Science.gov

Sample records for adaptor molecule myd88

  1. The Adaptor Protein Myd88 Is a Key Signaling Molecule in the Pathogenesis of Irinotecan-Induced Intestinal Mucositis.

    PubMed

    Wong, Deysi V T; Lima-Júnior, Roberto C P; Carvalho, Cibele B M; Borges, Vanessa F; Wanderley, Carlos W S; Bem, Amanda X C; Leite, Caio A V G; Teixeira, Maraiza A; Batista, Gabriela L P; Silva, Rangel L; Cunha, Thiago M; Brito, Gerly A C; Almeida, Paulo R C; Cunha, Fernando Q; Ribeiro, Ronaldo A

    2015-01-01

    Intestinal mucositis is a common side effect of irinotecan-based anticancer regimens. Mucositis causes cell damage, bacterial/endotoxin translocation and production of cytokines including IL-1 and IL-18. These molecules and toll-like receptors (TLRs) activate a common signaling pathway that involves the Myeloid Differentiation adaptor protein, MyD88, whose role in intestinal mucositis is unknown. Then, we evaluated the involvement of TLRs and MyD88 in the pathogenesis of irinotecan-induced intestinal mucositis. MyD88-, TLR2- or TLR9-knockout mice and C57BL/6 (WT) mice were given either saline or irinotecan (75 mg/kg, i.p. for 4 days). On day 7, animal survival, diarrhea and bacteremia were assessed, and following euthanasia, samples of the ileum were obtained for morphometric analysis, myeloperoxidase (MPO) assay and measurement of pro-inflammatory markers. Irinotecan reduced the animal survival (50%) and induced a pronounced diarrhea, increased bacteremia, neutrophil accumulation in the intestinal tissue, intestinal damage and more than twofold increased expression of MyD88 (200%), TLR9 (400%), TRAF6 (236%), IL-1β (405%), IL-18 (365%), COX-2 (2,777%) and NF-κB (245%) in the WT animals when compared with saline-injected group (P<0.05). Genetic deletion of MyD88, TLR2 or TLR9 effectively controlled the signs of intestinal injury when compared with irinotecan-administered WT controls (P<0.05). In contrast to the MyD88-/- and TLR2-/- mice, the irinotecan-injected TLR9-/- mice showed a reduced survival, a marked diarrhea and an enhanced expression of IL-18 versus irinotecan-injected WT controls. Additionally, the expression of MyD88 was reduced in the TLR2-/- or TLR9-/- mice. This study shows a critical role of the MyD88-mediated TLR2 and TLR9 signaling in the pathogenesis of irinotecan-induced intestinal mucositis.

  2. The Adaptor Protein Myd88 Is a Key Signaling Molecule in the Pathogenesis of Irinotecan-Induced Intestinal Mucositis

    PubMed Central

    Wong, Deysi V. T.; Lima-Júnior, Roberto C. P.; Carvalho, Cibele B. M.; Borges, Vanessa F.; Wanderley, Carlos W. S.; Bem, Amanda X. C.; Leite, Caio A. V. G.; Teixeira, Maraiza A.; Batista, Gabriela L. P.; Silva, Rangel L.; Cunha, Thiago M.; Brito, Gerly A. C.; Almeida, Paulo R. C.; Cunha, Fernando Q.; Ribeiro, Ronaldo A.

    2015-01-01

    Intestinal mucositis is a common side effect of irinotecan-based anticancer regimens. Mucositis causes cell damage, bacterial/endotoxin translocation and production of cytokines including IL–1 and IL–18. These molecules and toll-like receptors (TLRs) activate a common signaling pathway that involves the Myeloid Differentiation adaptor protein, MyD88, whose role in intestinal mucositis is unknown. Then, we evaluated the involvement of TLRs and MyD88 in the pathogenesis of irinotecan-induced intestinal mucositis. MyD88-, TLR2- or TLR9-knockout mice and C57BL/6 (WT) mice were given either saline or irinotecan (75 mg/kg, i.p. for 4 days). On day 7, animal survival, diarrhea and bacteremia were assessed, and following euthanasia, samples of the ileum were obtained for morphometric analysis, myeloperoxidase (MPO) assay and measurement of pro-inflammatory markers. Irinotecan reduced the animal survival (50%) and induced a pronounced diarrhea, increased bacteremia, neutrophil accumulation in the intestinal tissue, intestinal damage and more than twofold increased expression of MyD88 (200%), TLR9 (400%), TRAF6 (236%), IL–1β (405%), IL–18 (365%), COX–2 (2,777%) and NF-κB (245%) in the WT animals when compared with saline-injected group (P<0.05). Genetic deletion of MyD88, TLR2 or TLR9 effectively controlled the signs of intestinal injury when compared with irinotecan-administered WT controls (P<0.05). In contrast to the MyD88-/- and TLR2-/- mice, the irinotecan-injected TLR9-/- mice showed a reduced survival, a marked diarrhea and an enhanced expression of IL–18 versus irinotecan-injected WT controls. Additionally, the expression of MyD88 was reduced in the TLR2-/- or TLR9-/- mice. This study shows a critical role of the MyD88-mediated TLR2 and TLR9 signaling in the pathogenesis of irinotecan-induced intestinal mucositis. PMID:26440613

  3. The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury.

    PubMed

    Bollyky, Paul L; Bice, Jeffrey B; Sweet, Ian R; Falk, Ben A; Gebe, John A; Clark, April E; Gersuk, Vivian H; Aderem, Alan; Hawn, Thomas R; Nepom, Gerald T

    2009-01-01

    Commensal flora and pathogenic microbes influence the incidence of diabetes in animal models yet little is known about the mechanistic basis of these interactions. We hypothesized that Myd88, an adaptor molecule in the Toll-like-receptor (TLR) pathway, regulates pancreatic beta-cell function and homeostasis. We first examined beta-cells histologically and found that Myd88-/- mice have smaller islets in comparison to C57Bl/6 controls. Myd88-/- mice were nonetheless normoglycemic both at rest and after an intra-peritoneal glucose tolerance test (IPGTT). In contrast, after low-dose streptozotocin (STZ) challenge, Myd88-/-mice had an abnormal IPGTT relative to WT controls. Furthermore, Myd88-/- mice suffer enhanced beta-cell apoptosis and have enhanced hepatic damage with delayed recovery upon low-dose STZ treatment. Finally, we treated WT mice with broad-spectrum oral antibiotics to deplete their commensal flora. In WT mice, low dose oral lipopolysaccharide, but not lipotichoic acid or antibiotics alone, strongly promoted enhanced glycemic control. These data suggest that Myd88 signaling and certain TLR ligands mediate a homeostatic effect on beta-cells primarily in the setting of injury.

  4. The Toll-Like Receptor Signaling Molecule Myd88 Contributes to Pancreatic Beta-Cell Homeostasis in Response to Injury

    PubMed Central

    Bollyky, Paul L.; Bice, Jeffrey B.; Sweet, Ian R.; Falk, Ben A.; Gebe, John A.; Clark, April E.; Gersuk, Vivian H.; Aderem, Alan; Hawn, Thomas R.; Nepom, Gerald T.

    2009-01-01

    Commensal flora and pathogenic microbes influence the incidence of diabetes in animal models yet little is known about the mechanistic basis of these interactions. We hypothesized that Myd88, an adaptor molecule in the Toll-like-receptor (TLR) pathway, regulates pancreatic β-cell function and homeostasis. We first examined β-cells histologically and found that Myd88−/− mice have smaller islets in comparison to C57Bl/6 controls. Myd88−/− mice were nonetheless normoglycemic both at rest and after an intra-peritoneal glucose tolerance test (IPGTT). In contrast, after low-dose streptozotocin (STZ) challenge, Myd88−/−mice had an abnormal IPGTT relative to WT controls. Furthermore, Myd88−/− mice suffer enhanced β-cell apoptosis and have enhanced hepatic damage with delayed recovery upon low-dose STZ treatment. Finally, we treated WT mice with broad-spectrum oral antibiotics to deplete their commensal flora. In WT mice, low dose oral lipopolysaccharide, but not lipotichoic acid or antibiotics alone, strongly promoted enhanced glycemic control. These data suggest that Myd88 signaling and certain TLR ligands mediate a homeostatic effect on β-cells primarily in the setting of injury. PMID:19357791

  5. MyD88 Adaptor-Dependent Microbial Sensing by Regulatory T Cells Promotes Mucosal Tolerance and Enforces Commensalism.

    PubMed

    Wang, Sen; Charbonnier, Louis-Marie; Noval Rivas, Magali; Georgiev, Peter; Li, Ning; Gerber, Georg; Bry, Lynn; Chatila, Talal A

    2015-08-18

    Commensal microbiota promote mucosal tolerance in part by engaging regulatory T (Treg) cells via Toll-like receptors (TLRs). We report that Treg-cell-specific deletion of the TLR adaptor MyD88 resulted in deficiency of intestinal Treg cells, a reciprocal increase in T helper 17 (Th17) cells and heightened interleukin-17 (IL-17)-dependent inflammation in experimental colitis. It also precipitated dysbiosis with overgrowth of segmented filamentous bacteria (SFB) and increased microbial loads in deep tissues. The Th17 cell dysregulation and bacterial dysbiosis were linked to impaired anti-microbial intestinal IgA responses, related to defective MyD88 adaptor- and Stat3 transcription factor-dependent T follicular regulatory and helper cell differentiation in the Peyer's patches. These findings establish an essential role for MyD88-dependent microbial sensing by Treg cells in enforcing mucosal tolerance and maintaining commensalism by promoting intestinal Treg cell formation and anti-commensal IgA responses.

  6. Dual Activation of TRIF and MyD88 Adaptor Proteins by Angiotensin II Evokes Opposing Effects on Pressure, Cardiac Hypertrophy and Inflammatory Gene Expression

    PubMed Central

    Singh, Madhu V.; Cicha, Michael Z.; Meyerholz, David K.; Chapleau, Mark W.; Abboud, François M.

    2015-01-01

    Hypertension is recognized as an immune disorder whereby immune cells play a defining role in the genesis and progression of the disease. The innate immune system and its component toll-like receptors (TLRs) are key determinants of the immunological outcome through their pro-inflammatory response. TLR activated signaling pathways utilize several adaptor proteins of which adaptor proteins MyD88 and TRIF define two major inflammatory pathways. In this study, we compared the contributions of MyD88 and TRIF adaptor proteins to angiotensin II (Ang II)-induced hypertension and cardiac hypertrophy in mice. Deletion of MyD88 did not prevent cardiac hypertrophy and the pressor response to Ang II tended to increase. Moreover, the increase in inflammatory gene expression (Tnfa, Nox4 and Agtr1a) was significantly greater in the heart and kidney of MyD88-deficient mice compared with wild type mice. Thus, pathways involving MyD88 may actually restrain the inflammatory responses. On the other hand, in mice with non-functional TRIF (Trifmut mice), Ang II induced hypertension and cardiac hypertrophy were abrogated, and pro-inflammatory gene expression in heart and kidneys was unchanged or decreased. Our results indicate that Ang II induces activation of a pro-inflammatory innate immune response, causing hypertension, and cardiac hypertrophy. These effects require functional adaptor protein TRIF-mediated pathways. However, the common MyD88 dependent signaling pathway, which is also activated simultaneously by Ang II, paradoxically exerts a negative regulatory influence on these responses. PMID:26195481

  7. Dissecting a Hub for Immune Response: Modeling the Structure of MyD88.

    PubMed

    Naro, Chiara; Sette, Claudio

    2016-03-01

    Immune cells sense foreign organisms through the evolutionarily conserved family of Toll-like receptors. Signaling from these receptors relies on oligomerization of adaptor molecules. In this issue of Structure, Vynke et al. (2016) shed light on the dynamical structure of the homo- and hetero-dimerization domain of MyD88, the main adaptor utilized by Toll-like receptors.

  8. Atg5 regulates formation of MyD88 condensed structures and MyD88-dependent signal transduction.

    PubMed

    Inomata, Megumi; Into, Takeshi; Niida, Shumpei; Murakami, Yukitaka

    2013-08-09

    MyD88 is known as an essential adaptor protein for Toll-like receptors (TLRs). Previous studies have shown that transfected MyD88 forms condensed structures in the cytoplasm. However, upon TLR stimulation, there is little formation of endogenous MyD88 condensed structures. Thus, the formation of MyD88 condensed structures is tightly suppressed, but the mechanism and significance of this suppression are currently unknown. Here we show that Atg5, a key regulatory protein of autophagy, inhibits the formation of MyD88 condensed structures. We found that endogenous MyD88 had already formed condensed structures in Atg5-deficient cells and that the formation of condensed structures was further enhanced by TLR stimulation. This suppressive effect of Atg5 may not be associated with autophagic processes because MyD88 itself was not degraded and because TLR stimulation did not induce LC3 punctate formation and LC3 conversion. Immunoprecipitation analysis revealed that Atg5 could interact with MyD88. Furthermore, Atg5 deficiency increased formation of the MyD88-TRAF6 signaling complex induced by TLR stimulation, and it enhanced activation of NF-κB signaling but not MAPKs and Akt. These findings indicate that Atg5 regulates the formation of MyD88 condensed structures through association with MyD88 and eventually exerts a modulatory effect on MyD88-dependent signaling.

  9. Goose Toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88) and antiviral molecules involved in anti-H5N1 highly pathogenic avian influenza virus response.

    PubMed

    Wei, Liangmeng; Jiao, Peirong; Yuan, Runyu; Song, Yafen; Cui, Pengfei; Guo, Xuchen; Zheng, Bofang; Jia, Weixin; Qi, Wenbao; Ren, Tao; Liao, Ming

    2013-05-15

    In mammals, Toll-like receptor 7 (TLR7) is an important membrane-bound receptor triggered by antiviral compounds and single-stranded RNA. It is implicated in the immune response to viruses such as influenza virus. It was not known whether geese, a natural host for avian influenza viruses, possess a homologue of mammalian TLR7 for recognizing avian influenza virus. In this study, we cloned the full-length of goose TLR7 and partial sequences of its adaptor protein, myeloid differentiation factor 88 (MyD88), some antiviral molecules such as RNA-dependent protein kinase (PKR) and 2',5'-oligoadenylate synthetase (OAS). Goose TLR7 has a protein secondary structure identical to that of mammals, consisting of several leucine-rich domains, a transmembrane domain, and Toll/interleukin-1 receptor domain. To further understand whether the MyD88-dependent pathway of TLR7 is involved in the antiviral innate immune response against highly pathogenic avian influenza virus (HPAIV) infection in geese, we inoculated geese with an H5N1 HPAIV isolated from ducks in 2004. The virus, A/Duck/Guangdong/212/2004, replicated in various tissues resulting in 40% mortality. Quantitative real-time PCR analysis showed upregulation of mRNA transcripts for TLR7, MyD88, PKR and OAS in the lungs of geese at 1, 2 and 3 days post-inoculation. Therefore, the MyD88-dependent pathway of TLR7 was involved in the early stage of antiviral innate immune response in geese during H5N1 HPAIV infection.

  10. TLR signaling adaptor protein MyD88 in primary sensory neurons contributes to persistent inflammatory and neuropathic pain and neuroinflammation

    PubMed Central

    Liu, Xing-Jun; Liu, Tong; Chen, Gang; Wang, Bing; Yu, Xiao-Lu; Yin, Cui; Ji, Ru-Rong

    2016-01-01

    Increasing evidence suggests that neuro-immune and neuro-glial interactions are critically involved in chronic pain sensitization. It is well studied how immune/glial mediators sensitize pain, but how sensory neurons control neuroinflammation remains unclear. We employed Myd88 conditional knockout (CKO) mice, in which Myd88 was deleted in sodium channel subunit Nav1.8-expressing primary sensory neurons, to examine the unique role of neuronal MyD88 in regulating acute and chronic pain, and possible underlying mechanisms. We found that baseline pain and the formalin induced acute inflammatory pain were intact in CKO mice. However, the late phase inflammatory pain following complete Freund’s adjuvant injection and the late phase neuropathic pain following chronic constriction injury (CCI), were reduced in CKO mice. CCI induced up-regulation of MyD88 and chemokine C-C motif ligand 2 expression in DRG neurons and macrophage infiltration into DRGs, and microglia activation in spinal dorsal horns in wild-type mice, but all these changes were compromised in CKO mice. Finally, the pain hypersensitivity induced by intraplantar IL-1β was reduced in CKO mice. Our findings suggest that MyD88 in primary sensory neurons plays an active role in regulating IL-1β signaling and neuroinflammation in the peripheral and the central nervous systems, and contributes to the maintenance of persistent pain. PMID:27312666

  11. Acute Brain Injury Triggers MyD88-Dependent, TLR2/4-Independent Inflammatory Responses

    PubMed Central

    Koedel, Uwe; Merbt, Ulrike Michaela; Schmidt, Caroline; Angele, Barbara; Popp, Bernadette; Wagner, Hermann; Pfister, Hans-Walter; Kirschning, Carsten J.

    2007-01-01

    Endogenous molecules released from disrupted cells and extracellular matrix degradation products activate Toll-like receptors (TLRs) and, thus, might contribute to immune activation after tissue injury. Here, we show that aseptic, cold-induced cortical injury triggered an acute immune response that involves increased production of multiple cytokines/chemokines accompanied by neutrophil recruitment to the lesion site. We observed selective reductions in injury-induced cytokine/chemokine expression as well as in neutrophil accumulation in mice lacking the common TLR signaling adaptor MyD88 compared with wild-type mice. Notably, attenuation of the immune response was paralleled by a reduction in lesion size. Neutrophil depletion of wild-type mice and transplantation of MyD88-deficient bone marrow into lethally irradiated wild-type recipients had no substantial impact on injury-induced expression of cytokines/chemokines and on lesion development. In contrast to MyD88 deficiency, double deficiency of TLR2 and TLR4—despite the two receptors being activated by specific endogenous molecules associated to danger and signal through MyD88—altered neither immune response nor extent of tissue lesion size on injury. Our data indicate modulation of the neuroinflammatory response and lesion development after aseptic cortical injury through MyD88-dependent but TLR2/4-independent signaling by central nervous system resident nonmyeloid cells. PMID:17591966

  12. Absence of MyD88 results in enhanced TLR3-dependent phosphorylation of IRF3 and increased IFN-β and RANTES production.

    PubMed

    Siednienko, Jakub; Gajanayake, Thusitha; Fitzgerald, Katherine A; Moynagh, Paul; Miggin, Sinéad M

    2011-02-15

    Toll-like receptors are a group of pattern-recognition receptors that play a crucial role in "danger" recognition and induction of the innate immune response against bacterial and viral infections. TLR3 has emerged as a key sensor of viral dsRNA, resulting in the induction of the anti-viral molecule, IFN-β. Thus, a clearer understanding of the biological processes that modulate TLR3 signaling is essential. Previous studies have shown that the TLR adaptor, Mal/TIRAP, an activator of TLR4, inhibits TLR3-mediated IFN-β induction through a mechanism involving IRF7. In this study, we sought to investigate whether the TLR adaptor, MyD88, an activator of all TLRs except TLR3, has the ability to modulate TLR3 signaling. Although MyD88 does not significantly affect TLR3 ligand-induced TNF-α induction, MyD88 negatively regulates TLR3-, but not TLR4-, mediated IFN-β and RANTES production; this process is mechanistically distinct from that employed by Mal/TIRAP. We show that MyD88 inhibits IKKε-, but not TBK1-, induced activation of IRF3. In doing so, MyD88 curtails TLR3 ligand-induced IFN-β induction. The present study shows that while MyD88 activates all TLRs except TLR3, MyD88 also functions as a negative regulator of TLR3. Thus, MyD88 is essential in restricting TLR3 signaling, thereby protecting the host from unwanted immunopathologies associated with the excessive production of IFN-β. Our study offers a new role for MyD88 in restricting TLR3 signaling through a hitherto unknown mechanism whereby MyD88 specifically impairs IKKε-mediated induction of IRF3 and concomitant IFN-β and RANTES production.

  13. Transforming growth factor-beta differentially inhibits MyD88-dependent, but not TRAM- and TRIF-dependent, lipopolysaccharide-induced TLR4 signaling.

    PubMed

    Naiki, Yoshikazu; Michelsen, Kathrin S; Zhang, Wenxuang; Chen, Shuang; Doherty, Terence M; Arditi, Moshe

    2005-02-18

    Transforming growth factor-beta1 (TGF-beta1) is a multifunctional, potent anti-inflammatory cytokine produced by many cell types that regulates cell proliferation, apoptosis, and immune responses. Toll-like receptors (TLRs) recognize various pathogen-associated molecular patterns and are therefore a pivotal component of the innate immune system. In this study we show that TGF-beta1 blocks the NF-kappaB activation and cytokine release that is stimulated by ligands for TLRs 2, 4, and 5. We further show that TGF-beta1 can specifically interfere with TLR2, -4, or -5 ligand-induced responses involving the adaptor molecule MyD88 (myeloid differentiation factor 88) but not the TRAM/TRIF signaling pathway by decreasing MyD88 protein levels in a dose- and time-dependent manner without altering its mRNA expression. The proteasome inhibitor epoxomicin abolished the MyD88 degradation induced by TGF-beta1. Furthermore, TGF-beta1 resulted in ubiquitination of MyD88 protein, suggesting that TGF-beta1 facilitates ubiquitination and proteasomal degradation of MyD88 and thereby attenuates MyD88-dependent signaling by decreasing cellular levels of MyD88 protein. These findings importantly contribute to our understanding of molecular mechanisms mediating anti-inflammatory modulation of immune responses by TGF-beta1.

  14. MyD88 Is a Critical Regulator of Hematopoietic Cell-Mediated Neuroprotection Seen after Stroke

    PubMed Central

    Downes, Catherine E.; Wong, Connie H. Y.; Henley, Katya J.; Guio-Aguilar, Pedro L.; Zhang, Moses; Ates, Robert; Mansell, Ashley; Kile, Benjamin T.; Crack, Peter J.

    2013-01-01

    Neuroinflammation is critical in the neural cell death seen in stroke. It has been shown that CNS and peripheral responses drive this neuroinflammatory response in the brain. The Toll-like receptors (TLRs) are important regulators of inflammation in response to both exogenous and endogenous stressors. Taking advantage of a downstream adapter molecule that controls the majority of TLR signalling, this study investigated the role of the TLR adaptor protein myeloid differentiation factor 88 (MyD88) in the control of CNS and peripheral inflammation. Reversible middle-cerebral artery occlusion was used as the model of stroke in vivo; in vitro primary cultured neurons and glia were subject to four hours of oxygen and glucose deprivation (OGD). Both in vitro and in vivo Myd88−/− animals or cells were compared with wild type (WT). We found that after stroke Myd88−/− animals have a larger infarct volume compared to WT animals. Interestingly, in vitro there was no difference between the survival of Myd88−/− and WT cells following OGD, suggesting that peripheral responses were influencing stroke outcome. We therefore generated bone marrow chimeras and found that Myd88−/− animals have a smaller stroke infarct than their radiation naive counterparts if their hematopoietic cells are WT. Furthermore, WT animals have a larger stroke than their radiation naive counterparts if the hematopoietic cells are Myd88−/−. We have demonstrated that MyD88-dependent signalling in the hematopoietic cell lineage reduces infarct size following stroke and that infiltrating cells to the site of neuroinflammation are neuroprotective following stroke. PMID:23483951

  15. MyD88 deficiency markedly worsens tissue inflammation and bacterial clearance in mice infected with Treponema pallidum, the agent of syphilis.

    PubMed

    Silver, Adam C; Dunne, Dana W; Zeiss, Caroline J; Bockenstedt, Linda K; Radolf, Justin D; Salazar, Juan C; Fikrig, Erol

    2013-01-01

    Research on syphilis, a sexually transmitted infection caused by the non-cultivatable spirochete Treponema pallidum, has been hampered by the lack of an inbred animal model. We hypothesized that Toll-like receptor (TLR)-dependent responses are essential for clearance of T. pallidum and, consequently, compared infection in wild-type (WT) mice and animals lacking MyD88, the adaptor molecule required for signaling by most TLRs. MyD88-deficient mice had significantly higher pathogen burdens and more extensive inflammation than control animals. Whereas tissue infiltrates in WT mice consisted of mixed mononuclear and plasma cells, infiltrates in MyD88-deficient animals were predominantly neutrophilic. Although both WT and MyD88-deficient mice produced antibodies that promoted uptake of treponemes by WT macrophages, MyD88-deficient macrophages were deficient in opsonophagocytosis of treponemes. Our results demonstrate that TLR-mediated responses are major contributors to the resistance of mice to syphilitic disease and that MyD88 signaling and FcR-mediated opsonophagocytosis are linked to the macrophage-mediated clearance of treponemes.

  16. MyD88 is pivotal for the early inflammatory response and subsequent bacterial clearance and survival in a mouse model of Chlamydia pneumoniae pneumonia.

    PubMed

    Naiki, Yoshikazu; Michelsen, Kathrin S; Schröder, Nicolas W J; Alsabeh, Randa; Slepenkin, Anatoly; Zhang, Wenxuan; Chen, Shuang; Wei, Bo; Bulut, Yonca; Wong, Michelle H; Peterson, Ellena M; Arditi, Moshe

    2005-08-12

    Chlamydia pneumoniae is the causative agent of respiratory tract infections and a number of chronic diseases. Here we investigated the involvement of the common TLR adaptor molecule MyD88 in host responses to C. pneumoniae-induced pneumonia in mice. MyD88-deficient mice were severely impaired in their ability to mount an acute early inflammatory response toward C. pneumoniae. Although the bacterial burden in the lungs was comparable 5 days after infection, MyD88-deficient mice exhibited only minor signs of pneumonia and reduced expression of inflammatory mediators. MyD88-deficient mice were unable to up-regulate proinflammatory cytokines and chemokines, demonstrated delayed recruitment of CD8+ and CD4+ T cells to the lungs, and were unable to clear the pathogen from their lungs at day 14. At day 14 the MyD88-deficent mice developed a severe, chronic lung inflammation with elevated IL-1beta and IFN-gamma leading to increased mortality, whereas wild-type mice as well as TLR2- or TLR4-deficient mice recovered from acute pneumonia and did not show delayed bacterial clearance. Thus, MyD88 is essential to recognize C. pneumoniae infection and initiate a prompt and effective immune host response against this organism leading to clearance of bacteria from infected lungs.

  17. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals

    PubMed Central

    Chen, Chun-Jen; Shi, Yan; Hearn, Arron; Fitzgerald, Kate; Golenbock, Douglas; Reed, George; Akira, Shizuo; Rock, Kenneth L.

    2006-01-01

    While it is known that monosodium urate (MSU) crystals cause the disease gout, the mechanism by which these crystals stimulate this inflammatory condition has not been clear. Here we find that the Toll/IL-1R (TIR) signal transduction adaptor myeloid differentiation primary response protein 88 (MyD88) is required for acute gouty inflammation. In contrast, other TIR adaptor molecules, TIRAP/Mal, TRIF, and TRAM, are not required for this process. The MyD88-dependent TLR1, -2, -4, -6, -7, -9, and -11 and IL-18 receptor (IL-18R) are not essential for MSU-induced inflammation. Moreover, MSU does not stimulate HEK cells expressing TLR1–11 to activate NF-κB. In contrast, mice deficient in the MyD88-dependent IL-1R showed reduced inflammatory responses, similar to those observed in MyD88-deficient mice. Similarly, mice treated with IL-1 neutralizing antibodies also showed reduced MSU-induced inflammation, demonstrating that IL-1 production and IL-1R activation play essential roles in MSU-triggered inflammation. IL-1R deficiency in bone marrow–derived cells did not affect the inflammatory response; however, it was required in non–bone marrow–derived cells. These results indicate that IL-1 is essential for the MSU-induced inflammatory response and that the requirement of MyD88 in this process is primarily through its function as an adaptor molecule in the IL-1R signaling pathway. PMID:16886064

  18. Microglial activation by Citrobacter koseri is mediated by TLR4- and MyD88-dependent pathways.

    PubMed

    Liu, Shuliang; Kielian, Tammy

    2009-11-01

    Citrobacter koseri is a Gram-negative bacterium that can cause a highly aggressive form of neonatal meningitis, which often progresses to establish multifocal brain abscesses. Despite its tropism for the brain parenchyma, microglial responses to C. koseri have not yet been examined. Microglia use TLRs to recognize invading pathogens and elicit proinflammatory mediator expression important for infection containment. In this study, we investigated the importance of the LPS receptor TLR4 and MyD88, an adaptor molecule involved in the activation of the majority of TLRs in addition to the IL-1 and IL-18 receptors, for their roles in regulating microglial activation in response to C. koseri. Proinflammatory mediator release was significantly reduced in TLR4 mutant and MyD88 knockout microglia compared with wild-type cells following exposure to either live or heat-killed C. koseri, indicating a critical role for both TLR4- and MyD88-dependent pathways in microglial responses to this pathogen. However, residual proinflammatory mediator expression was still observed in TLR4 mutant and MyD88 KO microglia following C. koseri exposure, indicating a contribution of TLR4- and MyD88-independent pathway(s) for maximal pathogen recognition. Interestingly, C. koseri was capable of surviving intracellularly in both primary microglia and macrophages, suggesting that these cells may serve as a reservoir for the pathogen during CNS infections. These results demonstrate that microglia respond to C. koseri with the robust expression of proinflammatory molecules, which is dictated, in part, by TLR4- and MyD88-dependent signals.

  19. Molecular cloning and functional characterization of a novel isoform of chicken myeloid differentiation factor 88 (MyD88).

    PubMed

    Qiu, Yafeng; Shen, Yang; Li, Xiangdong; Ding, Chan; Ma, Zhiyong

    2008-01-01

    Myeloid differentiation factor 88 (MyD88) is an adaptor protein involved in the interleukin-1 receptor- and Toll-like receptor-induced activation of nuclear factor-kappaB (NF-kappaB). A novel isoform of chicken MyD88, designated chicken MyD88-2, has been cloned and functionally characterized. Its open reading frame is of length 900bp, and it encodes a predicted 299 residue protein, similar in length to its mammalian orthologues, but, respectively, 77 and 69 amino acids shorter than the previously described chicken MyD88-1 and -3. The amino acid sequence of chicken MyD88-2 displays 96.9%, 96.9%, 70.4% and 70.2% identity with, respectively, chicken MyD88-1, -3, human and mouse MyD88. Chicken MyD88-2 expression was detected in a range of tissues tested, but no expression of either chicken MyD88-1 or -3 was observed. The over-expression of chicken MyD88-2 significantly induced the activation of NF-kappaB in vitro, suggesting that chicken MyD88-2 plays an important role in the innate immune responses of chicken.

  20. The Brucella TIR-like protein TcpB interacts with the death domain of MyD88.

    PubMed

    Chaudhary, Anu; Ganguly, Kumkum; Cabantous, Stéphanie; Waldo, Geoffrey S; Micheva-Viteva, Sofiya N; Nag, Kamalika; Hlavacek, William S; Tung, Chang-Shung

    2012-01-06

    The pathogen Brucella melitensis secretes a Toll/interleukin-1 receptor (TIR) domain containing protein that abrogates host innate immune responses. In this study, we have characterized the biochemical interactions of Brucella TIR-like protein TcpB with host innate immune adaptor proteins. Using protein-fragment complementation assays based on Gaussia luciferase and green fluorescent protein, we find that TcpB interacts directly with MyD88 and that this interaction is significantly stronger than the interaction of TcpB with TIRAP, the only other adaptor protein that detectably interacts with TcpB. Surprisingly, the TcpB-MyD88 interaction depends on the death domain (DD) of MyD88, and TcpB does not interact with the isolated TIR domain of MyD88. TcpB disrupts MyD88(DD)-MyD88(DD), MyD88(DD)-MyD88(TIR) and MyD88(DD)-MyD88 interactions but not MyD88-MyD88 or MyD88(TIR)-MyD88(TIR) interactions. Structural models consistent with these results suggest how TcpB might inhibit TLR signaling by targeting MyD88 via a DD-TIR domain interface.

  1. MyD88 signaling in the CNS is required for development of fatty acid induced leptin resistance and diet-induced obesity

    PubMed Central

    Kleinridders, André; Schenten, Dominik; Könner, A. Christine; Belgardt, Bengt F.; Mauer, Jan; Okamura, Tomoo; Wunderlich, F. Thomas; Medzhitov, Ruslan; Brüning, Jens C.

    2014-01-01

    Summary Obesity-associated activation of inflammatory pathways represents a key step in the development of insulin resistance in peripheral organs, partially via activation of TLR-4 signaling by fatty acids. Here we demonstrate that palmitate acting in the central nervous system (CNS) inhibits leptin-induced anorexia and Stat-3 activation. To determine the functional significance of TLR signaling in the CNS in the development of leptin resistance and diet-induced obesity in vivo, we have characterized mice deficient for the TLR adaptor molecule MyD88 in the CNS (MyD88ΔCNS). Compared to control mice, MyD88ΔCNS mice are protected from high-fat diet (HFD)-induced weight gain, from the development of HFD-induced leptin resistance and from the induction of leptin resistance by acute central application of palmitate. Moreover, CNS-restricted MyD88 deletion protects from HFD- and icv palmitate-induced impairment of peripheral glucose metabolism. Thus, we define neuronal MyD88-dependent signaling as a key regulator of diet-induced leptin and insulin resistance in vivo. PMID:19808018

  2. Deletion of the gene encoding MyD88 protects from anorexia in a mouse tumor model.

    PubMed

    Ruud, Johan; Bäckhed, Fredrik; Engblom, David; Blomqvist, Anders

    2010-05-01

    The anorexia-cachexia syndrome, characterized by a rise in energy expenditure and loss of body weight that paradoxically are associated with loss of appetite and decreased food intake, contributes significantly to the morbidity and mortality in cancer. While the pathophysiology of cancer anorexia-cachexia is poorly understood, evidence indicates that pro-inflammatory cytokines are key mediators of this response. Although inflammation hence is recognized as an important component of cancer anorexia-cachexia, the molecular pathways involved are largely unknown. We addressed this issue in mice carrying a deletion of the gene encoding MyD88, the key intracellular adaptor molecule in Toll-like and interleukin-1 family receptor signaling. Wild-type and MyD88-deficient mice were transplanted subcutaneously with a syngenic methylcholanthrene-induced tumor (MCG 101) and daily food intake and body weight were recorded. Wild-type mice showed progressively reduced food intake from about 5days after tumor transplantation and displayed a slight body weight loss after 10days when the experiment was terminated. In contrast, MyD88-deficient mice did not develop anorexia, and displayed a positive body weight development during the observation period. While the MyD88-deficient mice on average developed somewhat smaller tumors than wild-type mice, this did not explain the absence of anorexia, because anorexia was seen in wild-type mice with similar tumor mass as non-anorexic knock-out mice. These data suggest that MyD88-dependent mechanisms are involved in the metabolic derangement during cancer anorexia-cachexia and that innate immune signaling is important for the development of this syndrome.

  3. Elucidation of Novel Structural Scaffold in Rohu TLR2 and Its Binding Site Analysis with Peptidoglycan, Lipoteichoic Acid and Zymosan Ligands, and Downstream MyD88 Adaptor Protein

    PubMed Central

    Sahoo, Bikash Ranjan; Basu, Madhubanti; Swain, Banikalyan; Dikhit, Manas Ranjan; Jayasankar, Pallipuram; Samanta, Mrinal

    2013-01-01

    Toll-like receptors (TLRs) play key roles in sensing wide array of microbial signatures and induction of innate immunity. TLR2 in fish resembles higher eukaryotes by sensing peptidoglycan (PGN) and lipoteichoic acid (LTA) of bacterial cell wall and zymosan of yeasts. However, in fish TLR2, no study yet describes the ligand binding motifs in the leucine rich repeat regions (LRRs) of the extracellular domain (ECD) and important amino acids in TLR2-TIR (toll/interleukin-1 receptor) domain that could be engaged in transmitting downstream signaling. We predicted these in a commercially important freshwater fish species rohu (Labeo rohita) by constructing 3D models of TLR2-ECD, TLR2-TIR, and MyD88-TIR by comparative modeling followed by 40 ns (nanosecond) molecular dynamics simulation (MDS) for TLR2-ECD and 20 ns MDS for TLR2-TIR and MyD88-TIR. Protein (TLR2-ECD)–ligands (PGN, LTA, and zymosan) docking in rohu by AutoDock4.0, FlexX2.1, and GOLD4.1 anticipated LRR16–19, LRR12–14, and LRR20-CT as the most important ligand binding motifs. Protein (TLR2-TIR)—protein (MyD88-TIR) interaction by HADDOCK and ZDOCK predicted BB loop, αB-helix, αC-helix, and CD loop in TLR2-TIR and BB loop, αB-helix, and CD loop in MyD88-TIR as the critical binding domains. This study provides ligands recognition and downstream signaling. PMID:23956969

  4. Characterization of bbtTICAM from amphioxus suggests the emergence of a MyD88-independent pathway in basal chordates.

    PubMed

    Yang, Manyi; Yuan, Shaochun; Huang, Shengfeng; Li, Jun; Xu, Liqun; Huang, Huiqing; Tao, Xin; Peng, Jian; Xu, Anlong

    2011-10-01

    The MyD88-independent pathway, one of the two crucial TLR signaling routes, is thought to be a vertebrate innovation. However, a novel Toll/interleukin-1 receptor (TIR) adaptor, designated bbtTICAM, which was identified in the basal chordate amphioxus, links this pathway to invertebrates. The protein architecture of bbtTICAM is similar to that of vertebrate TICAM1 (TIR-containing adaptor molecule-1, also known as TRIF), while phylogenetic analysis based on the TIR domain indicated that bbtTICAM is the oldest ortholog of vertebrate TICAM1 and TICAM2 (TIR-containing adaptor molecule-2, also known as TRAM). Similar to human TICAM1, bbtTICAM activates NF-κB in a MyD88-independent manner by interacting with receptor interacting protein (RIP) via its RHIM motif. Such activation requires bbtTICAM to form homodimers in endosomes, and it may be negatively regulated by amphioxus SARM (sterile α and armadillo motif-containing protein) and TRAF2. However, bbtTICAM did not induce the production of type I interferon. Thus, our study not only presents the ancestral features of vertebrate TICAM1 and TICAM2, but also reveals the evolutionary origin of the MyD88-independent pathway from basal chordates, which will aid in understanding the development of the vertebrate TLR network.

