovascular disorders prompting the development of genetically altered mice to study the genetic and molecular components of these diseases. Autonomic function in mice can be assessed by directly recording sympathetic nerve activity. However, murine sympathetic spikes are typically detected using a manually adjusted voltage threshold and no unsupervised detection methods have been developed for the mouse. Therefore, we tested the performance of several unsupervised spike detection algorithms on simulated murine renal sympathetic nerve recordings, including an automated amplitude discriminator and wavelet-based detection methods which used both the discrete wavelet transform (DWT) and the stationary wavelet transform (SWT) and several wavelet threshold rules. The parameters of the wavelet methods were optimized by comparing basal sympathetic activity to postmortem recordings and recordings made during pharmacological suppression and enhancement of sympathetic activity. In general, SWT methods were found to outperform amplitude discriminators and DWT methods with similar wavelet coefficient thresholding algorithms when presented with simulations with varied mean spike rates and signal-to-noise ratios. A SWT method which estimates the noise level using a “noise-only” wavelet scale and then selectively thresholds scales containing the physiologically important signal information was found to have the most robust spike detection. The proposed noise-level estimation method was also successfully validated during pharmacological interventions. PMID:17260859
Daily water level forecasting using wavelet decomposition and artificial intelligence techniques
NASA Astrophysics Data System (ADS)
Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.
2015-01-01
Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.
NASA Astrophysics Data System (ADS)
Huang, Xue-feng; Liu, Yan; Luo, Dan; Wang, Guan-qing; Ding, Ning; Xu, Jiang-rong; Huang, Xue-jing
2010-01-01
Vibration modal frequency measurement of a turbine blade was investigated by using fiber Bragg grating (FBG) sensors for their adaptation for a low level of strain at high frequency. However, the signal-to-noise ratio was so low that it was very difficult to identify dominant modal frequency from a raw signal acquired. An attempt was made to solve this problem. First, a bi-linear transform elliptic filter with pass-band and stop-band was proposed to remove electromagnetic interference noise. Second, discrete stationary wavelet transform with a soft threshold was utilized to de-noise the high-frequency part. Third, wavelet packet transform was exploited to decompose the time signal and to obtain the power spectrum and identification of dominant modal frequency. Experimental and analytic results demonstrated that four stages of dominant modal frequencies of the turbine blade without any constraint condition (free vibration) and three stages of dominant modal frequencies with a constraint condition (A-type vibration) were obtained, respectively. To testify to the validity of analytic results, a professional computer random signal and vibration analysis system (CRAS) was used to measure modal frequency. The results illustrated that modal frequencies obtained by the CRAS platform yielded close agreement with those based on FBG sensors. Obviously, wavelet analysis is successfully employed to decode vibration modal frequency from a raw signal of FBG sensors.
Shape adaptive, robust iris feature extraction from noisy iris images.
Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah
2013-10-01
In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate. PMID:24696801
Wavelet Approach for Operational Gamma Spectral Peak Detection - Preliminary Assessment
,
2012-02-01
Gamma spectroscopy for radionuclide identifications typically involves locating spectral peaks and matching the spectral peaks with known nuclides in the knowledge base or database. Wavelet analysis, due to its ability for fitting localized features, offers the potential for automatic detection of spectral peaks. Past studies of wavelet technologies for gamma spectra analysis essentially focused on direct fitting of raw gamma spectra. Although most of those studies demonstrated the potentials of peak detection using wavelets, they often failed to produce new benefits to operational adaptations for radiological surveys. This work presents a different approach with the operational objective being to detect only the nuclides that do not exist in the environment (anomalous nuclides). With this operational objective, the raw-count spectrum collected by a detector is first converted to a count-rate spectrum and is then followed by background subtraction prior to wavelet analysis. The experimental results suggest that this preprocess is independent of detector type and background radiation, and is capable of improving the peak detection rates using wavelets. This process broadens the doors for a practical adaptation of wavelet technologies for gamma spectral surveying devices.
Image restoration by minimizing zero norm of wavelet frame coefficients
NASA Astrophysics Data System (ADS)
Bao, Chenglong; Dong, Bin; Hou, Likun; Shen, Zuowei; Zhang, Xiaoqun; Zhang, Xue
2016-11-01
In this paper, we propose two algorithms, namely the extrapolated proximal iterative hard thresholding (EPIHT) algorithm and the EPIHT algorithm with line-search, for solving the {{\\ell }}0-norm regularized wavelet frame balanced approach for image restoration. Under the theoretical framework of Kurdyka-Łojasiewicz property, we show that the sequences generated by the two algorithms converge to a local minimizer with linear convergence rate. Moreover, extensive numerical experiments on sparse signal reconstruction and wavelet frame based image restoration problems including CT reconstruction, image deblur, demonstrate the improvement of {{\\ell }}0-norm based regularization models over some prevailing ones, as well as the computational efficiency of the proposed algorithms.
Singh, Amritpal; Saini, Barjinder Singh; Singh, Dilbag
2016-06-01
Multiscale approximate entropy (MAE) is used to quantify the complexity of a time series as a function of time scale τ. Approximate entropy (ApEn) tolerance threshold selection 'r' is based on either: (1) arbitrary selection in the recommended range (0.1-0.25) times standard deviation of time series (2) or finding maximum ApEn (ApEnmax) i.e., the point where self-matches start to prevail over other matches and choosing the corresponding 'r' (rmax) as threshold (3) or computing rchon by empirically finding the relation between rmax, SD1/SD2 ratio and N using curve fitting, where, SD1 and SD2 are short-term and long-term variability of a time series respectively. None of these methods is gold standard for selection of 'r'. In our previous study [1], an adaptive procedure for selection of 'r' is proposed for approximate entropy (ApEn). In this paper, this is extended to multiple time scales using MAEbin and multiscale cross-MAEbin (XMAEbin). We applied this to simulations i.e. 50 realizations (n = 50) of random number series, fractional Brownian motion (fBm) and MIX (P) [1] series of data length of N = 300 and short term recordings of HRV and SBPV performed under postural stress from supine to standing. MAEbin and XMAEbin analysis was performed on laboratory recorded data of 50 healthy young subjects experiencing postural stress from supine to upright. The study showed that (i) ApEnbin of HRV is more than SBPV in supine position but is lower than SBPV in upright position (ii) ApEnbin of HRV decreases from supine i.e. 1.7324 ± 0.112 (mean ± SD) to upright 1.4916 ± 0.108 due to vagal inhibition (iii) ApEnbin of SBPV increases from supine i.e. 1.5535 ± 0.098 to upright i.e. 1.6241 ± 0.101 due sympathetic activation (iv) individual and cross complexities of RRi and systolic blood pressure (SBP) series depend on time scale under consideration (v) XMAEbin calculated using ApEnmax is correlated with cross-MAE calculated using ApEn (0.1-0.26) in steps of 0
Line Edge Detection and Characterization in SEM Images using Wavelets
Sun, W; Romagnoli, J A; Tringe, J W; L?tant, S E; Stroeve, P; Palazoglu, A
2008-10-07
Edge characterization has become increasingly important in nanotechnology due to the growing demand for precise nanoscale structure fabrication and assembly. Edge detection is often performed by thresholding the spatial information of a top-down image obtained by Scanning Electron Microscopy (SEM) or other surface characterization techniques. Results are highly dependent on an arbitrary threshold value, which makes it difficult to reveal the nature of the real surface and to compare results among images. In this paper, we present an alternative edge boundary detection technique based on the wavelet framework. Our results indicate that the method facilitates nano-scale edge detection and characterization, by providing a systematic threshold determination step.
A wavelet-based Markov random field segmentation model in segmenting microarray experiments.
Athanasiadis, Emmanouil; Cavouras, Dionisis; Kostopoulos, Spyros; Glotsos, Dimitris; Kalatzis, Ioannis; Nikiforidis, George
2011-12-01
In the present study, an adaptation of the Markov Random Field (MRF) segmentation model, by means of the stationary wavelet transform (SWT), applied to complementary DNA (cDNA) microarray images is proposed (WMRF). A 3-level decomposition scheme of the initial microarray image was performed, followed by a soft thresholding filtering technique. With the inverse process, a Denoised image was created. In addition, by using the Amplitudes of the filtered wavelet Horizontal and Vertical images at each level, three different Magnitudes were formed. These images were combined with the Denoised one to create the proposed SMRF segmentation model. For numerical evaluation of the segmentation accuracy, the segmentation matching factor (SMF), the Coefficient of Determination (r(2)), and the concordance correlation (p(c)) were calculated on the simulated images. In addition, the SMRF performance was contrasted to the Fuzzy C Means (FCM), Gaussian Mixture Models (GMM), Fuzzy GMM (FGMM), and the conventional MRF techniques. Indirect accuracy performances were also tested on the experimental images by means of the Mean Absolute Error (MAE) and the Coefficient of Variation (CV). In the latter case, SPOT and SCANALYZE software results were also tested. In the former case, SMRF attained the best SMF, r(2), and p(c) (92.66%, 0.923, and 0.88, respectively) scores, whereas, in the latter case scored MAE and CV, 497 and 0.88, respectively. The results and support the performance superiority of the SMRF algorithm in segmenting cDNA images.
NASA Astrophysics Data System (ADS)
Bargatze, L. F.
2015-12-01
Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted
Multiscale peak detection in wavelet space.
Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng
2015-12-01
Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .
Coherent vorticity extraction in turbulent channel flow using anisotropic wavelets
NASA Astrophysics Data System (ADS)
Yoshimatsu, Katsunori; Sakurai, Teluo; Schneider, Kai; Farge, Marie; Morishita, Koji; Ishihara, Takashi
2014-11-01
We examine the role of coherent vorticity in a turbulent channel flow. DNS data computed at friction-velocity based Reynolds number 320 is analyzed. The vorticity is decomposed using three-dimensional anisotropic orthogonal wavelets. Thresholding of the wavelet coefficients allows to extract the coherent vorticity, corresponding to few strong wavelet coefficients. It retains the vortex tubes of the turbulent flow. Turbulent statistics, e.g., energy, enstrophy and energy spectra, are close to those of the total flow. The nonlinear energy budgets are also found to be well preserved. The remaining incoherent part, represented by the large majority of the weak coefficients, corresponds to a structureless, i.e., a noise-like background flow.
Iterative PET Image Reconstruction Using Translation Invariant Wavelet Transform
Zhou, Jian; Senhadji, Lotfi; Coatrieux, Jean-Louis; Luo, Limin
2009-01-01
The present work describes a Bayesian maximum a posteriori (MAP) method using a statistical multiscale wavelet prior model. Rather than using the orthogonal discrete wavelet transform (DWT), this prior is built on the translation invariant wavelet transform (TIWT). The statistical modeling of wavelet coefficients relies on the generalized Gaussian distribution. Image reconstruction is performed in spatial domain with a fast block sequential iteration algorithm. We study theoretically the TIWT MAP method by analyzing the Hessian of the prior function to provide some insights on noise and resolution properties of image reconstruction. We adapt the key concept of local shift invariance and explore how the TIWT MAP algorithm behaves with different scales. It is also shown that larger support wavelet filters do not offer better performance in contrast recovery studies. These theoretical developments are confirmed through simulation studies. The results show that the proposed method is more attractive than other MAP methods using either the conventional Gibbs prior or the DWT-based wavelet prior. PMID:21869846
Arctic Sea Ice Motion from Wavelet Analysis of Satellite Data
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Zhao, Yunhe
1998-01-01
Wavelet analysis of DMSP SSM/I (Special Sensor Microwave/Imager) 85 GHz and 37 GHz radiance data, SMMR (Scanning Multichannel Microwave Radiometer) 37 GHz, and NSCAT (NASA Scatterometer) 13.9 GHZ data can be used to obtain daily sea ice drift information for both the northern and southern polar regions. The derived maps of sea ice drift provide both improved spatial coverage over the existing array of Arctic Ocean buoys and better temporal resolution over techniques utilizing data from satellite synthetic aperture radars (SAR). Examples of derived ice-drift maps in the Arctic illustrate large-scale circulation reversals within a period of a couple weeks. Comparisons with ice displacements derived from buoys show good quantitative agreement. NASA Scatterometer (NSCAT) 13.9 GHZ data have been also used for wavelet analysis to derive sea-ice drift. First, the 40' incidence-angle, sigma-zero (surface roughness) daily map of whole Arctic region with 25 km of pixel size from satellite's 600 km swath has been constructed. Then, the similar wavelet transform procedure to SSM/I data can be applied. Various scales of wavelet transform and threshold have been tested. By overlaying , neighbor filtering, and block-averaging the results of multiscale wavelet transforms, the final sea ice drift vectors are much smooth and representative to the sea ice motion. This wavelet analysis procedure is robust and can make a major contribution to the understanding of ice motion over large areas at relatively high temporal resolutions. The results of wavelet analysis of SSM/I and NSCAT images and buoy data can be merged by some data fusion techniques and will help to improve our current knowledge of sea ice drift and related processes through the data assimilation of ocean-ice numerical model.
Energy-based wavelet de-noising of hydrologic time series.
Sang, Yan-Fang; Liu, Changming; Wang, Zhonggen; Wen, Jun; Shang, Lunyu
2014-01-01
De-noising is a substantial issue in hydrologic time series analysis, but it is a difficult task due to the defect of methods. In this paper an energy-based wavelet de-noising method was proposed. It is to remove noise by comparing energy distribution of series with the background energy distribution, which is established from Monte-Carlo test. Differing from wavelet threshold de-noising (WTD) method with the basis of wavelet coefficient thresholding, the proposed method is based on energy distribution of series. It can distinguish noise from deterministic components in series, and uncertainty of de-noising result can be quantitatively estimated using proper confidence interval, but WTD method cannot do this. Analysis of both synthetic and observed series verified the comparable power of the proposed method and WTD, but de-noising process by the former is more easily operable. The results also indicate the influences of three key factors (wavelet choice, decomposition level choice and noise content) on wavelet de-noising. Wavelet should be carefully chosen when using the proposed method. The suitable decomposition level for wavelet de-noising should correspond to series' deterministic sub-signal which has the smallest temporal scale. If too much noise is included in a series, accurate de-noising result cannot be obtained by the proposed method or WTD, but the series would show pure random but not autocorrelation characters, so de-noising is no longer needed.
Value-at-risk estimation with wavelet-based extreme value theory: Evidence from emerging markets
NASA Astrophysics Data System (ADS)
Cifter, Atilla
2011-06-01
This paper introduces wavelet-based extreme value theory (EVT) for univariate value-at-risk estimation. Wavelets and EVT are combined for volatility forecasting to estimate a hybrid model. In the first stage, wavelets are used as a threshold in generalized Pareto distribution, and in the second stage, EVT is applied with a wavelet-based threshold. This new model is applied to two major emerging stock markets: the Istanbul Stock Exchange (ISE) and the Budapest Stock Exchange (BUX). The relative performance of wavelet-based EVT is benchmarked against the Riskmetrics-EWMA, ARMA-GARCH, generalized Pareto distribution, and conditional generalized Pareto distribution models. The empirical results show that the wavelet-based extreme value theory increases predictive performance of financial forecasting according to number of violations and tail-loss tests. The superior forecasting performance of the wavelet-based EVT model is also consistent with Basel II requirements, and this new model can be used by financial institutions as well.
Speckle filtering of medical ultrasonic images using wavelet and guided filter.
Zhang, Ju; Lin, Guangkuo; Wu, Lili; Cheng, Yun
2016-02-01
Speckle noise is an inherent yet ineffectual residual artifact in medical ultrasound images, which significantly degrades quality and restricts accuracy in automatic diagnostic techniques. Speckle reduction is therefore an important step prior to the analysis and processing of the ultrasound images. A new de-noising method based on an improved wavelet filter and guided filter is proposed in this paper. According to the characteristics of medical ultrasound images in the wavelet domain, an improved threshold function based on the universal wavelet threshold function is developed. The wavelet coefficients of speckle noise and noise-free signal are modeled as Rayleigh distribution and generalized Gaussian distribution respectively. The Bayesian maximum a posteriori estimation is applied to obtain a new wavelet shrinkage algorithm. The coefficients of the low frequency sub-band in the wavelet domain are filtered by guided filter. The filtered image is then obtained by using the inverse wavelet transformation. Experiments with the comparison of the other seven de-speckling filters are conducted. The results show that the proposed method not only has a strong de-speckling ability, but also keeps the image details, such as the edge of a lesion. PMID:26489484
Pattern discrimination of joint transform correlator based on wavelet subband filtering
NASA Astrophysics Data System (ADS)
Lin, Li-Chien; Cheng, Chau-Jern
2004-04-01
We propose and demonstrate a Gabor wavelet prefiltering prior to classical and binarized joint transform correlator implementation to enhance texture features of fingerprints. The frequency- and orientation-selective properties of the wavelet subband filter are utilized to extract important textural features for optimal correlation recognition. A selection criterion for wavelet subbands is derived, and it is shown that the maximum signal-to-noise ratio of the correlator is achieved by optimizing the threshold level. Simulation results show that the proposed method increases the discrimination power of the correlator, especially under noisy environments.
NASA Astrophysics Data System (ADS)
Zahra, Noor e.; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.
2012-07-01
The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.
Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.
2012-07-17
The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.
Biomedical image and signal de-noising using dual tree complex wavelet transform
NASA Astrophysics Data System (ADS)
Rizi, F. Yousefi; Noubari, H. Ahmadi; Setarehdan, S. K.
2011-10-01
Dual tree complex wavelet transform(DTCWT) is a form of discrete wavelet transform, which generates complex coefficients by using a dual tree of wavelet filters to obtain their real and imaginary parts. The purposes of de-noising are reducing noise level and improving signal to noise ratio (SNR) without distorting the signal or image. This paper proposes a method for removing white Gaussian noise from ECG signals and biomedical images. The discrete wavelet transform (DWT) is very valuable in a large scope of de-noising problems. However, it has limitations such as oscillations of the coefficients at a singularity, lack of directional selectivity in higher dimensions, aliasing and consequent shift variance. The complex wavelet transform CWT strategy that we focus on in this paper is Kingsbury's and Selesnick's dual tree CWT (DTCWT) which outperforms the critically decimated DWT in a range of applications, such as de-noising. Each complex wavelet is oriented along one of six possible directions, and the magnitude of each complex wavelet has a smooth bell-shape. In the final part of this paper, we present biomedical image and signal de-noising by the means of thresholding magnitude of the wavelet coefficients.
Market turning points forecasting using wavelet analysis
NASA Astrophysics Data System (ADS)
Bai, Limiao; Yan, Sen; Zheng, Xiaolian; Chen, Ben M.
2015-11-01
Based on the system adaptation framework we previously proposed, a frequency domain based model is developed in this paper to forecast the major turning points of stock markets. This system adaptation framework has its internal model and adaptive filter to capture the slow and fast dynamics of the market, respectively. The residue of the internal model is found to contain rich information about the market cycles. In order to extract and restore its informative frequency components, we use wavelet multi-resolution analysis with time-varying parameters to decompose this internal residue. An empirical index is then proposed based on the recovered signals to forecast the market turning points. This index is successfully applied to US, UK and China markets, where all major turning points are well forecasted.
Li, Chengtao; Zhang, Yongliang; He, Zijun; Ye, Jun; Hu, Fusong; Ma, Zuchang; Wang, Jingzhi
2015-12-01
In order to find the most suitable algorithm of T-wave end point detection for clinical detection, we tested three methods, which are not just dependent on the threshold value of T-wave end point detection, i. e. wavelet method, cumulative point area method and trapezium area method, in PhysioNet QT database (20 records with 3 569 beats each). We analyzed and compared their detection performance. First, we used the wavelet method to locate the QRS complex and T-wave. Then we divided the T-wave into four morphologies, and we used the three algorithms mentioned above to detect T-wave end point. Finally, we proposed an adaptive selection T-wave end point detection algorithm based on T-wave morphology and tested it with experiments. The results showed that this adaptive selection method had better detection performance than that of the single T-wave end point detection algorithm. The sensitivity, positive predictive value and the average time errors were 98.93%, 99.11% and (--2.33 ± 19.70) ms, respectively. Consequently, it can be concluded that the adaptive selection algorithm based on T-wave morphology improves the efficiency of T-wave end point detection. PMID:27079084
NASA Technical Reports Server (NTRS)
Jameson, Leland
1996-01-01
Wavelets can provide a basis set in which the basis functions are constructed by dilating and translating a fixed function known as the mother wavelet. The mother wavelet can be seen as a high pass filter in the frequency domain. The process of dilating and expanding this high-pass filter can be seen as altering the frequency range that is 'passed' or detected. The process of translation moves this high-pass filter throughout the domain, thereby providing a mechanism to detect the frequencies or scales of information at every location. This is exactly the type of information that is needed for effective grid generation. This paper provides motivation to use wavelets for grid generation in addition to providing the final product: source code for wavelet-based grid generation.
A generalized wavelet extrema representation
Lu, Jian; Lades, M.
1995-10-01
The wavelet extrema representation originated by Stephane Mallat is a unique framework for low-level and intermediate-level (feature) processing. In this paper, we present a new form of wavelet extrema representation generalizing Mallat`s original work. The generalized wavelet extrema representation is a feature-based multiscale representation. For a particular choice of wavelet, our scheme can be interpreted as representing a signal or image by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be stable -- the original signal or image can be reconstructed with very good quality. It is further shown that a signal or image can be modeled as piecewise monotonic, with all turning points between monotonic segments given by the wavelet extrema. A new projection operator is introduced to enforce piecewise inonotonicity of a signal in its reconstruction. This leads to an enhancement to previously developed algorithms in preventing artifacts in reconstructed signal.
Finite element-wavelet hybrid algorithm for atmospheric tomography.
Yudytskiy, Mykhaylo; Helin, Tapio; Ramlau, Ronny
2014-03-01
Reconstruction of the refractive index fluctuations in the atmosphere, or atmospheric tomography, is an underlying problem of many next generation adaptive optics (AO) systems, such as the multiconjugate adaptive optics or multiobject adaptive optics (MOAO). The dimension of the problem for the extremely large telescopes, such as the European Extremely Large Telescope (E-ELT), suggests the use of iterative schemes as an alternative to the matrix-vector multiply (MVM) methods. Recently, an algorithm based on the wavelet representation of the turbulence has been introduced in [Inverse Probl.29, 085003 (2013)] by the authors to solve the atmospheric tomography using the conjugate gradient iteration. The authors also developed an efficient frequency-dependent preconditioner for the wavelet method in a later work. In this paper we study the computational aspects of the wavelet algorithm. We introduce three new techniques, the dual domain discretization strategy, a scale-dependent preconditioner, and a ground layer multiscale method, to derive a method that is globally O(n), parallelizable, and compact with respect to memory. We present the computational cost estimates and compare the theoretical numerical performance of the resulting finite element-wavelet hybrid algorithm with the MVM. The quality of the method is evaluated in terms of an MOAO simulation for the E-ELT on the European Southern Observatory (ESO) end-to-end simulation system OCTOPUS. The method is compared to the ESO version of the Fractal Iterative Method [Proc. SPIE7736, 77360X (2010)] in terms of quality.
Finite element-wavelet hybrid algorithm for atmospheric tomography.
Yudytskiy, Mykhaylo; Helin, Tapio; Ramlau, Ronny
2014-03-01
Reconstruction of the refractive index fluctuations in the atmosphere, or atmospheric tomography, is an underlying problem of many next generation adaptive optics (AO) systems, such as the multiconjugate adaptive optics or multiobject adaptive optics (MOAO). The dimension of the problem for the extremely large telescopes, such as the European Extremely Large Telescope (E-ELT), suggests the use of iterative schemes as an alternative to the matrix-vector multiply (MVM) methods. Recently, an algorithm based on the wavelet representation of the turbulence has been introduced in [Inverse Probl.29, 085003 (2013)] by the authors to solve the atmospheric tomography using the conjugate gradient iteration. The authors also developed an efficient frequency-dependent preconditioner for the wavelet method in a later work. In this paper we study the computational aspects of the wavelet algorithm. We introduce three new techniques, the dual domain discretization strategy, a scale-dependent preconditioner, and a ground layer multiscale method, to derive a method that is globally O(n), parallelizable, and compact with respect to memory. We present the computational cost estimates and compare the theoretical numerical performance of the resulting finite element-wavelet hybrid algorithm with the MVM. The quality of the method is evaluated in terms of an MOAO simulation for the E-ELT on the European Southern Observatory (ESO) end-to-end simulation system OCTOPUS. The method is compared to the ESO version of the Fractal Iterative Method [Proc. SPIE7736, 77360X (2010)] in terms of quality. PMID:24690653
Li, Jingsong; Yu, Benli; Fischer, Horst
2015-04-01
This paper presents a novel methodology-based discrete wavelet transform (DWT) and the choice of the optimal wavelet pairs to adaptively process tunable diode laser absorption spectroscopy (TDLAS) spectra for quantitative analysis, such as molecular spectroscopy and trace gas detection. The proposed methodology aims to construct an optimal calibration model for a TDLAS spectrum, regardless of its background structural characteristics, thus facilitating the application of TDLAS as a powerful tool for analytical chemistry. The performance of the proposed method is verified using analysis of both synthetic and observed signals, characterized with different noise levels and baseline drift. In terms of fitting precision and signal-to-noise ratio, both have been improved significantly using the proposed method.
Spectral Laplace-Beltrami wavelets with applications in medical images.
Tan, Mingzhen; Qiu, Anqi
2015-05-01
The spectral graph wavelet transform (SGWT) has recently been developed to compute wavelet transforms of functions defined on non-Euclidean spaces such as graphs. By capitalizing on the established framework of the SGWT, we adopt a fast and efficient computation of a discretized Laplace-Beltrami (LB) operator that allows its extension from arbitrary graphs to differentiable and closed 2-D manifolds (smooth surfaces embedded in the 3-D Euclidean space). This particular class of manifolds are widely used in bioimaging to characterize the morphology of cells, tissues, and organs. They are often discretized into triangular meshes, providing additional geometric information apart from simple nodes and weighted connections in graphs. In comparison with the SGWT, the wavelet bases constructed with the LB operator are spatially localized with a more uniform "spread" with respect to underlying curvature of the surface. In our experiments, we first use synthetic data to show that traditional applications of wavelets in smoothing and edge detectio can be done using the wavelet bases constructed with the LB operator. Second, we show that multi-resolutional capabilities of the proposed framework are applicable in the classification of Alzheimer's patients with normal subjects using hippocampal shapes. Wavelet transforms of the hippocampal shape deformations at finer resolutions registered higher sensitivity (96%) and specificity (90%) than the classification results obtained from the direct usage of hippocampal shape deformations. In addition, the Laplace-Beltrami method requires consistently a smaller number of principal components (to retain a fixed variance) at higher resolution as compared to the binary and weighted graph Laplacians, demonstrating the potential of the wavelet bases in adapting to the geometry of the underlying manifold.
A Wavelet-Based Methodology for Grinding Wheel Condition Monitoring
Liao, T. W.; Ting, C.F.; Qu, Jun; Blau, Peter Julian
2007-01-01
Grinding wheel surface condition changes as more material is removed. This paper presents a wavelet-based methodology for grinding wheel condition monitoring based on acoustic emission (AE) signals. Grinding experiments in creep feed mode were conducted to grind alumina specimens with a resinoid-bonded diamond wheel using two different conditions. During the experiments, AE signals were collected when the wheel was 'sharp' and when the wheel was 'dull'. Discriminant features were then extracted from each raw AE signal segment using the discrete wavelet decomposition procedure. An adaptive genetic clustering algorithm was finally applied to the extracted features in order to distinguish different states of grinding wheel condition. The test results indicate that the proposed methodology can achieve 97% clustering accuracy for the high material removal rate condition, 86.7% for the low material removal rate condition, and 76.7% for the combined grinding conditions if the base wavelet, the decomposition level, and the GA parameters are properly selected.
Wavelet Leaders: A new method to estimate the multifractal singularity spectra
NASA Astrophysics Data System (ADS)
Serrano, E.; Figliola, A.
2009-07-01
Wavelet Leaders is a novel alternative based on wavelet analysis for estimating the Multifractal Spectrum. It was proposed by Jaffard and co-workers improving the usual wavelet methods. In this work, we analyze and compare it with the well known Multifractal Detrended Fluctuation Analysis. The latter is a comprehensible and well adapted method for natural and weakly stationary signals. Alternatively, Wavelet Leaders exploits the wavelet self-similarity structures combined with the Multiresolution Analysis scheme. We give a brief introduction on the multifractal formalism and the particular implementation of the above methods and we compare their effectiveness. We expose several cases: Cantor measures, Binomial Multiplicative Cascades and also natural series from a tonic-clonic epileptic seizure. We analyze the results and extract the conclusions.
Thresholds of cutaneous afferents related to perceptual threshold across the human foot sole.
Strzalkowski, Nicholas D J; Mildren, Robyn L; Bent, Leah R
2015-10-01
Perceptual thresholds are known to vary across the foot sole, despite a reported even distribution in cutaneous afferents. Skin mechanical properties have been proposed to account for these differences; however, a direct relationship between foot sole afferent firing, perceptual threshold, and skin mechanical properties has not been previously investigated. Using the technique of microneurography, we recorded the monofilament firing thresholds of cutaneous afferents and associated perceptual thresholds across the foot sole. In addition, receptive field hardness measurements were taken to investigate the influence of skin hardness on these threshold measures. Afferents were identified as fast adapting [FAI (n = 48) or FAII (n = 13)] or slowly adapting [SAI (n = 21) or SAII (n = 20)], and were grouped based on receptive field location (heel, arch, metatarsals, toes). Overall, perceptual thresholds were found to most closely align with firing thresholds of FA afferents. In contrast, SAI and SAII afferent firing thresholds were found to be significantly higher than perceptual thresholds and are not thought to mediate monofilament perceptual threshold across the foot sole. Perceptual thresholds and FAI afferent firing thresholds were significantly lower in the arch compared with other regions, and skin hardness was found to positively correlate with both FAI and FAII afferent firing and perceptual thresholds. These data support a perceptual influence of skin hardness, which is likely the result of elevated FA afferent firing threshold at harder foot sole sites. The close coupling between FA afferent firing and perceptual threshold across foot sole indicates that small changes in FA afferent firing can influence perceptual thresholds.
An Introduction to Wavelet Theory and Analysis
Miner, N.E.
1998-10-01
This report reviews the history, theory and mathematics of wavelet analysis. Examination of the Fourier Transform and Short-time Fourier Transform methods provides tiormation about the evolution of the wavelet analysis technique. This overview is intended to provide readers with a basic understanding of wavelet analysis, define common wavelet terminology and describe wavelet amdysis algorithms. The most common algorithms for performing efficient, discrete wavelet transforms for signal analysis and inverse discrete wavelet transforms for signal reconstruction are presented. This report is intended to be approachable by non- mathematicians, although a basic understanding of engineering mathematics is necessary.
Multiscale video compression using adaptive finite-state vector quantization
NASA Astrophysics Data System (ADS)
Kwon, Heesung; Venkatraman, Mahesh; Nasrabadi, Nasser M.
