Science.gov

Sample records for adaptive-grid michigan mhd

  1. Interactive solution-adaptive grid generation

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Henderson, Todd L.

    1992-01-01

    TURBO-AD is an interactive solution-adaptive grid generation program under development. The program combines an interactive algebraic grid generation technique and a solution-adaptive grid generation technique into a single interactive solution-adaptive grid generation package. The control point form uses a sparse collection of control points to algebraically generate a field grid. This technique provides local grid control capability and is well suited to interactive work due to its speed and efficiency. A mapping from the physical domain to a parametric domain was used to improve difficulties that had been encountered near outwardly concave boundaries in the control point technique. Therefore, all grid modifications are performed on a unit square in the parametric domain, and the new adapted grid in the parametric domain is then mapped back to the physical domain. The grid adaptation is achieved by first adapting the control points to a numerical solution in the parametric domain using control sources obtained from flow properties. Then a new modified grid is generated from the adapted control net. This solution-adaptive grid generation process is efficient because the number of control points is much less than the number of grid points and the generation of a new grid from the adapted control net is an efficient algebraic process. TURBO-AD provides the user with both local and global grid controls.

  2. An adaptive grid with directional control

    NASA Technical Reports Server (NTRS)

    Brackbill, J. U.

    1993-01-01

    An adaptive grid generator for adaptive node movement is here derived by combining a variational formulation of Winslow's (1981) variable-diffusion method with a directional control functional. By applying harmonic-function theory, it becomes possible to define conditions under which there exist unique solutions of the resulting elliptic equations. The results obtained for the grid generator's application to the complex problem posed by the fluid instability-driven magnetic field reconnection demonstrate one-tenth the computational cost of either a Eulerian grid or an adaptive grid without directional control.

  3. The fundamentals of adaptive grid movement

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.

    1990-01-01

    Basic grid point movement schemes are studied. The schemes are referred to as adaptive grids. Weight functions and equidistribution in one dimension are treated. The specification of coefficients in the linear weight, attraction to a given grid or a curve, and evolutionary forces are considered. Curve by curve and finite volume methods are described. The temporal coupling of partial differential equations solvers and grid generators was discussed.

  4. Interactive solution-adaptive grid generation procedure

    NASA Technical Reports Server (NTRS)

    Henderson, Todd L.; Choo, Yung K.; Lee, Ki D.

    1992-01-01

    TURBO-AD is an interactive solution adaptive grid generation program under development. The program combines an interactive algebraic grid generation technique and a solution adaptive grid generation technique into a single interactive package. The control point form uses a sparse collection of control points to algebraically generate a field grid. This technique provides local grid control capability and is well suited to interactive work due to its speed and efficiency. A mapping from the physical domain to a parametric domain was used to improve difficulties encountered near outwardly concave boundaries in the control point technique. Therefore, all grid modifications are performed on the unit square in the parametric domain, and the new adapted grid is then mapped back to the physical domain. The grid adaption is achieved by adapting the control points to a numerical solution in the parametric domain using control sources obtained from the flow properties. Then a new modified grid is generated from the adapted control net. This process is efficient because the number of control points is much less than the number of grid points and the generation of the grid is an efficient algebraic process. TURBO-AD provides the user with both local and global controls.

  5. SAGE - MULTIDIMENSIONAL SELF-ADAPTIVE GRID CODE

    NASA Technical Reports Server (NTRS)

    Davies, C. B.

    1994-01-01

    SAGE, Self Adaptive Grid codE, is a flexible tool for adapting and restructuring both 2D and 3D grids. Solution-adaptive grid methods are useful tools for efficient and accurate flow predictions. In supersonic and hypersonic flows, strong gradient regions such as shocks, contact discontinuities, shear layers, etc., require careful distribution of grid points to minimize grid error and produce accurate flow-field predictions. SAGE helps the user obtain more accurate solutions by intelligently redistributing (i.e. adapting) the original grid points based on an initial or interim flow-field solution. The user then computes a new solution using the adapted grid as input to the flow solver. The adaptive-grid methodology poses the problem in an algebraic, unidirectional manner for multi-dimensional adaptations. The procedure is analogous to applying tension and torsion spring forces proportional to the local flow gradient at every grid point and finding the equilibrium position of the resulting system of grid points. The multi-dimensional problem of grid adaption is split into a series of one-dimensional problems along the computational coordinate lines. The reduced one dimensional problem then requires a tridiagonal solver to find the location of grid points along a coordinate line. Multi-directional adaption is achieved by the sequential application of the method in each coordinate direction. The tension forces direct the redistribution of points to the strong gradient region. To maintain smoothness and a measure of orthogonality of grid lines, torsional forces are introduced that relate information between the family of lines adjacent to one another. The smoothness and orthogonality constraints are direction-dependent, since they relate only the coordinate lines that are being adapted to the neighboring lines that have already been adapted. Therefore the solutions are non-unique and depend on the order and direction of adaption. Non-uniqueness of the adapted grid is

  6. A generic efficient adaptive grid scheme for rocket propulsion modeling

    NASA Technical Reports Server (NTRS)

    Mo, J. D.; Chow, Alan S.

    1993-01-01

    The objective of this research is to develop an efficient, time-accurate numerical algorithm to discretize the Navier-Stokes equations for the predictions of internal one-, two-dimensional and axisymmetric flows. A generic, efficient, elliptic adaptive grid generator is implicitly coupled with the Lower-Upper factorization scheme in the development of ALUNS computer code. The calculations of one-dimensional shock tube wave propagation and two-dimensional shock wave capture, wave-wave interactions, shock wave-boundary interactions show that the developed scheme is stable, accurate and extremely robust. The adaptive grid generator produced a very favorable grid network by a grid speed technique. This generic adaptive grid generator is also applied in the PARC and FDNS codes and the computational results for solid rocket nozzle flowfield and crystal growth modeling by those codes will be presented in the conference, too. This research work is being supported by NASA/MSFC.

  7. ICASE/LaRC Workshop on Adaptive Grid Methods

    NASA Technical Reports Server (NTRS)

    South, Jerry C., Jr. (Editor); Thomas, James L. (Editor); Vanrosendale, John (Editor)

    1995-01-01

    Solution-adaptive grid techniques are essential to the attainment of practical, user friendly, computational fluid dynamics (CFD) applications. In this three-day workshop, experts gathered together to describe state-of-the-art methods in solution-adaptive grid refinement, analysis, and implementation; to assess the current practice; and to discuss future needs and directions for research. This was accomplished through a series of invited and contributed papers. The workshop focused on a set of two-dimensional test cases designed by the organizers to aid in assessing the current state of development of adaptive grid technology. In addition, a panel of experts from universities, industry, and government research laboratories discussed their views of needs and future directions in this field.

  8. Stability and error estimation for Component Adaptive Grid methods

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph; Zhu, Xiaolei

    1994-01-01

    Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.

  9. Moving and adaptive grid methods for compressible flows

    NASA Technical Reports Server (NTRS)

    Trepanier, Jean-Yves; Camarero, Ricardo

    1995-01-01

    This paper describes adaptive grid methods developed specifically for compressible flow computations. The basic flow solver is a finite-volume implementation of Roe's flux difference splitting scheme or arbitrarily moving unstructured triangular meshes. The grid adaptation is performed according to geometric and flow requirements. Some results are included to illustrate the potential of the methodology.

  10. An adaptive grid algorithm for one-dimensional nonlinear equations

    NASA Technical Reports Server (NTRS)

    Gutierrez, William E.; Hills, Richard G.

    1990-01-01

    Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and

  11. SAGE: The Self-Adaptive Grid Code. 3

    NASA Technical Reports Server (NTRS)

    Davies, Carol B.; Venkatapathy, Ethiraj

    1999-01-01

    The multi-dimensional self-adaptive grid code, SAGE, is an important tool in the field of computational fluid dynamics (CFD). It provides an efficient method to improve the accuracy of flow solutions while simultaneously reducing computer processing time. Briefly, SAGE enhances an initial computational grid by redistributing the mesh points into more appropriate locations. The movement of these points is driven by an equal-error-distribution algorithm that utilizes the relationship between high flow gradients and excessive solution errors. The method also provides a balance between clustering points in the high gradient regions and maintaining the smoothness and continuity of the adapted grid, The latest version, Version 3, includes the ability to change the boundaries of a given grid to more efficiently enclose flow structures and provides alternative redistribution algorithms.

  12. Adaptive grid embedding for the two-dimensional Euler equations

    NASA Technical Reports Server (NTRS)

    Warren, Gary P.

    1990-01-01

    A numerical algorithm is presented for solving the two-dimensional flux-split Euler equations using a multigrid method with adaptive grid embedding. The method uses an unstructured data set along with a system of pointers for communication on the irregularly shaped grid topologies. An explicit two-stage time advancement scheme is implemented. A multigrid algorithm is used to provide grid level communication and to accelerate the convergence of the solution to steady state. Results are presented for an NACA 0012 airfoil in a freestream with Mach numbers of 0.95 and 1.054. Excellent resolution of the shock structures is obtained with the adaptive grid embedding method with significantly fewer grid points than the comparable structured grid.

  13. Workshop on adaptive grid methods for fusion plasmas

    SciTech Connect

    Wiley, J.C.

    1995-07-01

    The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.

  14. Adaptive grid generation in a patient-specific cerebral aneurysm.

    PubMed

    Hodis, Simona; Kallmes, David F; Dragomir-Daescu, Dan

    2013-11-01

    Adapting grid density to flow behavior provides the advantage of increasing solution accuracy while decreasing the number of grid elements in the simulation domain, therefore reducing the computational time. One method for grid adaptation requires successive refinement of grid density based on observed solution behavior until the numerical errors between successive grids are negligible. However, such an approach is time consuming and it is often neglected by the researchers. We present a technique to calculate the grid size distribution of an adaptive grid for computational fluid dynamics (CFD) simulations in a complex cerebral aneurysm geometry based on the kinematic curvature and torsion calculated from the velocity field. The relationship between the kinematic characteristics of the flow and the element size of the adaptive grid leads to a mathematical equation to calculate the grid size in different regions of the flow. The adaptive grid density is obtained such that it captures the more complex details of the flow with locally smaller grid size, while less complex flow characteristics are calculated on locally larger grid size. The current study shows that kinematic curvature and torsion calculated from the velocity field in a cerebral aneurysm can be used to find the locations of complex flow where the computational grid needs to be refined in order to obtain an accurate solution. We found that the complexity of the flow can be adequately described by velocity and vorticity and the angle between the two vectors. For example, inside the aneurysm bleb, at the bifurcation, and at the major arterial turns the element size in the lumen needs to be less than 10% of the artery radius, while at the boundary layer, the element size should be smaller than 1% of the artery radius, for accurate results within a 0.5% relative approximation error. This technique of quantifying flow complexity and adaptive remeshing has the potential to improve results accuracy and reduce

  15. Adaptive grid generation in a patient-specific cerebral aneurysm

    NASA Astrophysics Data System (ADS)

    Hodis, Simona; Kallmes, David F.; Dragomir-Daescu, Dan

    2013-11-01

    Adapting grid density to flow behavior provides the advantage of increasing solution accuracy while decreasing the number of grid elements in the simulation domain, therefore reducing the computational time. One method for grid adaptation requires successive refinement of grid density based on observed solution behavior until the numerical errors between successive grids are negligible. However, such an approach is time consuming and it is often neglected by the researchers. We present a technique to calculate the grid size distribution of an adaptive grid for computational fluid dynamics (CFD) simulations in a complex cerebral aneurysm geometry based on the kinematic curvature and torsion calculated from the velocity field. The relationship between the kinematic characteristics of the flow and the element size of the adaptive grid leads to a mathematical equation to calculate the grid size in different regions of the flow. The adaptive grid density is obtained such that it captures the more complex details of the flow with locally smaller grid size, while less complex flow characteristics are calculated on locally larger grid size. The current study shows that kinematic curvature and torsion calculated from the velocity field in a cerebral aneurysm can be used to find the locations of complex flow where the computational grid needs to be refined in order to obtain an accurate solution. We found that the complexity of the flow can be adequately described by velocity and vorticity and the angle between the two vectors. For example, inside the aneurysm bleb, at the bifurcation, and at the major arterial turns the element size in the lumen needs to be less than 10% of the artery radius, while at the boundary layer, the element size should be smaller than 1% of the artery radius, for accurate results within a 0.5% relative approximation error. This technique of quantifying flow complexity and adaptive remeshing has the potential to improve results accuracy and reduce

  16. The multidimensional self-adaptive grid code, SAGE

    NASA Technical Reports Server (NTRS)

    Davies, Carol B.; Venkatapathy, Ethiraj

    1992-01-01

    This report describes the multidimensional self-adaptive grid code SAGE. A two-dimensional version of this code was described in an earlier report by the authors. The formulation of the multidimensional version is described in the first section of this document. The second section is presented in the form of a user guide that explains the input and execution of the code and provides many examples. Successful application of the SAGE code in both two and three dimensions for the solution of various flow problems has proven the code to be robust, portable, and simple to use. Although the basic formulation follows the method of Nakahashi and Deiwert, many modifications have been made to facilitate the use of the self-adaptive grid method for complex grid structures. Modifications to the method and the simplified input options make this a flexible and user-friendly code. The new SAGE code can accommodate both two-dimensional and three-dimensional flow problems.

  17. Efficient Load Balancing and Data Remapping for Adaptive Grid Calculations

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak

    1997-01-01

    Mesh adaption is a powerful tool for efficient unstructured- grid computations but causes load imbalance among processors on a parallel machine. We present a novel method to dynamically balance the processor workloads with a global view. This paper presents, for the first time, the implementation and integration of all major components within our dynamic load balancing strategy for adaptive grid calculations. Mesh adaption, repartitioning, processor assignment, and remapping are critical components of the framework that must be accomplished rapidly and efficiently so as not to cause a significant overhead to the numerical simulation. Previous results indicated that mesh repartitioning and data remapping are potential bottlenecks for performing large-scale scientific calculations. We resolve these issues and demonstrate that our framework remains viable on a large number of processors.

  18. Development of a dynamically adaptive grid method for multidimensional problems

    NASA Astrophysics Data System (ADS)

    Holcomb, J. E.; Hindman, R. G.

    1984-06-01

    An approach to solution adaptive grid generation for use with finite difference techniques, previously demonstrated on model problems in one space dimension, has been extended to multidimensional problems. The method is based on the popular elliptic steady grid generators, but is 'dynamically' adaptive in the sense that a grid is maintained at all times satisfying the steady grid law driven by a solution-dependent source term. Testing has been carried out on Burgers' equation in one and two space dimensions. Results appear encouraging both for inviscid wave propagation cases and viscous boundary layer cases, suggesting that application to practical flow problems is now possible. In the course of the work, obstacles relating to grid correction, smoothing of the solution, and elliptic equation solvers have been largely overcome. Concern remains, however, about grid skewness, boundary layer resolution and the need for implicit integration methods. Also, the method in 3-D is expected to be very demanding of computer resources.

  19. MHD simulations on an unstructured mesh

    SciTech Connect

    Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Longcope, D.W.; Sugiyama, L.E.

    1998-12-31

    Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.

  20. The multidimensional Self-Adaptive Grid code, SAGE, version 2

    NASA Technical Reports Server (NTRS)

    Davies, Carol B.; Venkatapathy, Ethiraj

    1995-01-01

    This new report on Version 2 of the SAGE code includes all the information in the original publication plus all upgrades and changes to the SAGE code since that time. The two most significant upgrades are the inclusion of a finite-volume option and the ability to adapt and manipulate zonal-matching multiple-grid files. In addition, the original SAGE code has been upgraded to Version 1.1 and includes all options mentioned in this report, with the exception of the multiple grid option and its associated features. Since Version 2 is a larger and more complex code, it is suggested (but not required) that Version 1.1 be used for single-grid applications. This document contains all the information required to run both versions of SAGE. The formulation of the adaption method is described in the first section of this document. The second section is presented in the form of a user guide that explains the input and execution of the code. The third section provides many examples. Successful application of the SAGE code in both two and three dimensions for the solution of various flow problems has proven the code to be robust, portable, and simple to use. Although the basic formulation follows the method of Nakahashi and Deiwert, many modifications have been made to facilitate the use of the self-adaptive grid method for complex grid structures. Modifications to the method and the simple but extensive input options make this a flexible and user-friendly code. The SAGE code can accommodate two-dimensional and three-dimensional, finite-difference and finite-volume, single grid, and zonal-matching multiple grid flow problems.

  1. Fast transport simulation with an adaptive grid refinement.

    PubMed

    Haefner, Frieder; Boy, Siegrun

    2003-01-01

    One of the main difficulties in transport modeling and calibration is the extraordinarily long computing times necessary for simulation runs. Improved execution time is a prerequisite for calibration in transport modeling. In this paper we investigate the problem of code acceleration using an adaptive grid refinement, neglecting subdomains, and devising a method by which the Courant condition can be ignored while maintaining accurate solutions. Grid refinement is based on dividing selected cells into regular subcells and including the balance equations of subcells in the equation system. The connection of coarse and refined cells satisfies the mass balance with an interpolation scheme that is implicitly included in the equation system. The refined subdomain can move with the average transport velocity of the subdomain. Very small time steps are required on a fine or a refined grid, because of the combined effect of the Courant and Peclet conditions. Therefore, we have developed a special upwind technique in small grid cells with high velocities (velocity suppression). We have neglected grid subdomains with very small concentration gradients (zero suppression). The resulting software, MODCALIF, is a three-dimensional, modularly constructed FORTRAN code. For convenience, the package names used by the well-known MODFLOW and MT3D computer programs are adopted, and the same input file structure and format is used, but the program presented here is separate and independent. Also, MODCALIF includes algorithms for variable density modeling and model calibration. The method is tested by comparison with an analytical solution, and illustrated by means of a two-dimensional theoretical example and three-dimensional simulations of the variable-density Cape Cod and SALTPOOL experiments. Crossing from fine to coarse grid produces numerical dispersion when the whole subdomain of interest is refined; however, we show that accurate solutions can be obtained using a fraction of the

  2. The use of solution adaptive grids in solving partial differential equations

    NASA Technical Reports Server (NTRS)

    Anderson, D. A.; Rai, M. M.

    1982-01-01

    The grid point distribution used in solving a partial differential equation using a numerical method has a substantial influence on the quality of the solution. An adaptive grid which adjusts as the solution changes provides the best results when the number of grid points available for use during the calculation is fixed. Basic concepts used in generating and applying adaptive grids are reviewed in this paper, and examples illustrating applications of these concepts are presented.

  3. Adaptive grid methods for RLV environment assessment and nozzle analysis

    NASA Technical Reports Server (NTRS)

    Thornburg, Hugh J.

    1996-01-01

    Rapid access to highly accurate data about complex configurations is needed for multi-disciplinary optimization and design. In order to efficiently meet these requirements a closer coupling between the analysis algorithms and the discretization process is needed. In some cases, such as free surface, temporally varying geometries, and fluid structure interaction, the need is unavoidable. In other cases the need is to rapidly generate and modify high quality grids. Techniques such as unstructured and/or solution-adaptive methods can be used to speed the grid generation process and to automatically cluster mesh points in regions of interest. Global features of the flow can be significantly affected by isolated regions of inadequately resolved flow. These regions may not exhibit high gradients and can be difficult to detect. Thus excessive resolution in certain regions does not necessarily increase the accuracy of the overall solution. Several approaches have been employed for both structured and unstructured grid adaption. The most widely used involve grid point redistribution, local grid point enrichment/derefinement or local modification of the actual flow solver. However, the success of any one of these methods ultimately depends on the feature detection algorithm used to determine solution domain regions which require a fine mesh for their accurate representation. Typically, weight functions are constructed to mimic the local truncation error and may require substantial user input. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. These weight functions can then be used to construct blending functions for algebraic redistribution, interpolation functions for unstructured grid generation

  4. TRIM: A finite-volume MHD algorithm for an unstructured adaptive mesh

    SciTech Connect

    Schnack, D.D.; Lottati, I.; Mikic, Z.

    1995-07-01

    The authors describe TRIM, a MHD code which uses finite volume discretization of the MHD equations on an unstructured adaptive grid of triangles in the poloidal plane. They apply it to problems related to modeling tokamak toroidal plasmas. The toroidal direction is treated by a pseudospectral method. Care was taken to center variables appropriately on the mesh and to construct a self adjoint diffusion operator for cell centered variables.

  5. Adaptive-grid methods for time-dependent partial differential equations

    SciTech Connect

    Hedstrom, G.W.; Rodrique, G.H.

    1981-01-01

    This paper contains a survey of recent developments of adaptive-grid algorithms for time-dependent partial differential equations. Two lines of research are discussed. One involves the automatic selection of moving grids to follow propagating waves. The other is based on stationary grids but uses local mesh refinement in both space and time. Advantages and disadvantages of both approaches are discussed. The development of adaptive-grid schemes shows promise of greatly increasing our ability to solve problems in several spatial dimensions.

  6. SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM

    EPA Science Inventory

    A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme?the piecewise parabolic method (PPM)?for computing advective solution fields; a weight function capable of promoting grid node clustering ...

  7. INITIAL APPL;ICATION OF THE ADAPTIVE GRID AIR POLLUTION MODEL

    EPA Science Inventory

    The paper discusses an adaptive-grid algorithm used in air pollution models. The algorithm reduces errors related to insufficient grid resolution by automatically refining the grid scales in regions of high interest. Meanwhile the grid scales are coarsened in other parts of the d...

  8. A Lagrangian-Eulerian finite element method with adaptive gridding for advection-dispersion problems

    SciTech Connect

    Ijiri, Y.; Karasaki, K.

    1994-02-01

    In the present paper, a Lagrangian-Eulerian finite element method with adaptive gridding for solving advection-dispersion equations is described. The code creates new grid points in the vicinity of sharp fronts at every time step in order to reduce numerical dispersion. The code yields quite accurate solutions for a wide range of mesh Peclet numbers and for mesh Courant numbers well in excess of 1.

  9. Adaptive gridding strategies for Free-Lagrangian calculations of low speed flows

    NASA Astrophysics Data System (ADS)

    Fritts, Martin J.

    1988-01-01

    Free-Lagrangian methods have been employed in two-dimensional simulations of the long-term evolution of fluid instabilities for low speed flows. For example, calculations of the Rayleigh-Taylor instability have proceeded through the inversion and mixing of two fluid layers and simulations of droplet deformations have continued well beyond droplet shattering. The freedom to choose grid connections permits several important benefits for these calculations. 1. Mass conservation is enforced for all individual fluid elements. 2. Vertex movement is always Lagrangian. 3. Grid adjustments can be made automatically, with no user intervention. 4. Grid connections may be selected to ensure accuracy in the difference equations. 5. Adaptive gridding schemes are local, adding and deleting vertices as dictated by local accuracy estimators. 6. Any geometric configuration may be easily gridded, for any vertex distribution on the boundaries or in the interior of the fluids. This paper will review some two-dimensional results, with the emphasis on the adaptive gridding algorithms and the accuracy of the resultant difference templates for the mathematical operators. The relation of the triangular mesh to the Voronoi mesh will be explored, particularly for the case when they are dual meshes. Three-dimensional algorithms for adaptive gridding will be presented which are exact analogues to the two-dimensional case. Gridding efficiencies will be discussed for several schemes.

  10. Ideal MHD

    NASA Astrophysics Data System (ADS)

    Freidberg, Jeffrey P.

    2014-06-01

    1. Introduction; 2. The ideal MHD model; 3. General properties of ideal MHD; 5. Equilibrium: one-dimensional configurations; 6. Equilibrium: two-dimensional configurations; 7. Equilibrium: three-dimensional configurations; 8. Stability: general considerations; 9. Alternate MHD models; 10. MHD stability comparison theorems; 11. Stability: one-dimensional configurations; 12. Stability: multi-dimensional configurations; Appendix A. Heuristic derivation of the kinetic equation; Appendix B. The Braginskii transport coefficients; Appendix C. Time derivatives in moving plasmas; Appendix D. The curvature vector; Appendix E. Overlap limit of the high b and Greene-Johnson stellarator models; Appendix F. General form for q(y); Appendix G. Natural boundary conditions; Appendix H. Upper and lower bounds on dQKIN.

  11. Application of a solution adaptive grid scheme, SAGE, to complex three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Davies, Carol B.; Venkatapathy, Ethiraj

    1991-01-01

    A new three-dimensional (3D) adaptive grid code based on the algebraic, solution-adaptive scheme of Nakahashi and Deiwert is developed and applied to a variety of problems. The new computer code, SAGE, is an extension of the same-named two-dimensional (2D) solution-adaptive program that has already proven to be a powerful tool in computational fluid dynamics applications. The new code has been applied to a range of complex three-dimensional, supersonic and hypersonic flows. Examples discussed are a tandem-slot fuel injector, the hypersonic forebody of the Aeroassist Flight Experiment (AFE), the 3D base flow behind the AFE, the supersonic flow around a 3D swept ramp and a generic, hypersonic, 3D nozzle-plume flow. The associated adapted grids and the solution enhancements resulting from the grid adaption are presented for these cases. Three-dimensional adaption is more complex than its 2D counterpart, and the complexities unique to the 3D problems are discussed.

  12. A time-accurate adaptive grid method and the numerical simulation of a shock-vortex interaction

    NASA Technical Reports Server (NTRS)

    Bockelie, Michael J.; Eiseman, Peter R.

    1990-01-01

    A time accurate, general purpose, adaptive grid method is developed that is suitable for multidimensional steady and unsteady numerical simulations. The grid point movement is performed in a manner that generates smooth grids which resolve the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling of the adaptive grid and the PDE solver is performed with a grid prediction correction method that is simple to implement and ensures the time accuracy of the grid. Time accurate solutions of the 2-D Euler equations for an unsteady shock vortex interaction demonstrate the ability of the adaptive method to accurately adapt the grid to multiple solution features.

  13. A self-adaptive-grid method with application to airfoil flow

    NASA Technical Reports Server (NTRS)

    Nakahashi, K.; Deiwert, G. S.

    1985-01-01

    A self-adaptive-grid method is described that is suitable for multidimensional steady and unsteady computations. Based on variational principles, a spring analogy is used to redistribute grid points in an optimal sense to reduce the overall solution error. User-specified parameters, denoting both maximum and minimum permissible grid spacings, are used to define the all-important constants, thereby minimizing the empiricism and making the method self-adaptive. Operator splitting and one-sided controls for orthogonality and smoothness are used to make the method practical, robust, and efficient. Examples are included for both steady and unsteady viscous flow computations about airfoils in two dimensions, as well as for a steady inviscid flow computation and a one-dimensional case. These examples illustrate the precise control the user has with the self-adaptive method and demonstrate a significant improvement in accuracy and quality of the solutions.

  14. Adaptive-Grid Methods for Phase Field Models of Microstructure Development

    NASA Technical Reports Server (NTRS)

    Provatas, Nikolas; Goldenfeld, Nigel; Dantzig, Jonathan A.

    1999-01-01

    In this work the authors show how the phase field model can be solved in a computationally efficient manner that opens a new large-scale simulational window on solidification physics. Our method uses a finite element, adaptive-grid formulation, and exploits the fact that the phase and temperature fields vary significantly only near the interface. We illustrate how our method allows efficient simulation of phase-field models in very large systems, and verify the predictions of solvability theory at intermediate undercooling. We then present new results at low undercoolings that suggest that solvability theory may not give the correct tip speed in that regime. We model solidification using the phase-field model used by Karma and Rappel.

  15. A General Hybrid Radiation Transport Scheme for Star Formation Simulations on an Adaptive Grid

    NASA Astrophysics Data System (ADS)

    Klassen, Mikhail; Kuiper, Rolf; Pudritz, Ralph E.; Peters, Thomas; Banerjee, Robi; Buntemeyer, Lars

    2014-12-01

    Radiation feedback plays a crucial role in the process of star formation. In order to simulate the thermodynamic evolution of disks, filaments, and the molecular gas surrounding clusters of young stars, we require an efficient and accurate method for solving the radiation transfer problem. We describe the implementation of a hybrid radiation transport scheme in the adaptive grid-based FLASH general magnetohydrodyanmics code. The hybrid scheme splits the radiative transport problem into a raytracing step and a diffusion step. The raytracer captures the first absorption event, as stars irradiate their environments, while the evolution of the diffuse component of the radiation field is handled by a flux-limited diffusion solver. We demonstrate the accuracy of our method through a variety of benchmark tests including the irradiation of a static disk, subcritical and supercritical radiative shocks, and thermal energy equilibration. We also demonstrate the capability of our method for casting shadows and calculating gas and dust temperatures in the presence of multiple stellar sources. Our method enables radiation-hydrodynamic studies of young stellar objects, protostellar disks, and clustered star formation in magnetized, filamentary environments.

  16. A general hybrid radiation transport scheme for star formation simulations on an adaptive grid

    SciTech Connect

    Klassen, Mikhail; Pudritz, Ralph E.; Kuiper, Rolf; Peters, Thomas; Banerjee, Robi; Buntemeyer, Lars

    2014-12-10

    Radiation feedback plays a crucial role in the process of star formation. In order to simulate the thermodynamic evolution of disks, filaments, and the molecular gas surrounding clusters of young stars, we require an efficient and accurate method for solving the radiation transfer problem. We describe the implementation of a hybrid radiation transport scheme in the adaptive grid-based FLASH general magnetohydrodyanmics code. The hybrid scheme splits the radiative transport problem into a raytracing step and a diffusion step. The raytracer captures the first absorption event, as stars irradiate their environments, while the evolution of the diffuse component of the radiation field is handled by a flux-limited diffusion solver. We demonstrate the accuracy of our method through a variety of benchmark tests including the irradiation of a static disk, subcritical and supercritical radiative shocks, and thermal energy equilibration. We also demonstrate the capability of our method for casting shadows and calculating gas and dust temperatures in the presence of multiple stellar sources. Our method enables radiation-hydrodynamic studies of young stellar objects, protostellar disks, and clustered star formation in magnetized, filamentary environments.

  17. The development and application of the self-adaptive grid code, SAGE

    NASA Astrophysics Data System (ADS)

    Davies, Carol B.

    The multidimensional self-adaptive grid code, SAGE, has proven to be a flexible and useful tool in the solution of complex flow problems. Both 2- and 3-D examples given in this report show the code to be reliable and to substantially improve flowfield solutions. Since the adaptive procedure is a marching scheme the code is extremely fast and uses insignificant CPU time compared to the corresponding flow solver. The SAGE program is also machine and flow solver independent. Significant effort was made to simplify user interaction, though some parameters still need to be chosen with care. It is also difficult to tell when the adaption process has provided its best possible solution. This is particularly true if no experimental data are available or if there is a lack of theoretical understanding of the flow. Another difficulty occurs if local features are important but missing in the original grid; the adaption to this solution will not result in any improvement, and only grid refinement can result in an improved solution. These are complex issues that need to be explored within the context of each specific problem.

  18. The development and application of the self-adaptive grid code, SAGE

    NASA Technical Reports Server (NTRS)

    Davies, Carol B.

    1993-01-01

    The multidimensional self-adaptive grid code, SAGE, has proven to be a flexible and useful tool in the solution of complex flow problems. Both 2- and 3-D examples given in this report show the code to be reliable and to substantially improve flowfield solutions. Since the adaptive procedure is a marching scheme the code is extremely fast and uses insignificant CPU time compared to the corresponding flow solver. The SAGE program is also machine and flow solver independent. Significant effort was made to simplify user interaction, though some parameters still need to be chosen with care. It is also difficult to tell when the adaption process has provided its best possible solution. This is particularly true if no experimental data are available or if there is a lack of theoretical understanding of the flow. Another difficulty occurs if local features are important but missing in the original grid; the adaption to this solution will not result in any improvement, and only grid refinement can result in an improved solution. These are complex issues that need to be explored within the context of each specific problem.

  19. MHD Spectroscopy

    SciTech Connect

    Heeter, R F; Fasoli, A; Testa, D; Sharapov, S; Berk, H L; Breizman, B; Gondhalekar, A; Mantsinen, M

    2004-03-23

    Experiments are conducted on the JET tokamak to assess the diagnostic potential of MHD active and passive spectroscopy, for the plasma bulk and its suprathermal components, using Alfv{acute e}n Eigenmodes (AEs) excited by external antennas and by energetic particles. The measurements of AE frequencies and mode numbers give information on the bulk plasma. Improved equilibrium reconstruction, in particular in terms of radial profiles of density and safety factor, is possible from the comparison between the antenna driven spectrum and that calculated theoretically. Details of the time evolution of the non-monotonic safety factor profile in advanced scenarios can be reconstructed from the frequency of ICRH-driven energetic particle modes. The plasma effective mass can be inferred from the resonant frequency of externally driven AEs in discharges with similar equilibrium profiles. The stability thresholds and the nonlinear development of the instabilities can give clues on energy and spatial distribution of the fast particle population. The presence of unstable AEs provides lower limits in the energy of ICRH generated fast ion tails. Fast ion pressure gradients and their evolution can be inferred from the stability of AEs at different plasma radial positions. Finally, the details of the AE spectrum in the nonlinear stage can be used to obtain information about the fast particle velocity space diffusion.

  20. MHD Power Generation

    ERIC Educational Resources Information Center

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  1. Computation of shock waves in media with an interphase boundary by the CIP-CUP method on an adaptive grid

    NASA Astrophysics Data System (ADS)

    Guseva, T. S.

    2016-01-01

    A numerical technique of computing shock waves in compressible media with movable deforming interphase boundaries including those of the gas-liquid type has been realized. The approach without explicit separation of the interphase boundary is applied. The CIP-CUP method is used for integrating the equations of gas dynamics. An adaptive grid of special kind (the soroban-grid) is utilized. Some results of testing the technique using one- and two-dimensional problems are given. Results of computation of impact of a jet on a thin liquid layer on a wall are presented.

  2. Global MHD Simulations of Space Plasma Environments: Heliosphere, Comets, Magnetospheres of Plants and Satellites

    NASA Technical Reports Server (NTRS)

    Kabin, K.; Hansen, K. C.; Gombosi, T. I.; Combi, M. R.; Linde, T. J.; DeZeeuw, D. L.; Groth, C. P. T.; Powell, K. G.; Nagy, A. F.

    2000-01-01

    Magnetohydrodynamics (MHD) provides an approximate description of a great variety of processes in space physics. Accurate numerical solutions of the MHD equations are still a challenge, but in the past decade a number of robust methods have appeared. Once these techniques made the direct solution of MHD equations feasible, a number of global three-dimensional models were designed and applied to many space physics objects. The range of these objects is truly astonishing, including active galactic nuclei, the heliosphere, the solar corona, and the solar wind interaction with planets, satellites, and comets. Outside the realm of space physics, MHD theory has been applied to such diverse problems as laboratory plasmas and electromagnetic casting of liquid metals. In this paper we present a broad spectrum of models of different phenomena in space science developed in the recent years at the University of Michigan. Although the physical systems addressed by these models are different, they all use the MHD equations as a unifying basis.

  3. LSCA Builds Michigan Libraries.

    ERIC Educational Resources Information Center

    Michigan Library, Lansing.

    This report highlights 19 of the 48 recently completed public library construction projects in Michigan which received partial funding from the 1983 Emergency Jobs Act. The grants were administered under Title II of the Library Services and Construction Act (LSCA). Introductory material includes listings of the State of Michigan Legislative…

  4. Career Education in Michigan.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Education, Lansing.

    This monograph discusses the developmental stages of career education in Michigan, and describes eight local-level career education projects in the state. Some of the specific programs in operation in Michigan include: (1) a placement project which finds jobs for students and graduates of a vo-tec center; (2) a career-oriented curriculum project…

  5. Adaptive grid embedding for the two-dimensional flux-split Euler equations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Warren, Gary Patrick

    1990-01-01

    A numerical algorithm is presented for solving the 2-D flux-split Euler equations using a multigrid method with adaptive grid embedding. The method uses an unstructured data set along with a system of pointers for communication on the irregularly shaped grid topologies. An explicit two-stage time advancement scheme is implemented. A multigrid algorithm is used to provide grid level communication and to accelerate the convergence of the solution to steady state. Results are presented for a subcritical airfoil and a transonic airfoil with 3 levels of adaptation. Comparisons are made with a structured upwind Euler code which uses the same flux integration techniques of the present algorithm. Good agreement is obtained with converged surface pressure coefficients. The lift coefficients of the adaptive code are within 2 1/2 percent of the structured code for the sub-critical case and within 4 1/2 percent of the structured code for the transonic case using approximately one-third the number of grid points.

  6. Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian

    PubMed Central

    Neely, Michael; Bartroff, Jay; van Guilder, Michael; Yamada, Walter; Bayard, David; Jelliffe, Roger; Leary, Robert; Chubatiuk, Alyona; Schumitzky, Alan

    2013-01-01

    Population pharmacokinetic (PK) modeling methods can be statistically classified as either parametric or nonparametric (NP). Each classification can be divided into maximum likelihood (ML) or Bayesian (B) approazches. In this paper we discuss the nonparametric case using both maximum likelihood and Bayesian approaches. We present two nonparametric methods for estimating the unknown joint population distribution of model parameter values in a pharmacokinetic/pharmacodynamic (PK/PD) dataset. The first method is the NP Adaptive Grid (NPAG). The second is the NP Bayesian (NPB) algorithm with a stick-breaking process to construct a Dirichlet prior. Our objective is to compare the performance of these two methods using a simulated PK/PD dataset. Our results showed excellent performance of NPAG and NPB in a realistically simulated PK study. This simulation allowed us to have benchmarks in the form of the true population parameters to compare with the estimates produced by the two methods, while incorporating challenges like unbalanced sample times and sample numbers as well as the ability to include the covariate of patient weight. We conclude that both NPML and NPB can be used in realistic PK/PD population analysis problems. The advantages of one versus the other are discussed in the paper. NPAG and NPB are implemented in R and freely available for download within the Pmetrics package from www.lapk.org. PMID:23404393

  7. Survey of MHD plant applications

    NASA Technical Reports Server (NTRS)

    Lynch, J. J.; Seikel, G. R.; Cutting, J. C.

    1979-01-01

    Open-cycle MHD is one of the major R&D efforts in the Department of Energy's program to meet the national goal of reducing U.S. dependence on oil through increased utilization of coal. MHD offers an effective way to use coal to produce electric power at low cost in a highly efficient and environmentally acceptable manner. Open-cycle MHD plants are categorized by the MHD combustor oxidizer, its temperature and the method of preheat. The paper discusses MHD baseline plant design, open-cycle MHD plant in the Energy Conversion Alternatives Study (ECAS), early commercial MHD plants, conceptual studies of the engineering test facility, retrofit (addition of an MHD topping cycle to an existing steam plant), and other potential applications and concepts. Emphasis is placed on a survey of both completed and ongoing studies to define both commercial and pilot plant design, cost, and performance.

  8. Generalized reduced MHD equations

    SciTech Connect

    Kruger, S.E.; Hegna, C.C.; Callen, J.D.

    1998-07-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson.

  9. MHD Generating system

    DOEpatents

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  10. Disk MHD generator study

    NASA Technical Reports Server (NTRS)

    Retallick, F. D.

    1980-01-01

    Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.

  11. Michigan School Privatization Survey 2010

    ERIC Educational Resources Information Center

    Hohman, James M.; Anderson, Dustin D.

    2010-01-01

    Privatization of support services has been a method that Michigan school districts have used for several years to lower costs. More than ever before, Michigan school districts are privatizing the three main support services they offer--food, custodial and transportation. The annual survey finds that 48.8 percent of Michigan school districts are…

  12. Michigan: The Great Lakes State

    ERIC Educational Resources Information Center

    McKay, Sandra Lee; La Luzerne-Oi, Sally

    2009-01-01

    Although Michigan is often called the "Wolverine State," its more common nickname is the "Great Lakes State." This name comes from the fact that Michigan is the only state in the United States that borders four of the five Great Lakes. Also referred to as the "Water Wonderland," Michigan has 11,000 additional lakes, 36,000 miles of streams, and…

  13. Proceedings of the workshop on nonlinear MHD and extended MHD

    SciTech Connect

    1998-12-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  14. 75 FR 34932 - Safety Zone; Michigan City Super Boat Grand Prix, Lake Michigan, Michigan City, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... Super Boat Grand Prix, Lake Michigan, Michigan City, IN in the Federal Register (75 FR 22333). We... intended to restrict vessels from a portion of Lake Michigan due to a high speed boat racing event. This... associated with a high speed boat racing event. DATES: This regulation is effective from 9 a.m. until 4...