  5. Characterization of bbtTICAM from amphioxus suggests the emergence of a MyD88-independent pathway in basal chordates

    PubMed Central

    Yang, Manyi; Yuan, Shaochun; Huang, Shengfeng; Li, Jun; Xu, Liqun; Huang, Huiqing; Tao, Xin; Peng, Jian; Xu, Anlong

    2011-01-01

    The MyD88-independent pathway, one of the two crucial TLR signaling routes, is thought to be a vertebrate innovation. However, a novel Toll/interleukin-1 receptor (TIR) adaptor, designated bbtTICAM, which was identified in the basal chordate amphioxus, links this pathway to invertebrates. The protein architecture of bbtTICAM is similar to that of vertebrate TICAM1 (TIR-containing adaptor molecule-1, also known as TRIF), while phylogenetic analysis based on the TIR domain indicated that bbtTICAM is the oldest ortholog of vertebrate TICAM1 and TICAM2 (TIR-containing adaptor molecule-2, also known as TRAM). Similar to human TICAM1, bbtTICAM activates NF-κB in a MyD88-independent manner by interacting with receptor interacting protein (RIP) via its RHIM motif. Such activation requires bbtTICAM to form homodimers in endosomes, and it may be negatively regulated by amphioxus SARM (sterile α and armadillo motif-containing protein) and TRAF2. However, bbtTICAM did not induce the production of type I interferon. Thus, our study not only presents the ancestral features of vertebrate TICAM1 and TICAM2, but also reveals the evolutionary origin of the MyD88-independent pathway from basal chordates, which will aid in understanding the development of the vertebrate TLR network. PMID:21931360

  6. DAMP Molecule S100A9 Acts as a Molecular Pattern to Enhance Inflammation during Influenza A Virus Infection: Role of DDX21-TRIF-TLR4-MyD88 Pathway

    PubMed Central

    Tsai, Su-Yu; Segovia, Jesus A.; Chang, Te-Hung; Morris, Ian R.; Berton, Michael T.; Tessier, Philippe A.; Tardif, Mélanie R.; Cesaro, Annabelle; Bose, Santanu

    2014-01-01

    Pathogen-associated molecular patterns (PAMPs) trigger host immune response by activating pattern recognition receptors like toll-like receptors (TLRs). However, the mechanism whereby several pathogens, including viruses, activate TLRs via a non-PAMP mechanism is unclear. Endogenous “inflammatory mediators” called damage-associated molecular patterns (DAMPs) have been implicated in regulating immune response and inflammation. However, the role of DAMPs in inflammation/immunity during virus infection has not been studied. We have identified a DAMP molecule, S100A9 (also known as Calgranulin B or MRP-14), as an endogenous non-PAMP activator of TLR signaling during influenza A virus (IAV) infection. S100A9 was released from undamaged IAV-infected cells and extracellular S100A9 acted as a critical host-derived molecular pattern to regulate inflammatory response outcome and disease during infection by exaggerating pro-inflammatory response, cell-death and virus pathogenesis. Genetic studies showed that the DDX21-TRIF signaling pathway is required for S100A9 gene expression/production during infection. Furthermore, the inflammatory activity of extracellular S100A9 was mediated by activation of the TLR4-MyD88 pathway. Our studies have thus, underscored the role of a DAMP molecule (i.e. extracellular S100A9) in regulating virus-associated inflammation and uncovered a previously unknown function of the DDX21-TRIF-S100A9-TLR4-MyD88 signaling network in regulating inflammation during infection. PMID:24391503

  7. Lactobacillus rhamnosus GR-1 Limits Escherichia coli-Induced Inflammatory Responses via Attenuating MyD88-Dependent and MyD88-Independent Pathway Activation in Bovine Endometrial Epithelial Cells.

    PubMed

    Liu, Mingchao; Wu, Qiong; Wang, Mengling; Fu, Yunhe; Wang, Jiufeng

    2016-08-01

    Intrauterine Escherichia coli infection after calving reduces fertility and causes major economic losses in the dairy industry. We investigated the protective effect of the probiotic Lactobacillus rhamnosus GR-1 on E. coli-induced cell damage and inflammation in primary bovine endometrial epithelial cells (BEECs). L. rhamnosus GR-1 reduced ultrastructure alterations and the percentage of BEECs apoptosis after E. coli challenge. Increased messenger RNA (mRNA) expression of immune response indicators, including pattern recognition receptors (toll-like receptor [TLR]2, TLR4, nucleotide-binding oligomerization domain [NOD]1, and NOD2), inflammasome proteins (NOD-like receptor family member pyrin domain-containing protein 3, apoptosis-associated speck-like protein, and caspase-1), TLR4 downstream adaptor molecules (myeloid differentiation antigen 88 [MyD88], toll-like receptor adaptor molecule 2 [TICAM2]), nuclear transcription factor kB (NF-kB), and the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-18, and interferon (IFN)-β, was observed following E. coli challenge. However, these increases were attenuated by L. rhamnosus GR-1 pretreatment. Our data indicate that L. rhamnosus GR-1 ameliorates the E. coli-induced disruption of cellular ultrastructure, subsequently reducing the percentage of BEECs apoptosis and limiting inflammatory responses, partly via attenuation of MyD88-dependent and MyD88-independent pathway activation. Certain probiotics could potentially prevent postpartum uterine diseases in dairy cows, ultimately reducing the use of antibiotics.

  8. A liquid crystal of ascorbyl palmitate, used as vaccine platform, provides sustained release of antigen and has intrinsic pro-inflammatory and adjuvant activities which are dependent on MyD88 adaptor protein.

    PubMed

    Sánchez Vallecillo, María F; Minguito de la Escalera, María M; Aguirre, María V; Ullio Gamboa, Gabriela V; Palma, Santiago D; González-Cintado, Leticia; Chiodetti, Ana L; Soldano, Germán; Morón, Gabriel; Allemandi, Daniel A; Ardavín, Carlos; Pistoresi-Palencia, María C; Maletto, Belkys A

    2015-09-28

    Modern subunit vaccines require the development of new adjuvant strategies. Recently, we showed that CpG-ODN formulated with a liquid crystal nanostructure formed by self-assembly of 6-O-ascorbyl palmitate (Coa-ASC16) is an attractive system for promoting an antigen-specific immune response to weak antigens. Here, we showed that after subcutaneous injection of mice with near-infrared fluorescent dye-labeled OVA antigen formulated with Coa-ASC16, the dye-OVA was retained at the injection site for a longer period than when soluble dye-OVA was administered. Coa-ASC16 alone elicited a local inflammation, but how this material triggers this response has not been described yet. Although it is known that some materials used as a platform are not immunologically inert, very few studies have directly focused on this topic. In this study, we explored the underlying mechanisms concerning the interaction between Coa-ASC16 and the immune system and we found that the whole inflammatory response elicited by Coa-ASC16 (leukocyte recruitment and IL-1β, IL-6 and IL-12 production) was dependent on the MyD88 protein. TLR2, TLR4, TLR7 and NLRP3-inflammasome signaling were not required for induction of this inflammatory response. Coa-ASC16 induced local release of self-DNA, and in TLR9-deficient mice IL-6 production was absent. In addition, Coa-ASC16 revealed an intrinsic adjuvant activity which was affected by MyD88 and IL-6 absence. Taken together these results indicate that Coa-ASC16 used as a vaccine platform is effective due to the combination of the controlled release of antigen and its intrinsic pro-inflammatory activity. Understanding how Coa-ASC16 works might have significant implications for rational vaccine design.

  9. HLA class I-restricted MYD88 L265P-derived peptides as specific targets for lymphoma immunotherapy

    PubMed Central

    Nelde, Annika; Walz, Juliane Sarah; Kowalewski, Daniel Johannes; Schuster, Heiko; Wolz, Olaf-Oliver; Peper, Janet Kerstin; Cardona Gloria, Yamel; Langerak, Anton W.; Muggen, Alice F.; Claus, Rainer; Bonzheim, Irina; Fend, Falko; Salih, Helmut Rainer; Kanz, Lothar; Rammensee, Hans-Georg; Stevanović, Stefan; Weber, Alexander N. R.

    2017-01-01

    ABSTRACT Genome sequencing has uncovered an array of recurring somatic mutations in different non-Hodgkin lymphoma (NHL) subtypes. If affecting protein-coding regions, such mutations may yield mutation-derived peptides that may be presented by HLA class I proteins and recognized by cytotoxic T cells. A recurring somatic and oncogenic driver mutation of the Toll-like receptor adaptor protein MYD88, Leu265Pro (L265P) was identified in up to 90% of different NHL subtype patients. We therefore screened the potential of MYD88L265P-derived peptides to elicit cytotoxic T cell responses as tumor-specific neoantigens. Based on in silico predictions, we identified potential MYD88L265P-containing HLA ligands for several HLA class I restrictions. A set of HLA class I MYD88L265P-derived ligands elicited specific cytotoxic T cell responses for HLA-B*07 and -B*15. These data highlight the potential of MYD88L265P mutation-specific peptide-based immunotherapy as a novel personalized treatment approach for patients with MYD88L265P+ NHLs that may complement pharmacological approaches targeting oncogenic MyD88 L265P signaling.

  10. Myd88 Initiates Early Innate Immune Responses and Promotes CD4 T Cells during Coronavirus Encephalomyelitis

    PubMed Central

    Butchi, Niranjan; Kapil, Parul; Puntambekar, Shweta; Stohlman, Stephen A.; Hinton, David R.

    2015-01-01

    ABSTRACT Myd88 signaling is critical to the control of numerous central nervous system (CNS) infections by promoting both innate and adaptive immune responses. Nevertheless, the extent to which Myd88 regulates type I interferon (IFN) versus proinflammatory factors and T cell function, as well as the anatomical site of action, varies extensively with the pathogen. CNS infection by neurotropic coronavirus with replication confined to the brain and spinal cord induces protective IFN-α/β via Myd88-independent activation of melanoma differentiation-associated gene 5 (MDA5). However, a contribution of Myd88-dependent signals to CNS pathogenesis has not been assessed. Infected Myd88−/− mice failed to control virus, exhibited enhanced clinical disease coincident with increased demyelination, and succumbed to infection within 3 weeks. The induction of IFN-α/β, as well as of proinflammatory cytokines and chemokines, was impaired early during infection. However, defects in both IFN-α/β and select proinflammatory factors were rapidly overcome prior to T cell recruitment. Myd88 deficiency also specifically blunted myeloid and CD4 T cell recruitment into the CNS without affecting CD8 T cells. Moreover, CD4 T cells but not CD8 T cells were impaired in IFN-γ production. Ineffective virus control indeed correlated most prominently with reduced antiviral IFN-γ in the CNS of Myd88−/− mice. The results demonstrate a crucial role for Myd88 both in early induction of innate immune responses during coronavirus-induced encephalomyelitis and in specifically promoting protective CD4 T cell activation. In the absence of these responses, functional CD8 T cells are insufficient to control viral spread within the CNS, resulting in severe demyelination. IMPORTANCE During central nervous system (CNS) infections, signaling through the adaptor protein Myd88 promotes both innate and adaptive immune responses. The extent to which Myd88 regulates antiviral type I IFN, proinflammatory

  11. MyD88 is pivotal for immune recognition of Citrobacter koseri and astrocyte activation during CNS infection.

    PubMed

    Liu, Shuliang; Kielian, Tammy

    2011-04-16

    Citrobacter koseri (C. koseri) is a Gram-negative bacterium that can cause a highly aggressive form of neonatal meningitis, which often progresses to establish multi-focal brain abscesses. The roles of Toll-like receptor 4 (TLR4) and its signaling adaptor MyD88 during CNS C. koseri infection have not yet been examined, which is important since recent evidence indicates that innate immune responses are tailored towards specific pathogen classes. Here TLR4 WT (C3H/FeJ) and TLR4 mutant (C3H/HeJ) mice as well as MyD88 KO animals were infected intracerebrally with live C. koseri, resulting in meningitis and ventriculitis with accompanying brain abscess formation. MyD88 KO mice were exquisitely sensitive to C. koseri, demonstrating enhanced mortality rates and significantly elevated bacterial burdens compared to WT animals. Interestingly, although early proinflammatory mediator release (i.e. 12 h) was MyD88-dependent, a role for MyD88-independent signaling was evident at 24 h, revealing a compensatory response to CNS C. koseri infection. In contrast, TLR4 did not significantly impact bacterial burdens or proinflammatory mediator production in response to C. koseri. Similar findings were obtained with primary astrocytes, where MyD88-dependent pathways were essential for chemokine release in response to intact C. koseri, whereas TLR4 was dispensable; implicating the involvement of alternative TLRs since highly enriched astrocytes did not produce IL-1 upon bacterial exposure, which also signals via MyD88. Collectively, these findings demonstrate the importance of MyD88-dependent mechanisms in eliciting maximal proinflammatory responses, astrocyte activation, and bacterial containment during CNS C. koseri infection, as well as a late-phase MyD88-independent signaling pathway for cytokine/chemokine production.

  12. The role of the MYD88-dependent pathway in MPTP-induced brain dopaminergic degeneration

    PubMed Central

    2011-01-01

    Background Mounting evidence supports a significant role of inflammation in Parkinson's disease (PD) pathophysiology, with several inflammatory pathways being suggested as playing a role in the dopaminergic degeneration seen in humans and animal models of the disease. These include tumor necrosis factor, prostaglandins and oxidative-related stress components. However, the role of innate immunity has not been established in PD. Methods Based on the fact that the myeloid differentiation primary response gene (88) (MyD88) is the most common adaptor protein implicated in toll-like receptor (TLR) signaling, critical in the innate immune response, we undertook a study to investigate the potential contribution of this specific pathway to MPTP-induced brain dopaminergic degeneration using MyD88 knock out mice (MyD88-/-), following our observations that the MyD88-dependent pathway was critical for MPTP dopaminergic toxicity in the enteric nervous system. Post-mortem analyses assessing nigrostriatal dopaminergic degeneration and inflammation were performed using HPLC, western blots, autoradiography and immunofluorescence. Results Our results demonstrate that MyD88-/- mice are as vulnerable to MPTP-induced dopamine and DOPAC striatal depletion as wild type mice. Furthermore, MyD88-/- mice show similar striatal dopamine transporter and tyrosine hydroxylase loss, as well as dopaminergic cell loss in the substantia nigra pars compacta in response to MPTP. To evaluate the extent of the inflammatory response created by the MPTP regimen utilized, we further performed bioluminescence imaging using TLR2-luc/gfp transgenic mice and microglial density analysis, which revealed a modest brain microglial response following MPTP. This was accompanied by a significant astrocytic reaction in the striatum, which was of similar magnitude both in wild type and MyD88-/- mice. Conclusions Our results suggest that subacute MPTP-induced dopaminergic degeneration observed in the central nervous

  13. The polysaccharide capsule of Streptococcus pneumonia partially impedes MyD88-mediated immunity during pneumonia in mice.

    PubMed

    de Vos, Alex F; Dessing, Mark C; Lammers, Adriana J J; de Porto, Alexander P N A; Florquin, Sandrine; de Boer, Onno J; de Beer, Regina; Terpstra, Sanne; Bootsma, Hester J; Hermans, Peter W; van 't Veer, Cornelis; van der Poll, Tom

    2015-01-01

    Toll-like receptors (TLR) and the downstream adaptor protein MyD88 are considered crucial for protective immunity during bacterial infections. Streptococcus (S.) pneumoniae is a human respiratory pathogen and a large majority of clinical pneumococcal isolates expresses an external polysaccharide capsule. We here sought to determine the role of pneumococcal capsule in MyD88-mediated antibacterial defense during S. pneumonia pneumonia. Wild type (WT) and Myd88(-/-) mice were inoculated intranasally with serotype 2 S. pneumoniae D39 or with an isogenic capsule locus deletion mutant (D39∆cps), and analysed for bacterial outgrowth and inflammatory responses in the lung. As compared to WT mice, Myd88(-/-) mice infected with D39 demonstrated a modestly impaired bacterial clearance accompanied by decreased inflammatory responses in the lung. Strikingly, while WT mice rapidly cleared D39∆cps, Myd88(-/-) mice showed 105-fold higher bacterial burdens in their lungs and dissemination to blood 24 hours after infection. These data suggest that the pneumococcal capsule impairs recognition of TLR ligands expressed by S. pneumoniae and thereby partially impedes MyD88-mediated antibacterial defense.

  14. Differential requirements of MyD88 and TRIF pathways in TLR4-mediated immune responses in murine B cells.

    PubMed

    Yanagibashi, Tsutomu; Nagai, Yoshinori; Watanabe, Yasuharu; Ikutani, Masashi; Hirai, Yoshikatsu; Takatsu, Kiyoshi

    2015-01-01

    LPS stimulates the TLR4/Myeloid differentiation protein-2 (MD-2) complex and promotes a variety of immune responses in B cells. TLR4 has two main signaling pathways, MyD88 and Toll/IL-1R (TIR)-domain-containing adaptor-inducing interferon-β (TRIF) pathways, but relatively few studies have examined these pathways in B cells. In this study, we investigated MyD88- or TRIF-dependent LPS responses in B cells by utilizing their knockout mice. Compared with wild-type (WT) B cells, MyD88(-/-) B cells were markedly impaired in up-regulation of CD86 and proliferation induced by lipid A moiety of LPS. TRIF(-/-) B cells were also impaired in these responses compared with WT B cells, but showed better responses than MyD88(-/-) B cells. Regarding class switch recombination (CSR) elicited by lipid A plus IL-4, MyD88(-/-) B cells showed similar patterns of CSR to WT B cells. However, TRIF(-/-) B cells showed the impaired in the CSR. Compared with WT and MyD88(-/-) B cells, TRIF(-/-) B cells exhibited reduced cell division, fewer IgG1(+) cells per division, and decreased activation-induced cytidine deaminase (Aicda) mRNA expression in response to lipid A plus IL-4. Finally, IgG1 production to trinitrophenyl (TNP)-LPS immunization was impaired in TRIF(-/-) mice, while MyD88(-/-) mice exhibited increased IgG1 production. Thus, MyD88 and TRIF pathways differently regulate TLR4-induced immune responses in B cells.

  15. MyD88-dependent pro-inflammatory cytokine response contributes to lethal toxicity of staphylococcal enterotoxin B in mice.

    PubMed

    Kissner, Teri L; Ruthel, Gordon; Cisney, Emily D; Ulrich, Robert G; Fernandez, Stefan; Saikh, Kamal U

    2011-10-01

    An elevated pro-inflammatory cytokine response is the primary cause of death by toxic shock after exposure to staphylococcal enterotoxin B (SEB). Identifying an intracellular signal mediator that predominantly controls the pro-inflammatory response is important for developing a therapeutic strategy. We examined the role of the signaling adaptor MyD88 in cell culture and in a mouse model of toxic shock. Our results indicated that elevated tumor necrosis factor-α, interferon-γ, interleukin (IL)-1α/β and IL-6 production from mouse spleen cells treated with SEB alone or in combination with lipopolysaccharide (LPS) was regulated by MyD88. Elevated levels of MyD88 protein in spleen cells, as well as in CD11c(+) or Mac3(+) cells, and activation of nuclear factor-κB in spleen cells were observed in mice treated with SEB. An SEB-dose dependent lethality was observed in LPS-potentiated and in D-galactosamine-sensitized mice. D-Galactosamine treatment of spleen cells had no effect in cytokine induction but rather increased the sensitivity to toxic shock in mice. Our results demonstrated an impaired pro-inflammatory cytokine production by spleen cells of MyD88(-/-) mice in response to SEB or SEB plus LPS. Most importantly, MyD88(-/-) mice were resistant to SEB-induced death. These results demonstrate that MyD88-dependent pro-inflammatory signaling is responsible for SEB intoxication. In addition, our studies also demonstrated that LPS potentiation, in comparison to D-galactosamine sensitization, contributes to a stronger SEB-induced lethality. This is due to the pro-inflammatory cytokine response elicited by MyD88 after exposure to SEB and LPS. These findings offer an important insight upon SEB intoxication and subsequent therapy targeting MyD88.

  16. Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs

    PubMed Central

    Subramanian, Manikandan; Thorp, Edward; Hansson, Goran K.; Tabas, Ira

    2012-01-01

    TLR activation on CD11c+ DCs triggers DC maturation, which is critical for T cell activation. Given the expansion of CD11c+ DCs during the progression of atherosclerosis and the key role of T cell activation in atherogenesis, we sought to understand the role of TLR signaling in CD11c+ DCs in atherosclerosis. To this end, we used a mouse model in which a key TLR adaptor involved in DC maturation, MYD88, is deleted in CD11c+ DCs. We transplanted bone marrow containing Myd88-deficient CD11c+ DCs into Western diet–fed LDL receptor knockout mice and found that the transplanted mice had decreased activation of effector T cells in the periphery as well as decreased infiltration of both effector T cells and Tregs in atherosclerotic lesions. Surprisingly, the net effect was an increase in atherosclerotic lesion size due to an increase in the content of myeloid-derived inflammatory cells. The mechanism involves increased lesional monocyte recruitment associated with loss of Treg-mediated suppression of MCP-1. Thus, the dominant effect of MYD88 signaling in CD11c+ DCs in the setting of atherosclerosis is to promote the development of atheroprotective Tregs. In the absence of MYD88 signaling in CD11c+ DCs, the loss of this protective Treg response trumps the loss of proatherogenic T effector cell activation. PMID:23257360

  17. Inflammation- and tumor-induced anorexia and weight loss require MyD88 in hematopoietic/myeloid cells but not in brain endothelial or neural cells.

    PubMed

    Ruud, Johan; Wilhelms, Daniel Björk; Nilsson, Anna; Eskilsson, Anna; Tang, Yan-Juan; Ströhle, Peter; Caesar, Robert; Schwaninger, Markus; Wunderlich, Thomas; Bäckhed, Fredrik; Engblom, David; Blomqvist, Anders

    2013-05-01

    Loss of appetite is a hallmark of inflammatory diseases. The underlying mechanisms remain undefined, but it is known that myeloid differentiation primary response gene 88 (MyD88), an adaptor protein critical for Toll-like and IL-1 receptor family signaling, is involved. Here we addressed the question of determining in which cells the MyD88 signaling that results in anorexia development occurs by using chimeric mice and animals with cell-specific deletions. We found that MyD88-knockout mice, which are resistant to bacterial lipopolysaccharide (LPS)-induced anorexia, displayed anorexia when transplanted with wild-type bone marrow cells. Furthermore, mice with a targeted deletion of MyD88 in hematopoietic or myeloid cells were largely protected against LPS-induced anorexia and displayed attenuated weight loss, whereas mice with MyD88 deletion in hepatocytes or in neural cells or the cerebrovascular endothelium developed anorexia and weight loss of similar magnitude as wild-type mice. Furthermore, in a model for cancer-induced anorexia-cachexia, deletion of MyD88 in hematopoietic cells attenuated the anorexia and protected against body weight loss. These findings demonstrate that MyD88-dependent signaling within the brain is not required for eliciting inflammation-induced anorexia. Instead, we identify MyD88 signaling in hematopoietic/myeloid cells as a critical component for acute inflammatory-driven anorexia, as well as for chronic anorexia and weight loss associated with malignant disease.

  18. MyD88-mediated instructive signals in dendritic cells regulate pulmonary immune responses during respiratory virus infection.

    PubMed

    Rudd, Brian D; Schaller, Matthew A; Smit, Joost J; Kunkel, Steven L; Neupane, Rupak; Kelley, Lara; Berlin, Aaron A; Lukacs, Nicholas W

    2007-05-01

    Respiratory syncytial virus (RSV) is the leading cause of respiratory disease in infants worldwide. The induction of innate immunity and the establishment of adaptive immune responses are influenced by the recognition of pathogen-associated molecular patterns by TLRs. One of the primary pathways for TLR activation is by MyD88 adapter protein signaling. The present studies indicate that MyD88 deficiency profoundly impacts the pulmonary environment in RSV-infected mice characterized by the accumulation of eosinophils and augmented mucus production. Although there was little difference in CD4 T cell accumulation, there was also a significant decrease in conventional dendritic cells recruitment to the lungs of MyD88(-/-) mice. The exacerbation of RSV pathophysiology in MyD88(-/-) mice was associated with an enhanced Th2 cytokine profile that contributed to an inappropriate immune response. Furthermore, bone marrow-derived dendritic cells (BMDC) isolated from MyD88(-/-) mice were incapable of producing two important Th1 instructive signals, IL-12 and delta-like4, upon RSV infection. Although MyD88(-/-) BMDCs infected with RSV did up-regulate costimulatory molecules, they did not up-regulate class II as efficiently and stimulated less IFN-gamma from CD4(+) T cells in vitro compared with wild-type BMDCs. Finally, adoptive transfer of C57BL/6 BMDCs into MyD88(-/-) mice reconstituted Th1 immune responses in vivo, whereas transfer of MyD88(-/-) BMDCs into wild-type mice skewed the RSV responses toward a Th2 phenotype. Taken together, our data indicate that MyD88-mediated pathways are essential for the least pathogenic responses to this viral pathogen through the regulation of important Th1-associated instructive signals.

  19. MyD88-Dependent Immunity to a Natural Model of Vaccinia Virus Infection Does Not Involve Toll-Like Receptor 2

    PubMed Central

    Davies, Michael L.; Sei, Janet J.; Siciliano, Nicholas A.; Xu, Ren-Huan; Roscoe, Felicia; Sigal, Luis J.; Eisenlohr, Laurence C.

    2014-01-01

    ABSTRACT Although the pattern recognition receptor Toll-like receptor 2 (TLR2) is typically thought to recognize bacterial components, it has been described to alter the induction of both innate and adaptive immunity to a number of viruses, including vaccinia virus (VACV). However, many pathogens that reportedly encode TLR2 agonists may actually be artifactually contaminated during preparation, possibly with cellular debris or merely with molecules that sensitize cells to be activated by authentic TLR2 agonists. In both humans and mice, the most relevant natural route of infection with VACV is through intradermal infection of the skin. Therefore, we examined the requirement for TLR2 and its signaling adaptor MyD88 in protective immunity to VACV after intradermal infection. We find that although TLR2 may recognize virus preparations in vitro and have a minor role in preventing dissemination of VACV following systemic infection with large doses of virus, it is wholly disposable in both control of virus replication and induction of adaptive immunity following intradermal infection. In contrast, MyD88 is required for efficient induction of CD4 T cell and B cell responses and for local control of virus replication following intradermal infection. However, even MyD88 is not required to induce local inflammation, inflammatory cytokine production, or recruitment of cells that restrict virus from spreading systemically after peripheral infection. Thus, an effective antiviral response does require MyD88, but TLR2 is not required for control of a peripheral VACV infection. These findings emphasize the importance of studying relevant routes of infection when examining innate sensing mechanisms. IMPORTANCE Vaccinia virus (VACV) provides the backbone for some of the most widely used and successful viral vaccine vectors and is also related to the human pathogens Cantagalo virus and molluscum contagiosum virus that infect the skin of patients. Therefore, it is vital to understand

  20. Cloning, Characterization, and Expression Analysis of MyD88 in Rana dybowskii.

    PubMed

    Niu, Shudong; Shi, Xuecan; Zhang, Jingyu; Chai, Longhui; Xiao, Xianghong

    2016-05-01

    immunity in R. dybowskii. This report firstly characterized one adaptor molecule of the TLR signaling pathways in R. dybowskii, thereby providing reference for further researches on the amphibian innate immune system.

  1. Protective role of MyD88-independent innate immune responses against prion infection

    PubMed Central

    Ishibashi, Daisuke; Atarashi, Ryuichiro; Nishida, Noriyuki

    2012-01-01

    Despite recent progress in the understanding of prion diseases, little is known about the host-defense mechanisms against prion. Although it has long been thought that type I interferon (IFN-I) has no protective effect on prion infection, certain key molecules in innate immunity such as toll-like receptor (TLR) 4 seemed to be involved in the host response. For this reason we decided to focus on TLRs and investigate the role of a transcription factor, interferon regulatory factor 3 (IRF3), because the absence of MyD88, a major adaptor signaling molecule of TLRs, has no effect on the survival of prion infected mice. Intriguingly, survival periods of prion inoculated IRF3-knockout mice became significantly shorter than those of wild-type mice. In addition, IRF3 stimulation inhibited PrPSc replication in prion persistently-infected cells, and a de novo prion infection assay revealed that IRF3-overexpression could make host cells resistant to prion infection. Our work suggests that IRF3 may play a key role in innate immune responses against invasion of prion pathogens. Activated IRF3 could upregulate several anti-pathogen factors, including IFN-I, and induce sequential responses. Although the mechanism for the anti-prion effects mediated by IRF3 has yet to be clarified, certain interferon responsive genes might be involved in the anti-prion host-defense mechanism. PMID:23093799

  2. MyD88-Dependent Signaling Influences Fibrosis and Alternative Macrophage Activation during Staphylococcus aureus Biofilm Infection

    PubMed Central

    Hanke, Mark L.; Angle, Amanda; Kielian, Tammy

    2012-01-01

    Bacterial biofilms represent a significant therapeutic challenge based on their ability to evade host immune and antibiotic-mediated clearance. Recent studies have implicated IL-1β in biofilm containment, whereas Toll-like receptors (TLRs) had no effect. This is intriguing, since both the IL-1 receptor (IL-1R) and most TLRs impinge on MyD88-dependent signaling pathways, yet the role of this key adaptor in modulating the host response to biofilm growth is unknown. Therefore, we examined the course of S. aureus catheter-associated biofilm infection in MyD88 knockout (KO) mice. MyD88 KO animals displayed significantly increased bacterial burdens on catheters and surrounding tissues during early infection, which coincided with enhanced dissemination to the heart and kidney compared to wild type (WT) mice. The expression of several proinflammatory mediators, including IL-6, IFN-γ, and CXCL1 was significantly reduced in MyD88 KO mice, primarily at the later stages of infection. Interestingly, immunofluorescence staining of biofilm-infected tissues revealed increased fibrosis in MyD88 KO mice concomitant with enhanced recruitment of alternatively activated M2 macrophages. Taken in the context of previous studies with IL-1β, TLR2, and TLR9 KO mice, the current report reveals that MyD88 signaling is a major effector pathway regulating fibrosis and macrophage polarization during biofilm formation. Together these findings represent a novel example of the divergence between TLR and MyD88 action in the context of S. aureus biofilm infection. PMID:22879997

  3. Toll-like receptor 4 signalling through MyD88 is essential to control Salmonella enterica serovar typhimurium infection, but not for the initiation of bacterial clearance.

    PubMed

    Talbot, Suzanne; Tötemeyer, Sabine; Yamamoto, Masahiro; Akira, Shizuo; Hughes, Katherine; Gray, David; Barr, Tom; Mastroeni, Pietro; Maskell, Duncan J; Bryant, Clare E

    2009-12-01

    Toll-like receptor-4 (TLR4) is important in protection against lethal Salmonella enterica serovar Typhimurium (S. Typhimurium) infection. Control of the early stages of sublethal S. Typhimurium infection in mice depends on TLR4-dependent activation of macrophages and natural killer (NK) cells to drive an inflammatory response. TLR4 signals through the adapter proteins Mal/MyD88 and TRIF-related adaptor molecule (TRAM)/TIR-domain-containing adaptor-inducing interferon-b (TRIF). In the mouse typhoid model we showed that TLR4 and MyD88, but not Mal or TRIF, are essential for the control of exponential S. Typhimurium growth. TRIF(-/-) mice have a higher bacterial load in comparison with wild-type mice during a sublethal infection because TRIF is important for bacterial killing during the first day of systemic disease. Minimal pro-inflammatory responses were induced by S. Typhimurium infection of macrophages from TLR4(-/-), MyD88(-/-) and TRIF(-/-) mice in vitro. Pro-inflammatory responses from Mal(-/-) macrophages were similar to those from wild-type cells. The pro-inflammatory responses of TRIF(-/-) macrophages were partially restored by the addition of interferon-gamma (IFN-gamma), and TRIF(-/-) mice produced markedly enhanced IFN-gamma levels, in comparison to wild-type mice, probably explaining why bacterial growth can be controlled in these mice. TLR4(-/-), MyD88(-/-), TRIF(-/-) and Mal(-/-) mice all initiated clearance of S. Typhimurium, suggesting that TLR4 signalling is not important in driving bacterial clearance in comparison to its critical role in controlling early bacterial growth in mouse typhoid.

  4. SARM modulates MyD88-mediated TLR activation through BB-loop dependent TIR-TIR interactions.

    PubMed

    Carlsson, Emil; Ding, Jeak Ling; Byrne, Bernadette

    2016-02-01

    Toll-like receptors (TLRs) recognise invading pathogens and initiate an innate immune response by recruiting intracellular adaptor proteins via heterotypic Toll/interleukin-1 receptor (TIR) domain interactions. Of the five TIR domain-containing adaptor proteins identified, Sterile α- and armadillo-motif-containing protein (SARM) is functionally unique; suppressing immune signalling instead of promoting it. Here we demonstrate that the recombinantly expressed and purified SARM TIR domain interacts with both the major human TLR adaptors, MyD88 and TRIF. A single glycine residue located in the BB-loop of the SARM TIR domain, G601, was identified as essential for interaction. A short peptide derived from this motif was also found to interact with MyD88 in vitro. SARM expression in HEK293 cells was found to significantly suppress lipopolysaccharide (LPS)-mediated upregulation of inflammatory cytokines, IL-8 and TNF-α, an effect lost in the G601A mutant. The same result was observed with cytokine activation initiated by MyD88 expression and stimulation of TLR2 with lipoteichoic acid (LTA), suggesting that SARM is capable of suppressing both TRIF- and MyD88- dependent TLR signalling. Our findings indicate that SARM acts on a broader set of target proteins than previously thought, and that the BB-loop motif is functionally important, giving further insight into the endogenous mechanisms used to suppress inflammation in immune cells.

  5. MyD88 Shapes Vaccine Immunity by Extrinsically Regulating Survival of CD4+ T Cells during the Contraction Phase

    PubMed Central

    Wang, Huafeng; Hung, Chiung Yu; Sinha, Meenal; Lee, Linda M.; Wiesner, Darin L.; LeBert, Vanessa; Lerksuthirat, Tassanee; Suresh, Marulasiddappa; DeFranco, Anthony L.; Lowell, Clifford A.; Klein, Bruce S.; Wüthrich, Marcel

    2016-01-01

    Soaring rates of systemic fungal infections worldwide underscore the need for vaccine prevention. An understanding of the elements that promote vaccine immunity is essential. We previously reported that Th17 cells are required for vaccine immunity to the systemic dimorphic fungi of North America, and that Card9 and MyD88 signaling are required for the development of protective Th17 cells. Herein, we investigated where, when and how MyD88 regulates T cell development. We uncovered a novel mechanism in which MyD88 extrinsically regulates the survival of activated T cells during the contraction phase and in the absence of inflammation, but is dispensable for the expansion and differentiation of the cells. The poor survival of activated T cells in Myd88-/- mice is linked to increased caspase3-mediated apoptosis, but not to Fas- or Bim-dependent apoptotic pathways, nor to reduced expression of the anti-apoptotic molecules Bcl-2 or Bcl-xL. Moreover, TLR3, 7, and/or 9, but not TLR2 or 4, also were required extrinsically for MyD88-dependent Th17 cell responses and vaccine immunity. Similar MyD88 requirements governed the survival of virus primed T cells. Our data identify unappreciated new requirements for eliciting adaptive immunity and have implications for designing vaccines. PMID:27542117

  6. Pathogenic and protective roles of MyD88 in leukocytes and epithelial cells in mouse models of inflammatory bowel disease

    PubMed Central

    Asquith, Mark J.; Boulard, Olivier; Powrie, Fiona; Maloy, Kevin J.

    2013-01-01

    Background & Aims Toll-Like Receptors (TLR) are innate immune receptors involved in recognition of the intestinal micro-flora; they are expressed by numerous cell types in the intestine, including epithelial cells, myeloid cells and lymphocytes. Little is known about the relative contributions of TLR signaling in distinct cellular compartments to intestinal homeostasis. We aimed to define the roles of TLR signals in distinct cell types in the induction and regulation of chronic intestinal inflammation. Methods We assessed the roles of the shared TLR signaling adaptor protein, MyD88, in several complementary mouse models of inflammatory bowel disease (IBD), mediated by either innate or adaptive immune activation. MyD88-deficient mice and bone marrow chimeras were used to selectively disrupt TLR signals in distinct cellular compartments in the intestine. Results MyD88-dependent activation of myeloid cells was required for development of chronic intestinal inflammation. By contrast, although epithelial cell MyD88 signals were required for host survival, they were insufficient to induce intestinal inflammation in the absence of a MyD88-competent myeloid compartment. MyD88 expression by T cells was not required for their pathogenic and regulatory functions in the intestine. Conclusions Cellular compartmentalization of MyD88 signals in the intestine allow the maintenance of host defense and prevent deleterious inflammatory responses. PMID:20433840

  7. Genetics Home Reference: MyD88 deficiency

    MedlinePlus

    ... 1 link) MYD88 DEFICIENCY Sources for This Page Maglione PJ, Simchoni N, Black S, Radigan L, Overbey JR, ... Picard C, von Bernuth H, Ghandil P, Chrabieh M, Levy O, Arkwright PD, McDonald D, Geha RS, ...

  8. Synergy between CD40 and MyD88 Does Not Influence Host Survival to Salmonella Infection.

    PubMed

    Wenzel, Ulf Alexander; Fernandez-Santoscoy, Maria; Tam, Miguel A; Tegtmeyer, Pia; Wick, Mary Jo

    2015-01-01

    Previous studies using purified toll-like receptor (TLR) ligands plus agonistic anti-CD40 antibodies showed that TLRs and CD40 can act synergistically on dendritic cells (DCs) to optimize T cell activation and Th1 differentiation. However, a synergistic effect of TLRs and CD40 during bacterial infection is not known. Here, we show that mice lacking the TLR adaptor MyD88 alone, or lacking both MyD88 and CD40 [double knockout (DKO) mice], are compromised in survival to Salmonella infection but have intact recruitment of neutrophils and inflammatory monocytes as well as unaltered abundance of DC subsets and DC activation in infected tissues. In contrast to infected wildtype and CD40(-/-) mice, both MyD88(-/-) mice and DKO mice lack detectable serum IFN-γ and have elevated IL-10. A synergistic effect of TLRs and CD40 was revealed in co-culture experiments where OT-II T cell proliferation was compromised when DKO DCs were pulsed with OVA protein and OVA323-339 peptide, but not with heat-killed Salmonella expressing OVA (HKSOVA), relative to MyD88(-/-) DCs. By contrast, MyD88(-/-) or DKO DCs pulsed with any of the antigens had a similar ability to induce IFN-γ that was lower than WT or CD40(-/-) DCs. DKO DCs pulsed with HKSOVA, but not with OVA or OVA323-339, had increased IL-10 relative to MyD88(-/-) DCs. Finally, HKSOVA-pulsed MyD88(-/-) and DKO DCs had similar and low induction of NFκB-dependent and -independent genes upon co-culture with OT-II cells. Overall, our data revealed that synergistic effects of CD40 and MyD88 do not influence host survival to Salmonella infection or serum levels of IFN-γ or IL-10. However, synergistic effects of MyD88 and CD40 may be apparent on some (IL-10 production) but not all (OT-II proliferation and IFN-γ production) DC functions and depend on the complexity of the antigen. Indeed, synergistic effects observed using purified ligands and well-defined antigens may not necessarily apply when complex antigens, such as live bacteria

  9. Dendritic cell specific targeting of MyD88 signalling pathways in vivo.

    PubMed

    Arnold-Schrauf, Catharina; Berod, Luciana; Sparwasser, Tim

    2015-01-01

    Dendritic cells (DCs) are key regulators of both innate and adaptive immunity. During infection, DCs recognise pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs) including the Toll-like receptor (TLR) family. TLRs mainly signal via the adaptor protein MyD88. This signalling pathway is required for immune protection during many infections, which are lethal in the absence of MyD88. However, the cell type specific importance of this pathway during both innate and adaptive immune responses against pathogens in vivo remains ill-defined. We discuss recent findings from conditional KO or gain-of-function mouse models targeting TLR/MyD88 signalling pathways in DCs and other myeloid cells during infection. While the general assumption that MyD88-dependent recognition by DCs is essential for inducing protective immunity holds true in some instances, the results surprisingly indicate a much more complex context-dependent requirement for this pathway in DCs and other myeloid or lymphoid cell-types in vivo. Furthermore, we highlight the advantages of Cre-mediated DC targeting approaches and their possible limitations. We also present future perspectives on the development of new genetic mouse models to target distinct DC subsets in vivo. Such models will serve to understand the functional heterogeneity of DCs in vivo.

  10. [The set-up of an in vitro model for stable knockdown of MyD88 by lentivirus-based RNAi in IEC-6 cell line and the study on its early apoptosis].

    PubMed

    Bao, Pingqian; Li, Yang; Chen, Keling; Zhou, Bin; Liu, Bin; Li, Yuan; Zhou, Zongguang

    2012-12-01

    Intestinal inflammatory disease is a kind of non-specific disease with morbidity increasing yearly. It has been proved that the Toll like receptor 4 (TLR4) signaling pathways are closely related to intestinal inflammatory diseases. Myeloid differentiation protein 88 (Myd88) is a critical adaptor protein of TLR4 signaling and critical for the study of intestinal inflammatory disease, but stable Myd88 knockdown in vitro models of cell line are still very few. In the present study, an HIV-1-based lentivirus three-plamid packaging system was used for the construction of a lentivirual vector mediating RNA interference (RNAi) against Myd88 in intestinal fossae epithelial cell line-6 (IEC-6). Real-time PCR and Western blot were used to detect Myd88 expression. Annexin V staining and flowcytometry (FLM) were applied to detect and evaluate the early apoptosis. The results showed that lentiviral vectors containing the shRNA expression cassette specifically targeting Myd88 were constructed and efficiently stably knocked down Myd88 expression in IEC-6 cell line. Early apoptosis was significantly decreased after Myd88 knockdown. This study successfully constructed a lentivirus-based RNAi for Myd88 and detailed the key technique combined with characteristics of the early apoptosis after the Myd88 knockdown, provided a novel, stable and repeatable in vitro model for the pathogenesis, targeting therapeutic study for the intestinal inflammatory diseases.