1998-10-01
We investigate the use of vector quantizers (VQs) with memory to encode image sequences. A multiscale video coding technique using adaptive finite-state vector quantization (FSVQ) is presented.In this technique, a small codebook (subcodebook) is generated for each input vector from a much larger codebook (supercodebook) by the selection (through a reordering procedure) of a set of appropriate codevectors that is the best representative of the input vector. Therefore, the subcodebook dynamically adapts to the characteristics of the motion-compensated frame difference signal. Several reordering procedures are introduced, and their performance is evaluated. In adaptive FSVQ, two different methods, predefined thresholding and rate- distortion cost optimization, are used to decide between the supercodebook and subcodebook for encoding a given input vector. A cache-based vector quantizer, a form of adaptive FSVQ, is also presented for very-low-bit-rate video coding. An efficient bit-allocation strategy using quadtree decomposition is used with the cache-based VQ to compress the video signal. The proposed video codec outperforms H.263 in terms of the peak signal-to-noise ratio and perceptual quality at very low bit rates, ranging from 5 to 20 kbps. The picture quality of the proposed video codec is a significant improvement over previous codecs, in terms of annoying distortions (blocking artifacts and mosquito noises), and is comparable to that of recently developed wavelet-based video codecs. This similarity in picture quality can be explained by the fact that the proposed video codex uses multiscale segmentation and subsequent variable- rate coding, which are conceptually similar to wavelet-based coding techniques. The simplicity of the encoder and decoder of the proposed codec makes it more suitable than wavelet- based coding for real-time, very-low-bit rate video applications.
Peak finding using biorthogonal wavelets
Tan, C.Y.
2000-02-01
The authors show in this paper how they can find the peaks in the input data if the underlying signal is a sum of Lorentzians. In order to project the data into a space of Lorentzian like functions, they show explicitly the construction of scaling functions which look like Lorentzians. From this construction, they can calculate the biorthogonal filter coefficients for both the analysis and synthesis functions. They then compare their biorthogonal wavelets to the FBI (Federal Bureau of Investigations) wavelets when used for peak finding in noisy data. They will show that in this instance, their filters perform much better than the FBI wavelets.
Resnikoff, H.L. )
1993-01-01
The theory of compactly supported wavelets is now 4 yr old. In that short period, it has stimulated significant research in pure mathematics; has been the source of new numerical methods for the solution of nonlinear partial differential equations, including Navier-Stokes; and has been applied to digital signal-processing problems, ranging from signal detection and classification to signal compression for speech, audio, images, seismic signals, and sonar. Wavelet channel coding has even been proposed for code division multiple access digital telephony. In each of these applications, prototype wavelet solutions have proved to be competitive with established methods, and in many cases they are already superior.
A criterion for signal-based selection of wavelets for denoising intrafascicular nerve recordings.
Kamavuako, Ernest Nlandu; Jensen, Winnie; Yoshida, Ken; Kurstjens, Mathijs; Farina, Dario
2010-02-15
In this paper we propose a novel method for denoising intrafascicular nerve signals with the aim of improving action potential (AP) detection. The method is based on the stationary wavelet transform and thresholding of the wavelet coefficients. Since the choice of the mother wavelet substantially impact the performance, a criterion is proposed for selecting the optimal wavelet. The criterion for selection was based on the root mean square of the average of the output signal triggered by the detected APs. The mother wavelet was parameterized through the scaling filter, which allowed optimization through the proposed criterion. The method was tested on simulated signals and on experimental neural recordings. Experimental signals were recorded from the tibial branch of the sciatic nerve of three anaesthetized New Zealand white rabbits during controlled muscle stretches. The simulation results showed that the proposed method had an equivalent effect on AP detection performance (percentage of correct detection at 6 dB signal-to-noise ratio, mean+/-SD, 95.3+/-5.2%) to the a-posteriori choice of the best wavelet (96.1+/-3.6). Moreover, the AP detection after the proposed denoising method resulted in a correlation of 0.94+/-0.02 between the estimated spike rate and the muscle length. Therefore, the study proposes an effective method for selecting the optimal mother wavelet for denoising neural signals with the aim of improving AP detection.
Continuous wavelet transform analysis of acceleration signals measured from a wave buoy.
Chuang, Laurence Zsu-Hsin; Wu, Li-Chung; Wang, Jong-Hao
2013-01-01
Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining the wavelet spectrum and the synthetic sea surface elevations. The in situ wave signals were applied to verify the practicality of the wavelet-based algorithm. We confirm that the spectral leakage and the noise at very-low-frequency bins influenced the accuracies of the estimated wavelet spectrum and the synthetic sea surface elevations. The appropriate thresholds of these two factors were explored. To study the short-time wave features from the wave records, the acceleration signals recorded from an accelerometer inside a discus wave buoy are analysed. The results from the wavelet spectrum show the evidence of short-time nonlinear wave events. Our study also reveals that more surface profiles with higher vertical asymmetry can be found from short-time nonlinear wave with stronger harmonic spectral peak. Finally, we conclude that the algorithms of continuous wavelet transform are practical for revealing the short-time wave features of the buoy acceleration signals. PMID:23966188
A Secret Image Sharing Method Using Integer Wavelet Transform
NASA Astrophysics Data System (ADS)
Huang, Chin-Pan; Li, Ching-Chung
2007-12-01
A new image sharing method, based on the reversible integer-to-integer (ITI) wavelet transform and Shamir's [InlineEquation not available: see fulltext.] threshold scheme is presented, that provides highly compact shadows for real-time progressive transmission. This method, working in the wavelet domain, processes the transform coefficients in each subband, divides each of the resulting combination coefficients into [InlineEquation not available: see fulltext.] shadows, and allows recovery of the complete secret image by using any [InlineEquation not available: see fulltext.] or more shadows [InlineEquation not available: see fulltext.]. We take advantages of properties of the wavelet transform multiresolution representation, such as coefficient magnitude decay and excellent energy compaction, to design combination procedures for the transform coefficients and processing sequences in wavelet subbands such that small shadows for real-time progressive transmission are obtained. Experimental results demonstrate that the proposed method yields small shadow images and has the capabilities of real-time progressive transmission and perfect reconstruction of secret images.
Birdsong Denoising Using Wavelets
Priyadarshani, Nirosha; Marsland, Stephen; Castro, Isabel; Punchihewa, Amal
2016-01-01
Automatic recording of birdsong is becoming the preferred way to monitor and quantify bird populations worldwide. Programmable recorders allow recordings to be obtained at all times of day and year for extended periods of time. Consequently, there is a critical need for robust automated birdsong recognition. One prominent obstacle to achieving this is low signal to noise ratio in unattended recordings. Field recordings are often very noisy: birdsong is only one component in a recording, which also includes noise from the environment (such as wind and rain), other animals (including insects), and human-related activities, as well as noise from the recorder itself. We describe a method of denoising using a combination of the wavelet packet decomposition and band-pass or low-pass filtering, and present experiments that demonstrate an order of magnitude improvement in noise reduction over natural noisy bird recordings. PMID:26812391
Wavelet entropy of stochastic processes
NASA Astrophysics Data System (ADS)
Zunino, L.; Pérez, D. G.; Garavaglia, M.; Rosso, O. A.
2007-06-01
We compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the normalized total wavelet entropy (NTWS) family [S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, E. Serrano, Time-frequency analysis of electroencephalogram series, III. Wavelet packets and information cost function, Phys. Rev. E 57 (1998) 932-940; O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, Wavelet entropy: a new tool for analysis of short duration brain electrical signals, J. Neurosci. Method 105 (2001) 65-75] and a second introduced by Tavares and Lucena [Physica A 357(1) (2005) 71-78]. In order to understand their advantages and disadvantages, exact results obtained for fractional Gaussian noise ( -1<α< 1) and fractional Brownian motion ( 1<α< 3) are assessed. We find out that the NTWS family performs better as a characterization method for these stochastic processes.
Wavelet theory and its applications
Faber, V.; Bradley, JJ.; Brislawn, C.; Dougherty, R.; Hawrylycz, M.
1996-07-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We investigated the theory of wavelet transforms and their relation to Laboratory applications. The investigators have had considerable success in the past applying wavelet techniques to the numerical solution of optimal control problems for distributed- parameter systems, nonlinear signal estimation, and compression of digital imagery and multidimensional data. Wavelet theory involves ideas from the fields of harmonic analysis, numerical linear algebra, digital signal processing, approximation theory, and numerical analysis, and the new computational tools arising from wavelet theory are proving to be ideal for many Laboratory applications. 10 refs.
The wavelet/scalar quantization compression standard for digital fingerprint images
Bradley, J.N.; Brislawn, C.M.
1994-04-01
A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.
The Limits to Adaptation; A Systems Approach
The Limits to Adaptation: A Systems Approach. The ability to adapt to climate change is delineated by capacity thresholds, after which climate damages begin to overwhelm the adaptation response. Such thresholds depend upon physical properties (natural processes and engineering...
Wavelet multiscale processing of remote sensing data
NASA Astrophysics Data System (ADS)
Bagmanov, Valeriy H.; Kharitonov, Svyatoslav V.; Meshkov, Ivan K.; Sultanov, Albert H.
2008-12-01
There is comparative analysis of methods for estimation and definition of Hoerst index (index of self-similarity) and comparative analysis of wavelet types using for image decomposition are offered. Five types of compared wavelets are used for analysis: Haar wavelets, Daubechies wavelets, Discrete Meyer wavelets, symplets and coiflets. Best quality of restored image Meyer and Haar wavelets demonstrate, because of they are characterised by minimal errors of recomposition. But compression index for these types smaller, than for Daubechies wavelets, symplets and coiflets. Contrariwise the latter obtain less precision of decompression. As it is necessary to take into consideration the complexity of realization some wavelet transformation on digital signal processors (DSP), simplest method is Haar wavelet transformation.
Low-Oscillation Complex Wavelets
NASA Astrophysics Data System (ADS)
ADDISON, P. S.; WATSON, J. N.; FENG, T.
2002-07-01
In this paper we explore the use of two low-oscillation complex wavelets—Mexican hat and Morlet—as powerful feature detection tools for data analysis. These wavelets, which have been largely ignored to date in the scientific literature, allow for a decomposition which is more “temporal than spectral” in wavelet space. This is shown to be useful for the detection of small amplitude, short duration signal features which are masked by much larger fluctuations. Wavelet transform-based methods employing these wavelets (based on both wavelet ridges and modulus maxima) are developed and applied to sonic echo NDT signals used for the analysis of structural elements. A new mobility scalogram and associated reflectogram is defined for analysis of impulse response characteristics of structural elements and a novel signal compression technique is described in which the pertinent signal information is contained within a few modulus maxima coefficients. As an example of its usefulness, the signal compression method is employed as a pre-processor for a neural network classifier. The authors believe that low oscillation complex wavelets have wide applicability to other practical signal analysis problems. Their possible application to two such problems is discussed briefly—the interrogation of arrhythmic ECG signals and the detection and characterization of coherent structures in turbulent flow fields.
Tests for Wavelets as a Basis Set
NASA Astrophysics Data System (ADS)
Baker, Thomas; Evenbly, Glen; White, Steven
A wavelet transformation is a special type of filter usually reserved for image processing and other applications. We develop metrics to evaluate wavelets for general problems on test one-dimensional systems. The goal is to eventually use a wavelet basis in electronic structure calculations. We compare a variety of orthogonal wavelets such as coiflets, symlets, and daubechies wavelets. We also evaluate a new type of orthogonal wavelet with dilation factor three which is both symmetric and compact in real space. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award #DE-SC008696.
NASA Astrophysics Data System (ADS)
Bitenc, M.; Kieffer, D. S.; Khoshelham, K.
2015-08-01
The precision of Terrestrial Laser Scanning (TLS) data depends mainly on the inherent random range error, which hinders extraction of small details from TLS measurements. New post processing algorithms have been developed that reduce or eliminate the noise and therefore enable modelling details at a smaller scale than one would traditionally expect. The aim of this research is to find the optimum denoising method such that the corrected TLS data provides a reliable estimation of small-scale rock joint roughness. Two wavelet-based denoising methods are considered, namely Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), in combination with different thresholding procedures. The question is, which technique provides a more accurate roughness estimates considering (i) wavelet transform (SWT or DWT), (ii) thresholding method (fixed-form or penalised low) and (iii) thresholding mode (soft or hard). The performance of denoising methods is tested by two analyses, namely method noise and method sensitivity to noise. The reference data are precise Advanced TOpometric Sensor (ATOS) measurements obtained on 20 × 30 cm rock joint sample, which are for the second analysis corrupted by different levels of noise. With such a controlled noise level experiments it is possible to evaluate the methods' performance for different amounts of noise, which might be present in TLS data. Qualitative visual checks of denoised surfaces and quantitative parameters such as grid height and roughness are considered in a comparative analysis of denoising methods. Results indicate that the preferred method for realistic roughness estimation is DWT with penalised low hard thresholding.
Examining Alternatives to Wavelet Denoising for Astronomical Source Finding
NASA Astrophysics Data System (ADS)
Jurek, R.; Brown, S.
2012-08-01
The Square Kilometre Array and its pathfinders ASKAP and MeerKAT will produce prodigious amounts of data that necessitate automated source finding. The performance of automated source finders can be improved by pre-processing a dataset. In preparation for the WALLABY and DINGO surveys, we have used a test HI datacube constructed from actual Westerbork Telescope noise and WHISP HI galaxies to test the real world improvement of linear smoothing, the Duchamp source finder's wavelet denoising, iterative median smoothing and mathematical morphology subtraction, on intensity threshold source finding of spectral line datasets. To compare these pre-processing methods we have generated completeness-reliability performance curves for each method and a range of input parameters. We find that iterative median smoothing produces the best source finding results for ASKAP HI spectral line observations, but wavelet denoising is a safer pre-processing technique. In this paper we also present our implementations of iterative median smoothing and mathematical morphology subtraction.
Identification of structural damage using wavelet-based data classification
NASA Astrophysics Data System (ADS)
Koh, Bong-Hwan; Jeong, Min-Joong; Jung, Uk
2008-03-01
Predicted time-history responses from a finite-element (FE) model provide a baseline map where damage locations are clustered and classified by extracted damage-sensitive wavelet coefficients such as vertical energy threshold (VET) positions having large silhouette statistics. Likewise, the measured data from damaged structure are also decomposed and rearranged according to the most dominant positions of wavelet coefficients. Having projected the coefficients to the baseline map, the true localization of damage can be identified by investigating the level of closeness between the measurement and predictions. The statistical confidence of baseline map improves as the number of prediction cases increases. The simulation results of damage detection in a truss structure show that the approach proposed in this study can be successfully applied for locating structural damage even in the presence of a considerable amount of process and measurement noise.
A frequency dependent preconditioned wavelet method for atmospheric tomography
NASA Astrophysics Data System (ADS)
Yudytskiy, Mykhaylo; Helin, Tapio; Ramlau, Ronny
2013-12-01
Atmospheric tomography, i.e. the reconstruction of the turbulence in the atmosphere, is a main task for the adaptive optics systems of the next generation telescopes. For extremely large telescopes, such as the European Extremely Large Telescope, this problem becomes overly complex and an efficient algorithm is needed to reduce numerical costs. Recently, a conjugate gradient method based on wavelet parametrization of turbulence layers was introduced [5]. An iterative algorithm can only be numerically efficient when the number of iterations required for a sufficient reconstruction is low. A way to achieve this is to design an efficient preconditioner. In this paper we propose a new frequency-dependent preconditioner for the wavelet method. In the context of a multi conjugate adaptive optics (MCAO) system simulated on the official end-to-end simulation tool OCTOPUS of the European Southern Observatory we demonstrate robustness and speed of the preconditioned algorithm. We show that three iterations are sufficient for a good reconstruction.
Srivastava, Subodh; Sharma, Neeraj; Singh, S K; Srivastava, R
2014-07-01
In this paper, a combined approach for enhancement and segmentation of mammograms is proposed. In preprocessing stage, a contrast limited adaptive histogram equalization (CLAHE) method is applied to obtain the better contrast mammograms. After this, the proposed combined methods are applied. In the first step of the proposed approach, a two dimensional (2D) discrete wavelet transform (DWT) is applied to all the input images. In the second step, a proposed nonlinear complex diffusion based unsharp masking and crispening method is applied on the approximation coefficients of the wavelet transformed images to further highlight the abnormalities such as micro-calcifications, tumours, etc., to reduce the false positives (FPs). Thirdly, a modified fuzzy c-means (FCM) segmentation method is applied on the output of the second step. In the modified FCM method, the mutual information is proposed as a similarity measure in place of conventional Euclidian distance based dissimilarity measure for FCM segmentation. Finally, the inverse 2D-DWT is applied. The efficacy of the proposed unsharp masking and crispening method for image enhancement is evaluated in terms of signal-to-noise ratio (SNR) and that of the proposed segmentation method is evaluated in terms of random index (RI), global consistency error (GCE), and variation of information (VoI). The performance of the proposed segmentation approach is compared with the other commonly used segmentation approaches such as Otsu's thresholding, texture based, k-means, and FCM clustering as well as thresholding. From the obtained results, it is observed that the proposed segmentation approach performs better and takes lesser processing time in comparison to the standard FCM and other segmentation methods in consideration. PMID:25190996
Srivastava, Subodh; Sharma, Neeraj; Singh, S. K.; Srivastava, R.
2014-01-01
In this paper, a combined approach for enhancement and segmentation of mammograms is proposed. In preprocessing stage, a contrast limited adaptive histogram equalization (CLAHE) method is applied to obtain the better contrast mammograms. After this, the proposed combined methods are applied. In the first step of the proposed approach, a two dimensional (2D) discrete wavelet transform (DWT) is applied to all the input images. In the second step, a proposed nonlinear complex diffusion based unsharp masking and crispening method is applied on the approximation coefficients of the wavelet transformed images to further highlight the abnormalities such as micro-calcifications, tumours, etc., to reduce the false positives (FPs). Thirdly, a modified fuzzy c-means (FCM) segmentation method is applied on the output of the second step. In the modified FCM method, the mutual information is proposed as a similarity measure in place of conventional Euclidian distance based dissimilarity measure for FCM segmentation. Finally, the inverse 2D-DWT is applied. The efficacy of the proposed unsharp masking and crispening method for image enhancement is evaluated in terms of signal-to-noise ratio (SNR) and that of the proposed segmentation method is evaluated in terms of random index (RI), global consistency error (GCE), and variation of information (VoI). The performance of the proposed segmentation approach is compared with the other commonly used segmentation approaches such as Otsu's thresholding, texture based, k-means, and FCM clustering as well as thresholding. From the obtained results, it is observed that the proposed segmentation approach performs better and takes lesser processing time in comparison to the standard FCM and other segmentation methods in consideration. PMID:25190996
Improved Compression of Wavelet-Transformed Images
NASA Technical Reports Server (NTRS)
Kiely, Aaron; Klimesh, Matthew
2005-01-01
A recently developed data-compression method is an adaptive technique for coding quantized wavelet-transformed data, nominally as part of a complete image-data compressor. Unlike some other approaches, this method admits a simple implementation and does not rely on the use of large code tables. A common data compression approach, particularly for images, is to perform a wavelet transform on the input data, and then losslessly compress a quantized version of the wavelet-transformed data. Under this compression approach, it is common for the quantized data to include long sequences, or runs, of zeros. The new coding method uses prefixfree codes for the nonnegative integers as part of an adaptive algorithm for compressing the quantized wavelet-transformed data by run-length coding. In the form of run-length coding used here, the data sequence to be encoded is parsed into strings consisting of some number (possibly 0) of zeros, followed by a nonzero value. The nonzero value and the length of the run of zeros are encoded. For a data stream that contains a sufficiently high frequency of zeros, this method is known to be more effective than using a single variable length code to encode each symbol. The specific prefix-free codes used are from two classes of variable-length codes: a class known as Golomb codes, and a class known as exponential-Golomb codes. The codes within each class are indexed by a single integer parameter. The present method uses exponential-Golomb codes for the lengths of the runs of zeros, and Golomb codes for the nonzero values. The code parameters within each code class are determined adaptively on the fly as compression proceeds, on the basis of statistics from previously encoded values. In particular, a simple adaptive method has been devised to select the parameter identifying the particular exponential-Golomb code to use. The method tracks the average number of bits used to encode recent runlengths, and takes the difference between this average
Group-normalized wavelet packet signal processing
NASA Astrophysics Data System (ADS)
Shi, Zhuoer; Bao, Zheng
1997-04-01
Since the traditional wavelet and wavelet packet coefficients do not exactly represent the strength of signal components at the very time(space)-frequency tilling, group- normalized wavelet packet transform (GNWPT), is presented for nonlinear signal filtering and extraction from the clutter or noise, together with the space(time)-frequency masking technique. The extended F-entropy improves the performance of GNWPT. For perception-based image, soft-logic masking is emphasized to remove the aliasing with edge preserved. Lawton's method for complex valued wavelets construction is extended to generate the complex valued compactly supported wavelet packets for radar signal extraction. This kind of wavelet packets are symmetry and unitary orthogonal. Well-defined wavelet packets are chosen by the analysis remarks on their time-frequency characteristics. For real valued signal processing, such as images and ECG signal, the compactly supported spline or bi- orthogonal wavelet packets are preferred for perfect de- noising and filtering qualities.
A Mellin transform approach to wavelet analysis
NASA Astrophysics Data System (ADS)
Alotta, Gioacchino; Di Paola, Mario; Failla, Giuseppe
2015-11-01
The paper proposes a fractional calculus approach to continuous wavelet analysis. Upon introducing a Mellin transform expression of the mother wavelet, it is shown that the wavelet transform of an arbitrary function f(t) can be given a fractional representation involving a suitable number of Riesz integrals of f(t), and corresponding fractional moments of the mother wavelet. This result serves as a basis for an original approach to wavelet analysis of linear systems under arbitrary excitations. In particular, using the proposed fractional representation for the wavelet transform of the excitation, it is found that the wavelet transform of the response can readily be computed by a Mellin transform expression, with fractional moments obtained from a set of algebraic equations whose coefficient matrix applies for any scale a of the wavelet transform. Robustness and computationally efficiency of the proposed approach are shown in the paper.
Applications of wavelet analysis in differential propagation phase shift data de-noising
NASA Astrophysics Data System (ADS)
Hu, Zhiqun; Liu, Liping
2014-07-01
Using numerical simulation data of the forward differential propagation shift (ϕDP) of polarimetric radar, the principle and performing steps of noise reduction by wavelet analysis are introduced in detail. Profiting from the multiscale analysis, various types of noises can be identified according to their characteristics in different scales, and suppressed in different resolutions by a penalty threshold strategy through which a fixed threshold value is applied, a default threshold strategy through which the threshold value is determined by the noise intensity, or a ϕDP penalty threshold strategy through which a special value is designed for ϕDP de-noising. Then, a hard-or soft-threshold function, depending on the de-noising purpose, is selected to reconstruct the signal. Combining the three noise suppression strategies and the two signal reconstruction functions, and without loss of generality, two schemes are presented to verify the de-noising effect by dbN wavelets: (1) the penalty threshold strategy with the soft threshold function scheme (PSS); (2) the ϕDP penalty threshold strategy with the soft threshold function scheme (PPSS). Furthermore, the wavelet de-noising is compared with the mean, median, Kalman, and finite impulse response (FIR) methods with simulation data and two actual cases. The results suggest that both of the two schemes perform well, especially when ϕDP data are simultaneously polluted by various scales and types of noises. A slight difference is that the PSS method can retain more detail, and the PPSS can smooth the signal more successfully.
Wavelet-based Evapotranspiration Forecasts
NASA Astrophysics Data System (ADS)
Bachour, R.; Maslova, I.; Ticlavilca, A. M.; McKee, M.; Walker, W.
2012-12-01
Providing a reliable short-term forecast of evapotranspiration (ET) could be a valuable element for improving the efficiency of irrigation water delivery systems. In the last decade, wavelet transform has become a useful technique for analyzing the frequency domain of hydrological time series. This study shows how wavelet transform can be used to access statistical properties of evapotranspiration. The objective of the research reported here is to use wavelet-based techniques to forecast ET up to 16 days ahead, which corresponds to the LANDSAT 7 overpass cycle. The properties of the ET time series, both physical and statistical, are examined in the time and frequency domains. We use the information about the energy decomposition in the wavelet domain to extract meaningful components that are used as inputs for ET forecasting models. Seasonal autoregressive integrated moving average (SARIMA) and multivariate relevance vector machine (MVRVM) models are coupled with the wavelet-based multiresolution analysis (MRA) results and used to generate short-term ET forecasts. Accuracy of the models is estimated and model robustness is evaluated using the bootstrap approach.
NASA Astrophysics Data System (ADS)
Kushwaha, Alok Kumar Singh; Srivastava, Rajeev
2015-09-01
Moving object segmentation using change detection in wavelet domain under continuous variations of lighting condition is a challenging problem in video surveillance systems. There are several methods proposed in the literature for change detection in wavelet domain for moving object segmentation having static backgrounds, but it has not been addressed effectively for dynamic background changes. The methods proposed in the literature suffer from various problems, such as ghostlike appearance, object shadows, and noise. To deal with these issues, a framework for dynamic background modeling and shadow suppression under rapidly changing illumination conditions for moving object segmentation in complex wavelet domain is proposed. The proposed method consists of eight steps applied on given video frames, which include wavelet decomposition of frame using complex wavelet transform; use of change detection on detail coefficients (LH, HL, and HH), use of improved Gaussian mixture-based dynamic background modeling on approximate coefficient (LL subband); cast shadow suppression; use of soft thresholding for noise removal; strong edge detection; inverse wavelet transformation for reconstruction; and finally using closing morphology operator. A comparative analysis of the proposed method is presented both qualitatively and quantitatively with other standard methods available in the literature for six datasets in terms of various performance measures. Experimental results demonstrate the efficacy of the proposed method.
Wavelet Representation of Contour Sets
Bertram, M; Laney, D E; Duchaineau, M A; Hansen, C D; Hamann, B; Joy, K I
2001-07-19
We present a new wavelet compression and multiresolution modeling approach for sets of contours (level sets). In contrast to previous wavelet schemes, our algorithm creates a parametrization of a scalar field induced by its contoum and compactly stores this parametrization rather than function values sampled on a regular grid. Our representation is based on hierarchical polygon meshes with subdivision connectivity whose vertices are transformed into wavelet coefficients. From this sparse set of coefficients, every set of contours can be efficiently reconstructed at multiple levels of resolution. When applying lossy compression, introducing high quantization errors, our method preserves contour topology, in contrast to compression methods applied to the corresponding field function. We provide numerical results for scalar fields defined on planar domains. Our approach generalizes to volumetric domains, time-varying contours, and level sets of vector fields.
Wavelets for sign language translation
NASA Astrophysics Data System (ADS)
Wilson, Beth J.; Anspach, Gretel
1993-10-01
Wavelet techniques are applied to help extract the relevant parameters of sign language from video images of a person communicating in American Sign Language or Signed English. The compression and edge detection features of two-dimensional wavelet analysis are exploited to enhance the algorithms under development to classify the hand motion, hand location with respect to the body, and handshape. These three parameters have different processing requirements and complexity issues. The results are described for applying various quadrature mirror filter designs to a filterbank implementation of the desired wavelet transform. The overall project is to develop a system that will translate sign language to English to facilitate communication between deaf and hearing people.
Recent advances in wavelet technology
NASA Technical Reports Server (NTRS)
Wells, R. O., Jr.
1994-01-01
Wavelet research has been developing rapidly over the past five years, and in particular in the academic world there has been significant activity at numerous universities. In the industrial world, there has been developments at Aware, Inc., Lockheed, Martin-Marietta, TRW, Kodak, Exxon, and many others. The government agencies supporting wavelet research and development include ARPA, ONR, AFOSR, NASA, and many other agencies. The recent literature in the past five years includes a recent book which is an index of citations in the past decade on this subject, and it contains over 1,000 references and abstracts.
A parallel splitting wavelet method for 2D conservation laws
NASA Astrophysics Data System (ADS)
Schmidt, Alex A.; Kozakevicius, Alice J.; Jakobsson, Stefan
2016-06-01
The current work presents a parallel formulation using the MPI protocol for an adaptive high order finite difference scheme to solve 2D conservation laws. Adaptivity is achieved at each time iteration by the application of an interpolating wavelet transform in each space dimension. High order approximations for the numerical fluxes are computed by ENO and WENO schemes. Since time evolution is made by a TVD Runge-Kutta space splitting scheme, the problem is naturally suitable for parallelization. Numerical simulations and speedup results are presented for Euler equations in gas dynamics problems.
Multi-level basis selection of wavelet packet decomposition tree for heart sound classification.
Safara, Fatemeh; Doraisamy, Shyamala; Azman, Azreen; Jantan, Azrul; Abdullah Ramaiah, Asri Ranga
2013-10-01
Wavelet packet transform decomposes a signal into a set of orthonormal bases (nodes) and provides opportunities to select an appropriate set of these bases for feature extraction. In this paper, multi-level basis selection (MLBS) is proposed to preserve the most informative bases of a wavelet packet decomposition tree through removing less informative bases by applying three exclusion criteria: frequency range, noise frequency, and energy threshold. MLBS achieved an accuracy of 97.56% for classifying normal heart sound, aortic stenosis, mitral regurgitation, and aortic regurgitation. MLBS is a promising basis selection to be suggested for signals with a small range of frequencies.
An Evolved Wavelet Library Based on Genetic Algorithm
Vaithiyanathan, D.; Seshasayanan, R.; Kunaraj, K.; Keerthiga, J.
2014-01-01
As the size of the images being captured increases, there is a need for a robust algorithm for image compression which satiates the bandwidth limitation of the transmitted channels and preserves the image resolution without considerable loss in the image quality. Many conventional image compression algorithms use wavelet transform which can significantly reduce the number of bits needed to represent a pixel and the process of quantization and thresholding further increases the compression. In this paper the authors evolve two sets of wavelet filter coefficients using genetic algorithm (GA), one for the whole image portion except the edge areas and the other for the portions near the edges in the image (i.e., global and local filters). Images are initially separated into several groups based on their frequency content, edges, and textures and the wavelet filter coefficients are evolved separately for each group. As there is a possibility of the GA settling in local maximum, we introduce a new shuffling operator to prevent the GA from this effect. The GA used to evolve filter coefficients primarily focuses on maximizing the peak signal to noise ratio (PSNR). The evolved filter coefficients by the proposed method outperform the existing methods by a 0.31 dB improvement in the average PSNR and a 0.39 dB improvement in the maximum PSNR. PMID:25405225
CARA Risk Assessment Thresholds
NASA Technical Reports Server (NTRS)
Hejduk, M. D.
2016-01-01
Warning remediation threshold (Red threshold): Pc level at which warnings are issued, and active remediation considered and usually executed. Analysis threshold (Green to Yellow threshold): Pc level at which analysis of event is indicated, including seeking additional information if warranted. Post-remediation threshold: Pc level to which remediation maneuvers are sized in order to achieve event remediation and obviate any need for immediate follow-up maneuvers. Maneuver screening threshold: Pc compliance level for routine maneuver screenings (more demanding than regular Red threshold due to additional maneuver uncertainty).