  15. Affirming Diversity at Michigan

    ERIC Educational Resources Information Center

    Springer, Ann D.

    2003-01-01

    In its much-anticipated review of affirmative action, the Supreme Court upheld the educational importance of diversity. Amid great controversy, confusion, and debate, the U.S. Supreme Court this June issued its much-anticipated decisions in two University of Michigan cases addressing affirmative action in higher education admissions. The Court was…

  16. Michigan-Ontario Connections.

    ERIC Educational Resources Information Center

    Jacobson, Daniel

    1988-01-01

    Explains the ramifications of connections between Michigan and Ontario, Canada over time. Focuses on six themes: (1) the Indian earth; (2) the arrival of Europeans; (3) the creation of the political boundary; (4) the problems of the nineteenth century; (5) the significance of the automobile; and (6) the current situation. (DB)

  17. Michigan Consumer Education Skills.

    ERIC Educational Resources Information Center

    Michigan State Consumers Council, Lansing.

    The booklet identifies consumer skills which a committee of the Michigan Consumers Council believes are essential for students to master prior to graduation from high school. The purpose of the document is to give direction to school districts and teachers on which consumer education skills are needed. The booklet does not contain teaching methods…

  18. Michigan's Chartering Strategy

    ERIC Educational Resources Information Center

    Goenner, James N.

    2012-01-01

    Michigan's former governor, John Engler, was naturally attracted to charter schools. He had seen for too long how school districts treated students as their property and the state as an endless funding source, and he wanted that to change. Engler saw the chartering strategy as a politically viable means for gaining leverage over school districts…

  19. The Michigan Electronic Library.

    ERIC Educational Resources Information Center

    Davidsen, Susanna L.

    1997-01-01

    Describes the Michigan Electronic Library (MEL), the largest evaluated and organized Web-based library of Internet resources, that was designed to provide a library of electronic information resources selected by librarians. MEL's partnership is explained, the collection is described, and future developments are considered. (LRW)

  20. The Michigan Opportunity Card.

    ERIC Educational Resources Information Center

    Hollister, Judy A.

    The work force in the state of Michigan is currently below the projected educational levels for new jobs, since more than half the new jobs that will be created between now and the year 2000 will require some postsecondary education. The biggest single problem that exists for Michiganians attempting to upgrade their skills is that there are so…

  1. Lake Michigan: Nearshore Variability

    EPA Science Inventory

    We conducted a high-resolution survey in the nearshore of Lake Michigan at a 20 meter contour using towed electronic instrumentation. The nearly 1200 km survey was conducted Sep 8-15, 2010. We also conducted six cross-contour tows. Along the survey tracks we sampled fixed stat...

  2. Simulating solar MHD

    NASA Astrophysics Data System (ADS)

    Schüssler, M.

    1999-05-01

    Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse') are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 105 G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.

  3. Reduced Extended MHD

    NASA Astrophysics Data System (ADS)

    Morrison, P. J.; Abdelhamid, H. M.; Grasso, D.; Hazeltine, R. D.; Lingam, M.; Tassi, E.

    2015-11-01

    Over the years various reduced fluid models have been obtained for modeling plasmas, with the goal of capturing important physics while maintaining computability. Such models have included the physics contained in various generalizations of Ohm's law, including Hall drift and electron inertia. In a recent publication it was shown that full 3D extended MHD is a Hamiltonian system by finding its noncanonical Poisson bracket. Subsequently, this bracket was shown to be derivable from that for Hall MHD by a series of remarkable transformations, which greatly simplifies the proof of the Jacobi identity and allows one to immediately obtain generalizations of the helicity and cross helicity. In this poster we use this structure to obtain exact reduced fluid models with the effects of full two-fluid theory. Results of numerical computations of collisionless reconnection using an exact reduced 4-field model will be presented and analytical comparisons of mode structure of previous reduced models will be made.

  4. Output from MHD Models

    NASA Astrophysics Data System (ADS)

    Vlahakis, Nektarios

    2010-03-01

    Outflows emanating from the environment of stellar or galactic objects are a widespread phenomenon in astrophysics. Their morphology ranges from nearly spherically symmetric winds to highly collimated jets. In some cases, e.g., in jets associated with young stellar objects, the bulk outflow speeds are nonrelativistic, while in others, e.g., in jets associated with active galactic nuclei or gamma-ray bursts, it can even be highly relativistic. The main driving mechanism of collimated outflows is likely related to magnetic fields. These fields are able to tap the rotational energy of the compact object or disk, accelerate, and collimate matter ejecta. To zeroth order these outflows can be described by the highly intractable theory of magnetohydrodynamics (MHD). Even in systems where the assumptions of zero resistivity (ideal MHD), steady state, axisymmetry, one fluid description, and polytropic equation of state are applicable, the problem remains difficult. In this case the problem reduces to only two equations, corresponding to the two components of the momentum equation along the flow and in the direction perpendicular to the magnetic field (transfield direction). The latter equation is the most difficult to solve, but also the most important. It answers the question on the degree of the collimation, but also crucially affects the solution of the first, the acceleration efficiency and the bulk velocity of the flow. The first and second parts of this chapter refer to nonrelativistic and relativistic flows, respectively. These Parts can be read independently. In each one, the governing equations are presented and discussed, focusing on the case of flows that are magnetically dominated near the central source. The general characteristics of the solutions in relation to the acceleration and collimation mechanisms are analyzed. As specific examples of exact solutions of the full system of the MHD equations that satisfy all the analyzed general characteristics, self

  5. Whiting in Lake Michigan

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Satellites provide a view from space of changes on the Earth's surface. This series of images from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) aboard the Orbview-2 satellite shows the dramatic change in the color of Lake Michigan during the summer. The bright color that appears in late summer is probably caused by calcium carbonate-chalk-in the water. Lake Michigan always has a lot of calcium carbonate in it because the floor of the lake is limestone. During most of the year the calcium carbonate remains dissolved in the cold water, but at the end of summer the lake warms up, lowering the solubility of calcium carbonate. As a result, the calcium carbonate precipitates out of the water, forming clouds of very small solid particles that appear as bright swirls from above. The phenomenon is appropriately called a whiting event. A similar event occured in 1999, but appears to have started later and subsided earlier. It is also possible that a bloom of the algae Microcystis is responsible for the color change, but unlikely because of Lake Michigan's depth and size. Microcystis blooms have occured in other lakes in the region, however. On the shore of the lake it is possible to see the cities of Chicago, Illinois, and Milwaukee, Wisconsin. Both appear as clusters of gray-brown pixels. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  6. Commercialization of MHD power technology

    SciTech Connect

    Aleman, D.J.; Jensen, A.D.; Probert, P.B.

    1984-08-01

    This paper presents an approach to the commercialization of Magnetohydrodynamics (MHD) technology from the perspective of an equipment manufacturer. It discusses and recommends actions to be taken in solving technical problems and mitigating risk for the first commercial MHD power plant.

  7. Simulating solar MHD

    NASA Astrophysics Data System (ADS)

    Schüssler, M.

    1999-05-01

    Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse') are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 105 G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies).

  8. Cometary MHD and chemistry

    NASA Technical Reports Server (NTRS)

    Wegmann, R.; Schmidt, H. U.; Huebner, W. F.; Boice, D. C.

    1987-01-01

    An MHD and chemical comet-coma model was developed, applying the computer program of Huebner (1985) for the detailed chemical evolution of a spherically expanding coma and the program of Schmidt and Wegman (1982) and Wegman (1987) for the MHD flow of plasma and magnetic field in a comet to the Giotto-mission data on the ion abundances measured by the HIS ion mass spectrometer. The physics and chemistry of the coma are modeled in great detail, including photoprocesses, gas-phase chemical kinetics, energy balance with a separate electron temperature, multifluid hydrodynamics with a transition to free molecular flow, fast-streaming atomic and molecular hydrogen, counter and cross streaming of the ionized species relative to the neutral species in the coma-solar wind interaction region with momentum exchange by elastic collisions, mass-loading through ion pick-up, and Lorentz forces of the advected magnetic field. The results, both inside and outside of the contact surface, are discussed and compared with the relevant HIS ion mass spectra.

  9. Michigan E85 Infrastructure

    SciTech Connect

    Sandstrom, Matthew M.

    2012-03-30

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced

  10. Michigan School Privatization Survey 2011

    ERIC Educational Resources Information Center

    Hohman, James M.; Kollmeyer, Josiah M.

    2011-01-01

    Michigan school districts face tough choices allocating their resources to provide students with an education. Despite increased spending in Michigan schools, school boards regularly have to find ways to trim expenses, and sometimes that means lowering employment benefits, eliminating positions and other moves that few school board members enjoy.…

  11. Integrating Computers into Michigan Education.

    ERIC Educational Resources Information Center

    Lentz, Linda P.

    Computer use in Michigan schools has evolved in three stages over the past decade. In the first, computers were new and few, and professional development was typically self-initiated. The Michigan Association of Computer Users in Learning (MACUL) was formed at this time to provide resources to local districts which they were unable to provide…

  12. Seedling Disease Survey in Michigan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stand establishment and persistence continue to be problems for Michigan growers. To determine the extent and severity of the problem, a survey of diseased seedlings from Michigan fields was initiated in 2008. Samples were collected of diseased seedlings for two years. In 2008, samples were collecte...

  13. Michigan School Privatization Survey 2007

    ERIC Educational Resources Information Center

    Smith, Daniel J.; LaFaive, Michael D.

    2007-01-01

    From April 25 through June 30, 2007, the Mackinac Center for Public Policy conducted its fifth survey of the privatization of bus, food and janitorial services among Michigan's 552 conventional public school districts. All Michigan school districts responded. In 2007, the Mackinac Center also conducted a nationwide survey of state education…

  14. Education Needs of Michigan Farmers

    ERIC Educational Resources Information Center

    Suvedi, Murari; Jeong, Eunseong; Coombs, John

    2010-01-01

    In 2008 MSU Extension evaluated their program to identify the major areas of educational need for Michigan farmers and agribusiness operators. Surveys were mailed to a stratified random sample from Michigan Agricultural Statistics Service records of dairy, livestock, swine, cash crops, fruit, vegetable, and nursery/greenhouse producers. Findings…

  15. Michigan School Privatization Survey 2009

    ERIC Educational Resources Information Center

    Hohman, James M.; Imhoff, Eric R.

    2009-01-01

    With Michigan's public school districts facing a decline in per-pupil funding, more districts are contracting out for at least one of the three major school support services--food, custodial and transportation--than ever before. This year's survey of school districts found that 44.6 percent of all Michigan school districts contract out for at…

  16. MHD Energy Bypass Scramjet Engine

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.; Bogdanoff, David W.; Park, Chul; Arnold, Jim (Technical Monitor)

    2001-01-01

    Revolutionary rather than evolutionary changes in propulsion systems are most likely to decrease cost of space transportation and to provide a global range capability. Hypersonic air-breathing propulsion is a revolutionary propulsion system. The performance of scramjet engines can be improved by the AJAX energy management concept. A magneto-hydro-dynamics (MHD) generator controls the flow and extracts flow energy in the engine inlet and a MHD accelerator downstream of the combustor accelerates the nozzle flow. A progress report toward developing the MHD technology is presented herein. Recent theoretical efforts are reviewed and ongoing experimental efforts are discussed. The latter efforts also include an ongoing collaboration between NASA, the US Air Force Research Laboratory, US industry, and Russian scientific organizations. Two of the critical technologies, the ionization of the air and the MHD accelerator, are briefly discussed. Examples of limiting the combustor entrance Mach number to a low supersonic value with a MHD energy bypass scheme are presented, demonstrating an improvement in scramjet performance. The results for a simplified design of an aerospace plane show that the specific impulse of the MHD-bypass system is better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Equilibrium ionization and non-equilibrium ionization are discussed. The thermodynamic condition of air at the entrance of the engine inlet determines the method of ionization. The required external power for non-equilibrium ionization is computed. There have been many experiments in which electrical power generation has successfully been achieved by magneto-hydrodynamic (MHD) means. However, relatively few experiments have been made to date for the reverse case of achieving gas acceleration by the MHD means. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. MHD has several

  17. MHD Wave in Sunspots

    NASA Astrophysics Data System (ADS)

    Sych, Robert

    2016-02-01

    The study of magnetohydrodynamic (MHD) waves and oscillations in the solar atmosphere is one of the fastest developing fields in solar physics, and lies in the mainstream of using solar instrumentation data. This chapter first addresses the spatial frequency morphology of sources of sunspot oscillations and waves, including their localization, size, oscillation periods, and height localization with the mechanism of cutoff frequency that forms the observed emission variability. Then, it presents a review dynamic of sunspot wave processes, provides the information about the structure of wave fronts and their time variations, and investigates the oscillation frequency transformation depending on the wave energy. The chapter also addresses the initializing solar flares caused by trigger agents like magnetoacoustic waves, accelerated particle beams, and shocks. Special attention is paid to the relation between the flare reconnection periodic initialization and the dynamics of sunspot slow magnetoacoustic waves.

  18. Production of MHD fluid

    DOEpatents

    Lacey, James J.; Kurtzrock, Roy C.; Bienstock, Daniel

    1976-08-24

    A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.

  19. MHD channel performance for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Swallom, D. W.

    1981-01-01

    The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation.

  20. A New Axisymmetric MHD Model of the Interaction of the Solar Wind with Venus

    NASA Technical Reports Server (NTRS)

    DeZeeuw, Darren L.; Nagy, Andrew F.; Gombosi, Tamas I.; Powell, Kenneth G.; Luhmann, Janet G.

    1996-01-01

    A new two-dimensional axisymmetric MHD model is used to study the interaction of the solar wind with Venus under conditions where the interplanetary field is approximately aligned with the solar wind velocity. This numerical model solves the MHD transport equations for density, velocity, pressure, and magnetic field on an adaptively refined, unstructured grid system. This use of an adaptive grid allows high spatial resolution in regions of large density/velocity gradients and yet can be run on a workstation. The actual grid sizes vary from about 0.06 R(sub v) near the bowshock to 2 R(sub v) in the unperturbed solar wind. The results of the calculations are compared with observed magnetic field values obtained from the magnetometer on the Pioneer Venus Orbiter, at a time when the angle between the solar wind velocity vector and the interplanetary magnetic field (IMF) was only 7.6 deg. Good qualitative agreement between the observed and calculated field behavior is found. The overall results suggest that the induced magnetotail disappears when the IMF is radial for an extended time period and implies that it weakens when the field rotated through a near-radial orientation.

  1. MHD properties of magnetosheath flow

    NASA Astrophysics Data System (ADS)

    Siscoe, G. L.; Crooker, N. U.; Erickson, G. M.; Sonnerup, B. U. Ö.; Maynard, N. C.; Schoendorf, J. A.; Siebert, K. D.; Weimer, D. R.; White, W. W.; Wilson, G. R.

    2002-04-01

    We discuss four aspects of magnetosheath flow that require MHD for their calculation and understanding. We illustrate these aspects with computations using a numerical MHD code that simulates the global magnetosphere and its magnetosheath. The four inherently MHD aspects of magnetosheath flow that we consider are the depletion layer, the magnetospheric sash, MHD flow deflections, and the magnetosheath's slow-mode expansion into the magnetotail. We introduce new details of these aspects or illustrate known details in a new way, including the dependence of the depletion layer on interplanetary magnetic filed clock angle; agreement between the locations of the antiparallel regions of Luhmann et al. (J. Geophys. Res. 89 (1984) 1739) and the magnetospheric sash, and deflections corresponding separately to a stagnation line and magnetic reconnection.

  2. MHD technology in aluminum casting

    SciTech Connect

    Kalinichenko, I.

    1984-08-01

    The use of MHD technology in aluminum casting is discussed. Associates of the Latvian Academy of Sciences Institute of Physics developed magnetohydrodynamic units for the Siberian plant. A MHD unit made it possible to free five persons from heavy work at the plant. Labor productivity doubled in this section. With the aid of the magnetic field, the alloy silumin is obtained in only three hours. Specialists of the Irkutsk affiliate of the All-Union Scientific Research and Design Institute of the Aluminum, Magnesium and Electrode Industry are convinced that MHD technology has a bright future. However, this will necessitate the development of new MHD technology for different types of casting facilities, with their specific features taken into account.

  3. Mathematical modelling in MHD technology

    SciTech Connect

    Scheindlin, A.E.; Medin, S.A. )

    1990-01-01

    The technological scheme and the general parameters of the commercial scale pilot MHD power plant are described. The characteristics of the flow train components and the electrical equipment are discussed. The basic ideas of the mathematical modelling of the processes and the devices operation in MHD systems are considered. The application of different description levels in computer simulation is analyzed and the examples of typical solutions are presented.

  4. Two-Dimensional Solutions of MHD Equations with AN Adapted ROE Method

    NASA Astrophysics Data System (ADS)

    Aslan, Necdet

    1996-12-01

    In this paper a higher-order Godunov method for two-dimensional solutions of the ideal MHD (magnetohydrodynamic) equations is presented. The method utilizes the finite volume approach with quadrilateral cells. In Section 2 the MHD equations (including flux and source terms) in conservat ive form are given. The momentum flux is rearranged such that while a source vector is produced, the eigenstructure of the Jacobian matrix does not change. This rearrangement allows a full Roe averaging of the density, velocity and pressure for any value of adiabatic index (contrary to Brio and Wus conclusion (J. Comput. Phys., 75, 400 (1988)). Full Roe averaging for the magnetic field is possible only when the normal gradient of the magnetic field is negligible; otherwise an arithmetic averaging can be used. This new procedure to get Roe-averaged MHD fields at the interfaces between left and right states has been presented by Aslan (Ph.D. Thesis, University of Michigan, 1993; Int. j. numer. methods fluids, 22, 569-580 (1996)). This section also includes the shock structure and an eigensystem for MHD problems. The eigenvalues, right eigenvectors and wave strengths for MHD are given in detail to provide the reader with a full description. The second-order, limited finite volume approach which utilizes quadrilateral cells is given in full detail in Section 3. Section 4 gives one- and two-dimensional numerical results obtained from this method. Finally, conclusions are given in Section 5.

  5. Michigan versus Kevorkian.

    PubMed

    Kaplan, K J; McKeon, C

    Our personal reflections on the Michigan versus Kevorkian trial highlight the following issues: 1) the switch from physician-assisted suicide to euthanasia, 2) the television showing of the death, 3) the dropping of the prosecution of the charge of physician-assisted suicide, 4) Kevorkian serving as his own defense attorney, trying to argue that ALS was a secondary cause of Thomas Youk's death, 5) Kevorkian's attempt to employ a logical syllogism to demonstrate that euthanasia need not be murder, 6) Kevorkian's initial reference to the civil rights tradition but sudden change to the medical analogy of Nazi medicine: a final solution, 7) the insistence of Kevorkian on "all or nothing" sentencing, 8) the irony of Kevorkian being finally convicted by a prosecutor who was elected on a platform of not prosecuting Kevorkian, 9) Kevorkian hiring a lawyer after the verdict is in, and 10) Kevorkian's threat to starve himself to death if sent to prison. PMID:12580200

  6. MHD Integrated Topping Cycle Project

    SciTech Connect

    Not Available

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  7. MHD stability of tokamak plasmas

    SciTech Connect

    Chance, M.S. Sun, Y.C.; Jardin, S.C.; Kessel, C.E.; Okabayashi, M.

    1992-08-01

    This paper will give an overview of the some of the methods which are used to simulate the ideal MHD properties of tokamak plasmas. A great deal of the research in this field is necessarily numerical and the substantial progress made during the past several years has roughly paralleled the continuing availability of more advanced supercomputers. These have become essential to accurately model the complex configurations necessary for achieving MHD stable reactor grade conditions. Appropriate tokamak MHD equilibria will be described. Then the stability properties is discussed in some detail, emphasizing the difficulties of obtaining stable high {beta} discharges in plasmas in which the current is mainly ohmically driven and thus demonstrating the need for tailoring the current and pressure profiles of the plasma away from the ohmic state. The outline of this paper will roughly follow the physics development to attain the second region of stability in the PBX-M device at The Princeton Plasmas Physics Laboratory.

  8. Growth and evolution of small porous icy bodies with an adaptive-grid thermal evolution code. I. Application to Kuiper belt objects and Enceladus

    NASA Astrophysics Data System (ADS)

    Prialnik, Dina; Merk, Rainer

    2008-09-01

    We present a new 1-dimensional thermal evolution code suited for small icy bodies of the Solar System, based on modern adaptive grid numerical techniques, and suited for multiphase flow through a porous medium. The code is used for evolutionary calculations spanning 4.6×10 yr of a growing body made of ice and rock, starting with a 10 km radius seed and ending with an object 250 km in radius. Initial conditions are chosen to match two different classes of objects: a Kuiper belt object, and Saturn's moon Enceladus. Heating by the decay of 26Al, as well as long-lived radionuclides is taken into account. Several values of the thermal conductivity and accretion laws are tested. We find that in all cases the melting point of ice is reached in a central core. Evaporation and flow of water and vapor gradually remove the water from the core and the final (present) structure is differentiated, with a rocky, highly porous core of 80 km radius (and up to 160 km for very low conductivities). Outside the core, due to refreezing of water and vapor, a compact, ice-rich layer forms, a few tens of km thick (except in the case of very high conductivity). If the ice is initially amorphous, as expected in the Kuiper belt, the amorphous ice is preserved in an outer layer about 20 km thick. We conclude by suggesting various ways in which the code may be extended.

  9. Problems in nonlinear resistive MHD

    SciTech Connect

    Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L.

    1998-12-31

    Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.

  10. Magnetohydrodynamic (MHD) channel corner seal

    DOEpatents

    Spurrier, Francis R.

    1980-01-01

    A corner seal for an MHD duct includes a compressible portion which contacts the duct walls and an insulating portion which contacts the electrodes, sidewall bars and insulators. The compressible portion may be a pneumatic or hydraulic gasket or an open-cell foam rubber. The insulating portion is segmented into a plurality of pieces of the same thickness as the electrodes, insulators and sidewall bars and aligned therewith, the pieces aligned with the insulator being of a different size from the pieces aligned with the electrodes and sidewall bars to create a stepped configuration along the corners of the MHD channel.

  11. Corrosion and arc erosion in MHD channels

    SciTech Connect

    Rosa, R.J. . Dept. of Mechanical Engineering); Pollina, R.J. . Dept. of Mechanical Engineering Avco-Everett Research Lab., Everett, MA )

    1991-10-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate.

  12. Open cycle gas fired MHD power plants

    SciTech Connect

    Medin, S.A. ); Negrini, F. )

    1991-01-01

    In this paper, the main objectives for the present development of gas fired MHD power generation are considered. The state of the world-wide natural gas consumption and its utilization for electricity production is analyzed. The experimental efforts in gas-fired MHD studies are briefly described. The essential features of the two major world gas-fired MHD project - the Ryazan MHDES-580 (U-500) power plant and the Italian 230 MWt retrofit are presented. New suggestions for improving the efficiency of MHD systems and the theoretical and experimental aspects of MHD development are discussed.

  13. MHD integrated topping cycle project

    NASA Astrophysics Data System (ADS)

    1992-01-01

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois no. 6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  14. MHD Integrated Topping Cycle Project

    SciTech Connect

    Not Available

    1992-01-01

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  15. The State of Black Michigan: 1984.

    ERIC Educational Resources Information Center

    Thomas, Frances S., Ed.

    Each of the eight chapters of this report on life conditions of blacks living in Michigan addresses a different issue. The chapter titles (and their authors) are as follows: (1) "A Demographic Overview of Blacks in Michigan" (Maxie C. Jackson, Jr.); (2) "The Economic Status of Blacks in Michigan" (Karl D. Gregory); (3) "Unemployment, Employment,…

  16. A reactive nitrogen budget for Lake Michigan

    EPA Science Inventory

    The reactive nitrogen budget for Lake Michigan was reviewed and updated, making use of recent estimates of watershed and atmospheric nitrogen loads. The updated total N load to Lake Michigan was approximately double the previous estimate from the Lake Michigan Mass Balance study ...

  17. Michigan Business Assistance Corps. Final Report.

    ERIC Educational Resources Information Center

    Krzyzowski, Marian J.

    The Michigan Business Assistance Corps (MBA Corps) was established by the University of Michigan Business School in 1990 to assist emerging democracies in Eastern Europe in successfully negotiating the process of economic privatization, while at the same time providing Michigan Business School graduate students with a unique international…

  18. Application of multi-objective controller to optimal tuning of PID gains for a hydraulic turbine regulating system using adaptive grid particle swam optimization.

    PubMed

    Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu

    2015-05-01

    A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions. PMID:25481821

  19. MHD Turbulence and Magnetic Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much

  20. Sex and Violence in Michigan.

    ERIC Educational Resources Information Center

    Woods, L. B.; Robinson, Cynthia A.

    Compiled using data from the American Library Association's Office of Intellectual Freedom (OIF), this report provides information about censorship attempts and actions in Michigan between 1976 and 1980. From 1966 through 1975, 65 cases of censorship were reported; from 1975 through 1980, 23 cases were reported. It is noted that an estimated 85%…

  1. Michigan Household Hazardous Substance Handbook.

    ERIC Educational Resources Information Center

    Senior, Janet; Stone Nancy

    Common household hazardous substances include cleansers, drain cleaners, automotive products, paints, solvents, and pesticides. This handbook was designed to serve as a resource for people frequently contacted by the public for information on household hazardous substances and wastes. Included in the handbook are: (1) an introduction to Michigan's…

  2. Michigan School Privatization Survey 2008

    ERIC Educational Resources Information Center

    Hohman, James M.; Freeland, William L. E.

    2008-01-01

    Privatization of school support services is a time-tested means for lowering educational costs. The three major services that school districts in Michigan contract out for are food, custodial and transportation. The Mackinac Center for Public Policy's survey of privatization is the longest running and most comprehensive source of school support…

  3. Michigan School Privatization Survey 2012

    ERIC Educational Resources Information Center

    Hohman, James M.; Kollmeyer, Josiah M.

    2013-01-01

    Michigan's School Aid fund increased once more this year, but many school administrators in the state continue to hunt for effective measures to reduce spending due to increased pension costs and phased-out stimulus money. Many options available for trimming costs, such as enacting pay-to-play for sports, are extremely unpopular for districts and…

  4. Electric industry restructuring in Michigan

    SciTech Connect

    1997-12-31

    This Staff Report suggests a modified approach designed to significantly increase the ability of all customer classes to participate and share in the benefits of competition. The concepts discussed in this Report are designed to ensure that rates are not increased for any customers as a result of restructuring and, where possible, rates are reduced through the use of rate reduction bonds. The program outlined in this Report is designed to fulfill five objectives. First, it protects the interests of smaller customers, including low-income residential customers and senior citizens. Second, the program provides opportunities to strengthen Michigan`s business community. Third, the program includes funding for employee retraining to assure that utility employees are not negatively impacted by restructuring. Fourth, the phase-in program provides the utilities with the opportunity to prepare for competition so that they remain Michigan-based companies. Fifth, the program is designed to foster competition upon a level playing field. The Commission has jurisdiction over all investor electric utilities and rural electric cooperatives in Michigan. Municipal electric utilities are not subject to Commission jurisdiction. Although this Report discusses details regarding Consumers Power and Detroit Edison, its concepts and principles are intended to apply to all jurisdictional electric utilities.

  5. Biological Laboratory, Ann Arbor, Michigan

    USGS Publications Warehouse

    Moffett, James W.

    1963-01-01

    This laboratory located about 40 miles west of Detroit, near the intersection of highways I-94 and US-23, can be reached by bus, railroad, or via commercial airlines to Detroit Willow Run or Metropolitan airports. Field biological stations are located in Wisconsin at Ashland; in Ohio at Sandusky; and in Michigan at Ludington, Marquette, Millersburg, and Northville.

  6. Native American Children in Michigan

    ERIC Educational Resources Information Center

    Cournoyer, David

    2012-01-01

    Vulnerable children in Michigan face intersecting disparities, with race, class and geographic location often combining to limit access to health, education and economic security. Addressing this reality requires reliable and comprehensive data that can guide thoughtful action within communities and among institutions alike. To this end, the W. K.…

  7. Michigan School Privatization Survey 2013

    ERIC Educational Resources Information Center

    Hohman, James M.; Fryzelka, Evan E.

    2014-01-01

    Many of Michigan's public school districts are under substantial fiscal pressures from a combination of declining enrollment and increasing costs, particularly related to employee benefits, but most districts are responding to these challenges. One of the ways that districts can stretch their resources further is through competitive contracting…

  8. Michigan School Privatization Survey 2014

    ERIC Educational Resources Information Center

    Hohman, James M.; Woodman, Zachary D.

    2014-01-01

    In 2003, when it came to contracting out for common public school services, only outsourcing food provision could be considered a rather common occurrence in Michigan. There was good reason for this: school districts are prohibited from making a profit from their cafeteria, but any deficits created in providing food for students must be covered by…

  9. Broken Ergodicity in MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2010-01-01

    Ideal magnetohydrodynamic (MHD) turbulence may be represented by finite Fourier series, where the inherent periodic box serves as a surrogate for a bounded astrophysical plasma. Independent Fourier coefficients form a canonical ensemble described by a Gaussian probability density function containing a Hermitian covariance matrix with positive eigenvalues. The eigenvalues at lowest wave number can be very small, resulting in a large-scale coherent structure: a turbulent dynamo. This is seen in computations and a theoretical explanation in terms of 'broken ergodicity' contains Taylor s theory of force-free states. An important problem for future work is the case of real, i.e., dissipative flows. In real flows, broken ergodicity and coherent structure are still expected to occur in MHD turbulence at the largest scale, as suggested by low resolution simulations. One challenge is to incorporate coherent structure at the largest scale into the theory of turbulent fluctuations at smaller scales.

  10. MHD Contractors' Review Meeting: Abstracts

    NASA Astrophysics Data System (ADS)

    The objectives of the Integrated Topping Cycle project are to design, construct, and deliver all prototypical hardware necessary to conduct long duration integrated MHD topping cycle proof-of-concept tests at the Component Development and Integration Facility (CDIF) in Butte, Montana. The results of the long duration tests will augment the existing engineering data base on MHD power train reliability, maintainability, durability, and performance, and will serve as a basis for scaling up to the early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include the following three systems: (1) a slagging coal combustion subsystem with a rated capacity of 50 MW thermal input, capable of operation with eastern (Illinois) or western (Montana Rosebud) coal; (2) a channel subsystem consisting of a segmented supersonic nozzle, channel (with current controls), and diffuser, capable of power output of 1.5 MW(sub e); and (3) a current consolidation subsystem to interface the channel with the existing facility inverter.

  11. MHD simple waves and the divergence wave

    SciTech Connect

    Webb, G. M.; Pogorelov, N. V.; Zank, G. P.

    2010-03-25

    In this paper we investigate magnetohydrodynamic (MHD) simple divergence waves in MHD, for models in which nablacentre dotBnot =0. These models are related to the eight wave Riemann solvers in numerical MHD, in which the eighth wave is the divergence wave associated with nablacentre dotBnot =0. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function phi. We consider the form of the MHD equations used by both Powell et al. and Janhunen. It is shown that the Janhunen version of the equations possesses fully nonlinear, exact simple wave solutions for the divergence wave, but no physically meaningful simple divergence wave solution exists for the Powell et al. system. We suggest that the 1D simple, divergence wave solution for the Janhunen system, may be useful for the testing and validation of numerical MHD codes.

  12. 75 FR 22333 - Safety Zone; Michigan City Super Boat Grand Prix, Lake Michigan, Michigan City, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... FR 3316). Public Meeting We do not now plan to hold a public meeting. But you may submit a request.... This zone is intended to restrict vessels from a portion of Lake Michigan due to high speed power boat... associated with high speed power boat racing. DATES: Comments and related material must be received by...

  13. Rapporteur report: MHD electric power plants

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.

    1980-01-01

    Five US papers from the Proceedings of the Seventh International Conference on MHD Electrical Power Generation at the Massachusetts Institute of Technology are summarized. Results of the initial parametric phase of the US effort on the study of potential early commercial MHD plants are reported and aspects of the smaller commercial prototype plant termed the Engineering Test Facility are discussed. The alternative of using a disk geometry generator rather than a linear generator in baseload MHD plants is examined. Closed-cycle as well as open-cycle MHD plants are considered.

  14. The Michigan data needs questionnaire

    NASA Technical Reports Server (NTRS)

    Hill-Rowley, R.

    1981-01-01

    The data needs questionnaire is an element in the project design study for the Michigan Resource Inventory Act and is aimed at gathering information on what inventory information is required by land use planners throughout the state. Analysis of questionnaire responses is discussed. Some information on current use categories was tabulated. The respondents selected a broad range of categories at all levels of detail. Those most frequently indicated were urban categories.

  15. MHD Integrated Topping Cycle Project

    SciTech Connect

    Not Available

    1992-07-01

    This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.

  16. Ceramic component for MHD electrode

    DOEpatents

    Marchant, David D.; Bates, Junior L.

    1981-01-01

    A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hf.sub.x In.sub.y A.sub.z O.sub.2 where x=0.1 to 0.4, y=0.3 to 0.6, z=0.1 to 0.4 and A is a lanthanide rare earth or yttrium. The component is suitable for use in the fabrication of MHD electrodes or as the current leadout portion of a composite electrode with other ceramic components.

  17. Ceramic components for MHD electrode

    DOEpatents

    Marchant, D.D.

    A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hf/sub x/In/sub y/A/sub z/O/sub 2/ where x = 0.1 to 0.4, y = 0.3 to 0.6, z = 0.1 to 0.4 and A is a lanthanide rare earth or yttrium. The component is suitable for use in the fabrication of MHD electrodes or as the current leadout portion of a composite electrode with other ceramic components.

  18. Numerical simulation of the operation of a MHD generator in transient regimes in MHD power stations

    SciTech Connect

    Bityurin, V.A.; Ivanov, P.P.; Koryagina, G.M.; Lyubimov, G.A.; Medin, S.A.; Morozov, G.N.; Prokop, A.S.

    1982-09-01

    Transient regimes of a MHD generator operating in combination with equipment in a MHD power station are analzyed with the help of a numerical model. The MHD generator, whose flow-through part consists of a nozzle, a channel, and a diffuser, is regulated by changing the flow rate and the load. Three types of MHD channels are studied: Faraday supersonic and subsonic, and diagonal supersonic. Their characteristics are presented and the efficiency of the MHD power station under nonrated regimes is determined. It is established that a MHD generator and the MHD power station as a whole admit quite efficient and deep regulation of the change in the flow rate of the working body.

  19. Workshop on Feedback Stabilization of MHD Stabilities

    SciTech Connect

    McGuire, K.; Kugel, H.; La Haye, R.; Mauel, M.; Nevins, W.; Prager, S.

    1996-12-31

    The feedback stabilization of MHD instabilities is an area of research that is critical for improving the performance and economic attractiveness of magnetic confinement devices. A Workshop dedicated to feedback stabilization of MHD instabilities was held from December 11-13, 1996 at the Princeton Plasma Physics Laboratory, Princeton NJ, USA. The resulting presentations, conclusions, and recommendations are summarized.

  20. MHD (Magnetohydrodynamics) Program Plan, FY 1989

    NASA Astrophysics Data System (ADS)

    1989-05-01

    The essential elements of the current program, which is a continuation of the program outlined in the FY 1988 MHD Program Plan, are to: develop technical and environmental data for the integrated MHD topping cycle system through long-term (1000 hours) proof of concept (POC) testing; develop technical and environmental data for the integrated MHD bottoming cycle subsystem through long-term (4000 hours) POC testing; design and construct a seed regeneration system capable of independent operation, using spent seed materials from the MHD process; prepare a conceptual design for an MHD retrofit plant; and continue system studies and supporting research necessary for system testing. Results of the topping cycle POC tests at the Component Development and Integration Facility (CDIF), coupled with the bottoming cycle POC test results obtained at the Coal Fired Flow Facility (CFFF), and the seed regeneration POC effort will provide the critical engineering data base for the private sector's final decision on proceeding with the design, construction, and operation of an MHD retrofit. The development schedule, decision points, and resource requirements are discussed. As part of the MHD program, international activities of several nations are monitored and evaluated through contact with the international MHD scientific and technical community.

  1. MHD Turbulence through the Heliosphere

    NASA Astrophysics Data System (ADS)

    Veltri, P.

    Velocity and magnetic field fluctuations in a wide range of space and time scales have been directly detected in the interplanetary medium In the solar corona the presence of MHD turbulence is naturally generated by the mechanical and magnetic energy input from the photosphere and it could be related to coronal heating as well as to energy release events like micro and nanoflares A certain amount of fluctuations from the solar corona arrives in the solar wind mainly as Alfvénic turbulence i e strongly correlated velocity and magnetic field fluctuations with a very low level of compressible density magnetic field intensity temperature fluctuations The whole system formed by the solar corona and the solar wind represents a sort of wind tunnel extremely useful to study the MHD turbulence properties The presence of magnetic turbulence in the heliosphere is identified as the source of charged particle collisionless diffusion which according the values of parameters like the energy level on magnetic fluctuations or the turbulence correlation length can display both a normal gaussian random walk and an anomalous subdiffusive or super diffusive behavior The former case is obtained in a situation of global stochasticity high level of fluctuation energy while the latter in a situation of weak chaos low level of fluctuation energy The talk will discuss turbulence generation at photospheric level its propagation and its interaction with heliospheric structures and its effects on anomalous transport processes of charged

  2. Feasibility of MHD submarine propulsion

    SciTech Connect

    Doss, E.D. ); Sikes, W.C. )

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  3. Cusp geometry in MHD simulations

    NASA Astrophysics Data System (ADS)

    Siscoe, George; Crooker, Nancy; Siebert, Keith; Maynard, Nelson; Weimer, Daniel; White, Willard

    2005-01-01

    The MHD simulations described here show that the latitude of the high-altitude cusp decreases as the IMF swings from North to South, that there is a pronounced dawn dusk asymmetry at high-altitude associated with a dawn dusk component of the IMF, and that at the same time there is also a pronounced dawn dusk asymmetry at low-altitude. The simulations generate a feature that represents what has been called the cleft. It appears as a tail (when the IMF has a By component) attached to the cusp, extending either toward the dawn flank or the dusk flank depending on the dawn dusk orientation of the IMF. This one-sided cleft connects the cusp to the magnetospheric sash. We compare cusp geometry predicted by MHD simulations against published observations based on Hawkeye and DMSP data. Regarding the high-altitude predictions, the comparisons are not definitive, mainly because the observations are incomplete or mutually inconsistent. Regarding the low-altitude prediction of a strong dawn dusk asymmetry, the observations are unambiguous and are in good qualitative agreement with the prediction.

  4. Assessment and Validation of MHD Models for the Solar Corona and Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Strachan, L.; Zurbuchen, T. H.; Kohl, J. L.; Panasyuk, A. V.; Raymond, J. R.; van Ballegooijen, A.

    2007-12-01

    We describe the status of a model assessment and validation project for testing MHD codes that simulate the solar corona and inner heliosphere. The goal of the project is to test MHD codes by applying firm empirical constraints to their boundary conditions in the corona and at 1 AU. The project has produced a database of coronal and solar wind observations from SOHO, ACE, Wind, and Ulysses. In addition to the database, software tools for comparing these data sets to the outputs for the MHD model codes under test will be demonstrated. The first step is to take the plasma parameters that are produced from the model codes and apply forward modeling to simulate the coronal observations of emission lines (H I Lyman alpha and O VI 103.2 nm). In situ solar wind data are used not only to provide benchmarks near 1 AU but also to provide coronal constraints for the coronal source regions of the solar wind. Future stages will involve making more direct comparisons of the plasma properties predicted from the model codes through the use of empirical coronal and solar wind models. We also describe a set of metrics that are used for making comparisons between the model code outputs and the empirical data. This work is supported by NASA under Grants NNX07AB98G to the Smithsonian Astrophysical Observatory and NNX07AB99G to the University of Michigan.