  11. MyD88 is essential for alveolar bone loss induced by Aggregatibacter actinomycetemcomitans lipopolysaccharide in mice.

    PubMed

    Madeira, M F M; Queiroz-Junior, C M; Cisalpino, D; Werneck, S M C; Kikuchi, H; Fujise, O; Ryffel, B; Silva, T A; Teixeira, M M; Souza, D G

    2013-12-01

    Aggregatibacter actinomycetemcomitans is a Gram-negative bacteria highly associated with localized aggressive periodontitis. The recognition of microbial factors, such as lipopolysaccharide from A. actinomycetemcomitans ((Aa)LPS), in the oral environment is made mainly by surface receptors known as Toll-like receptors (TLR). TLR4 is the major LPS receptor. This interaction leads to the production of inflammatory cytokines by myeloid differentiation primary-response protein 88 (MyD88) -dependent and -independent pathways, which may involve the adaptor Toll/interleukin-1 receptor-domain-containing adaptor inducing interferon-β (TRIF). The aim of this study was to assess the involvement of MyD88 in alveolar bone loss induced by (Aa)LPS in mice. C57BL6/J wild-type (WT) mice, MyD88, TRIF or TRIF/MyD88 knockout mice received 10 injections of Aa LPS strain FDC Y4 (5 μg in 3 μl), in the palatal gingival tissue of the right first molar, every 48 h. Phosphate-buffered saline was injected in the opposite side and used as control. Animals were sacrificed 24 h after the 10th injection and the maxillae were removed for macroscopic and biochemical analyses. The injections of Aa LPS induced significant alveolar bone loss in WT mice. In the absence of MyD88 or TRIF/MyD88 no bone loss induced by (Aa)LPS was observed. In contrast, responses in TRIF(-/-) mice were similar to those in WT mice. Diminished bone loss in the absence of MyD88 was associated with fewer TRAP-positive cells and increased expression of osteoblast markers, RUNX2 and osteopontin. There was also reduced tumor necrosis factor-α production in MyD88(-/-) mice. There was less osteoclast differentiation of hematopoietic bone marrow cells from MyD88(-/-) mice after (Aa)LPS stimulation. Hence, the signaling through MyD88 is pivotal for (Aa)LPS-induced osteoclast formation and alveolar bone loss.

  12. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling.

    PubMed

    Carty, Michael; Goodbody, Rory; Schröder, Martina; Stack, Julianne; Moynagh, Paul N; Bowie, Andrew G

    2006-10-01

    Toll-like receptors discriminate between different pathogen-associated molecules and activate signaling cascades that lead to immune responses. The specificity of Toll-like receptor signaling occurs by means of adaptor proteins containing Toll-interleukin 1 receptor (TIR) domains. Activating functions have been assigned to four TIR adaptors: MyD88, Mal, TRIF and TRAM. Here we characterize a fifth TIR adaptor, SARM, as a negative regulator of TRIF-dependent Toll-like receptor signaling. Expression of SARM blocked gene induction 'downstream' of TRIF but not of MyD88. SARM associated with TRIF, and 'knockdown' of endogenous SARM expression by interfering RNA led to enhanced TRIF-dependent cytokine and chemokine induction. Thus, the fifth mammalian TIR adaptor SARM is a negative regulator of Toll-like receptor signaling.

  13. MyD88 Mediates Instructive Signaling in Dendritic Cells and Protective Inflammatory Response during Rickettsial Infection

    PubMed Central

    Bechelli, Jeremy; Smalley, Claire; Zhao, Xuemei; Judy, Barbara; Valdes, Patricia; Walker, David H.

    2016-01-01

    Spotted fever group rickettsiae cause potentially life-threatening infections throughout the world. Several members of the Toll-like receptor (TLR) family are involved in host response to rickettsiae, and yet the mechanisms by which these TLRs mediate host immunity remain incompletely understood. In the present study, we found that host susceptibility of MyD88−/− mice to infection with Rickettsia conorii or Rickettsia australis was significantly greater than in wild-type (WT) mice, in association with severely impaired bacterial clearance in vivo. R. australis-infected MyD88−/− mice showed significantly lower expression levels of gamma interferon (IFN-γ), interleukin-6 (IL-6), and IL-1β, accompanied by significantly fewer inflammatory infiltrates of macrophages and neutrophils in infected tissues, than WT mice. The serum levels of IFN-γ, IL-12, IL-6, and granulocyte colony-stimulating factor were significantly reduced, while monocyte chemoattractant protein 1, macrophage inflammatory protein 1α, and RANTES were significantly increased in infected MyD88−/− mice compared to WT mice. Strikingly, R. australis infection was incapable of promoting increased expression of MHC-IIhigh and production of IL-12p40 in MyD88−/− bone marrow-derived dendritic cells (BMDCs) compared to WT BMDCs, although costimulatory molecules were upregulated in both types of BMDCs. Furthermore, the secretion levels of IL-1β by Rickettsia-infected BMDCs and in the sera of infected mice were significantly reduced in MyD88−/− mice compared to WT controls, suggesting that in vitro and in vivo production of IL-1β is MyD88 dependent. Taken together, our results suggest that MyD88 signaling mediates instructive signals in DCs and secretion of IL-1β and type 1 immune cytokines, which may account for the protective inflammatory response during rickettsial infection. PMID:26755162

  14. Unique Roles of TLR9- and MyD88-Dependent and -Independent Pathways in Adaptive Immune Responses to AAV-Mediated Gene Transfer.

    PubMed

    Rogers, Geoffrey L; Suzuki, Masataka; Zolotukhin, Irene; Markusic, David M; Morel, Laurence M; Lee, Brendan; Ertl, Hildegund C J; Herzog, Roland W

    2015-01-01

    The immune system represents a significant barrier to successful gene therapy with adeno-associated viral (AAV) vectors. In particular, adaptive immune responses to the viral capsid or the transgene product are of concern. The sensing of AAV by toll-like receptors (TLRs) TLR2 and TLR9 has been suggested to play a role in innate immunity to the virus and may also shape subsequent adaptive immune responses. Here, we investigated the functions of TLR2, TLR9 and the downstream signaling adaptor MyD88 in antibody and CD8+ T-cell responses. Antibody formation against the transgene product occurred largely independently of TLR signaling following gene transfer with AAV1 or AAV2 vectors, whereas loss of signaling through the TLR9-MyD88 pathway substantially reduced CD8+ T-cell responses. In contrast, MyD88 (but neither of the TLRs) regulated antibody responses to capsid. B cell-intrinsic MyD88 was required for the formation of anti-capsid IgG2c independently of vector serotype or route of administration. However, MyD88(-/-) mice instead produced anti-capsid IgG1 that emerged with delayed kinetics but nonetheless completely prevented in vivo readministration. We conclude that there are distinct roles for TLR9 and MyD88 in promoting adaptive immune responses to AAV-mediated gene transfer and that there are redundant MyD88-dependent and MyD88-independent mechanisms that stimulate neutralizing antibody formation against AAV.

  15. TLR4-MyD88/Mal-NF-kB axis is involved in infection of HSV-2 in human cervical epithelial cells.

    PubMed

    Liu, Hongya; Chen, Kai; Feng, Wenqiang; Wu, Xinxing; Li, Hui

    2013-01-01

    We have established an in vitro HSV-2 acute infection model with Human cervical epithelial (HCE cells, the primary target and natural host cells for HSV-2) to investigate the role of TLRs-mediated innate immune response to HSV-2. In current study, we found that HSV-2 infection induced activity of NF-kB reporter and expression of cytokines are TLR4-dependent using approaches with shRNA and TLR4 antagonist. Knockdown experiments demonstrated that the adaptor molecules MyD88 and Mal of the TLRs signaling pathway are required in the HSV-2 induced TLR4-dependent NF-kB activation in HCE cells. Western blot assay suggested that knockdown of TLR4 decreased the phosphorylation of IRAK1 and inhibitor of NF-kB (IkB-α) upon HSV-2 infection. Finally, decreased expression of either TLR4 or MyD88/Mal alone or both significantly abolished productions of IL-6 and IFN-β by ELISA analysis. Taken together, our results from the in vitro infection model reveal for the first time that there exists the pathway via TLR4-Mal/MyD88-IRAK1-NF-kB axis in human cervical epithelial cells in response to HSV-2 infection.

  16. Lung epithelial MyD88 drives early pulmonary clearance of Pseudomonas aeruginosa by a flagellin dependent mechanism.

    PubMed

    Anas, Adam A; van Lieshout, Miriam H P; Claushuis, Theodora A M; de Vos, Alex F; Florquin, Sandrine; de Boer, Onno J; Hou, Baidong; Van't Veer, Cornelis; van der Poll, Tom

    2016-08-01

    Pseudomonas aeruginosa is a flagellated pathogen frequently causing pneumonia in hospitalized patients and sufferers of chronic lung disease. Here we investigated the role of the common Toll-like receptor (TLR) adaptor myeloid differentiation factor (MyD)88 in myeloid vs. lung epithelial cells in clearance of P. aeruginosa from the airways. Mice deficient for MyD88 in lung epithelial cells (Sftpccre-MyD88-lox mice) or myeloid cells (LysMcre-MyD88-lox mice) and bone marrow chimeric mice deficient for TLR5 (the receptor recognizing Pseudomonas flagellin) in either parenchymal or hematopoietic cells were infected with P. aeruginosa via the airways. Sftpccre-MyD88-lox mice demonstrated a reduced influx of neutrophils into the bronchoalveolar space and an impaired early antibacterial defense after infection with P. aeruginosa, whereas the response of LysMcre-MyD88-lox mice did not differ from control mice. The immune-enhancing role of epithelial MyD88 was dependent on recognition of pathogen-derived flagellin by epithelial TLR5, as demonstrated by an unaltered clearance of mutant P. aeruginosa lacking flagellin from the lungs of Sftpccre-MyD88-lox mice and an impaired bacterial clearance in bone marrow chimeric mice lacking TLR5 in parenchymal cells. These data indicate that early clearance of P. aeruginosa from the airways is dependent on flagellin-TLR5-MyD88-dependent signaling in respiratory epithelial cells.

  17. SARM inhibits both TRIF- and MyD88-mediated AP-1 activation.

    PubMed

    Peng, Jun; Yuan, Quan; Lin, Bin; Panneerselvam, Porkodi; Wang, Xiaowei; Luan, Xiao Lei; Lim, Soon Kok; Leung, Bernard P; Ho, Bow; Ding, Jeak Ling

    2010-06-01

    SARM (sterile alpha- and armadillo-motif-containing protein), the fifth identified TIR (Toll-interleukin 1 receptor (IL-1R)) domain-containing adaptors in humans, downregulates NF-kappaB and IRF3 (interferon-regulatory factor 3)-mediated TLR3 and TLR4 signaling. SARM was characterized as a negative regulator of the TRIF (TIR-domain-containing adaptor protein inducing IFN-beta)-dependent pathway via its interaction with TRIF. However, the precise mechanism of action of SARM remains unclear. Here, we demonstrate that SARM inhibits MAPK activation in human embryonic kidney 293 cells, and U937 cells. Both the TRIF- and MyD88-mediated, as well as basal MAPK activity, were repressed, indicating that SARM-mediated inhibition may not be exclusively directed at TRIF or MyD88, but that SARM may also directly inhibit MAPK phosphorylation. The MAPK inhibition effect was verified by RNAi, which increased the basal level of AP-1. Furthermore, LPS challenge upregulated SARM at both the mRNA and protein levels. Finally, we provide evidence to show that truncated SARM changes its subcellular localization, suggesting the importance of the N-terminal and sterile alpha motif domains in the autoregulation of SARM activity.

  18. Nonredundant roles of TIRAP and MyD88 in airway response to endotoxin, independent of TRIF, IL-1 and IL-18 pathways.

    PubMed

    Togbe, Dieudonnée; Aurore, Gorse; Noulin, Nicolas; Quesniaux, Valérie F J; Schnyder-Candrian, Silvia; Schnyder, Bruno; Vasseur, Virginie; Akira, Shizuo; Hoebe, Kasper; Beutler, Bruce; Ryffel, Bernhard; Couillin, Isabelle

    2006-11-01

    Inhaled endotoxins induce an acute inflammatory response in the airways mediated through Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). However, the relative roles of the TLR4 adaptor proteins TIRAP and TRIF and of the MyD88-dependent IL-1 and IL-18 receptor pathways in this response are unclear. Here, we demonstrate that endotoxin-induced acute bronchoconstriction, vascular damage resulting in protein leak, Th1 cytokine and chemokine secretion and neutrophil recruitment in the airways are abrogated in mice deficient for either TIRAP or MyD88, but not in TRIF deficient mice. The contribution of other TLR-independent, MyD88-dependent signaling pathways was investigated in IL-1R1, IL-18R and caspase-1 (ICE)-deficient mice, which displayed normal airway responses to endotoxin. In conclusion, the TLR4-mediated, bronchoconstriction and acute inflammatory lung pathology to inhaled endotoxin critically depend on the expression of both adaptor proteins, TIRAP and MyD88, suggesting cooperative roles, while TRIF, IL-1R1, IL-18R signaling pathways are dispensable.

  19. Penta-O-galloyl-β-D-glucose ameliorates inflammation by inhibiting MyD88/NF-κB and MyD88/MAPK signalling pathways

    PubMed Central

    Jang, Se-Eun; Hyam, Supriya R; Jeong, Jin-Ju; Han, Myung Joo; Kim, Dong-Hyun

    2013-01-01

    Background and Purpose The gallnut of Rhus chinensis MILL and its main constituent penta-O-galloyl-β-D-glucose (PGG) inhibited NF-κB activation in LPS-stimulated peritoneal and colonic macrophages. Here we have investigated PGG mechanisms underlying anti-inflammatory effects of PGG in vitro and in vivo. Experimental Approach Male C57BL/6 mice (18–22 g, 6 weeks old) were used to prepare peritoneal and colonic macrophages and for the induction of colitis by intrarectal administration of 2,3,4-trinitrobenzene sulphonic acid (TNBS). A range of inflammatory markers and transcription factors were evaluated by elisa, immunoblotting, flow cytometry and confocal microscopy. Key Results Expression of Toll-like receptor (TLR)-4 or Lipopolysaccharide (LPS) binding to TLR-4 in LPS-stimulated peritoneal macrophages was not affected by PGG. However PGG inhibited binding of an anti-MyD88 antibody to peritoneal macrophages, but did not reduce binding of anti–IL-1 receptor-associated kinase (IRAK1) and IRAK4 antibodies to the macrophages with or without transfection with MyD88 siRNA. PGG potently reduced the activation of IRAK1, NF-κB, and MAPKs in LPS- or pepetidoglycan-stimulated peritoneal and colonic macrophages. PGG suppressed IL-1β, TNF-α and IL-6 in LPS-stimulated peritoneal macrophages, while increasing expression of the anti-inflammatorycytokine IL-10. Oral administration of PGG inhibited colon shortening and myeloperoxidase activity in mice with TNBS-induced colitis, along with reducing NF-κB activation and IL-1β, TNF-α, and IL-6 levels, whereas it increased IL-10. Conclusions and Implications PGG reduced activation of NF-κB and MAPK signalling pathways by directly interacting with the MyD88 adaptor protein. PGG may ameliorate inflammatory diseases such as colitis. PMID:23941302

  20. Impaired Innate Immunity in Tlr4−/− Mice but Preserved CD8+ T Cell Responses against Trypanosoma cruzi in Tlr4-, Tlr2-, Tlr9- or Myd88-Deficient Mice

    PubMed Central

    Tzelepis, Fanny; Klezewsky, Weberton; da Silva, Raquel N.; Neves, Fabieni S.; Cavalcanti, Gisele S.; Boscardin, Silvia; Nunes, Marise P.; Santiago, Marcelo F.; Nóbrega, Alberto; Rodrigues, Maurício M.; Bellio, Maria

    2010-01-01

    The murine model of T. cruzi infection has provided compelling evidence that development of host resistance against intracellular protozoans critically depends on the activation of members of the Toll-like receptor (TLR) family via the MyD88 adaptor molecule. However, the possibility that TLR/MyD88 signaling pathways also control the induction of immunoprotective CD8+ T cell-mediated effector functions has not been investigated to date. We addressed this question by measuring the frequencies of IFN-γ secreting CD8+ T cells specific for H-2Kb-restricted immunodominant peptides as well as the in vivo Ag-specific cytotoxic response in infected animals that are deficient either in TLR2, TLR4, TLR9 or MyD88 signaling pathways. Strikingly, we found that T. cruzi-infected Tlr2−/−, Tlr4−/−, Tlr9−/− or Myd88−/− mice generated both specific cytotoxic responses and IFN-γ secreting CD8+ T cells at levels comparable to WT mice, although the frequency of IFN-γ+CD4+ cells was diminished in infected Myd88−/− mice. We also analyzed the efficiency of TLR4-driven immune responses against T. cruzi using TLR4-deficient mice on the C57BL genetic background (B6 and B10). Our studies demonstrated that TLR4 signaling is required for optimal production of IFN-γ, TNF-α and nitric oxide (NO) in the spleen of infected animals and, as a consequence, Tlr4−/− mice display higher parasitemia levels. Collectively, our results indicate that TLR4, as well as previously shown for TLR2, TLR9 and MyD88, contributes to the innate immune response and, consequently, resistance in the acute phase of infection, although each of these pathways is not individually essential for the generation of class I-restricted responses against T. cruzi. PMID:20442858

  1. SARM1, not MyD88, mediates TLR7/TLR9-induced apoptosis in neurons1

    PubMed Central

    Mukherjee, Piyali; Winkler, Clayton W.; Taylor, Katherine G.; Woods, Tyson A.; Nair, Vinod; Khan, Burhan A.; Peterson, Karin E.

    2015-01-01

    Neuronal apoptosis is a key aspect of many different neurological diseases, but the mechanisms remain unresolved. Recent studies have suggested a mechanism of innate immune-induced neuronal apoptosis that may act through the stimulation of toll-like receptors (TLR) in neurons. TLRs are stimulated both by pathogen associated molecular patterns (PAMPs) as well as by damage-associated molecular patterns (DAMPs), including micro-RNAs released by damaged neurons. In the current study, we identified the mechanism responsible for TLR7/TLR9-mediated neuronal apoptosis. TLR-induced apoptosis required endosomal localization of TLRs but was independent of MyD88 signaling. Instead, apoptosis required the TLR adaptor molecule, sterile alpha armadillo motif (SARM1), which localized to the mitochondria following TLR activation and was associated with mitochondrial accumulation in neurites. Deficiency in SARM1 inhibited both mitochondrial accumulation in neurites and TLR-induced apoptosis. These studies identify a non-MyD88 pathway of TLR7/TLR9 signaling in neurons and provide a mechanism for how innate immune responses in the CNS directly induce neuronal damage. PMID:26423149

  2. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR-4 signal transduction pathway activation of FAK and MyD88

    PubMed Central

    Guo, Shuhong; Nighot, Meghali; Al-Sadi, Rana; Alhmoud, Tarik; Nighot, Prashant; Ma, Thomas Y.

    2015-01-01

    Gut-derived bacterial lipopolysaccharides (LPS) play an essential role in inducing intestinal and systemic inflammatory responses and have been implicated as a pathogenic factor of necrotizing enterocolitis (NEC) and inflammatory bowel disease (IBD). The defective intestinal tight junction (TJ) barrier has been shown to be an important factor contributing to the development of intestinal inflammation. LPS, at physiological concentrations, cause an increase in intestinal tight junction permeability (TJP) via a TLR-4 dependent process; however the intracellular mechanisms that mediate LPS regulation of intestinal TJP remain unclear. The aim of this study was to investigate the adaptor proteins and the signaling interactions that mediate LPS modulation of intestinal TJ barrier using an in-vitro and in-vivo model system. LPS caused a TLR-4 dependent activation of membrane-associated adaptor protein FAK in Caco-2 monolayers. LPS caused an activation of both MyD88-dependent and –independent pathways. SiRNA silencing of MyD88 prevented LPS-induced increase in TJP. LPS caused a MyD88-dependent activation of IRAK4. TLR-4, FAK and MyD88 were co-localized. SiRNA silencing of TLR-4 inhibited TLR-4 associated FAK activation; and FAK knockdown prevented MyD88 activation. In-vivo studies also confirmed that LPS-induced increase in mouse intestinal permeability was associated with FAK and MyD88 activation; knockdown of intestinal epithelial FAK prevented LPS-induced increase in intestinal permeability. Additionally, high dose LPS-induced intestinal inflammation was also dependent on TLR-4/FAK/MyD88 signal-transduction axis. Our data show for the first time that LPS-induced increase in intestinal TJP and intestinal inflammation was regulated by TLR-4 dependent activation of FAK-MyD88-IRAK4 signaling pathway. PMID:26466961

  3. Andrographolide alleviates imiquimod-induced psoriasis in mice via inducing autophagic proteolysis of MyD88.

    PubMed

    Shao, Fenli; Tan, Tao; Tan, Yang; Sun, Yang; Wu, Xingxin; Xu, Qiang

    2016-09-01

    Psoriasis is a chronic inflammatory skin disease with excessive activation of toll-like receptors (TLRs), which play important roles in developing psoriasis. Targeting TLR signaling remains a challenge for treating psoriasis. Here, we found that andrographolide (Andro), a small-molecule natural product, alleviated imiquimod- but not interleukin 23 (IL-23)-induced psoriasis in mice with reducing expressions of IL-23 and IL-1β in the skin. The improvement in imiquimod-induced psoriasis by Andro was not observed in microtubule-associated protein 1 light chain 3 beta (MAP1LC3B) knockout mice. Furthermore, Andro inhibited mRNA expressions of IL-23, IL-6 and IL-1β but not CD80 and CD86 in bone-marrow derived dendritic cells (BMDCs) treated with lipopolysaccharide (LPS) in a MAP1LC3B-dependent manner. In addition, Andro inhibited imiquimod-induced mRNA expressions of IL-23, IL-6, IL-1β, CD80 and CD86 in BMDCs from mice. Interestingly, Andro induced a degradation of myeloid differentiation factor 88 (MyD88) and blocked the recruitment of TNF receptor-associated factor 6 (TRAF6) to MyD88 upon LPS stimulation in BMDCs from mice. Blockade of autophagic proteolysis using NH4Cl or MAP1LC3B(-/-) BMDCs abolished the Andro-induced MyD88 degradation. In conclusion, Andro controls activation of MyD88-dependent cytokines and alleviates psoriasis in mice via inducing autophagic proteolysis of MyD88, which could be a novel strategy to treat psoriasis.

  4. Case-control study and mRNA expression analysis reveal the MyD88 gene is associated with digestive disorders in rabbit.

    PubMed

    Chen, Shi-Yi; Zhang, Wen-Xiu; Zhang, Gong-Wei; Peng, Jin; Zhao, Xiao-Bing; Lai, Song-Jia

    2013-12-01

    As in humans, significant associations between Toll-like receptor 4 (TLR4) and digestive disorders have been identified in rabbit and dog. However, as an essential adaptor downstream of TLR4, the genetic variation of myeloid differentiating factor 88 (MyD88) and its association with digestive disorders have remained unknown. In this study, we detected 10 single nucleotide polymorphisms (SNPs) in the entire genomic region of rabbit MyD88. The genetic variation in susceptibility to digestive disorders for the only coding SNP (synonymous c.699T>C) was studied in Yaan (183 cases and 142 controls) and Chengdu populations (145 cases and 140 controls). A case-control association study revealed that individuals with the C allele had significant protection against digestive disorders in the Yaan population (OR = 0.71; 95% CI, 0.51-0.99; P < 0.05), the Chengdu population (OR = 0.55; 95% CI, 0.39-0.78; P < 0.01) and for joint analysis (OR = 0.62; 95% CI, 0.49-0.79; P < 0.01). We also experimentally induced digestive disorders by feeding a fiber-deficient diet and found that increased susceptibility was significantly associated with higher MyD88 mRNA expression (P < 0.05). The lowest MyD88 mRNA expression was observed in individuals carrying the protective CC genotype. These results suggest that MyD88 is one of the most plausible candidate genes in relation to digestive disorders in rabbit. Further studies are required to explore the biological implications of MyD88 in the pathogenesis of digestive disorders.

  5. Multiple roles of Myd88 in the immune response to the plague F1-V vaccine and in protection against an aerosol challenge of Yersinia pestis CO92 in mice.

    PubMed

    Dankmeyer, Jennifer L; Fast, Randy L; Cote, Christopher K; Worsham, Patricia L; Fritz, David; Fisher, Diana; Kern, Steven J; Merkel, Tod; Kirschning, Carsten J; Amemiya, Kei

    2014-01-01

    The current candidate vaccine against Yersinia pestis infection consists of two subunit proteins: the capsule protein or F1 protein and the low calcium response V protein or V-antigen. Little is known of the recognition of the vaccine by the host's innate immune system and how it affects the acquired immune response to the vaccine. Thus, we vaccinated Toll-like receptor (Tlr) 2, 4, and 2/4-double deficient, as well as signal adaptor protein Myd88-deficient mice. We found that Tlr4 and Myd88 appeared to be required for an optimal immune response to the F1-V vaccine but not Tlr2 when compared to wild-type mice. However, there was a difference between the requirement for Tlr4 and MyD88 in vaccinated animals. When F1-V vaccinated Tlr4 mutant (lipopolysaccharide tolerant) and Myd88-deficient mice were challenged by aerosol with Y. pestis CO92, all but one Tlr4 mutant mice survived the challenge, but no vaccinated Myd88-deficient mice survived the challenge. Spleens from these latter nonsurviving mice showed that Y. pestis was not cleared from the infected mice. Our results suggest that MyD88 appears to be important for both an optimal immune response to F1-V and in protection against a lethal challenge of Y. pestis CO92 in F1-V vaccinated mice.

  6. Pyogenic bacterial infections in humans with MyD88 deficiency.

    PubMed

    von Bernuth, Horst; Picard, Capucine; Jin, Zhongbo; Pankla, Rungnapa; Xiao, Hui; Ku, Cheng-Lung; Chrabieh, Maya; Mustapha, Imen Ben; Ghandil, Pegah; Camcioglu, Yildiz; Vasconcelos, Júlia; Sirvent, Nicolas; Guedes, Margarida; Vitor, Artur Bonito; Herrero-Mata, María José; Aróstegui, Juan Ignacio; Rodrigo, Carlos; Alsina, Laia; Ruiz-Ortiz, Estibaliz; Juan, Manel; Fortuny, Claudia; Yagüe, Jordi; Antón, Jordi; Pascal, Mariona; Chang, Huey-Hsuan; Janniere, Lucile; Rose, Yoann; Garty, Ben-Zion; Chapel, Helen; Issekutz, Andrew; Maródi, László; Rodriguez-Gallego, Carlos; Banchereau, Jacques; Abel, Laurent; Li, Xiaoxia; Chaussabel, Damien; Puel, Anne; Casanova, Jean-Laurent

    2008-08-01

    MyD88 is a key downstream adapter for most Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs). MyD88 deficiency in mice leads to susceptibility to a broad range of pathogens in experimental settings of infection. We describe a distinct situation in a natural setting of human infection. Nine children with autosomal recessive MyD88 deficiency suffered from life-threatening, often recurrent pyogenic bacterial infections, including invasive pneumococcal disease. However, these patients were otherwise healthy, with normal resistance to other microbes. Their clinical status improved with age, but not due to any cellular leakiness in MyD88 deficiency. The MyD88-dependent TLRs and IL-1Rs are therefore essential for protective immunity to a small number of pyogenic bacteria, but redundant for host defense to most natural infections.

  7. Susceptibility of prostate epithelial cells to Chlamydia muridarum infection and their role in innate immunity by recruitment of intracellular Toll-like receptors 4 and 2 and MyD88 to the inclusion.

    PubMed

    Mackern-Oberti, Juan Pablo; Maccioni, Mariana; Cuffini, Cecilia; Gatti, Gerardo; Rivero, Virginia E

    2006-12-01

    Although Chlamydia infections are widespread throughout the world, data about immunopathogenesis of genitourinary tract infections in males are very limited. In the present work we present an in vitro model of male genital tract-derived epithelial cells, more precisely prostate epithelial cells (PEC), to analyze if they are susceptible and able to respond to Chlamydia muridarum infection. Our results demonstrate that rat PEC are susceptible to C. muridarum infection and respond to this pathogen by up-regulating different proinflammatory cytokine and chemokine genes that could participate in the recruitment and local activation of immune cells, therefore influencing innate and adaptive immune responses during Chlamydia infection. Moreover, we analyzed the expression of Toll-like receptor 4 (TLR4), TLR2, and related molecules on PEC and the effect of C. muridarum infection on their expression. Our results demonstrate that PEC express significant levels of TLR4, CD14, TLR2, and the adaptor molecule MyD88 and up-regulate these proteins in response to C. muridarum infection. Indeed, TLR4, CD14, TLR2, and the adaptor MyD88 are specifically recruited to the vicinity of the bacterial inclusion, suggesting that these TLRs are actively engaged in signaling from this intracellular location in these cells. This is, to our knowledge, the first time that an in vitro model of infection with Chlamydia of male tract-derived epithelial cells has been achieved, and it provides the opportunity to determine how these cells respond and participate in modulating innate and adaptive immune response during Chlamydia infections.

  8. Release of IL-12 by dendritic cells activated by TLR ligation is dependent on MyD88 signaling, whereas TRIF signaling is indispensable for TLR synergy.

    PubMed

    Krummen, Mathias; Balkow, Sandra; Shen, Limei; Heinz, Stefanie; Loquai, Carmen; Probst, Hans-Christian; Grabbe, Stephan

    2010-07-01

    Recently, it has been shown that certain combinations of TLR ligands act in synergy to induce the release of IL-12 by DCs. In this study, we sought to define the critical parameters underlying TLR synergy. Our data show that TLR ligands act synergistically if MyD88- and TRIF-dependent ligands are combined. TLR4 uses both of these adaptor molecules, thus activation via TLR4 proved to be a synergistic event on its own. TLR synergy did not affect all aspects of DC activation but enhanced primarily the release of certain cytokines, particularly IL-12, whereas the expression of costimulatory molecules remained unchanged. Consequently, synergistic activation of DC did not affect their ability to induce T cell proliferation but resulted in T(H)1-biased responses in vitro and in vivo. Furthermore, we examined the impact of TLR ligand combinations on primary DC in vitro but observed only modest effects with a combination of CpG + Poly (I:C). However, noticeable synergy in terms of IL-12 production by DCs was detectable in vivo after systemic administration of CpG + Poly (I:C). Finally, we show that synergy is partially dependent on IFNAR signaling but does not require the release of IFNs to the enviroment, suggesting an autocrine action of type I IFNs.

  9. MyD88-dependent pro-inflammatory activity in Vi polysaccharide vaccine against typhoid promotes Ab switching to IgG.

    PubMed

    Garg, Rohini; Akhade, Ajay Suresh; Yadav, Jitender; Qadri, Ayub

    2015-10-01

    Vi capsular polysaccharide is currently in use as a vaccine against human typhoid caused by Salmonella Typhi. The vaccine efficacy correlates with IgG anti-Vi Abs. We have recently reported that Vi can generate inflammatory responses through activation of the TLR2/TLR1 complex. In the present study, we show that immunization with Vi produces IgM as well as IgG Abs in wild type mice. This ability is not compromised in mice deficient in T cells. However, immunization of mice lacking the TLR adaptor protein, MyD88, with Vi elicits only IgM Abs. These results suggest that MyD88-dependent pro-inflammatory ability of the Vi vaccine might be vital in generating IgG Abs with this T-independent Ag.

  10. Trichinella spiralis excretory-secretory products protect against polymicrobial sepsis by suppressing MyD88 via mannose receptor.

    PubMed

    Du, Linlin; Liu, Lihua; Yu, Yang; Shan, Hui; Li, Leiqing

    2014-01-01

    Trichinella spiralis (T. spiralis) or its excretory-secretory products (TsES) protect hosts from autoimmune diseases, which depend on inducing host T helper (Th) 2 immune response and inhibiting inflammatory factors. Sepsis is a systemic inflammatory response syndrome (SIRS) evoked by infection. Little is known about the effects of helminths or their excretory-secretory products on sepsis. Here, we investigated the effects of TsES in a mice model of polymicrobial sepsis. TsES improved survival, reduced organ injury, and enhanced bacterial clearance in septic mice. To investigate the molecular mechanism, macrophages from septic patients or the control group were incubated with TsES. TsES reduced sepsis-inducing inflammatory cytokines mediated by Toll-like receptors (TLR) in vitro by suppressing TLR adaptor-transducer myeloid differentiation factor 88 (MyD88) and nuclear factor- (NF-)-κB. Furthermore, TsES upregulated mannose receptor (MR) expression during sepsis. MR blocking attenuated the effects of TsES on MyD88 and NF-κB expression. In vivo, MR RNAi reduced the survival rate of septic mice treated with TsES, suggesting that TsES-mediated protection against polymicrobial sepsis is dependent on MR. Thus, TsES administration might be a potential therapeutic strategy for treating sepsis.

  11. CpG-ODN Shapes Alum Adjuvant Activity Signaling via MyD88 and IL-10.

    PubMed

    Mirotti, Luciana; Alberca Custódio, Ricardo Wesley; Gomes, Eliane; Rammauro, Florencia; de Araujo, Eliseu Frank; Garcia Calich, Vera Lucia; Russo, Momtchilo

    2017-01-01

    Aluminum-containing adjuvants usually referred as Alum are considered as T helper type-2 (Th2) adjuvants, while agonists of toll-like receptors (TLRs) are viewed as adjuvants that favor Th1/Th17 immunity. Alum has been used in numerous vaccine formulations; however, its undesired pro-Th2 adjuvant activity constitutes a caveat for Alum-based vaccines. Combining Alum with TLR-dependent, pro-Th1/Th17 adjuvants might dampen the pro-Th2 activity and improve the effectiveness of vaccine formulations. Here, using the ovalbumin (OVA) model of allergic lung inflammation, we found that sensitization with the synthetic TLR9 agonist, which is composed of oligodeoxynucleotides containing CpG motifs adsorbed to Alum, inhibited the development of OVA-induced lung allergic Th2 responses without shifting toward a Th1 pattern. The conversion of T cell immunity from the polarized allergic Th2 response to a non-polarized form by sensitization with OVA/Alum/CpG was dependent on MyD88 signaling in myeloid cells. Notably, sensitization of IL-10-deficient mice with OVA/Alum/CpG resulted in the development of neutrophilic lung inflammation associated with IFNγ production. However, in IL-10/IL-12-deficient mice, it resulted in neutrophilic inflammation dominated by IL-17 production. We conclude that OVA/Alum/CpG sensitization signaling via MyD88 and IL-10 molecules results in non-polarized immunity. Conversely, OVA/Alum/CpG sensitization in presence of MyD88 but absence of IL-10 or IL-10/IL-12 molecules results, respectively, in neutrophilic inflammation associated with IFNγ or IL-17 production. Our work provides novel OVA models of lung inflammation and suggests that Alum/CpG-based formulations might be of potential use in anti-allergic or anti-infectious processes.

  12. CpG-ODN Shapes Alum Adjuvant Activity Signaling via MyD88 and IL-10

    PubMed Central

    Mirotti, Luciana; Alberca Custódio, Ricardo Wesley; Gomes, Eliane; Rammauro, Florencia; de Araujo, Eliseu Frank; Garcia Calich, Vera Lucia; Russo, Momtchilo

    2017-01-01

    Aluminum-containing adjuvants usually referred as Alum are considered as T helper type-2 (Th2) adjuvants, while agonists of toll-like receptors (TLRs) are viewed as adjuvants that favor Th1/Th17 immunity. Alum has been used in numerous vaccine formulations; however, its undesired pro-Th2 adjuvant activity constitutes a caveat for Alum-based vaccines. Combining Alum with TLR-dependent, pro-Th1/Th17 adjuvants might dampen the pro-Th2 activity and improve the effectiveness of vaccine formulations. Here, using the ovalbumin (OVA) model of allergic lung inflammation, we found that sensitization with the synthetic TLR9 agonist, which is composed of oligodeoxynucleotides containing CpG motifs adsorbed to Alum, inhibited the development of OVA-induced lung allergic Th2 responses without shifting toward a Th1 pattern. The conversion of T cell immunity from the polarized allergic Th2 response to a non-polarized form by sensitization with OVA/Alum/CpG was dependent on MyD88 signaling in myeloid cells. Notably, sensitization of IL-10-deficient mice with OVA/Alum/CpG resulted in the development of neutrophilic lung inflammation associated with IFNγ production. However, in IL-10/IL-12-deficient mice, it resulted in neutrophilic inflammation dominated by IL-17 production. We conclude that OVA/Alum/CpG sensitization signaling via MyD88 and IL-10 molecules results in non-polarized immunity. Conversely, OVA/Alum/CpG sensitization in presence of MyD88 but absence of IL-10 or IL-10/IL-12 molecules results, respectively, in neutrophilic inflammation associated with IFNγ or IL-17 production. Our work provides novel OVA models of lung inflammation and suggests that Alum/CpG-based formulations might be of potential use in anti-allergic or anti-infectious processes. PMID:28220116

  13. MyD88 and TLR9 Dependent Immune Responses Mediate Resistance to Leishmania guyanensis Infections, Irrespective of Leishmania RNA Virus Burden

    PubMed Central

    Ives, Annette; Masina, Slavica; Castiglioni, Patrik; Prével, Florence; Revaz-Breton, Mélanie; Hartley, Mary-Anne; Launois, Pascal; Fasel, Nicolas; Ronet, Catherine

    2014-01-01

    Infections with Leishmania parasites of the Leishmania Viannia subgenus give rise to both localized cutaneous (CL), and metastatic leishmaniasis. Metastasizing disease forms including disseminated (DCL) and mutocutaneous (MCL) leishmaniasis result from parasitic dissemination and lesion formation at sites distal to infection and have increased inflammatory responses. The presence of Leishmania RNA virus (LRV) in L. guyanensis parasites contributes to the exacerbation of disease and impacts inflammatory responses via activation of TLR3 by the viral dsRNA. In this study we investigated other innate immune response adaptor protein modulators and demonstrated that both MyD88 and TLR9 played a crucial role in the development of Th1-dependent healing responses against L. guyanensis parasites regardless of their LRV status. The absence of MyD88- or TLR9-dependent signaling pathways resulted in increased Th2 associated cytokines (IL-4 and IL-13), which was correlated with low transcript levels of IL-12p40. The reliance of IL-12 was further confirmed in IL12AB−/− mice, which were completely susceptible to infection. Protection to L. guyanensis infection driven by MyD88- and TLR9-dependent immune responses arises independently to those induced due to high LRV burden within the parasites. PMID:24801628

  14. Intrinsic MyD88-Akt1-mTOR Signaling Coordinates Disparate Tc17 and Tc1 Responses during Vaccine Immunity against Fungal Pneumonia.

    PubMed

    Nanjappa, Som Gowda; Hernández-Santos, Nydiaris; Galles, Kevin; Wüthrich, Marcel; Suresh, M; Klein, Bruce S

    2015-09-01

    Fungal infections have skyrocketed in immune-compromised patients lacking CD4+ T cells, underscoring the need for vaccine prevention. An understanding of the elements that promote vaccine immunity in this setting is essential. We previously demonstrated that vaccine-induced IL-17A+ CD8+ T cells (Tc17) are required for resistance against lethal fungal pneumonia in CD4+ T cell-deficient hosts, whereas the individual type I cytokines IFN-γ, TNF-α and GM-CSF, are dispensable. Here, we report that T cell-intrinsic MyD88 signals are crucial for these Tc17 cell responses and vaccine immunity against lethal fungal pneumonia in mice. In contrast, IFN-γ+ CD8+ cell (Tc1) responses are largely normal in the absence of intrinsic MyD88 signaling in CD8+ T cells. The poor accumulation of MyD88-deficient Tc17 cells was not linked to an early onset of contraction, nor to accelerated cell death or diminished expression of anti-apoptotic molecules Bcl-2 or Bcl-xL. Instead, intrinsic MyD88 was required to sustain the proliferation of Tc17 cells through the activation of mTOR via Akt1. Moreover, intrinsic IL-1R and TLR2, but not IL-18R, were required for MyD88 dependent Tc17 responses. Our data identify unappreciated targets for augmenting adaptive immunity against fungi. Our findings have implications for designing fungal vaccines and immune-based therapies in immune-compromised patients.