Image subband coding using context-based classification and adaptive quantization.
Yoo, Y; Ortega, A; Yu, B
1999-01-01
Adaptive compression methods have been a key component of many proposed subband (or wavelet) image coding techniques. This paper deals with a particular type of adaptive subband image coding where we focus on the image coder's ability to adjust itself "on the fly" to the spatially varying statistical nature of image contents. This backward adaptation is distinguished from more frequently used forward adaptation in that forward adaptation selects the best operating parameters from a predesigned set and thus uses considerable amount of side information in order for the encoder and the decoder to operate with the same parameters. Specifically, we present backward adaptive quantization using a new context-based classification technique which classifies each subband coefficient based on the surrounding quantized coefficients. We couple this classification with online parametric adaptation of the quantizer applied to each class. A simple uniform threshold quantizer is employed as the baseline quantizer for which adaptation is achieved. Our subband image coder based on the proposed adaptive classification quantization idea exhibits excellent rate-distortion performance, in particular at very low rates. For popular test images, it is comparable or superior to most of the state-of-the-art coders in the literature.
Wavelet library for constrained devices
NASA Astrophysics Data System (ADS)
Ehlers, Johan Hendrik; Jassim, Sabah A.
2007-04-01
The wavelet transform is a powerful tool for image and video processing, useful in a range of applications. This paper is concerned with the efficiency of a certain fast-wavelet-transform (FWT) implementation and several wavelet filters, more suitable for constrained devices. Such constraints are typically found on mobile (cell) phones or personal digital assistants (PDA). These constraints can be a combination of; limited memory, slow floating point operations (compared to integer operations, most often as a result of no hardware support) and limited local storage. Yet these devices are burdened with demanding tasks such as processing a live video or audio signal through on-board capturing sensors. In this paper we present a new wavelet software library, HeatWave, that can be used efficiently for image/video processing/analysis tasks on mobile phones and PDA's. We will demonstrate that HeatWave is suitable for realtime applications with fine control and range to suit transform demands. We shall present experimental results to substantiate these claims. Finally this library is intended to be of real use and applied, hence we considered several well known and common embedded operating system platform differences; such as a lack of common routines or functions, stack limitations, etc. This makes HeatWave suitable for a range of applications and research projects.
Interframe vector wavelet coding technique
NASA Astrophysics Data System (ADS)
Wus, John P.; Li, Weiping
1997-01-01
Wavelet coding is often used to divide an image into multi- resolution wavelet coefficients which are quantized and coded. By 'vectorizing' scalar wavelet coding and combining this with vector quantization (VQ), vector wavelet coding (VWC) can be implemented. Using a finite number of states, finite-state vector quantization (FSVQ) takes advantage of the similarity between frames by incorporating memory into the video coding system. Lattice VQ eliminates the potential mismatch that could occur using pre-trained VQ codebooks. It also eliminates the need for codebook storage in the VQ process, thereby creating a more robust coding system. Therefore, by using the VWC coding method in conjunction with the FSVQ system and lattice VQ, the formulation of a high quality very low bit rate coding systems is proposed. A coding system using a simple FSVQ system where the current state is determined by the previous channel symbol only is developed. To achieve a higher degree of compression, a tree-like FSVQ system is implemented. The groupings are done in this tree-like structure from the lower subbands to the higher subbands in order to exploit the nature of subband analysis in terms of the parent-child relationship. Class A and Class B video sequences from the MPEG-IV testing evaluations are used in the evaluation of this coding method.
Wavelet/scalar quantization compression standard for fingerprint images
Brislawn, C.M.
1996-06-12
US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class of potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.
Independent component analysis (ICA) using wavelet subband orthogonality
NASA Astrophysics Data System (ADS)
Szu, Harold H.; Hsu, Charles C.; Yamakawa, Takeshi
1998-03-01
There are two kinds of RRP: (1) invertible ones, such as global Fourier transform (FT), local wavelet transform (WT), and adaptive wavelet transform (AWT); and (2) non-invertible ones, e.g. ICA including the global principle component analysis (PCA). The invertible FT and WT can be related to the non-invertible ICA when the continuous transforms are approximate din discrete matrix-vector operations. The landmark accomplishment of ICA is to obtain, by unsupervised learning algorithm, the edge-map as image feature ayields, shown by Helsinki researchers using fourth order statistics of nyields -- Kurosis K(uyields), and derived from information- theoretical first principle is augmented by the orthogonality property of the DWT subband used necessarily for usual image compression. If we take the advantage of the subband decorrelation, we have potentially an efficient utilization of a pari of communication channels if we could send several more mixed subband images through the pair of channels.
Application of adaptive subband coding for noisy bandlimited ECG signal processing
NASA Astrophysics Data System (ADS)
Aditya, Krishna; Chu, Chee-Hung H.; Szu, Harold H.
1996-03-01
An approach to impulsive noise suppression and background normalization of digitized bandlimited electrovcardiogram signals is presented. This approach uses adaptive wavelet filters that incorporate the band-limited a priori information and the shape information of a signal to decompose the data. Empirical results show that the new algorithm has good performance in wideband impulsive noise suppression and background normalization for subsequent wave detection, when compared with subband coding using Daubechie's D4 wavelet, without the bandlimited adaptive wavelet transform.
Characterizing abrupt changes in the stock prices using a wavelet decomposition method
NASA Astrophysics Data System (ADS)
Caetano, Marco Antonio Leonel; Yoneyama, Takashi
2007-09-01
Abrupt changes in the stock prices, either upwards or downwards, are usually preceded by an oscillatory behavior with frequencies that tend to increase as the moment of transition becomes closer. The wavelet decomposition methods may be useful for analysis of this oscillations with varying frequencies, because they provide simultaneous information on the frequency (scale) and localization in time (translation). However, in order to use the wavelet decomposition, certain requirements have to be satisfied, so that the linear and cyclic trends are eliminated by standard least squares techniques. The coefficients obtained by the wavelet decomposition can be represented in a graphical form. A threshold can then be established to characterize the likelihood of a short-time abrupt change in the stock prices. Actual data from the São Paulo Stock Exchange (Bolsa de Valores de São Paulo) were used in this work to illustrate the proposed method.
[Application of kalman filtering based on wavelet transform in ICP-AES].
Qin, Xia; Shen, Lan-sun
2002-12-01
Kalman filtering is a recursive algorithm, which has been proposed as an attractive alternative to correct overlapping interferences in ICP-AES. However, the noise in ICP-AES contaminates the signal arising from the analyte and hence limits the accuracy of kalman filtering. Wavelet transform is a powerful technique in signal denoising due to its multi-resolution characteristics. In this paper, first, the effect of noise on kalman filtering is discussed. Then we apply the wavelet-transform-based soft-thresholding as the pre-processing of kalman filtering. The simulation results show that the kalman filtering based on wavelet transform can effectively reduce the noise and increase the accuracy of the analysis. PMID:12914186
Optical wavelet transform for fingerprint identification
NASA Astrophysics Data System (ADS)
MacDonald, Robert P.; Rogers, Steven K.; Burns, Thomas J.; Fielding, Kenneth H.; Warhola, Gregory T.; Ruck, Dennis W.
1994-03-01
The Federal Bureau of Investigation (FBI) has recently sanctioned a wavelet fingerprint image compression algorithm developed for reducing storage requirements of digitized fingerprints. This research implements an optical wavelet transform of a fingerprint image, as the first step in an optical fingerprint identification process. Wavelet filters are created from computer- generated holograms of biorthogonal wavelets, the same wavelets implemented in the FBI algorithm. Using a detour phase holographic technique, a complex binary filter mask is created with both symmetry and linear phase. The wavelet transform is implemented with continuous shift using an optical correlation between binarized fingerprints written on a Magneto-Optic Spatial Light Modulator and the biorthogonal wavelet filters. A telescopic lens combination scales the transformed fingerprint onto the filters, providing a means of adjusting the biorthogonal wavelet filter dilation continuously. The wavelet transformed fingerprint is then applied to an optical fingerprint identification process. Comparison between normal fingerprints and wavelet transformed fingerprints shows improvement in the optical identification process, in terms of rotational invariance.
Analysis of photonic Doppler velocimetry data based on the continuous wavelet transform
Liu Shouxian; Wang Detian; Li Tao; Chen Guanghua; Li Zeren; Peng Qixian
2011-02-15
The short time Fourier transform (STFT) cannot resolve rapid velocity changes in most photonic Doppler velocimetry (PDV) data. A practical analysis method based on the continuous wavelet transform (CWT) was presented to overcome this difficulty. The adaptability of the wavelet family predicates that the continuous wavelet transform uses an adaptive time window to estimate the instantaneous frequency of signals. The local frequencies of signal are accurately determined by finding the ridge in the spectrogram of the CWT and then are converted to target velocity according to the Doppler effects. A performance comparison between the CWT and STFT is demonstrated by a plate-impact experiment data. The results illustrate that the new method is automatic and adequate for analysis of PDV data.
The Limits to Adaptation: A Systems Approach
The ability to adapt to climate change is delineated by capacity thresholds, after which climate damages begin to overwhelm the adaptation response. Such thresholds depend upon physical properties (natural processes and engineering parameters), resource constraints (expressed th...
New fuzzy wavelet network for modeling and control: The modeling approach
NASA Astrophysics Data System (ADS)
Ebadat, Afrooz; Noroozi, Navid; Safavi, Ali Akbar; Mousavi, Seyyed Hossein
2011-08-01
In this paper, a fuzzy wavelet network is proposed to approximate arbitrary nonlinear functions based on the theory of multiresolution analysis (MRA) of wavelet transform and fuzzy concepts. The presented network combines TSK fuzzy models with wavelet transform and ROLS learning algorithm while still preserve the property of linearity in parameters. In order to reduce the number of fuzzy rules, fuzzy clustering is invoked. In the clustering algorithm, those wavelets that are closer to each other in the sense of the Euclidean norm are placed in a group and are used in the consequent part of a fuzzy rule. Antecedent parts of the rules are Gaussian membership functions. Determination of the deviation parameter is performed with the help of gold partition method. Here, mean of each function is derived by averaging center of all wavelets that are related to that particular rule. The overall developed fuzzy wavelet network is called fuzzy wave-net and simulation results show superior performance over previous networks. The present work is complemented by a second part which focuses on the control aspects and to be published in this journal( [17]). This paper proposes an observer based self-structuring robust adaptive fuzzy wave-net (FWN) controller for a class of nonlinear uncertain multi-input multi-output systems.
NASA Astrophysics Data System (ADS)
Chai, Bing-Bing; Vass, Jozsef; Zhuang, Xinhua
1997-04-01
Recent success in wavelet coding is mainly attributed to the recognition of importance of data organization. There has been several very competitive wavelet codecs developed, namely, Shapiro's Embedded Zerotree Wavelets (EZW), Servetto et. al.'s Morphological Representation of Wavelet Data (MRWD), and Said and Pearlman's Set Partitioning in Hierarchical Trees (SPIHT). In this paper, we propose a new image compression algorithm called Significant-Linked Connected Component Analysis (SLCCA) of wavelet coefficients. SLCCA exploits both within-subband clustering of significant coefficients and cross-subband dependency in significant fields. A so-called significant link between connected components is designed to reduce the positional overhead of MRWD. In addition, the significant coefficients' magnitude are encoded in bit plane order to match the probability model of the adaptive arithmetic coder. Experiments show that SLCCA outperforms both EZW and MRWD, and is tied with SPIHT. Furthermore, it is observed that SLCCA generally has the best performance on images with large portion of texture. When applied to fingerprint image compression, it outperforms FBI's wavelet scalar quantization by about 1 dB.
Threshold quantum cryptography
Tokunaga, Yuuki; Okamoto, Tatsuaki; Imoto, Nobuyuki
2005-01-01
We present the concept of threshold collaborative unitary transformation or threshold quantum cryptography, which is a kind of quantum version of threshold cryptography. Threshold quantum cryptography states that classical shared secrets are distributed to several parties and a subset of them, whose number is greater than a threshold, collaborates to compute a quantum cryptographic function, while keeping each share secretly inside each party. The shared secrets are reusable if no cheating is detected. As a concrete example of this concept, we show a distributed protocol (with threshold) of conjugate coding.
Robust rate-control for wavelet-based image coding via conditional probability models.
Gaubatz, Matthew D; Hemami, Sheila S
2007-03-01
Real-time rate-control for wavelet image coding requires characterization of the rate required to code quantized wavelet data. An ideal robust solution can be used with any wavelet coder and any quantization scheme. A large number of wavelet quantization schemes (perceptual and otherwise) are based on scalar dead-zone quantization of wavelet coefficients. A key to performing rate-control is, thus, fast, accurate characterization of the relationship between rate and quantization step size, the R-Q curve. A solution is presented using two invocations of the coder that estimates the slope of each R-Q curve via probability modeling. The method is robust to choices of probability models, quantization schemes and wavelet coders. Because of extreme robustness to probability modeling, a fast approximation to spatially adaptive probability modeling can be used in the solution, as well. With respect to achieving a target rate, the proposed approach and associated fast approximation yield average percentage errors around 0.5% and 1.0% on images in the test set. By comparison, 2-coding-pass rho-domain modeling yields errors around 2.0%, and post-compression rate-distortion optimization yields average errors of around 1.0% at rates below 0.5 bits-per-pixel (bpp) that decrease down to about 0.5% at 1.0 bpp; both methods exhibit more competitive performance on the larger images. The proposed method and fast approximation approach are also similar in speed to the other state-of-the-art methods. In addition to possessing speed and accuracy, the proposed method does not require any training and can maintain precise control over wavelet step sizes, which adds flexibility to a wavelet-based image-coding system.
Iterated oversampled filter banks and wavelet frames
NASA Astrophysics Data System (ADS)
Selesnick, Ivan W.; Sendur, Levent
2000-12-01
This paper takes up the design of wavelet tight frames that are analogous to Daubechies orthonormal wavelets - that is, the design of minimal length wavelet filters satisfying certain polynomial properties, but now in the oversampled case. The oversampled dyadic DWT considered in this paper is based on a single scaling function and tow distinct wavelets. Having more wavelets than necessary gives a closer spacing between adjacent wavelets within the same scale. As a result, the transform is nearly shift-invariant, and can be used to improve denoising. Because the associated time- frequency lattice preserves the dyadic structure of the critically sampled DWT it can be used with tree-based denoising algorithms that exploit parent-child correlation.
Radiation dose reduction in digital radiography using wavelet-based image processing methods
NASA Astrophysics Data System (ADS)
Watanabe, Haruyuki; Tsai, Du-Yih; Lee, Yongbum; Matsuyama, Eri; Kojima, Katsuyuki
2011-03-01
In this paper, we investigate the effect of the use of wavelet transform for image processing on radiation dose reduction in computed radiography (CR), by measuring various physical characteristics of the wavelet-transformed images. Moreover, we propose a wavelet-based method for offering a possibility to reduce radiation dose while maintaining a clinically acceptable image quality. The proposed method integrates the advantages of a previously proposed technique, i.e., sigmoid-type transfer curve for wavelet coefficient weighting adjustment technique, as well as a wavelet soft-thresholding technique. The former can improve contrast and spatial resolution of CR images, the latter is able to improve the performance of image noise. In the investigation of physical characteristics, modulation transfer function, noise power spectrum, and contrast-to-noise ratio of CR images processed by the proposed method and other different methods were measured and compared. Furthermore, visual evaluation was performed using Scheffe's pair comparison method. Experimental results showed that the proposed method could improve overall image quality as compared to other methods. Our visual evaluation showed that an approximately 40% reduction in exposure dose might be achieved in hip joint radiography by using the proposed method.
A new methodology to map double-cropping croplands based on continuous wavelet transform
NASA Astrophysics Data System (ADS)
Qiu, Bingwen; Zhong, Ming; Tang, Zhenghong; Wang, Chongyang
2014-02-01
Cropping intensity is one of the major factors in crop production and agricultural intensification. A new double-cropping croplands mapping methodology using Moderate Resolution Imaging Spectroradiometer (MODIS) time series datasets through continuous wavelet transform was proposed in this study. This methodology involved four steps. First, daily continuous MODIS Enhanced Vegetation Index (EVI) time series datasets were developed for the study year. Next, the EVI time series datasets were transformed into a two dimensional (time-frequency) wavelet scalogram based on continuous wavelet transform. Third, a feature extraction process was conducted on the wavelet scalogram, where the characteristic spectra were calculated from the wavelet scalogram and the feature peak within two skeleton lines was obtained. Finally, a threshold was determined for feature peak values to discriminate double-cropping croplands within each pixel. The application of the proposed procedure to China's Henan Province in 2010 produced an objective and accurate spatial distribution map, which correlated well with in situ observation data (over 90% agreement). The proposed new methodology efficiently handled complex variability that might be caused by regional variation in climate, management practices, growth peaks by winter weed or winter wheat, and data noise. Therefore, the methodology shows promise for future studies at regional and global scales.
NASA Astrophysics Data System (ADS)
Xue, Wentong; Song, Jianshe; Yuan, Lihai; Shen, Tao
2005-11-01
An efficient and novel imagery compression system for Synthetic Aperture Radar (SAR) which uses integer to integer wavelet transform and Modified Set Partitioning Embedded Block Coder (M-SPECK) has been presented in this paper. The presence of speckle noise, detailed texture, high dynamic range in SAR images, and even its vast data volume show the great differences of SAR imagery. Integer to integer wavelet transform is invertible in finite precision arithmetic, it maps integers to integers, and approximates linear wavelet transforms from which they are derived. Considering in terms of computational load, compression ratio and subjective visual quality metrics, several filter banks are compared together and some factors affecting the compression performance of the integer to integer wavelet transform are discussed in details. Then the optimal filter banks which are more appropriate for the SAR images compression are given. Information of high frequency has relatively larger proportion in SAR images compared with those of nature images. Measures to modify the quantizing thresholds in traditional SPECK are taken, which could be suitable to the contents of SAR imagery for the purpose of compression. Both the integer to integer wavelet transform and modified SPECK have the desirable feature of low computational complexity. Experimental results show its superiority over the traditional approaches in the condition of tradeoffs between compression efficiency and computational complexity.
Wavelet analysis in two-dimensional tomography
NASA Astrophysics Data System (ADS)
Burkovets, Dimitry N.
2002-02-01
The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.
Wavelet analysis of epileptic spikes
NASA Astrophysics Data System (ADS)
Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.
2003-05-01
Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.
Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition
NASA Astrophysics Data System (ADS)
Wang, Dong; Miao, Qiang; Kang, Rui
2009-07-01
Machinery condition monitoring is a key step to perform condition-based maintenance (CBM) policy. In this paper, a novel health evaluation method based on wavelet decomposition is proposed. In the process of wavelet decomposition, a new index is defined to choose the optimal detail signal. After that, frequency spectrum growth index (FSGI) is proposed to serve as a quantitative description of machine health condition. This index is helpful for maintenance decision-making. At the same time, a semi-dynamic threshold criterion that can be used to check the existence of fault is established. In order to demonstrate the performance of this index with its semi-dynamic threshold, a comprehensive study with three sets of vibration data collected from a mechanical diagnostics test bed is conducted to validate this method. The analysis results indicate that the proposed method is insensitive to the selection of wavelet function and wavelet decomposition level, which means that FSGI has excellent performance in gear early fault detection.
Threshold Concepts in Biochemistry
ERIC Educational Resources Information Center
Loertscher, Jennifer
2011-01-01
Threshold concepts can be identified for any discipline and provide a framework for linking student learning to curricular design. Threshold concepts represent a transformed understanding of a discipline, without which the learner cannot progress and are therefore pivotal in learning in a discipline. Although threshold concepts have been…
Haar Wavelet Analysis of Climatic Time Series
NASA Astrophysics Data System (ADS)
Zhang, Zhihua; Moore, John; Grinsted, Aslak
2014-05-01
In order to extract the intrinsic information of climatic time series from background red noise, we will first give an analytic formula on the distribution of Haar wavelet power spectra of red noise in a rigorous statistical framework. The relation between scale aand Fourier period T for the Morlet wavelet is a= 0.97T . However, for Haar wavelet, the corresponding formula is a= 0.37T . Since for any time series of time step δt and total length Nδt, the range of scales is from the smallest resolvable scale 2δt to the largest scale Nδt in wavelet-based time series analysis, by using the Haar wavelet analysis, one can extract more low frequency intrinsic information. Finally, we use our method to analyze Arctic Oscillation which is a key aspect of climate variability in the Northern Hemisphere, and discover a great change in fundamental properties of the AO,-commonly called a regime shift or tripping point. Our partial results have been published as follows: [1] Z. Zhang, J.C. Moore and A. Grinsted, Haar wavelet analysis of climatic time series, Int. J. Wavelets, Multiresol. & Inf. Process., in press, 2013 [2] Z. Zhang, J.C. Moore, Comment on "Significance tests for the wavelet power and the wavelet power spectrum", Ann. Geophys., 30:12, 2012
Entangled Husimi Distribution and Complex Wavelet Transformation
NASA Astrophysics Data System (ADS)
Hu, Li-Yun; Fan, Hong-Yi
2010-05-01
Similar in spirit to the preceding work (Int. J. Theor. Phys. 48:1539, 2009) where the relationship between wavelet transformation and Husimi distribution function is revealed, we study this kind of relationship to the entangled case. We find that the optical complex wavelet transformation can be used to study the entangled Husimi distribution function in phase space theory of quantum optics. We prove that, up to a Gaussian function, the entangled Husimi distribution function of a two-mode quantum state | ψ> is just the modulus square of the complex wavelet transform of e^{-\\vert η \\vert 2/2} with ψ( η) being the mother wavelet.
Wavelet Analysis of Soil Reflectance for the Characterization of Soil Properties
Technology Transfer Automated Retrieval System (TEKTRAN)
Wavelet analysis has proven to be effective in many fields including signal processing and digital image analysis. Recently, it has been adapted to spectroscopy, where the reflectance of various materials is measured with respect to wavelength (nm) or wave number (cm-1). Spectra can cover broad wave...
Wavelet Sparse Approximate Inverse Preconditioners
NASA Technical Reports Server (NTRS)
Chan, Tony F.; Tang, W.-P.; Wan, W. L.
1996-01-01
There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.
Denoising seismic data using wavelet methods: a comparison study
NASA Astrophysics Data System (ADS)
Hloupis, G.; Vallianatos, F.
2009-04-01
In order to derive onset times, amplitudes or other useful characteristic from a seismogram, the usual denoising procedure involves the use of a linear pass-band filter. This family of filters is zero-phase and is useful according to phase properties but their efficiency is reduced when transients are existing near seismic signals. The alternative solution is the Wiener filter which focuses on the elimination of the mean square error between recorded and expected signal. Its main disadvantage is the assumption that signal and noise are stationary. This assumption does not hold for the seismic signals leading to denoising solutions that does not assume stationarity. Solutions based on Wavelet Transform proved effective for denoising problems across several areas. Here we present recent WT denoising methods (WDM) that will applied later to seismic sequences of Seismological Network of Crete. Wavelet denoising schemes have proved to be well adapted to several types of signals. For non-stationary signals, such as seismograms, the use of linear and non-linear wavelet denoising methods seems promising. The contribution of this study is a comparison for wavelet denoising methods suitable for seismic signals, which proved from previous studies their superiority against appropriate conventional filtering techniques. The importance of wavelet denoising methods relies on two facts: they recovered the seismic signals having fewer artifacts than conventional filters (for high SNR seismograms) and at the same time they can provide satisfactory representations (for detecting the earthquake's primary arrival) for low SNR seismograms or microearthquakes. The latter is very important for a possible development of an automatic procedure for the regular daily detection of small or non-regional earthquakes especially when the number of the stations is quite big. Initially, their performance is measured over a database of synthetic seismic signals in order to evaluate the better wavelet
Daubechies wavelets for linear scaling density functional theory.
Mohr, Stephan; Ratcliff, Laura E; Boulanger, Paul; Genovese, Luigi; Caliste, Damien; Deutsch, Thierry; Goedecker, Stefan
2014-05-28
We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these adaptively contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of density functional theory calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10,000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the adaptively contracted basis functions for closely related environments, e.g., in geometry optimizations or combined calculations of neutral and charged systems. PMID:24880269
Daubechies wavelets for linear scaling density functional theory
Mohr, Stephan; Ratcliff, Laura E.; Genovese, Luigi; Caliste, Damien; Deutsch, Thierry; Boulanger, Paul; Goedecker, Stefan
2014-05-28
We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these adaptively contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of density functional theory calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10 000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the adaptively contracted basis functions for closely related environments, e.g., in geometry optimizations or combined calculations of neutral and charged systems.
A new wavelet-based thin plate element using B-spline wavelet on the interval
NASA Astrophysics Data System (ADS)
Jiawei, Xiang; Xuefeng, Chen; Zhengjia, He; Yinghong, Zhang
2008-01-01
By interacting and synchronizing wavelet theory in mathematics and variational principle in finite element method, a class of wavelet-based plate element is constructed. In the construction of wavelet-based plate element, the element displacement field represented by the coefficients of wavelet expansions in wavelet space is transformed into the physical degree of freedoms in finite element space via the corresponding two-dimensional C1 type transformation matrix. Then, based on the associated generalized function of potential energy of thin plate bending and vibration problems, the scaling functions of B-spline wavelet on the interval (BSWI) at different scale are employed directly to form the multi-scale finite element approximation basis so as to construct BSWI plate element via variational principle. BSWI plate element combines the accuracy of B-spline functions approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples are studied to demonstrate the performances of the present element.
NASA Astrophysics Data System (ADS)
Ng, J.; Kingsbury, N. G.
2004-02-01
wavelet. The second half of the chapter groups together miscellaneous points about the discrete wavelet transform, including coefficient manipulation for signal denoising and smoothing, a description of Daubechies’ wavelets, the properties of translation invariance and biorthogonality, the two-dimensional discrete wavelet transforms and wavelet packets. The fourth chapter is dedicated to wavelet transform methods in the author’s own specialty, fluid mechanics. Beginning with a definition of wavelet-based statistical measures for turbulence, the text proceeds to describe wavelet thresholding in the analysis of fluid flows. The remainder of the chapter describes wavelet analysis of engineering flows, in particular jets, wakes, turbulence and coherent structures, and geophysical flows, including atmospheric and oceanic processes. The fifth chapter describes the application of wavelet methods in various branches of engineering, including machining, materials, dynamics and information engineering. Unlike previous chapters, this (and subsequent) chapters are styled more as literature reviews that describe the findings of other authors. The areas addressed in this chapter include: the monitoring of machining processes, the monitoring of rotating machinery, dynamical systems, chaotic systems, non-destructive testing, surface characterization and data compression. The sixth chapter continues in this vein with the attention now turned to wavelets in the analysis of medical signals. Most of the chapter is devoted to the analysis of one-dimensional signals (electrocardiogram, neural waveforms, acoustic signals etc.), although there is a small section on the analysis of two-dimensional medical images. The seventh and final chapter of the book focuses on the application of wavelets in three seemingly unrelated application areas: fractals, finance and geophysics. The treatment on wavelet methods in fractals focuses on stochastic fractals with a short section on multifractals. The
Fast fractal image compression with triangulation wavelets
NASA Astrophysics Data System (ADS)
Hebert, D. J.; Soundararajan, Ezekiel
1998-10-01
We address the problem of improving the performance of wavelet based fractal image compression by applying efficient triangulation methods. We construct iterative function systems (IFS) in the tradition of Barnsley and Jacquin, using non-uniform triangular range and domain blocks instead of uniform rectangular ones. We search for matching domain blocks in the manner of Zhang and Chen, performing a fast wavelet transform on the blocks and eliminating low resolution mismatches to gain speed. We obtain further improvements by the efficiencies of binary triangulations (including the elimination of affine and symmetry calculations and reduced parameter storage), and by pruning the binary tree before construction of the IFS. Our wavelets are triangular Haar wavelets and `second generation' interpolation wavelets as suggested by Sweldens' recent work.
An Investigation of Wavelet Bases for Grid-Based Multi-Scale Simulations Final Report
Baty, R.S.; Burns, S.P.; Christon, M.A.; Roach, D.W.; Trucano, T.G.; Voth, T.E.; Weatherby, J.R.; Womble, D.E.
1998-11-01
The research summarized in this report is the result of a two-year effort that has focused on evaluating the viability of wavelet bases for the solution of partial differential equations. The primary objective for this work has been to establish a foundation for hierarchical/wavelet simulation methods based upon numerical performance, computational efficiency, and the ability to exploit the hierarchical adaptive nature of wavelets. This work has demonstrated that hierarchical bases can be effective for problems with a dominant elliptic character. However, the strict enforcement of orthogonality was found to be less desirable than weaker semi-orthogonality or bi-orthogonality for solving partial differential equations. This conclusion has led to the development of a multi-scale linear finite element based on a hierarchical change of basis. The reproducing kernel particle method has been found to yield extremely accurate phase characteristics for hyperbolic problems while providing a convenient framework for multi-scale analyses.
CW-THz image contrast enhancement using wavelet transform and Retinex
NASA Astrophysics Data System (ADS)
Chen, Lin; Zhang, Min; Hu, Qi-fan; Huang, Ying-Xue; Liang, Hua-Wei
2015-10-01
To enhance continuous wave terahertz (CW-THz) scanning images contrast and denoising, a method based on wavelet transform and Retinex theory was proposed. In this paper, the factors affecting the quality of CW-THz images were analysed. Second, an approach of combination of the discrete wavelet transform (DWT) and a designed nonlinear function in wavelet domain for the purpose of contrast enhancing was applied. Then, we combine the Retinex algorithm for further contrast enhancement. To evaluate the effectiveness of the proposed method in qualitative and quantitative, it was compared with the adaptive histogram equalization method, the homomorphic filtering method and the SSR(Single-Scale-Retinex) method. Experimental results demonstrated that the presented algorithm can effectively enhance the contrast of CW-THZ image and obtain better visual effect.
Liu, Zhen-Bing; Jiang, Shu-Jie; Yang, Hui-Hua; Zhang, Xue-Bo
2014-10-01
As an effective technique to identify counterfeit drugs, Near Infrared Spectroscopy has been successfully used in the drug management of grass-roots units, with classifier modeling of Pattern Recognition. Due to a major disadvantage of the characteristic overlap and complexity, the wide bandwidth and the weak absorption of the Spectroscopy signals, it seems difficult to give a satisfactory solutions for the modeling problem. To address those problems, in the present paper, a summation wavelet extreme learning machine algorithm (SWELM(CS)) combined with Cuckoo research was adopted for drug discrimination by NIRS. Specifically, Extreme Learning Machine (ELM) was selected as the classifier model because of its properties of fast learning and insensitivity, to improve the accuracy and generalization performances of the classifier model; An inverse hyperbolic sine and a Morlet-wavelet are used as dual activation functions to improve convergence speed, and a combination of activation functions makes the network more adequate to deal with dynamic systems; Due to ELM' s weights and hidden layer threshold generated randomly, it leads to network instability, so Cuckoo Search was adapted to optimize model parameters; SWELM(CS) improves stability of the classifier model. Besides, SWELM(CS) is based on the ELM algorithm for fast learning and insensitivity; the dual activation functions and proper choice of activation functions enhances the capability of the network to face low and high frequency signals simultaneously; it has high stability of classification by Cuckoo Research. This compact structure of the dual activation functions constitutes a kernel framework by extracting signal features and signal simultaneously, which can be generalized to other machine learning fields to obtain a good accuracy and generalization performances. Drug samples of near in- frared spectroscopy produced by Xian-Janssen Pharmaceutical Ltd were adopted as the main objects in this paper
NASA Astrophysics Data System (ADS)
Abrishamchi, A.; Mehdikhani, H.; Tajrishy, M.; Marino, M. A.; Abrishamchi, A.