  5. Michigan Early Adolescent Survey: Final Report.

    ERIC Educational Resources Information Center

    Keith, Joanne; And Others

    This document contains the final report from the Michigan Early Adolescent Survey, a study undertaken to: (1) develop a profile of Michigan early adolescents that focused on out-of-school time and included biological, psychological, and sociological information; (2) develop a profile of families which included early adolescents; (3) assess the…

  6. LAKE MICHIGAN URBAN AIR TOXICS STUDY

    EPA Science Inventory

    During the summer of 1991, an air toxics monitoring program wa conducted in the lower Lake Michigan area. his study was designed to take advantage of the intensive meteorological and oxidant data base being generated concurrently by the Lake Michigan Ozone Study (LMOS stations). ...

  7. The Path to Equal Rights in Michigan

    ERIC Educational Resources Information Center

    Gratz, Jennifer

    2007-01-01

    The litigant in a historic reverse-discrimination case against the University of Michigan, and subsequently the leader of a Michigan ballot initiative that carried the day against long odds, recounts how her simple call for equal treatment under the law persuaded the people of her state that color-conscious preferences are wrong.

  8. Job Training in Michigan. An Inventory.

    ERIC Educational Resources Information Center

    Michigan Governor's Office for Job Training, Lansing.

    This document lists 35 training programs in Michigan that provide job training assistance to nearly 1,000,000 people, with an annual investment of more than $800 million in federal, state, local, and private funds. The programs illustrate the two-fold purpose of job training: to build and maintain Michigan's reputation for a skilled, versatile…

  9. 40 CFR 233.70 - Michigan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Michigan. 233.70 Section 233.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING 404 STATE PROGRAM..., except those on Indian lands, is the program administered by the Michigan Department of Natural...

  10. 40 CFR 233.70 - Michigan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Michigan. 233.70 Section 233.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING 404 STATE PROGRAM REGULATIONS Approved State Programs § 233.70 Michigan. The applicable regulatory program for discharges of dredged or fill material into waters of...

  11. 40 CFR 233.70 - Michigan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Michigan. 233.70 Section 233.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING 404 STATE PROGRAM..., except those on Indian lands, is the program administered by the Michigan Department of Natural...

  12. 40 CFR 233.70 - Michigan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Michigan. 233.70 Section 233.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING 404 STATE PROGRAM..., except those on Indian lands, is the program administered by the Michigan Department of Natural...

  13. 40 CFR 233.70 - Michigan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Michigan. 233.70 Section 233.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING 404 STATE PROGRAM..., except those on Indian lands, is the program administered by the Michigan Department of Natural...

  14. ATMOSPHERIC TRANSPORT OF TOXAPHENE TO LAKE MICHIGAN

    EPA Science Inventory

    Atmospheric levels of toxaphene were monitored during the summer and fall of 1981 at 4 locations: Greenville, Mississippi, St. Louis, Missouri, Bridgman, Michigan, and Beaver Island, Michigan. Each collection was conducted by continuously sampling air during the first two weeks o...

  15. 40 CFR 81.323 - Michigan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Michigan. 81.323 Section 81.323 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.323 Michigan. Michigan—SO2 Designated area Does not...

  16. Unbuilt Michigan: The University that Never Was

    ERIC Educational Resources Information Center

    Mayer, Fred

    2008-01-01

    The University of Michigan is almost always in the midst of a building boom. Year in and year out, Michigan has one of the most active programs of building renovation and new construction of all American universities. This program is very carefully managed to ensure that substantial architectural design work is not undertaken until there is a…

  17. Michigan Library Statistical Report, 2000 Edition.

    ERIC Educational Resources Information Center

    Krefman, Naomi, Comp.; Dwyer, Molly, Comp.; Krueger, Beth, Comp.

    The 2000 edition of the Michigan Library Statistical Report presents data provided by public libraries, library cooperatives and those public libraries that serve as regional or subregional outlets for providing services to blind and physically handicapped patrons. All legally established public libraries in Michigan were invited to respond. Data…

  18. Native American Children in Michigan. [Executive Summary

    ERIC Educational Resources Information Center

    W. K. Kellogg Foundation, 2012

    2012-01-01

    "Native American Children in Michigan," provides a historical context for the tenuous relationship between Michigan's 12 federally recognized tribes and the state government, paying particular attention to the erosion of Native American education programs and the disproportionate number of Native children who find themselves in both the child…

  19. Corrosion and arc erosion in MHD channels

    NASA Astrophysics Data System (ADS)

    Rosa, R. J.; Pollina, R. J.

    1991-04-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate. Two phenomena that can effect the analysis of slag leakage current have been investigated and found significant. These are: (1) transverse current along the slag layer in the insulator walls of an MHD duct, and (2) electrode surface voltage drops. Both tend to reduce the value inferred for average plasma conductivity and increase the value inferred for axial leakage current. These two effects in combination are potentially capable of explaining the high leakage inferred. Corrosion on the water side of metal MHD duct wall elements has been examined in CDIF and Mark 7 generators. It appears to be controllable by adjusting the pH of the water and/or by controlling the dissolved oxygen content.

  20. MHD Technology Transfer, Integration and Review Committee

    SciTech Connect

    Not Available

    1989-10-01

    As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee's activities to date have focused primarily on the technology transfer'' aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

  1. Application of Magnetohydrodynamics (MHD) and Recent Research Trend

    NASA Astrophysics Data System (ADS)

    Harada, Nobuhiro

    As the applications of Magnetohydrodynamic (MHD) energy conversion, research and development for high-efficiency and low emission electric power generation system, MHD accelerations and/or MHD thrusters, and flow control around hypersonic and re-entry vehicles are introduced. For closed cycle MHD power generation, high-efficiency MHD single system is the most hopeful system and space power system using mixed inert gas (MIG) working medium is proposed. For open cycle MHD, high-efficiency coal fired MHD system with CO2 recovery has been proposed. As inverse process of MHD power generation, MHD accelerators/thrusters are expected as the next generation propulsion system. Heat flux reduction to protect re-entry vehicles is expected by an MHD process for safety return from space missions.

  2. Alfven Wave Tomography for Cold MHD Plasmas

    SciTech Connect

    I.Y. Dodin; N.J. Fisch

    2001-09-07

    Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.

  3. Local structures of homogeneous Hall MHD turbulence

    NASA Astrophysics Data System (ADS)

    Miura, H.; Araki, K.

    2011-12-01

    Local structures of decaying homogeneous and isotropic Hall MHD turbulence are studied by means of direct numerical simulations. Regions of strong vorticity and strong current density in Hall MHD turbulence are compared to those of single-fluid MHD turbulence. An analysis by the use of a low-pass filter reveals that the introduction of the Hall term can modify not only small-scale structures of the current density but also structures of the vorticity field, especially at the scales smaller than the ion skin depth.

  4. SSX MHD plasma wind tunnel

    NASA Astrophysics Data System (ADS)

    Brown, Michael R.; Schaffner, David A.

    2015-06-01

    A new turbulent plasma source at the Swarthmore Spheromak Experiment (SSX) facility is described. The MHD wind tunnel configuration employs a magnetized plasma gun to inject high-beta plasma into a large, well-instrumented, vacuum drift region. This provides unique laboratory conditions approaching that in the solar wind: there is no applied background magnetic field in the drift region and has no net axial magnetic flux; the plasma flow speed is on the order of the local sound speed (M ~ 1), so flow energy density is comparable to thermal energy density; and the ratio of thermal to magnetic pressure is of order unity (plasma β ~ 1) so thermal energy density is also comparable to magnetic energy density. Results presented here and referenced within demonstrate the new capabilities and show how the new platform is proving useful for fundamental plasma turbulence studies.

  5. Extended MHD Simulations of Spheromaks

    NASA Astrophysics Data System (ADS)

    Howell, E. C.; Sovinec, C. R.

    2012-10-01

    Nonlinear extended MHD simulations of a spheromak in a cylindrical flux conserver are performed using the NIMROD code (JCP 195, 2004). An idealized series of simulations starting from a Grad-Shafranov equilibrium and small non-axisymmetric perturbations are performed to model the sustained decay phase. The resulting confinement leads to steep resistivity gradients. Strong current gradients develop, driving tearing modes that dominate the evolution of the spheromak. Absent in these simulations are the remains of n=1 fluctuations created during the formation process. A second series of simulations start from vacuum fields and model the full spheromak evolution, including the formation process where the n=1 fluctuations dominate. To understand the role of pressure driven instabilities in the evolution of the spheromak, a numerical diagnostic is developed to calculate the Mercier stability criterion from the axisymmetric fields.

  6. MHD Integrated Topping Cycle Project

    SciTech Connect

    Not Available

    1992-07-01

    This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

  7. Cosmological AMR MHD with Enzo

    SciTech Connect

    Xu, Hao; Li, Hui; Li, Shengtai

    2009-01-01

    In this work, we present EnzoMHD, the extension of the cosmological code Enzoto include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the computation of interface fluxes. We use constrained transport methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruction technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & Colella (1989) already used in Enzo, though formulated in a slightly different way for ease of implementation. This combination of methods preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non cosmologjcal tests problems to demonstrate the quality of solution resulting from this combination of solvers.

  8. MHD seed recovery and regeneration

    NASA Astrophysics Data System (ADS)

    1988-10-01

    The TRW Econoseed MHD Seed Regeneration Process is based on the reaction of calcium formate with potassium sulfate spent seed from an MHD electric power generation plant. The process was tested at bench scale, design a proof of concept (POC) test plant, plan and cost a Phase 2 project for a POC plant evaluation and prepare a conceptual design of a 300 MW (t) commercial plant. The results of the project are as follows: (1) each of the unit operations is demonstrated, and (2) the data are incorporated into a POC plant design and project cost, as well as a 300 MW (t) commercial retrofit plant design and cost estimate. Specific results are as follows: (1) calcium formate can be produced at 100 percent yield in a total retention time of less than 5 minutes, (2) utilizing the calcium formate, spent seed can quantitatively be converted to potassium formate, potassium carbonate or mixtures of these with potassium sulfate as per the commercial design without measurable loss of potassium to insolubles at a total retention time under 20 minutes and ambient pressure, (3) the solid rejects form the process meet RCRA EP Toxicity requirements for safe disposal, and (4) filtration and evaporation data, as well as reaction data cited above, show that the Econoseed technology is ready for scale up to POC plant scale. Economics forecast studies show that the total cost per unit of potassium for seed regeneration by the Econoseed Process is in the range of $0.23 to $0.27/lb, a cost which is less than half the potassium cost of $0.63/lb for purchasing new potassium carbonate.

  9. MHD Integrated Topping Cycle Project

    SciTech Connect

    Not Available

    1992-02-01

    A summary of the work is excerpted here. Final design of an MHD channel for the ITC program POC test has been completed. The channel was designed to be capable of 1.5 MW {sub e} power output and a lifetime of 2000 hours. Emphasis was placed upon durability and reliability. Hence, specific measures were taken to design against channel damage due to electric faults. The life-limiting issues associated with electrochemical corrosion and erosion of gas-side surfaces were addressed by the use of various materials with proven wear characteristics in a coal-fired MHD channel environment. Pitting of prototypical sidewall coupons was observed in the CDIF workhorse testing. The most likely cause of the observed pitting, water leaks resulting from cooling water tube braze failures, has been remedied. New brazing procedures and isolation of the sidebar gas-side material from water contact will prevent sidebar pitting in the prototypical channel. Water-side corrosion tests reported in this quarterly report include the latest results of tungsten-copper elements at controlled pH, heat flux and voltage levels. In the combustion subsystem, efforts continued to focus on understanding and improving the current levels of slag recovery and seed utilization achieved by the combustor. Analytical support was also provided in the areas of slag rejection system operation, precombustor operation, and oil burner design modification. Channel data analysis activities continued in support of prototypical coupon testing at the CDIF. Analyses are presented on channel wall slagging behavior and sidewall voltage distributions.

  10. Michigan Turns to Leo Goldberg

    NASA Astrophysics Data System (ADS)

    Lindner, Rudi P.

    2006-12-01

    The death of Heber D. Curtis at the beginning of 1942 emphasized the difficult circumstances facing Michigan's astronomy program. There were no funds to figure or mount the 98" pyrex blank; the 37" reflector labored under floodlights; and the war sapped the graduate program. For a number of years the staff argued over the best path for the future, goaded by the unwelcome intervention of the "amateurs" McMath and Hulbert. The administration brought in outside consultants, attempted to prevent the observatory staff from making separate arrangements, trawled in western waters without success, and took conflicting advice on the future direction of the science. In 1946 the university leadership had, as well, to consider the aftermath of the war: new possibilities in physics, new funding opportunities, a booming student population, and the encapsulation of the observatory within the medical campus. At this time, Leo Goldberg was on the McMath-Hulbert staff, had little to do with the Ann Arbor community, and was considered to be an outsider, beholden to astrophysical theory and his promoters at Harvard. Leo Goldberg's rise from relative obscurity, his transformation from assistant to leader, and the university leadership's assessment of the possibilities for the transformation of a midwest, urban, and traditional program form the topic of this paper, based upon the Michigan and Harvard archives as well as the memories of Goldberg's cohort.

  11. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    SciTech Connect

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.

    1996-12-31

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-{beta} disruption studies in reversed shear plasmas using the MHD level MH3D code, {omega}{sub *i} stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D{sup ++} code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data.

  12. Open Boundary Conditions for Dissipative MHD

    SciTech Connect

    Meier, E T

    2011-11-10

    In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or 'open' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD.

  13. [Nonlinear magnetohydrodynamics]. [Threshold unstable MHD activity

    SciTech Connect

    Not Available

    1992-01-01

    Theoretical predictions were compared with available data from JET on the threshold unstable MHD activity in toroidal confinement devices. In particular, questions arising as to Hartmans number and the selection of a kinematic viscosity are discussed.

  14. Changing Composition of Michigan Households. Policy Report 10

    ERIC Educational Resources Information Center

    Menchik, Bettie Landauer

    2002-01-01

    This report on Michigan's demographics examines the changing composition of Michigan's households and the ramification for Michigan schools. The report states that between 1980 and 2000, Michigan's population grew by 7.3 percent, while the number of households grew by 590,448, or 18 percent. Households are growing faster than the population…

  15. Solar driven liquid metal MHD power generator

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hohl, F.

    1983-06-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  16. Solar driven liquid metal MHD power generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F. (Inventor)

    1983-01-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  17. Meteotsunami occurrences and causes in Lake Michigan

    NASA Astrophysics Data System (ADS)

    Bechle, Adam J.; Kristovich, David A. R.; Wu, Chin H.

    2015-12-01

    The occurrence of meteotsunamis in Lake Michigan is quantified at 10 locations from up to 20 years of historical water level records. Meteotsunami height data are fit with Pareto Type 1 and Generalized Pareto Distributions to estimate exceedance probabilities. The annual meteotsunami return level exceeds 0.25 m at all but two stations, with the largest annual return level of 0.62 m at Calumet Harbor. Analysis of radar imagery indicates that Lake Michigan meteotsunamis are associated primarily with convective storm structures, with a considerable contribution from frontal storms as well. Meteotsunami association with convective storm structures is more prevalent in southern Lake Michigan while frontal storm structures have a greater association with meteotsunamis in northern Lake Michigan. Water depths in southern Lake Michigan are conducive to Proudman resonance with convective storms while the northern Lake Michigan is too deep to meet Proudman resonance criteria, suggesting Greenspan edge wave resonance as the likely generation mechanism. Interestingly, meteotsunami events occur primarily in the late spring and early summer, approximately 1 month before the peak convective storm season but after the peak cyclone season. Overall, this statistical analysis provides valuable insight into the spatial and temporal trends in meteotsunami occurrence in Lake Michigan needed to estimate the risk posed by these dangerous coastal hazards.

  18. MHD technology transfer, integration, and review committee

    NASA Astrophysics Data System (ADS)

    1990-05-01

    As part of Task 8 of the magnetohydrodynamic (MHD) Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The TTIRC consists of an Executive Committee (EC) which acts as the governing body, and a General Committee (GC), also referred to as the main or full committee, consisting of representatives from the various POC contractors, participating universities and national laboratories, utilities, equipment suppliers, and other potential MHD users or investors. The purpose of the TTIRC is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the U.S. MHD Program. There are seven sections: introduction; Executive Committee and General Committee activity; Committee activities related to technology transfer; ongoing POC integration activities being performed under the auspices of the Executive Committee; recommendations passed on to the DOE by the Executive Committee; Planned activities for the next six months.

  19. OpenMHD: Godunov-type code for ideal/resistive magnetohydrodynamics (MHD)

    NASA Astrophysics Data System (ADS)

    Zenitani, Seiji

    2016-04-01

    OpenMHD is a Godunov-type finite-volume code for ideal/resistive magnetohydrodynamics (MHD). It is written in Fortran 90 and is parallelized by using MPI-2 and OpenMP. The code was originally developed for studying magnetic reconnection problems and has been made publicly available in the hope that others may find it useful.

  20. Forest statistics for Michigan`s northern lower peninsula unit, 1993. Forest Service research bulletin

    SciTech Connect

    Leatherberry, E.C.

    1994-10-30

    Michigan`s Northern Lower Peninsula Unit (fig. 1) is comprised of 33 counties. This region of the State is rich with resources that support a network of social, economic, and ecological processes that are forest dependent. The forest resource of the Unit presently supports an industry that operates on a sustaining basis. In 1990 nearly half of Michigan`s saw-log production--297 million board feet--was harvest in the Unit. The forests of the Northern Lower Peninsula are vital to the region. The forest contains a variety of both deciduous and coniferous forest species, which results in regionally unique ecosystems that contribute to biodiversity.

  1. Toroidal Theory of MHD Instabilities

    SciTech Connect

    Goedbloed, J.P.

    2004-03-15

    We continue with the adventures of the Alfven wave and its two magnetosonic companions as they travel in the curved space of magnetic surfaces and field lines (Sec. 2), find themselves trapped in singularities of an unprecedented richness (Sec. 3), decide to get themselves better maps of the landscape to do the required twisting while some of their youthful energy is leaking away (Sec. 4), cause trouble at the edge of a powerful empire (Sec. 5), and finally see the light in a distant future (Sec. 6). Needed on the trip are the evolution equations of both ideal and resistive MHD 'derived' in reference [1], the solutions to the toroidal equilibrium equations discussed in reference [2], the general background on spectral theory of inhomogeneous plasmas presented in reference [3], which is extended in the two directions of toroidal geometry and resistivity in this lecture [4]. This leads to such intricate dynamics that numerical techniques are virtually the only way to proceed. This aspect is further elaborated in reference [5] on numerical techniques.

  2. MHD Integrated Topping Cycle Project

    SciTech Connect

    Not Available

    1992-02-01

    This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

  3. Basic Bell-MHD turbulence

    SciTech Connect

    Beresnyak, Andrey; Li, Hui

    2014-06-20

    Nonresonant current instability was identified by Bell as an important mechanism for magnetic field amplification in supernova remnants. In this paper we focus on studying the nonlinear stage of this instability using the incompressible MHD formulation. We demonstrate that the evolution of magnetic turbulence driven by the Bell instability resembles turbulence driven on large scales. More importantly, we demonstrate that the energy-containing scale for magnetic fields is proportional to the square root of the magnetic energy density. Given the observational constraints of the possible field amplification, this new relation allows us to directly estimate the maximum energy of particles scattered by such fields, and this estimate is normally below the average particle energy. This implies that, without taking into account the feedback to cosmic rays (CRs), the typical scales of Bell fields, in either the linear or nonlinear regime, will be too small to affect high-energy particle acceleration. We mention several scenarios of back reaction to CRs that could be important.

  4. MHD waveguides in space plasma

    SciTech Connect

    Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.

    2010-07-15

    The waveguide properties of two characteristic formations in the Earth's magnetotail-the plasma sheet and the current (neutral) sheet-are considered. The question of how the domains of existence of different types of MHD waveguide modes (fast and slow, body and surface) in the (k, {omega}) plane and their dispersion properties depend on the waveguide parameters is studied. Investigation of the dispersion relation in a number of particular (limiting) cases makes it possible to obtain a fairly complete qualitative pattern of all the branches of the dispersion curve. Accounting for the finite size of perturbations across the wave propagation direction reveals new additional effects such as a change in the critical waveguide frequencies, the excitation of longitudinal current at the boundaries of the sheets, and a change in the symmetry of the fundamental mode. Knowledge of the waveguide properties of the plasma and current sheets can explain the occurrence of preferred frequencies in the low-frequency fluctuation spectra in the magnetotail. In satellite observations, the type of waveguide mode can be determined from the spectral properties, as well as from the phase relationships between plasma oscillations and magnetic field oscillations that are presented in this paper.

  5. Alternative Programs and Desegregation in Flint, Michigan

    ERIC Educational Resources Information Center

    Kugler, Marianne Russell

    1978-01-01

    Discusses the results of the Flint, Michigan Board of Education's decision to include extensive development of alternative programs as part of the Quality Education/Desegregation Plan developed for the Flint schools. (Author/RK)

  6. Michigan Citizens' Knowledge and Perceptions about Groundwater.

    ERIC Educational Resources Information Center

    Suvedi, Murari; Krueger, David; Shrestha, Anil; Bettinghouse, Dixie

    2000-01-01

    Assesses the knowledge and perceptions of Michigan residents about groundwater in order to develop a comprehensive educational program and provide baseline information to document the program's impact over time. (Author/CCM)

  7. Michigan operator salvages well using lateral drilling

    SciTech Connect

    Mall, T.; Fincher, R.

    1986-06-09

    Michigan independents Trendwell Oil Corp., Miller Bros., and PetroStar Energy recently used Eastman Whipstock's lateral completion technique to turn a well destined for abandonment into a commercial success. The 1-2 Comeau HD-1, in western Michigan's Muskegon County, flowed 629 bo/d on a 13/64-in. choke, reaching the limits of the on-site computerized test equipment before being pinched back to a 12/64-in. choke for a sustained 10-day test.

  8. Corrosion and arc erosion in MHD channels

    NASA Astrophysics Data System (ADS)

    Rosa, R. J.; Pollina, R. J.

    1990-07-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate. The work performed to date in the analysis of channel gas side materials has served to identify and clarify the respective environments to which the various materials are subjected and identified a performance ranking of materials. For high voltage intercathode gaps, which show the most severe wear, the materials rank in the order from best to worst: W, Mo, 90WCu, 97W2Fe1Ni, 75WCu, and Cr. We have shown data which indicates that lifetime is sensitive to gap voltage. Therefore for conditions under which iron oxide addition maintains low voltage intercathode gaps 75WCu becomes an excellent cathode material.

  9. Corrosion and arc erosion in MHD channels

    SciTech Connect

    Rosa, R.J.; Pollina, R.J.

    1990-04-27

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues: sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate. The detailed correlation and analysis of data obtained from nearly all of the CDIF tests performed since 1986 has shown that the apparent leakage current flowing through the slag on the channel walls depends upon channel operating parameters in an unexpected way. A comprehensive report of the results obtained to date and a first attempt at their interpretation has been prepared and a copy is attached. The second activity has concerned the examination of electrodes (platinum anodes/tungsten cathodes) by SEM and EDX techniques to determine the nature of the surface degradation. Results of these examinations are reported.

  10. Corrosion and arc erosion in MHD channels

    NASA Astrophysics Data System (ADS)

    Rosa, Richard J.; Pollina, Richard J.

    1990-04-01

    The objective of this task is to study the corrosion and arc erosion of magnetohydrodynamic (MHD) materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues: sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate. The detailed correlation and analysis of data obtained from nearly all of the tests performed since 1986 has shown that the apparent leakage current flowing through the slag on the channel walls depends upon channel operating parameters in an unexpected way. A comprehensive report of the results obtained to date and a first attempt at their interpretation has been prepared and a copy is attached. The second activity has concerned the examination of electrodes (platinum anodes/tungsten cathodes) by scanning electron microscopy and energy dispersive x ray spectroscopy of the surface degradation. Results of these examinations are reported.

  11. Dipole Alignment in Rotating MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  12. Michigan Technician Need Study. The Present and Projected Demand for Technically Trained People in Michigan.

    ERIC Educational Resources Information Center

    Ferris State Coll., Big Rapids, MI. Office of Administrative Studies.

    This study undertakes to determine (1) the extent of crucial manpower shortages in Michigan by technical area and skill, by the areas of occupation or industry, and whether these shortages will decrease or increase over the next few years, and (2) the opportunities for technical education now available or necessary to assure Michigan industry and…

  13. LINKING GREAT WATERSHEDS WITH LAKE MICHIGAN: THE LAKE MICHIGAN MASS BALANCE STUDY

    EPA Science Inventory

    An overview of the Lake Michigan Mass Balance Study -- which is focusing on atrazine, PCBs, nutrients, suspended solids, trans-nonachlor, and mercury. The relative contribution of contaminants to Lake Michigan will be examined for all major watersheds in the basin. - - - Further ...

  14. 75 FR 41895 - Inteva Products, LLC Adrian, Michigan; Inteva Products, LLC Troy, Michigan; Amended Certification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... Register on May 28, 2010 (75 FR 30072). At the request of the State agency, the Department reviewed the..., Michigan location provides human resources, administrative functions, engineering and financial services... Employment and Training Administration Inteva Products, LLC Adrian, Michigan; Inteva Products, LLC...

  15. ATMOSPHERIC MERCURY DEPOSITION TO LAKE MICHIGAN DURING THE LAKE MICHIGAN MASS BALANCE STUDY

    EPA Science Inventory

    Wet and dry mercury (Hg) deposition were calculated to Lake Michigan using a hybrid receptor modeling framework. The model utilized mercury monitoring data collected during the Lake Michigan Mass Balance Study and the Atmospheric Exchange Over Lakes and Oceans Study together w...

  16. State Laws Relating to Michigan Libraries. Reprinted from the Michigan Compiled Laws.

    ERIC Educational Resources Information Center

    Michigan Library, Lansing.

    Prepared by the state librarian of Michigan, this compilation of laws is intended to help librarians, government officials, and citizens familarize themselves with the many state statues that affect the operation and development of libraries in Michigan. The document includes excerpts of laws pertaining to public libraries, school libraries,…

  17. Power generator design for the billings MHD demonstration project

    SciTech Connect

    Pian, C.C.P.; Kessler, R.; Schmitt, E.W.; Morrison, D.J.

    1993-12-31

    The proposed design of the MHD Power generator for the Billings MHD Demonstration Project is presented. The Billings MHD Demonstration Project, proposed by the MHD Development Corporation (MDC) for the U.S. Department of Energy`s Clean Coal Technology V Program, will demonstrate the significant environmental advantages and efficiency potential of MHD electric power generation. A diagonally-loaded, supersonic MHD generator channel is proposed. The generator channel has a thermal input of 250 MW, is 11 meters long and produces 28.5 MW gross power output at the nominal design operating condition. The gasdynamic, gas-side, and mechanical designs of the proposed generator are derived from the design of the 50 MW{sub t} proof-of-concept MHD generator, currently undergoing long duration testing at the CDIF test facility. The design and operation of the proposed generator will be typical of those anticipated in future commercial MHD generator channels.

  18. MHD Oscillations in the Earth's Magnetotail

    NASA Astrophysics Data System (ADS)

    Leonovich, A. S.; Mazur, V. A.; Kozlov, D. A.

    2016-02-01

    In studies of hydromagnetic oscillations of the Earth's magnetosphere, it is often considered as a giant resonator for magnetohydrodynamic (MHD) waves. A shear flow instability on the magnetopause has long been regarded as a possible source of MHD oscillations in the Earth's magnetosphere. A most interesting phenomenon investigated for the past two decades are ultra-low-frequency oscillations with a discrete spectrum. Such oscillations are recorded usually in the midnight-morning sector of the magnetosphere at 60° to 80° latitudes. Another type of MHD oscillations typical of the magnetotail is the coupled Alfvén and slow magnetosonic waves on stretched magnetic field lines passing through the current sheet. Each of these modes can propagate along paths that almost coincide with the magnetic field lines. The recently discovered kink-like oscillations are oscillations of the current sheet itself, similar to a piece of fabric fluttering in the wind. In this regard they are called flapping modes.

  19. The Michigan Binary Star Program

    NASA Astrophysics Data System (ADS)

    Lindner, Rudi P.

    2007-07-01

    At the end of the nineteenth century, William J. Hussey and Robert G. Aitken, both at Lick Observatory, began a systematic search for unrecorded binary stars with the aid of the 12" and 36" refracting telescopes at Lick Observatory. Aitken's work (and book on binary stars) are well known, Hussey's contributions less so. In 1905 Hussey, a Michigan engineering graduate, returned to direct the Ann Arbor astronomy program, and immediately he began to design new instrumentation for the study of binary stars and to train potential observers. For a time, he spent six months a year at the La Plata Observatory, where he discovered a number of new pairs and decided upon a major southern hemisphere campaign. He spent a decade obtaining the lenses for a large refractor, through the vicissitudes of war and depression. Finally, he obtained a site in South Africa, a 26" refractor, and a small corps of observers, but he died in London en route to fulfill his dream. His right hand man, Richard Rossiter, established the observatory and spent the next thirty years discovering and measuring binary stars: his personal total is a record for the field. This talk is an account of the methods, results, and utility of the extraordinary binary star factory in the veldt.

  20. Explosively-driven magnetohydrodynamic (MHD) generator studies

    SciTech Connect

    Agee, F.J.; Lehr, F.M.; Vigil, M.; Kaye, R.; Gaudet, J.; Shiffler, D.

    1995-08-01

    Plasma jet generators have been designed and tested which used an explosive driver and shocktube with a rectangular cross section that optimize the flow velocity and electrical conductivity. The latest in a series of designs has been tested using a reactive load to diagnose the electrical properties of the MHD generator/electromagnet combination. The results of these tests indicate that the plasma jet/MHD generator design does generate a flow velocity greater than 25 km/s and produces several gigawatts of pulsed power in a very small package size. A larger, new generator design is also presented.

  1. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2014-10-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Initial results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.

  2. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2013-10-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Preliminary results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.

  3. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2015-11-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.

  4. MHD Ballooning Instability in the Plasma Sheet

    SciTech Connect

    C.Z. Cheng; S. Zaharia

    2003-10-20

    Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum.

  5. Axisymmetric ideal MHD stellar wind flow

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Olbert, S.

    1978-01-01

    The ideal MHD equations are reduced to a single equation under the assumption of axisymmetric flow. A variational principle from which the equation is derivable is given. The characteristics of the equation are briefly discussed. The equation is used to rederive the theorem of Gussenhoven and Carovillano.

  6. Market Barriers to Solar in Michigan

    SciTech Connect

    Miller, E.; Nobler, E.; Wolf, C.; Doris, E.

    2012-08-01

    The solar industry in the United States is at a turning point; the cost of PV hardware has declined substantially in recent years, placing new attention on reducing the balance of system (BOS) costs of solar that now contribute to a growing percentage of installation expenses. How states address these costs through the creation of a favorable policy and regulatory environment is proving to be a critical determinant of a thriving statewide solar market. This report addresses the permitting and tax issues that may stimulate the solar market growth in Michigan. By making PV installations easier to complete through reduced BOS costs, Michigan would become a more attractive location for manufacturers and installers. As PV module costs decline and BOS costs make up a greater share of the cost of solar, action taken today on these issues will prove beneficial in the long term, providing Michigan an opportunity to establish a leadership position in the solar industry.

  7. Characteristics of laminar MHD fluid hammer in pipe

    NASA Astrophysics Data System (ADS)

    Huang, Z. Y.; Liu, Y. J.

    2016-01-01

    As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier-Stocks equations, coupling with Lorentz force is numerically solved in a reservoir-pipe-valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems.

  8. Performance of Scramjet Engine with MHD Energy Bypass System

    NASA Astrophysics Data System (ADS)

    Kaminaga, Susumu; Tomioka, Sadatake; Yamasaki, Hiroyuki

    Flow behavior and thrust performance of MHD energy bypass scramjet engine was examined numerically. MHD generator was placed at the isolator to enhance the flow compression. Kinetic energy was converted to electrical energy in the MHD generator. Extracted electrical energy was consumed at the MHD accelerator placed at the downstream of the combustor. When MHD energy bypass system was used, the flow was decelerated and compressed in the MHD generator. Effect of velocity and Mach number on wall friction was analyzed and decrease of friction force was pointed out. Also, high pressure in the combustor resulted in increase of pressure contribution to net thrust. Despite of positive effects, decelerating Lorentz force in the MHD generator was comparably large and no significant difference in net thrust performance is observed.

  9. 78 FR 73793 - Radio Broadcasting Services; Evart and Ludington, Michigan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ...This document proposes, at the request of Synergy Lakeshore Licenses, LLC (``Synergy''), licensee of Station WMLQ(FM), Manistee, Michigan, the deletion of vacant FM Channel 274A at Evart, Michigan. The document also proposes the return of Stations WMLQ(FM), Manistee, and WMOM(FM), Pentwater, Michigan, to the channels that they previously occupied, and the modification of the construction......

  10. Civil Rights Issues Facing Arab Americans in Michigan.

    ERIC Educational Resources Information Center

    Michigan State Advisory Committee to the U.S. Commission on Civil Rights.

    This report is a summary statement of the Michigan Advisory Committee's study on civil rights issues facing Arab American communities in Michigan. It is based on information received by the Committee at a community forum held in Dearborn, Michigan, in 1999. Six sections focus on: (1) "Introduction," including Arab American demographics in Wayne…

  11. 30 CFR 922.700 - Michigan Federal program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Michigan Federal program. 922.700 Section 922.700 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MICHIGAN § 922.700 Michigan Federal program. (a) This part contains...

  12. 30 CFR 922.700 - Michigan Federal program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Michigan Federal program. 922.700 Section 922.700 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MICHIGAN § 922.700 Michigan Federal program. (a) This part contains...

  13. 30 CFR 922.700 - Michigan Federal program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Michigan Federal program. 922.700 Section 922.700 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MICHIGAN § 922.700 Michigan Federal program. (a) This part contains...

  14. Lake Michigan wetlands: classification, concerns, and management opportunities

    USGS Publications Warehouse

    Wilcox, Douglas A.

    2005-01-01

    The wetlands that border Lake Michigan are an extremely important component of the lake ecosystem. In this paper, I will review the status of wetland classifications used for Lake Michigan and the other Great Lakes, as well as the major management concerns and opportunities presented by Lake Michigan wetlands.

  15. Symmetry, Statistics and Structure in MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2007-01-01

    Here, we examine homogeneous MHD turbulence in terms of truncated Fourier series. The ideal MHD equations and the associated statistical theory of absolute equilibrium ensembles are symmetric under P, C and T. However, the presence of invariant helicities, which are pseudoscalars under P and C, dynamically breaks this symmetry. This occurs because the surface of constant energy in phase space has disjoint parts, called components: while ensemble averages are taken over all components, a dynamical phase trajectory is confined to only one component. As the Birkhoff-Khinchin theorem tells us, ideal MHD turbulence is thus non-ergodic. This non-ergodicity manifests itself in low-wave number Fourier modes that have large mean values (while absolute ensemble theory predicts mean values of zero). Therefore, we have coherent structure in ideal MHD turbulence. The level of non-ergodicity and amount of energy contained in the associated coherent structure depends on the values of the helicities, as well as on the presence, or not, of a mean magnetic field and/or overall rotation. In addition to the well known cross and magnetic helicities, we also present a new invariant, which we call the parallel helicity, since it occurs when mean field and rotation axis are aligned. The question of applicability of these results to real (i.e., dissipative) MHD turbulence is also examined. Several long-time numerical simulations on a 64(exp 3) grid are given as examples. It is seen that coherent structure begins to form before decay dominates over nonlinearity. The connection of these results with inverse spectral cascades, selective decay, and magnetic dynamos is also discussed.

  16. A hermaphroditic coregonine from Lake Michigan

    USGS Publications Warehouse

    Edsall, Thomas A.

    1970-01-01

    Hermaphroditism is relatively rare among the Salmonidae (See Atz, 1964 for a comprehensive review) and has never been reported for coregonine fishes. Recent examination of a collection of coregonines at the Great Lakes Fishery Laboratory disclosed a hermaphroditic bloater(Coregonus hoyi). The fish was captured in a gill net set at 50 fathoms on the bottom of Lake Michigan approximately 7.5 miles NNW of Frankfort, Michigan, on November 2, 1955. The fish had a normal rate of growth and was 234 mm long and in its 5th year of life; it was normal in external appearance but was easily identified as a hermaphrodite by gross examination of its gonads

  17. HIGH RESOLUTION MODELLING OF PCB CONGENERS IN LAKE MICHIGAN USING THE LAKE MICHIGAN (LM3) CONTAMINANT MODEL

    EPA Science Inventory

    The Lake Michigan Level 3 (LM3) Model is a numerical model of Lake Michigan used to predict the fate and transport of 54 PCB congeners. The LM3 model segments Lake Michigan horizontally with a 5 x 5 km grid and vertically with 19 sigma layers for a total of 44,042 water column se...

  18. Michigan`s forests 1993: An analysis. Forest Service resource bulletin

    SciTech Connect

    Schmidt, T.L.; Spencer, J.S.; Bertsch, R.

    1997-02-04

    Michigan`s forests are abundant, diverse, healthy, productive, and expanding. These forests make important contributions to the quality of life by providing a wide array of benefits, including wildlife habitat, biological diversity, outdoor recreation, improved air and water quality, and economic resources such as the estimated $12 billion of value added and 200,000 jobs annually supported by forest-based industries/tourism/recreation.

  19. LAKE MICHIGAN MASS BALANCE ATRAZINE DATA

    EPA Science Inventory

    The Lake Michigan Mass Balance Study measured PCBs, mercury, trans-nonachlor, and atrazine in rivers, the atmosphere, sediments, lake water, and the food chain. A mathematical model will predict what effect reducing pollution will have on the lake, and its large fish (lake trout ...

  20. LAKE MICHIGAN MASS BALANCE: MODELING PROCESS

    EPA Science Inventory

    The Lake Michigan Mass Balance Study measured PCBs, mercury, trans-nonachlor, and atrazine in rivers, the atmosphere, sediments, lake water, and the food chain. A mathematical model will predict what effect reducing pollution will have on the lake, and its large fish (lake trout ...

  1. LAKE MICHIGAN MASS BALANCE PCB DATA

    EPA Science Inventory

    The Lake Michigan Mass Balance Study measured PCBs, mercury, trans-nonachlor, and atrazine in rivers, the atmosphere, sediments, lake water, and the food chain. A mathematical model will predict what effect reducing pollution will have on the lake, and its large fish (lake trout ...

  2. 50 CFR 32.41 - Michigan.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... regulation. D. Sport Fishing. Michigan Wetland Management District A. Migratory Game Bird Hunting. We allow.... Migratory Game Bird Hunting. B. Upland Game Hunting. C. Big Game Hunting. We allow hunting of white-tailed... Management Area A. Migratory Game Bird Hunting. Hunting is pursuant to State regulation. B. Upland...

  3. Educational Development at Michigan State University.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Educational Development Program.

    This report is one in a collection of summaries of instructional development efforts by faculty at Michigan State University (MSU) to improve undergraduate education. Most of these exploratory efforts are aimed at improving the conditions for learning in a specific course or subject matter area, and were conducted by individual faculty under the…

  4. School and Home Program, Flint, Michigan.

    ERIC Educational Resources Information Center

    1969

    An experimental program in Flint, Michigan, was designed to raise the academic level of underachieving children by involving their parents in the daily reading exercises and study habits of their children. Children were given materials including booklets made from old basal readers and file boxes for word cards. Parents were given instruction in…

  5. Michigan Library Statistical Report. 1997 Edition.

    ERIC Educational Resources Information Center

    Michigan Library, Lansing.

    This 1997 edition focuses on statistical data supplied by Michigan public libraries, public library cooperatives, and those public libraries which serve as regional or subregional outlets for blind and physically handicapped patrons. Statistics on academic libraries are also presented in this edition, and summary statistics for prior fiscal years…

  6. Review of Michigan's Grade Level Content Expectations

    ERIC Educational Resources Information Center

    Achieve, Inc., 2003

    2003-01-01

    In 2002, the Michigan State Board of Education asked the Department of Education to develop grade-by-grade "content expectations" in reading/English language arts and mathematics to provide guidance to local educators and parents and serve as the basis for annual assessments required by the federal No Child Left Behind Act (NCLB) of 2001. In July…

  7. Minority Health in Michigan: Closing the Gap.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Public Health, Lansing.