  15. Mutations in TLR/MYD88 pathway identify a subset of young chronic lymphocytic leukemia patients with favorable outcome.

    PubMed

    Martínez-Trillos, Alejandra; Pinyol, Magda; Navarro, Alba; Aymerich, Marta; Jares, Pedro; Juan, Manel; Rozman, María; Colomer, Dolors; Delgado, Julio; Giné, Eva; González-Díaz, Marcos; Hernández-Rivas, Jesús M; Colado, Enrique; Rayón, Consolación; Payer, Angel R; Terol, Maria José; Navarro, Blanca; Quesada, Victor; Puente, Xosé S; Rozman, Ciril; López-Otín, Carlos; Campo, Elías; López-Guillermo, Armando; Villamor, Neus

    2014-06-12

    Mutations in Toll-like receptor (TLR) and myeloid differentiation primary response 88 (MYD88) genes have been found in chronic lymphocytic leukemia (CLL) at low frequency. We analyzed the incidence, clinicobiological characteristics, and outcome of patients with TLR/MYD88 mutations in 587 CLL patients. Twenty-three patients (3.9%) had mutations, 19 in MYD88 (one with concurrent IRAK1 mutation), 2 TLR2 (one with concomitant TLR6 mutation), 1 IRAK1, and 1 TLR5. No mutations were found in IRAK2 and IRAK4. TLR/MYD88-mutated CLL overexpressed genes of the nuclear factor κB pathway. Patients with TLR/MYD88 mutations were significantly younger (83% age ≤50 years) than those with no mutations. TLR/MYD88 mutations were the most frequent in young patients. Patients with mutated TLR/MYD88 CLL had a higher frequency of mutated IGHV and low expression of CD38 and ZAP-70. Overall survival (OS) was better in TLR/MYD88-mutated than unmutated patients in the whole series (10-year OS, 100% vs 62%; P = .002), and in the subset of patients age ≤50 years (100% vs 70%; P = .02). In addition, relative OS of TLR/MYD88-mutated patients was similar to that in the age- and gender-matched population. In summary, TLR/MYD88 mutations identify a population of young CLL patients with favorable outcome.

  16. Experimental and natural infections in MyD88- and IRAK-4-deficient mice and humans

    PubMed Central

    von Bernuth, Horst; Picard, Capucine; Puel, Anne; Casanova, Jean-Laurent

    2013-01-01

    Most Toll-like-receptors (TLRs) and interleukin-1 receptors (IL-1Rs) signal via myeloid differentiation primary response 88 (MyD88) and interleukin-1 receptor-associated kinase 4 (IRAK-4). The combined roles of these two receptor families in the course of experimental infections have been assessed in MyD88- and IRAK-4-deficient mice for almost fifteen years. These animals have been shown to be susceptible to 46 pathogens: 27 bacteria, 8 viruses, 7 parasites, and 4 fungi. Humans with inborn MyD88 or IRAK-4 deficiency were first identified in 2003. They suffer from naturally occurring life-threatening infections caused by a small number of bacterial species, although the incidence and severity of these infections decrease with age. Mouse TLR- and IL-1R-dependent immunity mediated by MyD88 and IRAK-4 seems to be vital to combat a wide array of experimentally administered pathogens at most ages. By contrast, human TLR- and IL-1R-dependent immunity mediated by MyD88 and IRAK-4 seems to be effective in the natural setting against only a few bacteria and is most important in infancy and early childhood. The roles of TLRs and IL-1Rs in protective immunity deduced from studies in mutant mice subjected to experimental infections should therefore be reconsidered in the light of findings for natural infections in humans carrying mutations as discussed in this review. PMID:23255009

  17. A Multifaceted Role for Myd88-Dependent Signaling in Progression of Murine Mammary Carcinoma

    PubMed Central

    Higgins, Mary J.; Serrano, Antonio; Boateng, Kofi Y.; Parsons, Victoria A.; Phuong, Tiffany; Seifert, Alyssa; Ricca, Jacob M.; Tucker, Kyle C.; Eidelman, Alec S.; Carey, Maureen A.; Kurt, Robert A.

    2016-01-01

    Previous data obtained in our laboratory suggested that there may be constitutive signaling through the myeloid differentiation primary response gene 88 (Myd88)-dependent signaling cascade in murine mammary carcinoma. Here, we extended these findings by showing that, in the absence of an added Toll-like receptor (TLR) agonist, the myddosome complex was preformed in 4T1 tumor cells, and that Myd88 influenced cytoplasmic extracellular signal–regulated kinase (Erk)1/Erk2 levels, nuclear levels of nuclear factor-kappaB (NFκB) and signal transducer and activator of transcription 5 (STAT5), tumor-derived chemokine (C–C motif) ligand 2 (CCL2) expression, and in vitro and in vivo tumor growth. In addition, RNA-sequencing revealed that Myd88-dependent signaling enhanced the expression of genes that could contribute to breast cancer progression and genes previously associated with poor outcome for patients with breast cancer, in addition to suppressing the expression of genes capable of inhibiting breast cancer progression. Yet, Myd88-dependent signaling in tumor cells also suppressed expression of genes that could contribute to tumor progression. Collectively, these data revealed a multifaceted role for Myd88-dependent signaling in murine mammary carcinoma. PMID:27812285

  18. Panobinostat acts synergistically with ibrutinib in diffuse large B cell lymphoma cells with MyD88 L265 mutations

    PubMed Central

    Mondello, Patrizia; Brea, Elliott J.; De Stanchina, Elisa; Toska, Eneda; Chang, Aaron Y.; Fennell, Myles; Seshan, Venkatraman; Garippa, Ralph; Scheinberg, David A.; Baselga, José; Wendel, Hans-Guido

    2017-01-01

    Diffuse large B cell lymphoma (DLBCL) frequently harbors genetic alterations that activate the B cell receptor (BCR) and TLR pathways, which converge to activate NF-κB. While selective inhibition of BTK with ibrutinib causes clinical responses in relapsed DLBCL patients, most responses are partial and of a short duration. Here, we demonstrated that MyD88 silencing enhanced ibrutinib efficacy in DLBCL cells harboring MyD88 L265P mutations. Chemical downregulation of MyD88 expression with HDAC inhibitors also synergized with ibrutinib. We demonstrate that HDAC inhibitor regulation of MyD88 expression is mediated by STAT3. In turn, STAT3 silencing caused a decrease in MyD88 mRNA and protein levels, and enhanced the ibrutinib antilymphoma effect in MyD88 mutant DLBCL cells. Induced mutations in the STAT3 binding site in the MyD88 promotor region was associated with a decrease in MyD88 transcriptional activity. We also demonstrate that treatment with the HDAC inhibitor panobinostat decreased phosphorylated STAT3 binding to the MyD88 promotor. Accordingly, combined treatment with panobinostat and ibrutinib resulted in enhanced inhibition of NF-κB activity and caused regression of DLBCL xenografts. Our data provide a mechanistic rationale for combining HDAC inhibitors and ibrutinib for the treatment of DLBCL. PMID:28352655

  19. Chlamydial heat shock protein 60 induces acute pulmonary inflammation in mice via the Toll-like receptor 4- and MyD88-dependent pathway.

    PubMed

    Bulut, Yonca; Shimada, Kenichi; Wong, Michelle H; Chen, Shuang; Gray, Pearl; Alsabeh, Randa; Doherty, Terence M; Crother, Timothy R; Arditi, Moshe

    2009-07-01

    Heat shock protein 60 derived from Chlamydia pneumoniae (cHSP60) activates Toll-like receptor 4 (TLR4) signaling through the MyD88 pathway in vitro, but it is not known how cHSP60 contributes to C. pneumoniae-induced lung inflammation. We treated wild-type (WT), TLR2(-/-), TLR4(-/-), or MyD88(-/-) mice intratracheally (i.t.) with recombinant cHSP60 (50 microg), UV-killed C. pneumoniae (UVCP; 5 x 10(6) inclusion-forming units/mouse), lipopolysaccharide (2 microg), or phosphate-buffered saline (PBS) and sacrificed mice 24 h later. Bronchoalveolar lavage (BAL) was obtained to measure cell counts and cytokine levels, lungs were analyzed for histopathology, and lung homogenate chemokine concentrations were determined. Bone marrow-derived dendritic cells (BMDDCs) were generated and stimulated with live C. pneumoniae (multiplicity of infection [MOI], 5), UVCP (MOI, 5), or cHSP60 for 24 h, and the expression of costimulatory molecules (CD80 and CD86) was measured by fluorescence-activated cell sorting. cHSP60 induced acute lung inflammation with the same intensity as that of UVCP-induced inflammation in WT mice but not in TLR4(-/-) or MyD88(-/-) mice. cHSP60- and UVCP-induced lung inflammation was associated with increased numbers of cells in BAL, increased neutrophil recruitment, and elevated BAL interleukin-6 (IL-6) levels. Both cHSP60 and UVCP induced IL-6 release and CD80 and CD86 expression in WT cells but not in MyD88(-/-) BMDDCs. cHSP60 stimulated DC activation in a TLR4- and MyD88-dependent manner with an intensity similar to that induced by UVCP. These data suggest that cHSP60 promotes lung inflammation and DC activation via TLR4 and MyD88 and therefore may play a significant role in the pathogenesis of C. pneumoniae-induced chronic inflammatory lung diseases.

  20. Upregulation of chicken TLR4, TLR15 and MyD88 in heterophils and monocyte-derived macrophages stimulated with Eimeria tenella in vitro.

    PubMed

    Zhou, Zuoyong; Wang, Zhiying; Cao, Liting; Hu, Shijun; Zhang, Ze; Qin, Bo; Guo, Zhili; Nie, Kui

    2013-04-01

    Coccidiosis, caused by Eimeria parasites, is a major parasitic disease responsible for great economic losses in the poultry industry. Toll-like receptor (TLR) family is one of the most important innate immune receptors, which involved in pathogen detection by initiating host responses, and it plays important roles in the reduction and clearance of pathogens. Very little information is available about the roles of chicken TLRs (ChTLRs) during Eimeria tenella infection. In the current study, mRNA expression of ChTLRs and associated signal adaptors in heterophils and monocyte-derived macrophages stimulated with E. tenella in vitro were measured by real-time quantitative polymerase chain reaction. The results showed that ChTLR4 and ChTLR15 expression were increased significantly in heterophils and monocyte-derived macrophages following live E. tenella sporozoites stimulation. The heat-killed E. tenella sporozoites stimulated higher expression of ChTLRs and signal adaptors than live sporozoites, the expression of ChTLR4, ChTLR15 and MyD88 in heterophils and monocyte-derived macrophages stimulated with heat-killed E. tenella sporozoites were up-regulated significantly than unstimulated cells. The results suggest that ChTLR4 and ChTLR15 are involved in response to E. tenella infection, and may operate in a MyD88-dependent manner for host defense.

  1. S100A8/MYD88/NF-қB: a novel pathway involved in cardiomyocyte hypertrophy driven by thyroid hormone.

    PubMed

    Takano, Ana Paula Cremasco; Munhoz, Carolina Demarchi; Moriscot, Anselmo Sigari; Gupta, Sudhiranjan; Barreto-Chaves, Maria Luiza Morais

    2017-02-04

    Recent studies have evidenced the involvement of inflammation-related pathways to the development of cardiac hypertrophy and other consequences on the cardiovascular system, including the calcium-binding protein S100A8. However, this has never been investigated in the thyroid hormone (TH)-prompted cardiac hypertrophy. Thus, we aimed to test whether S100A8 and related signaling molecules, myeloid differentiation factor-88 (MyD88) and nuclear factor kappa B (NF-қB), could be associated with the cardiomyocyte hypertrophy induced by TH. Our results demonstrate that the S100A8/MyD88/NF-қB signaling pathway is activated in cardiomyocytes following TH stimulation. The knockdown of S100A8 and MyD88 indicates the contribution of those molecules to cardiomyocyte hypertrophy in response to TH, as evaluated by cell surface area, leucine incorporation assay, and gene expression. Furthermore, S100A8 and MyD88 are crucial mediators of NF-қB activation, which is also involved in the hypertrophic growth of TH-treated cardiomyocytes. Supporting the in vitro data, the contribution of NF-қB for TH-induced cardiac hypertrophy is confirmed in vivo, by using transgenic mice with cardiomyocyte-specific suppression of NF-қB. These data identify a novel pathway regulated by TH that mediates cardiomyocyte hypertrophy. However, the potential role of this new pathway in short and long-term cardiac effects of TH remains to be further investigated.

  2. VSV oncolytic virotherapy in the B16 model depends upon intact MyD88 signaling.

    PubMed

    Wongthida, Phonphimon; Diaz, Rosa M; Galivo, Feorillo; Kottke, Timothy; Thompson, Jill; Melcher, Alan; Vile, Richard

    2011-01-01

    We show here, for the first time to our knowledge, that the antitumor therapy of oncolytic vesicular stomatitis virus (VSV) in the B16ova model depends upon signaling through myeloid differentiation primary response gene 88 (MyD88) in host cells. VSV-mediated therapy of B16ova tumors was abolished in MyD88(-/-) mice despite generation of antigen-specific T cell responses similar to those in immune-competent mice. Mice defective in only toll-like receptor 4 (TLR4), TLR7, or interleukin 1 (IL-1) signaling retained VSV-induced therapy, suggesting that multiple, redundant pathways of innate immune activation by the virus contribute to antitumor immune reactivity. Lack of MyD88 signaling was associated with decreased expression of proinflammatory cytokines and neutrophil infiltration in response to intratumoral virus, as well as decreased infiltration of draining lymph nodes (LN) with plasmacytoid dendritic cells (pDCs) (CD11b(-)GR1(+)B220(+)) and myeloid-derived suppressor cells (CD11b(+)GR1(+)F4/80(+)). MyD88 signaling in response to VSV was also closely associated with a type I interferon (IFN) response. This inhibited virus replication within the tumor but also protected the host from viral dissemination from the tumor. Therefore, the innate immune response to oncolytic viruses can be, simultaneously, protherapeutic, antioncolytic, and systemically protective. These paradoxically conflicting roles need to be carefully considered in future strategies designed to improve the efficacy of oncolytic virotherapy.

  3. Signaling via MYD88 in the pancreatic tumor microenvironment: A double-edged sword.

    PubMed

    Zambirinis, Constantinos P; Miller, George

    2013-01-01

    We have recently shown that Toll-like receptor (TLR) signaling exacerbates pancreatic fibro-inflammation and promotes carcinogenesis in mice. Paradoxically, inhibition of the TLR-MYD88 signaling pathway is pro-tumorigenic owing to the dendritic cell-mediated TH2-polarization of CD4(+) T cells. TLR signaling appears to be central in pancreatic cancer-associated inflammation.

  4. MyD88-dependent Toll-like receptor 4 signal pathway in intervertebral disc degeneration

    PubMed Central

    Qin, Chuqiang; Zhang, Bo; Zhang, Liang; Zhang, Zhi; Wang, Le; Tang, Long; Li, Shuangqing; Yang, Yixi; Yang, Fuguo; Zhang, Ping; Yang, Bo

    2016-01-01

    Lower back pain (LBP) is a common and remitting problem. One of the primary causes of LBP is thought to be degeneration of the intervertebral disc (IVD). The aim of the present study was to investigate the role of the myeloid differentiation primary-response protein 88 (MyD88)-dependent Toll-like receptor 4 (TLR4) signal pathway in the mechanism of IVD degeneration. IVD nucleus pulposus cells isolated and cultured from the lumbar vertebrae of Wistar rats were stimulated by various doses of lipopolysaccharide (LPS; 0.1, 1, 10 and 100 µg/ml) to simulate IVD degeneration. Cells were rinsed and cultured in serum-free Dulbecco's modified Eagle's medium/F12. Reverse transcription-quantitative polymerase chain reaction was used to determine the levels of TLR4, MyD88, tumor necrosis factor α (TNFα), and interleukin-1β (IL-1β) mRNA expression after 1, 3, 6, 9 and 12 h of incubation. Additionally, western blot and enzyme-linked immunosorbent assay analyses were used to determine the levels of TLR4, MyD88, TNFα, and IL-1β protein expression after 24, 48 and 72 h of incubation. The levels of TLR4, MyD88, TNFα and IL-1β mRNA all increased in the cells stimulated by 10 µg/ml LPS at 3, 6 and 9 h (all P<0.001). Furthermore, the levels of TLR4, MyD88, TNFα and IL-1β protein all increased at 24, 48 and 72 h (all P<0.001). Additionally, the mRNA and protein levels of TLR4, MyD88, TNFα and IL-1β increased significantly in the cells stimulated by 1, 10 and 100 µg/ml LPS compared with the control group, and reached a peak in the 10 µg/ml LPS group (all P<0.001). These results suggest that the MyD88-dependent TLR4 signal pathway is a target pathway in IVD degeneration. This pathway is time phase- and dose-dependent, and when activated can lead to the release of inflammatory factors that participate in IVD degeneration. PMID:27446251

  5. Alcohol-induced sedation and synergistic interactions between alcohol and morphine: A key mechanistic role for Toll-Like Receptors and MyD88-dependent signalling

    PubMed Central

    Corrigan, Frances; Wu, Yue; Tuke, Jonathan; Coller, Janet K.; Rice, Kenner C.; Diener, Kerrilyn R.; Hayball, John D.; Watkins, Linda R.; Somogyi, Andrew A.; Hutchinson, Mark R.

    2015-01-01

    Increasing evidence demonstrates induction of proinflammatory Toll-like receptor (TLR) 2 and TLR4 signaling by morphine and, TLR4 signaling by alcohol; thus indicating a common site of drug action and a potential novel innate immune-dependent hypothesis for opioid and alcohol drug interactions. Hence, the current study aimed to assess the role of TLR2, TLR4, MyD88 (as a critical TLR-signalling participant), NF-κB, Interleukin-1β (IL-1β; as a downstream proinflammatory effector molecule) and the µ opioid receptor (MOR; as a classical site for morphine action) in acute alcohol-induced sedation (4.5 g/kg) and alcohol (2.5 g/kg) interaction with morphine (5 mg/kg) by assessing the loss of righting reflex (LORR) as a measure of sedation. Wild-type male Balb/c mice and matched genetically-deficient TLR2, TLR4, and MyD88 strains were utilized, together with pharmacological manipulation of MOR, NF-κB, TLR4 and Interleukin-1β. Alcohol induced significant LORR in wild-type mice; this was halved by MyD88 and TLR4 deficiency, and surprisingly nearly completely eliminated by TLR2 deficiency. In contrast, the interaction between morphine and alcohol was found to be MOR-, NF-κB-, TLR2- and MyD88-dependent, but did not involve TLR4 or Interleukin-1β. Morphine-alcohol interactions caused acute elevations in microglial cell counts and NF-κB-p65 positive cells in the motor cortex in concordance with wild-type and TLR2 deficient mouse behavioral data, implicating neuroimmunopharmacological signaling as a pivotal mechanism in this clinically problematic drug-drug interaction. PMID:25542736

  6. Gene expression profiles identify both MyD88-independent and MyD88-dependent pathways involved in the maturation of dendritic cells mediated by heparan sulfate: A novel adjuvant

    PubMed Central

    Wu, Meini; Wang, Haixuan; Shi, Jiandong; Sun, Jing; Duan, Zhiqing; Li, Yanhan; Li, Jianfang; Hu, Ningzhu; Wei, Yiju; Chen, Yang; Hu, Yunzhang

    2015-01-01

    The traditional vaccine adjuvant research is mainly based on the trial and error method, and the mechanisms underlying the immune system stimulation remaining largely unknown. We previously demonstrated that heparan sulfate (HS), a TLR-4 ligand and endogenous danger signal, effectively enhanced humoral and cellular immune responses in mice immunized by HBsAg. This study aimed to evaluate whether HS induces better humoral immune responses against inactivated Hepatitis A or Rabies Vaccines, respectively, compared with traditional adjuvants (e.g. Alum and complete Freund's adjuvant). In order to investigate the molecular mechanisms of its adjuvanticity, the gene expression pattern of peripheral blood monocytes derived DCs (dendritic cells) stimulated with HS was analyzed at different times points. Total RNA was hybridized to Agilent SurePrint G3 Human Gene Expression 8 × 60 K one-color oligo-microarray. Through intersection analysis of the microarray results, we found that the Toll-like receptor signaling pathway was significantly activated, and NF-kB, TRAF3 and IRF7 were activated as early as 12 h, and MyD88 was activated at 48 h post-stimulation. Furthermore, the expression of the surface marker CD83 and the co-stimulatory molecules CD80 and CD86 was up-regulated as early as 24 h. Therefore, we speculated that HS-induced human monocyte-derived DC maturation may occur through both MyD88-independent and dependent pathways, but primarily through the former (TRIF pathway). These data provide an important basis for understanding the mechanisms underlying HS enhancement of the immune response. PMID:25668674

  7. Attenuation of Hepatic Graft-versus-host Disease in Allogeneic Recipients of MyD88-deficient Donor Bone Marrow.

    PubMed

    Lim, Ji-Young; Lee, Young-Kwan; Lee, Sung-Eun; Ju, Ji-Min; Park, Gyeongsin; Choi, Eun Young; Min, Chang-Ki

    2015-06-01

    Acute graft-versus-host-disease (GVHD) is characterized by selective damage to the liver, the skin, and the gastrointestinal tract. Following allogeneic hematopoietic stem cell transplantation, donor bone marrow (BM) cells repopulate the immune system of the recipient. We previously demonstrated that the acute intestinal GVHD (iGVHD) mortality rate was higher in MyD88-deficient BM recipients than that in the control BM recipients. In the present study, the role of MyD88 (expressed by donor BM) in the pathophysiology of hepatic GVHD (hGVHD) was examined. Unlike iGVHD, transplantation with MyD88-deficient T-cell depleted (TCD) BM attenuated hGVHD severity and was associated with low infiltration of T cells into the liver of the recipients. Moreover, GVHD hosts, transplanted with MyD88-deficient TCD BM, exhibited markedly reduced expansion of CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSC) in the liver. Adoptive injection of the MDSC from wild type mice, but not MyD88-deficient mice, enhanced hepatic T cell infiltration in the MyD88-deficient TCD BM recipients. Pre-treatment of BM donors with LPS increased MDSC levels in the liver of allogeneic wild type BM recipients. In conclusion, hGVHD and iGVHD may occur through various mechanisms based on the presence of MyD88 in the non-T cell compartment of the allograft.

  8. IMQ-induced skin inflammation in mice is dependent on IL-1R1 and MyD88 signaling but independent of the NLRP3 inflammasome.

    PubMed

    Rabeony, Hanitriniaina; Pohin, Mathilde; Vasseur, Philippe; Petit-Paris, Isabelle; Jégou, Jean-François; Favot, Laure; Frouin, Eric; Boutet, Marie-Astrid; Blanchard, Frédéric; Togbe, Dieudonnée; Ryffel, Bernhard; Bernard, François-Xavier; Lecron, Jean-Claude; Morel, Franck

    2015-10-01

    The pathogenesis of inflammatory skin diseases such as psoriasis involves the release of numerous proinflammatory cytokines, including members of the IL-1 family. Here we report overexpression of IL-1α, IL-1β, and IL-1 receptor antagonist mRNA, associated to expression of IL-23p19, IL-17A, and IL-22 in skin cells, upon topical application of the TLR7 agonist imiquimod (IMQ) in C57BL/6J mice. IMQ-induced skin inflammation was partially reduced in mice deficient for both IL-1α/IL-1β or for IL-1 receptor type 1 (IL-1R1), but not in IL-1α- or IL-1β-deficient mice, demonstrating the redundant activity of IL-1α and IL-1β for skin inflammation. NLRP3 or apoptosis-associated Speck-like protein containing a Caspase recruitment domain-deficient mice had no significant reduction of skin inflammation in response to IMQ treatment, mainly due to the redundancy of IL-1α. However, IMQ-induced skin inflammation was abolished in the absence of MyD88, the adaptor protein shared by IL-1R and TLR signaling pathways. These results are consistent with the TLR7 dependence of IMQ-induced skin inflammation. Thus, IL-1R1 contributes to the IMQ-induced skin inflammation, and disruption of MyD88 signaling completely abrogates this response.

  9. Shrimp MyD88 responsive to bacteria and white spot syndrome virus.

    PubMed

    Wen, Rong; Li, Fuhua; Sun, Zheng; Li, Shihao; Xiang, Jianhai

    2013-02-01

    The myeloid differentiation factor 88 (MyD88) is an important adapter protein which links members of the toll-like receptor (TLR) to the downstream components to activate related signaling pathways. In the present study, a MyD88 homolog (FcMyD88) was cloned from penaeid shrimp Fenneropenaeus chinensis. The ORF of FcMyD88 consisted of 1434 bp encoding a polypeptide of 477 amino acids which contains a death domain (DD) and a typical TLR and interleukin-1 receptor (IL-1R)-related (TIR) domain. Homology analysis revealed that the predicted amino acid (aa) sequence of FcMyD88 shared high similarities with a variety of previously reported MyD88s. The time-dependent expression patterns of FcMyD88 in cephalothoraxes of shrimp injected with Vibrio anguillarum (Gram-negative bacteria, G(-)), Micrococcus lysodeikticu (Gram-positive bacteria, G(+)) and white syndrome spot virus (WSSV) were analyzed at transcription and protein level by real-time PCR and western blotting, respectively. The expression level of FcMyD88 mRNA was significantly up-regulated at one hour (h), 12 h and 24 h after stimulation with both V. anguillarum and M. lysodeikticu. The expression level of FcMyD88 protein was 2-fold up-regulated at 12 h post injection (hpi) of inactivated V. anguillarum while it didn't change after M. lysodeikticu injection during this period. After WSSV injection, the expression level of FcMyD88 mRNA remained relatively constant, while the FcMyD88 protein was significantly up-regulated at 12 and 24 hpi. These results suggested that the MyD88-dependent signaling pathway could be involved in the defense of both bacteria and WSSV infection.

  10. MyD88 in macrophages is critical for abscess resolution in staphylococcal skin infection.

    PubMed

    Feuerstein, Reinhild; Seidl, Maximilian; Prinz, Marco; Henneke, Philipp

    2015-03-15

    When Staphylococcus aureus penetrates the epidermis and reaches the dermis, polymorphonuclear leukocytes (PMLs) accumulate and an abscess is formed. However, the molecular mechanisms that orchestrate initiation and termination of inflammation in skin infection are incompletely understood. In human myeloid differentiation primary response gene 88 (MyD88) deficiency, staphylococcal skin and soft tissue infections are a leading and potentially life-threatening problem. In this study, we found that MyD88-dependent sensing of S. aureus by dermal macrophages (Mϕ) contributes to both timely escalation and termination of PML-mediated inflammation in a mouse model of staphylococcal skin infection. Mϕs were key to recruit PML within hours in response to staphylococci, irrespective of bacterial viability. In contrast with bone marrow-derived Mϕs, dermal Mϕs did not require UNC-93B or TLR2 for activation. Moreover, PMLs, once recruited, were highly activated in an MyD88-independent fashion, yet failed to clear the infection if Mϕs were missing or functionally impaired. In normal mice, clearance of the infection and contraction of the PML infiltrate were accompanied by expansion of resident Mϕs in a CCR2-dependent fashion. Thus, whereas monocytes were dispensable for the early immune response to staphylococci, they contributed to Mϕ renewal after the infection was overcome. Taken together, MyD88-dependent sensing of staphylococci by resident dermal Mϕs is key for a rapid and balanced immune response, and PMLs are dependent on intact Mϕ for full function. Renewal of resident Mϕs requires both local control of bacteria and inflammatory monocytes entering the skin.

  11. Targeting the TLR9-MyD88 pathway in the regulation of adaptive immune responses

    PubMed Central

    Huang, Xiaopei; Yang, Yiping

    2010-01-01

    IMPORTANCE OF THE FIELD Toll-like receptors (TLRs) are innate immune receptors critical in the innate immune defense against invading pathogens. Recent advances also reveal a crucial role for TLRs in shaping adaptive immune responses, conferring a potential therapeutic value to their modulation in the treatment of diseases. AREAS COVERED IN THIS REVIEW The aim of this review is to discuss TLR9, the TLR9-MyD88 signaling pathway and its role in regulation of adaptive immune responses, as well as potential therapeutic implications by targeting this pathway. WHAT THE READER WILL GAIN This review shows that the TLR9-MyD88 signaling pathway plays a critical role in promoting adaptive immune responses and that modulation of this pathway may have enormous therapeutic potential in enhancing vaccine potency, controlling autoimmunity, as well as improving the outcome of viral vector-mediated gene therapy. TAKE HOME MESSAGE Although TLR9 agonists have been used as adjuvants for enhancing vaccine potency, further exploitation of the TLR9-MyD88 pathway and its dynamic interaction with the immune system in vivo is needed to provide more effective therapeutic inventions in the design of vaccines for infectious diseases, allergies and cancer, in the control of autoimmunity, as well as in the improvement of viral vector-mediated gene therapy. PMID:20560798

  12. The -938C>A Polymorphism in MYD88 Is Associated with Susceptibility to Tuberculosis: A Pilot Study

    PubMed Central

    Aggelou, Kalliopi; Siapati, Elena Konstantina; Gerogianni, Irini; Daniil, Zoe; Gourgoulianis, Konstantinos; Ntanos, Ioannis; Simantirakis, Emmanouel; Zintzaras, Elias; Mollaki, Vassiliki

    2016-01-01

    Introduction. Tuberculosis (TB) is a major disease worldwide, caused by Mycobacterium tuberculosis (MTB) infection. The Toll-Like Receptor (TLR) pathway plays a crucial role in the recognition of MTB. Aim. The present study aimed to investigate the involvement of myeloid differentiation primary response protein 88 (MYD88) gene polymorphisms in TB. Materials and Methods. A total of 103 TB cases and 92 control subjects were genotyped for the MYD88 -938C>A (rs4988453) and 1944C>G (rs4988457) polymorphisms. Results. The MYD88 -938CA and -938AA genotypes were associated with an increased risk for tuberculosis with odds ratio (OR) of 5.71 (95% confidence intervals [CIs] 2.89–11.28, p = 0.01). Conclusions. The MYD88 -938C>A genetic polymorphism is associated with increased susceptibility to TB and may serve as a marker to screen individuals who are at risk. PMID:28127112

  13. Lipid IVa incompletely activates MyD88-independent Toll-like receptor 4 signaling in mouse macrophage cell lines.

    PubMed

    Ogura, Norihiko; Muroi, Masashi; Sugiura, Yuka; Tanamoto, Ken-ichi

    2013-04-01

    We investigated the difference in the effect of synthetic lipid A compounds on MyD88-dependent and -independent Toll-like receptor 4 (TLR4) signaling in mouse macrophage cells. At higher concentrations, Escherichia coli-type hexa-acylated lipid A 506, Salmonella-type hepta-acylated lipid A 516, the lipid A precursor lipid IVa and monophosphoryl lipid A induced similar levels of production of the MyD88-dependent cytokine IL-1β although their potencies varied, whereas the maximum production of the MyD88-independent cytokine RANTES induced by lipid IVa was less than 50% that of other lipid A compounds. A maximum level of NF-κB activation, which is involved in IL-1β gene transcription, was also induced to a similar level by these four lipid A compounds, while the maximum level of IFN-β promoter activity induced during MyD88-independent signaling was also less than 50% for lipid IVa stimulation compared with other lipid A compounds. Early IκBα phosphorylation activated by MyD88-dependent signaling was similarly induced by 506 and lipid IVa, whereas lipid IVa barely stimulated the phosphorylation of IRF3, a MyD88-independent transcription factor, although efficient phosphorylation was observed with 506 stimulation. These results indicate that lipid IVa has limited activity toward MyD88-independent signaling of TLR4, in macrophage cell lines, despite having efficient activity in the MyD88-dependent pathway.

  14. MyD88 expression by CNS-resident cells is pivotal for eliciting protective immunity in brain abscesses.

    PubMed

    Garg, Sarita; Nichols, Jessica R; Esen, Nilufer; Liu, Shuliang; Phulwani, Nirmal K; Syed, Mohsin Md; Wood, William H; Zhang, Yongqing; Becker, Kevin G; Aldrich, Amy; Kielian, Tammy

    2009-05-05

    MyD88 KO (knockout) mice are exquisitely sensitive to CNS (central nervous system) infection with Staphylococcus aureus, a common aetiological agent of brain abscess, exhibiting global defects in innate immunity and exacerbated tissue damage. However, since brain abscesses are typified by the involvement of both activated CNS-resident and infiltrating immune cells, in our previous studies it has been impossible to determine the relative contribution of MyD88-dependent signalling in the CNS compared with the peripheral immune cell compartments. In the present study we addressed this by examining the course of S. aureus infection in MyD88 bone marrow chimaera mice. Interestingly, chimaeras where MyD88 was present in the CNS, but not bone marrow-derived cells, mounted pro-inflammatory mediator expression profiles and neutrophil recruitment equivalent to or exceeding that detected in WT (wild-type) mice. These results implicate CNS MyD88 as essential in eliciting the initial wave of inflammation during the acute response to parenchymal infection. Microarray analysis of infected MyD88 KO compared with WT mice revealed a preponderance of differentially regulated genes involved in apoptotic pathways, suggesting that the extensive tissue damage characteristic of brain abscesses from MyD88 KO mice could result from dysregulated apoptosis. Collectively, the findings of the present study highlight a novel mechanism for CNS-resident cells in initiating a protective innate immune response in the infected brain and, in the absence of MyD88 in this compartment, immunity is compromised.

  15. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling

    SciTech Connect

    Lin, Su-Chang; Lo, Yu-Chih; Wu, Hao

    2010-08-23

    MyD88, IRAK4 and IRAK2 are critical signalling mediators of the TLR/IL1-R superfamily. Here we report the crystal structure of the MyD88-IRAK4-IRAK2 death domain (DD) complex, which surprisingly reveals a left-handed helical oligomer that consists of 6 MyD88, 4 IRAK4 and 4 IRAK2 DDs. Assembly of this helical signalling tower is hierarchical, in which MyD88 recruits IRAK4 and the MyD88-IRAK4 complex recruits the IRAK4 substrates IRAK2 or the related IRAK1. Formation of these Myddosome complexes brings the kinase domains of IRAKs into proximity for phosphorylation and activation. Composite binding sites are required for recruitment of the individual DDs in the complex, which are confirmed by mutagenesis and previously identified signalling mutations. Specificities in Myddosome formation are dictated by both molecular complementarity and correspondence of surface electrostatics. The MyD88-IRAK4-IRAK2 complex provides a template for Toll signalling in Drosophila and an elegant mechanism for versatile assembly and regulation of DD complexes in signal transduction.

  16. Ultrastructural distribution of the death-domain-containing MyD88 protein in HeLa cells.

    PubMed

    Jaunin, F; Burns, K; Tschopp, J; Martin, T E; Fakan, S

    1998-08-25

    MyD88, a protein implicated in interleukin-1 signaling, was localized in HeLa cells transiently transfected with an epitope-tagged (flag) version of MyD88. Overexpression of MyD88 can induce apoptosis. We have analyzed the fine structural intracellular distribution of MyD88 using immunoelectron microscopy. MyD88 is localized to the nucleus and to the cytoplasm as revealed by immunofluorescence visualization. Ultrastructural immunocytochemistry shows that, in the cytoplasm, this protein is associated with fibrillar aggregates containing beta-actin. In the nucleus, MyD88 was found in fibrillar domains present only in cells not yet displaying morphological signs of apoptosis. These domains are not derived from nucleoli and do not constitute an accumulation site of splicing factors. We suggest that such structures could be involved in the formation of the apoptotic bodies and/or in the modification of the nuclear structure and of nucleocytoplasmic trafficking during apoptosis.

  17. Novel Toll/IL-1 Receptor Homologous Region Adaptors Act as Negative Regulators in Amphioxus TLR Signaling.

    PubMed

    Peng, Jian; Tao, Xin; Li, Rui; Hu, Jingru; Ruan, Jie; Wang, Ruihua; Yang, Manyi; Yang, Rirong; Dong, Xiangru; Chen, Shangwu; Xu, Anlong; Yuan, Shaochun

    2015-10-01

    Studies have shown that the basal chordate amphioxus possesses an extraordinarily complex TLR system, including 39 TLRs and at least 40 Toll/IL-1R homologous region (TIR) adaptors. Besides homologs to MyD88 and TIR domain-containing adaptor molecule (TICAM), most amphioxus TIR adaptors exhibit domain architectures that are not observed in other species. To reveal how these novel TIR adaptors function in amphioxus Branchiostoma belcheri tsingtauense (bbt), four representatives, bbtTIRA, bbtTIRB, bbtTIRC, and bbtTIRD, were selected for functional analyses. We found bbtTIRA to show a unique inhibitory role in amphioxus TICAM-mediated pathway by interacting with bbtTICAM and bbt receptor interacting protein 1b, whereas bbtTIRC specifically inhibits the amphioxus MyD88-dependent pathway by interacting with bbtMyD88 and depressing the polyubiquitination of bbt TNFR-associated factor 6. Although both bbtTIRB and bbtTIRD are located on endosomes, the TIR domain of bbtTIRB can interact with bbtMyD88 in the cytosol, whereas the TIR domain of bbtTIRD is enclosed in endosome, suggesting that bbtTIRD may be a redundant gene in amphioxus. This study indicated that most expanded TIR adaptors play nonredundant regulatory roles in amphioxus TLR signaling, adding a new layer to understanding the diversity and complexity of innate immunity at basal chordate.

  18. CD4+ T cell expression of MyD88 is essential for normal resolution of Chlamydia muridarum genital tract infection1

    PubMed Central

    Frazer, Lauren C.; Sullivan, Jeanne E.; Zurenski, Matthew A.; Mintus, Margaret; Tomasak, Tammy E.; Prantner, Daniel; Nagarajan, Uma M.; Darville, Toni

    2013-01-01

    Resolution of Chlamydia genital tract infection is delayed in the absence of MyD88. In these studies, we first used bone marrow chimeras to demonstrate a requirement for MyD88 expression by hematopoietic cells in the presence of a wild-type epithelium. Using mixed bone marrow chimeras we then determined that MyD88 expression was specifically required in the adaptive immune compartment. Furthermore, adoptive transfer experiments revealed that CD4+ T cell expression of MyD88 was necessary for normal resolution of genital tract infection. This requirement was associated with a reduced ability of MyD88−/− CD4+ T cells to accumulate in the draining lymph nodes and genital tract when exposed to the same inflammatory milieu as wild-type CD4+ T cells. We also demonstrated that the impaired infection control we observed in the absence of MyD88 could not be recapitulated by deficiencies in TLR or IL-1R signaling. In vitro, we detected an increased frequency of apoptotic MyD88−/− CD4+ T cells upon activation in the absence of exogenous ligands for receptors upstream of MyD88. These data reveal an intrinsic requirement for MyD88 in CD4+ T cells during Chlamydia infection and indicate that the importance of MyD88 extends beyond innate immune responses by directly influencing adaptive immunity. PMID:24038087

  19. CD4+ T cell expression of MyD88 is essential for normal resolution of Chlamydia muridarum genital tract infection.

    PubMed

    Frazer, Lauren C; Sullivan, Jeanne E; Zurenski, Matthew A; Mintus, Margaret; Tomasak, Tammy E; Prantner, Daniel; Nagarajan, Uma M; Darville, Toni

    2013-10-15

    Resolution of Chlamydia genital tract infection is delayed in the absence of MyD88. In these studies, we first used bone marrow chimeras to demonstrate a requirement for MyD88 expression by hematopoietic cells in the presence of a wild-type epithelium. Using mixed bone marrow chimeras we then determined that MyD88 expression was specifically required in the adaptive immune compartment. Furthermore, adoptive transfer experiments revealed that CD4(+) T cell expression of MyD88 was necessary for normal resolution of genital tract infection. This requirement was associated with a reduced ability of MyD88(-/-)CD4(+) T cells to accumulate in the draining lymph nodes and genital tract when exposed to the same inflammatory milieu as wild-type CD4(+) T cells. We also demonstrated that the impaired infection control we observed in the absence of MyD88 could not be recapitulated by deficiencies in TLR or IL-1R signaling. In vitro, we detected an increased frequency of apoptotic MyD88(-/-)CD4(+) T cells upon activation in the absence of exogenous ligands for receptors upstream of MyD88. These data reveal an intrinsic requirement for MyD88 in CD4(+) T cells during Chlamydia infection and indicate that the importance of MyD88 extends beyond innate immune responses by directly influencing adaptive immunity.