2007-12-01
Drought forecasting plays an important role in mitigation of economic, environmental and social impacts of drought. Traditional statistical time series methods have a limited ability to capture non-stationarities and nonlinearities in data. Artificial Neural Network (ANN) because of highly flexible function estimator that has self- learning and self-adaptive feature has shown great ability in forecasting nonlinear and nonstationary time series in hydrology. Recently wavelet transforms have become a common tool for analyzing local variation in time series. Wavelet transforms provide a useful decomposition of a signal, or time series; therefore, hybrid models have been proposed for forecasting a time series based on a wavelet transform preprocessing. Wavelet-transformed data aids in improving the ability of forecasting models by diagnosing signal's main frequency component and abstract local information of the original time series on various resolution levels. This paper presents a conjunctive nonlinear model using Wavelet Transforms and Artificial Neural Network. Application of the model in Zayandeh-Rood River basin (Iran) shows that the conjunctive model significantly improves the ability of artificial neural networks for 1, 3, 6 and 9 months ahead forecasting of EDI (effective drought indices) time series. Improved forecasts allow water resources decision makers to develop drought preparedness plans far in advance.
Directional dual-tree complex wavelet packet transforms for processing quadrature signals.
Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin
2016-03-01
Quadrature signals containing in-phase and quadrature-phase components are used in many signal processing applications in every field of science and engineering. Specifically, Doppler ultrasound systems used to evaluate cardiovascular disorders noninvasively also result in quadrature format signals. In order to obtain directional blood flow information, the quadrature outputs have to be preprocessed using methods such as asymmetrical and symmetrical phasing filter techniques. These resultant directional signals can be employed in order to detect asymptomatic embolic signals caused by small emboli, which are indicators of a possible future stroke, in the cerebral circulation. Various transform-based methods such as Fourier and wavelet were frequently used in processing embolic signals. However, most of the times, the Fourier and discrete wavelet transforms are not appropriate for the analysis of embolic signals due to their non-stationary time-frequency behavior. Alternatively, discrete wavelet packet transform can perform an adaptive decomposition of the time-frequency axis. In this study, directional discrete wavelet packet transforms, which have the ability to map directional information while processing quadrature signals and have less computational complexity than the existing wavelet packet-based methods, are introduced. The performances of proposed methods are examined in detail by using single-frequency, synthetic narrow-band, and embolic quadrature signals.
Fast multi-scale edge detection algorithm based on wavelet transform
NASA Astrophysics Data System (ADS)
Zang, Jie; Song, Yanjun; Li, Shaojuan; Luo, Guoyun
2011-11-01
The traditional edge detection algorithms have certain noise amplificat ion, making there is a big error, so the edge detection ability is limited. In analysis of the low-frequency signal of image, wavelet analysis theory can reduce the time resolution; under high time resolution for high-frequency signal of the image, it can be concerned about the transient characteristics of the signal to reduce the frequency resolution. Because of the self-adaptive for signal, the wavelet transform can ext ract useful informat ion from the edge of an image. The wavelet transform is at various scales, wavelet transform of each scale provides certain edge informat ion, so called mult i-scale edge detection. Multi-scale edge detection is that the original signal is first polished at different scales, and then detects the mutation of the original signal by the first or second derivative of the polished signal, and the mutations are edges. The edge detection is equivalent to signal detection in different frequency bands after wavelet decomposition. This article is use of this algorithm which takes into account both details and profile of image to detect the mutation of the signal at different scales, provided necessary edge information for image analysis, target recognition and machine visual, and achieved good results.
Bayesian wavelet-based image denoising using the Gauss-Hermite expansion.
Rahman, S M Mahbubur; Ahmad, M Omair; Swamy, M N S
2008-10-01
The probability density functions (PDFs) of the wavelet coefficients play a key role in many wavelet-based image processing algorithms, such as denoising. The conventional PDFs usually have a limited number of parameters that are calculated from the first few moments only. Consequently, such PDFs cannot be made to fit very well with the empirical PDF of the wavelet coefficients of an image. As a result, the shrinkage function utilizing any of these density functions provides a substandard denoising performance. In order for the probabilistic model of the image wavelet coefficients to be able to incorporate an appropriate number of parameters that are dependent on the higher order moments, a PDF using a series expansion in terms of the Hermite polynomials that are orthogonal with respect to the standard Gaussian weight function, is introduced. A modification in the series function is introduced so that only a finite number of terms can be used to model the image wavelet coefficients, ensuring at the same time the resulting PDF to be non-negative. It is shown that the proposed PDF matches the empirical one better than some of the standard ones, such as the generalized Gaussian or Bessel K-form PDF. A Bayesian image denoising technique is then proposed, wherein the new PDF is exploited to statistically model the subband as well as the local neighboring image wavelet coefficients. Experimental results on several test images demonstrate that the proposed denoising method, both in the subband-adaptive and locally adaptive conditions, provides a performance better than that of most of the methods that use PDFs with limited number of parameters.
ERIC Educational Resources Information Center
Gustafson, S. C.; Costello, C. S.; Like, E. C.; Pierce, S. J.; Shenoy, K. N.
2009-01-01
Bayesian estimation of a threshold time (hereafter simply threshold) for the receipt of impulse signals is accomplished given the following: 1) data, consisting of the number of impulses received in a time interval from zero to one and the time of the largest time impulse; 2) a model, consisting of a uniform probability density of impulse time…
ERIC Educational Resources Information Center
Morgan, Patrick K.
2015-01-01
Since about 2003, the notion of threshold concepts--the central ideas in any field that change how learners think about other ideas--have become difficult to escape at library conferences and in general information literacy discourse. Their visibility will likely only increase because threshold concepts figure prominently in the Framework for…
Threshold Concepts in Economics
ERIC Educational Resources Information Center
Shanahan, Martin
2016-01-01
Purpose: The purpose of this paper is to examine threshold concepts in the context of teaching and learning first-year university economics. It outlines some of the arguments for using threshold concepts and provides examples using opportunity cost as an exemplar in economics. Design/ Methodology/Approach: The paper provides an overview of the…
Complex wavelet based speckle reduction using multiple ultrasound images
NASA Astrophysics Data System (ADS)
Uddin, Muhammad Shahin; Tahtali, Murat; Pickering, Mark R.
2014-04-01
Ultrasound imaging is a dominant tool for diagnosis and evaluation in medical imaging systems. However, as its major limitation is that the images it produces suffer from low quality due to the presence of speckle noise, to provide better clinical diagnoses, reducing this noise is essential. The key purpose of a speckle reduction algorithm is to obtain a speckle-free high-quality image whilst preserving important anatomical features, such as sharp edges. As this can be better achieved using multiple ultrasound images rather than a single image, we introduce a complex wavelet-based algorithm for the speckle reduction and sharp edge preservation of two-dimensional (2D) ultrasound images using multiple ultrasound images. The proposed algorithm does not rely on straightforward averaging of multiple images but, rather, in each scale, overlapped wavelet detail coefficients are weighted using dynamic threshold values and then reconstructed by averaging. Validation of the proposed algorithm is carried out using simulated and real images with synthetic speckle noise and phantom data consisting of multiple ultrasound images, with the experimental results demonstrating that speckle noise is significantly reduced whilst sharp edges without discernible distortions are preserved. The proposed approach performs better both qualitatively and quantitatively than previous existing approaches.
Efﬁcient fourier-wavelet super-resolution.
Robinson, M Dirk; Toth, Cynthia A; Lo, Joseph Y; Farsiu, Sina
2010-10-01
Super-resolution (SR) is the process of combining multiple aliased low-quality images to produce a high-resolution high-quality image. Aside from registration and fusion of low-resolution images, a key process in SR is the restoration and denoising of the fused images. We present a novel extension of the combined Fourier-wavelet deconvolution and denoising algorithm ForWarD to the multiframe SR application. Our method first uses a fast Fourier-base multiframe image restoration to produce a sharp, yet noisy estimate of the high-resolution image. Our method then applies a space-variant nonlinear wavelet thresholding that addresses the nonstationarity inherent in resolution-enhanced fused images. We describe a computationally efficient method for implementing this space-variant processing that leverages the efficiency of the fast Fourier transform (FFT) to minimize complexity. Finally, we demonstrate the effectiveness of this algorithm for regular imagery as well as in digital mammography. PMID:20460208
Tan, Liying; Ma, Jing; Wang, Guangming
2005-12-01
The image formation and the point-spread function of an optical system are analyzed by use of the wavelet basis function. The image described by a wavelet is no longer an indivisible whole image. It is, rather, a complex image consisting of many wavelet subimages, which come from the changes of different parameters (scale) a and c, and parameters b and d show the positions of wavelet subimages under different scales. A Gaussian frequency-modulated complex-valued wavelet function is introduced to express the point-spread function of an optical system and used to describe the image formation. The analysis, in allusion to the situation of illumination with a monochromatic plain light wave, shows that using the theory of wavelet optics to describe the image formation of an optical system is feasible.
NASA Astrophysics Data System (ADS)
Tan, Liying; Ma, Jing; Wang, Guangming
2005-12-01
The image formation and the point-spread function of an optical system are analyzed by use of the wavelet basis function. The image described by a wavelet is no longer an indivisible whole image. It is, rather, a complex image consisting of many wavelet subimages, which come from the changes of different parameters (scale) a and c, and parameters b and d show the positions of wavelet subimages under different scales. A Gaussian frequency-modulated complex-valued wavelet function is introduced to express the point-spread function of an optical system and used to describe the image formation. The analysis, in allusion to the situation of illumination with a monochromatic plain light wave, shows that using the theory of wavelet optics to describe the image formation of an optical system is feasible.
Applications of a fast, continuous wavelet transform
Dress, W.B.
1997-02-01
A fast, continuous, wavelet transform, based on Shannon`s sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon`s sampling theorem lets us view the Fourier transform of the data set as a continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time- domain sampling of the signal under analysis. Computational cost and nonorthogonality aside, the inherent flexibility and shift invariance of the frequency-space wavelets has advantages. The method has been applied to forensic audio reconstruction speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants` heart beats. Audio reconstruction is aided by selection of desired regions in the 2-D representation of the magnitude of the transformed signal. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass-spring system (e.g., a vehicle) by an occupants beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, features such as the glottal closing rate and word and phrase segmentation may be extracted from voice data.
[Wavelet analysis and its application in denoising the spectrum of hyperspectral image].
Zhou, Dan; Wang, Qin-Jun; Tian, Qing-Jiu; Lin, Qi-Zhong; Fu, Wen-Xue
2009-07-01
In order to remove the sawtoothed noise in the spectrum of hyperspectral remote sensing and improve the accuracy of information extraction using spectrum in the present research, the spectrum of vegetation in the USGS (United States Geological Survey) spectrum library was used to simulate the performance of wavelet denoising. These spectra were measured by a custom-modified and computer-controlled Beckman spectrometer at the USGS Denver Spectroscopy Lab. The wavelength accuracy is about 5 nm in the NIR and 2 nm in the visible. In the experiment, noise with signal to noise ratio (SNR) 30 was first added to the spectrum, and then removed by the wavelet denoising approach. For the purpose of finding the optimal parameters combinations, the SNR, mean squared error (MSE), spectral angle (SA) and integrated evaluation coefficient eta were used to evaluate the approach's denoising effects. Denoising effect is directly proportional to SNR, and inversely proportional to MSE, SA and the integrated evaluation coefficient eta. Denoising results show that the sawtoothed noise in noisy spectrum was basically eliminated, and the denoised spectrum basically coincides with the original spectrum, maintaining a good spectral characteristic of the curve. Evaluation results show that the optimal denoising can be achieved by firstly decomposing the noisy spectrum into 3-7 levels using db12, db10, sym9 and sym6 wavelets, then processing the wavelet transform coefficients by soft-threshold functions, and finally estimating the thresholds by heursure threshold selection rule and rescaling using a single estimation of level noise based on first-level coefficients. However, this approach depends on the noise level, which means that for different noise level the optimal parameters combination is also diverse.
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Huang, Zhen
2014-10-01
Real-time monitoring of blood glucose concentration (BGC) is a great important procedure in controlling diabetes mellitus and preventing the complication for diabetic patients. Noninvasive measurement of BGC has already become a research hotspot because it can overcome the physical and psychological harm. Photoacoustic spectroscopy is a well-established, hybrid and alternative technique used to determine the BGC. According to the theory of photoacoustic technique, the blood is irradiated by plused laser with nano-second repeation time and micro-joule power, the photoacoustic singals contained the information of BGC are generated due to the thermal-elastic mechanism, then the BGC level can be interpreted from photoacoustic signal via the data analysis. But in practice, the time-resolved photoacoustic signals of BGC are polluted by the varities of noises, e.g., the interference of background sounds and multi-component of blood. The quality of photoacoustic signal of BGC directly impacts the precision of BGC measurement. So, an improved wavelet denoising method was proposed to eliminate the noises contained in BGC photoacoustic signals. To overcome the shortcoming of traditional wavelet threshold denoising, an improved dual-threshold wavelet function was proposed in this paper. Simulation experimental results illustrated that the denoising result of this improved wavelet method was better than that of traditional soft and hard threshold function. To varify the feasibility of this improved function, the actual photoacoustic BGC signals were test, the test reslut demonstrated that the signal-to-noises ratio(SNR) of the improved function increases about 40-80%, and its root-mean-square error (RMSE) decreases about 38.7-52.8%.
Wavelet-based multispectral face recognition
NASA Astrophysics Data System (ADS)
Liu, Dian-Ting; Zhou, Xiao-Dan; Wang, Cheng-Wen
2008-09-01
This paper proposes a novel wavelet-based face recognition method using thermal infrared (IR) and visible-light face images. The method applies the combination of Gabor and the Fisherfaces method to the reconstructed IR and visible images derived from wavelet frequency subbands. Our objective is to search for the subbands that are insensitive to the variation in expression and in illumination. The classification performance is improved by combining the multispectal information coming from the subbands that attain individually low equal error rate. Experimental results on Notre Dame face database show that the proposed wavelet-based algorithm outperforms previous multispectral images fusion method as well as monospectral method.
Wavelet Applications for Flight Flutter Testing
NASA Technical Reports Server (NTRS)
Lind, Rick; Brenner, Marty; Freudinger, Lawrence C.
1999-01-01
Wavelets present a method for signal processing that may be useful for analyzing responses of dynamical systems. This paper describes several wavelet-based tools that have been developed to improve the efficiency of flight flutter testing. One of the tools uses correlation filtering to identify properties of several modes throughout a flight test for envelope expansion. Another tool uses features in time-frequency representations of responses to characterize nonlinearities in the system dynamics. A third tool uses modulus and phase information from a wavelet transform to estimate modal parameters that can be used to update a linear model and reduce conservatism in robust stability margins.
Shirazinodeh, Alireza; Noubari, Hossein Ahmadi; Rabbani, Hossein; Dehnavi, Alireza Mehri
2015-01-01
Recent studies on wavelet transform and fractal modeling applied on mammograms for the detection of cancerous tissues indicate that microcalcifications and masses can be utilized for the study of the morphology and diagnosis of cancerous cases. It is shown that the use of fractal modeling, as applied to a given image, can clearly discern cancerous zones from noncancerous areas. In this paper, for fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension of each windowed section using a computationally efficient two-dimensional box-counting algorithm. Furthermore, using appropriate wavelet sub-bands and image Reconstruction based on modified wavelet coefficients, it is shown that it is possible to arrive at enhanced features for detection of cancerous zones. In this paper, we have attempted to benefit from the advantages of both fractals and wavelets by introducing a new algorithm. By using a new algorithm named F1W2, the original image is first segmented into appropriate fractal boxes, and the fractal dimension of each windowed section is extracted. Following from that, by applying a maximum level threshold on fractal dimensions matrix, the best-segmented boxes are selected. In the next step, the segmented Cancerous zones which are candidates are then decomposed by utilizing standard orthogonal wavelet transform and db2 wavelet in three different resolution levels, and after nullifying wavelet coefficients of the image at the first scale and low frequency band of the third scale, the modified reconstructed image is successfully utilized for detection of breast cancer regions by applying an appropriate threshold. For detection of cancerous zones, our simulations indicate the accuracy of 90.9% for masses and 88.99% for microcalcifications detection results using the F1W2 method. For classification of detected mictocalcification into benign and malignant cases, eight features are identified and
Reconstruction of color images via Haar wavelet based on digital micromirror device
NASA Astrophysics Data System (ADS)
Liu, Xingjiong; He, Weiji; Gu, Guohua
2015-10-01
A digital micro mirror device( DMD) is introduced to form Haar wavelet basis , projecting on the color target image by making use of structured illumination, including red, green and blue light. The light intensity signals reflected from the target image are received synchronously by the bucket detector which has no spatial resolution, converted into voltage signals and then transferred into PC[1] .To reach the aim of synchronization, several synchronization processes are added during data acquisition. In the data collection process, according to the wavelet tree structure, the locations of significant coefficients at the finer scale are predicted by comparing the coefficients sampled at the coarsest scale with the threshold. The monochrome grayscale images are obtained under red , green and blue structured illumination by using Haar wavelet inverse transform algorithm, respectively. The color fusion algorithm is carried on the three monochrome grayscale images to obtain the final color image. According to the imaging principle, the experimental demonstration device is assembled. The letter "K" and the X-rite Color Checker Passport are projected and reconstructed as target images, and the final reconstructed color images have good qualities. This article makes use of the method of Haar wavelet reconstruction, reducing the sampling rate considerably. It provides color information without compromising the resolution of the final image.
NASA Astrophysics Data System (ADS)
Font-Clos, Francesc; Pruessner, Gunnar; Moloney, Nicholas R.; Deluca, Anna
2015-04-01
The thresholding of time series of activity or intensity is frequently used to define and differentiate events. This is either implicit, for example due to resolution limits, or explicit, in order to filter certain small scale physics from the supposed true asymptotic events. Thresholding the birth-death process, however, introduces a scaling region into the event size distribution, which is characterized by an exponent that is unrelated to the actual asymptote and is rather an artefact of thresholding. As a result, numerical fits of simulation data produce a range of exponents, with the true asymptote visible only in the tail of the distribution. This tail is increasingly difficult to sample as the threshold is increased. In the present case, the exponents and the spurious nature of the scaling region can be determined analytically, thus demonstrating the way in which thresholding conceals the true asymptote. The analysis also suggests a procedure for detecting the influence of the threshold by means of a data collapse involving the threshold-imposed scale.
Johari, Masume; Esmaeili, Farzad; Andalib, Alireza; Garjani, Shabnam; Saberkari, Hamidreza
2016-01-01
In this paper, an efficient algorithm is proposed for detection of vertical root fractures (VRFs) in periapical (PA), and cone-beam computed tomography (CBCT) radiographs of nonendodontically treated premolar teeth. PA and CBCT images are divided into some sub-categories based on the fracture space between the two fragments as small, medium, and large for PAs and large for CBCTs. These graphics are first denoised using the combination of block matching 3-D filtering, and principle component analysis model. Then, we proposed an adaptive thresholding algorithm based on the modified Wellner model to segment the fracture and canal. Finally, VRFs are identified with a high accuracy through applying continuous wavelet transform on the segmented radiographs and choosing the most optimal value for sub-images based on the lowest interclass variance. Performance of the proposed algorithm is evaluated utilizing the different tested criteria. Results illustrate that the range of specificity deviations for PA and CBCT radiographs are 99.69 ± 0.22 and 99.02 ± 0.77, respectively. Furthermore, the sensitivity changes from 61.90 to 77.39 in the case of PA and from 79.54 to 100 in the case of CBCT. Based on our statistical evaluation, the CBCT imaging has the better performance in comparison with PA ones, so this technique could be a useful tool for clinical applications in determining the VRFs. PMID:27186535
Double Photoionization Near Threshold
NASA Technical Reports Server (NTRS)
Wehlitz, Ralf
2007-01-01
The threshold region of the double-photoionization cross section is of particular interest because both ejected electrons move slowly in the Coulomb field of the residual ion. Near threshold both electrons have time to interact with each other and with the residual ion. Also, different theoretical models compete to describe the double-photoionization cross section in the threshold region. We have investigated that cross section for lithium and beryllium and have analyzed our data with respect to the latest results in the Coulomb-dipole theory. We find that our data support the idea of a Coulomb-dipole interaction.
Abbaspour, Sara; Fallah, Ali; Lindén, Maria; Gholamhosseini, Hamid
2016-02-01
In recent years, the removal of electrocardiogram (ECG) interferences from electromyogram (EMG) signals has been given large consideration. Where the quality of EMG signal is of interest, it is important to remove ECG interferences from EMG signals. In this paper, an efficient method based on a combination of adaptive neuro-fuzzy inference system (ANFIS) and wavelet transform is proposed to effectively eliminate ECG interferences from surface EMG signals. The proposed approach is compared with other common methods such as high-pass filter, artificial neural network, adaptive noise canceller, wavelet transform, subtraction method and ANFIS. It is found that the performance of the proposed ANFIS-wavelet method is superior to the other methods with the signal to noise ratio and relative error of 14.97dB and 0.02 respectively and a significantly higher correlation coefficient (p<0.05). PMID:26643795
Velocity and Object Detection Using Quaternion Wavelets
Traversoni, Leonardo; Xu Yi
2007-09-06
DStarting from stereoscopic films we detect corresponding objects in both and stablish an epipolar geometry as well as corresponding moving objects are detected and its movement described all using quaternion wavelets and quaternion phase space decomposition.
Wavelet analysis for characterizing human electroencephalogram signals
NASA Astrophysics Data System (ADS)
Li, Bai-Lian; Wu, Hsin-i.
1995-04-01
Wavelet analysis is a recently developed mathematical theory and computational method for decomposing a nonstationary signal into components that have good localization properties both in time and frequency domains and hierarchical structures. Wavelet transform provides local information and multiresolution decomposition on a signal that cannot be obtained using traditional methods such as Fourier transforms and distribution-based statistical methods. Hence the change in complex biological signals can be detected. We use wavelet analysis as an innovative method for identifying and characterizing multiscale electroencephalogram signals in this paper. We develop a wavelet-based stationary phase transition method to extract instantaneous frequencies of the signal that vary in time. The results under different clinical situations show that the brian triggers small bursts of either low or high frequency immediately prior to changing on the global scale to that behavior. This information could be used as a diagnostic for detecting the onset of an epileptic seizure.
Wavelet-based acoustic recognition of aircraft
Dress, W.B.; Kercel, S.W.
1994-09-01
We describe a wavelet-based technique for identifying aircraft from acoustic emissions during take-off and landing. Tests show that the sensor can be a single, inexpensive hearing-aid microphone placed close to the ground the paper describes data collection, analysis by various technique, methods of event classification, and extraction of certain physical parameters from wavelet subspace projections. The primary goal of this paper is to show that wavelet analysis can be used as a divide-and-conquer first step in signal processing, providing both simplification and noise filtering. The idea is to project the original signal onto the orthogonal wavelet subspaces, both details and approximations. Subsequent analysis, such as system identification, nonlinear systems analysis, and feature extraction, is then carried out on the various signal subspaces.
Applications of a fast continuous wavelet transform
NASA Astrophysics Data System (ADS)
Dress, William B.
1997-04-01
A fast, continuous, wavelet transform, justified by appealing to Shannon's sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and from the standard treatment of the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon's sampling theorem lets us view the Fourier transform of the data set as representing the continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time-domain sampling of the signal under analysis. Although more computationally costly and not represented by an orthogonal basis, the inherent flexibility and shift invariance of the frequency-space wavelets are advantageous for certain applications. The method has been applied to forensic audio reconstruction, speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants' heart beats. Audio reconstruction is aided by selection of desired regions in the 2D representation of the magnitude of the transformed signals. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass- spring system by an occupant's beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, different features may be extracted from voice
NASA Astrophysics Data System (ADS)
Ge, Xinmin; Fan, Yiren; Li, Jiangtao; Wang, Yang; Deng, Shaogui
2015-02-01
NMR logging and core NMR signals acts as an effective way of pore structure evaluation and fluid discrimination, but it is greatly contaminated by noise for samples with low magnetic resonance intensity. Transversal relaxation time (T2) spectrum obtained by inversion of decay signals intrigued by Carr-Purcell-Meiboom-Gill (CPMG) sequence may deviate from the truth if the signal-to-noise ratio (SNR) is imperfect. A method of combing the improved wavelet thresholding with the EWMA is proposed for noise reduction of decay data. The wavelet basis function and decomposition level are optimized in consideration of information entropy and white noise estimation firstly. Then a hybrid threshold function is developed to avoid drawbacks of hard and soft threshold functions. To achieve the best thresholding values of different levels, a nonlinear objective function based on SNR and mean square error (MSE) is constructed, transforming the problem to a task of finding optimal solutions. Particle swarm optimization (PSO) is used to ensure the stability and global convergence. EWMA is carried out to eliminate unwanted peaks and sawtooths of the wavelet denoised signal. With validations of numerical simulations and experiments, it is demonstrated that the proposed approach can reduce the noise of T2 decay data perfectly.
NASA Astrophysics Data System (ADS)
Harikumar, Rajaguru; Vijayakumar, Thangavel
2014-12-01
The objective of this paper is to compare the performance of singular value decomposition (SVD), expectation maximization (EM), and modified expectation maximization (MEM) as the postclassifiers for classifications of the epilepsy risk levels obtained from extracted features through wavelet transforms and morphological filters from electroencephalogram (EEG) signals. The code converter acts as a level one classifier. The seven features such as energy, variance, positive and negative peaks, spike and sharp waves, events, average duration, and covariance are extracted from EEG signals. Out of which four parameters like positive and negative peaksand spike and sharp waves, events and average duration are extracted using Haar, dB2, dB4, and Sym 8 wavelet transforms with hard and soft thresholding methods. The above said four features are also extracted through morphological filters. Then, the performance of the code converter and classifiers are compared based on the parameters such as performance index (PI) and quality value (QV).The performance index and quality value of code converters are at low value of 33.26% and 12.74, respectively. The highest PI of 98.03% and QV of 23.82 are attained at dB2 wavelet with hard thresholding method for SVD classifier. All the postclassifiers are settled at PI value of more than 90% at QV of 20.
Wavelet neural networks for stock trading
NASA Astrophysics Data System (ADS)
Zheng, Tianxing; Fataliyev, Kamaladdin; Wang, Lipo
2013-05-01
This paper explores the application of a wavelet neural network (WNN), whose hidden layer is comprised of neurons with adjustable wavelets as activation functions, to stock prediction. We discuss some basic rationales behind technical analysis, and based on which, inputs of the prediction system are carefully selected. This system is tested on Istanbul Stock Exchange National 100 Index and compared with traditional neural networks. The results show that the WNN can achieve very good prediction accuracy.
Auditory thresholds in the rat measured by an operant technique.
GOUREVITCH, G; HACK, M H; HAWKINS, J E
1960-04-01
An adaptation of the Ratliff and Blough technique has been developed for auditory measurement in rats. Thresholds for a 2000-cy/sec tone were determined over a period of weeks. Kanamycin, an ototoxic agent, was then administered, and the gradual rise in threshold was followed.
The Continuous wavelet in airborne gravimetry
NASA Astrophysics Data System (ADS)
Liang, X.; Liu, L.
2013-12-01
Airborne gravimetry is an efficient method to recover medium and high frequency band of earth gravity over any region, especially inaccessible areas, which can measure gravity data with high accuracy,high resolution and broad range in a rapidly and economical way, and It will play an important role for geoid and geophysical exploration. Filtering methods for reducing high-frequency errors is critical to the success of airborne gravimetry due to Aircraft acceleration determination based on GPS.Tradiontal filters used in airborne gravimetry are FIR,IIR filer and so on. This study recommends an improved continuous wavelet to process airborne gravity data. Here we focus on how to construct the continuous wavelet filters and show their working principle. Particularly the technical parameters (window width parameter and scale parameter) of the filters are tested. Then the raw airborne gravity data from the first Chinese airborne gravimetry campaign are filtered using FIR-low pass filter and continuous wavelet filters to remove the noise. The comparison to reference data is performed to determinate external accuracy, which shows that continuous wavelet filters applied to airborne gravity in this thesis have good performances. The advantages of the continuous wavelet filters over digital filters are also introduced. The effectiveness of the continuous wavelet filters for airborne gravimetry is demonstrated through real data computation.
Hydrodynamics of sediment threshold
NASA Astrophysics Data System (ADS)
Ali, Sk Zeeshan; Dey, Subhasish
2016-07-01
A novel hydrodynamic model for the threshold of cohesionless sediment particle motion under a steady unidirectional streamflow is presented. The hydrodynamic forces (drag and lift) acting on a solitary sediment particle resting over a closely packed bed formed by the identical sediment particles are the primary motivating forces. The drag force comprises of the form drag and form induced drag. The lift force includes the Saffman lift, Magnus lift, centrifugal lift, and turbulent lift. The points of action of the force system are appropriately obtained, for the first time, from the basics of micro-mechanics. The sediment threshold is envisioned as the rolling mode, which is the plausible mode to initiate a particle motion on the bed. The moment balance of the force system on the solitary particle about the pivoting point of rolling yields the governing equation. The conditions of sediment threshold under the hydraulically smooth, transitional, and rough flow regimes are examined. The effects of velocity fluctuations are addressed by applying the statistical theory of turbulence. This study shows that for a hindrance coefficient of 0.3, the threshold curve (threshold Shields parameter versus shear Reynolds number) has an excellent agreement with the experimental data of uniform sediments. However, most of the experimental data are bounded by the upper and lower limiting threshold curves, corresponding to the hindrance coefficients of 0.2 and 0.4, respectively. The threshold curve of this study is compared with those of previous researchers. The present model also agrees satisfactorily with the experimental data of nonuniform sediments.