    The wide and growing discrepancy in mortality rates between the minority populations of Blacks, Hispanics, Arab Americans, Asian/Pacific Islanders, and Native Americans and the White population of the State of Michigan make improving minority health status a matter of simple justice. Section I, "Introduction and Overview," comprises chapter 1,…

  8. Michigan Basin basement implications for future exploration

    SciTech Connect

    Harper, J.D. . Dept. of Earth Sciences)

    1992-01-01

    The Michigan Basin has had a long history of responding to new exploration ideas, technologies, and pursuits. The future still holds opportunity for this Basin. A critical factor in future exploration will be incorporation of the details of basement structure into exploration plays. Facies distributions are strongly influenced by basement structure and diastrophism. In central Michigan successful exploration has focused on structures beneath Devonian oil fields and salts. In southern Michigan Ordovician fracture reservoirs have been the main producers. Between these two areas, outside of the Devonian salt edge, exploration has been minimal to none. This anomaly is unwarranted because structure styles in this middle area are continuous with structure of the central and southern bounding areas. Several potential play concepts can be established for this region. Improved definition of the extensions and continuity of the Silurian reef belt is possible because Silurian shelf margins, and the distributions of pinnacle reefs and basinal evaporite facies coincide with basement structural boundaries. Recognition of sea-level terraces at the top of the Trenton in Indiana and Ohio must be integrated into the depositional models for the Michigan Trenton. Cambro-Ordovician stratigraphy still offers opportunities for alternative correlations which have significant implications for depositional models and hydrocarbon occurrence. Improved seismic resolution, detailed basinal studies, and detailed reservoir characterization analogues will result in definition of new discoveries.

  9. Michigan's energy resources: a geological perspective

    SciTech Connect

    Kalliokoski, J.

    1981-11-01

    In recent years, Michigan's main energy source has been oil, followed by gas and coal, respectively. Very little energy is derived from hydro or nuclear plants. Michigan's oil production has grown rapidly to slightly less than 35 million bbl/yr against a consumption of 200 million bbl/yr. In other words, Michigan is producing one-fifth of its needs from in-state reserves. Oil resources are quoted at 300 to 2700 million bbl. The major recent oil and gas production has been from the Silurian Pinnacle Reefs. Gas is recovered from similar geologic reservoirs as oil. In 1980, gas production was 0.150 trillion cu ft against an annual consumption of 0.08 trillion cu ft, or ca. one-fifth of the state's annual needs. Gas resources have been estimated at 1.8 to 10.9 trillion cu ft. Michigan can expect to maintain its 20% level of self-sufficiency from oil for the next 10 yr and from gas for the next 30 yr.

  10. MERCURY IN LAKE MICHIGAN ECOSYSTEM COMPONENTS

    EPA Science Inventory

    Mercury is a toxic bioaccumulative substance in aquatic ecosystems. National fish advisories for mercury increased 115% from 1993 to 2001 and fish consumption is now a major health concern. The Lake Michigan Mass Balance Study measured the concentrations of mercury in the atmosph...

  11. 78 FR 38781 - Michigan Disaster #MI-00027

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... ADMINISTRATION Michigan Disaster MI-00027 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... With Credit Available Elsewhere... 2.875 Non-Profit Organizations Without Credit Available Elsewhere 2.875 For Economic Injury: Non-Profit Organizations Without Credit Available Elsewhere 2.875 The...

  12. 76 FR 55153 - Michigan Disaster #MI-00028

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Michigan Disaster MI-00028 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... Damage: Homeowners with Credit Available Elsewhere 5.000 Homeowners without Credit Available Elsewhere...

  13. 78 FR 15796 - Michigan Disaster #MI-00038.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... ADMINISTRATION Michigan Disaster MI-00038. AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY...-Profit Organizations With Credit Available Elsewhere... 2.875 Non-Profit Organizations Without Credit Available Elsewhere 2.875 For Economic Injury: Businesses & Small Agricultural Cooperatives Without Credit...

  14. One-to-One in Michigan

    ERIC Educational Resources Information Center

    McHale, Tom

    2006-01-01

    The Freedom to Learn (FTL) program is a statewide initiative coordinated by the Michigan Department of Education and Ferris State University in Big Rapids. Now beginning its third year, the program targets underperforming middle schools in 100 of the state's 500 districts. More than 23,000 students and 1,500 teachers have been issued HP nx9010…

  15. Michigan School District Buys Energy Management System.

    ERIC Educational Resources Information Center

    Technological Horizons in Education, 1982

    1982-01-01

    With the aid of a federal grant for energy conservation, the Warren Consolidated School System (Michigan) will purchase a Margaux 6400 Building Management system to manage energy usage in 35 district buildings. Reasons for selecting the system and system capabilities are briefly discussed. (Author/JN)

  16. Examining Fund Balance in Michigan School Districts

    ERIC Educational Resources Information Center

    Bidin, Zainin

    2012-01-01

    This research examines the financial profiles of 550 public school districts in Michigan and highlights the association between school district fund balance and the following eleven indicators: enrollment, percent enrollment change, percent of students receive free and reduced lunch (FRL), percent of special education students, percent of English…

  17. Grosse Pointe, Michigan: Race Against Race.

    ERIC Educational Resources Information Center

    Cosseboom, Kathy

    Grosse Pointe, Michigan, is a status community--but is it status quo? Yes and no. A bill proposed as a measure of community support for open housing opportunities got a definite "no" vote in Grosse Pointe Farms, although in opposition to State and Federal law precedents. The first Negro family who bought a Grosse Pointe home met with mixed…

  18. Mexicans of Detroit. Peopling of Michigan Series.

    ERIC Educational Resources Information Center

    Baba, Marietta Lynn; Abonyi, Malvina Hauk

    Tracing the background and history of Mexican Americans in Detroit, Michigan, the booklet briefly reviews the early stages of Meso-American history, the Spaniards' arrival in Mexico, colonial Mexico, Mexico's revolt for independence, and the internal turmoil in Mexico which continued until early in 1861. The accomplishments of such Mexicans as…

  19. Subgroup Achievement and Gap Trends: Michigan

    ERIC Educational Resources Information Center

    Center on Education Policy, 2010

    2010-01-01

    In grade 8 (the only grade in which subgroup trends were analyzed by achievement level), Michigan showed across-the-board gains--improvements in both reading and math at the basic, proficient and advanced levels for all racial/ethnic subgroups, low income students, and boys and girls. Results on achievement gaps were mixed. Comparable data were…

  20. Ann Arbor, Michigan: Solar in Action (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Ann Arbor, Michigan, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  1. 78 FR 36631 - Michigan Disaster #MI-00039

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Michigan Disaster MI-00039 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... Application Deadline Date: 03/12/2014. ADDRESSES: Submit completed loan applications to: U.S. Small...

  2. Western Michigan University Libraries' "Electronic Journal Finder"

    ERIC Educational Resources Information Center

    Gedeon, Randle; Boston, George

    2005-01-01

    This article describes the development of the "Electronic Journal Finder," a TDNet installation for the University Libraries of Western Michigan University. Topics covered include: rationale for subscription project timeline, content, product customization, set-up, maintenance issues, reporting functions, directing URL links, searching utility,…

  3. Directory of Michigan Libraries, 2001 thru 2002.

    ERIC Educational Resources Information Center

    Getzen, Jami, Ed.; VanOstran, Lisa, Ed.; Willoughby, Ed, Ed.

    This directory provides information about various types of Michigan libraries. The directory is divided into 13 sections: Alphabetical List of Public and Branch Libraries Whose Names Do Not Indicate Their Location; Public and Branch Libraries; Library Cooperatives; Academic Libraries; Regions of Cooperation; Regional Educational Media Centers;…

  4. Directory of Michigan Libraries, 2000 thru 2001.

    ERIC Educational Resources Information Center

    Michigan Library, Lansing.

    This directory provides information about various types of Michigan libraries. The directory is divided into 13 sections: (1) "Alphabetical List of Public and Branch Libraries Whose Names Do Not Indicate Their Location"; (2) "Public and Branch Libraries"; (3) "Library Cooperatives"; (4) "Academic Libraries"; (5) "Regions of Cooperation"; (6)…

  5. Directory of Michigan Libraries, 1999 thru 2000.

    ERIC Educational Resources Information Center

    Michigan Library, Lansing.

    This directory provides information about various types of Michigan libraries. The directory is divided into 13 sections: (1) "Alphabetical List of Public and Branch Libraries Whose Names Do Not Indicate Their Location"; (2) "Public and Branch Libraries"; (3) "Library Cooperatives; (4) "Academic Libraries"; (5) "Regions of Cooperation"; (6)…

  6. The Common Goals of Michigan Education, Tentative.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Education, Lansing.

    The common goals of Michigan education are grouped into four areas. The goals in the first area, citizenship and morality, deal with morality, citizenship and social responsibility, and rights and responsibilities of students. The goals in the second area, democracy and equal opportunity, deal with equality of educational opportunity, education of…

  7. Michigan Library Statistical Report, 1998 Edition.

    ERIC Educational Resources Information Center

    Krefman, Naomi, Comp.; Krueger, Beth, Comp.; Sachau, Denise, Comp.

    The 1998 edition of the Michigan Library Statistical Report presents data provided by public libraries, public library cooperatives, and those public libraries which serve as regional or subregional outlets to provide services for blind and physically handicapped patrons. The reporting year for the public libraries is the most recent fiscal year…

  8. Michigan Library Statistical Report, 2001 Edition.

    ERIC Educational Resources Information Center

    Krefman, Naomi, Comp.; Dwyer, Molly, Comp.; Wetzel, Beth, Comp.

    The 2001 edition of the "Michigan Library Statistical Report" presents data for fiscal year 2000 provided by public libraries, library cooperatives, and those public libraries that serve as regional or subregional outlets to provide services for blind and physically handicapped patrons. Statewide summaries are presented, after statistical tables…

  9. Michigan Puts the Unemployed to WORC

    ERIC Educational Resources Information Center

    Flynn, Brigid Sullivan

    1978-01-01

    In an attempt to alleviate problems stemming from high youth unemployment and dwindling operation and maintenance funds for public lands, the Michigan legislature instituted the Work Opportunity Resources Corps (WORC), a successful project that put the unemployed to work doing construction, clean up, and rehabilitation work for public parks and…

  10. Flow development and analysis of MHD generators and seawater thrusters

    SciTech Connect

    Doss, E.D. ); Roy, G.D. )

    1992-03-01

    In this paper, the flow characteristics inside magnetohydrodynamic (MHD) plasma generators and seawater thrusters are analyzed and are compared using a three-dimensional computer model that solves the governing partial differential equations for fluid flow and electrical fields. Calculations have been performed for a Faraday plasma generator and for a continuous electrode seawater thruster. The results of the calculations show that the effects caused by the interaction of the MHD forces with the fluid flow are strongly manifested in the case of the MHD generator as compared to the flow development in the MHD thruster. The existence of velocity overshoots over the sidewalls confirm previously published results for MHD generators with strong MHD interaction. For MHD thrusters, the velocity profile is found to be slightly flatter over the sidewall as compared to that over the electrode wall. As a result, distinct enhancement of the skin friction exists over the sidewalls of MHD generators in comparison to that of MHD thrusters. Plots of velocity profiles and skin friction distributions are presented to illustrate and compare the flow development in MHD generators and thrusters.

  11. Power facility with a built-in multipolar MHD generator

    SciTech Connect

    Kovalev, K.L.; Markina, T.A.

    1995-05-01

    The scheme of a power facility with a built-in multipolar MHD generator is discussed. In most papers devoted to airborne high-power MHD generators (self-contained or built into the nozzle of the propulsion unit), MHD channels are discussed that are based on a two-pole scheme. The processes of energy conversion in these MHD generators are usually accompanied by disturbances of flow in the entire channel volume, which, in many cases, is undesirable for the operation of power facilities. Depending on the number of pairs of poles, the proposed facility makes it possible to accomplish MHD conversion both in the nozzle peripheral zone and in the central part of the flow. An analysis of the methods and results of calculations of volume MHD effects for finite Hall parameters {beta} and MHD-interaction s, as well as of the output characteristics of multipolar MHD generators equipped with electrode modules of different types are given. A comparison of the theoretical and experimental data is made. A scheme involving an advanced propulsion unit fired with cryogenic fuel H{sub 2}+O{sub 2} and a built-in multipolar MHD generator is considered. The problems of using built-in multipolar MHD generators in propulsion units utilizing other fuel pairs are discussed.

  12. A list of Michigan Corixidae (Hemiptera) with four new state records from the Great Lakes of Michigan

    USGS Publications Warehouse

    Chordas, Stephen W., III; Hudson, Patrick L.

    1999-01-01

    Corisella tarsalis, Sigara lineata, Trichocorixa borealis, and Trichocorixa kanza were recently identified from Michigan and constitute new state records. These four species were collected from two of the Great Lakes or their connecting rivers and increase the number of corixids for Michigan to 47 species. We newly report the genus Corisella for Michigan. Although most abundant in the western United States and Canada, scattered Corisella records in the Midwest (Wisconsin, Ohio and Ontario, Canada) indicated there was a good probability of its occurrence in Michigan. Finally, we provide an updated list of Michigan Corixidae.

  13. Regular shock refraction in planar ideal MHD

    NASA Astrophysics Data System (ADS)

    Delmont, P.; Keppens, R.

    2010-03-01

    We study the classical problem of planar shock refraction at an oblique density discontinuity, separating two gases at rest, in planar ideal (magneto)hydrodynamics. In the hydrodynamical case, 3 signals arise and the interface becomes Richtmyer-Meshkov unstable due to vorticity deposition on the shocked contact. In the magnetohydrodynamical case, on the other hand, when the normal component of the magnetic field does not vanish, 5 signals will arise. The interface then typically remains stable, since the Rankine-Hugoniot jump conditions in ideal MHD do not allow for vorticity deposition on a contact discontinuity. We present an exact Riemann solver based solution strategy to describe the initial self similar refraction phase. Using grid-adaptive MHD simulations, we show that after reflection from the top wall, the interface remains stable.

  14. MHD shocks in coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1991-01-01

    The primary objective of this research program is the study of the magnetohydrodynamic (MHD) shocks and nonlinear simple waves produced as a result of the interaction of ejected lower coronal plasma with the ambient corona. The types of shocks and nonlinear simple waves produced for representative coronal conditions and disturbance velocities were determined. The wave system and the interactions between the ejecta and ambient corona were studied using both analytic theory and numerical solutions of the time-dependent, nonlinear MHD equations. Observations from the SMM coronagraph/polarimeter provided both guidance and motivation and are used extensively in evaluating the results. As a natural consequence of the comparisons with the data, the simulations assisted in better understanding the physical interactions in coronal mass ejections (CME's).

  15. Numerical MHD codes for modeling astrophysical flows

    NASA Astrophysics Data System (ADS)

    Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.

    2016-05-01

    We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.

  16. Hyperbolic Divergence Cleaning for the MHD Equations

    NASA Astrophysics Data System (ADS)

    Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M.

    2002-01-01

    In simulations of magnetohydrodynamic (MHD) processes the violation of the divergence constraint causes severe stability problems. In this paper we develop and test a new approach to the stabilization of numerical schemes. Our technique can be easily implemented in any existing code since there is no need to modify the solver for the MHD equations. It is based on a modified system in which the divergence constraint is coupled with the conservation laws by introducing a generalized Lagrange multiplier. We suggest a formulation in which the divergence errors are transported to the domain boundaries with the maximal admissible speed and are damped at the same time. This corrected system is hyperbolic and the density, momentum, magnetic induction, and total energy density are still conserved. In comparison to results obtained without correction or with the standard “divergence source terms,” our approach seems to yield more robust schemes with significantly smaller divergence errors.

  17. Analytical investigation of critical MHD phenomena

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Development and analysis of schemes for suppression of the startup overvoltage transient in the AEDC High Performance Demonstration Experiment (HPDE), analysis of performance enhancement due to electrode voltage drop reduction by use of pyrolytic graphites in the HPDE, prediction of optimal loading schemes for the HPDE, prediction of PHDE performance with a diagonal electrical connection, and predictions of the likelihood and effects of axial current leakage between adjacent electrodes in the HPDE are reviewed. Simulations of tests at the AEDC/HPDE with STD Research Corporation multidimensional and time dependent computer codes provided additional validation for the computer codes and shed light on physical mechanisms which govern performance and durability of MHD power generators. The magnetoaerothermal effect was predicted by STD Research Corporation to have a significant effect on the HPDE/MHD generator performance at high interaction.

  18. Amplitudes of MHD Waves in Sunspots

    NASA Astrophysics Data System (ADS)

    Norton, Aimee Ann; Cally, Paul; Baldner, Charles; Kleint, Lucia; Tarbell, Theodore D.; De Pontieu, Bart; Scherrer, Philip H.; Rajaguru, Paul

    2016-05-01

    The conversion of p-modes into MHD waves by strong magnetic fields occurs mainly in the sub-photospheric layers. The photospheric signatures of MHD waves are weak due to low amplitudes at the beta=1 equipartion level where mode-conversion occurs. We report on small amplitude oscillations observed in the photosphere with Hinode SOT/SP in which we analyze time series for sunspots ARs 12186 (11.10.2014) and 12434 (17.10.2015). No significant magnetic field oscillations are recovered in the umbra or penumbra in the ME inversion. However, periodicities in the inclination angle are found at the umbral/penumbral boundary with 5 minute periods. Upward propagating waves are indicated in the intensity signals correlated between HMI and AIA at different heights. We compare SP results with the oscillations observed in HMI data. Simultaneous IRIS data shows transition region brightening above the umbral core.

  19. MHD Waves in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Ofman, L.

    2016-02-01

    This chapter focuses on reviewing several observational aspects of magnetohydrodynamic (MHD) waves in the solar wind, in particular on Alfvén waves, Alfvénic turbulent spectrum, and their role in heating and accelerating the solar wind. It also reviews computational models that incorporate Alfvén waves as the driving source of the wind in the lower corona (coronal holes) and in the inner heliosphere, with emphasis on multi-dimensional models. Evidence for MHD waves in the solar wind is obtained from interplanetary scintillation (IPS) observations using Earth-based radio telescope observations of distant (galactic) radio sources. The solar wind electron density variability in the line of sight affects the received radio signal. The propagating fluctuations and their correlations are used to estimate the solar wind velocity and the wave amplitude in the parallel and the perpendicular directions in line of sight.

  20. MHD Technology Transfer, Integration and Review Committee

    SciTech Connect

    Not Available

    1992-01-01

    This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

  1. Magnetic reconnection in a compressible MHD plasma

    SciTech Connect

    Hesse, Michael; Zenitani, Seiji; Birn, Joachim

    2011-04-15

    Using steady-state resistive MHD, magnetic reconnection is reinvestigated for conditions of high resistivity/low magnetic Reynolds number, when the thickness of the diffusion region is no longer small compared to its length. Implicit expressions for the reconnection rate and other reconnection parameters are derived based on the requirements of mass, momentum, and energy conservation. These expressions are solved via simple iterative procedures. Implications specifically for low Reynolds number/high resistivity are being discussed.

  2. Statistical Theory of the Ideal MHD Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the

  3. Dispersive waves in a seeded MHD generator.

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.

    1972-01-01

    The equations giving the response of a slightly ionized plasma with monatomic components to sinusoidal perturbations have been formulated. Included in the model equations were the electron Hall effect, electron thermal diffusion, radiation, and electron-atom rate processes. Plasma conditions were limited to those where viscous effects, the induced magnetic field, ion slip, and atom-atom inelastic processes can be neglected. Presented are results of numerical calculations for MHD generators with a working fluid of potassium seeded argon.

  4. Design Study: Rocket Based MHD Generator

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.

  5. Fully implicit adaptive mesh refinement MHD algorithm

    NASA Astrophysics Data System (ADS)

    Philip, Bobby

    2005-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.

  6. Dynamo theory and liquid metal MHD experiments

    NASA Astrophysics Data System (ADS)

    Lielausis, O.

    1994-06-01

    High values of magnetic Reynolds number Rm are characteristic not only to astrophysics, but also to other interesting objects, including liquid metal (LM) flows. LM experiments have been performed illustrating important predictions of the dynamo theory, for example, about the existence and features of the alpha effect. Consideration of so called 'laminar' dynamos provides a theoretical base for direct experimental realization and examination of the dynamo process. First step results, gathered a subcritical conditions, confirm the statement that self-excitation in LM experiments can be achieved practically today. In such devices as LM (sodium) cooled fast breeders Rm can reach values of up to 50 and specific MHD phenomena have been observed in operating fast reactors. Cautions against crisis like processes have been expressed. It is important for the dynamo theory to understand what kind of perturbed motion is able to coexist with the generated magnetic field. Fundamentally new ideas here are issuing from the theory of 2D MHD turbulence. LM MHD served for the first direct proves, confirming, that the predicted surprising features of 2D turbulence can be observed in reality. It is worth incorporating these already not new ideas in the dynamo theory. In such a way a field for new solutions could be established.

  7. Robust preconditioners for incompressible MHD models

    NASA Astrophysics Data System (ADS)

    Ma, Yicong; Hu, Kaibo; Hu, Xiaozhe; Xu, Jinchao

    2016-07-01

    In this paper, we develop two classes of robust preconditioners for the structure-preserving discretization of the incompressible magnetohydrodynamics (MHD) system. By studying the well-posedness of the discrete system, we design block preconditioners for them and carry out rigorous analysis on their performance. We prove that such preconditioners are robust with respect to most physical and discretization parameters. In our proof, we improve the existing estimates of the block triangular preconditioners for saddle point problems by removing the scaling parameters, which are usually difficult to choose in practice. This new technique is applicable not only to the MHD system, but also to other problems. Moreover, we prove that Krylov iterative methods with our preconditioners preserve the divergence-free condition exactly, which complements the structure-preserving discretization. Another feature is that we can directly generalize this technique to other discretizations of the MHD system. We also present preliminary numerical results to support the theoretical results and demonstrate the robustness of the proposed preconditioners.

  8. NASA Lewis Research Center combustion MHD experiment

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1982-01-01

    The MHD power generation experiments were conducted in a high field strength cryomagnet which was adapted from an existing facility. In its original construction, it consisted of 12 high purity aluminum coils pool cooled in a bath of liquid neon. In this configuration, a peak field of 15 tesla was produced. For the present experiments, the center four coils were removed and a 23 cm diameter transverse warm bore tube was inserted to allow the placement of the MHD experiment between the remaining eight coils. In this configuration, a peak field of 6 tesla should be obtainable. The time duration of the experiment is limited by the neon supply which allows on the order of 1 minute of total operating time followed by an 18-hour reliquefaction period. As a result, the experiments are run in a pulsed mode. The run duration for the data presented here was 5 sec. The magnetic field profile along the MHD duct is shown. Since the working fluid is in essence superheated steam, it is easily water quenched at the exit of the diffuser and the components are designed vacuum tight so that the exhaust pipe and demister an be pumped down to simulate the vacuum of outer space.

  9. Energetic particle effects on global MHD modes

    SciTech Connect

    Cheng, C.Z.

    1990-01-01

    The effects of energetic particles on MHD type modes are studied by analytical theories and the nonvariational kinetic-MHD stability code (NOVA-K). In particular we address the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral-beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n=1 internal kink mode in the hot particle beat space exists even in the absence of core ion finite Larmor radius effect (finite {omega}{sub *i}). On the other hand, the trapped alpha particles are found to resonantly excite instability of the n=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 23 refs., 5 figs.

  10. The Statistical Mechanics of Ideal MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2003-01-01

    Turbulence is a universal, nonlinear phenomenon found in all energetic fluid and plasma motion. In particular. understanding magneto hydrodynamic (MHD) turbulence and incorporating its effects in the computation and prediction of the flow of ionized gases in space, for example, are great challenges that must be met if such computations and predictions are to be meaningful. Although a general solution to the "problem of turbulence" does not exist in closed form, numerical integrations allow us to explore the phase space of solutions for both ideal and dissipative flows. For homogeneous, incompressible turbulence, Fourier methods are appropriate, and phase space is defined by the Fourier coefficients of the physical fields. In the case of ideal MHD flows, a fairly robust statistical mechanics has been developed, in which the symmetry and ergodic properties of phase space is understood. A discussion of these properties will illuminate our principal discovery: Coherent structure and randomness co-exist in ideal MHD turbulence. For dissipative flows, as opposed to ideal flows, progress beyond the dimensional analysis of Kolmogorov has been difficult. Here, some possible future directions that draw on the ideal results will also be discussed. Our conclusion will be that while ideal turbulence is now well understood, real turbulence still presents great challenges.

  11. MHD Turbulence in the Taurus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Heyer, M.; Gong, H.; Brunt, C.; Ostriker, E.

    2005-12-01

    The presence of MHD turbulence in the Taurus Molecular Cloud is examined from 12CO and 13CO J=1-0 imaging observations using the FCRAO 14 meter telescope. The degree of velocity anisotropy is measured from velocity structure functions derived separately along the x and y axes using Principal Component Analysis of spectroscopic imaging data (Brunt & Heyer 2002). Such anisotropy is predicted from model descriptions and computational simulations of MHD turbulence in the case of strong magnetic fields (Goldreich & Sridhar 1995; Cho, Lazarian, & Vishniac 2002; Vestuto, Ostriker, & Stone 2003). Within a subfield of the Taurus image where the column densities are low, this velocity anisotropy is largest along an angle that is coincident with the local magnetic field direction determined independently from optical polarization of background stars.The structure function derived from data perpendicular to the local field shows a shallower scaling exponent and a larger scaling coefficient than the values that describe the structure function constructed along the magnetic field as predicted by the MHD models. This alignment provides strong evidence that the magnetic field is a significant dynamical force within this column density regime of the Taurus cloud.

  12. Educational Seismology in Michigan: The MIQuakes Network

    NASA Astrophysics Data System (ADS)

    Fujita, K.; DeWolf, C. L.; Ruddock, J.; Svoboda, M. R.; Sinclair, J.; Schepke, C.; Waite, G. P.

    2013-12-01

    MIQuakes is a K-14 educational seismograph network currently consisting of 17 schools, mostly located in Michigan's lower peninsula. It is operated under the auspices of the Michigan Earth Science Teachers Association (MESTA) and is part of the IRIS Seismographs in Schools program. Although individual teachers in Michigan have had instruments as early as 1992, MESTA formed MIQuakes in 2010 to support the development of activities associated with classroom seismology appropriate for grades 6-12 and relevant to the Midwest, using locally recorded data. In addition, the deployment of the EarthScope transportable array in Michigan during 2011-2014 offered a tie in with a national-level research program. Michigan State University (MSU) and Michigan Tech provide content and technical support. In keeping with MESTA's philosophy of 'teachers helping teachers,' MIQuakes became, first and foremost, a group supported by teachers. Earthquake 'alerts' initially issued by MSU, were soon taken over by teachers who took the initiative in alerting each other to events, especially those that occurred during the school day. In-service teachers and university faculty have jointly organized workshops at MSU and at MESTA conferences - with teachers increasingly providing activities for sharing and relating the program to the new national standards. Workshops held to date have covered such topics as recognizing arrivals, filtering, focal mechanisms, and the Tohoku earthquake. As the group has grown, the degree of involvement and level of expertise have become broader, resulting in very different expectations from different teachers. How to keep the network cohesive, yet meet the needs of the individual members, will be one of the challenges of the next few years. Three levels of involvement by teachers are seen in the near term: those who operate their own classroom seismometer (currently either the short-period IRIS AS-1 or the broadband EAS-S102 seismometers); those who stream a nearby

  13. Identification of standing MHD modes in MHD simulations of planetary magnetospheres. Application to Mercury.

    NASA Astrophysics Data System (ADS)

    Griton, Léa; Pantellini, Filippo; Moncuquet, Michel

    2016-04-01

    We present 3D simulations of the interaction of the solar wind with Mercury's magnetosphere using the magnetohydrodynamic code AMRVAC. A procedure for the identification of standing MHD modes has been applied to these simulations showing that large scale standing slow mode structures may exist in Mercury's magnetosheath. The identification is mostly based on relatively simple approximate analytical solutions to the old problem of determining the family of all standing linear plane MHD waves in a flowing plasma. The question of the identification of standing slow mode structures using in situ measurements such as the future BepiColombo MMO mission to Mercury will be discussed as well.

  14. NASA Lewis H2-O2 MHD program

    NASA Technical Reports Server (NTRS)

    Smith, M.; Nichols, L. D.; Seikel, G. R.

    1974-01-01

    Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.

  15. Structured adaptive grid generation using algebraic methods

    NASA Technical Reports Server (NTRS)

    Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.

    1993-01-01

    The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration of points to the grid redistribution scheme. The evaluation of the weighting mesh is accomplished by utilizing the weight function representing the solution variation and the equidistribution law. The selection of the weight function plays a key role in grid adaptation. A new weight function utilizing a properly weighted boolean sum of various flowfield characteristics is defined. The redistribution scheme is developed utilizing Non-Uniform Rational B-Splines (NURBS) representation. The application of NURBS representation results in a well distributed smooth grid by maintaining the fidelity of the geometry associated with boundary curves. Several algebraic methods are applied to smooth and/or nearly orthogonalize the grid lines. An elliptic solver is utilized to smooth the grid lines if there are grid crossings. Various computational examples of practical interest are presented to demonstrate the success of these methods.

  16. Variational method for adaptive grid generation

    SciTech Connect

    Brackbill, J.U.

    1983-01-01

    A variational method for generating adaptive meshes is described. Functionals measuring smoothness, skewness, orientation, and the Jacobian are minimized to generate a mapping from a rectilinear domain in natural coordinate to an arbitrary domain in physical coordinates. From the mapping, a mesh is easily constructed. In using the method to adaptively zone computational problems, as few as one third the number of mesh points are required in each coordinate direction compared with a uniformly zoned mesh.

  17. Load Balancing Sequences of Unstructured Adaptive Grids

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid

    1997-01-01

    Mesh adaption is a powerful tool for efficient unstructured grid computations but causes load imbalance on multiprocessor systems. To address this problem, we have developed PLUM, an automatic portable framework for performing adaptive large-scale numerical computations in a message-passing environment. This paper makes several important additions to our previous work. First, a new remapping cost model is presented and empirically validated on an SP2. Next, our load balancing strategy is applied to sequences of dynamically adapted unstructured grids. Results indicate that our framework is effective on many processors for both steady and unsteady problems with several levels of adaption. Additionally, we demonstrate that a coarse starting mesh produces high quality load balancing, at a fraction of the cost required for a fine initial mesh. Finally, we show that the data remapping overhead can be significantly reduced by applying our heuristic processor reassignment algorithm.

  18. Atmospheric mercury deposition to Lake Michigan during the Lake Michigan Mass Balance Study.

    PubMed

    Landis, Matthew S; Keeler, Gerald J

    2002-11-01

    Wet and dry mercury (Hg) deposition were calculated to Lake Michigan using a hybrid receptor modeling framework. The model utilized mercury monitoring data collected during the Lake Michigan Mass Balance Study and the Atmospheric Exchange Over Lakes and Oceans Studytogether with high-resolution over-water meteorological date provided by the National Oceanic and Atmospheric Administration (July, 1994-October, 1995). Atmospheric deposition was determined to be the primary pathway for mercury inputto Lake Michigan, contributing approximately 84% of the estimated 1403 kg total annual input (atmospheric deposition + tributary input). Wet (10.6 microg m(-2)) and dry deposition (9.7 microg m(-2)) contributed almost equally to the annual atmospheric Hg deposition of 20.3 microg m(-2) (1173 kg). Re-emission of dissolved gaseous Hg from the lake was also significant (7.8 microg m(-2)), reducing the net atmospheric deposition to 12.5 microg m(-2) (720 kg). A strong urban influence was observed in the over-water mercury deposition estimates in the southern portion of the lake. The Chicago/Gary urban area was estimated to contribute approximately 20% (127 kg) of the annual atmospheric mercury deposition to Lake Michigan. The magnitude of local anthropogenic mercury sources in the Chicago/Gary urban area suggests that emission reductions could significantly reduce atmospheric mercury deposition into Lake Michigan. PMID:12433159

  19. Air is still contaminated 40 years after the Michigan Chemical plant disaster in St. Louis, Michigan.

    PubMed

    Peverly, Angela A; Salamova, Amina; Hites, Ronald A

    2014-10-01

    The Michigan Chemical (also known as Velsicol Chemical) plant located in St. Louis, Michigan operated from 1936-1978. During this time, the plant manufactured polybrominated biphenyls (PBBs), hexabromobenzene (HBB), 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT), and tris(2,3-dibromopropyl) phosphate (TDBPP), among other products. Due to widespread PBB contamination of Michigan, the plant eventually became a Superfund site, and despite years of cleanup activities, many of the compounds can still be found in the local ecosystem. To investigate the current atmospheric levels and to determine their spatial distributions, we collected tree bark samples from around Michigan and measured the concentrations of these pollutants. For comparison, other organic pollutants, such as polybrominated diphenyl ethers (PBDEs) and organophosphate esters (OPEs), which were not manufactured at the Michigan Chemical plant, were also measured in the same tree bark samples. Our results show levels of PBBs, DDT, and HBB in tree bark collected within 10 km of the Velsicol Superfund site (43, 477, and 108 ng/g lipid wgt., respectively) are 1-2 orders of magnitude higher than at sites located more than 10 km from the site (0.36, 28, and 0.36 ng/g lipid wgt., respectively). Levels of PBDEs and OPEs did not depend on distance from St. Louis. This is the first study on the atmospheric distribution of these chemicals around the Superfund site. PMID:25211223

  20. Detroit and the Lower Peninsula of Michigan

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This scene displays the southeastern part of Michigan's Lower Peninsula and adjacent Ontario, Canada (43.0N, 84.0W). Detroit can be recognized by its radial pattern of development and sediment plumes in the rivers from the massive industrial activity. The area pockmarked by lakes northwest of Detroit essentially outlines the limits of the Defiance Moraine caused by the stagnation and melting of Ice Age glaciers.

  1. Annular MHD Physics for Turbojet Energy Bypass

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  2. Nonlinear MHD Waves in a Prominence Foot

    NASA Astrophysics Data System (ADS)

    Ofman, L.; Knizhnik, K.; Kucera, T.; Schmieder, B.

    2015-11-01

    We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ˜ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5-11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5-14 G. For the typical prominence density the corresponding fast magnetosonic speed is ˜20 km s-1, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.

  3. An advanced implicit solver for MHD

    NASA Astrophysics Data System (ADS)

    Udrea, Bogdan

    A new implicit algorithm has been developed for the solution of the time-dependent, viscous and resistive single fluid magnetohydrodynamic (MHD) equations. The algorithm is based on an approximate Riemann solver for the hyperbolic fluxes and central differencing applied on a staggered grid for the parabolic fluxes. The algorithm employs a locally aligned coordinate system that allows the solution to the Riemann problems to be solved in a natural direction, normal to cell interfaces. The result is an original scheme that is robust and reduces the complexity of the flux formulas. The evaluation of the parabolic fluxes is also implemented using a locally aligned coordinate system, this time on the staggered grid. The implicit formulation employed by WARP3 is a two level scheme that was applied for the first time to the single fluid MHD model. The flux Jacobians that appear in the implicit scheme are evaluated numerically. The linear system that results from the implicit discretization is solved using a robust symmetric Gauss-Seidel method. The code has an explicit mode capability so that implementation and test of new algorithms or new physics can be performed in this simpler mode. Last but not least the code was designed and written to run on parallel computers so that complex, high resolution runs can be per formed in hours rather than days. The code has been benchmarked against analytical and experimental gas dynamics and MHD results. The benchmarks consisted of one-dimensional Riemann problems and diffusion dominated problems, two-dimensional supersonic flow over a wedge, axisymmetric magnetoplasmadynamic (MPD) thruster simulation and three-dimensional supersonic flow over intersecting wedges and spheromak stability simulation. The code has been proven to be robust and the results of the simulations showed excellent agreement with analytical and experimental results. Parallel performance studies showed that the code performs as expected when run on parallel

  4. MHD Turbulence at Moderate Magnetic Reynolds Number

    NASA Technical Reports Server (NTRS)

    Knaepen, B.; Kassinos, S.; Carati, D.

    2003-01-01

    In the present article we will consider the decay of MHD turbulence under the influence of a strong external magnetic field at moderate magnetic Reynolds numbers. Typical values of R(sub m) that are considered here range from R(sub m) approx. 0.1 to R(sub m) approx. 20. As a comparison, the initial kinetic Reynolds number common to all our simulations is Re(sub L) = 199. This means that the range of Prandtl numbers explored is 5 x 10(exp -4) to 10(exp -1). Our motivation is mainly to exhibit how the transition from the QS approximation to FMHD occurs. At the lowest values of R(sub m) studied here, the QS approximation is shown to model the flow faithfully. However, for the higher values of R(sub m) considered, it is clearly inadequate but can be replaced by another approximation which will be referred to as the Quasi-Linear (QL) approximation. Another objective of the present study is to describe how variations in the magnetic Reynolds number (while maintaining all other parameters constant) affect the dynamics of the flow. This complements past studies where variations in either the strength of the external magnetic field or the kinetic Reynolds number were considered. This article is organized as follows. In section 2 we recall the definition of the quasi-static approximation. Section 3 is devoted to the description of the numerical experiments performed using the quasi-static approximation and full MHD. In section 4 we describe the quasi-linear approximation and test it numerically against full MHD. A concluding summary is given in section 5.

  5. 75 FR 5105 - Notice of Inventory Completion: Western Michigan University, Anthropology Department, Kalamazoo, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... National Park Service Notice of Inventory Completion: Western Michigan University, Anthropology Department... Michigan University, Anthropology Department, Kalamazoo, MI. The human remains and associated funerary... anthropologist in the Anthropology Department at Western Michigan University, studied the human remains....

  6. 3D MHD Simulations of Tokamak Disruptions

    NASA Astrophysics Data System (ADS)

    Woodruff, Simon; Stuber, James

    2014-10-01

    Two disruption scenarios are modeled numerically by use of the CORSICA 2D equilibrium and NIMROD 3D MHD codes. The work follows the simulations of pressure-driven modes in DIII-D and VDEs in ITER. The aim of the work is to provide starting points for simulation of tokamak disruption mitigation techniques currently in the CDR phase for ITER. Pressure-driven instability growth rates previously observed in simulations of DIIID are verified; Halo and Hiro currents produced during vertical displacements are observed in simulations of ITER with implementation of resistive walls in NIMROD. We discuss plans to exercise new code capabilities and validation.

  7. MHD performance calculations with oxygen enrichment

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.; Staiger, P. J.; Seikel, G. R.

    1979-01-01

    The impact of oxygen enrichment of the combustion air on the generator and overall plant performance was studied for the ECAS-scale MHD/steam plants. A channel optimization technique is described and the results of generator performance calculations using this technique are presented. Performance maps were generated to assess the impact of various generator parameters. Directly and separately preheated plant performance with varying O2 enrichment was calculated. The optimal level of enrichment was a function of plant type and preheat temperature. The sensitivity of overall plant performance to critical channel assumptions and oxygen plant performance characteristics was also examined.

  8. MHD oxidant intermediate temperature ceramic heater study

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-01-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  9. Remote sensing in Michigan for land resource management

    NASA Technical Reports Server (NTRS)

    Sattinger, I. J.

    1972-01-01

    This project to demonstrate the application of earth resource survey technology to current problems in Michigan was undertaken jointly by the Environmental Research Institute of Michigan and Michigan State University. Remote sensing techniques were employed to advantage in providing management information for the Pointe Mouillee State Game Area and preparing an impact assessment in advance of the projected construction of the M-14 freeway from Ann Arbor to Plymouth, Michigan. The project also assisted the state government in its current effort to develop and implement a state-wide land management plan.