  20. Giardia lamblia binding immunoglobulin protein triggers maturation of dendritic cells via activation of TLR4-MyD88-p38 and ERK1/2 MAPKs.

    PubMed

    Lee, H-Y; Kim, J; Noh, H J; Kim, H-P; Park, S-J

    2014-12-01

    Much remains unknown about the mammalian immune response to Giardia lamblia, a protozoan pathogen that causes diarrhoeal outbreaks. We fractionated protein extracts of G. lamblia trophozoites by Viva-spin centrifugation, DEAE ion exchange and gel filtration chromatography. Resultant fractions were screened for antigenic molecules by western blots analysis using anti-G. lamblia antibodies (Abs), resulting in identification of G. lamblia binding immunoglobulin protein (GlBiP). Maturation of mouse dendritic cells (DCs) in response to recombinant GlBiP (rGlBiP) was detected by increased expression of surface molecules such as CD80, CD86 and MHC class II; these mature DCs, produced pro-inflammatory cytokines (TNF-α, IL-12 and IL-6). Especially, the truncated rGlBiP containing the heat-shock protein 70 domain-induced cytokine production from mouse DCs. rGlBiP-induced DC activation was initiated by TLR4 in a MyD88-dependent way and occurred through activation of p38 and ERK1/2 MAPKs as well as increased activity of NF-κB and AP-1. Moreover, CD4(+) T cells stimulated with rGlBiP-treated DCs produced high levels of IL-2 and IFN-γ. Together, our results suggest that GlBiP contributes to maturation of DCs via activation of TLR4-MyD88-p38, ERK1/2 MAPK, NF-κB and AP-1.

  1. IgM+IgD+CD27+ B cells are markedly reduced in IRAK-4-, MyD88-, and TIRAP- but not UNC-93B-deficient patients.

    PubMed

    Weller, Sandra; Bonnet, Mélanie; Delagreverie, Héloïse; Israel, Laura; Chrabieh, Maya; Maródi, László; Rodriguez-Gallego, Carlos; Garty, Ben-Zion; Roifman, Chaim; Issekutz, Andrew C; Zitnik, Simona Eva; Hoarau, Cyrille; Camcioglu, Yildiz; Vasconcelos, Júlia; Rodrigo, Carlos; Arkwright, Peter D; Cerutti, Andrea; Meffre, Eric; Zhang, Shen-Ying; Alcais, Alexandre; Puel, Anne; Casanova, Jean-Laurent; Picard, Capucine; Weill, Jean-Claude; Reynaud, Claude-Agnès

    2012-12-13

    We studied the distribution of peripheral B-cell subsets in patients deficient for key factors of the TLR-signaling pathways (MyD88, TIRAP/MAL, IL-1 receptor-associated kinase 4 [IRAK-4], TLR3, UNC-93B, TRIF). All TLRs, except TLR3, which signals through the TRIF adaptor, require MyD88 and IRAK-4 to mediate their function. TLR4 and the TLR2 heterodimers (with TLR1, TLR6, and possibly TLR10) require in addition the adaptor TIRAP, whereas UNC-93B is needed for the proper localization of intracellular TLR3, TLR7, TLR8, and TLR9. We found that IgM(+)IgD(+)CD27(+) but not switched B cells were strongly reduced in MyD88-, IRAK-4-, and TIRAP-deficient patients. This defect did not appear to be compensated with age. However, somatic hypermutation of Ig genes and heavy-chain CDR3 size distribution of IgM(+)IgD(+)CD27(+) B cells were not affected in these patients. In contrast, the numbers of IgM(+)IgD(+)CD27(+) B cells were normal in the absence of TLR3, TRIF, and UNC-93B, suggesting that UNC-93B-dependent TLRs, and notably TLR9, are dispensable for the presence of this subset in peripheral blood. Interestingly, TLR10 was found to be expressed at greater levels in IgM(+)IgD(+)CD27(+) compared with switched B cells in healthy patients. Hence, we propose a role for TIRAP-dependent TLRs, possibly TLR10 in particular, in the development and/or maintenance of IgM(+)IgD(+)CD27(+) B cells in humans.

  2. Recurrent candidiasis and early-onset gastric cancer in a patient with a genetically defined partial MYD88 defect.

    PubMed

    Vogelaar, Ingrid P; Ligtenberg, Marjolijn J L; van der Post, Rachel S; de Voer, Richarda M; Kets, C Marleen; Jansen, Trees J G; Jacobs, Liesbeth; Schreibelt, Gerty; de Vries, I Jolanda M; Netea, Mihai G; Hoogerbrugge, Nicoline

    2016-04-01

    Gastric cancer is caused by both genetic and environmental factors. A woman who suffered from recurrent candidiasis throughout her life developed diffuse-type gastric cancer at the age of 23 years. Using whole-exome sequencing we identified a germline homozygous missense variant in MYD88. Immunological assays on peripheral blood mononuclear cells revealed an impaired immune response upon stimulation with Candida albicans, characterized by a defective production of the cytokine interleukin-17. Our data suggest that a genetic defect in MYD88 results in an impaired immune response and may increase gastric cancer risk.

  3. MyD88 is a key mediator of anorexia, but not weight loss, induced by lipopolysaccharide and interleukin-1 beta.

    PubMed

    Ogimoto, Kayoko; Harris, Marvin K; Wisse, Brent E

    2006-09-01

    Systemic inflammatory signals can disrupt the physiological regulation of energy balance, causing anorexia and weight loss. In the current studies, we investigated whether MyD88, the primary, but not exclusive, intracellular signal transduction pathway for Toll-like receptor 4 and IL-1 receptor I, is necessary for anorexia and weight loss to occur in response to stimuli that activate these key innate immune receptors. Our findings demonstrate that the absence of MyD88 signaling confers complete protection against anorexia induced by either lipopolysaccharide (LPS) (20 h food intake in MyD88-/- mice 5.4 +/- 0.3 vs. 3.3 +/- 0.4 g in MyD88+/+ control mice, P < 0.001) or IL-1 beta (20 h food intake in MyD88-/- mice 4.9 +/- 0.5 vs. 4.0 +/- 0.3 g in MyD88+/+ control mice, P < 0.001). However, absent MyD88 signaling does not prevent these inflammatory mediators from causing weight loss (LPS, -0.4 +/- 0.1 g; IL1 beta, -0.1 +/- 0.1 g, both P < 0.01 vs. vehicle-injected MyD88-/- mice, +0.4 +/- 0.2 g). Furthermore, LPS-induced weight loss occurs in the absence of adipsia, fever, or hypothalamus-pituitary-adrenal axis activation in MyD88-deficient mice. In addition, the peripheral inflammatory response to LPS is surprisingly intact in mice lacking MyD88. Together, these observations indicate that LPS reduces food intake via a mechanism that is dissociated from its effect on peripheral cytokine production, and whereas the presence of circulating proinflammatory cytokines per se is insufficient to cause anorexia in the absence of MyD88 signaling, it may contribute to LPS-induced weight loss.

  4. MyD88 regulates physical inactivity-induced skeletal muscle inflammation, ceramide biosynthesis signaling, and glucose intolerance.

    PubMed

    Kwon, Oh Sung; Tanner, Ruth E; Barrows, Katherine M; Runtsch, Marah; Symons, J David; Jalili, Thunder; Bikman, Benjamin T; McClain, Donald A; O'Connell, Ryan M; Drummond, Micah J

    2015-07-01

    Physical inactivity in older adults is a risk factor for developing glucose intolerance and impaired skeletal muscle function. Elevated inflammation and ceramide biosynthesis have been implicated in metabolic disruption and are linked to Toll-like receptor (TLR)/myeloid differentiation primary response 88 (MyD88) signaling. We hypothesize that a physical inactivity stimulus, capable of inducing glucose intolerance, would increase skeletal muscle inflammation and ceramide biosynthesis signaling and that this response would be regulated by the TLR/MyD88 pathway. Therefore, we subjected wild-type (WT) and MyD88(-/-) mice to hindlimb unloading (HU) for 14 days or an ambulatory control period. We observed impaired glucose uptake, muscle insulin signaling (p-Akt), and increased markers of NF-κB signaling (p-IκBα), inflammation (p-JNK, IL-6), TLR4, and the rate-limiting enzyme of ceramide biosynthesis, SPT2, with HU WT (P < 0.05), but not in HU MyD88(-/-) mice. Concurrently, we found that 5 days of bed rest in older adults resulted in whole body glucose dysregulation, impaired skeletal muscle insulin signaling, and upregulation of muscle IL-6 and SPT2 (P < 0.05). Post-bed rest TLR4 abundance was tightly correlated with impaired postprandial insulin and glucose levels. In conclusion, MyD88 signaling is necessary for the increased inflammation, ceramide biosynthesis signaling, and compromised metabolic function that accompanies physical inactivity.

  5. MyD88 regulates physical inactivity-induced skeletal muscle inflammation, ceramide biosynthesis signaling, and glucose intolerance

    PubMed Central

    Kwon, Oh Sung; Tanner, Ruth E.; Barrows, Katherine M.; Runtsch, Marah; Symons, J. David; Jalili, Thunder; Bikman, Benjamin T.; McClain, Donald A.; O'Connell, Ryan M.

    2015-01-01

    Physical inactivity in older adults is a risk factor for developing glucose intolerance and impaired skeletal muscle function. Elevated inflammation and ceramide biosynthesis have been implicated in metabolic disruption and are linked to Toll-like receptor (TLR)/myeloid differentiation primary response 88 (MyD88) signaling. We hypothesize that a physical inactivity stimulus, capable of inducing glucose intolerance, would increase skeletal muscle inflammation and ceramide biosynthesis signaling and that this response would be regulated by the TLR/MyD88 pathway. Therefore, we subjected wild-type (WT) and MyD88−/− mice to hindlimb unloading (HU) for 14 days or an ambulatory control period. We observed impaired glucose uptake, muscle insulin signaling (p-Akt), and increased markers of NF-κB signaling (p-IκBα), inflammation (p-JNK, IL-6), TLR4, and the rate-limiting enzyme of ceramide biosynthesis, SPT2, with HU WT (P < 0.05), but not in HU MyD88−/− mice. Concurrently, we found that 5 days of bed rest in older adults resulted in whole body glucose dysregulation, impaired skeletal muscle insulin signaling, and upregulation of muscle IL-6 and SPT2 (P < 0.05). Post-bed rest TLR4 abundance was tightly correlated with impaired postprandial insulin and glucose levels. In conclusion, MyD88 signaling is necessary for the increased inflammation, ceramide biosynthesis signaling, and compromised metabolic function that accompanies physical inactivity. PMID:25968578

  6. Inhibition of Hepatitis B Virus Replication by MyD88 Involves Accelerated Degradation of Pregenomic RNA and Nuclear Retention of Pre-S/S RNAs▿

    PubMed Central

    Li, Jianhua; Lin, Shanshan; Chen, Qiying; Peng, Lu; Zhai, Jianwei; Liu, Yinghui; Yuan, Zhenghong

    2010-01-01

    Myeloid differentiation primary response protein 88 (MyD88), which can be induced by alpha interferon (IFN-α), has an antiviral activity against the hepatitis B virus (HBV). The mechanism of this antiviral activity remains poorly understood. Here, we report that MyD88 inhibited HBV replication in HepG2.2.15 cells and in a mouse model. The knockdown of MyD88 expression weakened the IFN-α-induced inhibition of HBV replication. Furthermore, MyD88 posttranscriptionally reduced the levels of viral RNA. Remarkably, MyD88 accelerated the decay of viral pregenomic RNA in the cytoplasm. Mapping analysis showed that the RNA sequence located in the 5′-proximal region of the pregenomic RNA was critical for the decay. In addition, MyD88 inhibited the nuclear export of pre-S/S RNAs via the posttranscriptional regulatory element (PRE). The retained pre-S/S RNAs were shown to degrade in the nucleus. Finally, we found that MyD88 inhibited the expression of polypyrimidine tract-binding protein (PTB), a key nuclear export factor for PRE-containing RNA. Taken together, our results define a novel antiviral mechanism against HBV mediated by MyD88. PMID:20410269

  7. Utility of MYD88 in the Differential Diagnosis and Choice of Second-Line Therapy in a Case of Nonsecretory Lymphoplasmacytic Lymphoma versus Free Light Chain Waldenstrom's Macroglobulinemia

    PubMed Central

    Kazmierski, D.; Palomba, M. L.

    2017-01-01

    The MYD88 L265P somatic variant (MYD88) has a high prevalence in Waldenstrom's Macroglobulinemia (WM), a form of lymphoplasmacytic lymphoma (LPL) associated with monoclonal IgM. Although the role of MYD88 in WM was initially reported in 2012, it was not until 2016 that MYD88 testing was included in the National Cancer Care Network (NCCN) Guidelines. We present a case illustrating the utility of MYD88 status in distinguishing atypical forms of WM from marginal zone lymphoma (MZL) and in selecting second-line therapy with ibrutinib. In 2012, a 64-year-old male presented with dyspnea on exertion, a hemoglobin of 5.6 g/dL, a platelet count of 86,000, and monoclonal IgM kappa on serum immunofixation but no detectable M-spike. Bone marrow biopsy revealed 95% monoclonal B-lymphocytes with lymphoplasmacytic differentiation favoring a diagnosis of LPL/WM over MZL, with a favorable response to chemotherapy. This diagnosis was called into question 3 years later following relapse, and MZL was favored based on the lack of MYD88 mutation. One year later, however, repeat bone marrow biopsy detected the MYD88 mutation and therapy with ibrutinib yielded a favorable response. The distinction between certain lymphomas can be problematic and in this case MYD88 was helpful in clarifying a diagnosis of atypical LPL/WM from MZL and in selecting effective second-line therapy. PMID:28286680

  8. IRAK-4 and MyD88 deficiencies impair IgM responses against T-independent bacterial antigens

    PubMed Central

    Maglione, Paul J.; Simchoni, Noa; Black, Samuel; Radigan, Lin; Overbey, Jessica R.; Bagiella, Emilia; Bussel, James B.; Bossuyt, Xavier; Casanova, Jean-Laurent; Meyts, Isabelle; Cerutti, Andrea; Picard, Capucine

    2014-01-01

    IRAK-4 and MyD88 deficiencies impair interleukin 1 receptor and Toll-like receptor (TLR) signaling and lead to heightened susceptibility to invasive bacterial infections. Individuals with these primary immunodeficiencies have fewer immunoglobulin M (IgM)+IgD+CD27+ B cells, a population that resembles murine splenic marginal zone B cells that mount T-independent antibody responses against bacterial antigens. However, the significance of this B-cell subset in humans is poorly understood. Using both a 610 carbohydrate array and enzyme-linked immunosorbent assay, we found that patients with IRAK-4 and MyD88 deficiencies have reduced serum IgM, but not IgG antibody, recognizing T-independent bacterial antigens. Moreover, the quantity of specific IgM correlated with IgM+IgD+CD27+ B-cell frequencies. As with mouse marginal zone B cells, human IgM+CD27+ B cells activated by TLR7 or TLR9 agonists produced phosphorylcholine-specific IgM. Further linking splenic IgM+IgD+CD27+ B cells with production of T-independent IgM, serum from splenectomized subjects, who also have few IgM+IgD+CD27+ B cells, had reduced antibacterial IgM. IRAK-4 and MyD88 deficiencies impaired TLR-induced proliferation of this B-cell subset, suggesting a means by which loss of this activation pathway leads to reduced cell numbers. Thus, by bolstering the IgM+IgD+CD27+ B-cell subset, IRAK-4 and MyD88 promote optimal T-independent IgM antibody responses against bacteria in humans. PMID:25320238

  9. IRAK-4 and MyD88 deficiencies impair IgM responses against T-independent bacterial antigens.

    PubMed

    Maglione, Paul J; Simchoni, Noa; Black, Samuel; Radigan, Lin; Overbey, Jessica R; Bagiella, Emilia; Bussel, James B; Bossuyt, Xavier; Casanova, Jean-Laurent; Meyts, Isabelle; Cerutti, Andrea; Picard, Capucine; Cunningham-Rundles, Charlotte

    2014-12-04

    IRAK-4 and MyD88 deficiencies impair interleukin 1 receptor and Toll-like receptor (TLR) signaling and lead to heightened susceptibility to invasive bacterial infections. Individuals with these primary immunodeficiencies have fewer immunoglobulin M (IgM)(+)IgD(+)CD27(+) B cells, a population that resembles murine splenic marginal zone B cells that mount T-independent antibody responses against bacterial antigens. However, the significance of this B-cell subset in humans is poorly understood. Using both a 610 carbohydrate array and enzyme-linked immunosorbent assay, we found that patients with IRAK-4 and MyD88 deficiencies have reduced serum IgM, but not IgG antibody, recognizing T-independent bacterial antigens. Moreover, the quantity of specific IgM correlated with IgM(+)IgD(+)CD27(+) B-cell frequencies. As with mouse marginal zone B cells, human IgM(+)CD27(+) B cells activated by TLR7 or TLR9 agonists produced phosphorylcholine-specific IgM. Further linking splenic IgM(+)IgD(+)CD27(+) B cells with production of T-independent IgM, serum from splenectomized subjects, who also have few IgM(+)IgD(+)CD27(+) B cells, had reduced antibacterial IgM. IRAK-4 and MyD88 deficiencies impaired TLR-induced proliferation of this B-cell subset, suggesting a means by which loss of this activation pathway leads to reduced cell numbers. Thus, by bolstering the IgM(+)IgD(+)CD27(+) B-cell subset, IRAK-4 and MyD88 promote optimal T-independent IgM antibody responses against bacteria in humans.

  10. Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration.

    PubMed

    Martino, Mikaël M; Maruyama, Kenta; Kuhn, Gisela A; Satoh, Takashi; Takeuchi, Osamu; Müller, Ralph; Akira, Shizuo

    2016-03-22

    Tissue injury and the healing response lead to the release of endogenous danger signals including Toll-like receptor (TLR) and interleukin-1 receptor, type 1 (IL-1R1) ligands, which modulate the immune microenvironment. Because TLRs and IL-1R1 have been shown to influence the repair process of various tissues, we explored their role during bone regeneration, seeking to design regenerative strategies integrating a control of their signalling. Here we show that IL-1R1/MyD88 signalling negatively regulates bone regeneration, in the mouse. Furthermore, IL-1β which is released at the bone injury site, inhibits the regenerative capacities of mesenchymal stem cells (MSCs). Mechanistically, IL-1R1/MyD88 signalling impairs MSC proliferation, migration and differentiation by inhibiting the Akt/GSK-3β/β-catenin pathway. Lastly, as a proof of concept, we engineer a MSC delivery system integrating inhibitors of IL-1R1/MyD88 signalling. Using this strategy, we considerably improve MSC-based bone regeneration in the mouse, demonstrating that this approach may be useful in regenerative medicine applications.

  11. Overexpression of FOXO3, MYD88, and GAPDH Identified by Suppression Subtractive Hybridization in Esophageal Cancer Is Associated with Autophagy.

    PubMed

    Soltany-Rezaee-Rad, Mohammad; Mottaghi-Dastjerdi, Negar; Setayesh, Neda; Roshandel, Gholamreza; Ebrahimifard, Farzaneh; Sepehrizadeh, Zargham

    2014-01-01

    To find genes involved in tumorigenesis and the development of esophageal cancer, the suppression subtractive hybridization (SSH) method was used to identify genes that are overexpressed in esophageal cancer tissues compared to normal esophageal tissues. In our SSH library, the forkhead box O3 (FOXO3), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and myeloid differentiation primary response 88 (MYD88) genes were the most highly upregulated genes, and they were selected for further studies because of their potential role in the induction of autophagy. Upregulation of these genes was also observed in clinical samples using qRT-PCR. In addition, coexpression analysis of the autophagy-related genes Beclin1, ATG12, Gabarapl, PIK3C3, and LC3 demonstrated a significant correlation between the differentially overexpressed genes and autophagy. Autophagy is an important mechanism in tumorigenesis and the development of chemoresistance in cancer cells. The upregulation of FOXO3, GAPDH, and MYD88 variants in esophageal cancer suggests a role for autophagy and provides new insight into the biology of esophageal cancer. We propose that FOXO3, GAPDH, and MYD88 are novel targets for combating autophagy in esophageal cancer.

  12. Baicalin inhibits TLR7/MYD88 signaling pathway activation to suppress lung inflammation in mice infected with influenza A virus

    PubMed Central

    WAN, QIAOFENG; WANG, HAO; HAN, XUEBO; LIN, YUAN; YANG, YANHUI; GU, LIGANG; ZHAO, JIAQING; WANG, LI; HUANG, LING; LI, YANBIN; YANG, YURONG

    2014-01-01

    The present study aimed to investigate the protective effects and underlying mechanisms of baicalin on imprinting control region mice infected with influenza A/FM/1/47 (H1N1) virus. Oral administration of baicalin into mice infected with H1N1 prevented death, increased the mean time to death and inhibited lung index and lung consolidation. Subsequently, fluorescence quantitative polymerase chain reaction was used to assess the mRNA expression of toll-like receptor 7 (TLR7) and myeloid differentiation primary response gene 88 (MYD88), and western blot analysis was used to determine the expression of phosphorylated nuclear factor κB (NF-κB)-P65 and c-jun/activator protein 1 (AP-1). An enzyme-linked immunosorbent assay was applied to test for the inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β and IL-6, in the lung tissue. The findings indicated that baicalin downregulated the mRNA expression of TLR7 and MYD88, significantly downregulated the protein expression of NF-κB-P65 and AP-1 and also inhibited the secretion of TNF-α, IL-1β and IL-6. In conclusion, baicalin effectively reduced the pathological damage and inflammation of the lungs by downregulating the TLR7/MYD88-mediated signaling pathway. PMID:24748990

  13. PPAR-γ/IL-10 axis inhibits MyD88 expression and ameliorates murine polymicrobial sepsis.

    PubMed

    Ferreira, Ana Elisa; Sisti, Flavia; Sônego, Fabiane; Wang, Suojuan; Filgueiras, Luciano Ribeiro; Brandt, Stephanie; Serezani, Ana Paula Moreira; Du, Hong; Cunha, Fernando Q; Alves-Filho, Jose Carlos; Serezani, Carlos Henrique

    2014-03-01

    Polymicrobial sepsis induces organ failure and is accompanied by overwhelming inflammatory response and impairment of microbial killing. Peroxisome proliferator-activated receptor (PPAR)-γ is a nuclear receptor with pleiotropic effects on lipid metabolism, inflammation, and cell proliferation. The insulin-sensitizing drugs thiazolidinediones (TZDs) are specific PPAR-γ agonists. TZDs exert anti-inflammatory actions in different disease models, including polymicrobial sepsis. The TZD pioglitazone, which has been approved by the U.S. Food and Drug Administration, improves sepsis outcome; however, the molecular programs that mediate its effect have not been determined. In a murine model of sepsis, we now show that pioglitazone treatment improves microbial clearance and enhances neutrophil recruitment to the site of infection. We also observed reduced proinflammatory cytokine production and high IL-10 levels in pioglitazone-treated mice. These effects were associated with a decrease in STAT-1-dependent expression of MyD88 in vivo and in vitro. IL-10R blockage abolished PPAR-γ-mediated inhibition of MyD88 expression. These data demonstrate that the primary mechanism by which pioglitazone protects against polymicrobial sepsis is through the impairment of MyD88 responses. This appears to represent a novel regulatory program. In this regard, pioglitazone provides advantages as a therapeutic tool, because it improves different aspects of host defense during sepsis, ultimately enhancing survival.

  14. Activation of MyD88 Signaling upon Staphylococcal Enterotoxin Binding to MHC Class II Molecules

    DTIC Science & Technology

    2011-01-20

    with magnetic beads were obtained from Miltenyi Biotech Inc. (Auburn, CA). The FITC-conjugated mAbs anti- CD14 , anti- CD3, and Ig isotype control...and Maloney murine leukemia virus reverse transcriptase was purchased from Perkin Elmer (Waltham, MA). Mouse anti-human CD14 and CD3 mAbs conjugated...harvested from the interface, washed, and suspended in RPMI 1640 medium. Monocytes ( CD14 +) were purified as previously described [33]. Briefly, total

  15. Interleukin 1 receptor-driven neutrophil recruitment accounts to MyD88-dependent pulmonary clearance of legionella pneumophila infection in vivo.

    PubMed

    Mascarenhas, Danielle P A; Pereira, Marcelo S F; Manin, Graziele Z; Hori, Juliana I; Zamboni, Dario S

    2015-01-15

    Legionella pneumophila, the etiological agent of Legionnaires' disease, triggers activation of multiple innate immune pathways that lead to the restriction of bacterial replication in vivo. Despite the critical role for MyD88 in infection clearance, the receptors and mechanisms responsible for MyD88-mediated pulmonary bacterial clearance are still unclear. Here, we used flagellin mutants of L. pneumophila, which bypass the NAIP5/NLRC4-mediated restriction of bacterial replication, to assess the receptors involved in MyD88-mediated pulmonary bacterial clearance. By systematically comparing pulmonary clearance of L. pneumophila in C57BL/6 MyD88(-/-), TLR2(-/-), TLR3(-/-), TLR4(-/-), TLR9(-/-), IL-1R(-/-), and IL-18(-/-) mice, we found that, while the knockout of a single Toll-like receptor or interleukin 18 resulted only in minor impairment of bacterial clearance, deficiency in the interleukin 1 (IL-1) receptor led to a significant impairment. IL-1/MyD88-mediated pulmonary bacterial clearance occurs via processes involving the recruitment of neutrophils. Collectively, our data contribute to the understanding of the effector mechanisms involved in MyD88-mediated pulmonary bacterial clearance.

  16. Sinomenine decreases MyD88 expression and improves inflammation-induced joint damage progression and symptoms in rat adjuvant-induced arthritis.

    PubMed

    Mu, Hui; Yao, Ru-Bing; Zhao, Ling-Jie; Shen, Si-Yu; Zhao, Zhi-Ming; Cai, Hui

    2013-10-01

    Sinomenine (SIN) is the active principle of the Chinese medical plant Sinomenium acutum which is widely used for the treatment of rheumatoid arthritis (RA) in China. Recently, several groups indicated that myeloid differentiation primary response protein 88 (MyD88) might be associated with disease progression of RA. Here, we observed the effect of SIN on MyD88 expression and showed its therapeutic role in RA. First, immunohistochemical staining in clinical specimens showed that MyD88 was mainly located in characteristic pathological structures of RA synovial tissues. Second, we found that MyD88 was overexpressed in the synovial tissues of the rats with adjuvant-induced arthritis (AIA). Treatment with SIN markedly decreased the expression of MyD88 in AIA rats. Finally, we provided evidences that SIN suppressed inflammation response and inflammation-induced joint destructive progression and arthritis symptoms in AIA rats. Therefore, SIN is an effective therapeutic agent for RA. Targeting MyD88 signaling may provide new methods for the treatment of RA.

  17. Natural Killer Cell Sensing of Infected Cells Compensates for MyD88 Deficiency but Not IFN-I Activity in Resistance to Mouse Cytomegalovirus.

    PubMed

    Cocita, Clément; Guiton, Rachel; Bessou, Gilles; Chasson, Lionel; Boyron, Marilyn; Crozat, Karine; Dalod, Marc

    2015-05-01

    In mice, plasmacytoid dendritic cells (pDC) and natural killer (NK) cells both contribute to resistance to systemic infections with herpes viruses including mouse Cytomegalovirus (MCMV). pDCs are the major source of type I IFN (IFN-I) during MCMV infection. This response requires pDC-intrinsic MyD88-dependent signaling by Toll-Like Receptors 7 and 9. Provided that they express appropriate recognition receptors such as Ly49H, NK cells can directly sense and kill MCMV-infected cells. The loss of any one of these responses increases susceptibility to infection. However, the relative importance of these antiviral immune responses and how they are related remain unclear. In humans, while IFN-I responses are essential, MyD88 is dispensable for antiviral immunity. Hence, a higher redundancy has been proposed in the mechanisms promoting protective immune responses against systemic infections by herpes viruses during natural infections in humans. It has been assumed, but not proven, that mice fail to mount protective MyD88-independent IFN-I responses. In humans, the mechanism that compensates MyD88 deficiency has not been elucidated. To address these issues, we compared resistance to MCMV infection and immune responses between mouse strains deficient for MyD88, the IFN-I receptor and/or Ly49H. We show that selective depletion of pDC or genetic deficiencies for MyD88 or TLR9 drastically decreased production of IFN-I, but not the protective antiviral responses. Moreover, MyD88, but not IFN-I receptor, deficiency could largely be compensated by Ly49H-mediated antiviral NK cell responses. Thus, contrary to the current dogma but consistent with the situation in humans, we conclude that, in mice, in our experimental settings, MyD88 is redundant for IFN-I responses and overall defense against a systemic herpes virus infection. Moreover, we identified direct NK cell sensing of infected cells as one mechanism able to compensate for MyD88 deficiency in mice. Similar mechanisms likely contribute to protect MyD88- or IRAK4-deficient patients from viral infections.

  18. Detection of MYD88 L265P in peripheral blood of patients with Waldenström's Macroglobulinemia and IgM monoclonal gammopathy of undetermined significance.

    PubMed

    Xu, L; Hunter, Z R; Yang, G; Cao, Y; Liu, X; Manning, R; Tripsas, C; Chen, J; Patterson, C J; Kluk, M; Kanan, S; Castillo, J; Lindeman, N; Treon, S P

    2014-08-01

    MYD88 L265P is highly prevalent in Waldenstrom's Macroglobulinemia (WM) and IgM monoclonal gammopathy of unknown significance (MGUS). We investigated whether MYD88 L265P could be identified by peripheral blood (PB) allele-specific PCR. MYD88 L265P was detected in untreated WM (114/118; 96.6%); previously treated WM (63/102; 61.8%); and IgM MGUS (5/12; 41.7%) but in none of 3 hyper-IgM or 40 healthy individuals. Median PB MYD88 L265P ΔCt was 3.77, 7.24, 10.89, 12.33 and 14.07 for untreated WM, previously treated WM, IgM MGUS, hyper-IgM and healthy individuals, respectively (P<0.0001). For the 232 IgM MGUS and WM patients, PB MYD88 L265P ΔCt moderately correlated to bone marrow (BM) disease (r=-0.3553; P<0.0001), serum IgM (r=-0.3262; P<0.0001) and hemoglobin (r=0.3005; P<0.0001) levels. PB MYD88 L265P ΔCt and serum IgM correlated similarly with BM disease burden. For positive patients, PB MYD88 L265P ΔCt was <6.5 in 100/114 (88%) untreated WM, and >6.5 in 4/5 (80%) IgM MGUS patients (P=0.0034). Attainment of a negative PB MYD88 L265P mutation status was associated with lower BM disease (P=0.001), serum IgM (P=0.019) and higher hemoglobin (P=0.004) levels in treated patients. These studies show the feasibility for detecting MYD88 L265P by PB examination, and the potential for PB MYD88 L265P ΔCt use in the diagnosis and management of WM patients.

  19. Participation of MyD88 and Interleukin-33 as Innate Drivers of Th2 Immunity to Trichinella spiralis

    PubMed Central

    Scalfone, Lisa K.; Nel, Hendrik J.; Gagliardo, Lucille F.; Cameron, Jody L.; Al-Shokri, Shaikha; Leifer, Cynthia A.; Fallon, Padraic G.

    2013-01-01

    Trichinella spiralis is a highly destructive parasitic nematode that invades and destroys intestinal epithelial cells, injures many different tissues during its migratory phase, and occupies and transforms myotubes during the final phase of its life cycle. We set out to investigate the role in immunity of innate receptors for potential pathogen- or danger-associated molecular patterns (PAMPs or DAMPs). Focusing on the MyD88-dependent receptors, which include Toll-like receptors (TLRs) and interleukin-1 (IL-1) family members, we found that MyD88-deficient mice expelled worms normally, while TLR2/4-deficient mice showed accelerated worm expulsion, suggesting that MyD88 was active in signaling pathways for more than one receptor during intestinal immunity. A direct role for PAMPs in TLR activation was not supported in a transactivation assay involving a panel of murine and human TLRs. Mice deficient in the IL-1 family receptor for the DAMP, IL-33 (called ST2), displayed reduced intestinal Th2 responses and impaired mast cell activation. IL-33 was constitutively expressed in intestinal epithelial cells, where it became concentrated in nuclei within 2 days of infection. Nuclear localization was an innate response to infection that occurred in intestinal regions where worms were actively migrating. Th2 responses were also compromised in the lymph nodes draining the skeletal muscles of ST2-deficient mice, and this correlated with increased larval burdens in muscle. Our results support a mechanism in which the immune system recognizes and responds to tissue injury in a way that promotes Th2 responses. PMID:23403558

  20. Molecular cloning, structural modeling, and expression analysis of MyD88 and IRAK4 of golden pompano (Trachinotus ovatus).

    PubMed

    Qi, Zhitao; Sun, Baobao; Zhang, Qihuan; Meng, Fancui; Xu, Qiaoqing; Wei, Youchuan; Gao, Qian

    2017-04-10

    MyD88 and IRAK4 are important components of TLR signaling pathways. However, information about MyD88 and IRAK4 is vacant in golden pompano (Trachinotus ovatus), a marine teleost with great commercial value. Thus, in this study the full lengths of trMyD88 and trIRAK4 were cloned from golden pompano using RT-PCR and RACE-PCR methods. trMyD88 was 1213 bp in length, encoding a putative protein of 288 amino acids (aa), consisting of a 99 aa of death domain at its N-terminal and a 137 aa of the TIR domain at its C-terminal. trIRAK4 was 1606 bp in length, encoding a putative protein of 469 aa, including an N-terminal death domain and a central kinase domain, connected by a ProST domain. Other domains or aa residues needed for their functions were also identified in trMyD88 and trIRAK4. Physicochemical features and 3-D structures of trMyD88 and trIRAK4 were also analyzed. Quantitative real-time PCR revealed that the 2 genes were ubiquitously expressed in tissues from healthy pompano, especially highly in the spleen and head kidney, indicating their roles in the immune response. Further, trMyD88 and trIRAK4 were up-regulated at 12 h after the Vibrio alginilyticus and polyI:C challenge and continued to 48 h post challenge. Our results demonstrated that MyD88 and IRAK4 played important roles in the golden pompano innate immune system, providing the basis for further study of the signaling pathways that these 2 genes are involved in.

  1. MYD88 and functionally related genes are associated with multiple infections in a model population of Kenyan village dogs.

    PubMed

    Necesankova, Michaela; Vychodilova, Leona; Albrechtova, Katerina; Kennedy, Lorna J; Hlavac, Jan; Sedlak, Kamil; Modry, David; Janova, Eva; Vyskocil, Mirko; Horin, Petr

    2016-12-01

    The purpose of this study was to seek associations between immunity-related molecular markers and endemic infections in a model population of African village dogs from Northern Kenya with no veterinary care and no selective breeding. A population of village dogs from Northern Kenya composed of three sub-populations from three different areas (84, 50 and 55 dogs) was studied. Canine distemper virus (CDV), Hepatozoon canis, Microfilariae (Acantocheilonema dracunculoides, Acantocheilonema reconditum) and Neospora caninum were the pathogens studied. The presence of antibodies (CDV, Neospora), light microscopy (Hepatozoon) and diagnostic PCR (Microfilariae) were the methods used for diagnosing infection. Genes involved in innate immune mechanisms, NOS3, IL6, TLR1, TLR2, TLR4, TLR7, TLR9, LY96, MYD88, and three major histocompatibility genes class II genes were selected as candidates. Single nucleotide polymorphism (SNP) markers were detected by Sanger sequencing, next generation sequencing and PCR-RFLP. The Fisher´s exact test for additive and non-additive models was used for association analyses. Three SNPs within the MYD88 gene and one TLR4 SNP marker were associated with more than one infection. Combined genotypes and further markers identified by next generation sequencing confirmed associations observed for individual genes. The genes associated with infection and their combinations in specific genotypes match well our knowledge on their biological role and on the role of the relevant biological pathways, respectively. Associations with multiple infections observed between the MYD88 and TLR4 genes suggest their involvement in the mechanisms of anti-infectious defenses in dogs.

  2. The Type II Secretion System of Legionella pneumophila Dampens the MyD88 and Toll-Like Receptor 2 Signaling Pathway in Infected Human Macrophages.

    PubMed

    Mallama, Celeste A; McCoy-Simandle, Kessler; Cianciotto, Nicholas P

    2017-04-01

    Previously, we reported that mutants of Legionella pneumophila lacking a type II secretion (T2S) system elicit higher levels of cytokines (e.g., interleukin-6 [IL-6]) following infection of U937 cells, a human macrophage-like cell line. We now show that this effect of T2S is also manifest upon infection of human THP-1 macrophages and peripheral blood monocytes but does not occur during infection of murine macrophages. Supporting the hypothesis that T2S acts to dampen the triggering of an innate immune response, we observed that the mitogen-activated protein kinase (MAPK) and nuclear transcription factor kappa B (NF-κB) pathways are more highly stimulated upon infection with the T2S mutant than upon infection with the wild type. By using short hairpin RNA to deplete proteins involved in specific pathogen-associated molecular pattern (PAMP) recognition pathways, we determined that the dampening effect of the T2S system was not dependent on nucleotide binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible protein I (RIG-I)-like receptors (RLRs), double-stranded RNA (dsRNA)-dependent protein kinase receptor (PKR), or TIR domain-containing adaptor inducing interferon beta (TRIF) signaling or an apoptosis-associated speck-like protein containing a CARD (ASC)- or caspase-4-dependent inflammasome. However, the dampening effect of T2S on IL-6 production was significantly reduced upon gene knockdown of myeloid differentiation primary response 88 (MyD88), TANK binding kinase 1 (TBK1), or Toll-like receptor 2 (TLR2). These data indicate that the L. pneumophila T2S system dampens the signaling of the TLR2 pathway in infected human macrophages. We also document the importance of PKR, TRIF, and TBK1 in cytokine secretion during L. pneumophila infection of macrophages.

  3. Staphylococcus aureus recognition by hematopoietic stem and progenitor cells via TLR2/MyD88/PGE2 stimulates granulopoiesis in wounds.

    PubMed

    Granick, Jennifer L; Falahee, Patrick C; Dahmubed, Delsheen; Borjesson, Dori L; Miller, Lloyd S; Simon, Scott I

    2013-09-05

    During bacterial infection, hematopoietic stem and progenitor cells (HSPCs) differentiate into polymorphonuclear leukocytes (PMNs) in the bone marrow. We reported that HSPCs recruited to Staphylococcus aureus-infected skin wounds in mice undergo granulopoiesis, whereas other authors have demonstrated their differentiation in vitro after Toll-like receptor 2 (TLR2)/MyD88 stimulation. Here, we examined this pathway in HSPC trafficking and granulopoiesis within S aureus-infected wounds. Lineage- HSPCs from TLR2- or MyD88-deficient mice injected into infected wounds of wild-type (WT) mice exhibited impaired granulopoiesis. However, HSPCs from WT mice produced similar numbers of PMNs whether transferred into wounds of TLR2-, MyD88-deficient, or WT mice. Prostaglandin E2 (PGE2), which stimulates HSPC survival and proliferation, was produced by HSPCs after TLR2 stimulation, suggesting that TLR2/MyD88 activation promotes granulopoiesis in part by production and autocrine activity of PGE2. Pretreatment of TLR2- or MyD88-deficient HSPCs with PGE2 rescued granulocytic differentiation in vivo. Finally, we demonstrate that bone marrow-derived lin-/Sca-1+/c-kit+ cells produced PGE2 and underwent granulopoiesis after TLR2 stimulation. lin-/Sca-1+/c-kit+ cells deficient in TLR2 or MyD88 produced PMNs after PGE2 treatment when transferred into uninfected wounds. We conclude that granulopoiesis in S aureus-infected wounds is induced by TLR2/MyD88 activation of HSPCs through a mechanism that involves autocrine production and activity of PGE2.