Multiresolution With Super-Compact Wavelets
NASA Technical Reports Server (NTRS)
Lee, Dohyung
2000-01-01
The solution data computed from large scale simulations are sometimes too big for main memory, for local disks, and possibly even for a remote storage disk, creating tremendous processing time as well as technical difficulties in analyzing the data. The excessive storage demands a corresponding huge penalty in I/O time, rendering time and transmission time between different computer systems. In this paper, a multiresolution scheme is proposed to compress field simulation or experimental data without much loss of important information in the representation. Originally, the wavelet based multiresolution scheme was introduced in image processing, for the purposes of data compression and feature extraction. Unlike photographic image data which has rather simple settings, computational field simulation data needs more careful treatment in applying the multiresolution technique. While the image data sits on a regular spaced grid, the simulation data usually resides on a structured curvilinear grid or unstructured grid. In addition to the irregularity in grid spacing, the other difficulty is that the solutions consist of vectors instead of scalar values. The data characteristics demand more restrictive conditions. In general, the photographic images have very little inherent smoothness with discontinuities almost everywhere. On the other hand, the numerical solutions have smoothness almost everywhere and discontinuities in local areas (shock, vortices, and shear layers). The wavelet bases should be amenable to the solution of the problem at hand and applicable to constraints such as numerical accuracy and boundary conditions. In choosing a suitable wavelet basis for simulation data among a variety of wavelet families, the supercompact wavelets designed by Beam and Warming provide one of the most effective multiresolution schemes. Supercompact multi-wavelets retain the compactness of Haar wavelets, are piecewise polynomial and orthogonal, and can have arbitrary order of
Depth migration with Gaussian wave packets based on Poincaré wavelets
NASA Astrophysics Data System (ADS)
Gorodnitskiy, Evgeny; Perel, Maria; Geng, Yu; Wu, Ru-Shan
2016-04-01
An approach to depth migration, based on an integral representation of seismic data, that is, wavefields recorded on the boundary, is presented in terms of Poincaré wavelets. Each wavelet is taken as a boundary datum for a high-frequency asymptotic solution of the wave equation. This solution, which we call the quasiphoton or the Gaussian wave packet, decreases in a Gaussian manner away from a point running along a ray that is launched from the surface. The deformation of the propagating packet is taken into account in the migration algorithm. A numerical example of zero-offset migration with synthetic seismograms calculated for the 2-D SEG/EAGE salt model is presented. The result, which uses only 3.9 per cent of the total number of coefficients, is a satisfactory image, with a threshold of 0.75 per cent.
Compression of multispectral Landsat imagery using the Embedded Zerotree Wavelet (EZW) algorithm
NASA Technical Reports Server (NTRS)
Shapiro, Jerome M.; Martucci, Stephen A.; Czigler, Martin
1994-01-01
The Embedded Zerotree Wavelet (EZW) algorithm has proven to be an extremely efficient and flexible compression algorithm for low bit rate image coding. The embedding algorithm attempts to order the bits in the bit stream in numerical importance and thus a given code contains all lower rate encodings of the same algorithm. Therefore, precise bit rate control is achievable and a target rate or distortion metric can be met exactly. Furthermore, the technique is fully image adaptive. An algorithm for multispectral image compression which combines the spectral redundancy removal properties of the image-dependent Karhunen-Loeve Transform (KLT) with the efficiency, controllability, and adaptivity of the embedded zerotree wavelet algorithm is presented. Results are shown which illustrate the advantage of jointly encoding spectral components using the KLT and EZW.
Microarray image enhancement by denoising using stationary wavelet transform.
Wang, X H; Istepanian, Robert S H; Song, Yong Hua
2003-12-01
Microarray imaging is considered an important tool for large scale analysis of gene expression. The accuracy of the gene expression depends on the experiment itself and further image processing. It's well known that the noises introduced during the experiment will greatly affect the accuracy of the gene expression. How to eliminate the effect of the noise constitutes a challenging problem in microarray analysis. Traditionally, statistical methods are used to estimate the noises while the microarray images are being processed. In this paper, we present a new approach to deal with the noise inherent in the microarray image processing procedure. That is, to denoise the image noises before further image processing using stationary wavelet transform (SWT). The time invariant characteristic of SWT is particularly useful in image denoising. The testing result on sample microarray images has shown an enhanced image quality. The results also show that it has a superior performance than conventional discrete wavelet transform and widely used adaptive Wiener filter in this procedure.
Wavelet transforms for electroencephalographic spike and seizure detection
NASA Astrophysics Data System (ADS)
Schiff, Steven J.; Milton, John G.
1993-11-01
The application of wavelet transforms (WT) to experimental data from the nervous system has been hindered by the lack of a straightforward method to handle noise. A noise reduction technique, developed recently for use in wavelet cluster analysis in cosmology and astronomy, is here adapted for electroencephalographic (EEG) time-series data. Noise is filtered using control surrogate data sets generated from randomized aspects of the original time-series. In this study, WT were applied to EEG data from human patients undergoing brain mapping with implanted subdural electrodes for the localization of epileptic seizure foci. EEG data in 1D were analyzed from individual electrodes, and 2D data from electrode grids. These techniques are a powerful means to identify epileptic spikes in such data, and offer a method to identity the onset and spatial extent of epileptic seizure foci. The method is readily applied to the detection of structure in stationary and non-stationary time-series from a variety of physical systems.
Multiparameter radar analysis using wavelets
NASA Astrophysics Data System (ADS)
Tawfik, Ben Bella Sayed
Multiparameter radars have been used in the interpretation of many meteorological phenomena. Rainfall estimates can be obtained from multiparameter radar measurements. Studying and analyzing spatial variability of different rainfall algorithms, namely R(ZH), the algorithm based on reflectivity, R(ZH, ZDR), the algorithm based on reflectivity and differential reflectivity, R(KDP), the algorithm based on specific differential phase, and R(KDP, Z DR), the algorithm based on specific differential phase and differential reflectivity, are important for radar applications. The data used in this research were collected using CSU-CHILL, CP-2, and S-POL radars. In this research multiple objectives are addressed using wavelet analysis namely, (1)space time variability of various rainfall algorithms, (2)separation of convective and stratiform storms based on reflectivity measurements, (3)and detection of features such as bright bands. The bright band is a multiscale edge detection problem. In this research, the technique of multiscale edge detection is applied on the radar data collected using CP-2 radar on August 23, 1991 to detect the melting layer. In the analysis of space/time variability of rainfall algorithms, wavelet variance introduces an idea about the statistics of the radar field. In addition, multiresolution analysis of different rainfall estimates based on four algorithms, namely R(ZH), R( ZH, ZDR), R(K DP), and R(KDP, Z DR), are analyzed. The flood data of July 29, 1997 collected by CSU-CHILL radar were used for this analysis. Another set of S-POL radar data collected on May 2, 1997 at Wichita, Kansas were used as well. At each level of approximation, the detail and the approximation components are analyzed. Based on this analysis, the rainfall algorithms can be judged. From this analysis, an important result was obtained. The Z-R algorithms that are widely used do not show the full spatial variability of rainfall. In addition another intuitively obvious result
Neural nets for adaptive filtering and adaptive pattern recognition
Widrow, B.; Winter, R.
1988-03-01
The fields of adaptive signal processing and adaptive neural networks have been developing independently but have that adaptive linear combiner (ALC) in common. With its inputs connected to a tapped delay line, the ALC becomes a key component of an adaptive filter. With its output connected to a quantizer, the ALC becomes an adaptive threshold element of adaptive neuron. Adaptive threshold elements, on the other hand, are the building blocks of neural networks. Today neural nets are the focus of widespread research interest. Areas of investigation include pattern recognition and trainable logic. Neural network systems have not yet had the commercial impact of adaptive filtering. The commonality of the ALC to adaptive signal processing and adaptive neural networks suggests the two fields have much to share with each other. This article describes practical applications of the ALC in signal processing and pattern recognition.
Wavelet transforms as solutions of partial differential equations
Zweig, G.
1997-10-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Wavelet transforms are useful in representing transients whose time and frequency structure reflect the dynamics of an underlying physical system. Speech sound, pressure in turbulent fluid flow, or engine sound in automobiles are excellent candidates for wavelet analysis. This project focused on (1) methods for choosing the parent wavelet for a continuous wavelet transform in pattern recognition applications and (2) the more efficient computation of continuous wavelet transforms by understanding the relationship between discrete wavelet transforms and discretized continuous wavelet transforms. The most interesting result of this research is the finding that the generalized wave equation, on which the continuous wavelet transform is based, can be used to understand phenomena that relate to the process of hearing.
Image wavelet decomposition and applications
NASA Technical Reports Server (NTRS)
Treil, N.; Mallat, S.; Bajcsy, R.
1989-01-01
The general problem of computer vision has been investigated for more that 20 years and is still one of the most challenging fields in artificial intelligence. Indeed, taking a look at the human visual system can give us an idea of the complexity of any solution to the problem of visual recognition. This general task can be decomposed into a whole hierarchy of problems ranging from pixel processing to high level segmentation and complex objects recognition. Contrasting an image at different representations provides useful information such as edges. An example of low level signal and image processing using the theory of wavelets is introduced which provides the basis for multiresolution representation. Like the human brain, we use a multiorientation process which detects features independently in different orientation sectors. So, images of the same orientation but of different resolutions are contrasted to gather information about an image. An interesting image representation using energy zero crossings is developed. This representation is shown to be experimentally complete and leads to some higher level applications such as edge and corner finding, which in turn provides two basic steps to image segmentation. The possibilities of feedback between different levels of processing are also discussed.
Analysis of autostereoscopic three-dimensional images using multiview wavelets.
Saveljev, Vladimir; Palchikova, Irina
2016-08-10
We propose that multiview wavelets can be used in processing multiview images. The reference functions for the synthesis/analysis of multiview images are described. The synthesized binary images were observed experimentally as three-dimensional visual images. The symmetric multiview B-spline wavelets are proposed. The locations recognized in the continuous wavelet transform correspond to the layout of the test objects. The proposed wavelets can be applied to the multiview, integral, and plenoptic images. PMID:27534470
Hammad, Sofyan H. H.; Farina, Dario; Kamavuako, Ernest N.; Jensen, Winnie
2013-01-01
Invasive brain–computer interfaces (BCIs) may prove to be a useful rehabilitation tool for severely disabled patients. Although some systems have shown to work well in restricted laboratory settings, their usefulness must be tested in less controlled environments. Our objective was to investigate if a specific motor task could reliably be detected from multi-unit intra-cortical signals from freely moving animals. Four rats were trained to hit a retractable paddle (defined as a “hit”). Intra-cortical signals were obtained from electrodes placed in the primary motor cortex. First, the signal-to-noise ratio was increased by wavelet denoising. Action potentials were then detected using an adaptive threshold, counted in three consecutive time intervals and were used as features to classify either a “hit” or a “no-hit” (defined as an interval between two “hits”). We found that a “hit” could be detected with an accuracy of 75 ± 6% when wavelet denoising was applied whereas the accuracy dropped to 62 ± 5% without prior denoising. We compared our approach with the common daily practice in BCI that consists of using a fixed, manually selected threshold for spike detection without denoising. The results showed the feasibility of detecting a motor task in a less restricted environment than commonly applied within invasive BCI research. PMID:24298254
Crossing the Writing Threshold.
ERIC Educational Resources Information Center
Clark, Carol Lea
What pushes a writer over the edge of thought into text production--over what may be called "the writing threshold?" This is the moment when the thoughts in a writer's mind, the writing situation, and personal motivations create a momentum that results in a pattern of written words. There is evidence that not everyone crosses the writing threshold…
Elaborating on Threshold Concepts
ERIC Educational Resources Information Center
Rountree, Janet; Robins, Anthony; Rountree, Nathan
2013-01-01
We propose an expanded definition of Threshold Concepts (TCs) that requires the successful acquisition and internalisation not only of knowledge, but also its practical elaboration in the domains of applied strategies and mental models. This richer definition allows us to clarify the relationship between TCs and Fundamental Ideas, and to account…
Simmen, B
1992-01-01
Taste thresholds and consumption responses to above-threshold concentrations of fructose solutions were determined in eight callitrichid primate species using the "two-bottle preference test". Although taste thresholds are relatively similar across species, above-threshold responses may differ considerably between marmosets and tamarins. As fructose concentration increases, the rate of consumption increases less for most marmoset species (Cebuella and Callithrix spp.) than for Goeldi's monkey (Callimico) and tamarins (Saguinus and Leontopithecus spp.). It is proposed that distinct shapes of the curves illustrating these responses characterize species in terms of global taste system adaptations to different diets.
[Wavelet entropy analysis of spontaneous EEG signals in Alzheimer's disease].
Zhang, Meiyun; Zhang, Benshu; Chen, Ying
2014-08-01
Wavelet entropy is a quantitative index to describe the complexity of signals. Continuous wavelet transform method was employed to analyze the spontaneous electroencephalogram (EEG) signals of mild, moderate and severe Alzheimer's disease (AD) patients and normal elderly control people in this study. Wavelet power spectrums of EEG signals were calculated based on wavelet coefficients. Wavelet entropies of mild, moderate and severe AD patients were compared with those of normal controls. The correlation analysis between wavelet entropy and MMSE score was carried out. There existed significant difference on wavelet entropy among mild, moderate, severe AD patients and normal controls (P<0.01). Group comparisons showed that wavelet entropy for mild, moderate, severe AD patients was significantly lower than that for normal controls, which was related to the narrow distribution of their wavelet power spectrums. The statistical difference was significant (P<0.05). Further studies showed that the wavelet entropy of EEG and the MMSE score were significantly correlated (r= 0. 601-0. 799, P<0.01). Wavelet entropy is a quantitative indicator describing the complexity of EEG signals. Wavelet entropy is likely to be an electrophysiological index for AD diagnosis and severity assessment.
Navarro, Pedro J; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan
2016-07-27
This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon's entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed.
Navarro, Pedro J; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan
2016-01-01
This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon's entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed. PMID:27472343
Navarro, Pedro J.; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan
2016-01-01
This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon’s entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed. PMID:27472343
Wavelet-based learning vector quantization for automatic target recognition
NASA Astrophysics Data System (ADS)
Chan, Lipchen A.; Nasrabadi, Nasser M.; Mirelli, Vincent
1996-06-01
An automatic target recognition classifier is constructed that uses a set of dedicated vector quantizers (VQs). The background pixels in each input image are properly clipped out by a set of aspect windows. The extracted target area for each aspect window is then enlarged to a fixed size, after which a wavelet decomposition splits the enlarged extraction into several subbands. A dedicated VQ codebook is generated for each subband of a particular target class at a specific range of aspects. Thus, each codebook consists of a set of feature templates that are iteratively adapted to represent a particular subband of a given target class at a specific range of aspects. These templates are then further trained by a modified learning vector quantization (LVQ) algorithm that enhances their discriminatory characteristics. A recognition rate of 69.0 percent is achieved on a highly cluttered test set.
Simultaneous registration and segmentation of images in wavelet domain
NASA Astrophysics Data System (ADS)
Yoshida, Hiroyuki
1999-10-01
A novel method for simultaneous registration and segmentation is developed. The method is designed to register two similar images while a region with significant difference is adaptively segmented. This is achieved by minimization of a non-linear functional that models the statistical properties of the subtraction of the two images. Minimization is performed in the wavelet domain by a coarse- to-fine approach to yield a mapping that yields the registration and the boundary that yields the segmentation. The new method was applied to the registration of the left and the right lung regions in chest radiographs for extraction of lung nodules while the normal anatomic structures such as ribs are removed. A preliminary result shows that our method is very effective in reducing the number of false detections obtained with our computer-aided diagnosis scheme for detection of lung nodules in chest radiographs.
Wavelet Analysis of Space Solar Telescope Images
NASA Astrophysics Data System (ADS)
Zhu, Xi-An; Jin, Sheng-Zhen; Wang, Jing-Yu; Ning, Shu-Nian
2003-12-01
The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day, SST acquires 50 GB of data (after processing) but only 10GB can be transmitted to the ground because of limited time of satellite passage and limited channel volume. Therefore, the data must be compressed before transmission. Wavelets analysis is a new technique developed over the last 10 years, with great potential of application. We start with a brief introduction to the essential principles of wavelet analysis, and then describe the main idea of embedded zerotree wavelet coding, used for compressing the SST images. The results show that this coding is adequate for the job.
Wavelet analysis for wind fields estimation.
Leite, Gladeston C; Ushizima, Daniela M; Medeiros, Fátima N S; de Lima, Gilson G
2010-01-01
Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms.
Component identification of nonstationary signals using wavelets
Otaduy, P.J.; Georgevich, V. )
1993-01-01
Fourier analysis is based on the decomposition of a signal into a linear combination of integral dilations of the base function e[sup ix],i.e., of sinusoidal waves. The larger the dilation the higher the frequency of the sinusoidal component. Each frequency component is of constant magnitude along the signal length. Localized features are averaged over the signal's length; thus, time localization is absent. Wavelet analysis is based on the decomposition of a signal into a linear combination of binary dilations and dyadic translations of a base function with compact support, i.e., a basic wavelet. A basic wavelet function can be, with basic restrictions, any function suitable to be a window in both the time.
Wavelet Analysis for Wind Fields Estimation
Leite, Gladeston C.; Ushizima, Daniela M.; Medeiros, Fátima N. S.; de Lima, Gilson G.
2010-01-01
Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms. PMID:22219699
Wavelet analysis for wind fields estimation.
Leite, Gladeston C; Ushizima, Daniela M; Medeiros, Fátima N S; de Lima, Gilson G
2010-01-01
Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms. PMID:22219699
Characterization and simulation of gunfire with wavelets
Smallwood, D.O.
1998-09-01
Gunfire is used as an example to show how the wavelet transform can be used to characterize and simulate nonstationary random events when an ensemble of events is available. The response of a structure to nearby firing of a high-firing rate gun has been characterized in several ways as a nonstationary random process. The methods all used some form of the discrete fourier transform. The current paper will explore a simpler method to describe the nonstationary random process in terms of a wavelet transform. As was done previously, the gunfire record is broken up into a sequence of transient waveforms each representing the response to the firing of a single round. The wavelet transform is performed on each of these records. The mean and standard deviation of the resulting wavelet coefficients describe the composite characteristics of the entire waveform. It is shown that the distribution of the wavelet coefficients is approximately Gaussian with a nonzero mean and that the standard deviation of the coefficients at different times and levels are approximately independent. The gunfire is simulated by generating realizations of records of a single-round firing by computing the inverse wavelet transform from Gaussian random coefficients with the same mean and standard deviation as those estimated from the previously discussed gunfire record. The individual realizations are then assembled into a realization of a time history of many rounds firing. A second-order correction of the probability density function (pdf) is accomplished with a zero memory nonlinear (ZMNL) function. The method is straightforward, easy to implement, and produces a simulated record very much like the original measured gunfire record.
Analysis of wavelet technology for NASA applications
NASA Technical Reports Server (NTRS)
Wells, R. O., Jr.
1994-01-01
The purpose of this grant was to introduce a broad group of NASA researchers and administrators to wavelet technology and to determine its future role in research and development at NASA JSC. The activities of several briefings held between NASA JSC scientists and Rice University researchers are discussed. An attached paper, 'Recent Advances in Wavelet Technology', summarizes some aspects of these briefings. Two proposals submitted to NASA reflect the primary areas of common interest. They are image analysis and numerical solutions of partial differential equations arising in computational fluid dynamics and structural mechanics.
Numerical Algorithms Based on Biorthogonal Wavelets
NASA Technical Reports Server (NTRS)
Ponenti, Pj.; Liandrat, J.
1996-01-01
Wavelet bases are used to generate spaces of approximation for the resolution of bidimensional elliptic and parabolic problems. Under some specific hypotheses relating the properties of the wavelets to the order of the involved operators, it is shown that an approximate solution can be built. This approximation is then stable and converges towards the exact solution. It is designed such that fast algorithms involving biorthogonal multi resolution analyses can be used to resolve the corresponding numerical problems. Detailed algorithms are provided as well as the results of numerical tests on partial differential equations defined on the bidimensional torus.
Wavelet analysis applied to the IRAS cirrus
NASA Technical Reports Server (NTRS)
Langer, William D.; Wilson, Robert W.; Anderson, Charles H.
1994-01-01
The structure of infrared cirrus clouds is analyzed with Laplacian pyramid transforms, a form of non-orthogonal wavelets. Pyramid and wavelet transforms provide a means to decompose images into their spatial frequency components such that all spatial scales are treated in an equivalent manner. The multiscale transform analysis is applied to IRAS 100 micrometer maps of cirrus emission in the north Galactic pole region to extract features on different scales. In the maps we identify filaments, fragments and clumps by separating all connected regions. These structures are analyzed with respect to their Hausdorff dimension for evidence of the scaling relationships in the cirrus clouds.
Wavelet-based detection of transients in biological signals
NASA Astrophysics Data System (ADS)
Mzaik, Tahsin; Jagadeesh, Jogikal M.
1994-10-01
This paper presents two multiresolution algorithms for detection and separation of mixed signals using the wavelet transform. The first algorithm allows one to design a mother wavelet and its associated wavelet grid that guarantees the separation of signal components if information about the expected minimum signal time and frequency separation of the individual components is known. The second algorithm expands this idea to design two mother wavelets which are then combined to achieve the required separation otherwise impossible with a single wavelet. Potential applications include many biological signals such as ECG, EKG, and retinal signals.
EEG analysis using wavelet-based information tools.
Rosso, O A; Martin, M T; Figliola, A; Keller, K; Plastino, A
2006-06-15
Wavelet-based informational tools for quantitative electroencephalogram (EEG) record analysis are reviewed. Relative wavelet energies, wavelet entropies and wavelet statistical complexities are used in the characterization of scalp EEG records corresponding to secondary generalized tonic-clonic epileptic seizures. In particular, we show that the epileptic recruitment rhythm observed during seizure development is well described in terms of the relative wavelet energies. In addition, during the concomitant time-period the entropy diminishes while complexity grows. This is construed as evidence supporting the conjecture that an epileptic focus, for this kind of seizures, triggers a self-organized brain state characterized by both order and maximal complexity.
Parallel object-oriented, denoising system using wavelet multiresolution analysis
Kamath, Chandrika; Baldwin, Chuck H.; Fodor, Imola K.; Tang, Nu A.
2005-04-12
The present invention provides a data de-noising system utilizing processors and wavelet denoising techniques. Data is read and displayed in different formats. The data is partitioned into regions and the regions are distributed onto the processors. Communication requirements are determined among the processors according to the wavelet denoising technique and the partitioning of the data. The data is transforming onto different multiresolution levels with the wavelet transform according to the wavelet denoising technique, the communication requirements, and the transformed data containing wavelet coefficients. The denoised data is then transformed into its original reading and displaying data format.
NASA Astrophysics Data System (ADS)
He, Wangpeng; Zi, Yanyang; Chen, Binqiang; Wu, Feng; He, Zhengjia
2015-03-01
Mechanical anomaly is a major failure type of induction motor. It is of great value to detect the resulting fault feature automatically. In this paper, an ensemble super-wavelet transform (ESW) is proposed for investigating vibration features of motor bearing faults. The ESW is put forward based on the combination of tunable Q-factor wavelet transform (TQWT) and Hilbert transform such that fault feature adaptability is enabled. Within ESW, a parametric optimization is performed on the measured signal to obtain a quality TQWT basis that best demonstrate the hidden fault feature. TQWT is introduced as it provides a vast wavelet dictionary with time-frequency localization ability. The parametric optimization is guided according to the maximization of fault feature ratio, which is a new quantitative measure of periodic fault signatures. The fault feature ratio is derived from the digital Hilbert demodulation analysis with an insightful quantitative interpretation. The output of ESW on the measured signal is a selected wavelet scale with indicated fault features. It is verified via numerical simulations that ESW can match the oscillatory behavior of signals without artificially specified. The proposed method is applied to two engineering cases, signals of which were collected from wind turbine and steel temper mill, to verify its effectiveness. The processed results demonstrate that the proposed method is more effective in extracting weak fault features of induction motor bearings compared with Fourier transform, direct Hilbert envelope spectrum, different wavelet transforms and spectral kurtosis.
NASA Technical Reports Server (NTRS)
Gejji, Raghvendra, R.
1992-01-01
Network transmission errors such as collisions, CRC errors, misalignment, etc. are statistical in nature. Although errors can vary randomly, a high level of errors does indicate specific network problems, e.g. equipment failure. In this project, we have studied the random nature of collisions theoretically as well as by gathering statistics, and established a numerical threshold above which a network problem is indicated with high probability.
Wilkinson Microwave Anisotropy Probe 7-yr constraints on f_NL with a fast wavelet estimator
NASA Astrophysics Data System (ADS)
Casaponsa, B.; Barreiro, R. B.; Curto, A.; Martínez-González, E.; Vielva; P.
2011-11-01
A new method to constrain the local non-linear coupling parameter f_NL based on a fast wavelet decomposition is presented. Using a multiresolution wavelet adapted to the HEALPix pixelization, we have developed a method that is ˜ 10^2 times faster than previous estimators based on isotropic wavelets and ˜ 10^3 faster than the KSW bispectrum estimator, at the resolution of the Wilkinson Microwave Anisotropy Probe (WMAP) data. The method has been applied to the WMAP 7-yr V+W combined map, imposing constraints on f_NL of -69 < f_NL < 65 at the 95 per cent CL. This result has been obtained after correcting for the contribution of the residual point sources which has been estimated to be Δ f_NL =7 ± 6. In addition, a Gaussianity analysis of the data has been carried out using the third order moments of the wavelet coefficients, finding consistency with Gaussianity. Although the constrainsts imposed on f_NL are less stringent than those found with optimal estimators, we believe that a very fast method, as the one proposed in this work, can be very useful, especially bearing in mind the large amount of data that will be provided by future experiments, such as the Planck satellite. Moreover, the localisation of wavelets allows one to carry out analyses on different regions of the sky. As an application, we have separately analysed the two hemispheres defined by the dipolar modulation proposed by Hoftuft et al. (2009, ApJ, 699, 985). We do not find any significant asymmetry regarding the estimated value of f_NL in those hemispheres.
A Wavelet-based Fast Discrimination of Transformer Magnetizing Inrush Current
NASA Astrophysics Data System (ADS)
Kitayama, Masashi
Recently customers who need electricity of higher quality have been installing co-generation facilities. They can avoid voltage sags and other distribution system related disturbances by supplying electricity to important load from their generators. For another example, FRIENDS, highly reliable distribution system using semiconductor switches or storage devices based on power electronics technology, is proposed. These examples illustrates that the request for high reliability in distribution system is increasing. In order to realize these systems, fast relaying algorithms are indispensable. The author proposes a new method of detecting magnetizing inrush current using discrete wavelet transform (DWT). DWT provides the function of detecting discontinuity of current waveform. Inrush current occurs when transformer core becomes saturated. The proposed method detects spikes of DWT components derived from the discontinuity of the current waveform at both the beginning and the end of inrush current. Wavelet thresholding, one of the wavelet-based statistical modeling, was applied to detect the DWT component spikes. The proposed method is verified using experimental data using single-phase transformer and the proposed method is proved to be effective.
Brychta, Robert J.; Shiavi, Richard; Robertson, David; Diedrich, André
2007-01-01
The accurate assessment of autonomic sympathetic function is important in the diagnosis and study of various autonomic and cardiovascular disorders. Sympathetic function in humans can be assessed by recording the muscle sympathetic nerve activity, which is characterized by synchronous neuronal discharges separated by periods of neural silence dominated by colored Gaussian noise. The raw nerve activity is generally rectified, integrated, and quantified using the integrated burst rate or area. We propose an alternative quantification involving spike detection using a two-stage stationary wavelet transform (SWT) de-noising method. The SWT coefficients are first separated into noise-related and burst-related coefficients on the basis of their local kurtosis. The noise-related coefficients are then used to establish a threshold to identify spikes within the bursts. This method demonstrated better detection performance than an unsupervised amplitude discriminator and similar wavelet-based methods when confronted with simulated data of varying burst rate and signal to noise ratio. Additional validation on data acquired during a graded head-up tilt protocol revealed a strong correlation between the mean spike rate and the mean integrate burst rate (r = 0.85) and burst area rate (r = 0.91). In conclusion, the kurtosis-based wavelet de-noising technique is a potentially useful method of studying sympathetic nerve activity in humans. PMID:17083982
Brychta, Robert J; Shiavi, Richard; Robertson, David; Diedrich, André
2007-03-15
The accurate assessment of autonomic sympathetic function is important in the diagnosis and study of various autonomic and cardiovascular disorders. Sympathetic function in humans can be assessed by recording the muscle sympathetic nerve activity, which is characterized by synchronous neuronal discharges separated by periods of neural silence dominated by colored Gaussian noise. The raw nerve activity is generally rectified, integrated, and quantified using the integrated burst rate or area. We propose an alternative quantification involving spike detection using a two-stage stationary wavelet transform (SWT) de-noising method. The SWT coefficients are first separated into noise-related and burst-related coefficients on the basis of their local kurtosis. The noise-related coefficients are then used to establish a threshold to identify spikes within the bursts. This method demonstrated better detection performance than an unsupervised amplitude discriminator and similar wavelet-based methods when confronted with simulated data of varying burst rate and signal to noise ratio. Additional validation on data acquired during a graded head-up tilt protocol revealed a strong correlation between the mean spike rate and the mean integrate burst rate (r=0.85) and burst area rate (r=0.91). In conclusion, the kurtosis-based wavelet de-noising technique is a potentially useful method of studying sympathetic nerve activity in humans.
NASA Astrophysics Data System (ADS)
Chouakri, S. A.; Djaafri, O.; Taleb-Ahmed, A.
2013-08-01
We present in this work an algorithm for electrocardiogram (ECG) signal compression aimed to its transmission via telecommunication channel. Basically, the proposed ECG compression algorithm is articulated on the use of wavelet transform, leading to low/high frequency components separation, high order statistics based thresholding, using level adjusted kurtosis value, to denoise the ECG signal, and next a linear predictive coding filter is applied to the wavelet coefficients producing a lower variance signal. This latter one will be coded using the Huffman encoding yielding an optimal coding length in terms of average value of bits per sample. At the receiver end point, with the assumption of an ideal communication channel, the inverse processes are carried out namely the Huffman decoding, inverse linear predictive coding filter and inverse discrete wavelet transform leading to the estimated version of the ECG signal. The proposed ECG compression algorithm is tested upon a set of ECG records extracted from the MIT-BIH Arrhythmia Data Base including different cardiac anomalies as well as the normal ECG signal. The obtained results are evaluated in terms of compression ratio and mean square error which are, respectively, around 1:8 and 7%. Besides the numerical evaluation, the visual perception demonstrates the high quality of ECG signal restitution where the different ECG waves are recovered correctly.
Edge extraction of CT medical image based on wavelet transform algorithm
NASA Astrophysics Data System (ADS)
Wang, Xiaojun; Li, Xinzheng; Lai, Weidong
2011-06-01
Since computer tomography (CT) image has been widely applied in clinic diagnostics, while for many applications the information directly provided by CT images is incomplete corrupted by noise or instrument defect, there has great demand to further the processing methods for improving the CT image quality. Among all image features, the edge profile of clinic focus has obvious influence on accurately translating CT image. In this paper, the wavelet filtering algorithm based on modulus maximum method is put forward to extract and enhance the CT image edges. Edges in the brain lobe CT image can be outlined after wavelet transform, during which the wavelet assigned as the first order derivative of Gauss function. Further manipulation through maximum threshold checking to the modulus have been attenuated the pseudo-edges. After segmented with the original CT image, the edge structure has been distinctly enhanced, and high contrast is achieved between the brain lobe microstructure and the artificially established edges. The proposed algorithm is more efficient than the common first order differential operator, for the latter it even deteriorates the edge features. The algorithm proposed in this article can be integrated in medical image analyzing software to obtain higher accuracy for symptom interpretation.