  10. Global and Kinetic MHD Simulation by the Gpic-MHD Code

    NASA Astrophysics Data System (ADS)

    Hiroshi, Naitou; Yusuke, Yamada; Kenji, Kajiwara; Wei-li, Lee; Shinji, Tokuda; Masatoshi, Yagi

    2011-10-01

    In order to implement large-scale and high-beta tokamak simulation, a new algorithm of the electromagnetic gyrokinetic PIC (particle-in-cell) code was proposed and installed on the Gpic-MHD code [Gyrokinetic PIC code for magnetohydrodynamic (MHD) simulation]. In the new algorithm, the vorticity equation and the generalized Ohm's law along the magnetic field are derived from the basic equations of the gyrokinetic Vlasov, Poisson, and Ampere system and are used to describe the spatio-temporal evolution of the field quantities of the electrostatic potential varphi and the longitudinal component of the vector potential Az. The basic algorithm is equivalent to solving the reduced-MHD-type equations with kinetic corrections, in which MHD physics related to Alfven modes are well described. The estimation of perturbed electron pressure from particle dynamics is dominant, while the effects of other moments are negligible. Another advantage of the algorithm is that the longitudinal induced electric field, ETz = -∂Az/∂t, is explicitly estimated by the generalized Ohm's law and used in the equations of motion. Furthermore, the particle velocities along the magnetic field are used (vz-formulation) instead of generalized momentums (pz-formulation), hence there is no problem of ‘cancellation', which would otherwise appear when Az is estimated from the Ampere's law in the pz-formulation. The successful simulation of the collisionless internal kink mode by the new Gpic-MHD with realistic values of the large-scale and high-beta tokamaks revealed the usefulness of the new algorithm.

  11. Positron Emission Tomography-Scanner at Children`s Hospital of Michigan at Detroit, Michigan

    SciTech Connect

    Not Available

    1992-12-31

    The Department of Energy has prepared an environmental assessment (EA), DOE/EA-0795, to support the DOE decision to provide a grant of $7,953,600 to be used in support of a proposed Positron Emission Tomography Scanner at Children`s Hospital of Michigan at Detroit, Michigan. Based upon the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affected the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  12. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect

    Boezaart, Arnold; Edmonson, James; Standridge, Charles; Pervez, Nahid; Desai, Neel; Williams, Bruce; Clark, Aaron; Zeitler, David; Kendall, Scott; Biddanda, Bopi; Steinman, Alan; Klatt, Brian; Gehring, J. L.; Walter, K.; Nordman, Erik E.

    2014-06-30

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the

  13. Equilibrium and MHD Activity in PEGASUS Plasmas

    NASA Astrophysics Data System (ADS)

    Garstka, G. D.

    2000-10-01

    The primary research goals of the PEGASUS toroidal experiment involve the exploration of MHD stability boundaries at high beta and extremely low aspect ratio. A novel nonlinear least-squares fitting technique is used to reconstruct equilibria; the more conventional TokaMac equilibrium code is used as well. The continuous resistive vacuum vessel is modeled as a set of inductively coupled coils for the purpose of the reconstructions. A variety of MHD phenomena have been observed on PEGASUS ohmic discharges. Internal reconnection events (IREs) are often seen. The characteristics of these events match those observed on other STs: they are observed more frequently when the machine is dirty and when the plasma is overdriven into the central column. An n=1 mode with a frequency of 3-8 kHz is often present throughout the discharge. This mode is associated with fast current ramps (> 30 MA/s) and can limit the discharge evolution. There is also substantial evidence of double tearing modes during fast current ramps. Present work involves the exploration of the edge kink stability boundary at near-unity aspect ratio.

  14. Extended MHD Stabiliy Calculations of Spheromak Equilibria

    NASA Astrophysics Data System (ADS)

    Howell, E. C.; Sovinec, C. R.

    2013-10-01

    Linear extended MHD calculations of spheromak equilibria in a cylindrical flux conserver are performed using the NIMROD code (Sovinec et al., JCP 195, 2004). A series of Grad-Sharfranov equilibria are generated with β ranging from 0 . 4 % to 4 . 2 % , corresponding to peak electron temperatures ranging 50 to 300 eV. These equilibria use a λ profile representative of SSPX shot 14590, which measured a peak electron temperature of 325 eV (McLean et al., POP 13, 2006). Resistive MHD calculations find that the β = 0 . 4 % case is unstable to resonant resistive interchange modes with γτA <= 2 . 3 % . These modes transition to ideal interchange as the equilibrium pressure is increased. Growth rates as large as γτA = 20 % are calculated for the 4 . 2 % β case. Calculations including ion-gyroviscosity show a minimal reduction of growth rate. Effects from including the Hall and Electron pressure terms in Ohm's Law and the cross-field diamagnetic heat flux are investigated. Results of related nonlinear simulations are also presented. Work Supported by US DOE.

  15. Shocked Magnetotail: ARTEMIS Observations and MHD Simulations

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoyan

    2015-04-01

    Interplanetary shocks can cause magnetospheric disturbances on various scales including kinetic and MHD processes. In this paper we study a shock event using ARTEMIS in situ observations and OpenGGCM MHD simulations, which shows how significant effect of interplanetary shocks could be on the magnetotail. The two ARTEMIS spacecraft were located near the tail current sheet and lobe center at (-60, 1, -5Re_GSM) when the shock arrived and recorded an abrupt tail compression leading to significant enhancements in the plasma density, temperature, magnetic field strength, and cross-tail current density, as well as to tailward flows and current sheet crossings. About 10 min later, the spacecraft entered the sheath solar wind unexpectedly. Two hypotheses are considered: either the tail was cut off by the high solar wind ram pressure (~25-30 nPa), or the compressed tail was pushed aside by the appreciable dawnward solar wind flow imposed by the shock. OpenGGMC simulation results confirmed the second hypothesis and revealed that during this 10 min interval, the lobe center moved dawnward by ~12 Re and the tail width in Y was reduced from ~40 to 26 Re, which eventually exposed ARTEMIS to the sheath solar wind. Comparisons of plasma and magnetic parameters between ARTEMIS in situ observations and simulations showed a satisfied consistence.

  16. The RFP dynamo: MHD to kinetic regimes

    NASA Astrophysics Data System (ADS)

    Sarff, J. S.; Almagri, A. F.; den Hartog, D. J.; McCollam, K. J.; Nornberg, M. D.; Sauppe, J. P.; Sovinec, C. R.; Terry, P. W.; Triana, J. C.; Brower, D. L.; Ding, W. X.; Parke, E.

    2015-11-01

    The hallmark of magnetic relaxation in an RFP plasma is profile flattening of J0 .B0 /B2 effected by a dynamo-like emf in Ohm's law. This is well-studied in single-fluid MHD, but recent MST results and extended MHD modeling show that both and the Hall emf, - /ene , are important, revealing decoupled electron and ion motion. Since dynamo is current-related, the electron fluid emf, , captures both effects. In MST, the electron flow is dominantly Ve , 1 ~E1 ×B0 /B2 , implying ~ / B . This and the Hall emf are measured in MST for comparison in Ohm's law. A finite-pressure response is also possible, e.g., ``diamagnetic dynamo'', ∇ . /ene , associated with diamagnetic drift, and ``kinetic dynamo'' associated with collisionless streaming of electrons in a stochastic magnetic field. Correlation measurements and using FIR interferometry and Thomson scattering reveal these as small but finite in MST. A kinetic emf might be expected for any high-beta plasma with inhomogeneous pressure. Support by DOE/NSF.

  17. MHD results from a collisionless fluid model

    NASA Astrophysics Data System (ADS)

    Ramos, J. J.

    2002-11-01

    A non-conventional closure ansatz for collisionless MHD has been proposed in Ref.[1]. The truncation of the set of fluid moment equations is suggested by a comparison between the standard non-relativistic set and the non-relativistic limit of the relativistic set derived in Ref.[2]. The resulting model is a closed system of evolution equations in conservation form for the particle, momentum and energy densities, and the energy flux, allowing for pressure anisotropy and parallel heat flux. The static equilibrium condition is the same as in the Chew-Goldberger-Low theory, supplemented by the condition that the parallel energy flux be constant along the magnetic field. We study the linear perturbations about such static equilibria to derive the MHD wave dispersion relations in a homogeneous background and the perturbed potential energy associated with a stability energy principle. [1] J.J. Ramos, 2002 International Sherwood Theory Meeting, Rochester, NY, paper 1D25. [2] R.D. Hazeltine and S.M. Mahajan, Ap. J. 567, 1262 (2002).

  18. Michigan Adult Literacy Initiative. A Five Year Plan To Reduce Illiteracy in Michigan by 50%.

    ERIC Educational Resources Information Center

    Michigan State Board of Education, Lansing.

    In response to the problem of adult literacy, the Michigan State Board of Education initiated a program to reduce the functional illiteracy rate among adults in the state significantly. This is to be accomplished by: (1) raising the level of awareness of the scope of illiteracy problems in the state; (2) developing comprehensive literacy programs…

  19. The Michigan Model Pilot: Increasing the Number of Female Administrators in Michigan Public Schools.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Education, Lansing.

    The Michigan Model provides a 3-year plan for school districts to increase the number of women in administration. Nineteen objectives address six key role groups--three external to the school district (professional educational organizations, local community groups, and parent/community members) and three internal to the district…

  20. Comparative analysis of discharges into Lake Michigan, Phase I - Southern Lake Michigan.

    SciTech Connect

    Veil, J. A.; Elcock, D.; Gasper, J. R.; Environmental Science Division

    2008-06-30

    BP Products North America Inc. (BP) owns and operates a petroleum refinery located on approximately 1,700 acres in Whiting, East Chicago, and Hammond, Indiana, near the southern tip of Lake Michigan. BP provided funding to Purdue University-Calumet Water Institute (Purdue) and Argonne National Laboratory (Argonne) to conduct studies related to wastewater treatment and discharges. Purdue and Argonne are working jointly to identify and characterize technologies that BP could use to meet the previous discharge permit limits for total suspended solids (TSS) and ammonia after refinery modernization. In addition to the technology characterization work, Argonne conducted a separate project task, which is the subject of this report. In Phase I of a two-part study, Argonne estimated the current levels of discharge to southern Lake Michigan from significant point and nonpoint sources in Illinois, Indiana, and portions of Michigan. The study does not consider all of the chemicals that are discharged. Rather, it is narrowly focused on a selected group of pollutants, referred to as the 'target pollutants'. These include: TSS, ammonia, total and hexavalent chromium, mercury, vanadium, and selenium. In Phase II of the study, Argonne will expand the analysis to cover the entire Lake Michigan drainage basin.

  1. Project '80, Rural Michigan Now and in 1980; Michigan's Outdoor Recreation and Tourism.

    ERIC Educational Resources Information Center

    Milstein, David N.

    Michigan is widely recognized as a traditional leader in outdoor recreation and tourism. Its location and resources provide many comparative advantages toward attracting visitors. State spending for outdoor recreation amounted to $95 million over the decade ending in 1960. State and Federal policies and programs are likely to emphasize outdoor…

  2. Educational Needs, Aspirations, and Expectations for Young People in Michigan. Latinos in Michigan. LM-03

    ERIC Educational Resources Information Center

    Kayitsinga, Jean; Villarruel, Francisco A.; Tanner, Paul E., Jr.

    2008-01-01

    In today's changing economy and global competition, the demand for a better educated workforce has been increasing. Since the 1970's, new structures of work have emerged that require a highly skilled labor force. What do Michigan residents think about future educational needs of young people? What level of education do they expect their children…

  3. Evaporite karst of northern lower Michigan

    USGS Publications Warehouse

    Black, T.J.

    1997-01-01

    Michigan has three main zones of evaporite karst: collapse breccia in Late Silurian deposits of the Mackinac Straits region; breccia, collapse sinks, and mega-block collapse in Middle Devonian deposits of Northern Lower Michigan, which overlaps the preceding area; and areas of soil swallows in sinks of Mississippian deposits between Turner and Alabaster in Arenac and Iosco counties, and near Grand Rapids in Kent County. The author has focused his study on evaporite karst of the Middle Devonian deposits. The Middle Devonian depos its are the Detroit River Group: a series consisting of limestone, dolomite, shale, salt, gypsum, and anhydrite. The group occurs from subcrop, near the surface, to nearly 1400 feet deep from the northern tip of the Southern Peninsula to the south edge of the "solution front" Glacial drift is from zero to 350 feet thick. Oil and gas exploration has encountered some significant lost-circulation zones throughout the area. Drilling without fluid returns, casing-seal failures, and lost holes are strong risks in some parts of the region. Lost fluid returns near the top of the group in nearby areas indicate some karst development shortly after deposition. Large and irregular lost-circulation zones, linear and patch trends of large sink holes, and 0.25 mile wide blocks of down-dropped land in the northern Lower Peninsula of Michigan were caused by surface- and ground-water movement along faults into the Detroit River Group. Glaciation has removed some evidence of the karst area at the surface. Sinkhole development, collapse valleys, and swallows developed since retreat of the glacier reveal an active solution front in the Detroit River Group.

  4. Inventors Center of Michigan Technical Assessment Program

    SciTech Connect

    Not Available

    1992-01-01

    The Technical Assessment Program at the Inventors Center of Michigan is designed to provide independent inventors with a reliable assessment of the technical merits of their proposed inventions. Using faculty from within Ferris State University's College of Technology an assessment process examines the inventor's assumptions, documentation, and prototypes, as well as, reviewing patent search results and technical literature to provide the inventor with a written report on the technical aspects of the proposed invention. The forms for applying for a technical assessment of an invention are included.

  5. MiSIS (Michigan Student Information System) Procedures Manual.

    ERIC Educational Resources Information Center

    1979

    The Michigan Student Information System (MiSIS) is the student flow component of the Michigan Community College Occupational Education Evaluation System (MCCOEES), a comprehensive state-wide system for evaluating occupational education. This manual provides comprehensive guidelines for collecting local management information for program and…

  6. Library Laws Handbook: State Laws Relating to Michigan Libraries.

    ERIC Educational Resources Information Center

    Michigan Library, Lansing.

    This document presents excerpts and copies of state laws relating to Michigan libraries. The following are included: the Preamble of the Constitution of Michigan of 1963; Legislative Council Act (excerpt); Incompatible Public Offices; Freedom of Information Act; Open Meetings Act; Laws, Documents, and Reports (excerpts); Administrative Procedures…

  7. LAKE MICHIGAN URBAN AIR TOXICS STUDY DESIGN AND OVERVIEW

    EPA Science Inventory

    During the summer of 1991, an air toxics monitoring program was conducted in the lower Lake Michigan area. his study was designed to take advantage of the extensive meteorological and oxidant database being generated concurrently by the Lake Michigan Ozone Study (LMOS). ntegrated...

  8. 77 FR 65874 - Michigan Consolidated Gas Company; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... Energy Regulatory Commission Michigan Consolidated Gas Company; Notice of Filing Take notice that on October 19, 2012, Michigan Consolidated Gas Company (MichCon) filed to revise its Statement of Operating... Gas Lost and Unaccounted For,'' and to add several new sections to the SOC as more fully described...

  9. 75 FR 39681 - Michigan Consolidated Gas; Notice of Rate Election

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Michigan Consolidated Gas; Notice of Rate Election July 2, 2010. Take notice that on June 28, 2010, Michigan Consolidated Gas (MichCon) filed a Rate Election pursuant to...

  10. LOOKING ESE AT PAIR OF LAKE SHORE & MICHIGAN SOUTHERN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOOKING ESE AT PAIR OF LAKE SHORE & MICHIGAN SOUTHERN RAILWAY BRIDGES. SINGLE PITTSBURGH, FORT WAYNE & CHICAGO RAILWAY BRIDGE (HAER No. IL-156) AT RIGHT OF FRAME. - Lake Shore & Michigan Southern Railway, Bridge No. 6, Spanning Calumet River, east of Chicago Skyway (I-90), Chicago, Cook County, IL

  11. ATMOSPHERIC INPUT OF TRACE METALS TO LAKE MICHIGAN

    EPA Science Inventory

    Atmospheric bulk deposition was collected on a monthly basis in the Lake Michigan basin from September 1975 through December 1976 to determine the atmospheric loading of trace elements to Lake Michigan. The sampling network consisted of bulk collectors located at 21 locations in ...

  12. DETERMINATION OF ATMOSPHERIC PHOSPHORUS ADDITION TO LAKE MICHIGAN

    EPA Science Inventory

    Bulk precipitation was collected on a monthly basis in the Lake Michigan basin for 18 months during 1975-1976 to determine atmospheric P loadings to Lake Michigan. The sampling network consisted of bulk collectors at 23 land stations and 2 in-lake buoys located off urban and rura...

  13. Estimating Cause: Teacher Turnover and School Effectiveness in Michigan

    ERIC Educational Resources Information Center

    Keesler, Venessa; Schneider, Barbara

    2010-01-01

    The purpose of this paper is investigate issues related to within-school teacher supply and school-specific teacher turnover within the state of Michigan using state administrative data on Michigan's teaching force. This paper 1) investigates the key predictors of teacher turnover and mobility, 2) develops a profile of schools that are likely to…

  14. Michigan Youth Farm Stand Project: Facets of Participant Motivation

    ERIC Educational Resources Information Center

    Rivera-Caudill, Jennifer; Brander, Ashley A.

    2008-01-01

    The purpose of the exploratory study was to understand what youth motivations in the Michigan Youth Farm Stand Project (YFSP) offered by the C.S Mott Group for Sustainable Food Systems at Michigan State University. The qualitative study included interviews and observations to explore the motivations of youth participants. An opportunity to earn…

  15. MANAGER (Michigan Analysis Network and General Evaluation Report) Handbook.

    ERIC Educational Resources Information Center

    Grand Rapids Junior Coll., MI. Office of Curriculum Planning and Evaluation.

    The Michigan Analysis Network and General Evaluation Report (MANAGER) was developed as a component of the overall Michigan Community College Occupational Education Evaluation System (MCCOEES). Developed for use by college presidents and occupational program administrators and instructors, the handbook describes a six-step process for collecting,…

  16. Michigan Department of Corrections Jailer Specialist Training Program. Final Report.

    ERIC Educational Resources Information Center

    Walters, Raymond L.

    Following a survey of Michigan sheriffs concerning training needs, a training program for Michigan correction officers was developed. Several types of programs were established to meet the differing needs of local departments: a one-day, 8-hour seminar and a 14-week, 82-hour evening program for smaller departments; a two-day seminar for matrons, a…

  17. Michigan Sex-Offender Law Has Educators in Uproar

    ERIC Educational Resources Information Center

    Maxwell, Lesli A.

    2006-01-01

    This article discusses a new state law which has stirred up a fierce dispute over privacy rights, as innocent school employees in Michigan have begun learning that they have been misidentified as criminals. The Student Safety Initiative, a series of laws that took effect January 1, required Michigan school districts to obtain criminal-background…

  18. 27 CFR 9.79 - Lake Michigan Shore.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lake Michigan Shore. 9.79... OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.79 Lake Michigan Shore. (a) Name. The name of the viticultural area described in this section is “Lake...

  19. Michigan's School Finance Reform: Initial Pupil-Equity Results.

    ERIC Educational Resources Information Center

    Prince, Henry

    1997-01-01

    Through finance reform, Michigan cut property taxes for school operations nearly 50% and exchanged a district power-equalizing approach to a foundation-allowance program. After three years, there are still strong connections between property wealth and district revenue. However, Michigan has made progress toward equal financial resources for the…

  20. Lake Michigan lake trout PCB model forecast post audit

    EPA Science Inventory

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents th...

  1. 30 CFR 922.700 - Michigan Federal program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....700 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MICHIGAN § 922.700 Michigan Federal program. (a) This part contains all rules that are applicable to surface coal mining operations...

  2. Virtual Learning in Michigan's Schools. A Mackinac Center Report

    ERIC Educational Resources Information Center

    Van Beek, Michael

    2011-01-01

    Virtual learning is not for every student, but it's not science fiction, either. Right now in Michigan, it's being used by thousands of students in hundreds of virtual courses in urban, rural and suburban school districts. In fact, Michigan has been seen as a national leader in virtual learning. This study analyzes the financial costs and academic…

  3. MODELLING SEDIMENT TRANSPORT FOR THE LAKE MICHIGAN MASS BALANCE PROJECT

    EPA Science Inventory

    A sediment transport model is one component of the overall ensemble of models being developed for the Lake Michigan Mass Balance. The SEDZL model is being applied to simulate the fine-grained sediment transport in Lake Michigan for the 1982-1983 and 1994-1995 periods. Model perf...

  4. Creating Safe and Healthy Futures: Michigan Youth Violence Prevention Center

    ERIC Educational Resources Information Center

    Morrel-Samuels, Susan; Zimmerman, Marc A.; Reischl, Thomas M.

    2013-01-01

    Youth are in the cross-fire of gun violence, and the highest rate in the nation is in Flint, Michigan. This article highlights six innovative strategies that prepare youth to solve problems at home and in their communities in peaceful ways. The Michigan Youth Violence Prevention Center (MI-YVPC) works with community groups to strengthen…

  5. Phoenix project at the University of Michigan, 1945-60

    SciTech Connect

    Calkins, L.M.; Kearfott, K.J.

    1997-12-01

    Several years before the formal U.S. Atoms for Peace program in the mid-1950s, the University of Michigan (UM) developed a comprehensive and continuing program of research on the peaceful applications of nuclear science known as the Michigan Memorial Phoenix Project, which was supported by individual, corporate, and government sponsorship.

  6. Coordinated Delivery of Job Placement in Michigan. Facilitator's Handbook.

    ERIC Educational Resources Information Center

    Ferris State Coll., Big Rapids, MI. Center for Occupational Education.

    This guide is intended to serve as a tool for use in examining Michigan's existing job placement program. The job placement status study and planning process outlined in the handbook and the related materials presented have been coordinated with other assessment and planning instruments currently in use by vocational educators in Michigan. The…

  7. Guidelines for Assessing Michigan Standards in Industrial Technology Education.

    ERIC Educational Resources Information Center

    Lutz, Ronald J.

    This document presents Michigan's standards in industrial technology education and details assessment procedures that will enable Michigan industrial technology teachers to analyze, upgrade, and justify their current programs. The introductory section contains the following materials: a discussion of supportive organizations; an overview of…

  8. 33 CFR 110.206 - Detroit River, Michigan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Detroit River, Michigan. 110.206 Section 110.206 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.206 Detroit River, Michigan. (a) The Anchorage grounds. Belle Isle Anchorage. The area is in...

  9. Educational "Adequacy" and Michigan's Constitution. Policy Brief 26

    ERIC Educational Resources Information Center

    Umpstead, Gina

    2005-01-01

    Political battle lines are forming, once again, over the proper level of funding for Michigan's public schools. This time, however, the battle could be decided not by the Governor or the Legislature, or by taxpayer and education coalitions. Instead, the future of education funding in Michigan could be decided by the courts in what is known as an…

  10. 30 CFR 922.700 - Michigan Federal program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....700 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MICHIGAN § 922.700 Michigan Federal program. (a) This part contains all rules that are applicable to surface coal mining operations...

  11. Michigan Public School Personnel with Technology Related Assignments.

    ERIC Educational Resources Information Center

    Smith, Gary R.

    This paper investigates the current teaching assignments of Michigan public school personnel in five categories (computer science, library media, vocational technical, industrial technology, and media specialist). The paper asks: How many of these professionals were employed in Michigan public schools in 1999-00? How many had endorsements for…

  12. The Training Needs of Michigan Automobile Suppliers: Initial Report.

    ERIC Educational Resources Information Center

    Jacobs, James

    In June 1985, a survey was sent by the Industrial Technology Institute to 397 Michigan automobile supplier firms concerning their industrial training in modern manufacturing technologies. The purposes of this survey were to investigate the training needs of Michigan automobile suppliers, with particular emphasis on how they met their training…

  13. The Financing of the Michigan Library Consortium. Paper No. 3.

    ERIC Educational Resources Information Center

    Michigan Library Consortium, Detroit.

    Since the formal organization of the Michigan Library Consortium, its financial support has come through membership fees and a grant from the Michigan State Library from Title III funds. The financing of the consortium is already a complex operation and will become even more complex as new programs are undertaken, since funds have been accepted…

  14. Workers' Compensation System in Michigan. A Closed Case Survey.

    ERIC Educational Resources Information Center

    Hunt, H. Allan

    The Michigan Closed Case Survey examined workers' compensation cases that were closed in the fall of 1978. Specific objectives of the study were to compare the workers' compensation experience of the insured and self-insured employer populations, to provide an empirical description of the workers' compensation system in Michigan, and to determine…

  15. Extended-MHD modeling of diamagnetic-drift tearing instabilities

    NASA Astrophysics Data System (ADS)

    King, Jacob; Kruger, Scott

    2012-03-01

    We use analytics and computations with the NIMROD code to examine tearing stability in large-guide-field slab cases with a nonzero equilibrium pressure gradient. A well known result from drift-reduced MHD is the diamagnetic drift associated with the pressure gradient has a stabilizing influence were the dispersion relation becomes (γ+iφ*e)^3γ(γ+iφ*i)=γrMHD^5 [1]. Here φ*i and φ*e are the ion- and electron-diamagnetic frequencies and γrMHD is the tearing growth rate with a resistive-MHD model. Preliminary computational results with an unreduced extended-MHD model do not produce the expected drift-reduced result. For moderate values of φ*i (φ*i<=3γrMHD), the computations follow the dispersion relation that would result if the ∇pe term were not included in the drift-reduced parallel Ohm's law: (γ+iφ*e)^4(γ+iφ*i)=γrMHD^5. Analytics, guided by computational diagnostics, are used to examine the significant terms in the flux evolution equation and investigate the discrepancy with the drift-reduced result.[4pt] [1] For example Coppi, PoF 7, 1501 (1964); Biskamp, NF 18, 1059 (1978).

  16. Treatment of MHD turbulence with non-equipartition and anisotropy

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Matthaeus, W. H.

    2005-11-01

    Magnetohydrodynamics (MHD) turbulence theory, often employed satisfactorily in astrophysical applications, has often focused on parameter ranges that imply nearly equal values of kinetic and magnetic energies and length scales. However, MHD flow may have disparity magnetic Prandtl number, dissimilar kinetic and magnetic Reynolds number, different kinetic and magnetic outer length scales, and strong anisotropy. Here we discuss a phenomenology for such ``non-equipartitioned'' MHD flow. We suggest two conditions for a MHD flow to transition to strong turbulent flow, extensions of (i) Taylor's constant flux in an inertial range, and (ii) Kolmogorov's scale separation between the large and small scale boundaries of an inertial range. For this analysis, the detailed information on turbulence structure is not needed. These two conditions for MHD transition are expected to provide consistent predictions and should be applicable to anisotropic MHD flows, after the length scales are replaced by their corresponding perpendicular components. Second, we point out that the dynamics and anisotropy of MHD fluctuations is controlled by the relative strength between the straining effects between eddies of similar size and the sweeping action by the large-eddies, or propagation effect of the large-scale magnetic fields, on the small scales, and analysis of this balance in principle also requires consideration of non-equipartition effects.

  17. MHD performance demonstration experiment, FY 1974 to FY 1984

    NASA Astrophysics Data System (ADS)

    Whitehead, G. L.; Christensen, L. S.; Felderman, R. J.

    1984-06-01

    A national program for the development of commercial, open-cycle, magnetohydrodynamic (MHD) power generation is described. The emphasis of that national program was, and is, on establishing the engineering feasibilty of using coal to fuel the MHD power system. In order to establish feasibility it was necessary to experimentally demonstrate that an MHD generator system simulating a commercial-sized device can convert 16 to 18% of the available thermal energy into electric power at an isentropic efficiency of 60 to 70%. A presidential decree encouraged any government agency which might possess an organic MHD capability to assist ERDA in formulating and executing the national program. Since the largest MHD facility in the United States was located at the Arnold Engineering Development Center (AEDC), it was selected to be the national program element to demonstrate performance. As a result, the AEDC has been under contract since December 1973 (first to ERDA, later to its successor, the department of Energy, DOE) to modify existing equipment and to design, fabricate, and install new hardware to perform the MHD Performance Demonstration Experiment. The MHD facility is described and all results achieved to date are summarized.

  18. Establishment of comprehensive low vision services in Michigan.

    PubMed

    Gormezano, S R; Raznik, P

    1993-01-01

    The AOA Low Vision Section presented its distinguished service award to the Michigan Commission for the Blind during the Section's 10th anniversary celebration at the 95th AOA Congress in Montreal. A progressive low vision service delivery system has evolved in Michigan over the past 22 years with optometry identified as the provider of clinical low vision care. The development of this system is described as the relationship between the Michigan Optometric Association, Michigan Commission for the Blind, and other multidisciplinary agencies is explained. Strategies for serving the visually impaired pediatric, career/vocationally aged, elderly and multiply handicapped populations in Michigan are highlighted. This historical review offers ideas for future planning as optometric low vision services are integrated into other state programs. PMID:8454826

  19. Agreement Between the Regents of the University of Michigan and the University of Michigan Interns-Residents Association.

    ERIC Educational Resources Information Center

    Michigan Univ., Ann Arbor.

    This document presents the agreement between the Regents of the University of Michigan and the University of Michigan Interns-Residents Association. Articles of the agreement cover recognition and definitions; employer rights; no-interference; non-discrimination; Association dues and representation-service fee; check-off of association dues or…

  20. Building a Collaborative Network To Support Michigan Community Colleges in a Global Market. Michigan Community College Virtual Learning Collaborative.

    ERIC Educational Resources Information Center

    Michigan Community Coll. Association, Lansing.

    This report describes the Michigan Community College Virtual Learning Collaborative (MCCVLC), an innovative educational environment that provides learners access to high-quality courses through a variety of technologies. The following describe the collaborative's guiding principles: (1) faculty and staff at all Michigan community colleges will…

  1. MHD augmented chemical rocket propulsion for space applications

    NASA Astrophysics Data System (ADS)

    Schulz, R. J.; Chapman, J. N.; Rhodes, R. P.

    1992-07-01

    A performance analysis is carried out of a magnetohydrodynamic (MHD) augmented chemical thruster (based on a gaseous hydrogen-oxygen system) for space applications such as orbit transfer. The mathematical model used in the analysis is a one-dimensional flow model using equilibrium chemistry for the combustor, choked nozzle, and MHD channel portions of the system, and chemical nonequilibrium kinetics for the high area-ratio gas dynamic nozzle portion of the system. The performance of the chemical-MHD-augmented thruster is compared with that of a pure electric thruster of the same specific impulse level.

  2. Hilbert-Huang Transform in MHD Plasma Diagnostics

    SciTech Connect

    Kakurin, A.M.; Orlovsky, I.I.

    2005-12-15

    A new method for processing experimental data from MHD diagnostics is discussed that provides a more detailed study of the dynamics of large-scale MHD instabilities. The method is based on the Hilbert-Huang transform method and includes an empirical mode decomposition algorithm, which is used to decompose the experimental MHD diagnostic signals into a set of frequency- and amplitude-modulated harmonics in order to construct the time evolutions of the amplitudes and frequencies of these harmonics with the help of the Hilbert transform. The method can also be applied to analyze data from other diagnostics that measure unsteady oscillating signals.

  3. A summary of the ECAS MHD power plant results

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Harris, L. P.

    1976-01-01

    The performance and the cost of electricity (COE) for MHD systems utilizing coal or coal derived fuels are summarized along with a conceptual open cycle MHD plant design. The results show that open cycle coal fired recuperatively preheated MHD systems have potentially one of the highest coal-pile-to-bus bar efficiencies (48.3%) and also one of the lowest COE of the systems studied. Closed cycle, inert gas systems do not appear to have the potential of exceeding the efficiency of or competing with the COE of advanced steam plants.

  4. Broken Symmetry and Coherent Structure in MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2007-01-01

    Absolute equilibrium ensemble theory for ideal homogeneous magnetohydrodynamic (MHD) turbulence is fairly well developed. Theory and Simulation indicate that ideal MHD turbulence non-ergodic and contains coherent structure. The question of applicability real (i.e., dissipative) MHD turbulence is examined. Results from several very long time numerical simulations on a 64(exp 3) grid are presented. It is seen that coherent structure begins to form before decay dominates over nonlinearity. The connection with inverse spectral cascades and selective decay will also be discussed.

  5. Multimegawatt NEP with vapor core reactor MHD

    NASA Astrophysics Data System (ADS)

    Smith, Blair; Knight, Travis; Anghaie, Samim

    2002-01-01

    Efforts at the Innovative Nuclear Space Power and Propulsion Institute have assessed the feasibility of combining gaseous or vapor core reactors with magnetohydrodynamic power generators to provide extremely high quality, high density, and low specific mass electrical power for space applications. Innovative shielding strategies are employed to maintain an effective but relatively low mass shield, which is the most dominating part of multi-megawatt space power systems. The fission driven magnetohydrodynamic generator produces tens of kilowatt DC power at specific mass of less than 0.5 kg/kW for the total power system. The MHD output with minor conditioning is coupled to magnetoplasmadynamic thruster to achieve an overall NEP system specific mass of less than 1.0 kg/kW for power levels above 20 MWe. Few other concepts would allow comparable ensuing payload savings and flexible mission abort options for manned flights to Mars for example. .

  6. Dispersion equation of gravito-MHD waves

    NASA Astrophysics Data System (ADS)

    Jovanović, Gordana

    2016-03-01

    We derive the dispersion equation for gravito-MHD waves in an isothermal, gravitationally stratified plasma with a horizontal inhomogeneous magnetic field. In the present model the sound and the Alfvén speeds are constant. It is known that in this model analytical solutions can be obtained for linearized perturbations. There are three modes propagating in the considered plasma: the fast, the slow and the Alfvén mode, all modified by gravity. In the extreme short wavelength limit, these waves propagate in a locally uniform plasma. The waves with larger wavelengths will be affected by the nonuniformity of the medium resulting from the action of gravitational force ρg. In the case without magnetic field these waves become gravito-acoustic waves.

  7. The Biermann catastrophe of numerical MHD

    NASA Astrophysics Data System (ADS)

    Graziani, C.; Tzeferacos, P.; Lee, D.; Lamb, D. Q.; Weide, K.; Fatenejad, M.; Miller, J.

    2016-05-01

    The Biermann Battery effect is frequently invoked in cosmic magnetogenesis and studied in High-Energy Density laboratory physics experiments. Unfortunately, direct implementation of the Biermann effect in MHD codes is known to produce unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this convergence breakdown is due to naive discretization, which fails to account for the fact that discretized irrotational vector fields have spurious solenoidal components that grow without bound near a discontinuity. We show that careful consideration of the kinetics of ion viscous shocks leads to a formulation of the Biermann effect that gives rise to a convergent algorithm. We note a novel physical effect a resistive magnetic precursor in which Biermann-generated field in the shock “leaks” resistively upstream. The effect appears to be potentially observable in experiments at laser facilities.

  8. MHD simulation of the Bastille day event

    NASA Astrophysics Data System (ADS)

    Linker, Jon; Torok, Tibor; Downs, Cooper; Lionello, Roberto; Titov, Viacheslav; Caplan, Ronald M.; Mikić, Zoran; Riley, Pete

    2016-03-01

    We describe a time-dependent, thermodynamic, three-dimensional MHD simulation of the July 14, 2000 coronal mass ejection (CME) and flare. The simulation starts with a background corona developed using an MDI-derived magnetic map for the boundary condition. Flux ropes using the modified Titov-Demoulin (TDm) model are used to energize the pre-event active region, which is then destabilized by photospheric flows that cancel flux near the polarity inversion line. More than 1033 ergs are impulsively released in the simulated eruption, driving a CME at 1500 km/s, close to the observed speed of 1700km/s. The post-flare emission in the simulation is morphologically similar to the observed post-flare loops. The resulting flux rope that propagates to 1 AU is similar in character to the flux rope observed at 1 AU, but the simulated ICME center passes 15° north of Earth.

  9. Numerical linearized MHD model of flapping oscillations

    NASA Astrophysics Data System (ADS)

    Korovinskiy, D. B.; Ivanov, I. B.; Semenov, V. S.; Erkaev, N. V.; Kiehas, S. A.

    2016-06-01

    Kink-like magnetotail flapping oscillations in a Harris-like current sheet with earthward growing normal magnetic field component Bz are studied by means of time-dependent 2D linearized MHD numerical simulations. The dispersion relation and two-dimensional eigenfunctions are obtained. The results are compared with analytical estimates of the double-gradient model, which are found to be reliable for configurations with small Bz up to values ˜ 0.05 of the lobe magnetic field. Coupled with previous results, present simulations confirm that the earthward/tailward growth direction of the Bz component acts as a switch between stable/unstable regimes of the flapping mode, while the mode dispersion curve is the same in both cases. It is confirmed that flapping oscillations may be triggered by a simple Gaussian initial perturbation of the Vz velocity.

  10. Drag reduction in turbulent MHD pipe flows

    NASA Technical Reports Server (NTRS)

    Orlandi, P.

    1996-01-01

    This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative.

  11. Observational Tests of Recent MHD Turbulence Perspectives

    NASA Astrophysics Data System (ADS)

    Ghosh, Sanjoy

    2001-06-01

    This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.

  12. Observational Tests of Recent MHD Turbulence Perspectives

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Guhathakurta, M. (Technical Monitor)

    2001-01-01

    This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.

  13. MHD Simulation Heliospheric Magnetic Fields and Turbulence

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron

    2005-01-01

    This talk will present a summary of our results on simulations of heliospheric structure and dynamics. We use a three-dimensional MHD code in spherical coordinates to produce a solar wind containing a rotating, tilted heliospheric current sheet, fast-slow stream and microstream shear layers, waves, 2-D turbulence, and pressure balanced structures that are input to the inner (superAlfvenic) boundary. The evolution of various combinations of these has led to a deeper understanding of sector structure, magnetic holes, fluctuation anisotropies, and general turbulent evolution. We show how the sectors are likely to be connected, how spiral fields can arise, and how field line diffusion can be caused by waves with transverse structure and microstream shears.

  14. Variance anisotropy in compressible 3-D MHD

    NASA Astrophysics Data System (ADS)

    Oughton, S.; Matthaeus, W. H.; Wan, Minping; Parashar, Tulasi

    2016-06-01

    We employ spectral method numerical simulations to examine the dynamical development of anisotropy of the variance, or polarization, of the magnetic and velocity field in compressible magnetohydrodynamic (MHD) turbulence. Both variance anisotropy and spectral anisotropy emerge under influence of a large-scale mean magnetic field B0; these are distinct effects, although sometimes related. Here we examine the appearance of variance parallel to B0, when starting from a highly anisotropic state. The discussion is based on a turbulence theoretic approach rather than a wave perspective. We find that parallel variance emerges over several characteristic nonlinear times, often attaining a quasi-steady level that depends on plasma beta. Consistency with solar wind observations seems to occur when the initial state is dominated by quasi-two-dimensional fluctuations.

  15. Exploration in Ordovician of central Michigan Basin

    SciTech Connect

    Fisher, J.H.; Barratt, M.W.

    1985-12-01

    Deep wells in the central Michigan basin have provided sufficient data to define two new mappable formations - the Foster Formation and the Bruggers Formation. Recent conodont studies have corrected the age assignments of the strata containing these formations. Previously, the lower section (Foster) was classified as mostly Cambrian, and the upper unit (Bruggers) was identified as Early Ordovician. Conodont identifications indicate an Early and Middle Ordovician age for the Foster Formation and a Middle Ordovician age for the Bruggers Formation. The Michigan basin existed in embryonic form in the Late Cambrian, but the full outline of the present-day basin did not develop until Early Ordovician. Gas and condensate are produced from the Bruggers Formation as deep as 11,252 ft (3429 m). Geothermal investigations suggest that gas production is possible to the base of the Paleozoic section in the central basin (17,000 ft or 5181 m). Paleotemperatures were higher during the Paleozoic owing to 3000-4000 ft (914-1291 m) of additional sedimentary cover. Five wells are producing from the Bruggers Formation. All are deeper tests in anticlines producing from Devonian reservoirs discovered earlier. The structures are the result of vertical movements of basement fault blocks activated by regional stresses. 12 figures, 2 tables.