  4. Involvement of the MyD88-independent pathway in controlling the intracellular fate of Burkholderia pseudomallei infection in the mouse macrophage cell line RAW 264.7.

    PubMed

    Tangsudjai, S; Pudla, M; Limposuwan, K; Woods, D E; Sirisinha, S; Utaisincharoen, P

    2010-05-01

    Burkholderia pseudomallei is a facultative intracellular Gram-negative bacterium which is capable of surviving and multiplying inside macrophages. B. pseudomallei strain SRM117, a LPS mutant which lacks the O-antigenic polysaccharide moiety, is more susceptible to macrophage killing during the early phase of infection than is its parental wild type strain (1026b). In this study, it was shown that the wild type is able to induce expression of genes downstream of the MyD88-dependent (ikappabzeta, il-6 and tnf-alpha), but not of the MyD88-independent (inos, ifn-beta and irg-1), pathways in the mouse macrophage cell line RAW 264.7. In contrast, LPS mutant-infected macrophages were able to express genes downstream of both pathways. To elucidate the significance of activation of the MyD88-independent pathway in B. pseudomallei-infected macrophages, the expression of TBK1, an essential protein in the MyD88-independent pathway, was silenced prior to the infection. The results showed that silencing the tbk1 expression interferes with the gene expression profile in LPS mutant-infected macrophages and allows the bacteria to replicate intracellularly, thus suggesting that the MyD88-independent pathway plays an essential role in controlling intracellular survival of the LPS mutant. Moreover, exogenous IFN-gamma upregulated gene expression downstream of the MyD88-independent pathway, and interfered with intracellular survival in both wild type and tbk1-knockdown macrophages infected with either the wild type or the LPS mutant. These results suggest that gene expression downstream of the MyD88-independent pathway is essential in regulating the intracellular fate of B. pseudomallei, and that IFN-gamma regulates gene expression through the TBK1-independent pathway.

  5. Astragalus polysaccharides exerts immunomodulatory effects via TLR4-mediated MyD88-dependent signaling pathway in vitro and in vivo

    PubMed Central

    Zhou, Lijing; Liu, Zijing; Wang, Zhixue; Yu, Shuang; Long, Tingting; Zhou, Xing; Bao, Yixi

    2017-01-01

    Astragalus polysaccharides (APS), which is widely used as a remedy to promote immunity of breast cancer patients, can enhance immune responses and exert anti-tumor effects. In this study, we investigated the effects and mechanisms of APS on macrophage RAW 264.7 and EAC tumor-bearing mice. Griess reaction and ELISA assays revealed that the concentrations of nitric oxide, TNF-α, IL-1β and IL-6 were increased by APS. However, this effect was diminished in the presence of TAK-242 (TLR4 inhibitor) or ST-2825(MyD88 inhibitor). In C57BL/10J (TLR4+/+wild-type) and C57BL/6J (MyD88+/+wild-type) tumor-bearing mice, the tumor apoptosis rate, immune organ indexes and the levels of TNF-α, IL-1β and IL-6 in blood increased and the tumor weight decreased by oral administration of APS for 25 days. APS had no obvious effects on IL-12p70. However, these effects were not significant in C57BL/10ScNJ (TLR4-deficient) and C57BL/B6.129P2(SJL)-Myd88m1.1Defr/J (MyD88-deficient) tumor-bearing mice. qRT-PCR and Western blot indicated that APS stimulated the key nodes in the TLR4-MyD88 dependent signaling pathway, including TLR4, MyD88, TRAF-6, NF-κB and AP-1, both in vitro and in vivo. However, TRAM was an exception. Moreover, TRAF-6 and NF-κB were not triggered by APS in gene-deficient tumor-bearing mice. Therefore, APS may modulate immunity of host organism through activation of TLR4-mediated MyD88-dependent signaling pathway. PMID:28303957

  6. Molecular characterization of Pacific oyster (Crassostrea gigas) IRAK4 gene and its role in MyD88-dependent pathway.

    PubMed

    Tang, Xueying; Huang, Baoyu; Zhang, Linlin; Li, Li; Zhang, Guofan

    2017-02-13

    Interleukin-1 receptor-associated kinases (IRAKs) play important roles in MyD88-dependent TLR signaling, the crucial innate immune pathway in molluscs. In this study, we examined the full-length IRAK4 genetic sequence in the Pacific oyster (Crassostrea gigas) by molecular cloning. Phylogenetic analysis revealed that CgIRAK4 is most closely related to Mytilus edulis, and forms a clade with other molluscs. CgIRAK4 transcripts are widely expressed in all tissues, with the highest expression observed in the hemocytes and gill. Moreover, CgIRAK4 is significantly upregulated after Oyster herpesvirus-1 microvariant (OsHV-1 μvar), Vibrio alginolyticus, and poly I:C challenge. Yeast two-hybrid and co-immunoprecipitation assays reveal that the CgIRAK4 death domain is necessary to mediate interaction between CgIRAK4 and two CgMyD88 isoforms. In addition, CgIRAK4 overexpression cannot induce NF-κB transcriptional activity, but blocks that induced by CgMyD88 in HEK293T cells. These findings elucidate the mechanisms of MyD88-dependent TLR signaling in molluscs, and the differences in IRAK-mediated pathway activation between invertebrates and vertebrates.

  7. Resveratrol suppresses NTHi-induced inflammation via up-regulation of the negative regulator MyD88 short

    PubMed Central

    Andrews, Carla S.; Matsuyama, Shingo; Lee, Byung-Cheol; Li, Jian-Dong

    2016-01-01

    Upper respiratory tract inflammatory diseases such as asthma and chronic obstructive pulmonary diseases (COPD) affect more than one-half billion people globally and are characterized by chronic inflammation that is often exacerbated by respiratory pathogens such as nontypeable Haemophilus influenzae (NTHi). The increasing numbers of antibiotic-resistant bacterial strains and the limited success of currently available pharmaceuticals used to manage the symptoms of these diseases present an urgent need for the development of novel anti-inflammatory therapeutic agents. Resveratrol has long been thought as an interesting therapeutic agent for various diseases including inflammatory diseases. However, the molecular mechanisms underlying its anti-inflammatory properties remain largely unknown. Here we show for the first time that resveratrol decreases expression of pro-inflammatory mediators in airway epithelial cells and in the lung of mice by enhancing NTHi-induced MyD88 short, a negative regulator of inflammation, via inhibition of ERK1/2 activation. Furthermore, resveratrol inhibits NTHi-induced ERK1/2 phosphorylation by increasing MKP-1 expression via a cAMP-PKA-dependent signaling pathway. Finally, we show that resveratrol has anti-inflammatory effects post NTHi infection, thereby demonstrating its therapeutic potential. Together these data reveal a novel mechanism by which resveratrol alleviates NTHi-induced inflammation in airway disease by up-regulating the negative regulator of inflammation MyD88s. PMID:27677845

  8. Taurine Attenuates Hepatic Inflammation in Chronic Alcohol-Fed Rats Through Inhibition of TLR4/MyD88 Signaling

    PubMed Central

    Lin, Chao-Jen; Chiu, Chun-Ching; Chen, Yi-Chen; Chen, Mu-Lin

    2015-01-01

    Abstract Accumulating evidence indicates that overconsumption of ethanol contributes in many ways to the pathogenesis of hepatic injury. Although studies indicate that taurine decreases lipogenesis, oxidative stress, and inflammatory cytokines, the protective effect of taurine against alcohol-induced liver injury is still unclear. To clarify the precise signaling involved in the beneficial effect of taurine on alcohol-induced liver injury, rats were randomly divided into four treatment groups: (1) control (Ctl), (2) alcohol (Alc), (3) Alc+taurine (Tau), and (4) Alc+silymarin (Sil). The Tau and Sil groups had lower lymphocyte infiltration and significantly lower TLR-4/MyD88 and IκB/NFκB compared to the Alc group. The inducible nitric oxide synthase (iNOS), C-reactive protein (CRP), tumor necrosis factors (TNF)-α, interleukin (IL)-6, and IL-1β were also significantly lower in the Tau and Sil groups than in the Alc group. The experimental results indicated that hepatoprotection against alcohol-induced inflammation may be mediated by decreased TLR-4/MyD88 signaling. PMID:26090712

  9. Rare Circulating Cells in Familial Waldenström Macroglobulinemia Displaying the MYD88 L265P Mutation Are Enriched by Epstein-Barr Virus Immortalization

    PubMed Central

    Pertesi, Maroulio; Galia, Perrine; Nazaret, Nicolas; Vallée, Maxime; Garderet, Laurent; Leleu, Xavier; Avet-Loiseau, Hervé; Foll, Matthieu; Byrnes, Graham; Lachuer, Joel; McKay, James D.; Dumontet, Charles

    2015-01-01

    The MYD88 L265P is a recurrent somatic mutation in neoplastic cells from patients with Waldenström Macroglobulinemia (WM). We identified the MYD88 L265P mutation in three individuals from unrelated families, but its presence did not explain the disease segregation within these WM pedigrees. We observed the mutation in these three individuals at high allele fractions in DNA extracted from EBV-immortalized Lymphoblastoid cell lines established from peripheral blood (LCL), but at much lower allele fractions in DNA extracted directly from peripheral blood, suggesting that this mutation is present in a clonal cell subpopulation rather than of germ-line origin. Furthermore, we observed that the MYD88 L265P mutation is enriched in WM families, detected in 40.5% of patients with familial WM or MGUS (10/22 WM, 5/15 MGUS), compared to 3.5% of patients with familial MM or MGUS (0/72 MM, 4/41 MGUS) (p = 10−7). The mutant allele frequency increased with passages in vitro after immortalization with Epstein-Barr virus (EBV) consistent with the MYD88 L265P described gain-of-function proposed for this mutation. The MYD88 L265P mutation appears to be frequently present in circulating cells in patients with WM, and MGUS, and these cells are amenable to immortalization by EBV. PMID:26352266

  10. Detection of MYD88 L265P in patients with lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia and other B-cell non-Hodgkin lymphomas

    PubMed Central

    Shin, Sang-Yong; Kim, Hyun-Young; Park, Chang-Hun; Kim, Hee-Jin; Kim, Jong-Won; Kim, Seok Jin; Kim, Won Seog

    2016-01-01

    Background Recent studies have identified a high prevalence of the MYD88 L265P mutation in lymphoplasmacytic lymphoma (LPL)/Waldenstrom macroglobulinemia (WM) cases, whereas low frequencies have been observed in other B cell non-Hodgkin lymphomas (NHLs). Methods We evaluated the sensitivity of the mutant enrichment 3'-modified oligonucleotide (MEMO)-PCR technique, a new detection method. We examined the MYD88 L265P mutation in a series of Korean patients with LPL/WM and other B cell NHLs in bone marrow aspirates, using the MEMO-PCR technique. Results The sensitivity of MEMO-PCR was estimated to be approximately 10-16.7%. MYD88 L265P was detected in 21 of 28 LPL cases (75%) and only three of 69 B cell NHL cases (4.3%). Conclusion Although MEMO-PCR had relatively low sensitivity, we confirmed the high prevalence of the MYD88 L265P mutation in Korean LPL patients. Our study suggests the diagnostic value of MYD88 L265P for differentiating B-cell NHLs. PMID:27722129

  11. Myeloid-Specific Gene Deletion of Protein Phosphatase 2A Magnifies MyD88- and TRIF-Dependent Inflammation following Endotoxin Challenge.

    PubMed

    Sun, Lei; Pham, Tiffany T; Cornell, Timothy T; McDonough, Kelli L; McHugh, Walker M; Blatt, Neal B; Dahmer, Mary K; Shanley, Thomas P

    2017-01-01

    Protein phosphatase 2A (PP2A) is a member of the intracellular serine/threonine phosphatases. Innate immune cell activation triggered by pathogen-associated molecular patterns is mediated by various protein kinases, and PP2A plays a counter-regulatory role by deactivating these kinases. In this study, we generated a conditional knockout of the α isoform of the catalytic subunit of PP2A (PP2ACα). After crossing with myeloid-specific cre-expressing mice, effective gene knockout was achieved in various myeloid cells. The myeloid-specific knockout mice (lyM-PP2A(fl/fl)) showed higher mortality in response to endotoxin challenge and bacterial infection. Upon LPS challenge, serum levels of TNF-α, KC, IL-6, and IL-10 were significantly increased in lyM-PP2A(fl/fl) mice, and increased phosphorylation was observed in MAPK pathways (p38, ERK, JNK) and the NF-κB pathway (IKKα/β, NF-κB p65) in bone marrow-derived macrophages (BMDMs) from knockout mice. Heightened NF-κB activation was not associated with degradation of IκBα; instead, enhanced phosphorylation of the NF-κB p65 subunit and p38 phosphorylation-mediated TNF-α mRNA stabilization appear to contribute to the increased TNF-α expression. In addition, increased IL-10 expression appears to be due to PP2ACα-knockout-induced IKKα/β hyperactivation. Microarray experiments indicated that the Toll/IL-1R domain-containing adaptor inducing IFN-β/ TNFR-associated factor 3 pathway was highly upregulated in LPS-treated PP2ACα-knockout BMDMs, and knockout BMDMs had elevated IFN-α/β production compared with control BMDMs. Serum IFN-β levels from PP2ACα-knockout mice treated with LPS were also greater than those in controls. Thus, we demonstrate that PP2A plays an important role in regulating inflammation and survival in the setting of septic insult by targeting MyD88- and Toll/IL-1R domain-containing adaptor inducing IFN-β-dependent pathways.

  12. The adaptor molecule CARD9 is essential for tuberculosis control.

    PubMed

    Dorhoi, Anca; Desel, Christiane; Yeremeev, Vladimir; Pradl, Lydia; Brinkmann, Volker; Mollenkopf, Hans-Joachim; Hanke, Karin; Gross, Olaf; Ruland, Jürgen; Kaufmann, Stefan H E

    2010-04-12

    The cross talk between host and pathogen starts with recognition of bacterial signatures through pattern recognition receptors (PRRs), which mobilize downstream signaling cascades. We investigated the role of the cytosolic adaptor caspase recruitment domain family, member 9 (CARD9) in tuberculosis. This adaptor was critical for full activation of innate immunity by converging signals downstream of multiple PRRs. Card9(-/-) mice succumbed early after aerosol infection, with higher mycobacterial burden, pyogranulomatous pneumonia, accelerated granulocyte recruitment, and higher abundance of proinflammatory cytokines and granulocyte colony-stimulating factor (G-CSF) in serum and lung. Neutralization of G-CSF and neutrophil depletion significantly prolonged survival, indicating that an exacerbated systemic inflammatory disease triggered lethality of Card9(-/-) mice. CARD9 deficiency had no apparent effect on T cell responses, but a marked impact on the hematopoietic compartment. Card9(-/-) granulocytes failed to produce IL-10 after Mycobacterium tuberculosis infection, suggesting that an absent antiinflammatory feedback loop accounted for granulocyte-dominated pathology, uncontrolled bacterial replication, and, ultimately, death of infected Card9(-/-) mice. Our data provide evidence that deregulated innate responses trigger excessive lung inflammation and demonstrate a pivotal role of CARD9 signaling in autonomous innate host defense against tuberculosis.

  13. Interleukin-1 receptor but not Toll-like receptor 2 is essential for MyD88-dependent Th17 immunity to Coccidioides infection.

    PubMed

    Hung, Chiung-Yu; Jiménez-Alzate, María del Pilar; Gonzalez, Angel; Wüthrich, Marcel; Klein, Bruce S; Cole, Garry T

    2014-05-01

    Interleukin-17A (IL-17A)-producing CD4(+) T helper (Th17) cells have been shown to be essential for defense against pulmonary infection with Coccidioides species. However, we have just begun to identify the required pattern recognition receptors and understand the signal pathways that lead to Th17 cell activation after fungal infection. We previously reported that Card9(-/-) mice vaccinated with formalin-killed spherules failed to acquire resistance to Coccidioides infection. Here, we report that both MyD88(-/-) and Card9(-/-) mice immunized with a live, attenuated vaccine also fail to acquire protective immunity to this respiratory disease. Like Card9(-/-) mice, vaccinated MyD88(-/-) mice revealed a significant reduction in numbers of both Th17 and Th1 cells in their lungs after Coccidioides infection. Both Toll-like receptor 2 (TLR2) and IL-1 receptor type 1 (IL-1r1) upstream of MyD88 have been implicated in Th17 cell differentiation. Surprisingly, vaccinated TLR2(-/-) and wild-type (WT) mice showed similar outcomes after pulmonary infection with Coccidioides, while vaccinated IL-1r1(-/-) mice revealed a significant reduction in the number of Th17 cells in their infected lungs compared to WT mice. Thus, activation of both IL-1r1/MyD88- and Card9-mediated Th17 immunity is essential for protection against Coccidioides infection. Our data also reveal that the numbers of Th17 cells were reduced in IL-1r1(-/-) mice to a lesser extent than in MyD88(-/-) mice, raising the possibility that other TLRs are involved in MyD88-dependent Th17 immunity to coccidioidomycosis. An antimicrobial action of Th17 cells is to promote early recruitment of neutrophils to infection sites. Our data revealed that neutrophils are required for vaccine immunity to this respiratory disease.

  14. Inhibitory effect of miR-125b on hepatitis C virus core protein-induced TLR2/MyD88 signaling in THP-1 cells

    PubMed Central

    Peng, Cheng; Wang, Hua; Zhang, Wen-Jing; Jie, Sheng-Hua; Tong, Qiao-Xia; Lu, Meng-Ji; Yang, Dong-Liang

    2016-01-01

    AIM: To investigate the role of miR-125b in regulating monocyte immune responses induced by hepatitis C virus (HCV) core protein. METHODS: Monocytic THP-1 cells were treated with various concentrations of recombinant HCV core protein, and cytokines and miR-125b expression in these cells were analyzed. The requirement of Toll-like receptor 2 (TLR2) or MyD88 gene for HCV core protein-induced immune responses was determined by the transfection of THP-1 cells with gene knockdown vectors expressing either TLR2 siRNA or MyD88 siRNA. The effect of miR-125b overexpression on TLR2/MyD88 signaling was examined by transfecting THP-1 cells with miR-125b mimic RNA oligos. RESULTS: In response to HCV core protein stimulation, cytokine production was up-regulated and miR-125b expression was down-regulated in THP-1 cells. The modulatory effect of HCV core protein on cellular events was dose-dependent and required functional TLR2 or MyD88 gene. Forced miR-125b expression abolished the HCV core protein-induced enhancement of tumor necrosis factor-α, interleukin (IL)-6, and IL-10 expression by 66%, 54%, and 66%, respectively (P < 0.001), by inhibiting MyD88-mediated signaling, including phosphorylation of NF-κBp65, ERK, and P38. CONCLUSION: The inverse correlation between miR-125b and cytokine expression after HCV core challenge suggests that miR-125b may negatively regulate HCV-induced immune responses by targeting TLR2/MyD88 signaling in monocytes. PMID:27158204

  15. Lymphoplasmacytic Lymphoma Presenting with Diarrhea and Joint Pain Which was Successfully Diagnosed by an MYD88 Mutation Analysis.

    PubMed

    Fukushima, Masaya; Okoshi, Yasushi; Fukazawa, Keiko; Koshino, Mayuko; Ishiguro, Shingo; Mitsuhashi, Shoichi; Saitoh, Hitoaki; Iijima, Tatsuo; Kojima, Hiroshi; Hori, Mitsuo

    2017-01-01

    A 55-year-old man presented to our department with diarrhea, weight loss, fatigability, and polyarthralgia. Blood tests revealed elevated soluble interleukin-2 receptor levels and IgG-type M protein positivity, without any findings that were suggestive of collagen disease. After computed tomography (CT) detected enlarged lymph nodes in the abdominal para-aortic region, lymphoma was suspected. CT-guided needle biopsy of the lymph node did not help to achieve a definitive diagnosis; however, a bone marrow test showed the pathological features of B-cell lymphoma. A genetic examination detected a MYD88 L265P mutation; the mutation analysis was valuable in diagnosing lymphoplasmacytic lymphoma in a IgM-type M protein-negative patient.

  16. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner

    PubMed Central

    Hughes, K. R.; Harnisch, L. C.; Alcon-Giner, C.; Mitra, S.; Wright, C. J.; Ketskemety, J.

    2017-01-01

    Certain members of the microbiota genus Bifidobacterium are known to positively influence host well-being. Importantly, reduced bifidobacterial levels are associated with inflammatory bowel disease (IBD) patients, who also have impaired epithelial barrier function, including elevated rates of apoptotic extrusion of small intestinal epithelial cells (IECs) from villi—a process termed ‘cell shedding’. Using a mouse model of pathological cell shedding, we show that mice receiving Bifidobacterium breve UCC2003 exhibit significantly reduced rates of small IEC shedding. Bifidobacterial-induced protection appears to be mediated by a specific bifidobacterial surface exopolysaccharide and interactions with host MyD88 resulting in downregulation of intrinsic and extrinsic apoptotic responses to protect epithelial cells under highly inflammatory conditions. Our results reveal an important and previously undescribed role for B. breve, in positively modulating epithelial cell shedding outcomes via bacterial- and host-dependent factors, supporting the notion that manipulation of the microbiota affects intestinal disease outcomes. PMID:28123052

  17. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner.

    PubMed

    Hughes, K R; Harnisch, L C; Alcon-Giner, C; Mitra, S; Wright, C J; Ketskemety, J; van Sinderen, D; Watson, A J M; Hall, L J

    2017-01-01

    Certain members of the microbiota genus Bifidobacterium are known to positively influence host well-being. Importantly, reduced bifidobacterial levels are associated with inflammatory bowel disease (IBD) patients, who also have impaired epithelial barrier function, including elevated rates of apoptotic extrusion of small intestinal epithelial cells (IECs) from villi-a process termed 'cell shedding'. Using a mouse model of pathological cell shedding, we show that mice receiving Bifidobacterium breve UCC2003 exhibit significantly reduced rates of small IEC shedding. Bifidobacterial-induced protection appears to be mediated by a specific bifidobacterial surface exopolysaccharide and interactions with host MyD88 resulting in downregulation of intrinsic and extrinsic apoptotic responses to protect epithelial cells under highly inflammatory conditions. Our results reveal an important and previously undescribed role for B. breve, in positively modulating epithelial cell shedding outcomes via bacterial- and host-dependent factors, supporting the notion that manipulation of the microbiota affects intestinal disease outcomes.

  18. Toll-like receptor 5 agonist inhibition of growth of A549 lung cancer cells in vivo in a Myd88 dependent manner.

    PubMed

    Zhou, Shi-Xiang; Li, Feng-Sheng; Qiao, Yu-Lei; Zhang, Xue-Qing; Wang, Zhi-Dong

    2012-01-01

    The purpose of this study was to examine the effect of a Toll-like receptor 5 (TLR5) agonist, CBLB502, on the growth and radiosensitivity of A549 lung cancer cells in vivo. Expression of myeloid differentiation factor 88 (MyD88) or TLR5 was stably knocked down in human lung cancer cells (A549) using lentivirus expressing short hairpin RNA targeting human MyD88 or TLR5. Lack of MyD88 or TLR5 expression enhanced tumor growth in mouse xenografts of A549 lung cancer cells. CBLB502 inhibited the growth of A549 lung cancer cells, not A549-MyD88-KD cells in vivo in the murine xenograft model. Our results showed that the inhibition of A549 by CBLB502 in vivo was realized through regulating the expression of neutrophil recruiting cytokines and neutrophil infiltration. Finally, we found that activation of TLR5 signaling did not affect the radiosensitivity of tumors in vivo.

  19. The HIV Protease Inhibitor Saquinavir Inhibits HMGB1-Driven Inflammation by Targeting the Interaction of Cathepsin V with TLR4/MyD88

    PubMed Central

    Pribis, John P; Al-Abed, Yousef; Yang, Huan; Gero, Domokos; Xu, Hongbo; Montenegro, Marcelo F; Bauer, Eileen M; Kim, Sodam; Chavan, Sangeeta S; Cai, Changchun; Li, Tunliang; Szoleczky, Petra; Szabo, Csaba; Tracey, Kevin J; Billiar, Timothy R

    2015-01-01

    Extracellular high-mobility group box 1 (HMGB1) (disulfide form), via activation of toll-like receptor 4 (TLR4)-dependent signaling, is a strong driver of pathologic inflammation in both acute and chronic conditions. Identification of selective inhibitors of HMGB1-TLR4 signaling could offer novel therapies that selectively target proximal endogenous activators of inflammation. A cell-based screening strategy led us to identify first generation HIV-protease inhibitors (PI) as potential inhibitors of HMGB1-TLR4 driven cytokine production. Here we report that the first-generation HIV-PI saquinavir (SQV), as well as a newly identified mammalian protease inhibitor STO33438 (334), potently block disulfide HMGB1-induced TLR4 activation, as assayed by the production of TNF-α by human monocyte-derived macrophages (THP-1). We further report on the identification of mammalian cathepsin V, a protease, as a novel target of these inhibitors. Cellular as well as recombinant protein studies show that the mechanism of action involves a direct interaction between cathepsin V with TLR4 and its adaptor protein MyD88. Treatment with SQV, 334 or the known cathepsin inhibitor SID26681509 (SID) significantly improved survival in murine models of sepsis and reduced liver damage following warm liver ischemia/reperfusion (I/R) models, both characterized by strong HMGB1-TLR4 driven pathology. The current study demonstrates a novel role for cathepsin V in TLR4 signaling and implicates cathepsin V as a novel target for first-generation HIV-PI compounds. The identification of cathepsin V as a target to block HMGB1-TLR4-driven inflammation could allow for a rapid transition of the discovery from the bench to the bedside. Disulfide HMGB1 drives pathologic inflammation in many models by activating signaling through TLR4. Cell-based screening identified the mammalian protease cathepsin V as a novel therapeutic target to inhibit TLR4-mediated inflammation induced by extracellular HMGB1 (disulfide

  20. Effects of porcine MyD88 knockdown on the expression of TLR4 pathway-related genes and proinflammatory cytokines.

    PubMed

    Dai, Chaohui; Sun, Li; Yu, Lihuai; Zhu, Guoqiang; Wu, Shenglong; Bao, Wenbin

    2016-12-01

    As a critical adapter protein in Toll-like receptor (TLR)/Interleukin (IL)-1R signalling pathway, myeloid differentiation protein 88 (MyD88) plays an important role in immune responses and host defence against pathogens. The present study was designed to provide a foundation and an important reagent for the mechanistic study of MyD88 and its role TLR/IL-1R signalling pathways in porcine immunity. Lentivirus-mediated RNAi was used to generate a porcine PK15 cell line with a silenced MyD88 gene and quantitative real-time PCR (qPCR) and Western blotting were used to detect changes in the expression of critical genes in the Toll-like receptor 4 (TLR4) signalling pathway. ELISA was used to measure the levels of seven proinflammatory cytokines-interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), IL-6, IL-8, IL-12, macrophage inflammatory protein (MIP)-1α and MIP-1β-in cell culture supernatants after MyD88 silencing. We successfully obtained a PK15 cell line with 61% MyD88 mRNA transcript down-regulated. In PK15 cells with MyD88 silencing, the transcript levels of TLR4 and IL-1β were significantly reduced, whereas there were no significant changes in the expression levels of cluster of differentiation antigen 14 (CD14), interferon-α (IFN-α) or TNF-α The ELISA results showed that the levels of most cytokines were not significantly changed apart from IL-8 without stimulation, which was significantly up-regulated. When cells were induced by lipopolysaccharide (LPS) (0.1 μg/ml) for 6 h, the global level of seven proinflammatory cytokines up-regulated and the level of IL-1β, TNF-α, IL-6, IL-8 and IL-12 of Blank and negative control (NC) group up-regulated more significantly than RNAi group (P<0.05), which revealed that the MyD88 silencing could reduce the TLR4 signal transduction which inhibited the release of proinflammatory cytokines and finally leaded to immunosuppression.

  1. Deficiency in MyD88 Signaling Results in Decreased Antibody Responses to an Adeno-Associated Virus Vector in Murine Pompe Disease

    PubMed Central

    Zhang, Ping; Luo, Xiaoyan; Bird, Andrew; Li, Songtao

    2012-01-01

    Abstract We have previously shown that antibody and T cell responses limit the efficacy of an adeno-associated virus (AAV) pseudotype 8 (2/8) vector containing the universally active cytomegalovirus enhancer/chicken β-actin regulatory cassette (AAV2/8-CBhGAA) in treating murine Pompe disease. However, the innate immune responses to AAV2/8-CBhGAA are largely unknown. In this study, we investigated acute immune responses to AAV2/8-CBhGAA and the role of MyD88/TRIF signaling pathway in shaping adaptive immune responses to this vector. We showed here that a small and transient increase in CXCL-1 and IL-1β expression in livers of acid-α-glucosidase knockout (GAAKO) mice 6 h following injection with AAV2/8-CBhGAA. There was a robust antibody response to GAA in wild-type mice injected with this vector. In contrast, the anti-GAA IgG1 response was diminished in MyD88KO mice, and showed a trend toward a decrease in TRIFKO mice. In addition, the vector genome and GAA activity were significantly higher in MyD88KO livers compared with wild-type livers, suggesting reduced cytotoxic T cell responses. Importantly, elevated CD4+ T cells were detected by immunohistochemistry in MyD88KO livers. When adoptively transferred to wild-type mice, these CD4+ T cells have an ability to suppress antibody responses against AAV2/8-CBhGAA and to prevent further immunization against rhGAA. Our study suggests that the MyD88 deficiency leads to the suppression of deleterious immune responses to AAV2/8-CBhGAA, which has implications for gene therapy in Pompe disease. PMID:23514839

  2. Deficiency in MyD88 Signaling Results in Decreased Antibody Responses to an Adeno-Associated Virus Vector in Murine Pompe Disease.

    PubMed

    Zhang, Ping; Luo, Xiaoyan; Bird, Andrew; Li, Songtao; Koeberl, Dwight D

    2012-06-01

    We have previously shown that antibody and T cell responses limit the efficacy of an adeno-associated virus (AAV) pseudotype 8 (2/8) vector containing the universally active cytomegalovirus enhancer/chicken β-actin regulatory cassette (AAV2/8-CBhGAA) in treating murine Pompe disease. However, the innate immune responses to AAV2/8-CBhGAA are largely unknown. In this study, we investigated acute immune responses to AAV2/8-CBhGAA and the role of MyD88/TRIF signaling pathway in shaping adaptive immune responses to this vector. We showed here that a small and transient increase in CXCL-1 and IL-1β expression in livers of acid-α-glucosidase knockout (GAAKO) mice 6 h following injection with AAV2/8-CBhGAA. There was a robust antibody response to GAA in wild-type mice injected with this vector. In contrast, the anti-GAA IgG1 response was diminished in MyD88KO mice, and showed a trend toward a decrease in TRIFKO mice. In addition, the vector genome and GAA activity were significantly higher in MyD88KO livers compared with wild-type livers, suggesting reduced cytotoxic T cell responses. Importantly, elevated CD4(+) T cells were detected by immunohistochemistry in MyD88KO livers. When adoptively transferred to wild-type mice, these CD4(+) T cells have an ability to suppress antibody responses against AAV2/8-CBhGAA and to prevent further immunization against rhGAA. Our study suggests that the MyD88 deficiency leads to the suppression of deleterious immune responses to AAV2/8-CBhGAA, which has implications for gene therapy in Pompe disease.

  3. Invasive group A Streptococcus disease in French-Canadian children is not associated with a defect in MyD88/IRAK4-pathway

    PubMed Central

    2014-01-01

    Background Beta-hemolytic Group A Streptococcus invasive disease (iGASd) has been subject to intense research since its re-emergence in the late 1980s. In Quebec, an increase in the number of severe iGASd cases has recently been observed. Because of the inter-individual variability in the severity of iGASd, a hereditary predisposition to invasive disease can be suspected. Given that iGASd occurs in MyD88- and IRAK4-deficient patients, although rarely, the increasing frequency of iGASd in the population of French-Canadian children may be associated with a deficiency in the host’s innate immune response. Methods In this report, we assessed the influence of: (i) bacterial genotype and virulence factors, (ii) immune-cellular features, and (iii) Myd88/IRAK4-dependent response to GAS in vitro on the susceptibility to iGASd in a paediatric cohort of 16 children: 11 French-Canadian and 5 from diverse origin. Findings GAS virulence factors and genotype are not implicated in the susceptibility toward iGASd, and cellular and MyD88/IRAK4 deficiencies are excluded in our patients. Conclusions Although it has been shown that the MyD88/IRAK4-dependent signal is involved in the response to invasive GAS, our data indicates that a MyD88/IRAK4-mediated signalling defect is not the main factor responsible for the susceptibility to severe iGASd in a paediatric population from the province of Quebec. PMID:24499202

  4. Chlamydia pneumoniae-induced foam cell formation requires MyD88-dependent and -independent signaling and is reciprocally modulated by liver X receptor activation.

    PubMed

    Chen, Shuang; Sorrentino, Rosalinda; Shimada, Kenichi; Bulut, Yonca; Doherty, Terence M; Crother, Timothy R; Arditi, Moshe

    2008-11-15

    Chlamydia pneumoniae is detected by macrophages and other APCs via TLRs and can exacerbate developing atherosclerotic lesions, but how that occurs is not known. Liver X receptors (LXRs) centrally control reverse cholesterol transport, but also negatively modulate TLR-mediated inflammatory pathways. We isolated peritoneal macrophages from wild-type, TLR2, TLR3, TLR4, TLR2/4, MyD88, TRIF, MyD88/TRIF, and IFN regulatory factor 3 (IRF3) KO mice, treated them with live or UV-killed C. pneumoniae in the presence or absence of oxidized LDL, then measured foam cell formation. In some experiments, the synthetic LXR agonist GW3965 was added to macrophages infected with C. pneumoniae in the presence of oxidized LDL. Both live and UV-killed C. pneumoniae induced IRF3 activation and promoted foam cell formation in wild-type macrophages, whereas the genetic absence of TLR2, TLR4, MyD88, TRIF, or IRF3, but not TLR3, significantly reduced foam cell formation. C. pneumoniae-induced foam cell formation was significantly reduced by the LXR agonist GW3965, which in turn inhibited C. pneumoniae-induced IRF3 activation, suggesting a bidirectional cross-talk. We conclude that C. pneumoniae facilitates foam cell formation via activation of both MyD88-dependent and MyD88-independent (i.e., TRIF-dependent and IRF3-dependent) pathways downstream of TLR2 and TLR4 signaling and that TLR3 is not involved in this process. This mechanism could at least partly explain why infection with C. pneumoniae accelerates the development of atherosclerotic plaque and lends support to the proposal that LXR agonists might prove clinically useful in suppressing atherogenesis.

  5. Toll-Like Receptor Ligand-Based Vaccine Adjuvants Require Intact MyD88 Signaling in Antigen-Presenting Cells for Germinal Center Formation and Antibody Production

    PubMed Central

    Mosaheb, Munir M.; Reiser, Michael L.; Wetzler, Lee M.

    2017-01-01

    Vaccines are critical in the fight against infectious diseases, and immune-stimulating adjuvants are essential for enhancing vaccine efficacy. However, the precise mechanisms of action of most adjuvants are unknown. There is an urgent need for customized and adjuvant formulated vaccines against immune evading pathogens that remain a risk today. Understanding the specific role of various cell types in adjuvant-induced protective immune responses is vital for an effective vaccine design. We have investigated the role of cell-specific MyD88 signaling in vaccine adjuvant activity in vivo, using Neisserial porin B (PorB), a TLR2 ligand-based adjuvant, compared with an endosomal TLR9 ligand (CpG) and toll-like receptor (TLR)-independent (alum, MF59) adjuvants. We found that intact MyD88 signaling is essential, separately, in all three antigen-presenting cell types [B cells, macrophages, and dendritic cells (DCs)] for optimal TLR ligand-based adjuvant activity. The role of MyD88 signaling in B cell and DC in vaccine adjuvant has been previously investigated. In this study, we now demonstrate that the immune response was also reduced in mice with macrophage-specific MyD88 deletion (Mac-MyD88−/−). We demonstrate that TLR-dependent adjuvants are potent inducers of germinal center (GC) responses, but GCs are nearly absent in Mac-MyD88−/− mice following immunization with TLR-dependent adjuvants PorB or CpG, but not with TLR-independent adjuvants MF59 or alum. Our findings reveal a unique and here-to-for unrecognized importance of intact MyD88 signaling in macrophages, to allow for a robust vaccine-induced immune responses when TLR ligand-based adjuvants are used. PMID:28316602

  6. The effects of MyD88 deficiency on exploratory activity, anxiety, motor coordination, and spatial learning in C57BL/6 and APPswe/PS1dE9 mice.

    PubMed

    Lim, Jeong-Eun; Song, Min; Jin, Jingji; Kou, Jinghong; Pattanayak, Abhinandan; Lalonde, Robert; Fukuchi, Ken-Ichiro

    2012-02-01

    Toll-like receptors (TLRs) are a family of pattern-recognition receptors in innate immunity and provide a first line defense against pathogens and tissue injuries. In addition to important roles in infection, inflammation, and immune diseases, recent studies show that TLR signaling is involved in modulation of learning, memory, mood, and neurogenesis. Because MyD88 is essential for the downstream signaling of all TLRs, except TLR3, we investigated the effects of MyD88 deficiency (MyD88-/-) on behavioral functions in mice. Additionally, we recently demonstrated that a mouse model of Alzheimer's disease (AD) deficient for MyD88 had decreases in Aβ deposits and soluble Aβ in the brain as compared with MyD88 sufficient AD mouse models. Because accumulation of Aβ in the brain is postulated to be a causal event leading to cognitive deficits in AD, we investigated the effects of MyD88 deficiency on behavioral functions in the AD mouse model at 10 months of age. MyD88 deficient mice showed more anxiety in the elevated plus-maze. In the motor coordination tests, MyD88 deficient mice remained on a beam and a bar for a longer time, but with slower initial movement on the bar. In the Morris water maze test, MyD88 deficiency appeared to improve spatial learning irrespective of the transgene. Our findings suggest that the MyD88-dependent pathway contributes to behavioral functions in an AD mouse model and its control group.

  7. MyD88 deficiency leads to decreased NK cell gamma interferon production and T cell recruitment during Chlamydia muridarum genital tract infection, but a predominant Th1 response and enhanced monocytic inflammation are associated with infection resolution.

    PubMed

    Nagarajan, Uma M; Sikes, James; Prantner, Daniel; Andrews, Charles W; Frazer, Lauren; Goodwin, Anna; Snowden, Jessica N; Darville, Toni

    2011-01-01

    We have previously shown that MyD88 knockout (KO) mice exhibit delayed clearance of Chlamydia muridarum genital infection compared to wild-type (WT) mice. A blunted Th1 response and ineffective suppression of the Th2 response were also observed in MyD88 KO mice. The goal of the present study was to investigate specific mechanisms whereby absence of MyD88 leads to these effects and address the compensatory mechanisms in the genital tract that ultimately clear infection in the absence of MyD88. It was observed that NK cells recruited to the genital tract in MyD88 KO mice failed to produce gamma interferon (IFN-γ) mRNA and protein. This defect was associated with decreased local production of interleukin-17 (IL-17), IL-18, and tumor necrosis factor alpha (TNF-α) but normal levels of IL-12p70. Additionally, recruitment of CD4 T cells to the genital tract was reduced in MyD88 KO mice compared to that in WT mice. Although chronic infection in MyD88 KO mice resulted in oviduct pathology comparable to that of WT mice, increased histiocytic inflammation was observed in the uterine horns. This was associated with increased CCL2 levels and recruitment of macrophages as a potential compensatory mechanism. Further deletion of TLR4-TRIF signaling in MyD88 KO mice, using TLR4/MyD88 double-KO mice, did not further compromise host defense against chlamydiae, suggesting that compensatory mechanisms are Toll-like receptor (TLR) independent. Despite some polarization toward a Th2 response, a Th1 response remained predominant in the absence of MyD88, and it provided equivalent protection against a secondary infection as observed in WT mice.