Real-time nondestructive structural health monitoring using support vector machines and wavelets
NASA Astrophysics Data System (ADS)
Bulut, Ahmet; Singh, Ambuj K.; Shin, Peter; Fountain, Tony; Jasso, Hector; Yan, Linjun; Elgamal, Ahmed
2005-05-01
We present an alternative to visual inspection for detecting damage to civil infrastructure. We describe a real-time decision support system for nondestructive health monitoring. The system is instrumented by an integrated network of wireless sensors mounted on civil infrastructures such as bridges, highways, and commercial and industrial facilities. To address scalability and power consumption issues related to sensor networks, we propose a three-tier system that uses wavelets to adaptively reduce the streaming data spatially and temporally. At the sensor level, measurement data is temporally compressed before being sent upstream to intermediate communication nodes. There, correlated data from multiple sensors is combined and sent to the operation center for further reduction and interpretation. At each level, the compression ratio can be adaptively changed via wavelets. This multi-resolution approach is useful in optimizing total resources in the system. At the operation center, Support Vector Machines (SVMs) are used to detect the location of potential damage from the reduced data. We demonstrate that the SVM is a robust classifier in the presence of noise and that wavelet-based compression gracefully degrades its classification accuracy. We validate the effectiveness of our approach using a finite element model of the Humboldt Bay Bridge. We envision that our approach will prove novel and useful in the design of scalable nondestructive health monitoring systems.
Lossless Video Sequence Compression Using Adaptive Prediction
NASA Technical Reports Server (NTRS)
Li, Ying; Sayood, Khalid
2007-01-01
We present an adaptive lossless video compression algorithm based on predictive coding. The proposed algorithm exploits temporal, spatial, and spectral redundancies in a backward adaptive fashion with extremely low side information. The computational complexity is further reduced by using a caching strategy. We also study the relationship between the operational domain for the coder (wavelet or spatial) and the amount of temporal and spatial redundancy in the sequence being encoded. Experimental results show that the proposed scheme provides significant improvements in compression efficiencies.
Information retrieval system utilizing wavelet transform
Brewster, Mary E.; Miller, Nancy E.
2000-01-01
A method for automatically partitioning an unstructured electronically formatted natural language document into its sub-topic structure. Specifically, the document is converted to an electronic signal and a wavelet transform is then performed on the signal. The resultant signal may then be used to graphically display and interact with the sub-topic structure of the document.
Characterization and Simulation of Gunfire with Wavelets
Smallwood, David O.
1999-01-01
Gunfire is used as an example to show how the wavelet transform can be used to characterize and simulate nonstationary random events when an ensemble of events is available. The structural response to nearby firing of a high-firing rate gun has been characterized in several ways as a nonstationary random process. The current paper will explore a method to describe the nonstationary random process using a wavelet transform. The gunfire record is broken up into a sequence of transient waveforms each representing the response to the firing of a single round. A wavelet transform is performed on each of thesemore » records. The gunfire is simulated by generating realizations of records of a single-round firing by computing an inverse wavelet transform from Gaussian random coefficients with the same mean and standard deviation as those estimated from the previously analyzed gunfire record. The individual records are assembled into a realization of many rounds firing. A second-order correction of the probability density function is accomplished with a zero memory nonlinear function. The method is straightforward, easy to implement, and produces a simulated record much like the measured gunfire record.« less
Cosmic Ray elimination using the Wavelet Transform
NASA Astrophysics Data System (ADS)
Orozco-Aguilera, M. T.; Cruz, J.; Altamirano, L.; Serrano, A.
2009-11-01
In this work, we present a method for the automatic cosmic ray elimination in a single CCD exposure using the Wavelet Transform. The proposed method can eliminate cosmic rays of any shape or size. With this method we can eliminate over 95% of cosmic rays in a spectral image.
Climate wavelet spectrum estimation under chronology uncertainties
NASA Astrophysics Data System (ADS)
Lenoir, G.; Crucifix, M.
2012-04-01
Several approaches to estimate the chronology of palaeoclimate records exist in the literature: simple interpolation between the tie points, orbital tuning, alignment on other data... These techniques generate a single estimate of the chronology. More recently, statistical generators of chronologies have appeared (e.g. OXCAL, BCHRON) allowing the construction of thousands of chronologies given the tie points and their uncertainties. These techniques are based on advanced statistical methods. They allow one to take into account the uncertainty of the timing of each climatic event recorded into the core. On the other hand, when interpreting the data, scientists often rely on time series analysis, and especially on spectral analysis. Given that paleo-data are composed of a large spectrum of frequencies, are non-stationary and are highly noisy, the continuous wavelet transform turns out to be a suitable tool to analyse them. The wavelet periodogram, in particular, is helpful to interpret visually the time-frequency behaviour of the data. Here, we combine statistical methods to generate chronologies with the power of continuous wavelet transform. Some interesting applications then come up: comparison of time-frequency patterns between two proxies (extracted from different cores), between a proxy and a statistical dynamical model, and statistical estimation of phase-lag between two filtered signals. All these applications consider explicitly the uncertainty in the chronology. The poster presents mathematical developments on the wavelet spectrum estimation under chronology uncertainties as well as some applications to Quaternary data based on marine and ice cores.
Graham, S. L.; Vaegan
1991-01-01
The scotopic threshold response (STR) is a negative potential to low intensity light recorded from the dark-adapted retina. It reflects inner retinal function. The STR is now recorded routinely as part of our electroretinography protocol. The projected absolute threshold calculated from the amplitude versus intensity function for the STR has been found to correlate well (r = 0.59) with the absolute subjective threshold to the same stimulus. The correlation holds for about 1.5 log units above normal. With further elevation the STR is usually abnormal or absent as b wave threshold is approached. The correlation would have been much greater were it not for this truncated range over which both are recordable. This report includes our findings in 127 patients and examines several disease groups. When the STR had a reduced and abnormal intensity series or was absent, the subjective threshold was elevated in almost all cases (92.2%). The converse relationship also held. When there was a discrepancy, recording problems were usually identified. Since the STR requires difficult, time consuming signal averaging for reliable recording, it may be adequate to record the subjective threshold alone to provide a relatively easily recordable indicator of inner retinal function. Additional STR recording will seldom be warranted. PMID:1954209
ECG Artifact Removal from Surface EMG Signal Using an Automated Method Based on Wavelet-ICA.
Abbaspour, Sara; Lindén, Maria; Gholamhosseini, Hamid
2015-01-01
This study aims at proposing an efficient method for automated electrocardiography (ECG) artifact removal from surface electromyography (EMG) signals recorded from upper trunk muscles. Wavelet transform is applied to the simulated data set of corrupted surface EMG signals to create multidimensional signal. Afterward, independent component analysis (ICA) is used to separate ECG artifact components from the original EMG signal. Components that correspond to the ECG artifact are then identified by an automated detection algorithm and are subsequently removed using a conventional high pass filter. Finally, the results of the proposed method are compared with wavelet transform, ICA, adaptive filter and empirical mode decomposition-ICA methods. The automated artifact removal method proposed in this study successfully removes the ECG artifacts from EMG signals with a signal to noise ratio value of 9.38 while keeping the distortion of original EMG to a minimum. PMID:25980853
CHARACTERIZING COMPLEXITY IN SOLAR MAGNETOGRAM DATA USING A WAVELET-BASED SEGMENTATION METHOD
Kestener, P.; Khalil, A.; Arneodo, A.
2010-07-10
The multifractal nature of solar photospheric magnetic structures is studied using the two-dimensional wavelet transform modulus maxima (WTMM) method. This relies on computing partition functions from the wavelet transform skeleton defined by the WTMM method. This skeleton provides an adaptive space-scale partition of the fractal distribution under study, from which one can extract the multifractal singularity spectrum. We describe the implementation of a multiscale image processing segmentation procedure based on the partitioning of the WT skeleton, which allows the disentangling of the information concerning the multifractal properties of active regions from the surrounding quiet-Sun field. The quiet Sun exhibits an average Hoelder exponent {approx}-0.75, with observed multifractal properties due to the supergranular structure. On the other hand, active region multifractal spectra exhibit an average Hoelder exponent {approx}0.38, similar to those found when studying experimental data from turbulent flows.
A Simple Method for Guaranteeing ECG Quality in Real-Time Wavelet Lossy Coding
NASA Astrophysics Data System (ADS)
Alesanco, Álvaro; García, José
2007-12-01
Guaranteeing ECG signal quality in wavelet lossy compression methods is essential for clinical acceptability of reconstructed signals. In this paper, we present a simple and efficient method for guaranteeing reconstruction quality measured using the new distortion index wavelet weighted PRD (WWPRD), which reflects in a more accurate way the real clinical distortion of the compressed signal. The method is based on the wavelet transform and its subsequent coding using the set partitioning in hierarchical trees (SPIHT) algorithm. By thresholding the WWPRD in the wavelet transform domain, a very precise reconstruction error can be achieved thus enabling to obtain clinically useful reconstructed signals. Because of its computational efficiency, the method is suitable to work in a real-time operation, thus being very useful for real-time telecardiology systems. The method is extensively tested using two different ECG databases. Results led to an excellent conclusion: the method controls the quality in a very accurate way not only in mean value but also with a low-standard deviation. The effects of ECG baseline wandering as well as noise in compression are also discussed. Baseline wandering provokes negative effects when using WWPRD index to guarantee quality because this index is normalized by the signal energy. Therefore, it is better to remove it before compression. On the other hand, noise causes an increase in signal energy provoking an artificial increase of the coded signal bit rate. Clinical validation by cardiologists showed that a WWPRD value of 10[InlineEquation not available: see fulltext.] preserves the signal quality and thus they recommend this value to be used in the compression system.
NASA Astrophysics Data System (ADS)
Dando, B.; Simons, F. J.; Allen, R. M.
2006-12-01
Earthquake early warning systems save lives. It is of great importance that networked systems of seismometers be equipped with reliable tools to make rapid determinations of earthquake magnitude in the few to tens of seconds before the damaging ground motion occurs. A new fully automated algorithm based on the discrete wavelet transform detects as well as analyzes the incoming first arrival with unmatched accuracy and precision, estimating the final magnitude to within a single unit from the first few seconds of the P wave. The curious observation that such brief segments of the seismogram may contain information about the final magnitude even of very large earthquakes, which occur on faults that may rupture over tens of seconds, is central to a debate in the seismological community which we hope to stimulate but cannot attempt to address within the scope of this paper. Wavelet coefficients of the seismogram can be determined extremely rapidly and efficiently by the fast lifting wavelet transform. Extracting amplitudes at individual scales is a very simple procedure, involving a mere handful of lines of computer code. Scale-dependent thresholded amplitudes derived from the wavelet transform of the first 3--4 seconds of an incoming seismic P arrival are predictive of earthquake magnitude, with errors of one magnitude unit for seismograms recorded up to 150 km away from the earthquake source. Our procedure is a simple yet extremely efficient tool for implementation on low-power recording stations. It provides an accurate and precise method of autonomously detecting the incoming P wave and predicting the magnitude of the source from the scale-dependent character of its amplitude well before the arrival of damaging ground motion. Provided a dense array of networked seismometers exists, our procedure should become the tool of choice for earthquake early warning systems worldwide.
Montazery-Kordy, Hussain; Miran-Baygi, Mohammad Hossein; Moradi, Mohammad Hassan
2008-01-01
Objective: To develop a new bioinformatic tool based on a data-mining approach for extraction of the most informative proteins that could be used to find the potential biomarkers for the detection of cancer. Methods: Two independent datasets from serum samples of 253 ovarian cancer and 167 breast cancer patients were used. The samples were examined by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). The datasets were used to extract the informative proteins using a data-mining method in the discrete stationary wavelet transform domain. As a dimensionality reduction procedure, the hard thresholding method was applied to reduce the number of wavelet coefficients. Also, a distance measure was used to select the most discriminative coefficients. To find the potential biomarkers using the selected wavelet coefficients, we applied the inverse discrete stationary wavelet transform combined with a two-sided t-test. Results: From the ovarian cancer dataset, a set of five proteins were detected as potential biomarkers that could be used to identify the cancer patients from the healthy cases with accuracy, sensitivity, and specificity of 100%. Also, from the breast cancer dataset, a set of eight proteins were found as the potential biomarkers that could separate the healthy cases from the cancer patients with accuracy of 98.26%, sensitivity of 100%, and specificity of 95.6%. Conclusion: The results have shown that the new bioinformatic tool can be used in combination with the high-throughput proteomic data such as SELDI-TOF MS to find the potential biomarkers with high discriminative power. PMID:18988305
Array CGH data modeling and smoothing in Stationary Wavelet Packet Transform domain
Huang, Heng; Nguyen, Nha; Oraintara, Soontorn; Vo, An
2008-01-01
Background Array-based comparative genomic hybridization (array CGH) is a highly efficient technique, allowing the simultaneous measurement of genomic DNA copy number at hundreds or thousands of loci and the reliable detection of local one-copy-level variations. Characterization of these DNA copy number changes is important for both the basic understanding of cancer and its diagnosis. In order to develop effective methods to identify aberration regions from array CGH data, many recent research work focus on both smoothing-based and segmentation-based data processing. In this paper, we propose stationary packet wavelet transform based approach to smooth array CGH data. Our purpose is to remove CGH noise in whole frequency while keeping true signal by using bivariate model. Results In both synthetic and real CGH data, Stationary Wavelet Packet Transform (SWPT) is the best wavelet transform to analyze CGH signal in whole frequency. We also introduce a new bivariate shrinkage model which shows the relationship of CGH noisy coefficients of two scales in SWPT. Before smoothing, the symmetric extension is considered as a preprocessing step to save information at the border. Conclusion We have designed the SWTP and the SWPT-Bi which are using the stationary wavelet packet transform with the hard thresholding and the new bivariate shrinkage estimator respectively to smooth the array CGH data. We demonstrate the effectiveness of our approach through theoretical and experimental exploration of a set of array CGH data, including both synthetic data and real data. The comparison results show that our method outperforms the previous approaches. PMID:18831782
Praveen, Angam; Vijayarekha, K; Abraham, Saju T; Venkatraman, B
2013-09-01
Time of flight diffraction (TOFD) technique is a well-developed ultrasonic non-destructive testing (NDT) method and has been applied successfully for accurate sizing of defects in metallic materials. This technique was developed in early 1970s as a means for accurate sizing and positioning of cracks in nuclear components became very popular in the late 1990s and is today being widely used in various industries for weld inspection. One of the main advantages of TOFD is that, apart from fast technique, it provides higher probability of detection for linear defects. Since TOFD is based on diffraction of sound waves from the extremities of the defect compared to reflection from planar faces as in pulse echo and phased array, the resultant signal would be quite weak and signal to noise ratio (SNR) low. In many cases the defect signal is submerged in this noise making it difficult for detection, positioning and sizing. Several signal processing methods such as digital filtering, Split Spectrum Processing (SSP), Hilbert Transform and Correlation techniques have been developed in order to suppress unwanted noise and enhance the quality of the defect signal which can thus be used for characterization of defects and the material. Wavelet Transform based thresholding techniques have been applied largely for de-noising of ultrasonic signals. However in this paper, higher order wavelets are used for analyzing the de-noising performance for TOFD signals obtained from Austenitic Stainless Steel welds. It is observed that higher order wavelets give greater SNR improvement compared to the lower order wavelets.
Coloring geographical threshold graphs
Bradonjic, Milan; Percus, Allon; Muller, Tobias
2008-01-01
We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.
NASA Astrophysics Data System (ADS)
Jeske, Jan; Cole, Jared H.; Greentree, Andrew D.
2016-01-01
We propose a new type of sensor, which uses diamond containing the optically active nitrogen-vacancy (NV-) centres as a laser medium. The magnetometer can be operated at room-temperature and generates light that can be readily fibre coupled, thereby permitting use in industrial applications and remote sensing. By combining laser pumping with a radio-frequency Rabi-drive field, an external magnetic field changes the fluorescence of the NV- centres. We use this change in fluorescence level to push the laser above threshold, turning it on with an intensity controlled by the external magnetic field, which provides a coherent amplification of the readout signal with very high contrast. This mechanism is qualitatively different from conventional NV--based magnetometers which use fluorescence measurements, based on incoherent photon emission. We term our approach laser threshold magnetometer (LTM). We predict that an NV--based LTM with a volume of 1 mm3 can achieve shot-noise limited dc sensitivity of 1.86 fT /\\sqrt{{{Hz}}} and ac sensitivity of 3.97 fT /\\sqrt{{{Hz}}}.
Excitable neurons, firing threshold manifolds and canards.
Mitry, John; McCarthy, Michelle; Kopell, Nancy; Wechselberger, Martin
2013-01-01
We investigate firing threshold manifolds in a mathematical model of an excitable neuron. The model analyzed investigates the phenomenon of post-inhibitory rebound spiking due to propofol anesthesia and is adapted from McCarthy et al. (SIAM J. Appl. Dyn. Syst. 11(4):1674-1697, 2012). Propofol modulates the decay time-scale of an inhibitory GABAa synaptic current. Interestingly, this system gives rise to rebound spiking within a specific range of propofol doses. Using techniques from geometric singular perturbation theory, we identify geometric structures, known as canards of folded saddle-type, which form the firing threshold manifolds. We find that the position and orientation of the canard separatrix is propofol dependent. Thus, the speeds of relevant slow synaptic processes are encoded within this geometric structure. We show that this behavior cannot be understood using a static, inhibitory current step protocol, which can provide a single threshold for rebound spiking but cannot explain the observed cessation of spiking for higher propofol doses. We then compare the analyses of dynamic and static synaptic inhibition, showing how the firing threshold manifolds of each relate, and why a current step approach is unable to fully capture the behavior of this model. PMID:23945278
Khatun, Saleha; Mahajan, Ruhi; Morshed, Bashir I
2016-01-01
Electroencephalogram (EEG) is a technique for recording the asynchronous activation of neuronal firing inside the brain with non-invasive scalp electrodes. Artifacts, such as eye blink activities, can corrupt these neuronal signals. While ocular artifact (OA) removal is well investigated for multiple channel EEG systems, in alignment with the recent momentum toward minimalistic EEG systems for use in natural environments, we investigate unsupervised and effective removal of OA from single-channel streaming raw EEG data. In this paper, the unsupervised wavelet transform (WT) decomposition technique was systematically evaluated for the effectiveness of OA removal for a single-channel EEG system. A set of seven raw EEG data set was analyzed. Two commonly used WT methods, Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), were applied. Four WT basis functions, namely, haar, coif3, sym3, and bior4.4, were considered for OA removal with universal threshold and statistical threshold (ST). To quantify OA removal efficacy from single-channel EEG, five performance metrics were utilized: correlation coefficients, mutual information, signal-to-artifact ratio, normalized mean square error, and time-frequency analysis. The temporal and spectral analysis shows that the optimal combination could be DWT with ST with coif3 or bior4.4 to remove OA among 16 combinations. This paper demonstrates that the WT can be an effective tool for unsupervised OA removal from single-channel EEG data for real-time applications. PMID:27551645
Khatun, Saleha; Mahajan, Ruhi
2016-01-01
Electroencephalogram (EEG) is a technique for recording the asynchronous activation of neuronal firing inside the brain with non-invasive scalp electrodes. Artifacts, such as eye blink activities, can corrupt these neuronal signals. While ocular artifact (OA) removal is well investigated for multiple channel EEG systems, in alignment with the recent momentum toward minimalistic EEG systems for use in natural environments, we investigate unsupervised and effective removal of OA from single-channel streaming raw EEG data. In this paper, the unsupervised wavelet transform (WT) decomposition technique was systematically evaluated for the effectiveness of OA removal for a single-channel EEG system. A set of seven raw EEG data set was analyzed. Two commonly used WT methods, Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), were applied. Four WT basis functions, namely, haar, coif3, sym3, and bior4.4, were considered for OA removal with universal threshold and statistical threshold (ST). To quantify OA removal efficacy from single-channel EEG, five performance metrics were utilized: correlation coefficients, mutual information, signal-to-artifact ratio, normalized mean square error, and time-frequency analysis. The temporal and spectral analysis shows that the optimal combination could be DWT with ST with coif3 or bior4.4 to remove OA among 16 combinations. This paper demonstrates that the WT can be an effective tool for unsupervised OA removal from single-channel EEG data for real-time applications. PMID:27551645
Khatun, Saleha; Mahajan, Ruhi; Morshed, Bashir I
2016-01-01
Electroencephalogram (EEG) is a technique for recording the asynchronous activation of neuronal firing inside the brain with non-invasive scalp electrodes. Artifacts, such as eye blink activities, can corrupt these neuronal signals. While ocular artifact (OA) removal is well investigated for multiple channel EEG systems, in alignment with the recent momentum toward minimalistic EEG systems for use in natural environments, we investigate unsupervised and effective removal of OA from single-channel streaming raw EEG data. In this paper, the unsupervised wavelet transform (WT) decomposition technique was systematically evaluated for the effectiveness of OA removal for a single-channel EEG system. A set of seven raw EEG data set was analyzed. Two commonly used WT methods, Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), were applied. Four WT basis functions, namely, haar, coif3, sym3, and bior4.4, were considered for OA removal with universal threshold and statistical threshold (ST). To quantify OA removal efficacy from single-channel EEG, five performance metrics were utilized: correlation coefficients, mutual information, signal-to-artifact ratio, normalized mean square error, and time-frequency analysis. The temporal and spectral analysis shows that the optimal combination could be DWT with ST with coif3 or bior4.4 to remove OA among 16 combinations. This paper demonstrates that the WT can be an effective tool for unsupervised OA removal from single-channel EEG data for real-time applications.
NASA Astrophysics Data System (ADS)
Qian, Jinfang; Zhang, Changjiang
2014-11-01
An efficient algorithm based on continuous wavelet transform combining with pre-knowledge, which can be used to detect the defect of glass bottle mouth, is proposed. Firstly, under the condition of ball integral light source, a perfect glass bottle mouth image is obtained by Japanese Computar camera through the interface of IEEE-1394b. A single threshold method based on gray level histogram is used to obtain the binary image of the glass bottle mouth. In order to efficiently suppress noise, moving average filter is employed to smooth the histogram of original glass bottle mouth image. And then continuous wavelet transform is done to accurately determine the segmentation threshold. Mathematical morphology operations are used to get normal binary bottle mouth mask. A glass bottle to be detected is moving to the detection zone by conveyor belt. Both bottle mouth image and binary image are obtained by above method. The binary image is multiplied with normal bottle mask and a region of interest is got. Four parameters (number of connected regions, coordinate of centroid position, diameter of inner cycle, and area of annular region) can be computed based on the region of interest. Glass bottle mouth detection rules are designed by above four parameters so as to accurately detect and identify the defect conditions of glass bottle. Finally, the glass bottles of Coca-Cola Company are used to verify the proposed algorithm. The experimental results show that the proposed algorithm can accurately detect the defect conditions of the glass bottles and have 98% detecting accuracy.
Feature selection using Haar wavelet power spectrum
Subramani, Prabakaran; Sahu, Rajendra; Verma, Shekhar
2006-01-01
Background Feature selection is an approach to overcome the 'curse of dimensionality' in complex researches like disease classification using microarrays. Statistical methods are utilized more in this domain. Most of them do not fit for a wide range of datasets. The transform oriented signal processing domains are not probed much when other fields like image and video processing utilize them well. Wavelets, one of such techniques, have the potential to be utilized in feature selection method. The aim of this paper is to assess the capability of Haar wavelet power spectrum in the problem of clustering and gene selection based on expression data in the context of disease classification and to propose a method based on Haar wavelet power spectrum. Results Haar wavelet power spectra of genes were analysed and it was observed to be different in different diagnostic categories. This difference in trend and magnitude of the spectrum may be utilized in gene selection. Most of the genes selected by earlier complex methods were selected by the very simple present method. Each earlier works proved only few genes are quite enough to approach the classification problem [1]. Hence the present method may be tried in conjunction with other classification methods. The technique was applied without removing the noise in data to validate the robustness of the method against the noise or outliers in the data. No special softwares or complex implementation is needed. The qualities of the genes selected by the present method were analysed through their gene expression data. Most of them were observed to be related to solve the classification issue since they were dominant in the diagnostic category of the dataset for which they were selected as features. Conclusion In the present paper, the problem of feature selection of microarray gene expression data was considered. We analyzed the wavelet power spectrum of genes and proposed a clustering and feature selection method useful for
Adaptation improves discrimination of face identity.
Oruç, Ipek; Barton, Jason J S
2011-09-01
Whether face adaptation confers any advantages to perceptual processing remains an open question. We investigated whether face adaptation can enhance the ability to make fine discriminations in the vicinity of the adapted face. We compared face discrimination thresholds in three adapting conditions: (i) same-face: where adapting and test faces were the same, (ii) different-face: where adapting and test faces differed, and (iii) baseline: where the adapting stimulus was a blank. Discrimination thresholds for morphed identity changes involving the adapted face (same-face) improved compared with those from both the baseline (no-adaptation) and different-face conditions. Since adapting to a face did not alter discrimination performance for other faces, this effect is selective for the facial identity that is adapted. These results indicate a form of gain control to heighten perceptual sensitivity in the vicinity of a currently viewed face, analogous to forms of adaptive gain control at lower levels of the visual system.
NASA Astrophysics Data System (ADS)
Eakin, C.; Donner, S. D.; Logan, C. A.; Gledhill, D. K.; Liu, G.; Heron, S. F.; Christensen, T.; Rauenzahn, J.; Morgan, J.; Parker, B. A.; Hoegh-Guldberg, O.; Skirving, W. J.; Strong, A. E.
2010-12-01
As carbon dioxide rises in the atmosphere, climate change and ocean acidification are modifying important physical and chemical parameters in the oceans with resulting impacts on coral reef ecosystems. Rising CO2 is warming the world’s oceans and causing corals to bleach, with both alarming frequency and severity. The frequent return of stressful temperatures has already resulted in major damage to many of the world’s coral reefs and is expected to continue in the foreseeable future. Warmer oceans also have contributed to a rise in coral infectious diseases. Both bleaching and infectious disease can result in coral mortality and threaten one of the most diverse ecosystems on Earth and the important ecosystem services they provide. Additionally, ocean acidification from rising CO2 is reducing the availability of carbonate ions needed by corals to build their skeletons and perhaps depressing the threshold for bleaching. While thresholds vary among species and locations, it is clear that corals around the world are already experiencing anomalous temperatures that are too high, too often, and that warming is exceeding the rate at which corals can adapt. This is despite a complex adaptive capacity that involves both the coral host and the zooxanthellae, including changes in the relative abundance of the latter in their coral hosts. The safe upper limit for atmospheric CO2 is probably somewhere below 350ppm, a level we passed decades ago, and for temperature is a sustained global temperature increase of less than 1.5°C above pre-industrial levels. How much can corals acclimate and/or adapt to the unprecedented fast changing environmental conditions? Any change in the threshold for coral bleaching as the result of acclimation and/or adaption may help corals to survive in the future but adaptation to one stress may be maladaptive to another. There also is evidence that ocean acidification and nutrient enrichment modify this threshold. What do shifting thresholds mean
Wavelet analysis and applications to some dynamical systems
NASA Astrophysics Data System (ADS)
Bendjoya, Ph.; Slezak, E.
1993-05-01
The main properties of the wavelet transform as a new time-frequency method which is particularly well suited for detecting and localizing discontinuities and scaling behavior in signals are reviewed. Particular attention is given to first applications of the wavelet transform to dynamical systems including solution of partial differential equations, fractal and turbulence characterization, and asteroid family determination from cluster analysis. Advantages of the wavelet transform over classical analysis methods are summarized.
Embedded wavelet packet transform technique for texture compression
NASA Astrophysics Data System (ADS)
Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay
1995-09-01
A highly efficient texture compression scheme is proposed in this research. With this scheme, energy compaction of texture images is first achieved by the wavelet packet transform, and an embedding approach is then adopted for the coding of the wavelet packet transform coefficients. By comparing the proposed algorithm with the JPEG standard, FBI wavelet/scalar quantization standard and the EZW scheme with extensive experimental results, we observe a significant improvement in the rate-distortion performance and visual quality.
Variability of Solar Irradiances Using Wavelet Analysis
NASA Technical Reports Server (NTRS)
Pesnell, William D.
2007-01-01
We have used wavelets to analyze the sunspot number, F10.7 (the solar irradiance at a wavelength of approx.10.7 cm), and Ap (a geomagnetic activity index). Three different wavelets are compared, showing how each selects either temporal or scale resolution. Our goal is an envelope of solar activity that better bounds the large amplitude fluctuations form solar minimum to maximum. We show how the 11-year cycle does not disappear at solar minimum, that minimum is only the other part of the solar cycle. Power in the fluctuations of solar-activity-related indices may peak during solar maximum but the solar cycle itself is always present. The Ap index has a peak after solar maximum that appears to be better correlated with the current solar cycle than with the following cycle.
Wavelets for full reconfigurable ECG acquisition system
NASA Astrophysics Data System (ADS)
Morales, D. P.; García, A.; Castillo, E.; Meyer-Baese, U.; Palma, A. J.
2011-06-01
This paper presents the use of wavelet cores for a full reconfigurable electrocardiogram signal (ECG) acquisition system. The system is compound by two reconfigurable devices, a FPGA and a FPAA. The FPAA is in charge of the ECG signal acquisition, since this device is a versatile and reconfigurable analog front-end for biosignals. The FPGA is in charge of FPAA configuration, digital signal processing and information extraction such as heart beat rate and others. Wavelet analysis has become a powerful tool for ECG signal processing since it perfectly fits ECG signal shape. The use of these cores has been integrated in the LabVIEW FPGA module development tool that makes possible to employ VHDL cores within the usual LabVIEW graphical programming environment, thus freeing the designer from tedious and time consuming design of communication interfaces. This enables rapid test and graphical representation of results.
Wavelet packet entropy for heart murmurs classification.
Safara, Fatemeh; Doraisamy, Shyamala; Azman, Azreen; Jantan, Azrul; Ranga, Sri
2012-01-01
Heart murmurs are the first signs of cardiac valve disorders. Several studies have been conducted in recent years to automatically differentiate normal heart sounds, from heart sounds with murmurs using various types of audio features. Entropy was successfully used as a feature to distinguish different heart sounds. In this paper, new entropy was introduced to analyze heart sounds and the feasibility of using this entropy in classification of five types of heart sounds and murmurs was shown. The entropy was previously introduced to analyze mammograms. Four common murmurs were considered including aortic regurgitation, mitral regurgitation, aortic stenosis, and mitral stenosis. Wavelet packet transform was employed for heart sound analysis, and the entropy was calculated for deriving feature vectors. Five types of classification were performed to evaluate the discriminatory power of the generated features. The best results were achieved by BayesNet with 96.94% accuracy. The promising results substantiate the effectiveness of the proposed wavelet packet entropy for heart sounds classification.
Wavelets and their applications past and future
NASA Astrophysics Data System (ADS)
Coifman, Ronald R.