  16. Measuring community hospital service in Michigan.

    PubMed Central

    Griffith, J R; Restuccia, J D; Tedeschi, P J; Wilson, P A; Zuckerman, H S

    1981-01-01

    Using discharge abstracts from Michigan hospitals, we divided the state into hospital use communities with measured populations. We constructed population-based rates measuring use, cost, and some aspects of quality. The results cover 54 communities comprising 90 percent of the Michigan population and ranging in size from Detroit (population 600,000) to very small (population less than 25,000) communities. Age-adjusted patient days per 1,000 population, length of stay, cost per person per year, hospitalization rates for surgery, trauma and vascular disease, and childbirth problems show large variations, generally ranging from 2 to 1. High values usually are positively associated with each other and with population size. Patient days per 1,000 (mean 1,114, range 600-1,700) and cost per person(mean +223, range +110-+290) are distributed such that almost 75 percent of communities are below the mean. We believe this information will be useful to community hospital trustees, physicians, and administrators. PMID:7263271

  17. Antrim gas play, production expanding in Michigan

    SciTech Connect

    Not Available

    1994-05-30

    Devonian Antrim shale gas, the Michigan basin's dominant hydrocarbon play in terms of number of wells drilled for several years, shows every sign of continuing at a busy pace. About 3,500 Antrim completions now yield 350 MMcfd, more than 60% of Michigan's gas production. The outlook is for Antrim production to climb in the next 2--3 years to 500--600 MMcfd, about 1% of US gas output. These delivery numbers, slow decline rates, and expected producing life of 20--30 years has snagged pipelines attention. The growing production overtaxed local gathering facilities last fall, and the play recently got its first interstate outlet. Completion and production technology advances are improving well performance and trimming costs. Several hundred wells a year are likely to be drilled during the next few years. Production increases are coming from new wells, deepenings, and workovers. Numerous pipeline/gathering projects are planned in the area to handle the growing Antrim volumes. The paper discusses the development of this resource, efforts to extend the play, geology and production, drilling programs, and gas transportation.

  18. PBB episode in Michigan: an overall appraisal

    SciTech Connect

    Fries, G.F.

    1985-01-01

    Polybrominated biphenyls (PBB) were used as a fire retardant. In common with other halogenated hydrocarbons, PBBs are lipophilic and resistant to chemical and metabolic degradation. Cattle on about 25 Michigan farms were exposed to as much as 250 g per head of PBB when it was accidentally mixed in cattle feed in 1973 to 1974. Livestock exposures several orders of magnitude lower occurred on several hundred other farms because of carryover and equipment contamination in feed mills. Approximately 85% of the Michigan population received some exposure to PBB because dairy product marketing involves mixing milk from many farms. A few cases of high human exposure, which may have been as great as 10 g, occurred when residents of the more highly exposed farms consumed their own products. Although numerous clinical signs and pathological changes were reported in exposed cattle, only anorexia, lacrimation, emaciation, hyperkeratosis, and kidney damage were confirmed in controlled studies. The acute toxicity of PBB in laboratory animals is low, but a variety of subacute effects have been reported. Induction of microsomal enzymes, enlargement and histopathological changes of the liver, fetotoxicity, and immunosuppression are among the more significant. Epidemiological studies of exposed humans have revealed no pattern of clinical signs or symptoms that were related to PBB exposure. A complete evaluation of the human consequences of exposure to PBB await the conclusion of long-term epidemiological studies. 84 references.

  19. Recruitment variability of alewives in Lake Michigan

    USGS Publications Warehouse

    Madenjian, C.P.; Hook, T.O.; Rutherford, E.S.; Mason, D.M.; Croley, T.E., II; Szalai, E.B.; Bence, J.R.

    2005-01-01

    We used a long-term series of observations on alewife Alosa pseudoharengus abundance that was based on fall bottom-trawl catches to assess the importance of various abiotic and biotic factors on alewife recruitment in Lake Michigan during 1962–2002. We first fit a basic Ricker spawner–recruit model to the lakewide biomass estimates of age-3 recruits and the corresponding spawning stock size; we then fit models for all possible combinations of the following four external variables added to the basic model: an index of salmonine predation on an alewife year-class, an index for the spring–summer water temperatures experienced by alewives during their first year in the lake, an index of the severity of the first winter experienced by alewives in the lake, and an index of lake productivity during an alewife year-class's second year in the lake. Based on an information criterion, the best model for alewife recruitment included indices of salmonine predation and spring–summer water temperatures as external variables. Our analysis corroborated the contention that a decline in alewife abundance during the 1970s and early 1980s in Lake Michigan was driven by salmonine predation. Furthermore, our findings indicated that the extraordinarily warm water temperatures during the spring and summer of 1998 probably led to a moderately high recruitment of age-3 alewives in 2001, despite abundant salmonines.

  20. Magnetorotational Instability of Dissipative MHD Flows

    SciTech Connect

    HERRON, ISOM H

    2010-07-10

    Executive summary Two important general problems of interest in plasma physics that may be addressed successfully by Magnetohydrodynamics (MHD) are: (1) Find magnetic field configurations capable of confining a plasma in equilibrium. (2) Study the stability properties of each such an equilibrium. It is often found that the length scale of many instabilities and waves that are able to grow or propagate in a system, are comparable with plasma size, such as in magnetically confined thermonuclear plasmas or in astrophysical accretion disks. Thus MHD is able to provide a good description of such large-scale disturbances. The Magnetorotational instability (MRI) is one particular instance of a potential instability. The project involved theoretical work on fundamental aspects of plasma physics. Researchers at the Princeton Plasma Physics Laboratory (PPPL) began to perform a series of liquid metal Couette flow experiments between rotating cylinders. Their purpose was to produce MRI, which they had predicted theoretically 2002, but was only observed in the laboratory since this project began. The personnel on the project consisted of three persons: (1) The PI, who was partially supported on the budget during each of four summers 2005-2008. (2) Two graduate research assistants, who worked consecutively on the project throughout the years 2005-2009. As a result, the first student, Fritzner Soliman, obtained an M.S. degree in 2006; the second student, Pablo Suarez obtained the Ph.D. degree in 2009. The work was in collaboration with scientists in Princeton, periodic trips were made by the PI as part of the project. There were 4 peer-reviewed publications and one book produced.

  1. A Two-Fluid, MHD Coronal Model

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Wang, A.-H.; Wu, S. T.; Poletto, G.; McComas, D. J.

    1998-01-01

    We describe first results from a numerical two-fluid MHD model of the global structure of the solar corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and momentum sources are required to produce high speed wind from coronal holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature in the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UVCS, and with the Ulysses/SWOOPS proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 solar radii and 5 solar radii (2RS and 5RS) is similar to the density reported from SPARTAN 201-01 measurements by Fisher and Guhathakurta. The proton mass flux scaled to 1 AU is 2.4 x 10(exp 8)/sq cm s, which is consistent with Ulysses observations. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer, the temperature and density are similar to those reported empirically by Li et al and the plasma beta is larger than unity everywhere above approx. 1.5 R(sub s), as it is in all other MHD coronal streamer models.

  2. Alpha-Driven MHD and MHD-Induced Alpha Loss in TFTR DT Experiments

    NASA Astrophysics Data System (ADS)

    Chang, Zuoyang

    1996-11-01

    Theoretical calculation and numerical simulation indicate that there can be interesting interactions between alpha particles and MHD activity which can adversely affect the performance of a tokamak reactor (e.g., ITER). These interactions include alpha-driven MHD, like the toroidicity-induced-Alfven-eigenmode (TAE) and MHD induced alpha particle losses or redistribution. Both phenomena have been observed in recent TFTR DT experiments. Weak alpha-driven TAE activity was observed in a NBI-heated DT experiment characterized by high q0 ( >= 2) and low core magnetic shear. The TAE mode appears at ~30-100 ms after the neutral beam turning off approximately as predicted by theory. The mode has an amplitude measured by magnetic coils at the edge tildeB_p ~1 mG, frequency ~150-190 kHz and toroidal mode number ~2-3. It lasts only ~ 30-70 ms and has been seen only in DT discharges with fusion power level about 1.5-2.0 MW. Numerical calculation using NOVA-K code shows that this type of plasma has a big TAE gap. The calculated TAE frequency and mode number are close to the observation. (2) KBM-induced alpha particle loss^1. In some high-β, high fusion power DT experiments, enhanced alpha particle losses were observed to be correlated to the high frequency MHD modes with f ~100-200 kHz (the TAE frequency would be two-times higher) and n ~5-10. These modes are localized around the peak plasma pressure gradient and have ballooning characteristics. Alpha loss increases by 30-100% during the modes. Particle orbit simulations show the added loss results from wave-particle resonance. Linear instability analysis indicates that the plasma is unstable to the kinetic MHD ballooning modes (KBM) driven primarily by strong local pressure gradients. ----------------- ^1Z. Chang, et al, Phys. Rev. Lett. 76 (1996) 1071. In collaberation with R. Nazikian, G.-Y. Fu, S. Batha, R. Budny, L. Chen, D. Darrow, E. Fredrickson, R. Majeski, D. Mansfield, K. McGuire, G. Rewoldt, G. Taylor, R. White, K

  3. RELATIVE ABUNDANCE OF TOTAL AND METHYL MERCURY IN 1994-5 LAKE MICHIGAN FORAGE FISH

    EPA Science Inventory

    As part of the Lake Michigan Mass Balance Project, forage fish samples were collected in 1994-5 from three regions within Lake Michigan: Saugatuck, Michigan and Port Washington and Sturgeon Bay, Wisconsin by the USGS Great Lakes Science Center in Ann Arbor, Michigan. Species of ...

  4. The Academic Study of Religion in Four State Universities in Michigan: Culture, Curriculum and Complexities

    ERIC Educational Resources Information Center

    Drewel, Christine L.

    2012-01-01

    This dissertation examines the development of religion curricula at four state universities in Michigan: Grand Valley State University, Western Michigan University, Michigan State University and the University of Michigan. It analyzes the historical development of these curricula, illustrating that each institution has a unique religion curriculum…

  5. Global smooth solutions of MHD equations with large data

    NASA Astrophysics Data System (ADS)

    Lin, Yurui; Zhang, Huali; Zhou, Yi

    2016-07-01

    In this paper, we establish the global existence of smooth solutions of the three-dimensional MHD system for a class of large initial data. Both the initial velocity and magnetic field can be arbitrarily large in the critical norm.

  6. MHD-Induced Alpha Particle Loss in TFTR

    SciTech Connect

    Darrow, D.S.; Fredrickson, E.D.; Taylor, G.; White, R.B.; Zweben, S.J.; von Goeler, S.

    1999-03-01

    MHD-induced increases in alpha particle loss to the wall were observed for both coherent modes and transient reconnection events using an array of scintillator detectors near the wall of Tokamak Fusion Test Reactor (TFTR). The magnitude of the coherent MHD-induced alpha loss as seen by these detectors was normally comparable to the MHD-quiescent first-orbit or toroidal-field ripple loss, but the magnitude of the alpha loss during reconnection events was up to 1000 times higher than this for a short time. Modeling suggest that the coherent MHD loss mechanism will be even less significant for future reactor-scale deuterium-tritium tokamaks due to the smaller ratio of the alpha gyroradius to minor radius.

  7. Three Dimensional Simulations of Compressible Hall MHD Plasmas

    SciTech Connect

    Shaikh, Dastgeer; Shukla, P. K.

    2008-10-15

    We have developed three dimensional, time dependent, compressible, non-adiabatic, driven and massively parallelized Hall magnetohydrodynamic (MHD) simulations to investigate turbulent spectral cascades in a regime where characteristic lengthscales associated with plasma fluctuations are smaller than ion gyro radii. Such regime is ubiquitously present in solar wind and many other collisionless space plasmas. Particularly in the solar wind, the high time resolution databases identify a spectral break at the end of MHD inertial range spectrum that corresponds to a high frequency regime. In the regime, turbulent cascades cannot be explained by the usual MHD models. With the help of our 3D Hall MHD code, we find that characteristic turbulent interactions in the high frequency regime evolve typically on kinetic Alfven time scales. The turbulent fluctuation associated with kinetic Alfven interactions are compressive and anisotropic and possess equipartition of kinetic and magnetic energies.

  8. Pseudo-MHD ballooning modes in tokamak plasmas

    SciTech Connect

    Callen, J.D.; Hegna, C.C.

    1996-08-01

    The MHD description of a plasma is extended to allow electrons to have both fluid-like and adiabatic-regime responses within an instability eigenmode. In the resultant {open_quotes}pseudo-MHD{close_quotes} model, magnetic field line bending is reduced in the adiabatic electron regime. This makes possible a new class of ballooning-type, long parallel extent, MHD-like instabilities in tokamak plasmas for {alpha} > s{sup 2}(2 {sup 7/3}/9) (r{sub p}/R{sub 0}) or-d{radical}{Beta}/dr > (2{sup 1/6} /3)(s/ R{sub 0q}), which is well below the ideal-MHD stability boundary. The marginally stable pressure profile is similar in both magnitude and shape to that observed in ohmically heated tokamak plasmas.

  9. Laser-powered MHD generators for space application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1986-01-01

    Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.

  10. A study of a commercial MHD power plant scheme

    NASA Astrophysics Data System (ADS)

    Pashkov, S. A.; Shishkov, E. V.

    1980-07-01

    Power engineering specialists are currently interested in electrical power stations with magnetohydrodynamic generators. This paper is devoted to an investigation of one of the possible process flow diagrams of MHD electrical power plants. The structure of MHD electrical power plants, the interrelation between the aggregates, issues concerning the starting of the plant and the working of the power unit under various partial load conditions are discussed. With the availability of new theoretical and experimental data, the process flow diagrams of industrial MHD electrical power plants will naturally undergo changes. However, the methodical approach and the investigation described in this paper should retain their validity for all process flow diagrams of electrical power plants with MHD generators.

  11. High-magnetic-field MHD-generator program

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Eustis, R. H.; Mitchner, M.; Self, S. A.; Koester, J. K.; Kruger, C. H.

    1981-07-01

    Progress in an experimental and theoretical program designed to investigate MHD channel phenomena which are important at high magnetic fields is described. The areas of research include nonuniformity effects, boundary layers, Hall field breakdown, the effects of electrode configuration and current concentrations, and studies of steady-state combustion disk and linear channels in an existing 6 Tesla magnet of small dimensions. In the study of the effects of nonuniformities, experiments were performed to test a multi-channel, fiber optics diagnostic system that yields time-resolved temperature profiles in an MHD chanel. For the study of magneto-acoustic fluctuation phenomena, a one dimensional model was developed to describe the performance of a non-ideal MHD generator with a generalized electrical configuration. A two dimensional MHD computer code was developed which predicts the dependence on electrode and insulator dimensions of the onset of interelectrode Hall field breakdown, as initiated either by breakdown in the insulator or in the plasma.

  12. Diagnostic development and support of MHD (magnetohydrodynamics) test facilities

    SciTech Connect

    Not Available

    1989-07-01

    Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

  13. Evaluation of the ECAS open cycle MHD power plant design

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Staiger, P. J.; Pian, C. C. P.

    1978-01-01

    The Energy Conversion Alternatives Study (ECAS) MHD/steam power plant is described. The NASA critical evaluation of the design is summarized. Performance of the MHD plant is compared to that of the other type ECAS plant designs on the basis of efficiency and the 30-year levelized cost of electricity. Techniques to improve the plant design and the potential performance of lower technology plants requiring shorter development time and lower development cost are then discussed.

  14. Performance of MHD insulating materials in a potassium environment

    SciTech Connect

    Natesan, K.; Park, J.H.; Rink, D.L.; Thomas, C.A.

    1991-12-01

    The objectives of this study are to evaluate the compatibility of the MHD insulating materials boron nitride and silicon nitride in a potassium environment at temperatures of 1000 and 1400{degrees}F (538 and 760{degrees}C, respectively) and to measure the electrical conductivities of the specimens before and after exposure to potassium. Based on the test results, an assessment is to be made of the suitability of these materials for application as insulator materials in an MHD channel.

  15. FLIP MHD - A particle-in-cell method for magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Brackbill, J. U.

    1991-01-01

    The fluid-implicit-particle, or 'FLIP' method presently extended to 2D and 3D MHD flow incorporates a Lagrangian field representation and yields a grid magnetic Reynolds number of up to 16 while preserving contact continuities that retain the Galilean invariance of the MHD flow equations. Analytical arguments and numerical examples demonstrate the conservation of mass, momentum, magnetic flux, and energy; 2D calculation results for the illustrative cases of contact discontinuity convection, Rayleigh-Taylor unstable flow.

  16. A New Low Dissipative High Order Schemes for MHD Equations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, Bjoern; Mansour, Nagi (Technical Monitor)

    2002-01-01

    The goal of this talk is to extend our recently developed highly parallelizable nonlinear stable high order schemes for complex multiscale hydrodynamic applications to the viscous MHD equations. These schemes employed multiresolution wavelets as adaptive numerical dissipation controls to limit the amount and to aid the selection and/or blending of the appropriate types of dissipation to be used. The new scheme is formulated for both the conservative and non-conservative form of the MHD equations in curvilinear grids.

  17. Performance optimization of an MHD generator with physical constraints

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.; Seikel, G. R.; Smith, J. M.

    1979-01-01

    A method to optimize the Faraday MHD generator performance under a prescribed set of electrical and magnet constraints is described. The results of generator performance calculations using this technique are presented for a very large MHD/steam plant. The differences between the maximum power and maximum net power generators are described. The sensitivity of the generator performance to the various operational parameters are presented.

  18. Experimental investigation of subsonic combustion driven MHD generator performance

    NASA Astrophysics Data System (ADS)

    McClaine, A. W.; Swallom, D. W.; Kessler, R.

    1984-01-01

    Future mature combined cycle MHD/steam electrical power plants may use subsonic flow trains. To provide a data base of subsonic generator design and operating experience an experimental program was begun in 1977 at the Avco Everett Research Laboratory. During this program an MHD generator was operated with a subsonic flow train under both Faraday and diagonal loads. This paper reviews the work performed under this program and the results obtained.

  19. Conceptual design of the MHD Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Rigo, H. S.; Pearson, C. V.; Warinner, D. K.; Hatch, A. M.; Borden, M.; Giza, D. A.

    1981-01-01

    The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified.

  20. Broken Ergodicity in MHD Turbulence in a Spherical Domain

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; wang, Yifan

    2011-01-01

    Broken ergodicity (BE) occurs in Fourier method numerical simulations of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence. Although naive statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that low-wave-number coefficients have non-zero mean values that can be very large compared to the associated standard deviation. In other words, large-scale coherent structure (i.e., broken ergodicity) in homogeneous MHD turbulence can spontaneously grow out of random initial conditions. Eigenanalysis of the modal covariance matrices in the probability density functions of ideal statistical theory leads to a theoretical explanation of observed BE in homogeneous MHD turbulence. Since dissipation is minimal at the largest scales, BE is also relevant for resistive magnetofluids, as evidenced in numerical simulations. Here, we move beyond model magnetofluids confined by periodic boxes to examine BE in rotating magnetofluids in spherical domains using spherical harmonic expansions along with suitable boundary conditions. We present theoretical results for 3-D and 2-D spherical models and also present computational results from dynamical simulations of 2-D MHD turbulence on a rotating spherical surface. MHD turbulence on a 2-D sphere is affected by Coriolus forces, while MHD turbulence on a 2-D plane is not, so that 2-D spherical models are a useful (and simpler) intermediate stage on the path to understanding the much more complex 3-D spherical case.

  1. MHD Effects on Surface Stability and Turbulence in Liquid Metal

    NASA Astrophysics Data System (ADS)

    Bell, Lauren; Ji, Hantau; Zweben, Stewart

    2000-10-01

    Magnetohydrodynamic (MHD) turbulence is a significant element in understanding many phenomena observed in space and laboratory plasmas. MHD models also appropriately describe behaviors of liquid metals. Currently, there are many interests in the utilization of liquid metal in fusion devices; therefore an understanding of MHD physics in liquid metals is imperative. A small experiment has been built to study the MHD effects on turbulence and surface waves in liquid metal. To fully examine the MHD properties, a reference case in hydrodynamics is established using water or Gallium without the presence of the magnetic field or electrical current. An external wave driver with varying frequency and amplitude excites surface waves on the liquid metal. The experimental case using Gallium is run with the presence of the magnetic field and/ or electric pulses. The magnetic field is induced using two magnetic field coils on either side of the liquid metal and the electrical current is induced using electrodes. The measured dispersion relations of the two cases are then compared to the theoretical predictions. Several diagnostics are used in concert to accurately measure the wave characteristics. The surface waves will be recorded visually through a camera and the amplitude and frequency of the waves will be measured using a laser and fiber-optic system. This successful experiment will significantly enhance knowledge of liquid metal wave behavior and therefore aid in the applications of MHD in fusion plasmas. This worked was conducted as part of the DOE-sponsored National Undergraduate Fellowship Program in Plasma Physics

  2. A theory of MHD instability of an inhomogeneous plasma jet

    NASA Astrophysics Data System (ADS)

    Leonovich, Anatoly S.

    2011-06-01

    A problem of the stability of an inhomogeneous axisymmetric plasma jet in a parallel magnetic field is solved. The jet boundary becomes, under certain conditions, unstable relative to magnetosonic oscillations (Kelvin-Helmholtz instability) in the presence of a shear flow at the jet boundary. Because of its internal inhomogeneity the plasma jet has resonance surfaces, where conversion takes place between various modes of plasma magnetohydrodynamic (MHD) oscillations. Propagating in inhomogeneous plasma, fast magnetosonic waves drive the Alfven and slow magnetosonic (SMS) oscillations, tightly localized across the magnetic shells, on the resonance surfaces. MHD oscillation energy is absorbed in the neighbourhood of these resonance surfaces. The resonance surfaces disappear for the eigenmodes of SMS waves propagating in the jet waveguide. The stability of the plasma MHD flow is determined by competition between the mechanisms of shear flow instability on the boundary and wave energy dissipation because of resonant MHD-mode coupling. The problem is solved analytically, in the Wentzel, Kramers, Brillouin (WKB) approximation, for the plasma jet with a boundary in the form of a tangential discontinuity over the radial coordinate. The Kelvin-Helmholtz instability develops if plasma flow velocity in the jet exceeds the maximum Alfven speed at the boundary. The stability of the plasma jet with a smooth boundary layer is investigated numerically for the basic modes of MHD oscillations, to which the WKB approximation is inapplicable. A new 'unstable mode of MHD oscillations has been discovered which, unlike the Kelvin-Helmholtz instability, exists for any, however weak, plasma flow velocities.

  3. MHD-Epic: Embedded Particle-in-Cell Simulations of Reconnection in Global 3D Extended MHD Simulations

    NASA Astrophysics Data System (ADS)

    Daldorff, L. K. S.; Toth, G.; Borovikov, D.; Gombosi, T. I.; Lapenta, G.

    2014-12-01

    With the new modeling capability in the Space Weather Modeling Framework (SWMF) of embedding an implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US magnetohydrodynamics model (Daldorff et al. 2014, JCP, 268, 236) we are ready to locally handle the full physics of the reconnection and its implications on the full system where globally, away from the reconnection region, a magnetohydrodynamic description is satisfactory. As magnetic reconnection is one of the main drivers in magnetospheric and heliospheric plasma dynamics, the self-consistent description of the electron dynamics in the coupled MHD-EPIC model is well suited for investigating the nature of these systems. We will compare the new embedded MHD-EPIC model with pure MHD and Hall MHD simulations of the Earth's magnetosphere.

  4. Pulse Detonation Rocket MHD Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent

  5. Sarcoptic mange in raccoons in Michigan.

    PubMed

    Fitzgerald, Scott D; Cooley, Thomas M; Murphy, Alice; Cosgrove, Melinda K; King, Betty A

    2004-04-01

    Sarcoptic mange is a cause of pruritic skin disease in domestic dogs and a wide range of wildlife species. We describe sarcoptic mange in free-ranging raccoons (Procyon lotor). Three adult raccoons from upper Wayne County, Michigan (USA), were captured, killed, and submitted for diagnostic evaluation. The animals were intensely pruritic, and two had advanced alopecic and crusting lesions over their dorsum and hind limbs. Skin scrapings and skin biopsies revealed crusting and hyperkeratotic dermatitis with high numbers of Sarcoptes scabiei adults, larvae, nymphs, and eggs. These raccoons were not otherwise debilitated, with minimal internal parasites, good body condition, and no evidence of infectious bacterial or viral diseases. Because sarcoptic mange is highly contagious and affects many species, including humans, transiently, it is important that wildlife biologists and rehabilitators include sarcoptic mange in their differential list for raccoons exhibiting pruritus and alopecia. PMID:15362840

  6. Experiencing the "Michigan difference" in predental advising.

    PubMed

    Lucus-Perry, Evelyn

    2010-01-01

    African-American dental students at the University of Michigan are engaged in identifying, guiding, and preparing promising predental students for a career in dentistry. Collaborating with the Student National Dental Association (SNDA), the Predental Association at the school, and with the help of faculty members and the administration, students have developed an Impressions Day and participate in a Research Day, a golf outing, an Elementary School Outreach program, a Dental Initiatives activity, the Scholars Program for Dental Leadership, and participation in the school's Mentor Program. All of these activities engage current students in helping those at various stages in the predental education pipeline learn about, evaluate their potential for, and prepare for careers in dentistry. PMID:21314048

  7. Wildlife habitat evaluation demonstration project. [Michigan

    NASA Technical Reports Server (NTRS)

    Burgoyne, G. E., Jr.; Visser, L. G.

    1981-01-01

    To support the deer range improvement project in Michigan, the capability of LANDSAT data in assessing deer habitat in terms of areas and mixes of species and age classes of vegetation is being examined to determine whether such data could substitute for traditional cover type information sources. A second goal of the demonstration project is to determine whether LANDSAT data can be used to supplement and improve the information normally used for making deer habitat management decisions, either by providing vegetative cover for private land or by providing information about the interspersion and juxtaposition of valuable vegetative cover types. The procedure to be used for evaluating in LANDSAT data of the Lake County test site is described.

  8. Drug-resistant Neisseria gonorrhoeae in Michigan

    PubMed Central

    Boehme, Martha S.; Rudrik, James T.; Ganoczy, Dara; Crandell-Alden, Erin; Schneider, William A.; Somsel, Patricia A.

    2005-01-01

    The increasing prevalence of quinolone-resistant Neisseria gonorrhoeae (QRNG) in the United States is a cause for concern. Detecting resistance is complicated by the widespread use of molecular tests that do not provide isolates for susceptibility testing. The Michigan Department of Community Health developed a sentinel surveillance program to detect antimicrobial drug resistance in N. gonorrhoeae. Sentinel surveillance from 11 laboratories submitted 1,122 isolates for antimicrobial drug susceptibility testing and detected 2 clusters of QRNG from January 2003 to September 2004. These clusters were epidemiologically distinct: one involved young, heterosexual youth, and the other involved older men who have sex with men. This finding led to changes in local treatment recommendations that limited spread of resistant strains. Development of the sentinel program, collection of data, and epidemiologic analysis of the clusters are discussed. PMID:16022773

  9. Hydrogeochemistry of the Antrim shale, Michigan Basin

    SciTech Connect

    Martini, A.M.; Richards, J.A.; Walter, L.M. . Dept. of Geology); Kaiser, C.J. )

    1992-01-01

    The upper Devonian Antrim shale represents an unconventional hydrocarbon reservoir for the Michigan Basin which produces both natural gas and water from fractures. This water exhibits extreme variations in salinity over a fairly small geographic area. Samples were collected from 36 wells and analyzed for various chemical and isotopic constituents. The most dilute end-member fluid possesses an carbonate alkalinity of 60 meq/kg and a chloride concentration of 22,000 mg/l. The most saline water has an alkalinity of 7 meq/kg and a chloride concentration of 141,000 mg/l. The source of salinity for the more concentrated Antrim waters is more problematic as the waters possess an unusual chemistry for the reservoir fluids of the Michigan Basin. The reservoir fluids are dominated by Ca-Na-Cl type brines, such as found in the Berea Formation (an upper Devonian sandstone) and the Traverse Group (a mid-Devonian carbonate) aquifers both of which are in stratigraphic proximity to the Antrim shale. The Antrim waters are Na-Cl dominated and cannot be explained by simple mixing of meteoric water with either of these brine aquifers. Large deficiencies in both Br and Ca relative to chloride within the Antrim waters precludes such a model. A likely source for the Na-Cl is from dissolution of Devonian age salt coupled with possible upward fluid migration through regional fractures. When a really mapped, most geochemical parameters exhibit variations consistent with northeast-southwest trends. This corresponds to the primary joint-orientations measured for the Antrim Formation. The hydrologic isolation demonstrated by fluid chemistry within the upper and mid-Devonian aquifers, coupled with the fracture recharge within the Antrim shale leads to a complex pattern of local fluid migration and water-rock interactions.

  10. Evidence of Active MHD Instability in EULAG-MHD Simulations of Solar Convection

    NASA Astrophysics Data System (ADS)

    Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul

    2015-11-01

    We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos & Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.

  11. Spatial Patterns Study for Sediments from Lake Michigan

    EPA Science Inventory

    Accurately understanding the distribution of sediment measurements within large water bodies such as Lake Michigan is critical for modeling and understanding of carbon, nitrogen, silica and phosphorus dynamics. Several water quality models have been formulated and applied to the ...

  12. Site Plan: Master Plan, Fort Custer, Michigan, Reservation Boundary and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Site Plan: Master Plan, Fort Custer, Michigan, Reservation Boundary and Land Use Map. USACOE, 31 December 1954 - Fort Custer Military Reservation, Bounded by Territorial, Dickman, & Longman Roads & Route 94 Business, Battle Creek, Calhoun County, MI

  13. Creationists Take Advantage of Michigan's Charter School Law.

    ERIC Educational Resources Information Center

    Matsumura, Molleen

    1994-01-01

    Reports on the establishment of a charter school in Michigan that serves home-schooling families and stresses a creationist curriculum. Describes the legal action taken against public funding of the charter school. (DDR)

  14. Willow Run Laboratories: Separating from the University of Michigan

    ERIC Educational Resources Information Center

    Walsh, John

    1972-01-01

    Outlines the reasons for, and the problems involved in, separation of a research center from the University of Michigan in order to become an independent research organization contracting for private and military research. (AL)

  15. LIMNOLOGY OF MICHIGAN'S NEARSHORE WATERS OF LAKES SUPERIOR AND HURON

    EPA Science Inventory

    Limnological assessments, including water and sediment chemistry, bacterial densities, zoo- and phyto-plankton and benthic macroinvertebrate community structure, and fish contaminants, were performed at 24 locations in Michigan's nearshore waters of Lakes Superior and Huron in 19...

  16. Stable isotope differences among the Lake Michigan 2015 CSMI transects

    EPA Science Inventory

    During the Lake Michigan 2015 Cooperative Science and Monitoring Initiative (CSMI), eight transects situated near tributaries that present a gradient of phosphorus loads were sampled from nearshore to offshore during May, July, and September. Our objective was to evaluate associa...

  17. Linking Watershed Atrazine and PCB Loads to Lake Michigan

    EPA Science Inventory

    An introduction, overview, and results of mathematical modeling in Lake Michigan. The presentation focuses on model mass balances and forecasts for atrazine and PCBs. The mass balance provides an overview of the sources, interactions, movement, behavior, and fate of contaminant...

  18. Risk analysis: Wet weather flows in S.E. Michigan

    SciTech Connect

    Bulkley, J.W.

    1994-12-31

    Institutional aspects of risk analysis are examined in two separate activities in the state of Michigan. The state of Michigan`s relative risk project, patterned after the US EPA`s risk reduction report, provided an institutional mechanism to rank environmental issues facing the state of Michigan in terms of relative risk in 1991--92. This project identified 24 important environmental issues facing the state. These were categorized into four primary groups ranging from highest priority to medium priority. Seventeen of the identified issues are directly related to water resources, including water pollution in the Great Lakes. Combined sewer overflows are identified as the primary focus remaining for point-source discharges. The second institutional aspect of risk analysis considered in this paper is the development of a demonstration program for combined sewer overflow in the Rouge River Basin, which will help establish the trade-off between increased and risk reduction from such overflows.

  19. EMISSIONS PROFILE CHARACTERIZATION OF LAKE MICHIGAN POLLUTANT SOURCES - PART II

    EPA Science Inventory

    The southern Lake Michigan area continues to experience poor air quality despite the implementation of many measures to control particulate matter, ozone and toxic pollutants. Fortunately, the ambient atmosphere holds clues to these sources and their contributions to urban pollut...

  20. EMISSIONS PROFILE CHARACTERIZATION OF LAKE MICHIGAN POLLUTANT SOURCES - PART III

    EPA Science Inventory

    The southern Lake Michigan aea continues to experience poor air quality despite the implementation of many measures to control particulate matter, ozone and toxic pollutants. Fortunately, the ambient atmosphere holds clues to these sources and their contributions to urban polluti...

  1. Corrosion and arc erosion in MHD channels

    NASA Astrophysics Data System (ADS)

    Rosa, R. J.; Pollina, R. J.

    1992-08-01

    The problems connected with gas side corrosion for the design of the 1A4 (POC) channel hardware are explored and results of gas side wear rate tests in the Textron Mark VII facility are presented. It is shown that the proposed designs meet a 2000 hour lifetime criterion based upon these materials tests. Improvement in cathode lifetime is demonstrated with lower voltage intercathode gaps. The corrosion of these materials is discussed and it is shown how lifetimes are dependent upon gap voltage and average metal temperature. The importance of uniformity of slagging to the durability of the anode wall is demonstrated. The wear mechanism of the anodes in the MHD channel is analyzed. In addition to gas-side corrosion, the results of specific water corrosion tests of sidewall materials are discussed. All of the tests reported here were carried out to confirm the gas-side performance and the manufacturability of anode and sidewall designs and to address questions posed about the durability of tungsten-copper on the waterside. The results of water corrosion tests of the tungsten copper alloy sidewall material are presented to show that with proper control of waterside pH and, if necessary, dissolved oxygen, one can obtain reliable performance with no degradation of heat transfer with this material. The final choice of materials was determined primarily by the outcome of these tests and also by the question of the manufacturability of the prospective designs.

  2. Corrosion and arc erosion in MHD channels

    SciTech Connect

    Rosa, R.J. . Dept. of Mechanical Engineering); Pollina, R.J. . Dept. of Mechanical Engineering EG and G Energy Measurements, Inc., Las Vegas, NV )

    1992-08-01

    The problems connected with gas side corrosion for the design of the lA4 (POC) channel hardware are explored and results of gas side wear rate tests in the Textron Mark VII facility are presented. It is shown that the proposed designs meet a 2000 hour lifetime criterion based upon these materials tests. Improvement in cathode lifetime is demonstrated with lower voltage intercathode gaps. The corrosion of these materials is discussed and it is shown how lifetimes are dependent upon gap voltage and average metal temperature. The importance of uniformity of slagging to the durability of the anode wall is demonstrated. The wear mechanism of the anodes in the MHD channel is analyzed. In addition to gas-side corrosion, the results of specific water corrosion tests of sidewall materials are discussed. All of the tests reported here were carried out to confirm the gas-side performance and the manufacturability of anode and sidewall designs and to address questions posed about the durability of tungsten-copper on the waterside. the results of water corrosion tests of the tungsten copper alloy sidewall material are presented to show that with proper control of waterside pH and, if necessary, dissolved oxygen, one can obtain reliable performance with no degradation of heat transfer with this material. The final choice of materials was determined primarily by the outcome of these tests and also by the question of the manufacturability of the prospective designs.

  3. MHD Instability and Turbulence in the Tachocline

    NASA Technical Reports Server (NTRS)

    Werne, Joe; Wagner, William J. (Technical Monitor)

    2003-01-01

    The focus of this project was to study the physical processes that govern tachocline dynamics and structure. Specific features explored included stratification, shear, waves, and toroidal and poloidal background fields. In order to address recent theoretical work on anisotropic mixing and dynamics in the tachocline, we were particularly interested in such anisotropic mixing for the specific tachocline processes studied. Transition to turbulence often shapes the largest-scale features that appear spontaneously in a flow during the development of turbulence. The resulting large-scale straining field can control the subsequent dynamics; therefore, anticipation of the large-scale straining field that results for individual realizations of the transition to turbulence can be important for subsequent dynamics, flow morphology, and transport characteristics. As a result, we paid particular attention to the development of turbulence in the stratified and sheared environment of the tachocline. This is complicated by the fact that the linearly stability of sheared MHD flows is non-self-adjoint, implying that normal asymptotic linear stability theory may not be relevant.

  4. Global MHD simulations of plasmaspheric plumes

    NASA Astrophysics Data System (ADS)

    Lyon, J.; Ouellette, J.; Merkin, V. G.

    2015-12-01

    The plasmasphere represents a separate population from the rest of themagnetosphere, generally high density but cold. When the solar windturns strongly southward this plasma is convected toward the daysidemagnetopause and affects the interaction of the solar wind with themagnetosphere. We have used multi-fluid simulations using the LFMglobal MHD code to model this interaction. The plasmasphere isinitialized as a cold (~1eV) hydrogen plasma in a quiet northward IMFstate with a density distribution appropriate for K_p = 1. Thecorotation potential from the ionosphere spins up the plasmasphereinto rough corotation. After a initialization period of hours, asouthward IMF is introduced and the enhanced convection initiates asurge of plasmaspheric density to the dayside. We discuss two aspectsof this interaction, the effects on dayside reconnection and on theKelvin-Helmholtz instability (KHI). We find that the mass loading ofmagnetospheric flux tubes slows local reconnection rates, though notas much as predicted by Borovsky et al. [2013]. We findthat the total reconnection rate is reduced, although not as much aswould be predicted by just the sub-solar reconnection rate. The KHIis somewhat reduced by the plasmaspheric loading of density in the lowlatitude boundary layer. It has been suggested that the presence ofthe plasmasphere may lead to enhanced ULF wave power in the interiorof the magnetosphere from the KHI waves. We find only a minimal effect during northward IMF. For southward IMF, the situation is complicated by the interaction of KHI with non-steady reconnection.

  5. Ideal MHD properties for proposed noncircular tokamaks

    SciTech Connect

    Helton, F.J.; Greene, J.M.

    1986-10-01

    We obtain Double Dee, TFXC-C, Big Dee, and JET equlibria which are optimized with respect to both shape and current profile for stability to ideal MHD modes. With a wall reasonably far from the plasma surface we find that the external kink constrains q/sub 1/ to be above two, where q/sub 1/ is the plasma surface value of the safety factor, and the ballooning mode limits the value of ..beta... Then a relevant stable ..beta.. value for the Double Dee reactor design is over 7%. Such a Double Dee equilibrium is not in a separated second stability region and thus does not have a problem with accessibility. A relevant stable ..beta.. value for the TFCX-C reactor design is over 6%. Equivalent relevant stable ..beta.. values for the Big Dee (17%) and JET (7%) are included for calibration purposes. We compare these relevant stable ..beta.. values with the ..beta..'s determined by two recent scaling laws.

  6. Remote sensing in Michigan for land resource management

    NASA Technical Reports Server (NTRS)

    Lowe, D. S.; Istvan, L. B.; Roller, N. E.; Sattinger, I. J.; Sellman, A. N.; Wagner, T. W.

    1974-01-01

    The application of NASA earth resource survey technology to resource management and environmental protection in Michigan was investigated. Remote sensing techniques to aid Michigan government agencies were applied in the following activities: (1) land use inventory and management, (2) great lakes shorelands protection and management, (3) wetlands protection and management, and (4) soil survey. In addition, information was disseminated on remote sensing technology, and advice and assistance was provided to a number of users.

  7. The Michigan leadership model: developing a management infrastructure.

    PubMed

    Dawson, Carrie; Aebersold, Michelle; Mamolen, Nancy; Goldberg, Janet; Frank, Cathy

    2005-01-01

    University of Michigan Health System underwent a number of reduction strategies in the early 1990s to address the rising costs of healthcare. By 2001, an analysis revealed that these strategies negatively impacted employee satisfaction and patient care. A team of nurse managers was charged with redesigning the current support structure for nurse managers. The team conducted an analysis of the current situation and designed a new model called the Michigan Leadership Model comprising both administrative and leadership support positions. PMID:16077276

  8. Immersed boundary method for the MHD flows of liquid metals

    NASA Astrophysics Data System (ADS)

    Grigoriadis, D. G. E.; Kassinos, S. C.; Votyakov, E. V.