  8. Detection of MYD88 L265P and WHIM-like CXCR4 mutation in patients with IgM monoclonal gammopathy related disease.

    PubMed

    Cao, Xin-Xin; Meng, Qi; Cai, Hao; He, Tian-Hua; Zhang, Cong-Li; Su, Wei; Sun, Jian; Li, Yue; Xu, Wei; Zhou, Dao-Bin; Li, Jian

    2017-03-09

    A broad spectrum of diseases are associated with IgM monoclonal gammopathy, including Waldenstrom macroglobulinemia (WM), various types of B cell non-Hodgkin's lymphoma (NHL), multiple myeloma (MM), primary amyloidosis (AL), and monoclonal gammopathy of undetermined significance (MGUS); these are called IgM monoclonal gammopathy related diseases (IgM-RD). We investigated MYD88 L265P and WHIM-like CXCR4 mutations in various IgM-RD. Patients with serum immunofixation electrophoresis confirmed IgM monoclonal gammopathy who had enough material for DNA extraction and presented between January 2008 and October 2016 at Peking Union Medical College Hospital were enrolled in this cohort. We performed real-time allele-specific-polymerase chain reaction and Sanger sequencing to explore the presence of MYD88 L265P and WHIM-like CXCR4 mutations. One hundred and twelve patients (64 male and 48 female patients) were included in this retrospective study. The median age at diagnosis was 62 years (range, 30-84 years). In total, 64 patients (57.1%) carried the MYD88 L265P mutation and 14 patients (12.5%) carried the CXCR4 WHIM-like mutation. We identified the MYD88 L265P somatic variant in cases with WM (39/42), MGUS (8/18), NHL (14/41, including 4/13 diffuse large B cell lymphoma (DLBCL), 1/8 mucosa-associated lymphoid tissue, 3/6 splenic marginal zone lymphoma (SMZL), 1/4 chronic lymphocytic leukemia, 2/3 nodal marginal zone lymphoma (NMZL), 1/2 mantle cell lymphoma, 1 Burkitt lymphoma, and 1 B cell NHL that could not be classified), primary AL (2/2), and IgM-PN (1/1). The mutation was absent in five patients with Cryoglobulinemia, two with primary cold agglutinin disease and one with MM. The CXCR4 WHIM-like mutation was present in 10/42 patients with WM, 3/41 with NHL (1 DLBCL, 1 SMZL, and 1 NMZL), and 1/18 patients with IgM MGUS. Among the patients with NHL, those with the mutated MYD88 L265P genotype were younger and had lower level of IgG and IgA than the patients with the

  9. Immunological basis of M13 phage vaccine: Regulation under MyD88 and TLR9 signaling.

    PubMed

    Hashiguchi, Shuhei; Yamaguchi, Yuya; Takeuchi, Osamu; Akira, Shizuo; Sugimura, Kazuhisa

    2010-11-05

    Peptide-displaying bacteriophages induce mimotope-specific antibody responses, suggesting a novel application of phage-display library as bacteriophage vaccine. We examined the antibody response against M13 phage in mice induced by an i.p. administration of M13 phage in phosphate-buffered saline. We showed here that firstly, mice showed strong IgG antibody responses, particularly, in IgG2b, IgG2c, and IgG3 subclasses even in primary responses. Secondly, IgG production in primary response is totally dependent on MyD88 signaling. These responses were almost comparable, but slightly weaker, in TLR2-, TLR4- and TLR7-deficient mice relative to wild-type mice, suggesting that this enhancing effect is not due to plausible LPS contamination. Thirdly, although primary IgG1 response was not detected in wild-type mice, remarkable IgG1 response was induced in TLR9-deficient mice, suggesting that TLR9 pathway functions as regulatory, but not a simple augmenting signaling cascade, and furthermore, the enhanced IgG1 response was not due to adjuvant effect of single-stranded DNA derived from M13 phage. Thus, innate immunity including TLR regulation is crucial for M13 phage vaccine design.

  10. Heart-resident CCR2(+) macrophages promote neutrophil extravasation through TLR9/MyD88/CXCL5 signaling.

    PubMed

    Li, Wenjun; Hsiao, Hsi-Min; Higashikubo, Ryuji; Saunders, Brian T; Bharat, Ankit; Goldstein, Daniel R; Krupnick, Alexander S; Gelman, Andrew E; Lavine, Kory J; Kreisel, Daniel

    2016-08-04

    It is well established that maladaptive innate immune responses to sterile tissue injury represent a fundamental mechanism of disease pathogenesis. In the context of cardiac ischemia reperfusion injury, neutrophils enter inflamed heart tissue, where they play an important role in potentiating tissue damage and contributing to contractile dysfunction. The precise mechanisms that govern how neutrophils are recruited to and enter the injured heart are incompletely understood. Using a model of cardiac transplant-mediated ischemia reperfusion injury and intravital 2-photon imaging of beating mouse hearts, we determined that tissue-resident CCR2(+) monocyte-derived macrophages are essential mediators of neutrophil recruitment into ischemic myocardial tissue. Our studies revealed that neutrophil extravasation is mediated by a TLR9/MyD88/CXCL5 pathway. Intravital 2-photon imaging demonstrated that CXCL2 and CXCL5 play critical and nonredundant roles in guiding neutrophil adhesion and crawling, respectively. Together, these findings uncover a specific role for a tissue-resident monocyte-derived macrophage subset in sterile tissue inflammation and support the evolving concept that macrophage ontogeny is an important determinant of function. Furthermore, our results provide the framework for targeting of cell-specific signaling pathways in myocardial ischemia reperfusion injury.

  11. Heart-resident CCR2+ macrophages promote neutrophil extravasation through TLR9/MyD88/CXCL5 signaling

    PubMed Central

    Li, Wenjun; Higashikubo, Ryuji; Saunders, Brian T.; Bharat, Ankit; Goldstein, Daniel R.; Krupnick, Alexander S.; Gelman, Andrew E.; Lavine, Kory J.

    2016-01-01

    It is well established that maladaptive innate immune responses to sterile tissue injury represent a fundamental mechanism of disease pathogenesis. In the context of cardiac ischemia reperfusion injury, neutrophils enter inflamed heart tissue, where they play an important role in potentiating tissue damage and contributing to contractile dysfunction. The precise mechanisms that govern how neutrophils are recruited to and enter the injured heart are incompletely understood. Using a model of cardiac transplant–mediated ischemia reperfusion injury and intravital 2-photon imaging of beating mouse hearts, we determined that tissue-resident CCR2+ monocyte–derived macrophages are essential mediators of neutrophil recruitment into ischemic myocardial tissue. Our studies revealed that neutrophil extravasation is mediated by a TLR9/MyD88/CXCL5 pathway. Intravital 2-photon imaging demonstrated that CXCL2 and CXCL5 play critical and nonredundant roles in guiding neutrophil adhesion and crawling, respectively. Together, these findings uncover a specific role for a tissue-resident monocyte-derived macrophage subset in sterile tissue inflammation and support the evolving concept that macrophage ontogeny is an important determinant of function. Furthermore, our results provide the framework for targeting of cell-specific signaling pathways in myocardial ischemia reperfusion injury. PMID:27536731

  12. Salvianolic Acid B Ameliorates Cerebral Ischemia/Reperfusion Injury Through Inhibiting TLR4/MyD88 Signaling Pathway.

    PubMed

    Wang, Yujue; Chen, Guang; Yu, Xiangdong; Li, Yunchao; Zhang, Li; He, Zongze; Zhang, Nannan; Yang, Xiuping; Zhao, Yansheng; Li, Na; Qiu, Hong

    2016-08-01

    Ischemic stroke can activate multiple transcription factors and cause inflammatory reactions, which involve pattern recognition receptors with immunostimulatory effects. Toll-like receptor 4 (TLR4) is one of the receptors related to innate immunity and several inflammatory reactions. The promising anti- inflammatory activity of salvianolic acid B (SAB) had been previously reported, but its effect on ischemic stroke remains unknown. An oxygen-glucose deprivation and reoxygenation (OGD/R) model in vitro and a middle cerebral artery occlusion (MCAO) model in vivo were used in this paper, and the results showned that SAB remarkably increased the viabilities of PC12 cells and primary cortical neurons after OGD/R injury and notably prevented cerebral ischemia/reperfusion (I/R) injury. SAB also significantly ameliorated NeuN release from primary cortical neurons. Further research indicated that the neuroprotection of SAB was completed through inhibiting the TLR4/MyD88/TRAF6 signaling pathway. The blocking of TLR4 by SAB also restrained NF-kB transcriptional activity and pro-inflammatory cytokine responses (IL-1β, IL-6, and TNF-α). These findings supply a new insight that will aid in clarifying the effect of SAB against cerebral I/R injury and provide the development of SAB as a potential candidate for treating ischemic stroke.

  13. Chlamydial Lipoproteins Stimulate Toll-Like Receptors 1/2 Mediated Inflammatory Responses through MyD88-Dependent Pathway

    PubMed Central

    Wang, Yong; Liu, Qiong; Chen, Ding; Guan, Jie; Ma, Linghui; Zhong, Guangming; Shu, Hengping; Wu, Xiang

    2017-01-01

    Chlamydiae are very important pathogens which could cause several types of diseases in human, but little is known about its pathogenic mechanism. In order to elucidate host inflammatory response and the signal pathway induced by Chlamydial lipoproteins, the predicted lipoproteins of Chlamydia trachomatis were tested for their ability to induce the release of proinflammatory cytokines by mouse macrophages or human TLR (Toll-Like Receptor) expressing cell lines. The results showed that recombinant proteins of C. trachomatis D381, D541, D067, and D775 displayed a strong ability to induce the release of IL-8 in TLR expressing cell line. The signal pathways involved TLR1/2 and TLR2/CD14 but not TLR4. Moreover, except D067, the proinflammatory cytokine induction by D381, D541, and D775 required the thioacylation site (cysteine) for lipid modification and the induction was through MyD88-mediated pathway. Our data supported that lipoproteins played a vital role in pathogenesis of C. trachomatis-induced inflammatory responses via TLR pathway. It was the first study to characterize other chlamydial lipoproteins after identifying the role of MIP (D541) on pathogenesis of Chlamydial diseases. PMID:28184217

  14. TIFA upregulation after hypoxia-reoxygenation is TLR4- and MyD88-dependent and associated with HMGB1 upregulation and release.

    PubMed

    Ding, Ning; Zhang, Yong; Loughran, Patricia A; Wang, Qingde; Tsung, Allan; Billiar, Timothy R

    2013-10-01

    TRAF-interacting protein with a forkhead-associated domain (TIFA) is a tumor necrosis factor receptor-associated factor 6 (TRAF6) binding protein that mediates IL-1 signaling. We recently reported that TIFA mRNA is significantly upregulated early in the liver after trauma and hemorrhagic shock. In this study, we sought to characterize the upregulation of TIFA by hypoxia-reoxygenation and investigate its role in hypoxia-induced signaling. TIFA expression was detected by qRT-PCR and Western blotting in both mouse hemorrhagic shock with resuscitation (HS-R) and hepatocytes exposed to hypoxia-reoxygenation. Involvement of TLR4 and MyD88 was assessed using cells from TLR4(-/-) and MyD88(-/-) mice. The interaction of TIFA with TRAF6 and IRAK-1 was investigated using coimmunoprecipitation in vitro. RNAi was performed to knock down the endogenous expression of the TIFA gene in hepatocytes. High-mobility-group box 1 protein (HMGB1) expression was detected by Western blotting and ELISA, and the activation of NF-κB and MAPK was measured with EMSA and Western blotting. The results showed that TIFA expression was upregulated after HS-R in vivo and hypoxia-reoxygenation in vitro. Further analysis revealed that hypoxia-reoxygenation-induced upregulation of TIFA was TLR4- and MyD88-dependent. Moreover, TIFA was found to associate with TRAF6 constitutively, whereas its association with IRAK-1 was seen only after hypoxia-reoxygenation. Suppression of TIFA by siRNA reduced NF-κB activation and HMGB1 upregulation and release after hypoxia-reoxygenation. Taken together, these data suggest that TIFA is involved in the regulation of cell signaling in hypoxia-reoxygenation. The increase in TIFA level appears to be a feed-forward mechanism involved in TLR4/MyD88-dependent signaling, leading to NF-κB activation and HMGB1 release.

  15. Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway

    PubMed Central

    Liu, Min; Xu, Youwei; Han, Xu; Yin, Lianhong; Xu, Lina; Qi, Yan; Zhao, Yanyan; Liu, Kexin; Peng, Jinyong

    2015-01-01

    The present work aimed to investigate the activities and underlying mechanisms of dioscin against alcoholic liver fibrosis (ALF). In vivo liver fibrosis in mice was induced by an alcoholic liquid diet, and in vitro studies were performed on activated HSC-T6 and LX2 cells treated with lipopolysaccharide. Our results showed that dioscin significantly attenuated hepatic stellate cells (HSCs) activation, improved collagen accumulation, and attenuated inflammation through down-regulating the levels of myeloid differentiation factor 88 (MyD88), nuclear factor κB (NF-κB), interleukin (IL)-1, IL-6 and tumour necrosis factor-α by decreasing Toll-like receptor (TLR)4 expression both in vivo and in vitro. TLR4 overexpression was also decreased by dioscin, leading to the markedly down-regulated levels of MyD88, NF-κB, transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA) and type I collagen (COL1A1) in cultured HSCs. Suppression of cellular MyD88 by ST2825 or abrogation of NF-κB by pyrrolidine dithiocarbamate eliminated the inhibitory effects of dioscin on the levels of TGF-β1, α-SMA and COL1A1. In a word, dioscin exhibited potent effects against ALF via altering TLR4/MyD88/NF-κB signaling pathway, which provided novel insights into the mechanisms of this compound as an antifibrogenic candidate for the treatment of ALF in the future. PMID:26655640

  16. Contribution of TLR4 and MyD88 for adjuvant monophosphoryl lipid A (MPLA) activity in a DNA prime-protein boost HIV-1 vaccine.

    PubMed

    Pouliot, Kimberly; Buglione-Corbett, Rachel; Marty-Roix, Robyn; Montminy-Paquette, Sara; West, Kim; Wang, Shixia; Lu, Shan; Lien, Egil

    2014-09-03

    Recombinant protein vaccines are commonly formulated with an immune-stimulatory compound, or adjuvant, to boost immune responses to a particular antigen. Recent studies have shown that, through recognition of molecular motifs, receptors of the innate immune system are involved in the functions of adjuvants to generate and direct adaptive immune responses. However, it is not clear to which degree those receptors are also important when the adjuvant is used as part of a novel heterologous prime-boost immunization process in which the priming and boosting components are not the same type of vaccines. In the current study, we compared the immune responses elicited by a pentavalent HIV-1 DNA prime-protein boost vaccine in mice deficient in either Toll-like receptor 4 (TLR4) or myeloid differentiation primary response gene 88 (MyD88) to wildtype mice. HIV gp120 protein administered in the boost phase was formulated with either monophosphoryl lipid A (MPLA), QS-21, or Al(OH)3. Endpoint antibody titer, serum cytokine response and T-cell memory response were assessed. Neither TLR4 nor MyD88 deficiency had a significant effect on the immune response of mice given vaccine formulated with QS-21 or Al(OH)3. However, TLR4- and MyD88-deficiency decreased both the antibody and T-cell responses in mice administered HIV gp120 formulated with MPLA. These results further our understanding of the activation of TLR4 and MyD88 by MPLA in the context of a DNA prime/protein boost immunization strategy.

  17. Blood-Brain Barrier Deterioration and Hippocampal Gene Expression in Polymicrobial Sepsis: An Evaluation of Endothelial MyD88 and the Vagus Nerve.

    PubMed

    Honig, Gerard; Mader, Simone; Chen, Huiyi; Porat, Amit; Ochani, Mahendar; Wang, Ping; Volpe, Bruce T; Diamond, Betty

    2016-01-01

    Systemic infection can initiate or exacerbate central nervous system (CNS) pathology, even in the absence of overt invasion of bacteria into the CNS. Recent epidemiological studies have demonstrated that human survivors of sepsis have an increased risk of long-term neurocognitive decline. There is thus a need for improved understanding of the physiological mechanisms whereby acute sepsis affects the CNS. In particular, MyD88-dependent activation of brain microvascular endothelial cells and a resulting loss of blood-brain barrier integrity have been proposed to play an important role in the effects of systemic inflammation on the CNS. Signaling through the vagus nerve has also been considered to be an important component of CNS responses to systemic infection. Here, we demonstrate that blood-brain barrier permeabilization and hippocampal transcriptional responses during polymicrobial sepsis occur even in the absence of MyD88-dependent signaling in cerebrovascular endothelial cells. We further demonstrate that these transcriptional responses can occur without vagus nerve input. These results suggest that redundant signals mediate CNS responses in sepsis. Either endothelial or vagus nerve activation may be individually sufficient to transmit systemic inflammation to the central nervous system. Transcriptional activation in the forebrain in sepsis may be mediated by MyD88-independent endothelial mechanisms or by non-vagal neuronal pathways.

  18. Fish IRF6 is a positive regulator of IFN expression and involved in both of the MyD88 and TBK1 pathways.

    PubMed

    Li, Shun; Lu, Long-Feng; Wang, Zhao-Xi; Chen, Dan-Dan; Zhang, Yong-An

    2016-10-01

    Interferon (IFN) regulatory factors (IRF) are the crucial transcription factors for IFN expression, leading host cell response to viral infection. In mammals, only IRF6 is unaffected by IFN expression in the IRF family; however, in fish, a lower vertebrate, whether IRF6 is related to IFN regulation is unclear. In this study, we identified that zebrafish IRF6 was a positive regulator of IFN transcription and could be phosphorylated by both MyD88 and TBK1. First, the transcript level of cellular irf6 was upregulated by treatment with poly I:C (a mimic of viral RNAs), indicating IRF6 might be involved in the process of host cell response to viruses. Overexpression of IRF6 could upregulate IFN promoter activity significantly, meaning IRF6 is a positive regulator of IFN transcription. Subsequently, at the protein regulation level and in the interaction relationship, IRF6 was phosphorylated by and associated with both MyD88 and TBK1. In addition, overexpression of IRF6 activated the transcription of isg15, rig-i and mavs of host cells; meanwhile, the transcripts of p, m and n genes of SVCV were significantly declined in IRF6-overexpressing cells. Taken together, our data demonstrate that fish IRF6 is distinguished from the homolog of mammals by being a positive regulator of IFN transcription and phosphorylated by MyD88 and TBK1, suggesting that differences in the IRF6 regulation pattern exist between lower and higher vertebrates.

  19. miR-489 inhibits silica-induced pulmonary fibrosis by targeting MyD88 and Smad3 and is negatively regulated by lncRNA CHRF

    PubMed Central

    Wu, Qiuyun; Han, Lei; Yan, Weiwen; Ji, Xiaoming; Han, Ruhui; Yang, Jingjin; Yuan, Jiali; Ni, Chunhui

    2016-01-01

    Silicosis is an incurable occupational disease associated with inflammation, fibroblast proliferation and the accumulation of extracellular matrix in lung tissues. The dysregulation of lncRNAs and miRNAs has been implicated in many complex diseases; however, the current understanding of their roles in fibrotic lung diseases, especially silicosis, remains limited. Our previous microRNA (miRNA, miR) microarray data have indicated decreased expression levels of miR-489 in lung tissues of silica-induced pulmonary fibrosis. Here, we further explored the role of miR-489 in a mouse model of silicosis. Interestingly, miR-489 levels were reduced in both macrophages that were exposed to silica and fibroblasts that were exposed to TGF-β1. Additionally, the overexpressed miR-489 carried out its anti-fibrotic role by attenuating inflammation and fibrotic progression in vivo. Our molecular study further demonstrated that miR-489 inhibited silica-induced pulmonary fibrosis primarily by repressing its target genes MyD88 and Smad3. Moreover, the up-regulated lncRNA cardiac hypertrophy-related factor (CHRF) reversed the inhibitory effect of miR-489 on MyD88 and Smad3 and then triggered the inflammation and fibrotic signaling pathways. Overall, our data indicate that the CHRF-miR-489-MyD88 Smad3 signaling axis exerts key functions in silica-induced pulmonary fibrosis and may represent a therapeutic target for silicosis. PMID:27506999

  20. Dexmedetomidine preconditioning may attenuate myocardial ischemia/reperfusion injury by down-regulating the HMGB1-TLR4-MyD88-NF-кB signaling pathway

    PubMed Central

    Zhang, Juan; Meng, Xiao-wen; Ji, Fu-hai

    2017-01-01

    Aims To investigate whether dexmedetomidine (DEX) preconditioning could alleviate the inflammation caused by myocardial ischemia/reperfusion (I/R) injury by reducing HMGB1-TLR4-MyD88-NF-кB signaling. Methods Seventy rats were randomly assigned into five groups: sham group, myocardial I/R group (I/R), DEX+I/R group (DEX), DEX+yohimbine+I/R group (DEX/YOH), and yohimbine+I/R group (YOH). Animals were subjected to 30 min of ischemia induced by occluding the left anterior descending artery followed by 120 min of reperfusion. Myocardial infarct size and histological scores were evaluated. The levels of IL-6 and TNF-α in serum and myocardium were quantified by enzyme-linked immunosorbent assay, and expression of HMGB1, TLR4, MyD88, IκB and NF-κB in the myocardial I/R area were determined with Western blot and immunocytochemistry. Results Myocardial infarct sizes, histological scores, levels of circulating and myocardial IL-6 and TNF-α, the expression of HMGB1, TLR4, MyD88 and NF-κB, and the degradation of IκB were significantly increased in the I/R group compared with the sham group (P<0.01). DEX preconditioning significantly reduced the myocardial infarct size and histological scores (P<0.01 vs. I/R group). Similarly, the serum and myocardial levels of IL-6 and TNF-α, the expression of HMGB1, TLR4, MyD88 and NF-κB, and the degradation of IκB were significantly reduced in the DEX group (P<0.01 vs. I/R group). These effects were partly reversed by yohimbine, a selective α2-adrenergic receptor antagonist, while yohimbine alone had no significant effect on any of the above indicators. Conclusion DEX preconditioning reduces myocardial I/R injury in part by attenuating inflammation, which may be attributed to the downregulation of the HMGB1-TLR4-MyD88-NF-кB signaling pathway mediated by the α2-adrenergic receptor activation. PMID:28222157

  1. Card9- and MyD88-Mediated Gamma Interferon and Nitric Oxide Production Is Essential for Resistance to Subcutaneous Coccidioides posadasii Infection.

    PubMed

    Hung, Chiung-Yu; Castro-Lopez, Natalia; Cole, Garry T

    2016-04-01

    Coccidioidomycosis is a potentially life-threatening respiratory disease which is endemic to the southwestern United States and arid regions of Central and South America. It is responsible for approximately 150,000 infections annually in the United States alone. Almost every human organ has been reported to harbor parasitic cells of Coccidioides spp. in collective cases of the disseminated form of this mycosis. Current understanding of the mechanisms of protective immunity against lung infection has been largely derived from murine models of pulmonary coccidioidomycosis. However, little is known about the nature of the host response to Coccidioides in extrapulmonary tissue. Primary subcutaneous coccidioidal infection is rare but has been reported to result in disseminated disease. Here, we show that activation of MyD88 and Card9 signal pathways are required for resistance to Coccidioides infection following subcutaneous challenge of C57BL/6 mice, which correlates with earlier findings of the protective response to pulmonary infection. MyD88(-/-) andCard9(-/-) mice recruited reduced numbers of T cells, B cells, and neutrophils to the Coccidioides-infected hypodermis com pared to wild-type mice; however, neutrophils were dispensable for resistance to skin infection. Further studies have shown that gamma interferon (IFN-γ) production and activation of Th1 cells characterize resistance to subcutaneous infection. Furthermore, activation of a phagosomal enzyme, inducible nitric oxide synthase, which is necessary for NO production, is a requisite for fungal clearance in the hypodermis. Collectively, our data demonstrate that MyD88- and Card9-mediated IFN-γ and nitric oxide production is essential for protection against subcutaneous Coccidioides infection.

  2. Salmonid Tollip and MyD88 factors can functionally replace their mammalian orthologues in TLR-mediated trout SAA promoter activation.

    PubMed

    Rebl, Alexander; Rebl, Henrike; Liu, Shuzhen; Goldammer, Tom; Seyfert, Hans-Martin

    2011-01-01

    Many functional details of the piscine Toll-like receptor (TLR) signal-mediated activation of immune defense are still elusive. We used an established reconstitution system of mammalian TLR signaling to examine if this system would allow for pathogen-dependent promoter activation of the serum amyloid A (SAA)-encoding gene from rainbow trout (Oncorhynchus mykiss) and if the key mediators MyD88 and Tollip from trout can functionally substitute for their mammalian orthologues. Cells of the established human embryonic kidney line HEK-293 were transiently co-transfected with vectors expressing bovine TLR2 or TLR4 factors and a reporter gene driven by the promoter of the trout SAA gene. Escherichia coli stimulation increased reporter gene expression more than 3-fold. Deletion series and point mutations identified in the proximal SAA promoter a composite overlapping binding site for NF-κB and CEBP factors as crucial for promoter activation. Overexpression of NF-κB p65, but not of p50 or different members of the CEBP factor family proved this factor as an essential driver for SAA expression. Overexpression of a transdominant-negative mutant of the trout MyD88 factor reduced TLR-mediated SAA promoter activation confirming functional conservation of its TIR domain. Overexpression of the Tollip factor from trout also quenched TLR-mediated NF-κB and TLR4-mediated SAA promoter activation. The MyD88 mutant and Tollip expression studies confirm the functional homology of both piscine factors and their mammalian counterparts. We provide for the first time evidence that also the Tollip-mediated negative loop of TLR signaling may be conserved in non-mammalian organisms.

  3. Lipopolysaccharide induced LOX-1 expression via TLR4/MyD88/ROS activated p38MAPK-NF-κB pathway.

    PubMed

    Zhao, Wenwen; Ma, Guixin; Chen, Xiuping

    2014-12-01

    Lectin-like receptor for oxidized low density lipoprotein (LOX-1) plays a key role in endothelial ox-LDL endocytosis, endothelial dysfunction and atherogenesis. In the present study, the effect of lipopolysaccharide (LPS) on LOX-1 expression and the underlying molecular pathways were investigated. Human umbilical vein endothelial cells (HUVECs) were treated with LPS and the protein expressions of LOX-1, TLR4, TLR2, MyD88, Nox4, Nox2, PI3K, p38MAPK, JNK, ERK, Nrf1, Nrf2 and p65 were examined by Western blotting. The intracellular reactive oxygen species (ROS) production was examined by flow cytometry with fluorescence probe DCFH2-DA. The role of TLR4, MyD88 and Nox4 were determined with specific siRNA. The endothelial ox-LDL uptake and the endothelial-monocyte adhesion were evaluated with DiI-ox-LDL and Hoechst 33342 respectively. The effect of LPS on LOX-1 expression in aorta tissue was also studied with male C57/BL6 mice by intraperitoneal injection of LPS. The results showed that LPS induced LOX-1 protein expression in a time- and concentration-dependent manner. The mRNA expression of LOX-1 was also upregulated. The protein expression of LOX-1 and phosphorylated p38MAPK, p65 was significantly enhanced by LPS both in vitro and in vivo. LPS induced LOX-1 expression was blocked by siRNA for TLR4, MyD88, and Nox4 and inhibitors for p38MAPK, NF-κB, cyclooxygenase-2, and NADPH oxidase. Both LPS induced ox-LDL uptake and endothelial-monocyte adhesion were significantly inhibited by anti-LOX-1 antibody. LPS dramatically induced LOX-1 protein expression in aorta tissues. In conclusion, our data suggested that LPS induces LOX-1 expression via TLR4/MyD88/ROS activated p38MAPK/NF-κB pathway in endothelial cells, which provides new regulatory mechanisms for LOX-1 expression.

  4. Positive Correlation between Enhanced Expression of TLR4/MyD88/NF-κB with Insulin Resistance in Placentae of Gestational Diabetes Mellitus.

    PubMed

    Feng, Hui; Su, Rina; Song, Yilin; Wang, Chen; Lin, Li; Ma, Jingmei; Yang, Huixia

    2016-01-01

    Insulin resistance (IR) is a critical factor of the pathophysiology of Gestational diabetes mellitus (GDM). Studies on key organs involved in IR, such as livers and adipose tissues, showed that Toll-like receptor 4 (TLR4) can regulate insulin sensitivity. As a maternal-fetal interface with multi-functions, placentae could contribute to the development of IR for GDM. Thus, we investigated the expressions of TLR4/Myeloid Differentiation factor 88 (MyD88)/Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kB) in term placentae from 33 GDM women and 36 healthy pregnant women with normal glucose tolerance, evaluated local and systemic IR and furthermore identified the association between placental TLR4 and IR. TLR4 protein was expressed in various cells of term placenta, particularly in syncytiotrophoblast of villi. Compared with normal pregnancy, the expression of TLR4/MyD88/NF-kB pathway increased in the placenta of GDM (p<0.05), and these differences were more pronounced in the maternal section of the placenta and the syncytiotrophoblast of villi. In addition, more severe IR was observed in the placenta of GDM patients than the control group, evidenced with higher pIRS-1(ser312) (p<0.001) and lower IRS-1 (p<0.05) as well as pAkt proteins (p<0.01). The expression of TLR4 in placentae is positively correlated with local IR (pIRS-1: r = 0.76, p <0.001 and pAkt: r = -0.47, p <0.001) and maternal fasting (r = 0.42, p <0.01), one-hour (r = 0.52, p <0.01) and two-hour glucose (r = 0.54, p <0.01) at OGTT. We found an that enhanced expression of the TLR4-MyD88-NF-kB pathway occurs in GDM placentae, which positively correlates with heightened local IR in placentae and higher maternal hyperglycemia. The TLR4/MyD88/NF-kB pathway may play a potential role in the development of IR in placentae of GDM.

  5. Positive Correlation between Enhanced Expression of TLR4/MyD88/NF-κB with Insulin Resistance in Placentae of Gestational Diabetes Mellitus

    PubMed Central

    Feng, Hui; Wang, Chen; Lin, Li; Ma, Jingmei; Yang, Huixia

    2016-01-01

    Insulin resistance (IR) is a critical factor of the pathophysiology of Gestational diabetes mellitus (GDM). Studies on key organs involved in IR, such as livers and adipose tissues, showed that Toll-like receptor 4 (TLR4) can regulate insulin sensitivity. As a maternal-fetal interface with multi-functions, placentae could contribute to the development of IR for GDM. Thus, we investigated the expressions of TLR4/Myeloid Differentiation factor 88 (MyD88)/Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kB) in term placentae from 33 GDM women and 36 healthy pregnant women with normal glucose tolerance, evaluated local and systemic IR and furthermore identified the association between placental TLR4 and IR. TLR4 protein was expressed in various cells of term placenta, particularly in syncytiotrophoblast of villi. Compared with normal pregnancy, the expression of TLR4/MyD88/NF-kB pathway increased in the placenta of GDM (p<0.05), and these differences were more pronounced in the maternal section of the placenta and the syncytiotrophoblast of villi. In addition, more severe IR was observed in the placenta of GDM patients than the control group, evidenced with higher pIRS-1(ser312) (p<0.001) and lower IRS-1 (p<0.05) as well as pAkt proteins (p<0.01). The expression of TLR4 in placentae is positively correlated with local IR (pIRS-1: r = 0.76, p <0.001 and pAkt: r = -0.47, p <0.001) and maternal fasting (r = 0.42, p <0.01), one-hour (r = 0.52, p <0.01) and two-hour glucose (r = 0.54, p <0.01) at OGTT. We found an that enhanced expression of the TLR4-MyD88-NF-kB pathway occurs in GDM placentae, which positively correlates with heightened local IR in placentae and higher maternal hyperglycemia. The TLR4/MyD88/NF-kB pathway may play a potential role in the development of IR in placentae of GDM. PMID:27340831

  6. TIFA Upregulation after Hypoxia-Reoxygenation is TLR4 and MyD88-Dependent and Associated with HMGB1 Upregulation and Release

    PubMed Central

    Ding, Ning; Zhang, Yong; Loughran, Patricia A.; Wang, Qingde; Billiar, Timothy R.

    2013-01-01

    TRAF-interacting protein with a forkhead-associated domain (TIFA) is a tumor necrosis factor receptor-associated factor 6 (TRAF6) binding protein that mediates IL-1 signaling. We recently reported that TIFA mRNA is significantly upregulated early in the liver following trauma and hemorrhagic shock. In the present study, we sought to characterize the upregulation of TIFA by hypoxia-reoxygenation and investigate its role in hypoxia-induced signaling. TIFA expression was detected by qRT-PCR and Western blotting in both mouse hemorrhagic shock with resuscitation (HS-R) and hepatocytes exposed to hypoxia-reoxygenation. Involvement of TLR4 and MyD88 was assessed using cells from TLR4−/− and MyD88−/− mice. The interaction of TIFA with TRAF6 and IRAK-1 was investigated using co-immunoprecipitation in vitro. RNAi was performed to knock down the endogenous expression of the TIFA gene in hepatocytes. High mobility group box 1 protein (HMGB1) expression was detected by Western blotting and ELISA, and the activation of NF-κB and MAPK was measured with EMSA and Western blotting. The results showed that TIFA expression was upregulated following HS-R in vivo and hypoxia-reoxygenation in vitro. Further analysis revealed that hypoxia-reoxygenation-induced upregulation of TIFA was TLR4 and MyD88-dependent. Moreover, TIFA was found to associate with TRAF6 constitutively, whereas its association with IRAK-1 was seen only after hypoxia-reoxygenation. Suppression of TIFA by siRNA reduced NF-κB activation and HMGB1 upregulation and release following hypoxia-reoxygenation. Taken together, these data suggest that TIFA is involved in the regulation of cell signaling in hypoxia-reoxygenation. The increase in TIFA level appears to be a feed-forward mechanism involved in TLR4/MyD88-dependent signaling, leading to NF-κB activation and HMGB1 release. PMID:23722163

  7. MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction

    PubMed Central

    Xu, Lian; Hunter, Zachary R.; Yang, Guang; Zhou, Yangsheng; Cao, Yang; Liu, Xia; Morra, Enrica; Trojani, Alessandra; Greco, Antonino; Arcaini, Luca; Varettoni, Maria; Brown, Jennifer R.; Tai, Yu-Tzu; Anderson, Kenneth C.; Munshi, Nikhil C.; Patterson, Christopher J.; Manning, Robert J.; Tripsas, Christina K.; Lindeman, Neal I.

    2013-01-01

    By whole-genome and/or Sanger sequencing, we recently identified a somatic mutation (MYD88 L265P) that stimulates nuclear factor κB activity and is present in >90% of Waldenström macroglobulinemia (WM) patients. MYD88 L265P was absent in 90% of immunoglobulin M (IgM) monoclonal gammopathy of undetermined significance (MGUS) patients. We therefore developed conventional and real-time allele-specific polymerase chain reaction (AS-PCR) assays for more sensitive detection and quantification of MYD88 L265P. Using either assay, MYD88 L265P was detected in 97 of 104 (93%) WM and 13 of 24 (54%) IgM MGUS patients and was either absent or rarely expressed in samples from splenic marginal zone lymphoma (2/20; 10%), CLL (1/26; 4%), multiple myeloma (including IgM cases, 0/14), and immunoglobulin G MGUS (0/9) patients as well as healthy donors (0/40; P < 1.5 × 10−5 for WM vs other cohorts). Real-time AS-PCR identified IgM MGUS patients progressing to WM and showed a high rate of concordance between MYD88 L265P ΔCT and BM disease involvement (r = 0.89, P = .008) in WM patients undergoing treatment. These studies identify MYD88 L265P as a widely present mutation in WM and IgM MGUS patients using highly sensitive and specific AS-PCR assays with potential use in diagnostic discrimination and/or response assessment. The finding of this mutation in many IgM MGUS patients suggests that MYD88 L265P may be an early oncogenic event in WM pathogenesis. PMID:23321251

  8. Toll-pathway in tiger shrimp (Penaeus monodon) responds to white spot syndrome virus infection: evidence through molecular characterisation and expression profiles of MyD88, TRAF6 and TLR genes.

    PubMed

    Deepika, A; Sreedharan, K; Paria, Anutosh; Makesh, M; Rajendran, K V

    2014-12-01

    The Toll-pathway plays key roles in regulating the innate immune response in invertebrates. Myeloid differentiation factor 88 (MyD88) and Tumour necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) are key molecules in this signalling pathway. To investigate the role of Toll-pathway in innate immune response of shrimp, Penaeus monodon, MyD88 (PmMyD88) and TRAF6 (PmTRAF6) were identified and characterised. PmMyD88 cDNA is 1716 bp long with an open reading frame (ORF) of 1449 bp encoding a putative protein of 482 amino acids, with a death domain, a TIR domain and C-terminal extension domain. PmTRAF6 cDNA is 2563 bp long with an ORF of 1785 bp (594 amino acids) with an N-terminal RING-type zinc finger domain, two TRAF-type zinc finger domains, a coiled region and a MATH domain. In healthy shrimp, PmMyD88, PmTRAF6 and PmToll were detected in 15 tissues with the highest expression in midgut, eyestalk and lymphoid organ, respectively. Responses of these genes to WSSV in experimentally-infected P. monodon as well as in cultured haemocytes and also effect of poly I:C on the gene expression in vitro was investigated at six time-points in seven tissues. PmToll showed significant up-regulation at all time-points of infection in six tissues and until 24 h post-infection in vitro. However, poly I:C-induced haemocytes showed up-regulation of the gene until 48 h post-exposure. WSSV caused significant up-regulation of PmMyD88 in most of the tissues tested. The virus challenge as well as poly I:C induction in vitro also resulted in significant up-regulation of the gene. Up-regulated expression of PmTRAF6 was detected in haemocytes and lymphoid organ at late stage of infection. In vitro virus challenge showed significant up-regulation of PmTRAF6 at almost all time-points whereas no significant change in the expression was observed on poly I:C induction. The responses of these key genes, observed in the present study, suggest that Toll-pathway as a whole may play a crucial

  9. Protective Effects of Celastrol on Diabetic Liver Injury via TLR4/MyD88/NF-κB Signaling Pathway in Type 2 Diabetic Rats

    PubMed Central

    Han, Li-ping; Li, Chun-jun; Sun, Bei; Xie, Yun; Guan, Yue; Ma, Ze-jun; Chen, Li-ming

    2016-01-01

    Immune and inflammatory pathways play a central role in the pathogenesis of diabetic liver injury. Celastrol is a potent immunosuppressive and anti-inflammatory agent. So far, there is no evidence regarding the mechanism of innate immune alterations of celastrol on diabetic liver injury in type 2 diabetic animal models. The present study was aimed at investigating protective effects of celastrol on the liver injury in diabetic rats and at elucidating the possible involved mechanisms. We analyzed the liver histopathological and biochemical changes and the expressions of TLR4 mediated signaling pathway. Compared to the normal control group, diabetic rats were found to have obvious steatohepatitis and proinflammatory cytokine activities were significantly upregulated. Celastrol-treated diabetic rats show reduced hepatic inflammation and macrophages infiltration. The expressions of TLR4, MyD88, NF-κB, and downstream inflammatory factors IL-1β and TNFα in the hepatic tissue of treated rats were downregulated in a dose-dependent manner. We firstly found that celastrol treatment could delay the progression of diabetic liver disease in type 2 diabetic rats via inhibition of TLR4/MyD88/NF-κB signaling cascade pathways and its downstream inflammatory effectors. PMID:27057550

  10. Bovine viral diarrhea virus type 2 in vivo infection modulates TLR4 responsiveness in differentiated myeloid cells which is associated with decreased MyD88 expression.