2009-04-01
As this is a conference on mathematical tools for defense, I would like to dedicate this talk to the memory of Louis Auslander, who through his insights and visionary leadership, brought powerful new mathematics into DARPA, he has provided the main impetus to the development and insertion of wavelet based processing in defense. My goal here is to describe the evolution of a stream of ideas in Harmonic Analysis, ideas which in the past have been mostly applied for the analysis and extraction of information from physical data, and which now are increasingly applied to organize and extract information and knowledge from any set of digital documents, from text to music to questionnaires. This form of signal processing on digital data, is part of the future of wavelet analysis.
Wavelet Denoising of Mobile Radiation Data
Campbell, D; Lanier, R
2007-10-29
The investigation of wavelet analysis techniques as a means of filtering the gross-count signal obtained from radiation detectors has shown promise. These signals are contaminated with high frequency statistical noise and significantly varying background radiation levels. Wavelet transforms allow a signal to be split into its constituent frequency components without losing relative timing information. Initial simulations and an injection study have been performed. Additionally, acquisition and analysis software has been written which allowed the technique to be evaluated in real-time under more realistic operating conditions. The technique performed well when compared to more traditional triggering techniques with its performance primarily limited by false alarms due to prominent features in the signal. An initial investigation into the potential rejection and classification of these false alarms has also shown promise.
Wavelet analysis of the impedance cardiogram waveforms
NASA Astrophysics Data System (ADS)
Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.
2012-12-01
Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.
Orthogonal wavelet moments and their multifractal invariants
NASA Astrophysics Data System (ADS)
Uchaev, Dm. V.; Uchaev, D. V.; Malinnikov, V. A.
2015-02-01
This paper introduces a new family of moments, namely orthogonal wavelet moments (OWMs), which are orthogonal realization of wavelet moments (WMs). In contrast to WMs with nonorthogonal kernel function, these moments can be used for multiresolution image representation and image reconstruction. The paper also introduces multifractal invariants (MIs) of OWMs which can be used instead of OWMs. Some reconstruction tests performed with noise-free and noisy images demonstrate that MIs of OWMs can also be used for image smoothing, sharpening and denoising. It is established that the reconstruction quality for MIs of OWMs can be better than corresponding orthogonal moments (OMs) and reduces to the reconstruction quality for the OMs if we use the zero scale level.
Propagating unstable wavelets in cardiac tissue
NASA Astrophysics Data System (ADS)
Boyle, Patrick M.; Madhavan, Adarsh; Reid, Matthew P.; Vigmond, Edward J.
2012-01-01
Solitonlike propagating modes have been proposed for excitable tissue, but have never been measured in cardiac tissue. In this study, we simulate an experimental protocol to elicit these propagating unstable wavelets (PUWs) in a detailed three-dimensional ventricular wedge preparation. PUWs appear as fixed-shape wavelets that propagate only in the direction of cardiac fibers, with conduction velocity approximately 40% slower than normal action potential excitation. We investigate their properties, demonstrating that PUWs are not true solitons. The range of stimuli for which PUWs were elicited was very narrow (several orders of magnitude lower than the stimulus strength itself), but increased with reduced sodium conductance and reduced coupling in nonlongitudinal directions. We show that the phenomenon does not depend on the particular membrane representation used or the shape of the stimulating electrode.
Development of wavelet analysis tools for turbulence
NASA Technical Reports Server (NTRS)
Bertelrud, A.; Erlebacher, G.; Dussouillez, PH.; Liandrat, M. P.; Liandrat, J.; Bailly, F. Moret; Tchamitchian, PH.
1992-01-01
Presented here is the general framework and the initial results of a joint effort to derive novel research tools and easy to use software to analyze and model turbulence and transition. Given here is a brief review of the issues, a summary of some basic properties of wavelets, and preliminary results. Technical aspects of the implementation, the physical conclusions reached at this time, and current developments are discussed.
Wavelet features in motion data classification
NASA Astrophysics Data System (ADS)
Szczesna, Agnieszka; Świtoński, Adam; Słupik, Janusz; Josiński, Henryk; Wojciechowski, Konrad
2016-06-01
The paper deals with the problem of motion data classification based on result of multiresolution analysis implemented in form of quaternion lifting scheme. Scheme processes directly on time series of rotations coded in form of unit quaternion signal. In the work new features derived from wavelet energy and entropy are proposed. To validate the approach gait database containing data of 30 different humans is used. The obtained results are satisfactory. The classification has over than 91% accuracy.
Correlation Filtering of Modal Dynamics using the Laplace Wavelet
NASA Technical Reports Server (NTRS)
Freudinger, Lawrence C.; Lind, Rick; Brenner, Martin J.
1997-01-01
Wavelet analysis allows processing of transient response data commonly encountered in vibration health monitoring tasks such as aircraft flutter testing. The Laplace wavelet is formulated as an impulse response of a single mode system to be similar to data features commonly encountered in these health monitoring tasks. A correlation filtering approach is introduced using the Laplace wavelet to decompose a signal into impulse responses of single mode subsystems. Applications using responses from flutter testing of aeroelastic systems demonstrate modal parameters and stability estimates can be estimated by correlation filtering free decay data with a set of Laplace wavelets.
Wavelet variance analysis for random fields on a regular lattice.
Mondal, Debashis; Percival, Donald B
2012-02-01
There has been considerable recent interest in using wavelets to analyze time series and images that can be regarded as realizations of certain 1-D and 2-D stochastic processes on a regular lattice. Wavelets give rise to the concept of the wavelet variance (or wavelet power spectrum), which decomposes the variance of a stochastic process on a scale-by-scale basis. The wavelet variance has been applied to a variety of time series, and a statistical theory for estimators of this variance has been developed. While there have been applications of the wavelet variance in the 2-D context (in particular, in works by Unser in 1995 on wavelet-based texture analysis for images and by Lark and Webster in 2004 on analysis of soil properties), a formal statistical theory for such analysis has been lacking. In this paper, we develop the statistical theory by generalizing and extending some of the approaches developed for time series, thus leading to a large-sample theory for estimators of 2-D wavelet variances. We apply our theory to simulated data from Gaussian random fields with exponential covariances and from fractional Brownian surfaces. We demonstrate that the wavelet variance is potentially useful for texture discrimination. We also use our methodology to analyze images of four types of clouds observed over the southeast Pacific Ocean.
REVIEWS OF TOPICAL PROBLEMS: Wavelets and their uses
NASA Astrophysics Data System (ADS)
Dremin, Igor M.; Ivanov, Oleg V.; Nechitailo, Vladimir A.
2001-05-01
This review paper is intended to give a useful guide for those who want to apply the discrete wavelet transform in practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to the corresponding literature. The multiresolution analysis and fast wavelet transform have become a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for the achievement of a goal. Analysis of various functions with the help of wavelets allows one to reveal fractal structures, singularities etc. The wavelet transform of operator expressions helps solve some equations. In practical applications one often deals with the discretized functions, and the problem of stability of the wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves to a few examples only. The authors would be grateful for any comments which would move us closer to the goal proclaimed in the first phrase of the abstract.
Coresident sensor fusion and compression using the wavelet transform
Yocky, D.A.
1996-03-11
Imagery from coresident sensor platforms, such as unmanned aerial vehicles, can be combined using, multiresolution decomposition of the sensor images by means of the two-dimensional wavelet transform. The wavelet approach uses the combination of spatial/spectral information at multiple scales to create a fused image. This can be done in both an ad hoc or model-based approach. We compare results from commercial ``fusion`` software and the ad hoc, wavelet approach. Results show the wavelet approach outperforms the commercial algorithms and also supports efficient compression of the fused image.
Wavelet-based moment invariants for pattern recognition
NASA Astrophysics Data System (ADS)
Chen, Guangyi; Xie, Wenfang
2011-07-01
Moment invariants have received a lot of attention as features for identification and inspection of two-dimensional shapes. In this paper, two sets of novel moments are proposed by using the auto-correlation of wavelet functions and the dual-tree complex wavelet functions. It is well known that the wavelet transform lacks the property of shift invariance. A little shift in the input signal will cause very different output wavelet coefficients. The autocorrelation of wavelet functions and the dual-tree complex wavelet functions, on the other hand, are shift-invariant, which is very important in pattern recognition. Rotation invariance is the major concern in this paper, while translation invariance and scale invariance can be achieved by standard normalization techniques. The Gaussian white noise is added to the noise-free images and the noise levels vary with different signal-to-noise ratios. Experimental results conducted in this paper show that the proposed wavelet-based moments outperform Zernike's moments and the Fourier-wavelet descriptor for pattern recognition under different rotation angles and different noise levels. It can be seen that the proposed wavelet-based moments can do an excellent job even when the noise levels are very high.
Improved total variation algorithms for wavelet-based denoising
NASA Astrophysics Data System (ADS)
Easley, Glenn R.; Colonna, Flavia
2007-04-01
Many improvements of wavelet-based restoration techniques suggest the use of the total variation (TV) algorithm. The concept of combining wavelet and total variation methods seems effective but the reasons for the success of this combination have been so far poorly understood. We propose a variation of the total variation method designed to avoid artifacts such as oil painting effects and is more suited than the standard TV techniques to be implemented with wavelet-based estimates. We then illustrate the effectiveness of this new TV-based method using some of the latest wavelet transforms such as contourlets and shearlets.
A Wavelet Packets Approach to Electrocardiograph Baseline Drift Cancellation
Mozaffary, Behzad
2006-01-01
Baseline wander elimination is considered a classical problem. In electrocardiography (ECG) signals, baseline drift can influence the accurate diagnosis of heart disease such as ischemia and arrhythmia. We present a wavelet-transform- (WT-) based search algorithm using the energy of the signal in different scales to isolate baseline wander from the ECG signal. The algorithm computes wavelet packet coefficients and then in each scale the energy of the signal is calculated. Comparison is made and the branch of the wavelet binary tree corresponding to higher energy wavelet spaces is chosen. This algorithm is tested using the data record from MIT/BIH database and excellent results are obtained. PMID:23165064
Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms
NASA Technical Reports Server (NTRS)
Kurdila, Andrew J.; Sharpley, Robert C.
1999-01-01
This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.
Scope and applications of translation invariant wavelets to image registration
NASA Technical Reports Server (NTRS)
Chettri, Samir; LeMoigne, Jacqueline; Campbell, William
1997-01-01
The first part of this article introduces the notion of translation invariance in wavelets and discusses several wavelets that have this property. The second part discusses the possible applications of such wavelets to image registration. In the case of registration of affinely transformed images, we would conclude that the notion of translation invariance is not really necessary. What is needed is affine invariance and one way to do this is via the method of moment invariants. Wavelets or, in general, pyramid processing can then be combined with the method of moment invariants to reduce the computational load.
Bayesian Wavelet Shrinkage of the Haar-Fisz Transformed Wavelet Periodogram
2015-01-01
It is increasingly being realised that many real world time series are not stationary and exhibit evolving second-order autocovariance or spectral structure. This article introduces a Bayesian approach for modelling the evolving wavelet spectrum of a locally stationary wavelet time series. Our new method works by combining the advantages of a Haar-Fisz transformed spectrum with a simple, but powerful, Bayesian wavelet shrinkage method. Our new method produces excellent and stable spectral estimates and this is demonstrated via simulated data and on differenced infant electrocardiogram data. A major additional benefit of the Bayesian paradigm is that we obtain rigorous and useful credible intervals of the evolving spectral structure. We show how the Bayesian credible intervals provide extra insight into the infant electrocardiogram data. PMID:26381141
Wavelet Technique Applications in Planetary Nebulae Images
NASA Astrophysics Data System (ADS)
Leal Ferreira, M. L.; Rabaça, C. R.; Cuisinier, F.; Epitácio Pereira, D. N.
2009-05-01
Through the application of the wavelet technique to a planetary nebulae image, we are able to identify different scale sizes structures present in its wavelet coefficient decompositions. In a multiscale vision model, an object is defined as a hierarchical set of these structures. We can then use this model to independently reconstruct the different objects that compose the nebulae. The result is the separation and identification of superposed objects, some of them with very low surface brightness, what makes them, in general, very difficult to be seen in the original images due to the presence of noise. This allows us to make a more detailed analysis of brightness distribution in these sources. In this project, we use this method to perform a detailed morphological study of some planetary nebulae and to investigate whether one of them indeed shows internal temperature fluctuations. We have also conducted a series of tests concerning the reliability of the method and the confidence level of the objects detected. The wavelet code used in this project is called OV_WAV and was developed by the UFRJ's Astronomy Departament team.
Wavelet analysis of radon time series
NASA Astrophysics Data System (ADS)
Barbosa, Susana; Pereira, Alcides; Neves, Luis
2013-04-01
Radon is a radioactive noble gas with a half-life of 3.8 days ubiquitous in both natural and indoor environments. Being produced in uranium-bearing materials by decay from radium, radon can be easily and accurately measured by nuclear methods, making it an ideal proxy for time-varying geophysical processes. Radon time series exhibit a complex temporal structure and large variability on multiple scales. Wavelets are therefore particularly suitable for the analysis on a scale-by-scale basis of time series of radon concentrations. In this study continuous and discrete wavelet analysis is applied to describe the variability structure of hourly radon time series acquired both indoors and on a granite site in central Portugal. A multi-resolution decomposition is performed for extraction of sub-series associated to specific scales. The high-frequency components are modeled in terms of stationary autoregressive / moving average (ARMA) processes. The amplitude and phase of the periodic components are estimated and tidal features of the signals are assessed. Residual radon concentrations (after removal of periodic components) are further examined and the wavelet spectrum is used for estimation of the corresponding Hurst exponent. The results for the several radon time series considered in the present study are very heterogeneous in terms of both high-frequency and long-term temporal structure indicating that radon concentrations are very site-specific and heavily influenced by local factors.
Multispectral multisensor image fusion using wavelet transforms
Lemeshewsky, George P.
1999-01-01
Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.
Spectral Data Reduction via Wavelet Decomposition
NASA Technical Reports Server (NTRS)
Kaewpijit, S.; LeMoigne, J.; El-Ghazawi, T.; Rood, Richard (Technical Monitor)
2002-01-01
The greatest advantage gained from hyperspectral imagery is that narrow spectral features can be used to give more information about materials than was previously possible with broad-band multispectral imagery. For many applications, the new larger data volumes from such hyperspectral sensors, however, present a challenge for traditional processing techniques. For example, the actual identification of each ground surface pixel by its corresponding reflecting spectral signature is still one of the most difficult challenges in the exploitation of this advanced technology, because of the immense volume of data collected. Therefore, conventional classification methods require a preprocessing step of dimension reduction to conquer the so-called "curse of dimensionality." Spectral data reduction using wavelet decomposition could be useful, as it does not only reduce the data volume, but also preserves the distinctions between spectral signatures. This characteristic is related to the intrinsic property of wavelet transforms that preserves high- and low-frequency features during the signal decomposition, therefore preserving peaks and valleys found in typical spectra. When comparing to the most widespread dimension reduction technique, the Principal Component Analysis (PCA), and looking at the same level of compression rate, we show that Wavelet Reduction yields better classification accuracy, for hyperspectral data processed with a conventional supervised classification such as a maximum likelihood method.
Ultrasonic flaw detection using threshold modified S-transform.
Benammar, Abdessalem; Drai, Redouane; Guessoum, Abderrezak
2014-02-01
Interference noising originating from the ultrasonic testing defect signal seriously influences the accuracy of the signal extraction and defect location. Time-frequency analysis methods are mainly used to improve the defects detection resolution. In fact, the S-transform, a hybrid of the Short time Fourier transform (STFT) and wavelet transform (WT), has a time frequency resolution which is far from ideal. In this paper, a new modified S-transform based on thresholding technique, which offers a better time frequency resolution compared to the original S-transform is proposed. The improvement is achieved by the introduction of a new scaling rule for the Gaussian window used in S-transform. Simulation results are presented and show correct time frequency information of multiple Gaussian echoes under low signal-to-noise ratio (SNR) environment. In addition, experimental results demonstrate better and reliable detection of close echoes drowned in the noise.
A new approach to pre-processing digital image for wavelet-based watermark
NASA Astrophysics Data System (ADS)
Agreste, Santa; Andaloro, Guido
2008-11-01
The growth of the Internet has increased the phenomenon of digital piracy, in multimedia objects, like software, image, video, audio and text. Therefore it is strategic to individualize and to develop methods and numerical algorithms, which are stable and have low computational cost, that will allow us to find a solution to these problems. We describe a digital watermarking algorithm for color image protection and authenticity: robust, not blind, and wavelet-based. The use of Discrete Wavelet Transform is motivated by good time-frequency features and a good match with Human Visual System directives. These two combined elements are important for building an invisible and robust watermark. Moreover our algorithm can work with any image, thanks to the step of pre-processing of the image that includes resize techniques that adapt to the size of the original image for Wavelet transform. The watermark signal is calculated in correlation with the image features and statistic properties. In the detection step we apply a re-synchronization between the original and watermarked image according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has been shown to be resistant against geometric, filtering, and StirMark attacks with a low rate of false alarm.
Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process.
Komasi, Mehdi; Sharghi, Soroush
2016-01-01
Because of the importance of water resources management, the need for accurate modeling of the rainfall-runoff process has rapidly grown in the past decades. Recently, the support vector machine (SVM) approach has been used by hydrologists for rainfall-runoff modeling and the other fields of hydrology. Similar to the other artificial intelligence models, such as artificial neural network (ANN) and adaptive neural fuzzy inference system, the SVM model is based on the autoregressive properties. In this paper, the wavelet analysis was linked to the SVM model concept for modeling the rainfall-runoff process of Aghchai and Eel River watersheds. In this way, the main time series of two variables, rainfall and runoff, were decomposed to multiple frequent time series by wavelet theory; then, these time series were imposed as input data on the SVM model in order to predict the runoff discharge one day ahead. The obtained results show that the wavelet SVM model can predict both short- and long-term runoff discharges by considering the seasonality effects. Also, the proposed hybrid model is relatively more appropriate than classical autoregressive ones such as ANN and SVM because it uses the multi-scale time series of rainfall and runoff data in the modeling process. PMID:27120649
Denoising of X-ray pulsar observed profile in the undecimated wavelet domain
NASA Astrophysics Data System (ADS)
Xue, Meng-fan; Li, Xiao-ping; Fu, Ling-zhong; Liu, Xiu-ping; Sun, Hai-feng; Shen, Li-rong
2016-01-01
The low intensity of the X-ray pulsar signal and the strong X-ray background radiation lead to low signal-to-noise ratio (SNR) of the X-ray pulsar observed profile obtained through epoch folding, especially when the observation time is not long enough. This signifies the necessity of denoising of the observed profile. In this paper, the statistical characteristics of the X-ray pulsar signal are studied, and a signal-dependent noise model is established for the observed profile. Based on this, a profile noise reduction method by performing a local linear minimum mean square error filtering in the un-decimated wavelet domain is developed. The detail wavelet coefficients are rescaled by multiplying their amplitudes by a locally adaptive factor, which is the local variance ratio of the noiseless coefficients to the noisy ones. All the nonstationary statistics needed in the algorithm are calculated from the observed profile, without a priori information. The results of experim! ents, carried out on simulated data obtained by the ground-based simulation system and real data obtained by Rossi X-Ray Timing Explorer satellite, indicate that the proposed method is excellent in both noise suppression and preservation of peak sharpness, and it also clearly outperforms four widely accepted and used wavelet denoising methods, in terms of SNR, Pearson correlation coefficient and root mean square error.
Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process.
Komasi, Mehdi; Sharghi, Soroush
2016-01-01
Because of the importance of water resources management, the need for accurate modeling of the rainfall-runoff process has rapidly grown in the past decades. Recently, the support vector machine (SVM) approach has been used by hydrologists for rainfall-runoff modeling and the other fields of hydrology. Similar to the other artificial intelligence models, such as artificial neural network (ANN) and adaptive neural fuzzy inference system, the SVM model is based on the autoregressive properties. In this paper, the wavelet analysis was linked to the SVM model concept for modeling the rainfall-runoff process of Aghchai and Eel River watersheds. In this way, the main time series of two variables, rainfall and runoff, were decomposed to multiple frequent time series by wavelet theory; then, these time series were imposed as input data on the SVM model in order to predict the runoff discharge one day ahead. The obtained results show that the wavelet SVM model can predict both short- and long-term runoff discharges by considering the seasonality effects. Also, the proposed hybrid model is relatively more appropriate than classical autoregressive ones such as ANN and SVM because it uses the multi-scale time series of rainfall and runoff data in the modeling process.
Probabilistic Threshold Criterion
Gresshoff, M; Hrousis, C A
2010-03-09
The Probabilistic Shock Threshold Criterion (PSTC) Project at LLNL develops phenomenological criteria for estimating safety or performance margin on high explosive (HE) initiation in the shock initiation regime, creating tools for safety assessment and design of initiation systems and HE trains in general. Until recently, there has been little foundation for probabilistic assessment of HE initiation scenarios. This work attempts to use probabilistic information that is available from both historic and ongoing tests to develop a basis for such assessment. Current PSTC approaches start with the functional form of the James Initiation Criterion as a backbone, and generalize to include varying areas of initiation and provide a probabilistic response based on test data for 1.8 g/cc (Ultrafine) 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and LX-17 (92.5% TATB, 7.5% Kel-F 800 binder). Application of the PSTC methodology is presented investigating the safety and performance of a flying plate detonator and the margin of an Ultrafine TATB booster initiating LX-17.
Threshold fatigue and information transfer
Lindner, Benjamin; Longtin, André
2016-01-01
Neurons in vivo must process sensory information in the presence of significant noise. It is thus plausible to assume that neural systems have developed mechanisms to reduce this noise. Theoretical studies have shown that threshold fatigue (i.e. cumulative increases in the threshold during repetitive firing) could lead to noise reduction at certain frequencies bands and thus improved signal transmission as well as noise increases and decreased signal transmission at other frequencies: a phenomenon called noise shaping. There is, however, no experimental evidence that threshold fatigue actually occurs and, if so, that it will actually lead to noise shaping. We analyzed action potential threshold variability in intracellular recordings in vivo from pyramidal neurons in weakly electric fish and found experimental evidence for threshold fatigue: an increase in instantaneous firing rate was on average accompanied by an increase in action potential threshold. We show that, with a minor modification, the standard Hodgkin–Huxley model can reproduce this phenomenon. We next compared the performance of models with and without threshold fatigue. Our results show that threshold fatigue will lead to a more regular spike train as well as robustness to intrinsic noise via noise shaping. We finally show that the increased/reduced noise levels due to threshold fatigue correspond to decreased/increased information transmission at different frequencies. PMID:17436067
Learning foraging thresholds for lizards
Goldberg, L.A.; Hart, W.E.; Wilson, D.B.
1996-01-12
This work gives a proof of convergence for a randomized learning algorithm that describes how anoles (lizards found in the Carribean) learn a foraging threshold distance. This model assumes that an anole will pursue a prey if and only if it is within this threshold of the anole`s perch. This learning algorithm was proposed by the biologist Roughgarden and his colleagues. They experimentally confirmed that this algorithm quickly converges to the foraging threshold that is predicted by optimal foraging theory our analysis provides an analytic confirmation that the learning algorithm converses to this optimal foraging threshold with high probability.
Elgendi, Mohamed; Kumar, Shine; Guo, Long; Rutledge, Jennifer; Coe, James Y.; Zemp, Roger; Schuurmans, Dale; Adatia, Ian
2015-01-01
Background Automatic detection of the 1st (S1) and 2nd (S2) heart sounds is difficult, and existing algorithms are imprecise. We sought to develop a wavelet-based algorithm for the detection of S1 and S2 in children with and without pulmonary arterial hypertension (PAH). Method Heart sounds were recorded at the second left intercostal space and the cardiac apex with a digital stethoscope simultaneously with pulmonary arterial pressure (PAP). We developed a Daubechies wavelet algorithm for the automatic detection of S1 and S2 using the wavelet coefficient ‘D6’ based on power spectral analysis. We compared our algorithm with four other Daubechies wavelet-based algorithms published by Liang, Kumar, Wang, and Zhong. We annotated S1 and S2 from an audiovisual examination of the phonocardiographic tracing by two trained cardiologists and the observation that in all subjects systole was shorter than diastole. Results We studied 22 subjects (9 males and 13 females, median age 6 years, range 0.25–19). Eleven subjects had a mean PAP < 25 mmHg. Eleven subjects had PAH with a mean PAP ≥ 25 mmHg. All subjects had a pulmonary artery wedge pressure ≤ 15 mmHg. The sensitivity (SE) and positive predictivity (+P) of our algorithm were 70% and 68%, respectively. In comparison, the SE and +P of Liang were 59% and 42%, Kumar 19% and 12%, Wang 50% and 45%, and Zhong 43% and 53%, respectively. Our algorithm demonstrated robustness and outperformed the other methods up to a signal-to-noise ratio (SNR) of 10 dB. For all algorithms, detection errors arose from low-amplitude peaks, fast heart rates, low signal-to-noise ratio, and fixed thresholds. Conclusion Our algorithm for the detection of S1 and S2 improves the performance of existing Daubechies-based algorithms and justifies the use of the wavelet coefficient ‘D6’ through power spectral analysis. Also, the robustness despite ambient noise may improve real world clinical performance. PMID:26629704
Wavelet based free-form deformations for nonrigid registration
NASA Astrophysics Data System (ADS)
Sun, Wei; Niessen, Wiro J.; Klein, Stefan
2014-03-01
In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.
Castro, C
1991-01-01
This article explains that malnutrition, poor health, and limited educational opportunities plague Philippine children -- especially female children -- from families living below the poverty threshold. Nearly 70% of households in the Philippines do not meet the required daily level of nutritional intake. Because it is often -- and incorrectly -- assumed that women's nutritional requirements are lower than men's, women suffer higher rates of malnutrition and poor health. A 1987 study revealed that 11.7% of all elementary students were underweight and 13.9% had stunted growths. Among elementary-school girls, 17% were malnourished and 40% suffered from anemia (among lactating mothers, more than 1/2 are anemic). A 1988 Program for Decentralized Educational Development study showed that grade VI students learn only about 1/2 of what they are supposed to learn. 30% of the children enrolled in grade school drop out before they reach their senior year. The Department of Education, Culture and Sports estimates that some 2.56 million students dropped out of school in l989. That same year, some 3.7 million children were counted as part of the labor force. In Manila alone, some 60,000 children work the streets, whether doing odd jobs or begging, or turning to crime or prostitution. the article tells the story of a 12 year-old girl named Ging, a 4th grader at a public school and the oldest child in a poor family of 6 children. The undernourished Ging dreams of a good future for her family and sees education as a way out of poverty; unfortunately, her time after school is spend working in the streets or looking after her family. She considers herself luckier than many of the other children working in the streets, since she at least has a family.
The Nature of Psychological Thresholds
ERIC Educational Resources Information Center
Rouder, Jeffrey N.; Morey, Richard D.
2009-01-01
Following G. T. Fechner (1966), thresholds have been conceptualized as the amount of intensity needed to transition between mental states, such as between a states of unconsciousness and consciousness. With the advent of the theory of signal detection, however, discrete-state theory and the corresponding notion of threshold have been discounted.…
Threshold Concepts and Information Literacy
ERIC Educational Resources Information Center
Townsend, Lori; Brunetti, Korey; Hofer, Amy R.
2011-01-01
What do we teach when we teach information literacy in higher education? This paper describes a pedagogical approach to information literacy that helps instructors focus content around transformative learning thresholds. The threshold concept framework holds promise for librarians because it grounds the instructor in the big ideas and underlying…
Threshold Hypothesis: Fact or Artifact?
ERIC Educational Resources Information Center
Karwowski, Maciej; Gralewski, Jacek
2013-01-01
The threshold hypothesis (TH) assumes the existence of complex relations between creative abilities and intelligence: linear associations below 120 points of IQ and weaker or lack of associations above the threshold. However, diverse results have been obtained over the last six decades--some confirmed the hypothesis and some rejected it. In this…
Compression of echocardiographic scan line data using wavelet packet transform
NASA Technical Reports Server (NTRS)
Hang, X.; Greenberg, N. L.; Qin, J.; Thomas, J. D.
2001-01-01
An efficient compression strategy is indispensable for digital echocardiography. Previous work has suggested improved results utilizing wavelet transforms in the compression of 2D echocardiographic images. Set partitioning in hierarchical trees (SPIHT) was modified to compress echocardiographic scanline data based on the wavelet packet transform. A compression ratio of at least 94:1 resulted in preserved image quality.
Schrödinger like equation for wavelets
NASA Astrophysics Data System (ADS)
Zúñiga-Segundo, A.; Moya-Cessa, H. M.; Soto-Eguibar, F.
2016-01-01
An explicit phase space representation of the wave function is build based on a wavelet transformation. The wavelet transformation allows us to understand the relationship between s - ordered Wigner function, (or Wigner function when s = 0), and the Torres-Vega-Frederick's wave functions. This relationship is necessary to find a general solution of the Schrödinger equation in phase-space.
Wavelet based feature extraction and visualization in hyperspectral tissue characterization
Denstedt, Martin; Bjorgan, Asgeir; Milanič, Matija; Randeberg, Lise Lyngsnes
2014-01-01
Hyperspectral images of tissue contain extensive and complex information relevant for clinical applications. In this work, wavelet decomposition is explored for feature extraction from such data. Wavelet methods are simple and computationally effective, and can be implemented in real-time. The aim of this study was to correlate results from wavelet decomposition in the spectral domain with physical parameters (tissue oxygenation, blood and melanin content). Wavelet decomposition was tested on Monte Carlo simulations, measurements of a tissue phantom and hyperspectral data from a human volunteer during an occlusion experiment. Reflectance spectra were decomposed, and the coefficients were correlated to tissue parameters. This approach was used to identify wavelet components that can be utilized to map levels of blood, melanin and oxygen saturation. The results show a significant correlation (p <0.02) between the chosen tissue parameters and the selected wavelet components. The tissue parameters could be mapped using a subset of the calculated components due to redundancy in spectral information. Vessel structures are well visualized. Wavelet analysis appears as a promising tool for extraction of spectral features in skin. Future studies will aim at developing quantitative mapping of optical properties based on wavelet decomposition. PMID:25574437
Wavelet Analysis of Satellite Images for Coastal Watch
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Peng, Chich Y.; Chang, Steve Y.-S.
1997-01-01
The two-dimensional wavelet transform is a very efficient bandpass filter, which can be used to separate various scales of processes and show their relative phase/location. In this paper, algorithms and techniques for automated detection and tracking of mesoscale features from satellite imagery employing wavelet analysis are developed. The wavelet transform has been applied to satellite images, such as those from synthetic aperture radar (SAR), advanced very-high-resolution radiometer (AVHRR), and coastal zone color scanner (CZCS) for feature extraction. The evolution of mesoscale features such as oil slicks, fronts, eddies, and ship wakes can be tracked by the wavelet analysis using satellite data from repeating paths. Several examples of the wavelet analysis applied to various satellite Images demonstrate the feasibility of this technique for coastal monitoring.