    2009-02-01

    Wall-bounded magnetohydrodynamic (MHD hereafter) flows are of great theoretical and practical interest. Even for laminar cases, MHD simulations are associated with very high computational cost due to the resolution requirements for the Hartmann and side layers developing in the presence of solid obstacles. In the presence of turbulence, these difficulties are further compounded. Thus, MHD simulations in complex geometries are currently a challenge. The immersed boundary (IB hereafter) method is a reliable numerical tool for efficient hydrodynamic field simulations in arbitrarily geometries, but it has not yet been extended for MHD simulations. The present study forms the first attempt to apply the IB methodology for the computation of both the hydrodynamic and MHD fields. A consistent numerical methodology is presented that is appropriate for efficient 3D MHD simulations in geometrically complicated domains using cartesian flow solvers. For that purpose, a projection scheme for the electric current density is presented, based on an electric potential correction algorithm. A suitable forcing scheme for electric density currents in the vicinity of non-conducting immersed surfaces is also proposed. The proposed methodology has been first extensively tested for Hartmann layers in fully-developed and developing channel and duct flows at Hartmann numbers Ha=500-2000. In order to demonstrate the potential of the method, the three-dimensional MHD flow around a circular cylinder at Reynolds number Re=200 is also presented. The effects of grid resolution and variable arrangement on the simulation accuracy and consistency were examined. When compared with existing numerical or analytic solutions, excellent agreement was found for all the cases considered. The proposed projection and forcing schemes for current densities were found capable of satisfying the charge conservation law in the presence of immersed non-conducting boundaries. Finally, we show how the proposed

  9. Feasibility of MHD submarine propulsion. Phase II, MHD propulsion: Testing in a two Tesla test facility

    SciTech Connect

    Doss, E.D.; Sikes, W.C.

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  10. Interpreting observations of molecular outflow sources: the MHD shock code mhd_vode

    NASA Astrophysics Data System (ADS)

    Flower, D. R.; Pineau des Forêts, G.

    2015-06-01

    The planar MHD shock code mhd_vode has been developed in order to simulate both continuous (C) type shock waves and jump (J) type shock waves in the interstellar medium. The physical and chemical state of the gas in steady-state may also be computed and used as input to a shock wave model. The code is written principally in FORTRAN 90, although some routines remain in FORTRAN 77. The documented program and its input data are described and provided as supplementary material, and the results of exemplary test runs are presented. Our intention is to enable the interested user to run the code for any sensible parameter set and to comprehend the results. With applications to molecular outflow sources in mind, we have computed, and are making available as supplementary material, integrated atomic and molecular line intensities for grids of C- and J-type models; these computations are summarized in the Appendices. Appendix tables, a copy of the current version of the code, and of the two model grids are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A63

  11. High-order conservative finite difference GLM-MHD schemes for cell-centered MHD

    NASA Astrophysics Data System (ADS)

    Mignone, Andrea; Tzeferacos, Petros; Bodo, Gianluigi

    2010-08-01

    We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. [J. Comput. Phys. 175 (2002) 645-673]. The resulting family of schemes is robust, cost-effective and straightforward to implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms. Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computations involving both smooth and discontinuous features.

  12. Evaluation of Silurian-Niagaran reef belt in Northeastern Michigan

    SciTech Connect

    Aminian, K.; Ameri, S.; Bomar, R.M.

    1987-12-01

    Silurian pinnacle reefs have remained the main exploration targets in the Michigan basin over the last decade. Recent discoveries have extended the reef belt into new areas in the western and northeastern parts of Michigan's lower peninsula. Meanwhile, the exploration for these reefs has continued in more developed areas of the belt in northern Michigan, southwestern Ontario, and southern Michigan. The results of exploration activities in northeastern Michigan in Cheboygan, Montmorency, and Presque Isle counties is different from the rest of the northern portion of the belt. A detailed study used the data available from the exploration activities in this area to determine the reef belt characteristics and reserves potential in northeastern Michigan and its extension into Lake Huron. The results indicated some interesting features, including the narrowing of the belt as it approaches Lake Huron. It was concluded that the different depositional environment during the Silurian Age had affected the development of the belt and the hydrocarbon accumulation in the pinnacle reefs in this part of the basin.

  13. Space Radar Image of Raco, Michigan

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This image is a false-color composite of Raco, Michigan, centered at 46.39 degrees north latitude, 84.88 degrees west longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its sixth orbit and during the first full-capability test of the instrument on April 9, 1994. This image was produced using both L-band and C-band data. The area shown is approximately 20 kilometers by 50 kilometers (12 by 30 miles). Raco is located at the eastern end of Michigan's upper peninsula, west of Sault Ste. Marie and south of Whitefish Bay on Lake Superior. The site is located at the boundary between the boreal forests and the northern temperate forests, a transitional zone that is expected to be ecologically sensitive to anticipated global changes resulting from climatic warming. On any given day, there is a 60 percent chance that this area will be obscured to some extent by cloud clover which makes it difficult to image using optical sensors. In this color representation (red=LHH,green=LHV, blue=CHH), darker areas in the image are smooth surfaces such as frozen lakes and other non-forested areas. The colors are related to the types of trees and the brightness is related to the amount of plant material covering the surface, called forest biomass. The black area in the upper right corner is the ice-covered Lake Superior. The blue mosaic areas in the lower part of the image are bare agricultural fields with hay stubble. The large blue area to the center left of the image corresponds to a large frozen swamp with no trees and lots of grass tufts. The light greenish-yellow areas are red pine trees approximately 30 meters (100 feet) in height. The brownish yellow areas are jack pine trees of various ages. The dark patches are areas of recent clear cuts in the managed Hiawatha National Forest. The shore line of Lake Superior in the light greenish blue is a mixture of aspen and birch trees

  14. Further analysis of MHD acceleration for a hypersonic wind tunnel

    SciTech Connect

    Christiansen, M.J.; Schmidt, H.J.; Chapman, J.N.

    1995-12-31

    A previously completed MHD study of the use of an MHD accelerator with seeded air from a state-of-the-art arc heater, was generally hailed as showing that the system studied has some promise of meeting the most critical hypersonic testing requirements. However, some concerns existed about certain aspects of the results. This paper discusses some of these problems and presents analysis of potential solutions. Specifically the problems addressed are; reducing the amount of seed in the flow, reducing test chamber temperatures, and reducing the oxygen dissociation. Modeling techniques are used to study three design variables of the MHD accelerator. The accelerator channel inlet Mach number, the accelerator channel divergence angle, and the magnetic field strength are all studied. These variables are all optimized to meet the goals for seed, temperature, and dissociated oxygen reduction. The results of this paper are encouraging, showing that all three goals can be met. General relationships are observed as to how the design variables affect the performance of the MHD accelerator facility. This paper expands on the results presented in the UTSI report and further supports the feasibility of MHD acceleration as a means to provide hypersonic flight simulation.

  15. MHD aspects of fire-hose type instabilities

    NASA Astrophysics Data System (ADS)

    Wang, B.; Hau, L.

    2003-12-01

    In a homogeneous anisotropic plasma the magnetohydrodynamic (MHD) Alfvén wave may become unstable for p∥ > pperpendicular to + B2/μ 0. Recently a new type of fire-hose instability is found by Hellinger and Matsumoto [2000] that has maximum growth rate occurring for oblique propagation and may grow faster than the Alfvén mode. This new mode is compressional and may be more efficient at destroying pressure anisotropy than the standard fire hose. In this study we examines the fire-hose type (p∥ > pperpendicular to ) instabilities based on the linear and nonlinear double-polytropic MHD theory. It is shown that there exist two types of MHD fire-hose instabilities associated with the intermediate and slow modes, respectively, and with suitable choice of polytropic exponents the linear instability criteria become the same as those based on the Vlasov theory in the hydromagnetic limit. Moreover, the properties of the nonlinear MHD fire-hose instabilities are found to have great similarities with those obtained from the kinetic theory and hybrid simulation. In particular, the classical fire-hose instability evolves toward the linear fire-hose stability threshold while the nonlinear marginal stability associated with the new fire hose is well below the condition of β ∥ - β perpendicular to = 2 but complies with less stringent linear stability threshold for MHD slow-mode wave.

  16. A MHD channel study for the ETF conceptual design

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Staiger, P. J.; Smith, J. M.

    1981-01-01

    The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.

  17. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    SciTech Connect

    Tataronis, J. A.

    2004-06-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.

  18. Dynamo action in dissipative, forced, rotating MHD turbulence

    NASA Astrophysics Data System (ADS)

    Shebalin, John V.

    2016-06-01

    Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 643 grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.

  19. Multiphysics/Multiscale Coupling of Microturbulence and MHD Equiliria

    NASA Astrophysics Data System (ADS)

    Lee, W. W.; Startsev, E. A.; Hudson, S. R.; Wang, W. X.; Ethier, S.

    2015-11-01

    We propose to investigate the multiphysics and multiscale coupling between a time-dependent gyrokinetic ``microscopic'' code for studying gyroradius-scale turbulence, associated with global ion-acoustic and shear-Alfven waves, and a ``macroscopic'' code for computing large-scale global equilibria based on the time-independent MHD equations, in order to identify a family of self-consistent global MHD equilibria that can minimize the electrostatic potentials responsible for turbulent transport by passing global parameters between the two codes. The codes involved are 1) the electromagnetic version of the GTS code for studying microturbulence, and 2) the SPEC code for calculating three-dimensional MHD equilibria with or without chaotic fields. This concept is based on a newly found correlation between the gyrokinetic evolution and the MHD equilibrium when the electrostatic potential vanishes. The proposed work involves the scales ranging from the electron skin depth to the machine size, and includes the physics of both gyrokinetics and MHD. This work is supported by US DoE # DE-AC02-09CH11466.

  20. Energy structure of MHD flow coupling with outer resistance circuit

    NASA Astrophysics Data System (ADS)

    Huang, Z. Y.; Liu, Y. J.; Chen, Y. Q.; Peng, Z. L.

    2015-08-01

    Energy structure of MHD flow coupling with outer resistance circuit is studied to illuminate qualitatively and quantitatively the energy relation of this basic MHD flow system with energy input and output. Energy structure are analytically derived based on the Navier-Stocks equations for two-dimensional fully-developed flow and generalized Ohm's Law. The influences of applied magnetic field, Hall parameter and conductivity on energy structure are discussed based on the analytical results. Associated energies in MHD flow are deduced and validated by energy conservation. These results reveal that energy structure consists of two sub structures: electrical energy structure and internal energy structure. Energy structure and its sub structures provide an integrated theoretical energy path of the MHD system. Applied magnetic field and conductivity decrease the input energy, dissipation by fluid viscosity and internal energy but increase the ratio of electrical energy to input energy, while Hall parameter has the opposite effects. These are caused by their different effects on Bulk velocity, velocity profiles, voltage and current in outer circuit. Understanding energy structure helps MHD application designers to actively adjust the allocation of different parts of energy so that it is more reasonable and desirable.

  1. MHD simulations of supernova driven ISM turbulence

    NASA Astrophysics Data System (ADS)

    Gressel, Oliver; Ziegler, Udo

    The dynamic evolution of the (stratified) turbulent interstellar medium (ISM) is simulated utilizing a three-dimensional MHD model including various physical effects. The computational domain covers a box of 0.5x0.5x2.0 kpc at a resolution of typically 128x128x1024 grid cells. The model includes (constant kinematic) viscosity and magnetic diffusivity. The adiabatic equation of state is supplemented by a parameterized heating- and cooling-function allowing for thermal instability (TI). The update due to heating and cooling is implemented implicitly using a Patankar-type discretization. Turbulence is driven by supernova explosions which are modelled as local injections of thermal energy, smeared over three standard-deviations of a Gaussian support with FWHM of 20pc. Supernova rates are adopted for typical cited values. Within our model we make a distinction between Type I and Type II SNe. Latter are statistically clustered by the (artificial) constraint that the density at the explosion site be above average (with respect to a horizontal slab) - former are spatially uncorrelated. The dual-energy feature of the conservative NIRVANA-code is used to tackle the extreme ratio of kinetic to internal energy that arises from the violent energy input. We stress the importance of using a conservative scheme to properly transfer the injected energy to kinetic motion. The model also includes a differentially rotating background (with shearing boundary conditions in radial direction) as well as vertical stratification. The initial density and pressure profiles are in hydrostatic equilibrium with respect to the equation of state given by the radiative equilibrium. Including z-dependent heating rates this leads to a considerable deviation from usual isothermal initial models. The primary focus of this work is on the galactic dynamo and the generation of large-scale magnetic fields. As a secondary target we are also interested in general properties of the ISM that are of importance

  2. Interstellar MHD Turbulence and Star Formation

    NASA Astrophysics Data System (ADS)

    Vázquez-Semadeni, Enrique

    This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior, causing it to behave approximately isobarically, in spite of spanning several orders of magnitude in density and temperature. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability (TI) in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: (1) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; (2) the nature of the clumps produced by TI, noting that, contrary to classical ideas, they in general accrete mass from their environment in spite of exhibiting sharp discontinuities at their boundaries; (3) the density-magnetic field correlation (and, at low densities, lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; (4) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; (5) the formation of cold, dense clouds aided by TI, in both the hydrodynamic (HD) and the magnetohydrodynamic (MHD) cases; (6) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, as generally believed, and (7) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and disperses

  3. Biofluid Mechanics Education at U Michigan

    NASA Astrophysics Data System (ADS)

    Grotberg, James

    2007-11-01

    At the University of Michigan, biofluid mechanics is taught in the Department of Biomedical Engineering with cross-listing in Mechanical Engineering. The course has evolved over 25 years and serves advanced undergraduates and graduate students. The course description is as follows: BiomedE/MechE 476 Biofluid Mechanics. CATALOG DESCRIPTION: This is an intermediate level fluid mechanics course which uses examples from biotechnology processes and physiologic applications including cellular, cardiovascular, respiratory, ocular, renal, orthopedic, and gastrointestinal systems. COURSE TOPICS: 1. Dimensional analysis (gastrointestinal, renal) 2. Approximation methods, numerical methods (biotechnology, respiratory) 3. Particle kinematics in Eulerian and Lagrangian references frames (biotechnology, respiratory) 4. Conservation of mass and momentum 5. Constitutive equations (blood, mucus) 6. Kinematic and stress boundary conditions: rigid, flexible, porous (cardio-pulmonary, cellular) 7. Surface tension phenomena (pulmonary, ocular) 8. Flow and wave propagation in flexible tubes (cardio-pulmonary) 9. Oscillatory and pulsatile flows (cardio-pulmonary, orthopedic) 10. High Reynolds number flows (cardio-pulmonary) 11. Low Reynolds number flows (biotechnology, cellular, vascular) 12. Lubrication theory (vascular, orthopedic) 13. Flow in poroelastic media (orthopedic, pulmonary, ocular) 14. Video presentations of laboratory experiments.

  4. A proposed streamflow data program for Michigan

    USGS Publications Warehouse

    Bent, P.C.

    1970-01-01

    An evaluation of the streamflow data available in Michigan was made to provide guidelines for planning future water resource programs. The basic steps in the evaluation procedure were (1) definition of the long-term goals of the streamflow data program in quantitative form, (2) examination and analysis of all available data to determine which goals have already been met, and (3) consideration of alternate programs and techniques to meet the remaining objectives. It was found that most goals could not be met by regionalization of the data for gaged basins by regression analysis. This fact indicates that few changes can be made in the present program on the basis of computing data by regression formulas. However, regression formulas that include factors not evaluated as a part of this study, may provide a basis for regional streamflow analysis. The evaluation indicated that some changes in the streamgaging network can be made on the basis of length of records already collected. A streamflow data program based on the guidelines developed in this rstudy is proposed for the future.

  5. Bottom sediments of Saginaw Bay, Michigan

    USGS Publications Warehouse

    Wood, Leonard E.

    1964-01-01

    Saginaw Bay is a southwest extension of Lake Huron on the east shore of the Southern Peninsula of Michigan. It is a shallow-water derivative of the Pleistocene Lake Saginaw. Sixty-one bottom samples were collected on a semigrid pattern and analyzed physically. Findings were treated statistically. Sediments range in size from large pebbles to clay. Medium- to fine-grained clear quartz sand is common to all parts of the bay. Currents and wave action are primarily responsible for both median diameter and sorting distribution patterns. Only a very general correlation can be established between depth and median diameter. Heavy minerals occur in abundance locally and show an affinity to shallow-water areas subject to prevailing currents. Shape also locally determines heavy mineral concentrations. Only general conclusions can be established from roundness and sphericity and acid-soluble content. Increased organic content is correlative with quiet water environments. The shallow-water, heterogeneous nature of Saginaw Bay is not conducive to the recognition of sedimentary criteria suitable for correlations in other than a local environment.

  6. Diagnostic development and support of MHD test facilities

    SciTech Connect

    Not Available

    1990-01-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 9 figs., 1 tab.

  7. Quasi-static MHD processes in earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Voigt, Gerd-Hannes

    1988-01-01

    An attempt is made to use the MHD equilibrium theory to describe the global magnetic field configuration of earth's magnetosphere and its time evolution under the influence of magnetospheric convection. To circumvent the difficulties inherent in today's MHD codes, use is made of a restriction to slowly time-dependent convection processes with convective velocities well below the typical Alfven speed. This restriction leads to a quasi-static MHD theory. The two-dimensional theory is outlined, and it is shown how sequences of two-dimensional equilibria evolve into a steady state configuration that is likely to become tearing mode unstable. It is then concluded that magnetospheric substorms occur periodically in earth's magnetosphere, thus being an integral part of the entire convection cycle.

  8. Propagation and Dissipation of MHD Waves in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Dwivedi, B. N.

    2006-11-01

    bholadwivedi@gmail.com In view of the landmark result on the solar wind outflow, starting between 5 Mm and 20 Mm above the photosphere in magnetic funnels, we investigate the propagation and dissipation of MHD waves in coronal holes. We underline the importance of Alfvén wave dissipation in the magnetic funnels through the viscous and resistive plasma. Our results show that Alfvén waves are one of the primary energy sources in the innermost part of coronal holes where the solar wind outflow starts. We also consider compressive viscosity and thermal conductivity to study the propagation and dissipation of long period slow longitudinal MHD waves in polar coronal holes. We discuss their likely role in the line profile narrowing, and in the energy budget for coronal holes and the solar wind. We compare the contribution of longitudinal MHD waves with high frequency Alfvén waves.

  9. MHD conversion of solar energy. [space electric power system

    NASA Technical Reports Server (NTRS)

    Lau, C. V.; Decher, R.

    1978-01-01

    Low temperature plasmas wherein an alkali metal vapor is a component are uniquely suited to simultaneously absorb solar radiation by coupling to the resonance lines and produce electrical power by the MHD interaction. This work is an examination of the possibility of developing space power systems which take advantage of concentrated solar power to produce electricity. It is shown that efficient cycles in which expansion work takes place at nearly constant top cycle temperature can be devised. The power density of the solar MHD generator is lower than that of conventional MHD generators because of the relatively high seed concentration required for radiation absorption and the lower flow velocity permitted to avoid total pressure losses due to heating.

  10. Numerical study of unsteady processes in a Faraday MHD generator

    NASA Astrophysics Data System (ADS)

    Vinogradova, G. N.; Panchenko, V. P.

    1981-07-01

    A numerical study is presented on the unsteady processes occurring in a Faraday MHD generator with a high power-conversion efficiency. A supersonic MHD generator operating with an equilibrium plasma and designed to convert energy in a system using a thermonuclear reactor is considered, and the steady operating modes are established for cases when an ohmic load is connected, disconnected, or reduced. A magnetic field is assumed to be generated by a suitable profiling of the external magnetic field, and the working medium is modeled by an ideal gas. Partial differential equations are solved numerically by using a central difference predictor-corrector scheme. The study can be applied to problems (e.g., transient times, nominal parameter maximal values and rates of change, methods of regulating the generator and switching it on and off) arising during the design of MHD generators.

  11. Oxygen-enriched air for MHD power plants

    NASA Technical Reports Server (NTRS)

    Ebeling, R. W., Jr.; Cutting, J. C.; Burkhart, J. A.

    1979-01-01

    Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas.

  12. Evaluation of materials for the MHD steam bottoming plant

    SciTech Connect

    Natesan, K.; Swift, W.M.

    1989-05-01

    Test data have been obtained on the corrosion of several commercial ASME-coded alloys and their weldments by exposing internally cooled ring specimens to simulated magnetohydrodynamics (MHD) environments. The specimens, coated with a K/sub 2/SO/sub 4/-rich deposit, were exposed for times up to 2000 h at metal temperatures of 762, 593, and 567/degree/C to simulated MHD conditions for the intermediate-temperature air heater (ITAH), ITAH transition region (transition from a low- to medium-chromium alloy to a high-chromium steel), and secondary superheater (SSH), respectively. This paper discusses, in detail, the observed corrosion scale morphologies of various exposed specimens. Data on scale thickness, depth of intergranular penetration, and metal recession are presented, and the results are used to assess the corrosion behavior of various materials for application in the MHD steam bottoming plant. 6 refs., 7 figs., 3 tabs.

  13. MHD of Aircraft Re-entry: Limits and Perspectives

    SciTech Connect

    Seller, G.; Capitelli, M.; Longo, S.; Armenise, I.; Bruno, D.

    2005-05-16

    In the present work, starting from classical MHD scheme, based on Maxwell equations, Euler fluid dynamic equations and generalised Ohm law, a critical study of fluid dynamics, electromagnetism, chemical and physical behaviour of plasma is carried out, and then a aircraft re-entry MHD numerical scheme is implemented. This scheme is used for MHD calculations in different conditions, in the range of low magnetic force and intermediate electrical conductivity. Initial imposed magnetic fields are uniform, but also some cases with coil generated magnetic fields are considered. Calculations of magnetic field and induced currents are extended also inside the blunt body. Results show interesting physical and electromagnetic effects. Comparison with other methods shows possible development in keeping into account other physical and chemical effects.

  14. Kinetic MHD simulation of large 'circ; tearing mode

    NASA Astrophysics Data System (ADS)

    Cheng, Jianhua; Chen, Yang; Parker, Scott; Uzdensky, Dmitri

    2012-03-01

    We have developed a second-order accurate semi-implicit δ method for kinetic MHD simulation with Lorentz force ions and fluid electrons. The model has been used to study the resistive tearing mode instability, which involves multiple spatial scales. In small 'circ; cases, the linear growth rate and eigenmode structure are consistent with resistive MHD analysis. The Rutherford stage and saturation are demonstrated, but the simulation exhibits different saturation island widths compared with previous MHD simulations. In large 'circ; cases, nonlinear simulations show multiple islands forming, followed by the islands coalescing at later times. The competition between these two processes strongly influences the reconnection rates and eventually leads to a steady state reconnection. We will present various parameter studies and show that our hybrid results agree with fluid analysis in certain limits (e.g., relatively large resisitivities).

  15. Diagnostic development and support of MHD test facilities

    SciTech Connect

    Not Available

    1990-01-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for MHD power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 25 figs., 6 tabs.

  16. Outline of fast analyzer for MHD equilibrium FAME

    NASA Astrophysics Data System (ADS)

    Sakata, Shinya; Haginoya, Hirofumi; Tsuruoka, Takuya; Aoyagi, Tetsuo; Saito, Naoyuki; Harada, Hiroo; Tani, Keiji; Watanabe, Hideto

    1994-02-01

    The FAME (Fast Analyzer for Magnetohydrodynamic (MHD) Equilibrium) system has been developed in order to provide more than 100 MHD equilibria in time series which are enough for the non-stationary analysis of the experimental data of JT-60 within about 20 minutes shot interval. The FAME is an MIMD type small scale parallel computer with 20 microprocessors which are connected by a multi-stage switching system. The maximum theoretical speed is 250 MFLOPS. For the software system of FAME, MHD equilibrium analysis code SELENE and its input data production code FBI are tuned up taking the parallel processing into consideration. Consequently, the computational performance of the FAME system becomes more than 7 times faster than the existing general purpose computer FACOM M780-10s. This report summarizes the outline of the FAME system including hardware, soft-ware and peripheral equipments.

  17. MHD Simulations of Thermal Plasma Jets in Coaxial Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Subramaniam, Vivek; Raja, Laxminarayan

    2015-09-01

    The development of a magneto-hydrodynamics (MHD) numerical tool to study high energy density thermal plasma in coaxial plasma accelerators is presented. The coaxial plasma accelerator is a device used simulate the conditions created at the confining wall of a thermonuclear fusion reactor during an edge localized mode (ELM) disruption event. This is achieved by creating magnetized thermal plasma in a coaxial volume which is then accelerated by the Lorentz force to form a high velocity plasma jet. The simulation tool developed solves the resistive MHD equation using a finite volume method (FVM) framework. The acceleration and subsequent demagnetization of the plasma as it travels down the length of the accelerator is simulated and shows good agreement with experiments. Additionally, a model to study the thermalization of the plasma at the inlet is being developed in order to give self-consistent initial conditions to the MHD solver.

  18. Perturbed Stability Analysis of External Ideal MHD Modes

    NASA Astrophysics Data System (ADS)

    Comer, K. J.; Callen, J. D.; Hegna, C. C.; Garstka, G. D.; Turnbull, A. D.; Garofalo, A. M.; Cowley, S. C.

    2002-11-01

    Traditionally, numerical parameter scans are performed to study the effects of equilibrium shaping and profiles on long wavelength ideal MHD instabilities. Previously, we introduced a new perturbative technique to more efficiently explore these dependencies: changes in delta-W due to small equilibrium variations are found using a perturbation of the energy principle rather than with an eigenvalue-solver instability code. With this approach, the stability properties of similar equilibria can be efficiently explored without generating complete numerical results for every set of parameters (which is time-intensive for accurate representations of several configurations). Here, we apply this approach to toroidal geometry using GATO (an ideal MHD stability code) and experimental equilibria. In particular, we explore ideal MHD stability of external kink modes in the spherical tokamak Pegasus and resistive wall modes in DIII-D.

  19. Effect of gasdynamic turbulence on the integral characteristics of conduction MHD generators

    SciTech Connect

    Vatazhin, A.B.; Levitan, Y.S.

    1986-04-01

    The authors analyze the effect of correlations on the integral characteristics of conduction MHD generators of different type. The paper studies a flow in the core of the channel of an MGD generator in the approximation of small magnetic Reynolds numbers. Two limiting situations characteristic for MHD setups are examined: a liquid-metal MHD channel and a conduction MHD generator operating on combustion products.

  20. Hall MHD Simulations of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M. R.; Rubin, M.; Hansen, K. C.; Toth, G.; Gombosi, T. I.

    2012-12-01

    Comets have highly eccentric orbits and a wide range of gas production rates and thus they are ideal subjects to study the interaction between the solar wind and nonmagnetized bodies. Hansen et al. (2007, Space Sci. Rev. 128, 133) used a fluid-based MHD model and a semi-kinetic hybrid particle model to study the plasma environment of comet 67P/Churyumov-Gerasimenko (CG), the Rosetta mission target comet, at different heliocentric distances. They showed that for such a weak comet at a large heliocentric distance, the length scales of the cometosheath and the bow shock are comparable to or smaller than the ion gyroradius, which violates the underlying assumption for a valid fluid description of the plasma. As a result, the classical ideal MHD model is not able to always give physical results, while the hybrid model, which accounts for the kinetic effects of ions with both cometary and solar wind origin, is more reliable. However, hybrid models are computationally expensive and the results can be noisy. A compromise approach is Hall MHD [Toth et al., 2008], which includes the Hall term in the MHD equations and allows for the decoupling of the ion and electron fluids. We use a single ion species Hall MHD model to simulate the plasma environment of comet 67P/CG and compare the results with the two models mentioned above. We find that the Hall effect is capable of reproducing some features of the hybrid model and thus extends the applicability of MHD. In addition, this study helps to identify the conditions and regions in the cometary plasma where the Hall effect is not negligible. This work is supported by NSF Planetary Astronomy grant AST0707283 and JPL subcontract 1266313 under NASA grant NMO710889.

  1. A kinetic-MHD model for low frequency phenomena

    SciTech Connect

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter {tau} and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented.

  2. Vector Third Moment of Turbulent MHD Fluctuations: Theory and Interpretation

    NASA Astrophysics Data System (ADS)

    Forman, M. A.; MacBride, B. T.; Smith, C. W.

    2006-12-01

    We call attention to the fact that a certain vector third moment of turbulent MHD fluctuations, even if they are anisotropic, obeys an exact scaling relation in the inertial range. Politano and Pouquet (1998, PP) proved it from the MHD equations specifically. It is a direct analog of the long-known von Karman-Howarth-Monin (KHM) vector relation in anisotropic hydrodynamic turbulence, which follows from the Navier-Stokes equations (see Frisch, 1995). The relevant quantities in MHD are the plus and minus Elsasser vectors and their fluctuations over vector spatial differences. These are used in the mixed vector third moment S+/-(r). The mixed moment is essential, because in the MHD equations for the Elsasser variables, the z + and z- are mixed in the non-linear term. The PP relation is div (S+/-(r))= -4*(epsilon +/-) where (epsilon +/-) is the turbulent energy dissipation rate in the +/- cascade, in Joules/(kg-sec). Of the many possible vector and tensor third moments of MHD vector fluctuations, S+/-(r) is the only one known to have an exact (although vector differential) scaling valid in anisotropic MHD in the inertial range. The PP scaling of a distinctly non-zero third moment indicates that an inertial range cascade is present. The PP scaling does NOT simply result from a dimensional argument, but is derived directly from the MHD equations. A power-law power spectrum alone does not necessarily imply an inertial cascade is present. Furthermore, only the scaling of S+/-(r) gives the epsilon +/- directly. Earlier methods of determining epsilon +/-, based on the amplitude of the power spectrum, make assumptions about isotropy, Alfvenicity and scaling that are not exact. Thus, the observation of a finite S+/-(r) and its scaling with vector r, are fundamental to MHD turbulence in the solar wind, or in any magnetized plasma. We are engaged in evaluating S+/-(r )and its anisotropic scaling in the solar wind, beginning with ACE field and plasma data. For this, we are using

  3. Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1988-01-01

    Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.

  4. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows

    NASA Astrophysics Data System (ADS)

    Sjoegreen, Bjoern; Yee, Helen C.

    2002-11-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great

  5. The superconducting MHD-propelled ship YAMATO-1

    SciTech Connect

    Sasakawa, Yohei; Takezawa, Setsuo; Sugawara, Yoshinori; Kyotani, Yoshihiro

    1995-04-01

    In 1985 the Ship & Ocean Foundation (SOF) created a committee under the chairmanship of Mr. Yohei Sasakawa, Former President of the Ship & Ocean Foundation, and began researches into superconducting magnetohydrodynamic (MHD) ship propulsion. In 1989 SOF set to construction of a experimental ship on the basis of theoretical and experimental researches pursued until then. The experimental ship named YAMATO-1 became the world`s first superconducting MHD-propelled ship on her trial runs in June 1992. This paper describes the outline of the YAMATO-1 and sea trial test results.

  6. Tearing and MHD Instability During Gun Injection into a Spheromak

    SciTech Connect

    Fowler, T K

    2000-05-11

    Linear stability analysis of a two-cylinder approximation to gun injection--one cylinder to represent the confined spheromak and another to represent the gun--is shown to yield equilibria in which tearing modes exist simultaneously at the magnetic axis and at the geometric (gun) axis, as might be required to sustain helicity injection. These equilibria are MHD stable at the two axes but may have localized MHD instability at an interior minimum in the q profile. The theory predicts two tearing thresholds with successively deeper q minima as the gun current is increased at constant bias flux.

  7. Spectrum of resistive MHD modes in cylindrical plasmas

    SciTech Connect

    Ryu, C.M.; Grimm, R.C.

    1983-07-01

    A numerical study of the normal modes of a compressible resistive MHD fluid in cylindrical geometry is presented. Resistivity resolves the shear Alfven and slow magnetosonic continua of ideal MHD into discrete spectra and gives rise to heavily damped modes whose frequencies lie on specific lines in the complex plane. Fast magnetosonic waves are less affected but are also damped. Overstable modes arise from the shear Alfven spectrum. The stabilizing effect of favorable average curvature is shown. Eigenfunctions illustrating the nature of typical normal modes are displayed.

  8. Final Report. An Evaluation of the Title I Program Conducted at the Michigan Training Unit, Michigan Department of Corrections, Ionia, Michigan, 1977-1978.

    ERIC Educational Resources Information Center

    Mack, Faite R-P.

    This is an evaluation of the Title I Program of the Michigan Training Unit, a program designed to provide compensatory education in basic skills for young adult male prisoners. The evaluation provides information to enable decision-makers to maximize the efficiency and effectiveness of the program and considers whether the program fulfilled…

  9. Lake level variability in Silver Lake, Michigan: a response to fluctuations in lake levels of Lake Michigan

    USGS Publications Warehouse

    Fisher, Timothy G.; Loope, Walter L.

    2004-01-01

    Sediment from Silver Lake, Michigan, can be used to constrain the timing and elevation of Lake Michigan during the Nipissing transgression. Silver Lake is separated from Lake Michigan by a barrier/dune complex and the Nipissing, Calumet, and Glenwood shorelines of Lake Michigan are expressed landward of this barrier. Two Vibracores were taken from the lake in February 2000 and contain pebbly sand, sand, buried soils, marl, peat, and sandy muck. It is suggested here that fluctuations in the level of Lake Michigan are reflected in Silver Lake since the Chippewa low phase, and possibly at the end of the Algonquin phase. An age of 12,490 B.P. (10,460±50 14C yrs B.P.) on wood from a buried Entisol may record the falling Algonquin phase as the North Bay outlet opened. A local perched water table is indicated by marl deposited before 7,800 B.P. and peat between 7,760-7,000 B.P. when Lake Michigan was at the low elevation Chippewa phase. Continued deepening of the lake is recorded by the transition from peat to sandy muck at 7,000 B.P. in the deeper core, and with the drowning of an Inceptisol nearly 3 m higher at 6,410 B.P. in the shallower core. A rising groundwater table responding to a rising Lake Michigan base level during the Nipissing transgression, rather than a response to mid-Holocene climate change, explains deepening of Silver Lake. Sandy muck was deposited continually in Silver Lake between Nipissing and modern time. Sand lenses within the muck are presumed to be eolian in origin, derived from sand dunes advancing into the lake on the western side of the basin.

  10. DEVELOPMENT OF NUTRIENT EXPOSURE AND BIOLOGICAL RESPONSE INDICATORS FOR LAKE MICHIGAN COASTAL WETLANDS

    EPA Science Inventory

    This study examines how landscape-scale gradient affect sedimentation rates, nutrient exposure, and biological responses in Lake Michigan coastal wetlands, and assess indicators for these trends. Twenty riverine coastal wetlands in Lake Michigan (Herdendorf 1981) were selected t...

  11. 76 FR 28078 - Notice of Inventory Completion: Western Michigan University, Anthropology Department, Kalamazoo, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... National Park Service Notice of Inventory Completion: Western Michigan University, Anthropology Department..., Anthropology Department, has completed an inventory of human remains and associated funerary objects, in... associated funerary objects may contact the Western Michigan University, Anthropology Department....

  12. 75 FR 67998 - Notice of Inventory Completion: Western Michigan University, Anthropology Department, Kalamazoo, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... National Park Service Notice of Inventory Completion: Western Michigan University, Anthropology Department... Michigan University, Anthropology Department, Kalamazoo, MI. The human remains and associated funerary... condition. Dr. Robert Sundick, a physical anthropologist in the Anthropology Department at Western...

  13. 76 FR 28077 - Notice of Inventory Completion: Western Michigan University, Anthropology Department, Kalamazoo, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... National Park Service Notice of Inventory Completion: Western Michigan University, Anthropology Department..., Department of Anthropology, has completed an inventory of human remains, in consultation with the appropriate... affiliated with the human remains may contact the Western Michigan University, Department of...

  14. 76 FR 36149 - Notice of Inventory Completion: Western Michigan University, Department of Anthropology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... Anthropology, Kalamazoo, MI AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: Western Michigan University, Department of Anthropology, has completed an inventory of human remains and associated funerary... associated funerary objects may contact the Western Michigan University, Department of...

  15. 76 FR 36145 - Notice of Inventory Completion: Western Michigan University, Department of Anthropology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... Anthropology, Kalamazoo, MI AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: Western Michigan University, Department of Anthropology, has completed an inventory of human remains and associated funerary... may contact Western Michigan University, Department of Anthropology. Disposition of the human...

  16. 75 FR 36671 - Notice of Inventory Completion: Western Michigan University, Anthropology Department, Kalamazoo, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... National Park Service Notice of Inventory Completion: Western Michigan University, Anthropology Department... Michigan University, Anthropology Department, Kalamazoo, MI. The human remains and associated funerary... and associated funerary objects should contact LouAnn Wurst, Department of Anthropology,...

  17. Higher Education in Michigan: Overcoming Challenges to Expand Access. Fact Sheet

    ERIC Educational Resources Information Center

    Cunningham, Alisa F.; Erisman, Wendy; Looney, Shannon E.

    2008-01-01

    This fact sheet presents a snapshot of important facts from "Higher Education in Michigan: Overcoming Challenges to Expand Access," which examines access to postsecondary degrees and institutions in underserved regions of Michigan. [For the full report, see ED501512.

  18. A SCREENING-LEVEL MODEL EVALUATION OF ATRAZINE IN THE LAKE MICHIGAN BASIN

    EPA Science Inventory

    Atrazine, a widely used herbicide in the agricultural regions of the Lake Michigan basin, was selected as a priority toxic chemical study in the United States Environmental Protection Agency (U.S. EPA) - sponsored Lake Michigan Mass Balance Project.

  19. Diversity of Basidiomycetes in Michigan Agricultural Soils▿

    PubMed Central

    Lynch, Michael D. J.; Thorn, R. Greg

    2006-01-01

    We analyzed the communities of soil basidiomycetes in agroecosystems that differ in tillage history at the Kellogg Biological Station Long-Term Ecological Research site near Battle Creek, Michigan. The approach combined soil DNA extraction through a bead-beating method modified to increase recovery of fungal DNA, PCR amplification with basidiomycete-specific primers, cloning and restriction fragment length polymorphism screening of mixed PCR products, and sequencing of unique clones. Much greater diversity was detected than was anticipated in this habitat on the basis of culture-based methods or surveys of fruiting bodies. With “species” defined as organisms yielding PCR products with ≥99% identity in the 5′ 650 bases of the nuclear large-subunit ribosomal DNA, 241 “species” were detected among 409 unique basidiomycete sequences recovered. Almost all major clades of basidiomycetes from basidiomycetous yeasts and other heterobasidiomycetes through polypores and euagarics (gilled mushrooms and relatives) were represented, with a majority from the latter clade. Only 24 of 241 “species” had 99% or greater sequence similarity to named reference sequences in GenBank, and several clades with multiple “species” could not be identified at the genus level by phylogenetic comparisons with named sequences. The total estimated “species” richness for this 11.2-ha site was 367 “species” of basidiomycetes. Since >99% of the study area has not been sampled, the accuracy of our diversity estimate is uncertain. Replication in time and space is required to detect additional diversity and the underlying community structure. PMID:16950900

  20. Preliminary validation of the Michigan Body Map.

    PubMed

    Brummett, Chad M; Bakshi, Rishi R; Goesling, Jenna; Leung, Daniel; Moser, Stephanie E; Zollars, Jennifer W; Williams, David A; Clauw, Daniel J; Hassett, Afton L

    2016-06-01

    We developed the Michigan Body Map (MBM) as a self-report measure to assess body areas where chronic pain is experienced and to specifically quantify the degree of widespread body pain when assessing for centralized pain features (eg, fibromyalgia-like presentation). A total of 402 patients completed the measure in 5 distinct studies to support the validation of the original and a revised version of the MBM. Administration is rapid 39 to 44 seconds, and errors for the original MBM were detected in only 7.2% of the possible body areas. Most errors underestimated the number of painful areas or represented confusion in determining the right vs left side. The MBM was preferred (P = 0.013) and felt to better depict pain location (P = 0.001) when compared with the Widespread Pain Index checklist of the 2011 Fibromyalgia Survey Criteria, but participants did not express any preference between the MBM and Brief Pain Inventory body map. Based on the data from the first 3 studies, a revised version of the MBM was created including a front and back body image and improved guidance on right-sidedness vs left. The revised MBM was preferred when compared with the original and was more accurate in depicting painful body areas (P = 0.004). Furthermore, the revised MBM showed convergent and discriminant validity with other self-report measures of pain, mood, and function. In conclusion, the MBM demonstrated utility, reliability, and construct validity. This new measure can be used to accurately assess the distribution of pain or widespread bodily pain as an element of the fibromyalgia survey score. PMID:26835782

  1. Holocene vegetation history and Lake Michigan lake-level fluctuations on the southern shore of the Upper Peninsula of Michigan

    SciTech Connect

    Petty, W.H. )

    1994-06-01

    A 250-cm sediment core with a base radiocarbon date of 7960 yrs BP was collected in June of 1993 from Elbow Lake, Mackinac Co., Michigan. Radiocarbon dates and fossil pollen preserved in lake sediments indicate that changes in vegetation are related to changes in climate and proximity to the Lake Michigan shoreline. Basal radiocarbon dates on sediment cores from a transect of ponds combined with tree-ring cores and GLO surveyor notes of a shipwreck reveal an average late-Holocene rate of regression of 3 feet per year. The pollen record, sediment stratigraphy, and sediment accumulation rates show that this general retreat of the shoreline was punctuated by periodic high stands. Radiocarbon dates of [approximately]6900 yrs BP indicate a high stand of Lake Michigan during the late-Chippewa state of Lake Michigan, prior to the classically recognized Nipissing-I high stand at [approximately]4500 yrs PB. Pollen percentages for Tsuga canadensis and Fagus grandifolia both reach > 1% by 5500 yrs BP, indicating that the northern shore of Lake Michigan provided suitable habitat for colonization by these species. Establishment of F. grandifolia at this time is associated with a rise in water table and is [approximately]2000 years prior to its expansion into the interior of the Upper Peninsula after 3500 yrs BP. A further increase in mesic hardwoods along with T. canadensis to their modern level by 2200 yrs BP is associated with an increase in sediment accumulation rate, indicative of a rising lake level and moister climate.

  2. Remote sensing in Michigan for land resource management

    NASA Technical Reports Server (NTRS)

    Lowe, D. S.; Istvan, L. B.; Roller, N. E. G.; Sellman, A. N.; Wagner, T. W.

    1975-01-01

    The utilization of NASA earth resource survey technology as an important aid in the solution of current problems in resource management and environmental protection in Michigan is discussed. Remote sensing techniques to aid Michigan government agencies were used to achieve the following results: (1) provide data on Great Lakes beach recession rates to establish shoreline zoning ordinances; (2) supply technical justification for public acquisition of land to establish the St. John's Marshland Recreation Area; (3) establish economical and effective methods for performing a statewide wetlands survey; (4) accomplish a variety of regional resource management actions in the Upper Peninsula; and (5) demonstrate improved soil survey methods. The project disseminated information on remote sensing technology and provided advice and assistance to a number of users in Michigan.

  3. The Michigan regulatory incentives study for electric utilities

    SciTech Connect

    Reid, M.W.; Weaver, E.M. )

    1991-06-17

    This is the final report of Phase I of the Michigan Regulatory Incentives Study for Electric Utilities, a three-phase review of Michigan's regulatory system and its effects on resource selection by electric utilities. The goal of Phase I is to identify and analyze financial incentive mechanisms that encourage selection of resources in accord with the principles of integrated resource planning (IRP) or least-cost planning (LCP). Subsequent study phases will involve further analysis of options and possibly a collaborative formal effort to propose regulatory changes. The Phase I analysis proceeded in three steps: (1) identification and review of existing regulatory practices that affect utilities; selection of resources, particularly DSM; (2) preliminary analysis of ten financial mechanisms, and selection of three for further study; (3) detailed analysis of the three mechanisms, including consideration of how they could be implemented in Michigan and financial modeling of their likely impacts on utilities and ratepayers.

  4. Daytime distribution of Pontoporeia affinis off bottom in Lake Michigan

    USGS Publications Warehouse

    Wells, LaRue

    1968-01-01

    The vertical migration of the amphipod Pontoporeia affinis in Lake Michigan has been well documented by Wells, Marzolf, and McNaught and Hasler. Wells and Marzolf observed Pontoporeia off bottom only at night. McNaught and Hasler, however, found Pontoporeia above the bottom shortly after noon in a 24-hr study on 12 June 1965, and some individuals were taken just below the thermocline in all daylight hours in a similar study on 19-20 August. This paper presents evidence that Pontoporeia regularly were present above bottom during the day from April-August 1964. The data for this report were collected during a study of seasonal and depth distribution of larval bloaters (Coregonus hoyi) in Lake Michigan. Sampling was conducted from the U.S. Bureau of Commercial Fisheries RV Cisco off Saugatuck, Michigan, at intervals of about 10 days from 9 April to 14 August 1964. A few samples were taken on 22 August and 15 October.

  5. Corrosion and arc erosion in MHD channels. Quarterly progress report, July--September 1991

    SciTech Connect

    Rosa, R.J.; Pollina, R.J. |

    1991-10-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate.

  6. Three-dimensional analysis of MHD generators and diffusers

    SciTech Connect

    Vanka, S P; Ahluwalia, R K; Doss, E D

    1982-03-01

    The three-dimensional flow and heat transfer phenomena in MHD channels and diffusers are analyzed by solving the governing partial differential equations for flow and electrical fields. The equation set consists of the mass continuity equation, the three momentum equations, the equations for enthalpy, turbulence kinetic energy and its dissipation rate, and the Maxwell equations. This set of coupled equations is solved by the use of a finite-difference calculation procedure. The turbulence is represented by a two-equation model of turbulence in which partial differential equations are solved for the turbulence kinetic energy and its dissipation rate. Calculations have been performed for Faraday and diagonally-connected channels. Specifically, the AEDC (Faraday) and the UTSI (diagonal) channels have been analyzed, and the results are compared with experimental data. The agreement is fairly good for all the measured quantities. The effects of channel loading on the three-dimensional flow characteristics of Faraday and diagonally-connected generators have been also analyzed. A simple argument is presented to show qualitatively the role of MHD body forces in generating axial vorticity and hence secondary flows in the cross-stream. Calculations have also been made to study the flow evolution in MHD diffusers. The calculations show that the velocity overshoots and secondary flows decay along the diffusers length. Plots of velocity, skin friction and pressure recovery are presented to illustrate the flow development in MHD diffusers.

  7. MHD-stable plasma confinement in an axisymmetric mirror system

    SciTech Connect

    Stupakov, G.V.

    1988-02-01

    If the magnetic field of a nonparaxial mirror system is chosen appropriately, it is possible to maintain a sharp plasma boundary in an open axisymmetric confinement system in a manner which is stable against flute modes (both global and small-scale). Stability prevails in the ideal MHD approximation without finite-ion-Larmor radius effects.

  8. 2-D skin-current toroidal-MHD-equilibrium code

    SciTech Connect

    Feinberg, B.; Niland, R.A.; Coonrod, J.; Levine, M.A.

    1982-09-01

    A two-dimensional, toroidal, ideal MHD skin-current equilibrium computer code is described. The code is suitable for interactive implementation on a minicomptuer. Some examples of the use of the code for design and interpretation of toroidal cusp experiments are presented.

  9. Study of MHD Effects on Surface Waves in Liquid Gallium

    NASA Astrophysics Data System (ADS)

    Fox, W.; Ji, H.; Pace, D.; Rappaport, H.

    2001-10-01

    The liquid metal experiment (LMX) at the Princeton Plasma Physics Laboratory has been constructed to study magnetohydrodynamic (MHD) effects on the propagation of surface waves in liquid metals in an imposed horizontal magnetic field. The physics of liquid metal is of interest generally as a regime of small magnetic Reynolds number MHD and more specifically contributes basic knowledge to the applications of liquid lithium walls in a fusion reactor. Surface waves are driven by a wave driver controlled by a PC-based Labview system. A non-invasive diagnostic measures surface fluctuations at multiple locations accurately by reflecting an array of lasers off the surface and onto a screen recorded by an ICCD camera. The real part of the dispersion relation has been measured precisely and agrees well with a linear theory, revealing the role of surface oxidation. Experiments have also confirmed that a transverse magnetic field does not affect wave propagation, and have qualitatively observed MHD damping (a non-zero imaginary component of the dispersion relation) of waves propagating in a parallel magnetic field. Planned upgrades to LMX will enable quantitative measurement of this MHD damping rate as well as experiments on two-dimensional waves and nonlinear waves. Implications to the liquid metal wall concept in fusion reactors will be discussed.

  10. Reducing radiative losses in aluminum-hydrogen MHD generators

    NASA Astrophysics Data System (ADS)

    Bityurin, V. A.; Galaktionov, A. V.; Kolpakov, A. V.

    2010-11-01

    Rigorous estimations are obtained for the integral thermal radiation flux from a working substance to walls of a high-temperature setup. These estimations are convenient for engineering calculations and can be used in solving problems related to radiative losses in promising aluminum-hydrogen MHD generators.

  11. Modified NASA-Lewis chemical equilibrium code for MHD applications

    NASA Technical Reports Server (NTRS)

    Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.

    1979-01-01

    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view.

  12. MHD aspects of fire-hose type instabilities

    NASA Astrophysics Data System (ADS)

    Wang, B. J.; Hau, L. N.

    2003-12-01

    In a homogeneous anisotropic plasma the magnetohydrodynamic (MHD) shear Alfvén wave may become unstable for p∥ > p⊥ + B2/μo. Recently, a new type of fire-hose instability was found by Hellinger and Matsumoto [2000] that has maximum growth rate occurring for oblique propagation and may grow faster than the Alfvén mode. This new mode is compressional and may be more efficient at destroying pressure anisotropy than the standard fire hose. This paper examines the fire-hose type (p∥ > p⊥) instabilities based on the linear and nonlinear double-polytropic MHD theory. It is shown that there exist two types of MHD fire-hose instabilities, and with suitable choice of polytropic exponents the linear instability criteria become the same as those based on the Vlasov theory in the hydromagnetic limit. Moreover, the properties of the nonlinear MHD fire-hose instabilities are found to have great similarities with those obtained from the kinetic theory and hybrid simulations. In particular, the classical fire-hose instability evolves toward the linear fire-hose stability threshold, while the nonlinear marginal stability associated with the new fire hose is well below the condition of β∥ - β⊥ = 2 but complies with less stringent linear stability threshold for compressible Alfvén waves.

  13. MHD Energy Bypass Scramjet Performance with Real Gas Effects

    NASA Technical Reports Server (NTRS)

    Park, Chul; Mehta, Unmeel B.; Bogdanoff, David W.

    2000-01-01

    The theoretical performance of a scramjet propulsion system incorporating an magneto-hydro-dynamic (MHD) energy bypass scheme is calculated. The one-dimensional analysis developed earlier, in which the theoretical performance is calculated neglecting skin friction and using a sudden-freezing approximation for the nozzle flow, is modified to incorporate the method of Van Driest for turbulent skin friction and a finite-rate chemistry calculation in the nozzle. Unlike in the earlier design, in which four ramp compressions occurred in the pitch plane, in the present design the first two ramp compressions occur in the pitch plane and the next two compressions occur in the yaw plane. The results for the simplified design of a spaceliner show that (1) the present design produces higher specific impulses than the earlier design, (2) skin friction substantially reduces thrust and specific impulse, and (3) the specific impulse of the MHD-bypass system is still better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Results suggest that the energy management with MHD principles offers the possibility of improving the performance of the scramjet. The technical issues needing further studies are identified.

  14. General Description of Ideal Tokamak MHD Instability II

    NASA Astrophysics Data System (ADS)

    Shi, Bing-ren

    2002-08-01

    In this subsequent study on general description of ideal tokamak MHD instability, the part II, by using a coordinate with rectified magnetic field lines, the eigenmode equations describing the low-mode-number toroidal Alfven modes (TAE and EAE) are derived through a further expansion of the shear Alfven equation of motion.

  15. TAE modes and MHD activity in TFTR DT plasmas

    SciTech Connect

    Fredrickson, E.; Batha, S.; Bell, M.

    1995-03-01

    The high power deuterium and tritium experiments on TFTR have produced fusion a parameters similar to those expected on ITER. The achieved {beta}{sub {alpha}}/{beta} and the R{triangledown}{beta}{sub {alpha}} in TFRR D-T shots are 1/2 to 1/3 those predicted in the ITER EDA. Studies of the initial TFTR D-T plasmas find no evidence that the presence of the fast fusion {alpha} population has affected the stability of MHD, with the possible exception of Toroidal Alfven Eigenmodes (TAE`s). The initial TFTR DT plasmas had MHD activity similar to that commonly seen in deuterium plasmas. Operation of TFTR at plasma currents of 2.0--2.5 MA has greatly reduced the deleterious effects of MHD commonly observed at lower currents. Even at these higher currents, the performance of TFTR is limited by {beta}-limit disruptions. The effects of MHD on D-T fusion {alpha}`s was similar to effects observed on other fusion products in D only plasmas.

  16. Hamiltonian description of ideal fluids and MHD flows

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. A.

    2002-11-01

    Vortex line and magnetic line representations are introduced for description of flows in ideal hydrodynamics and MHD, respectively. For incompressible fluids it is shown that the equations of motion for vorticity Ω and magnetic field with the help of this transformation follow from the variational principle. By means of this representation it is possible to integrate the system of hydrodynamic type with the Hamiltonian lH=int |Ω| dr. It is also demonstrated that these representations allow to remove from the noncanonical Poisson brackets, defined on the space of divergence-free vector fields, degeneracy connected with the vorticity frozenness for the Euler equation and with magnetic field frozenness for ideal MHD. For MHD a new Weber type transformation is found. It is shown how this transformation can be obtained from the two-fluid model when electrons and ions can be considered as two independent fluids. The Weber type transformation for ideal MHD gives the whole Lagrangian vector invariant. When this invariant is absent this transformation coincides with the Clebsch representation analog introduced in (V.E.Zakharov and E.A.Kuznetsov, Doklady USSR Ac. Nauk. (Soviet Doklady), 194), 1288 (1970).

  17. On Regularity Criteria for the 2D Generalized MHD System

    NASA Astrophysics Data System (ADS)

    Jiang, Zaihong; Wang, Yanan; Zhou, Yong

    2016-06-01

    This paper deals with the problem of regularity criteria for the 2D generalized MHD system with fractional dissipative terms {-Λ^{2α}u} for the velocity field and {-Λ^{2β}b} for the magnetic field respectively. Various regularity criteria are established to guarantee smoothness of solutions. It turns out that our regularity criteria imply previous global existence results naturally.

  18. MHD discontinuities in solar flares: Continuous transitions and plasma heating

    NASA Astrophysics Data System (ADS)

    Ledentsov, L. S.; Somov, B. V.

    2015-12-01

    The boundary conditions for the ideal MHD equations on a plane discontinuity surface are investigated. It is shown that, for a given mass flux through a discontinuity, its type depends only on the relation between inclination angles of a magnetic field. Moreover, the conservation laws on a surface of discontinuity allow changing a discontinuity type with gradual (continuous) changes in the conditions of plasma flow. Then there are the so-called transition solutions that satisfy simultaneously two types of discontinuities. We obtain all transition solutions on the basis of the complete system of boundary conditions for the MHD equations. We also found the expression describing a jump of internal energy of the plasma flowing through the discontinuity. Firstly, this allows constructing a generalized scheme of possible continuous transitions between MHD discontinuities. Secondly, it enables the examination of the dependence of plasma heating by plasma density and configuration of the magnetic field near the discontinuity surface, i.e., by the type of the MHD discontinuity. It is shown that the best conditions for heating are carried out in the vicinity of a reconnecting current layer near the areas of reverse currents. The result can be helpful in explaining the temperature distributions inside the active regions in the solar corona during flares observed by modern space observatories in soft and hard X-rays.

  19. 3D MHD Models of Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  20. Power Requirement for Nonequilibrium MHD-Bypass Scramjet

    NASA Technical Reports Server (NTRS)

    Park, Chul; Bogdanoff, David W.; Mehta, Unmeel

    2000-01-01

    It has been suggested previously that the performance of scramjet propulsion system may be improved by the use of magnetohydrodynamic (MHD) energy bypass: an MHD generator could be made to decelerate the flow entering the combustor, thereby improving combustion efficiency, and the electrical power generated could be made to accelerate the flow exiting from the combustor prior to expanding through the nozzle. In one of such proposed schemes, the MHD generator is proposed to be operated at a low temperature and ionization is to be achieved under nonequilibrium by the application of an external power. In the present work, the required power of such an external source is calculated assuming a 100%-efficient nonequilibrium ionization scheme. The power required is that needed to prevent the degree of ionization from reaching equilibrium with the low gas temperature. The flow is seeded with potassium or cesium. Specific impulse is calculated with and without turbulent friction. The results show that, for typical intended flight conditions, the specific impulse obtained is substantially higher than that of a typical scramjet, but the required external-power is several times that of the power generated in the MHD generator.

  1. MHD--Developing New Technology to Meet the Energy Crisis

    ERIC Educational Resources Information Center

    Fitch, Sandra S.

    1978-01-01

    Magnetohydrodynamics is a technology that could utilize the nation's most abundant fossil fuel and produce electrical energy more efficiently and cleanly than present-day turbines. A national research and development program is ongoing in Butte, Montana at the Montana Energy and MHD Research and Development Institute (MERDI). (Author/RK)

  2. Initial assessment of the MHD stability of TMX-U

    SciTech Connect

    Nexsen, W.E.

    1983-08-04

    In its operation to date TMX-U has reached values of beta which, for all except the hot electron beta, are close to the proposal values and has not encountered MHD stability problems. The hot electron beta values are presently limited by gyrotron output power and pulse length as well as ion confinement time. Further exploration of stability awaits full thermal barrier operation.

  3. 33 CFR 165.910 - Security Zones; Captain of the Port Lake Michigan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... beginning. (7) 68th Street Water Intake Crib. All waters of Lake Michigan within the arc of a circle with a...″ W. (8) Dever Water Intake Crib. All waters of Lake Michigan within the arc of a circle with a 100...) 79th Street Water Intake Crib. All waters of Lake Michigan within the arc of a circle with a...

  4. 33 CFR 165.910 - Security Zones; Captain of the Port Lake Michigan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... beginning. (7) 68th Street Water Intake Crib. All waters of Lake Michigan within the arc of a circle with a...″ W. (8) Dever Water Intake Crib. All waters of Lake Michigan within the arc of a circle with a 100...) 79th Street Water Intake Crib. All waters of Lake Michigan within the arc of a circle with a...

  5. 33 CFR 165.910 - Security Zones; Captain of the Port Lake Michigan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... beginning. (7) 68th Street Water Intake Crib. All waters of Lake Michigan within the arc of a circle with a...″ W. (8) Dever Water Intake Crib. All waters of Lake Michigan within the arc of a circle with a 100...) 79th Street Water Intake Crib. All waters of Lake Michigan within the arc of a circle with a...

  6. 76 FR 52356 - Indiana Michigan Power Company, Donald C. Cook Nuclear Plant, Unit 1; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... COMMISSION Indiana Michigan Power Company, Donald C. Cook Nuclear Plant, Unit 1; Environmental Assessment and... to Indiana Michigan Power Company (the licensee), for operation of Donald C. Cook Nuclear Plant, Unit 1 (DCCNP-1), located in Berrien County, Michigan, in accordance with Title 10 of the Code of...

  7. Creating a State-Wide Virtual Health Library: The Michigan Experience.

    ERIC Educational Resources Information Center

    Brenneise, Harvey

    The AccessMichigan Electronic Community Health Information Initiative (AMECHII) is a response to a recommendation of the Michigan Information Technology Commission Report recommending improved access to high-quality health care information for all Michigan stakeholders. This project is multi-type, including public, general academic, academic…

  8. Maintenance Required: Charter Schooling in Michigan. Education Sector Reports: Charter School Series

    ERIC Educational Resources Information Center

    Mead, Sara

    2006-01-01

    Michigan is no stranger to the effects of competition. The auto industry was forced to adjust to an onslaught of foreign competition in the 70s and 80s. Now, Michigan's public schools face their own competition in the form of public charter schools. Since 1993, when Michigan became one of the first states in the nation to enact charter…

  9. Results from the 2009 Michigan Farm to School Survey: Participation Grows from 2004

    ERIC Educational Resources Information Center

    Colasanti, Kathryn J. A.; Matts, Colleen; Hamm, Michael W.

    2012-01-01

    Objective: This study investigated changes in Michigan school food service directors' farm to school (FTS) participation levels and perspectives since a 2004 survey and factors that would facilitate FTS expansion. Design: Electronic survey census of all Michigan school food service directors. Setting: Michigan kindergarten-12th grade schools.…

  10. Competency-Based Teacher Education in the State of Michigan--1974.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Education, Lansing. Teacher Preparation and Professional Development Services.

    This four-part paper on competency-based teacher education (CBTE) in Michigan contains the following sections: (a) the development of CBTE in Michigan, consisting of a chronology of events dating from 1971, and a listing of CBTE grants programs in 1974; (b) a survey of CBTE programs in Michigan, including an overview of the programs and status…

  11. 78 FR 59954 - Notice of Inventory Completion: Michigan State Police, Mount Pleasant Post, Mount Pleasant, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... National Park Service Notice of Inventory Completion: Michigan State Police, Mount Pleasant Post, Mount Pleasant, MI AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Michigan State Police... the Michigan State Police, Mount Pleasant Post. If no additional requestors come forward, transfer...

  12. 78 FR 37712 - Safety Zone; Chicago Match Cup Race; Lake Michigan; Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Chicago Match Cup Race; Lake Michigan; Chicago, IL AGENCY... safety zone on Lake Michigan near Chicago, Illinois for the 2013 AWMRT Chicago Match Cup Race. This zone... being enforced without permission of the Captain of the Port, Lake Michigan. DATES: This regulation...

  13. Predesign of an experimental (5-10 MWt) disk MHD facility and prospects of commercial (1000 MWt) MHD/steam systems

    NASA Astrophysics Data System (ADS)

    Massee, P.; Degraaf, H. A. L.; Balemans, W. J. M.; Knoopers, H. G.; Tenkate, H. H. J.

    1990-10-01

    An experimental disk MHD (Magneto Hydro Dynamic) facility was designed. After designing the superconducting magnet for the open cycle disk MHD generator, the warm bore of the magnet was used as a constraint in designing the closed cycle disk MHD generator. In the experimental MHD facility an enthalpy extraction of 8.7 could be obtained with a 10 MWt open cycle MHD generator and 37.0 by means of a 5 MWt closed cycle MHD generator. System studies of four commercial scale MHD/steam systems were performed. The 1000 MWt open cycle disk generator leads to the smallest coal to busbar efficiency of 42.8. The highest coal to busbar efficiency of 50.0 is obtained in a commercial system with a closed cycle disk generator. The open cycle linear MHD/steam system leads to a coal to busbar efficiency of 49.4. When the details of the heat source and the required heat exchangers are considered, it can be anticipated that the system with an open cycle linear MHD generator will have the lowest cost of electricity (fl/kWh) of the four systems. The design of the superconducting magnet system for the experimental disk facility used principles that are valid also for large commercial systems. However, verification of these principles in an actual 1000 MWt superconducting magnet design needs further investigation.

  14. Remote sensing in Michigan for land resource management

    NASA Technical Reports Server (NTRS)

    Sattinger, I. J.; Sellman, A. N.; Istvan, L. B.; Cook, J. J.

    1973-01-01

    During the period from June 1972 to June 1973, remote sensing techniques were applied to the following tasks: (1) mapping Michigan's land resources, (2) waterfowl habitat management at Point Mouillee, (3) mapping of Lake Erie shoreline flooding, (4) highway impact assessment, (5) applications of the Earth Resources Technology Satellite, ERTS-1, (6) investigation of natural gas eruptions near Williamsburg, and (7) commercial site selection. The goal of the program was the large scale adaption, by both public agencies and private interests in Michigan, of earth-resource survey technology as an important aid in the solution of current problems in resources management and environmental protection.

  15. Height, weight and skinfold thickness of Michigan adults.

    PubMed Central

    Moffatt, R J; Sady, S P; Owen, G M

    1980-01-01

    Height, weight, and selected skinfold measurements were taken on 544 Michigan males and 557 females age 18 and over. Mean body weight showed a tendency to increase with age for both sexes up to age 64 while mean height progressively decreased from its maximum at age 18-24 years. Between ages 18 and 64 years, mean triceps skinfold thickness of men increased 10 per cent, female triceps skinfolds 50 per cent. Mean subscapular skinfold values rose consistently with age for both sexes. Comparison of these findings with those from earlier national studies suggest that Michigan adults are heavier and fatter but no taller than other US adults. PMID:7435748

  16. State court finds Michigan mandatory delay law unconstitutional.

    PubMed

    1994-07-22

    On July 15 (1994), Wayne County Circuit Court Judge John Murphy struck down Michigan's 1993 law requiring women seeking abortions to delay 24 hours after receiving state-mandated information. Finding that the Michigan Constitution encompasses a right to privacy, which includes the right to choose abortion, Judge Murphy invalidated the never-enforced law by applying "strict scrutiny"--the judicial standard used to review restrictions on fundamental rights. Although Roe v. Wade established strict scrutiny as the test for evaluating abortion restrictions, the US Supreme Court revised that standard as a matter of federal law when it adopted the less protective "undue burden" standard in Planned Parenthood v. Carey. As a result, the state constitutional right to privacy recognized by Judge Murphy is more protective of childbearing decisions than the corresponding federal right. Judge Murphy further found that the mandatory delay law violates a state constitutional prohibition on unfunded mandates because, while local health departments would be required to distribute the state-printed materials, the legislature did not appropriate monies to cover the costs of this added responsibility. Michigan officials have indicated that they will appeal the decision in Mahaffey v. Attorney General of Michigan, which is 1 of 2 lawsuits that were filed on March 10 against the mandatory delay law. Plaintiffs in the state case--a local health department official and 3 physicians--are represented by the ACLU of Michigan. CRLP attorneys represent more than 2 dozen reproductive health care providers who filed the other challenge, Northland Family Planning Inc. v. Engler, in federal court and obtained a temporary stay of the law. During 4 days of trial beginning on June 20, CRLP presented witnesses who testifed that the mandatory delay law would impose an undue burden on women seeking abortions in Michigan. As a result of Judge Murphy's ruling, CRLP federal case will be put on hold. However

  17. Polychlorinated biphenyl contamination of nursing mothers' milk in Michigan

    SciTech Connect

    Wickizer, T.M.; Brilliant, L.B.; Copeland, R.; Tilden, R.

    1981-02-01

    As part of an effort to assess the extent and distribution of PCB contamination in the human population of Michigan, PCB levels in the breast milk of Michigan nursing mothers were investigated. All of the 1057 samples collected from 68 counties contained PCB residues ranging from trace amounts to 5.1 ppm. The mean PCB level was 1.496 ppm. The public health significance of PCB contamination in human populations and the implications of PCB contamination of human milk for current breast-feeding practices are discussed. Several precautionary measures for nursing mothers are recommended.

  18. MHD Wave Modes Resolved in Fine-Scale Chromospheric Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Verth, G.; Jess, D. B.

    2016-02-01

    Due to its complex and dynamic fine-scale structure, the chromosphere is a particularly challenging region of the Sun's atmosphere to understand. It is now widely accepted that to model chromospheric dynamics, even on a magnetohydrodynamic (MHD) scale, while also calculating spectral line emission, one must realistically include the effects of partial ionization and radiative transfer in a multi-fluid plasma under non-LTE conditions. Accurate quantification of MHD wave energetics must be founded on a precise identification of the actual wave mode being observed. This chapter focuses on MHD kink-mode identification, MHD sausage mode identification, and MHD torsional Alfvén wave identification. It then reviews progress in determining more accurate energy flux estimations of specific MHD wave modes observed in the chromosphere. The chapter finally examines how the discovery of these MHD wave modes has helped us advance the field of chromospheric magnetoseismology.

  19. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed-cycle MHD results obtained in a recent study of various advanced energy-conversion power systems. The direct coal-fired MHD topping-steam bottoming cycle was established as the current choice for central station power generation. Emphasis is placed on the background assumptions and the conclusions that can be drawn from the closed-cycle MHD analysis. It is concluded that closed-cycle MHD has efficiencies comparable to that of open-cycle MHD. Its cost will possibly be slightly higher than that of the open-cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower-cost electricity than conventional steam power plants. Suggestions for further work in closed-cycle MHD components and systems are made.

  20. Adding Drift Kinetics to a Global MHD Code

    NASA Astrophysics Data System (ADS)

    Lyon, J.; Merkin, V. G.; Zhang, B.; Ouellette, J.

    2015-12-01

    Global MHD models have generally been successful in describing thebehavior of the magnetosphere at large and meso-scales. An exceptionis the inner magnetosphere where energy dependent particle drifts areessential in the dynamics and evolution of the ring current. Even inthe tail particle drifts are a significant perturbation on the MHDbehavior of the plasma. The most common drift addition to MHD has beeninclusion of the Hall term in Faraday's Law. There have been attemptsin the space physics context to include gradient and curvature driftswithin a single fluid MHD picture. These have not been terriblysuccessful because the use of a single, Maxwellian distribution doesnot capture the energy dependent nature of the drifts. The advent ofmulti-fluid MHD codes leads to a reconsideration of this problem. TheVlasov equation can be used to define individual ``species'' whichcover a specific energy range. Each fluid can then be treated ashaving a separate evolution. We take the approach of the RiceConvection Model (RCM) that each energy channel can be described by adistribution that is essentially isotropic in the guiding centerpicture. In the local picture, this gives rise to drifts that can bedescribed in terms of the energy dependent inertial and diamagneticdrifts. By extending the MHD equations with these drifts we can get asystem which reduces to the RCM approach in the slow-flow innermagnetosphere but is not restricted to cases where the flow speed issmall. The restriction is that the equations can be expanded in theratio of the Larmor radius to the gradient scale lengths. At scalesapproaching di, the assumption of gyrotropic (or isotropic)distributions break down. In addition to the drifts, the formalism canalso be used to include finite Larmor radius effects on the pressuretensor (gyro-viscosity). We present some initial calculations with this method.

  1. Performance and flow characteristics of MHD seawater thruster

    SciTech Connect

    Doss, E.D.

    1990-01-01

    The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.

  2. Space Radar Image of Raco, Michigan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    These are two false-color composites of Raco, Michigan, located at the eastern end of Michigan's upper peninsula, west of Sault Ste. Marie and south of Whitefish Bay on Lake Superior. The two images (centered at 46.39 degrees north latitude, 84.88 degrees west longitude) show significant seasonal changes in the mid-latitude region of mixed deciduous and coniferous forests. The images were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the shuttle Endeavour on the sixth orbit of each mission. In these images, red is L-band (23 cm) with horizontal/vertical polarization; green is C-band (6 cm) with horizontal/vertical polarization; blue is C-band with horizontal/horizontal polarization. The region shown is largely forested and includes a large portion of Hiawatha National Forest, as well as an agricultural region near the bottom of each image. In early April, the area was snow-covered with up to 50 centimeters (19.5 inches) of snow in forest clearings and agricultural fields. Buds had not yet broken on deciduous trees, but the trees were not frozen and sap was generally flowing. Lake Superior, in the upper right, and the small inland lakes were frozen and snow-covered on April 9, 1994. By the end of September, deciduous trees were just beginning to change color after a relatively wet period. Leaf loss was estimated at about 30 percent, depending on the species, and the soil was moist to wet after a heavy rainfall on September 28, 1994. Most agricultural fields were covered with grasses of up to 60 centimeters (23 inches) in height. In the two images the colors are related to the types of land cover (i.e. vegetation type) and the brightness is related to the amount of plant material and its relative moisture content. Significant seasonal changes between early spring and early fall are illustrated by this pair of images. For the agricultural region near the bottom of the images, the change from snow-cover to moist

  3. Space Radar Image of Raco, Michigan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    These are two false-color composites of Raco, Michigan, located at the eastern end of Michigan's upper peninsula, west of Sault Ste. Marie and south of Whitefish Bay on Lake Superior. The two images (centered at 46.39 degrees north latitude, 84.88 degrees west longitude) show significant seasonal changes in the mid-latitude region of mixed deciduous and coniferous forests. The images were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the shuttle Endeavour on the sixth orbit of each mission. In these images, red is L-band (23 cm) with horizontal/vertical polarization; green is C-band (6 cm) with horizontal/vertical polarization; blue is C-band with horizontal/horizontal polarization. The region shown is largely forested and includes a large portion of Hiawatha National Forest, as well as an agricultural region near the bottom of each image. In early April, the area was snow-covered with up to 50 centimeters (19.5 inches) of snow in forest clearings and agricultural fields. Buds had not yet broken on deciduous trees, but the trees were not frozen and sap was generally flowing. Lake Superior, in the upper right, and the small inland lakes were frozen and snow-covered on April 9, 1994. By the end of September, deciduous trees were just beginning to change color after a relatively wet period. Leaf loss was estimated at about 30 percent, depending on the species, and the soil was moist to wet after a heavy rainfall on September 28, 1994. Most agricultural fields were covered with grasses of up to 60 centimeters (23 inches) in height. In the two images the colors are related to the types of land cover (i.e. vegetation type) and the brightness is related to the amount of plant material and its relative moisture content. Significant seasonal changes between early spring and early fall are illustrated by this pair of images. For the agricultural region near the bottom of the images, the change from snow-cover to moist

  4. Area contingency plan southeast Michigan coastal zone. (COTP Detroit)

    SciTech Connect

    1994-07-01

    The Area Contingency Plan, mandated under the Oil Pollution Act, was developed by the Southeast Michigan Area Committee, which is chaired by the Coast Guard and consists of local, state, federal, and private members. The plan prepares in advance for an oil or hazardous substance spill in the COTP Detroit Coastal Zone.

  5. LAKE MICHIGAN MASS BALANCE: ATRAZINE MODELING AND LOADS

    EPA Science Inventory

    The Lake Michigan Mass Balance Study measured PCBs, mercury, trans-nonachlor, and atrazine in rivers, the atmosphere, sediments, lake water, and the food chain. A mathematical model will predict what effect reducing pollution will have on the lake, and its large fish (lake trout ...

  6. Michigan Rules and Regulations. Legal Modules for Vocational Cooperative Education.

    ERIC Educational Resources Information Center

    Western Michigan Univ., Kalamazoo.

    Intended for use by cooperative education program coordinators, this module deals with various Michigan rules and regulations as they pertain to students enrolled in vocational cooperative education programs. The following regulations/areas are covered: driving vehicle regulations, mechanic trainee certification, health facility standards,…

  7. The Michigan Alcoholism Screening Test (MAST): A Statistical Validation Analysis

    ERIC Educational Resources Information Center

    Laux, John M.; Newman, Isadore; Brown, Russ

    2004-01-01

    This study extends the Michigan Alcoholism Screening Test (MAST; M. L. Selzer, 1971) literature base by examining 4 issues related to the validity of the MAST scores. Specifically, the authors examine the validity of the MAST scores in light of the presence of impression management, participant demographic variables, and item endorsement…

  8. An Adolescent Version of the Michigan Alcoholism Screening Test.

    ERIC Educational Resources Information Center

    Snow, Mark; Thurber, Steven; Hodgson, Joele M.

    2002-01-01

    Item content of the Michigan Alcoholism Screening Test (MAST) was modified to make it more appropriate for young persons. The resulting test was found to have lower internal consistency than the adult MAST, but the elimination of five items with comparatively poor psychometric properties yielded an acceptable alpha coefficient. (Contains 10…

  9. Michigan Natural History. A Spring Activity Packet for Fourth Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the natural history of…

  10. Library of Michigan FY 2001 LSTA Subgrant Program Guidelines.

    ERIC Educational Resources Information Center

    Michigan Library, Lansing.

    This handbook provides FY (fiscal year) 2001 guidelines developed by the Library of Michigan for applying for LSTA (Library Services and Technology Act) subgrant funding. The handbook includes the following sections: (1) overview of the LSTA subgrant program; (2) general application guidelines for all funding areas; (3) budget category definitions…

  11. An Interdisciplinary International Business Degree at Eastern Michigan University

    ERIC Educational Resources Information Center

    Victor, David A.

    2008-01-01

    In January 2006, the College of Business at Eastern Michigan University (EMU) instituted a cross-disciplinary program in international business (IB). Business communication is a major component of the program. Moreover, the need for business communication in other languages contributed greatly to the cross-disciplinary nature of the program. This…

  12. Project CDCC. Coloma Community School District, Coloma, Michigan.

    ERIC Educational Resources Information Center

    Kaplan, Carol B.; Downey, Lee

    This description of career education activities in Coloma, Michigan, was prepared as part of a study conducted to identify evaluated, exemplary career education activities which represent the best of the current career education programs and practices referred to in Public Law 93-380. (See CE 018 212 for the final report of this study.) This…

  13. The International Cooperative Education Exchange Consortium of Eastern Michigan University.

    ERIC Educational Resources Information Center

    Schaub, Raymond

    Eastern Michigan University's International Cooperative Education Exchange Program provides 4-month foreign professional training assignments in Germany, France, or Spain for foreign language and Language and International Trade students. Potential student participants in the exchange program are evaluated on language proficiency, academic…

  14. Michigan English Study of Structure for Curriculum Evaluation (MESSAGE).

    ERIC Educational Resources Information Center

    Taylor, Vi Marie

    The Michigan English Study of Structure for Curriculum Evaluation (MESSAGE) training session involved 40 leaders of English curriculum study in a 7-day intensive program. They studied objective evaluation in terms of behavior, instruction, and institution; approaches to the English curriculum through instructional objectives that include…

  15. Research in Second Language Studies at Michigan State University

    ERIC Educational Resources Information Center

    Inceoglu, Solene; Spino, Le Anne

    2013-01-01

    Since its inception seven years ago, Michigan State University's vibrant Second Language Studies (SLS) Program has grown quickly under the direction of Dr. Susan Gass. Thus far, twelve students have graduated from the program and now hold academic positions in various universities in the United States and elsewhere. In 2011, the department…

  16. Reaction to Budgetary Stress in Michigan Public Schools

    ERIC Educational Resources Information Center

    Bolen, Maria A.

    2009-01-01

    This study focuses on how school districts in Michigan are reacting to budgetary stress brought on by the downturn in the economic climate. It addresses the key factors school districts can implement to increase revenues or decrease expenditures and identifies which of these factors districts choose and the reasons why. This study also analyzes…

  17. Michigan Community College Virtual Learning Collaborative Memorandum of Understanding.

    ERIC Educational Resources Information Center

    Michigan Community Coll. Association, Lansing.

    This memorandum of understanding was written to establish the general framework for collaboration among Michigan community colleges in support of technology-mediated courses. It also serves as a formal consortium agreement among member colleges so that students can receive financial assistance while enrolled in courses offered through the Michigan…

  18. FINE PORE DIFFUSER CASE HISTORY FOR FRANKENMUTH, MICHIGAN

    EPA Science Inventory

    Frankenmuth is a community of 4,000 people in central Michigan. bout 25-3O% of the flow and 50-70% of the BOD load to the wastewater treatment plant are contributed by a brewery. In January 1986, conversion from a stainless steel broad band coarse bubble diffuser system to fine ...

  19. An Analysis of the Charter School Facility Landscape in Michigan

    ERIC Educational Resources Information Center

    National Alliance for Public Charter Schools, 2013

    2013-01-01

    In spring of 2012, the Michigan Association of Public School Academies, the Colorado League of Charter Schools, and the National Alliance for Public Charter Schools worked to collect evidence that would accurately portray both the adequacy of charter school facilities and the average amount of operating funds spent on facilities. Collectively, the…

  20. Innovative Schools in Michigan. Connect: Making Learning Personal

    ERIC Educational Resources Information Center

    Page, Stephen F., Ed.

    2015-01-01

    This second issue of "Connect" highlights innovative teaching as practiced by teachers and administrators in Michigan schools as they seek to provide greater personalization for every student's learning. Nicholas Provenzano and Ben Gilpin give field reports from their schools, which have implemented a version of 20-Time--a concept…