Combining Wavelet Transform and Hidden Markov Models for ECG Segmentation
NASA Astrophysics Data System (ADS)
Andreão, Rodrigo Varejão; Boudy, Jérôme
2006-12-01
This work aims at providing new insights on the electrocardiogram (ECG) segmentation problem using wavelets. The wavelet transform has been originally combined with a hidden Markov models (HMMs) framework in order to carry out beat segmentation and classification. A group of five continuous wavelet functions commonly used in ECG analysis has been implemented and compared using the same framework. All experiments were realized on the QT database, which is composed of a representative number of ambulatory recordings of several individuals and is supplied with manual labels made by a physician. Our main contribution relies on the consistent set of experiments performed. Moreover, the results obtained in terms of beat segmentation and premature ventricular beat (PVC) detection are comparable to others works reported in the literature, independently of the type of the wavelet. Finally, through an original concept of combining two wavelet functions in the segmentation stage, we achieve our best performances.
Application of harmonic wavelet to filtering of rockbolt detecting signal
NASA Astrophysics Data System (ADS)
Zhao, Yucheng; Liu, Hongyan; Wang, Jiyan; Miao, Xiexing
2008-11-01
Harmonic wavelet had explicit functional expression, flexible time-frequency division, simple transforming algorithm and a finer frequency refinement function than the others wavelet. In this paper based on frequency distributing characteristic of nondestructive testing signal from rockbolt supporting system, the discrete harmonic wavelet transforming theory was used to get rid of the lower and higher frequency signal from the initial signal. Meanwhile, the reconstruction algorithm of harmonic wavelet was brought forward to gain the signal without the unnecessary bandwidth signals. Finally, a numerical signal and real signal which can demonstrate superiority of harmonic wavelet in filtering are presented, and the transforming result shows that it would make the system run more precise and stably in the detecting to the quality of rockbolt supporting system.
A multiresolution wavelet representation in two or more dimensions
NASA Technical Reports Server (NTRS)
Bromley, B. C.
1992-01-01
In the multiresolution approximation, a signal is examined on a hierarchy of resolution scales by projection onto sets of smoothing functions. Wavelets are used to carry the detail information connecting adjacent sets in the resolution hierarchy. An algorithm has been implemented to perform a multiresolution decomposition in n greater than or equal to 2 dimensions based on wavelets generated from products of 1-D wavelets and smoothing functions. The functions are chosen so that an n-D wavelet may be associated with a single resolution scale and orientation. The algorithm enables complete reconstruction of a high resolution signal from decomposition coefficients. The signal may be oversampled to accommodate non-orthogonal wavelet systems, or to provide approximate translational invariance in the decomposition arrays.
A Multiscale Wavelet Solver with O( n) Complexity
NASA Astrophysics Data System (ADS)
Williams, John R.; Amaratunga, Kevin
1995-11-01
In this paper, we use the biorthogonal wavelets recently constructed by Dahlke and Weinreich to implement a highly efficient procedure for solving a certain class of one-dimensional problems, (∂21/∂x21)u = f,I ɛ Z, I > 0. For these problems, the discrete biorthogonal wavelet transform allows us to set up a system of wavelet-Galerkin equations in which the scales are uncoupled, so that a true multiscale solution procedure may be formulated. We prove that the resulting stiffness matrix is in fact an almost perfectly diagonal matrix (the original aim of the construction was to achieve a block diagonal structure) and we show that this leads to an algorithm whose cost is O(n). We also present numerical results which demonstrate that the multiscale biorthogonal wavelet algorithm is superior to the more conventional single scale orthogonal wavelet approach both in terms of speed and in terms of convergence.
Image encryption in the wavelet domain
NASA Astrophysics Data System (ADS)
Bao, Long; Zhou, Yicong; Chen, C. L. Philip
2013-05-01
Most existing image encryption algorithms often transfer the original image into a noise-like image which is an apparent visual sign indicating the presence of an encrypted image. Motivated by the data hiding technologies, this paper proposes a novel concept of image encryption, namely transforming an encrypted original image into another meaningful image which is the final resulting encrypted image and visually the same as the cover image, overcoming the mentioned problem. Using this concept, we introduce a new image encryption algorithm based on the wavelet decomposition. Simulations and security analysis are given to show the excellent performance of the proposed concept and algorithm.
Lung tissue classification using wavelet frames.
Depeursinge, Adrien; Sage, Daniel; Hidki, Asmâa; Platon, Alexandra; Poletti, Pierre-Alexandre; Unser, Michael; Müller, Henning
2007-01-01
We describe a texture classification system that identifies lung tissue patterns from high-resolution computed tomography (HRCT) images of patients affected with interstitial lung diseases (ILD). This pattern recognition task is part of an image-based diagnostic aid system for ILDs. Five lung tissue patterns (healthy, emphysema, ground glass, fibrosis and microdules) selected from a multimedia database are classified using the overcomplete discrete wavelet frame decompostion combined with grey-level histogram features. The overall multiclass accuracy reaches 92.5% of correct matches while combining the two types of features, which are found to be complementary. PMID:18003452
Lung tissue classification using wavelet frames.
Depeursinge, Adrien; Sage, Daniel; Hidki, Asmâa; Platon, Alexandra; Poletti, Pierre-Alexandre; Unser, Michael; Müller, Henning
2007-01-01
We describe a texture classification system that identifies lung tissue patterns from high-resolution computed tomography (HRCT) images of patients affected with interstitial lung diseases (ILD). This pattern recognition task is part of an image-based diagnostic aid system for ILDs. Five lung tissue patterns (healthy, emphysema, ground glass, fibrosis and microdules) selected from a multimedia database are classified using the overcomplete discrete wavelet frame decompostion combined with grey-level histogram features. The overall multiclass accuracy reaches 92.5% of correct matches while combining the two types of features, which are found to be complementary.
Simulation-based design using wavelets
NASA Astrophysics Data System (ADS)
Williams, John R.; Amaratunga, Kevin S.
1994-03-01
The design of large-scale systems requires methods of analysis which have the flexibility to provide a fast interactive simulation capability, while retaining the ability to provide high-order solution accuracy when required. This suggests that a hierarchical solution procedure is required that allows us to trade off accuracy for solution speed in a rational manner. In this paper, we examine the properties of the biorthogonal wavelets recently constructed by Dahlke and Weinreich and show how they can be used to implement a highly efficient multiscale solution procedure for solving a certain class of one-dimensional problems.
Bayesian estimation of dose thresholds
NASA Technical Reports Server (NTRS)
Groer, P. G.; Carnes, B. A.
2003-01-01
An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.
Ayachi, Fouaz S; Nguyen, Hung P; Lavigne-Pelletier, Catherine; Goubault, Etienne; Boissy, Patrick; Duval, Christian
2016-03-01
_Left tasks, respectively. This study demonstrated that DWT in conjunction with a nonlinear transform and auto-adaptive thresholding process for decision rules are highly efficient in detecting and segmenting tasks performed during free-living activities. This study also helped to determine the optimal number of sensors, and their location to detect such activities. This work lays the foundation for the automatic assessment of mobility performance within the segmented signals, as well as potentially helps differentiate populations based on their mobility patterns and symptomatology. PMID:26914432
A wavelet based method for automatic detection of slow eye movements: a pilot study.
Magosso, Elisa; Provini, Federica; Montagna, Pasquale; Ursino, Mauro
2006-11-01
Electro-oculographic (EOG) activity during the wake-sleep transition is characterized by the appearance of slow eye movements (SEM). The present work describes an algorithm for the automatic localisation of SEM events from EOG recordings. The algorithm is based on a wavelet multiresolution analysis of the difference between right and left EOG tracings, and includes three main steps: (i) wavelet decomposition down to 10 detail levels (i.e., 10 scales), using Daubechies order 4 wavelet; (ii) computation of energy in 0.5s time steps at any level of decomposition; (iii) construction of a non-linear discriminant function expressing the relative energy of high-scale details to both high- and low-scale details. The main assumption is that the value of the discriminant function increases above a given threshold during SEM episodes due to energy redistribution toward higher scales. Ten EOG recordings from ten male patients with obstructive sleep apnea syndrome were used. All tracings included a period from pre-sleep wakefulness to stage 2 sleep. Two experts inspected the tracings separately to score SEMs. A reference set of SEM (gold standard) were obtained by joint examination by both experts. Parameters of the discriminant function were assigned on three tracings (design set) to minimize the disagreement between the system classification and classification by the two experts; the algorithm was then tested on the remaining seven tracings (test set). Results show that the agreement between the algorithm and the gold standard was 80.44+/-4.09%, the sensitivity of the algorithm was 67.2+/-7.37% and the selectivity 83.93+/-8.65%. However, most errors were not caused by an inability of the system to detect intervals with SEM activity against NON-SEM intervals, but were due to a different localisation of the beginning and end of some SEM episodes. The proposed method may be a valuable tool for computerized EOG analysis. PMID:16497535
Holan, Scott H; Viator, John A
2008-06-21
Photoacoustic image reconstruction may involve hundreds of point measurements, each of which contributes unique information about the subsurface absorbing structures under study. For backprojection imaging, two or more point measurements of photoacoustic waves induced by irradiating a biological sample with laser light are used to produce an image of the acoustic source. Each of these measurements must undergo some signal processing, such as denoising or system deconvolution. In order to process the numerous signals, we have developed an automated wavelet algorithm for denoising signals. We appeal to the discrete wavelet transform for denoising photoacoustic signals generated in a dilute melanoma cell suspension and in thermally coagulated blood. We used 5, 9, 45 and 270 melanoma cells in the laser beam path as test concentrations. For the burn phantom, we used coagulated blood in 1.6 mm silicon tube submerged in Intralipid. Although these two targets were chosen as typical applications for photoacoustic detection and imaging, they are of independent interest. The denoising employs level-independent universal thresholding. In order to accommodate nonradix-2 signals, we considered a maximal overlap discrete wavelet transform (MODWT). For the lower melanoma cell concentrations, as the signal-to-noise ratio approached 1, denoising allowed better peak finding. For coagulated blood, the signals were denoised to yield a clean photoacoustic resulting in an improvement of 22% in the reconstructed image. The entire signal processing technique was automated so that minimal user intervention was needed to reconstruct the images. Such an algorithm may be used for image reconstruction and signal extraction for applications such as burn depth imaging, depth profiling of vascular lesions in skin and the detection of single cancer cells in blood samples. PMID:18495977
NASA Astrophysics Data System (ADS)
Holan, Scott H.; Viator, John A.
2008-06-01
Photoacoustic image reconstruction may involve hundreds of point measurements, each of which contributes unique information about the subsurface absorbing structures under study. For backprojection imaging, two or more point measurements of photoacoustic waves induced by irradiating a biological sample with laser light are used to produce an image of the acoustic source. Each of these measurements must undergo some signal processing, such as denoising or system deconvolution. In order to process the numerous signals, we have developed an automated wavelet algorithm for denoising signals. We appeal to the discrete wavelet transform for denoising photoacoustic signals generated in a dilute melanoma cell suspension and in thermally coagulated blood. We used 5, 9, 45 and 270 melanoma cells in the laser beam path as test concentrations. For the burn phantom, we used coagulated blood in 1.6 mm silicon tube submerged in Intralipid. Although these two targets were chosen as typical applications for photoacoustic detection and imaging, they are of independent interest. The denoising employs level-independent universal thresholding. In order to accommodate nonradix-2 signals, we considered a maximal overlap discrete wavelet transform (MODWT). For the lower melanoma cell concentrations, as the signal-to-noise ratio approached 1, denoising allowed better peak finding. For coagulated blood, the signals were denoised to yield a clean photoacoustic resulting in an improvement of 22% in the reconstructed image. The entire signal processing technique was automated so that minimal user intervention was needed to reconstruct the images. Such an algorithm may be used for image reconstruction and signal extraction for applications such as burn depth imaging, depth profiling of vascular lesions in skin and the detection of single cancer cells in blood samples.
Nie, Xinhua; Pan, Zhongming; Zhang, Dasha; Zhou, Han; Chen, Min; Zhang, Wenna
2014-01-01
Magnetic anomaly detection (MAD) is a passive approach for detection of a ferromagnetic target, and its performance is often limited by external noises. In consideration of one major noise source is the fractal noise (or called 1/f noise) with a power spectral density of 1/fa (0wavelet decomposition can play the role of a Karhunen-Loève-type expansion to the 1/f-type signal by its decorrelation abilities, an effective energy detection method based on undecimated discrete wavelet transform (UDWT) is proposed in this paper. Firstly, the foundations of magnetic anomaly detection and UDWT are introduced in brief, while a possible detection system based on giant magneto-impedance (GMI) magnetic sensor is also given out. Then our proposed energy detection based on UDWT is described in detail, and the probabilities of false alarm and detection for given the detection threshold in theory are presented. It is noticeable that no a priori assumptions regarding the ferromagnetic target or the magnetic noise probability are necessary for our method, and different from the discrete wavelet transform (DWT), the UDWT is shift invariant. Finally, some simulations are performed and the results show that the detection performance of our proposed detector is better than that of the conventional energy detector even utilized in the Gaussian white noise, especially when the spectral parameter α is less than 1.0. In addition, a real-world experiment was done to demonstrate the advantages of the proposed method. PMID:25343484
Generalized Morse wavelets for the phase evaluation of projected fringe pattern
NASA Astrophysics Data System (ADS)
Kocahan Yılmaz, Özlem; Coşkun, Emre; Özder, Serhat
2014-10-01
Generalized Morse wavelets are proposed to evaluate the phase information from projected fringe pattern with the spatial carrier frequency in the x direction. The height profile of the object is determined through the phase change distribution by using the phase of the continuous wavelet transform. The choice of an appropriate mother wavelet is an important step for the calculation of phase. As a mother wavelet, zero order generalized Morse wavelet is chosen because of the flexible spatial and frequency localization property, and it is exactly analytic. Experimental results for the Morlet and Paul wavelets are compared with the results of generalized Morse wavelets analysis.
Carbon monoxide exposure and human visual detection thresholds
Hudnell, H.K.; Benignus, V.A.
1989-01-01
In order to test for low level CO exposure effects on vision, a battery of visual tests was administered to male college students. All subjects completed the battery of tests both before and during an exposure period in a double-blind study. Experimental subjects received CO during the exposure period, whereas control subjects received only room air. The battery of visual tests was designed for the assessment of scotopic (dark adapted, rod mediated) vision, photopic (light adapted, cone mediated) vision, the pattern detection process and the motion detection process. Contrast thresholds for the detection of stimulus pattern and for the detection of stimulus motion were measured under both photopic and scotopic viewing conditions, and sensitivity was monitored throughout the course of dark adaptation by measuring luminance thresholds. The results indicated that visual function in healthy, young adult males was not affected by a COHb level of about 17% which was maintained for over 2 hours.
Facial Feature Extraction Based on Wavelet Transform
NASA Astrophysics Data System (ADS)
Hung, Nguyen Viet
Facial feature extraction is one of the most important processes in face recognition, expression recognition and face detection. The aims of facial feature extraction are eye location, shape of eyes, eye brow, mouth, head boundary, face boundary, chin and so on. The purpose of this paper is to develop an automatic facial feature extraction system, which is able to identify the eye location, the detailed shape of eyes and mouth, chin and inner boundary from facial images. This system not only extracts the location information of the eyes, but also estimates four important points in each eye, which helps us to rebuild the eye shape. To model mouth shape, mouth extraction gives us both mouth location and two corners of mouth, top and bottom lips. From inner boundary we obtain and chin, we have face boundary. Based on wavelet features, we can reduce the noise from the input image and detect edge information. In order to extract eyes, mouth, inner boundary, we combine wavelet features and facial character to design these algorithms for finding midpoint, eye's coordinates, four important eye's points, mouth's coordinates, four important mouth's points, chin coordinate and then inner boundary. The developed system is tested on Yale Faces and Pedagogy student's faces.
Wavelet Denoising of Mobile Radiation Data
Campbell, D B
2008-10-31
The FY08 phase of this project investigated the merits of video fusion as a method for mitigating the false alarms encountered by vehicle borne detection systems in an effort to realize performance gains associated with wavelet denoising. The fusion strategy exploited the significant correlations which exist between data obtained from radiation detectors and video systems with coincident fields of view. The additional information provided by optical systems can greatly increase the capabilities of these detection systems by reducing the burden of false alarms and through the generation of actionable information. The investigation into the use of wavelet analysis techniques as a means of filtering the gross-counts signal obtained from moving radiation detectors showed promise for vehicle borne systems. However, the applicability of these techniques to man-portable systems is limited due to minimal gains in performance over the rapid feedback available to system operators under walking conditions. Furthermore, the fusion of video holds significant promise for systems operating from vehicles or systems organized into stationary arrays; however, the added complexity and hardware required by this technique renders it infeasible for man-portable systems.
Continuous wavelet transform in quantum field theory
NASA Astrophysics Data System (ADS)
Altaisky, M. V.; Kaputkina, N. E.
2013-07-01
We describe the application of the continuous wavelet transform to calculation of the Green functions in quantum field theory: scalar ϕ4 theory, quantum electrodynamics, and quantum chromodynamics. The method of continuous wavelet transform in quantum field theory, presented by Altaisky [Phys. Rev. D 81, 125003 (2010)] for the scalar ϕ4 theory, consists in substitution of the local fields ϕ(x) by those dependent on both the position x and the resolution a. The substitution of the action S[ϕ(x)] by the action S[ϕa(x)] makes the local theory into a nonlocal one and implies the causality conditions related to the scale a, the region causality [J. D. Christensen and L. Crane, J. Math. Phys. (N.Y.) 46, 122502 (2005)]. These conditions make the Green functions G(x1,a1,…,xn,an)=⟨ϕa1(x1)…ϕan(xn)⟩ finite for any given set of regions by means of an effective cutoff scale A=min(a1,…,an).
Paul, Sabyasachi; Suman, V; Sarkar, P K; Ranade, A K; Pulhani, V; Dafauti, S; Datta, D
2013-08-01
A wavelet transform based denoising methodology has been applied to detect the presence of any discernable trend in (137)Cs and (90)Sr activity levels in bore-hole water samples collected four times a year over a period of eight years, from 2002 to 2009, in the vicinity of typical nuclear facilities inside the restricted access zones. The conventional non-parametric methods viz., Mann-Kendall and Spearman rho, along with linear regression when applied for detecting the linear trend in the time series data do not yield results conclusive for trend detection with a confidence of 95% for most of the samples. The stationary wavelet based hard thresholding data pruning method with Haar as the analyzing wavelet was applied to remove the noise present in the same data. Results indicate that confidence interval of the established trend has significantly improved after pre-processing to more than 98% compared to the conventional non-parametric methods when applied to direct measurements.
Parton distributions with threshold resummation
NASA Astrophysics Data System (ADS)
Bonvini, Marco; Marzani, Simone; Rojo, Juan; Rottoli, Luca; Ubiali, Maria; Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Hartland, Nathan P.
2015-09-01
We construct a set of parton distribution functions (PDFs) in which fixed-order NLO and NNLO calculations are supplemented with soft-gluon (threshold) resummation up to NLL and NNLL accuracy respectively, suitable for use in conjunction with any QCD calculation in which threshold resummation is included at the level of partonic cross sections. These resummed PDF sets, based on the NNPDF3.0 analysis, are extracted from deep-inelastic scattering, Drell-Yan, and top quark pair production data, for which resummed calculations can be consistently used. We find that, close to threshold, the inclusion of resummed PDFs can partially compensate the enhancement in resummed matrix elements, leading to resummed hadronic cross-sections closer to the fixed-order calculations. On the other hand, far from threshold, resummed PDFs reduce to their fixed-order counterparts. Our results demonstrate the need for a consistent use of resummed PDFs in resummed calculations.
Segmentation of complementary DNA microarray images by wavelet-based Markov random field model.
Athanasiadis, Emmanouil I; Cavouras, Dionisis A; Glotsos, Dimitris Th; Georgiadis, Pantelis V; Kalatzis, Ioannis K; Nikiforidis, George C
2009-11-01
A wavelet-based modification of the Markov random field (WMRF) model is proposed for segmenting complementary DNA (cDNA) microarray images. For evaluation purposes, five simulated and a set of five real microarray images were used. The one-level stationary wavelet transform (SWT) of each microarray image was used to form two images, a denoised image, using hard thresholding filter, and a magnitude image, from the amplitudes of the horizontal and vertical components of SWT. Elements from these two images were suitably combined to form the WMRF model for segmenting spots from their background. The WMRF was compared against the conventional MRF and the Fuzzy C means (FCM) algorithms on simulated and real microarray images and their performances were evaluated by means of the segmentation matching factor (SMF) and the coefficient of determination (r2). Additionally, the WMRF was compared against the SPOT and SCANALYZE, and performances were evaluated by the mean absolute error (MAE) and the coefficient of variation (CV). The WMRF performed more accurately than the MRF and FCM (SMF: 92.66, 92.15, and 89.22, r2 : 0.92, 0.90, and 0.84, respectively) and achieved higher reproducibility than the MRF, SPOT, and SCANALYZE (MAE: 497, 1215, 1180, and 503, CV: 0.88, 1.15, 0.93, and 0.90, respectively).
NASA Astrophysics Data System (ADS)
Jia, Xiaoliang; An, Haizhong; Sun, Xiaoqi; Huang, Xuan; Gao, Xiangyun
2016-04-01
The globalization and regionalization of crude oil trade inevitably give rise to the difference of crude oil prices. The understanding of the pattern of the crude oil prices' mutual propagation is essential for analyzing the development of global oil trade. Previous research has focused mainly on the fuzzy long- or short-term one-to-one propagation of bivariate oil prices, generally ignoring various patterns of periodical multivariate propagation. This study presents a wavelet-based network approach to help uncover the multipath propagation of multivariable crude oil prices in a joint time-frequency period. The weekly oil spot prices of the OPEC member states from June 1999 to March 2011 are adopted as the sample data. First, we used wavelet analysis to find different subseries based on an optimal decomposing scale to describe the periodical feature of the original oil price time series. Second, a complex network model was constructed based on an optimal threshold selection to describe the structural feature of multivariable oil prices. Third, Bayesian network analysis (BNA) was conducted to find the probability causal relationship based on periodical structural features to describe the various patterns of periodical multivariable propagation. Finally, the significance of the leading and intermediary oil prices is discussed. These findings are beneficial for the implementation of periodical target-oriented pricing policies and investment strategies.
Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement.
Wang, Junjie; He, Xiufeng; Ferreira, Vagner G
2015-08-07
Monitoring ocean waves plays a crucial role in, for example, coastal environmental and protection studies. Traditional methods for measuring ocean waves are based on ultrasonic sensors and accelerometers. However, the Global Positioning System (GPS) has been introduced recently and has the advantage of being smaller, less expensive, and not requiring calibration in comparison with the traditional methods. Therefore, for accurately measuring ocean waves using GPS, further research on the separation of the wave signals from the vertical GPS-mounted carrier displacements is still necessary. In order to contribute to this topic, we present a novel method that combines complementary ensemble empirical mode decomposition (CEEMD) with a wavelet threshold denoising model (i.e., CEEMD-Wavelet). This method seeks to extract wave signals with less residual noise and without losing useful information. Compared with the wave parameters derived from the moving average skill, high pass filter and wave gauge, the results show that the accuracy of the wave parameters for the proposed method was improved with errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, verifying the validity of the proposed method.
[A novel method to determine the redshifts of active galaxies based on wavelet transform].
Tu, Liang-Ping; Luo, A-Li; Jiang, Bin; Wei, Peng; Zhao, Yong-Heng; Liu, Rong
2012-10-01
Automatically determining redshifts of galaxies is very important for astronomical research on large samples, such as large-scale structure of cosmological significance. Galaxies are generally divided into normal galaxies and active galaxies, and the spectra of active galaxies mostly have more obvious emission lines. In the present paper, the authors present a novel method to determine spectral redshifts of active galaxies rapidly based on wavelet transformation mainly, and it does not need to extract line information accurately. This method includes the following steps: Firstly, we denoised a spectrum to be processed; Secondly, the low-frequency spectrum was extracted based on wavelet transform, and then we could get the residual spectrum through the denoised spectrum subtracting the low-frequency spectrum; Thirdly, the authors calculated the standard deviation of the residual spectrum and determined a threshold value T, then retained the wavelength set whose corresponding flux was greater than T; Fourthly, according to the wavelength form of all the standard lines, we calculated all the candidate redshifts; Finally, utilizing the density estimation method based on Parzen window, we determined the redshift point with maximum density, and the average value of its neighborhood would be the final redshift of this spectrum. The experiments on simulated data and real data from SDSS-DR7 show that this method is robust and its correct rate is encouraging. And it can be expected to be applied in the project of LAMOST.
Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement
Wang, Junjie; He, Xiufeng; Ferreira, Vagner G.
2015-01-01
Monitoring ocean waves plays a crucial role in, for example, coastal environmental and protection studies. Traditional methods for measuring ocean waves are based on ultrasonic sensors and accelerometers. However, the Global Positioning System (GPS) has been introduced recently and has the advantage of being smaller, less expensive, and not requiring calibration in comparison with the traditional methods. Therefore, for accurately measuring ocean waves using GPS, further research on the separation of the wave signals from the vertical GPS-mounted carrier displacements is still necessary. In order to contribute to this topic, we present a novel method that combines complementary ensemble empirical mode decomposition (CEEMD) with a wavelet threshold denoising model (i.e., CEEMD-Wavelet). This method seeks to extract wave signals with less residual noise and without losing useful information. Compared with the wave parameters derived from the moving average skill, high pass filter and wave gauge, the results show that the accuracy of the wave parameters for the proposed method was improved with errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, verifying the validity of the proposed method. PMID:26262620
Skin surface removal on breast microwave imagery using wavelet multiscale products
NASA Astrophysics Data System (ADS)
Flores-Tapia, Daniel; Thomas, Gabriel; Pistorius, Stephen
2006-03-01
In many parts of the world, breast cancer is the leading cause mortality among women and it is the major cause of cancer death, next only to lung cancer. In recent years, microwave imaging has shown its potential as an alternative approach for breast cancer detection. Although advances have improved the likelihood of developing an early detection system based on this technology, there are still limitations. One of these limitations is that target responses are often obscured by surface reflections. Contrary to ground penetrating radar applications, a simple reference subtraction cannot be easily applied to alleviate this problem due to differences in the breast skin composition between patients. A novel surface removal technique for the removal of these high intensity reflections is proposed in this paper. This paper presents an algorithm based on the multiplication of adjacent wavelet subbands in order to enhance target echoes while reducing skin reflections. In these multiscale products, target signatures can be effectively distinguished from surface reflections. A simple threshold is applied to the signal in the wavelet domain in order to eliminate the skin responses. This final signal is reconstructed to the spatial domain in order to obtain a focused image. The proposed algorithm yielded promising results when applied to real data obtained from a phantom which mimics the dielectric properties of breast, cancer and skin tissues.
Wavelet Methods Developed to Detect and Control Compressor Stall
NASA Technical Reports Server (NTRS)
Le, Dzu K.
1997-01-01
A "wavelet" is, by definition, an amplitude-varying, short waveform with a finite bandwidth (e.g., that shown in the first two graphs). Naturally, wavelets are more effective than the sinusoids of Fourier analysis for matching and reconstructing signal features. In wavelet transformation and inversion, all transient or periodic data features (as in compressor-inlet pressures) can be detected and reconstructed by stretching or contracting a single wavelet to generate the matching building blocks. Consequently, wavelet analysis provides many flexible and effective ways to reduce noise and extract signals which surpass classical techniques - making it very attractive for data analysis, modeling, and active control of stall and surge in high-speed turbojet compressors. Therefore, fast and practical wavelet methods are being developed in-house at the NASA Lewis Research Center to assist in these tasks. This includes establishing user-friendly links between some fundamental wavelet analysis ideas and the classical theories (or practices) of system identification, data analysis, and processing.
On-Line Loss of Control Detection Using Wavelets
NASA Technical Reports Server (NTRS)
Brenner, Martin J. (Technical Monitor); Thompson, Peter M.; Klyde, David H.; Bachelder, Edward N.; Rosenthal, Theodore J.
2005-01-01
Wavelet transforms are used for on-line detection of aircraft loss of control. Wavelet transforms are compared with Fourier transform methods and shown to more rapidly detect changes in the vehicle dynamics. This faster response is due to a time window that decreases in length as the frequency increases. New wavelets are defined that further decrease the detection time by skewing the shape of the envelope. The wavelets are used for power spectrum and transfer function estimation. Smoothing is used to tradeoff the variance of the estimate with detection time. Wavelets are also used as front-end to the eigensystem reconstruction algorithm. Stability metrics are estimated from the frequency response and models, and it is these metrics that are used for loss of control detection. A Matlab toolbox was developed for post-processing simulation and flight data using the wavelet analysis methods. A subset of these methods was implemented in real time and named the Loss of Control Analysis Tool Set or LOCATS. A manual control experiment was conducted using a hardware-in-the-loop simulator for a large transport aircraft, in which the real time performance of LOCATS was demonstrated. The next step is to use these wavelet analysis tools for flight test support.
Low-complexity wavelet filter design for image compression
NASA Technical Reports Server (NTRS)
Majani, E.
1994-01-01
Image compression algorithms based on the wavelet transform are an increasingly attractive and flexible alternative to other algorithms based on block orthogonal transforms. While the design of orthogonal wavelet filters has been studied in significant depth, the design of nonorthogonal wavelet filters, such as linear-phase (LP) filters, has not yet reached that point. Of particular interest are wavelet transforms with low complexity at the encoder. In this article, we present known and new parameterizations of the two families of LP perfect reconstruction (PR) filters. The first family is that of all PR LP filters with finite impulse response (FIR), with equal complexity at the encoder and decoder. The second family is one of LP PR filters, which are FIR at the encoder and infinite impulse response (IIR) at the decoder, i.e., with controllable encoder complexity. These parameterizations are used to optimize the subband/wavelet transform coding gain, as defined for nonorthogonal wavelet transforms. Optimal LP wavelet filters are given for low levels of encoder complexity, as well as their corresponding integer approximations, to allow for applications limited to using integer arithmetic. These optimal LP filters yield larger coding gains than orthogonal filters with an equivalent complexity. The parameterizations described in this article can be used for the optimization of any other appropriate objective function.
Modified foreground segmentation for object tracking using wavelets in a tensor framework
NASA Astrophysics Data System (ADS)
Kapoor, Rajiv; Rohilla, Rajesh
2015-09-01
Subspace-based techniques have become important in behaviour analysis, appearance modelling and tracking. Various vector and tensor subspace learning techniques are already known that perform their operations in offline as well as in an online manner. In this work, we have improved upon a tensor-based subspace learning by using fourth-order decomposition and wavelets so as to have an advanced adaptive algorithm for robust and efficient background modelling and tracking in coloured video sequences. The proposed algorithm known as fourth-order incremental tensor subspace learning algorithm uses the spatio-colour-temporal information by adaptive online update of the means and the eigen basis for each unfolding matrix using tensor decomposition to fourth-order image tensors. The proposed method employs the wavelet transformation to an optimum decomposition level in order to reduce the computational complexity by working on the approximate counterpart of the original scenes and also reduces noise in the given scene. Our tracking method is an unscented particle filter that utilises appearance knowledge and estimates the new state of the intended object. Various experiments have been performed to demonstrate the promising and convincing nature of the proposed method and the method works better than existing methods.