    PubMed

    Schaut, Robert G; McGill, Jodi L; Neill, John D; Ridpath, Julia F; Sacco, Randy E

    2015-10-02

    Symptoms of bovine viral diarrhea virus (BVDV) infection range from subclinical to severe, depending on strain virulence. Several in vitro studies showed BVDV infection impaired leukocyte function. Fewer studies have examined the effects of in vivo BVDV infection on monocyte/macrophage function, especially with strains of differing virulence. We characterized cytokine production by bovine myeloid cells isolated early or late in high (HV) or low virulence (LV) BVDV2 infection. Given BVDV infection may enhance susceptibility to secondary bacterial infection, LPS responses were examined as well. Monocytes from HV and LV infected calves produced higher levels of cytokines compared to cells from controls. In contrast, monocyte-derived macrophage cytokine levels were generally reduced. Modulated cytokine expression in HV BVDV2 macrophages was associated with decreased MyD88 expression, likely due to its interaction with viral NS5A. These data and those of others, suggest that certain Flaviviridae may have evolved strategies for subverting receptor signaling pathways involving MyD88.

  11. MyD88 mediates the protective effects of probiotics against the arteriolar thrombosis and leukocyte recruitment associated with experimental colitis.

    PubMed

    Souza, Daniele G; Senchenkova, Elena Y; Russell, Janice; Granger, D Neil

    2015-04-01

    Several studies in patients with IBD and in animal models of IBD have revealed a protective effect of probiotics in reducing clinical symptoms of disease and in blunting the gut inflammation that accompanies this condition. However, the mechanism underlying the therapeutic effect of probiotics is currently unknown. Furthermore, the ability of probiotics to influence the enhanced thrombus development that accompanies IBD has not been studied. This study addresses whether the enhanced extraintestinal thrombosis (induced by light/dye injury) associated with experimental colitis is altered by oral treatment with the probiotic preparation VSL#3 or by the absence of microbiota. Colitis was induced by DSS 3% in Swiss Webster mice, germ-free mice, C57BL/6 WT, or Myd88 mice. In some experiments, mice received VSL#3 for 8 days before and during DSS feeding. Swiss Webster mice were also subjected to a chronic model of DSS colitis, and the effect of VSL#3 was evaluated. VSL#3 treatment significantly attenuated the accelerated thrombus formation observed in both acute and chronic models of colitis. VSL#3-treated mice also exhibited attenuated inflammatory response and injury in the colon. The protective effects of VSL#3 on colitis-associated thrombogenesis and inflammation were not evident in MyD88-deficient mice. Our results suggest that improved control of the enteric microflora in IBD may afford protection against the hypercoagulable prothrombotic state that follows this condition.

  12. MyD88 mediates the protective effects of probiotics against the arteriolar thrombosis and leukocyte recruitment associated with experimental colitis

    PubMed Central

    Souza, Daniele G.; Senchenkova, Elena Y.; Russell, Janice; Granger, D. Neil

    2014-01-01

    Several studies in IBD patients and in animal models of IBD have revealed a protective effect of probiotics in reducing clinical symptoms of disease and in blunting the gut inflammation that accompanies this condition. However, the mechanism underlying the therapeutic effect of probiotics is currently unknown. Furthermore, the ability of probiotics to influence the enhanced thrombus development that accompanies IBD has not been studied. This study addresses whether the enhanced extra-intestinal thrombosis (induced by light/dye injury) associated with experimental colitis is altered by oral treatment with the probiotic preparation VSL#3 or by the absence of microbiota. Colitis was induced by DSS 3% in Swiss Webster mice, germ free mice, C57BL/6 WT or Myd88−/− mice. In some experiments, mice received VSL#3 for 8 days before and during DSS feeding. Swiss Webster mice were also subjected to a chronic model of DSS colitis and the effect of VSL#3 was evaluated. VSL#3 treatment significantly attenuated the accelerated thrombus formation observed in both acute and chronic models of colitis. VSL#3-treated mice also exhibited attenuated inflammatory response and injury in the colon. The protective effects of VSL#3 on colitis-associated thrombogenesis and inflammation were not evident in MyD88-deficient mice. Our results suggest that improved control of the enteric microflora in IBD may afford protection against the hypercoagulable, prothrombotic state that follows this condition. PMID:25738377

  13. Salmonella inhibits monocyte differentiation into CD11c hi MHC-II hi cells in a MyD88-dependent fashion.

    PubMed

    Rydström, Anna; Wick, Mary Jo

    2010-05-01

    Monocytes and DCs originate from a shared precursor in the bone marrow, and steady-state DCs in lymphoid organs develop directly from the precursor rather than via a monocyte intermediate. However, monocytes can differentiate into DCs in tissues such as the lung and gut mucosa and into macrophages in most tissues. As Ly6C hi monocytes accumulate in lymphoid organs during oral Salmonella infection, we investigated their ability to develop into potential DCs, identified as CD11c hi MHC-II hi cells, in infected hosts. Ly6C hi monocytes, isolated from the blood of Salmonella-infected mice, developed into CD11c hi MHC-II hi cells after culture with GM-CSF or Flt3L. In contrast, the same monocytes cultured in the presence of GM-CSF and heat-killed Salmonella did not differentiate into CD11c hi MHC-II hi cells. The bacteria-induced differentiation block was dependent on TLRs, as monocytes from MyD88-/- mice converted into CD11c hi MHC-II hi cells even in the presence of bacteria. We hypothesized that Salmonella-activated wild-type monocytes secreted mediators that inhibited differentiation of MyD88-/--derived monocytes. However, IL-6, IL-10, TNF-alpha, or IL-12p70 did not account for the inhibition. Finally, monocyte-derived CD11c hi MHC-II hi cells pulsed with OVA peptide or protein did not induce proliferation of antigen-specific CD4+ T cells but rather, suppressed the ability of DCs to activate CD4+ T cells. Overall, the data show that Ly6C hi monocytes from Salmonella-infected mice develop into CD11c hi MHC-II hi cells with poor antigen-presentation capacity when cultured ex vivo, and that monocyte exposure to Salmonella inhibits their differentiation into CD11c hi MHC-II hi cells in a MyD88-dependent fashion.

  14. Telmisartan mediates anti-inflammatory and not cognitive function through PPAR-γ agonism via SARM and MyD88 signaling.

    PubMed

    Prathab Balaji, S; Vijay Chand, C; Justin, A; Ramanathan, M

    2015-10-01

    Telmisartan (TM), an angiotensin II receptor I (AT1) blocker, has been reported to have agonist property with respect to PPAR-γ. Activation of PPAR-γ receptor by TM attenuated the lipopolysaccharide (LPS) mediated TLR4 central downstream inflammatory responses. However, the missing link between PPAR-γ and TLR4 signaling with TM stimulation has not been clarified. Hence, the present study has been designed to evaluate the molecular mechanism involving PPARγ-TLR4 signaling with TM stimulation in LPS induced inflammatory model. LPS was administered in rats through ICV and the rats were treated with either PPAR-γ antagonist GW9662 (GW) or TM or both. After 14days of LPS administration, the rats were subjected to behavioral tests and their brains were isolated for blotting techniques. The protein study includes NF-κB, PPAR-γ receptors, and their downstream proteins (MyD88 & SARM). The pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) levels were measured by ELISA and cresyl violet staining in the hippocampus region to measure the neuroprotective activity. Results have shown that TM significantly increased the motor co-ordination, cognitive functions, and activated SARM and PPAR-γ protein levels. Also, TM treatment decreased the NF-κB, MyD88 activation, and cytokines release in LPS rats. The co-administration of GW attenuated the TM responses in the parameters studied except cognitive functions. TM (10mg/kg) has significantly reduced the LPS mediated inflammatory responses. This resulted in effective regeneration of hippocampal neurons as observed by cresyl violet staining. It can be concluded that the activation of PPAR-γ receptors may increase the SARM and decrease the MyD88 and NF-κB expression. This negative regulation of SARM dependent inflammation control could be a possible mechanism for TM anti-neuroinflammatory activity. This study of TM in neuro-inflammatory model may further confirm the dual activities of TM that controls hypertension and cognition through AT1 blockade and also attenuates neuro-inflammation via PPAR-γ agonistic property.

  15. Natural killer cell intrinsic toll-like receptor MyD88 signaling contributes to IL-12-dependent IFN-γ production by mice during infection with Toxoplasma gondii.

    PubMed

    Ge, Yiyue; Chen, Jinling; Qiu, Xiaoyan; Zhang, Jie; Cui, Lunbiao; Qi, Yuhua; Liu, Xinjian; Qiu, Jingfan; Shi, Zhiyang; Lun, Zhaorong; Shen, Jilong; Wang, Yong

    2014-06-01

    Myeloid differentiation factor 88 (MyD88)-dependent IL-12 secretion by dendritic cells is critical for natural killer cell-mediated IFN-γ production and innate resistance to Toxoplasma gondii. Although MyD88(-/-) mice challenged with T. gondii have defective IL-12 responses and succumb to infection, administration of IL-12 to MyD88(-/-) mice fails to prevent acute mortality, suggesting that MyD88 may mediate signals within natural killer cells important for IL-12-dependent IFN-γ production and innate resistance to this parasite. In this study, we found that T. gondii antigens and IL-12 could synergistically trigger IFN-γ secretion by natural killer cells, which was dependent on toll-like receptor-MyD88 signaling. Further analysis showed that p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase and NF-κB multiple pathways downstream of MyD88 contributed to IFN-γ production by natural killer cells. Moreover, the well-established toll-like receptor agonists, T. gondii profilin (Tgprofilin) and T. gondii heat shock protein 70 (TgHSP70) could evoke a similar IFN-γ secretory response in natural killer cells to that evoked by T. gondii antigens. In vivo adoptive transfer experiments showed that, upon challenge with T. gondii, NOD/SCID-β2 microglobulin null (NOD/SCID-β2m(-/-)) mice injected i.v. with MyD88(-/-) natural killer cells had reduced serum IFN-γ levels and increased splenic tachyzoite burdens compared with those injected i.v. with wild-type natural killer cells. Taken together, these findings demonstrate a critical role for natural killer cell intrinsic toll-like receptor-MyD88 signaling in IL-12-dependent early IFN-γ production and innate resistance to T. gondii.

  16. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    PubMed

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  17. Measurement of TLR-Induced Macrophage Spreading by Automated Image Analysis: Differential Role of Myd88 and MAPK in Early and Late Responses.

    PubMed

    Wenzel, Jens; Held, Christian; Palmisano, Ralf; Teufel, Stefan; David, Jean-Pierre; Wittenberg, Thomas; Lang, Roland

    2011-01-01

    Sensing of infectious danger by toll-like receptors (TLRs) on macrophages causes not only a reprogramming of the transcriptome but also changes in the cytoskeleton important for cell spreading and motility. Since manual determination of cell contact areas from fluorescence micrographs is very time-consuming and prone to bias, we have developed and tested algorithms for automated measurement of macrophage spreading. The two-step method combines identification of cells by nuclear staining with DAPI and cell surface staining of the integrin CD11b. Automated image analysis correlated very well with manual annotation in resting macrophages and early after stimulation, whereas at later time points the automated cell segmentation algorithm and manual annotation showed slightly larger variation. The method was applied to investigate the impact of genetic or pharmacological inhibition of known TLR signaling components. Deficiency in the adapter protein Myd88 strongly reduced spreading activity at the late time points, but had no impact early after LPS-stimulation. A similar effect was observed upon pharmacological inhibition of MEK1, the kinase activating the mitogen-activated protein kinases (MAPK) ERK1/2, indicating that ERK1/2 mediates Myd88-dependent macrophages spreading. In contrast, macrophages lacking the MAPK p38 were impaired in the initial spreading response but responded normally 8-24 h after stimulation. The dichotomy of p38 and ERK1/2 MAPK effects on early and late macrophage spreading raises the question which of the respective substrate proteins mediate(s) cytoskeletal remodeling and spreading. The automated measurement of cell spreading described here increases the objectivity and greatly reduces the time required for such investigations and is therefore expected to facilitate larger throughput analysis of macrophage spreading, e.g., in siRNA knockdown screens.

  18. MyD88 dependence of beryllium-induced dendritic cell trafficking and CD4⁺ T-cell priming.

    PubMed

    McKee, A S; Mack, D G; Crawford, F; Fontenot, A P

    2015-11-01

    Beryllium exposure results in beryllium hypersensitivity in a subset of exposed individuals, leading to granulomatous inflammation and fibrosis in the lung. In addition to its antigenic properties, beryllium has potent adjuvant activity that contributes to sensitization via unknown pathways. Here we show that beryllium induces cellular death and release of interleukin (IL)-1α and DNA into the lung. Release of IL-1α was inflammasome independent and required for beryllium-induced neutrophil recruitment into the lung. Beryllium enhanced classical dendritic cell (cDC) migration from the lung to draining lymph nodes (LNs) in an IL-1R-independent manner, and the accumulation of activated cDCs in the LN was associated with increased priming of CD4(+) T cells. DC migration was reduced in Toll-like receptor 9 knockout (TLR9KO) mice; however, cDCs in the LNs of TLR9-deficient mice were highly activated, suggesting a role for more than one innate receptor in the effects on DCs. The adjuvant effects of beryllium on CD4(+) T-cell priming were similar in wild-type, IL-1R-, caspase-1-, TLR2-, TLR4-, TLR7-, and TLR9-deficient mice. In contrast, DC migration, activation, and the adjuvant effects of beryllium were significantly reduced in myeloid differentiation primary response gene 88 knockout (MyD88KO) mice. Collectively, these data suggest that beryllium exposure results in the release of damage-associated molecular patterns that engage MyD88-dependent receptors to enhance pulmonary DC function.

  19. HMGB1 translocation and release mediate cigarette smoke–induced pulmonary inflammation in mice through a TLR4/MyD88-dependent signaling pathway

    PubMed Central

    Cheng, Yao; Wang, Dan; Wang, Bin; Li, Huanan; Xiong, Junjie; Xu, Shuyun; Chen, Quan; Tao, Kun; Yang, Xiaoyan; Zhu, Yu; He, Sirong

    2017-01-01

    We performed studies to determine the role of high-mobility group box 1 (HMGB1) in cigarette smoke (CS)–induced pulmonary inflammation. After mice were exposed to five cigarettes four times a day for 3 d, toll-like receptor 4 (TLR4) expression and TLR4-mediated signaling were significantly up-regulated, and HMGB1 had translocated from the nucleus to the cytoplasm in lung epithelial cells and then been released into the extracellular lung space. On CS exposure, inflammatory cell recruitment and proinflammatory cytokine production were significantly increased in lung tissue and bronchoalveolar lavage, and these effects depended on the TLR4 signaling pathway. HMGB1 inhibition decreased the CS-induced inflammatory response, whereas treatment with exogenous HMGB1 aggravated the damage and increased the phosphorylation of JNK, p38, and IκBα in the lungs of wild-type mice but not in TLR4-knockout mice. Blockade of TLR4 action or TLR4 knockout significantly inhibited HMGB1-induced proinflammatory cytokine production in mouse tracheal epithelial (MTE) cells and lung tissues. In addition, a MyD88 deficiency inhibited JNK, p38, and IκBα phosphorylation, and this effect was associated with the suppressed production of TNF-α and IL-1β in MTE cells and lung tissues in response to CS stimulation. Thus HMGB1 activates the NF-κB and JNK/p38 pathways through TLR4/MyD88-dependent signaling and induces an inflammatory response in lungs exposed to CS. PMID:27807045

  20. HCV-Induced miR-21 Contributes to Evasion of Host Immune System by Targeting MyD88 and IRAK1

    PubMed Central

    Chen, Yanni; Chen, Junbo; Wang, Hui; Shi, Jingjing; Wu, Kailang; Liu, Shi; Liu, Yingle; Wu, Jianguo

    2013-01-01

    Upon recognition of viral components by pattern recognition receptors, such as the toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I)-like helicases, cells are activated to produce type I interferon (IFN) and proinflammatory cytokines. These pathways are tightly regulated by the host to prevent an inappropriate cellular response, but viruses can modulate these pathways to proliferate and spread. In this study, we revealed a novel mechanism in which hepatitis C virus (HCV) evades the immune surveillance system to proliferate by activating microRNA-21 (miR-21). We demonstrated that HCV infection upregulates miR-21, which in turn suppresses HCV-triggered type I IFN production, thus promoting HCV replication. Furthermore, we demonstrated that miR-21 targets two important factors in the TLR signaling pathway, myeloid differentiation factor 88 (MyD88) and interleukin-1 receptor-associated kinase 1 (IRAK1), which are involved in HCV-induced type I IFN production. HCV-mediated activation of miR-21 expression requires viral proteins and several signaling components. Moreover, we identified a transcription factor, activating protein-1 (AP-1), which is partly responsible for miR-21 induction in response to HCV infection through PKCε/JNK/c-Jun and PKCα/ERK/c-Fos cascades. Taken together, our results indicate that miR-21 is upregulated during HCV infection and negatively regulates IFN-α signaling through MyD88 and IRAK1 and may be a potential therapeutic target for antiviral intervention. PMID:23633945

  1. Rap1-GTP-interacting Adaptor Molecule (RIAM) Protein Controls Invasion and Growth of Melanoma Cells*

    PubMed Central

    Hernández-Varas, Pablo; Coló, Georgina P.; Bartolomé, Ruben A.; Paterson, Andrew; Medraño-Fernández, Iria; Arellano-Sánchez, Nohemí; Cabañas, Carlos; Sánchez-Mateos, Paloma; Lafuente, Esther M.; Boussiotis, Vassiliki A.; Strömblad, Staffan; Teixidó, Joaquin

    2011-01-01

    The Mig-10/RIAM/lamellipodin (MRL) family member Rap1-GTP-interacting adaptor molecule (RIAM) interacts with active Rap1, a small GTPase that is frequently activated in tumors such as melanoma and prostate cancer. We show here that RIAM is expressed in metastatic human melanoma cells and that both RIAM and Rap1 are required for BLM melanoma cell invasion. RIAM silencing in melanoma cells led to inhibition of tumor growth and to delayed metastasis in a severe combined immunodeficiency xenograft model. Defective invasion of RIAM-silenced melanoma cells arose from impairment in persistent cell migration directionality, which was associated with deficient activation of a Vav2-RhoA-ROCK-myosin light chain pathway. Expression of constitutively active Vav2 and RhoA in cells depleted for RIAM partially rescued their invasion, indicating that Vav2 and RhoA mediate RIAM function. These results suggest that inhibition of cell invasion in RIAM-silenced melanoma cells is likely based on altered cell contractility and cell polarization. Furthermore, we show that RIAM depletion reduces β1 integrin-dependent melanoma cell adhesion, which correlates with decreased activation of both Erk1/2 MAPK and phosphatidylinositol 3-kinase, two central molecules controlling cell growth and cell survival. In addition to causing inhibition of cell proliferation, RIAM silencing led to higher susceptibility to cell apoptosis. Together, these data suggest that defective activation of these kinases in RIAM-silenced cells could account for inhibition of melanoma cell growth and that RIAM might contribute to the dissemination of melanoma cells. PMID:21454517

  2. Human Pancreatic Cancer Cells Induce a MyD88-Dependent Stromal Response to Promote a Tumor-Tolerant Immune Microenvironment.

    PubMed

    Delitto, Daniel; Delitto, Andrea E; DiVita, Bayli B; Pham, Kien; Han, Song; Hartlage, Emily R; Newby, Brittney N; Gerber, Michael H; Behrns, Kevin E; Moldawer, Lyle L; Thomas, Ryan M; George, Thomas J; Brusko, Todd M; Mathews, Clayton E; Liu, Chen; Trevino, Jose G; Hughes, Steven J; Wallet, Shannon M

    2017-02-01

    Cancer cells exert mastery over the local tumor-associated stroma (TAS) to configure protective immunity within the tumor microenvironment. The immunomodulatory character of pancreatic lysates of patients with cancer differs from those with pancreatitis. In this study, we evaluated the cross-talk between pancreatic cancer and its TAS in primary human cell culture models. Upon exposure of TAS to pancreatic cancer cell-conditioned media, we documented robust secretion of IL6 and IL8. This TAS response was MyD88-dependent and sufficient to directly suppress both CD4(+) and CD8(+) T-cell proliferation, inducing Th17 polarization at the expense of Th1. We found that patients possessed a similar shift in circulating effector memory Th17:Th1 ratios compared with healthy controls. The TAS response also directly suppressed CD8(+) T-cell-mediated cytotoxicity. Overall, our results demonstrate how TAS contributes to the production of an immunosuppressive tumor microenvironment in pancreatic cancer. Cancer Res; 77(3); 672-83. ©2016 AACR.

  3. Low-intensity pulsed ultrasound (LIPUS) inhibits LPS-induced inflammatory responses of osteoblasts through TLR4-MyD88 dissociation.

    PubMed

    Nakao, Juna; Fujii, Yasuyuki; Kusuyama, Joji; Bandow, Kenjiro; Kakimoto, Kyoko; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2014-01-01

    Previous reports have shown that osteoblasts are mechano-sensitive. Low-intensity pulsed ultrasound (LIPUS) induces osteoblast differentiation and is an established therapy for bone fracture. Here we have examined how LIPUS affects inflammatory responses of osteoblasts to LPS. LPS rapidly induced mRNA expression of several chemokines including CCL2, CXCL1, and CXCL10 in both mouse osteoblast cell line and calvaria-derived osteoblasts. Simultaneous treatment by LIPUS significantly inhibited mRNA induction of CXCL1 and CXCL10 by LPS. LPS-induced phosphorylation of ERKs, p38 kinases, MEK1/2, MKK3/6, IKKs, TBK1, and Akt was decreased in LIPUS-treated osteoblasts. Furthermore, LIPUS inhibited the transcriptional activation of NF-κB responsive element and Interferon-sensitive response element (ISRE) by LPS. In a transient transfection experiment, LIPUS significantly inhibited TLR4-MyD88 complex formation. Thus LIPUS exerts anti-inflammatory effects on LPS-stimulated osteoblasts by inhibiting TLR4 signal transduction.

  4. The frustrated host response to Legionella pneumophila is bypassed by MyD88-dependent translation of pro-inflammatory cytokines.

    PubMed

    Asrat, Seblewongel; Dugan, Aisling S; Isberg, Ralph R

    2014-07-01

    Many pathogens, particularly those that require their host for survival, have devised mechanisms to subvert the host immune response in order to survive and replicate intracellularly. Legionella pneumophila, the causative agent of Legionnaires' disease, promotes intracellular growth by translocating proteins into its host cytosol through its type IV protein secretion machinery. At least 5 of the bacterial translocated effectors interfere with the function of host cell elongation factors, blocking translation and causing the induction of a unique host cell transcriptional profile. In addition, L. pneumophila also interferes with translation initiation, by preventing cap-dependent translation in host cells. We demonstrate here that protein translation inhibition by L. pneumophila leads to a frustrated host MAP kinase response, where genes involved in the pathway are transcribed but fail to be translated due to the bacterium-induced protein synthesis inhibition. Surprisingly, few pro-inflammatory cytokines, such as IL-1α and IL-1β, bypass this inhibition and get synthesized in the presence of Legionella effectors. We show that the selective synthesis of these genes requires MyD88 signaling and takes place in both infected cells that harbor bacteria and neighboring bystander cells. Our findings offer a perspective of how host cells are able to cope with pathogen-encoded activities that disrupt normal cellular process and initiate a successful inflammatory response.

  5. Porcine circovirus type 2 induces type I interferon production via MyD88-IKKα-IRFs signaling rather than NF-κB in porcine alveolar macrophages in vitro.

    PubMed

    Chen, Mengmeng; Han, Junyuan; Zhang, Yaqun; Duan, Dianning; Zhang, Shuxia

    2016-02-01

    Type I interferon (IFN-I) plays important roles in host antiviral responses. The interferon regulatory factor (IRF) and NF-κB transcription factors are thought to be important in the processes of viral secretion and triggering of interferon production. Recently, studies have shown that porcine circovirus type 2 (PCV2) can induce IFN-I production in vivo and in vitro, but the mechanisms underlying the production of PAMs infected with PCV2 remains unknown. Treatment of these cells with BAY11-7082, an inhibitor of NF-κB activation, allowed us to study the secretion of IFN-α and IFN-β in PAMs infected with PCV2. We found that IFN-α expression was induced following virus infection of PAMs. Notably, even after inhibitor treatment of PAMs infected with PCV2, secretion of IFN-α was significantly higher (P<0.05) compared with the PCV2 infection alone group. Our findings suggest that NF-κB plays a minor role in PCV2-induced type I interferon responses. To further characterize the signaling pathway that drives IFN-I expression in PAMs in response to PCV2, we used siRNA to silence the expression of Myeloid differentiation factor 88 (MyD88) and study the role of MyD88-IKKα-IRF signaling in IFN-I production in PAMs induced by PCV2. Our findings show that PCV2 induced IFN-α mRNA transcription, which is associated with the activities of MyD88, IRF7, and IRF3. Thus, PCV2 can induce IFN-I transcription via the MyD88-IKKα-IRF signaling axis.

  6. Chlamydia trachomatis induces expression of IFN-gamma-inducible protein 10 and IFN-beta independent of TLR2 and TLR4, but largely dependent on MyD88.

    PubMed

    Nagarajan, Uma M; Ojcius, David M; Stahl, Lynn; Rank, Roger G; Darville, Toni

    2005-07-01

    IFN-gamma-inducible protein 10 (IP-10) is a chemokine important in the attraction of T cells, which are essential for resolution of chlamydial genital tract infection. During infections with Gram-negative bacteria, the IP-10 response mediated through type I IFNs usually occurs as a result of TLR4 stimulation by bacterial LPS. However, we found that levels of IP-10 in genital tract secretions of Chlamydia trachomatis-infected female wild-type mice were similar to those of infected TLR2- and TLR4-deficient mice but significantly greater than those of infected MyD88-deficient mice. We investigated the mechanism of IP-10 and IFN-beta induction during chlamydial infection using mouse macrophages and fibroblasts infected ex vivo. The induction of IP-10 and IFN-beta was unchanged in Chlamydia-infected TLR2- and TLR4-deficient cells compared with wild-type cells. However, infection of MyD88-deficient cells resulted in significantly decreased responses. These results suggest a role for MyD88-dependent pathways in induction of IP-10 and IFN-beta during chlamydial infection. Furthermore, treatment of infected macrophages with an endosomal maturation inhibitor significantly reduced chlamydial-induced IFN-beta. Because endosomal maturation is required for MyD88-dependent intracellular pathogen recognition receptors to function, our data suggest a role for the intracellular pathogen recognition receptor(s) in induction of IFN-beta and IP-10 during chlamydial infection. Furthermore, the intracellular pathways that lead to chlamydial-induced IFN-beta function through TANK-binding kinase mediated phosphorylation and nuclear translocation of IFN regulatory factor-3.

  7. TLR4-MyD88-TRAF6-TAK1 Complex-Mediated NF-κB Activation Contribute to the Anti-Inflammatory Effect of V8 in LPS-Induced Human Cervical Cancer SiHa Cells.

    PubMed

    He, Aiqin; Ji, Rui; Shao, Jia; He, Chenyun; Jin, Ming; Xu, Yunzhao

    2016-02-01

    The synthetic compound 7-4-[Bis-(2-hydroxyethyl)-amino]-butoxy-5-hydroxy-8-methoxy-2-phenylchromen-4-one (V8) is a novel flavonoid-derived compound. In this study, we investigated the effects of V8 on Toll-like receptor 4 (TLR4)-mediated inflammatory reaction in human cervical cancer SiHa cells and lipopolysaccharide (LPS)-induced TLR4 activity in cervical cancer SiHa (HPV16+) cells, but not in HeLa (HPV18+) and C33A (HPV-) cells. In addition, V8 inhibited LPS-induced expression of TLR4, MyD88, TRAF6 and phosphorylation of TAK1, and their interaction with TLR4 in SiHa cells, resulting in an inhibition of TLR4-MyD88-TRAF6-TAK1 complex. Moreover, V8 blocked LPS-induced phosphorylation of IκB and IKK, resulting in inhibition of the nuclear translocation of P65-NF-κB in SiHa cells. We also found that V8 reduced the expression of NF-κB target genes, such as those for COX-2, iNOS, IL-6, IL-8, CCL-2, and TNF-α in LPS-stimulated SiHa cells. These results suggested that V8 exerted an anti-inflammatory effect on SiHa cells by inhibiting the TLR4-MyD88-TRAF6-TAK1 complex-mediated NF-κB activation.

  8. MyD88/CD40 Genetic Adjuvant Function in Cutaneous Atypical Antigen-Presenting Cells Contributes to DNA Vaccine Immunogenicity

    PubMed Central

    Slawin, Kevin M.; Levitt, Jonathan M.; Spencer, David M.

    2016-01-01

    Therapeutic DNA-based vaccines aim to prime an adaptive host immune response against tumor-associated antigens, eliminating cancer cells primarily through CD8+ cytotoxic T cell-mediated destruction. To be optimally effective, immunological adjuvants are required for the activation of tumor-specific CD8+ T cells responses by DNA vaccination. Here, we describe enhanced anti-tumor efficacy of an in vivo electroporation-delivered DNA vaccine by inclusion of a genetically encoded chimeric MyD88/CD40 (MC) adjuvant, which integrates both innate and adaptive immune signaling pathways. When incorporated into a DNA vaccine, signaling by the MC adjuvant increased antigen-specific CD8+ T cells and promoted elimination of pre-established tumors. Interestingly, MC-enhanced vaccine efficacy did not require direct-expression of either antigen or adjuvant by local antigen-presenting cells, but rather our data supports a key role for MC function in “atypical” antigen-presenting cells of skin. In particular, MC adjuvant-modified keratinocytes increased inflammatory cytokine secretion, upregulated surface MHC class I, and were able to increase in vitro and in vivo priming of antigen-specific CD8+ T cells. Furthermore, in the absence of critical CD8α+/CD103+ cross-priming dendritic cells, MC was still able to promote immune priming in vivo, albeit at a reduced level. Altogether, our data support a mechanism by which MC signaling activates an inflammatory phenotype in atypical antigen-presenting cells within the cutaneous vaccination site, leading to an enhanced CD8+ T cell response against DNA vaccine-encoded antigens, through both CD8α+/CD103+ dendritic cell-dependent and independent pathways. PMID:27741278

  9. CARMA1- and MyD88-dependent activation of Jun/ATF-type AP-1 complexes is a hallmark of ABC diffuse large B-cell lymphomas.

    PubMed

    Juilland, Mélanie; Gonzalez, Montserrat; Erdmann, Tabea; Banz, Yara; Jevnikar, Zala; Hailfinger, Stephan; Tzankov, Alexandar; Grau, Michael; Lenz, Georg; Novak, Urban; Thome, Margot

    2016-04-07

    A hallmark of the diffuse large B-cell lymphoma (DLBCL) of the activated B-cell (ABC) type, a molecular subtype characterized by adverse outcome, is constitutive activation of the transcription factor nuclear factor-κB (NF-κB), which controls expression of genes promoting cellular survival and proliferation. Much less, however, is known about the role of the transcription factor activator protein-1 (AP-1) in ABC DLBCL. Here, we show that AP-1, like NF-κB, was controlled by constitutive activation of the B-cell receptor signaling component caspase recruitment domain-containing membrane-associated guanylate kinase 1 (CARMA1) and/or the Toll-like receptor signaling component myeloid differentiation primary response gene 88 (MyD88) in ABC DLBCL cell lines. In contrast to germinal center (GC) B-cell (GCB) DLBCL, ABC DLBCL cell lines expressed high levels of the AP-1 family members c-Jun, JunB, and JunD, which formed heterodimeric complexes with the AP-1 family members activating transcription factor (ATF) 2, ATF3, and ATF7. Inhibition of these complexes by a dominant-negative approach led to impaired growth of a majority of ABC DLBCL cell lines. Individual silencing of c-Jun, ATF2, or ATF3 decreased cellular survival and revealed c-Jun/ATF2-dependent control of ATF3 expression. As a consequence, ATF3 expression was much higher in ABC vs GCB DLBCL cell lines. Samples derived from DLBCL patients showed a clear trend toward high and nuclear ATF3 expression in nodal DLBCL of the non-GC or ABC subtype. These findings identify the activation of AP-1 complexes of the Jun/ATF-type as an important element controlling the growth of ABC DLBCL.

  10. CARMA1- and MyD88-dependent activation of Jun/ATF-type AP-1 complexes is a hallmark of ABC diffuse large B-cell lymphomas

    PubMed Central

    Juilland, Mélanie; Gonzalez, Montserrat; Erdmann, Tabea; Banz, Yara; Jevnikar, Zala; Hailfinger, Stephan; Tzankov, Alexandar; Grau, Michael; Lenz, Georg; Novak, Urban

    2016-01-01

    A hallmark of the diffuse large B-cell lymphoma (DLBCL) of the activated B-cell (ABC) type, a molecular subtype characterized by adverse outcome, is constitutive activation of the transcription factor nuclear factor–κB (NF-κB), which controls expression of genes promoting cellular survival and proliferation. Much less, however, is known about the role of the transcription factor activator protein-1 (AP-1) in ABC DLBCL. Here, we show that AP-1, like NF-κB, was controlled by constitutive activation of the B-cell receptor signaling component caspase recruitment domain-containing membrane-associated guanylate kinase 1 (CARMA1) and/or the Toll-like receptor signaling component myeloid differentiation primary response gene 88 (MyD88) in ABC DLBCL cell lines. In contrast to germinal center (GC) B-cell (GCB) DLBCL, ABC DLBCL cell lines expressed high levels of the AP-1 family members c-Jun, JunB, and JunD, which formed heterodimeric complexes with the AP-1 family members activating transcription factor (ATF) 2, ATF3, and ATF7. Inhibition of these complexes by a dominant-negative approach led to impaired growth of a majority of ABC DLBCL cell lines. Individual silencing of c-Jun, ATF2, or ATF3 decreased cellular survival and revealed c-Jun/ATF2-dependent control of ATF3 expression. As a consequence, ATF3 expression was much higher in ABC vs GCB DLBCL cell lines. Samples derived from DLBCL patients showed a clear trend toward high and nuclear ATF3 expression in nodal DLBCL of the non-GC or ABC subtype. These findings identify the activation of AP-1 complexes of the Jun/ATF-type as an important element controlling the growth of ABC DLBCL. PMID:26747248

  11. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway

    PubMed Central

    Kim, Su Jung; Hong, Seung Bok; Park, Jin-Kyu

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investigated whether NO production in LPS-activated BV2 cells was inhibited by bee venom, and further iNOS mRNA and protein expressions were determined. The mRNA and protein levels of proinflammatory cytokines were examined using semiquantitative RT-PCR and immunoblotting, respectively. Moreover, modulation of the transcription factor NF-κB by bee venom was also investigated using a luciferase assay. LPS-induced NO production in BV2 microglial cells was significantly inhibited in a concentration-dependent manner upon pretreatment with bee venom. Bee venom markedly reduced the mRNA expression of COX-2, TNF-α, IL-1β, and IL-6 and suppressed LPS-induced activation of MyD88 and IRAK1 and phosphorylation of TAK1. Moreover, NF-κB translocation by IKKα/β phosphorylation and subsequent IκB-α degradation were also attenuated. Thus, collectively, these results indicate that bee venom exerts its anti-inflammatory activity via the IRAK1/TAK1/NF-κB signaling pathway. PMID:27563334

  12. L265P Mutation of the MYD88 Gene Is Frequent in Waldenström’s Macroglobulinemia and Its Absence in Myeloma

    PubMed Central

    Mori, Naoki; Ohwashi, Mari; Yoshinaga, Kentaro; Mitsuhashi, Kenjiro; Tanaka, Norina; Teramura, Masanao; Okada, Michiko; Shiseki, Masayuki; Tanaka, Junji; Motoji, Toshiko

    2013-01-01

    L265P mutation in the MYD88 gene has recently been reported in Waldenström’s macroglobulinemia; however the incidence has been different according to the methods used. To determine the relevance and compare the incidence by different methods, we analyzed the L265P mutation in bone marrow mononuclear cells from lymphoid neoplasms. We first performed cloning and sequencing in 10 patients: 8 Waldenström’s macroglobulinemia; 1 non-IgM-secreting lymphoplasmacytic lymphoma; and 1 low grade B-cell lymphoma with monoclonal IgG protein. The L265P mutation was detected in only 1/8 Waldenström’s macroglobulinemia patients (2 of 9 clones). To confirm these results, direct sequencing was performed in the 10 patients and an additional 17 Waldenström’s macroglobulinemia patients and 1 lymphoplasmacytic lymphoma patient. Nine of 28 patients (7/25 Waldenström’s macroglobulinemia, 1/2 lymphoplasmacytic lymphoma, and B-cell lymphoma) harbored the mutation. We next tested for the mutation with BSiE1 digestion and allele-specific polymerase chain reaction in the 28 patients and 38 patients with myeloma. Aberrant bands corresponding to the mutation were detected by BSiE1 digestion in 19/25 patients with Waldenström’s macroglobulinemia (76%), 1/2 lymphoplasmacytic lymphoma and B-cell lymphoma, but not in the 38 myeloma patients. The L265P mutation was more frequent in patients with Waldenström’s macroglobulinemia than in those with myeloma (p=1.3x10-10). The mutation was detected by allele-specific polymerase chain reaction in 18/25 Waldenström’s macroglobulinemia patients (72%). In the 25 Waldenström’s macroglobulinemia patients, the L265P was more frequently detected by BSiE1 digestion than by direct sequencing (p=5.3x10-4), and in males (15/16, 94%) than in females (4/9, 44%) (p=1.2x10-2). No siginificant difference was observed in the incidence of the L265P mutation between BSiE1 digestion and allele-specific polymerase chain reaction (p=0.32). These

  13. Comprehensive Genomic Profiling of Orbital and Ocular Adnexal Lymphomas Identifies Frequent Alterations in MYD88 and Chromatin Modifiers: New Routes to Targeted Therapies

    PubMed Central

    Cani, Andi K.; Soliman, Moaaz; Hovelson, Daniel H.; Liu, Chia-Jen; McDaniel, Andrew S.; Haller, Michaela J.; Bratley, Jarred; Rahrig, Samantha; Li, Qiang; Briceño, César A.; Tomlins, Scott A.; Rao, Rajesh C.

    2016-01-01

    Non-Hodgkin lymphoma of the orbit and ocular adnexa is the most common primary orbital malignancy. Treatments for low- (extra-nodal marginal zone and follicular lymphomas) and high-grade (diffuse large B-cell lymphoma) are associated with local and vision-threatening toxicities. High-grade lymphomas relapse frequently and exhibit poor survival rates. Despite advances in genomic profiling and precision-medicine, orbital and ocular adnexal lymphomas remain poorly characterized molecularly. We performed targeted next-generation sequencing profiling of 38 formalin-fixed, paraffin-embedded, orbital and ocular adnexal lymphomas obtained from a single-center using a panel targeting near-term, clinically-relevant genes. Potentially actionable mutations and copy-number alterations were prioritized based on gain- and loss-of function analyses, catalogued approved and investigational therapies. Of 36 informative samples, including marginal zone lymphomas (n=20), follicular lymphomas (n=9), and diffuse large B-cell lymphomas (n=7), 53% harbored a prioritized alteration (median=1, range 0–5/sample). MYD88 was the most frequently altered gene in our cohort, with potentially clinically-relevant hot-spot gain-of-function mutations identified in 71% of diffuse large B-cell and 25% of marginal zone lymphomas. Prioritized alterations in epigenetic modulators were common and included gain-of-function EZH2 and loss-of-function ARID1A mutations (14% of diffuse large B-cell lymphomas and 22% of follicular lymphomas contained alterations in each of these two genes). Single prioritized alterations were also identified in the histone methyltransferases KMT2B (follicular lymphoma) and KMT3B (diffuse large B-cell lymphoma). Loss-of-function mutations and copy-number alterations in the tumor suppressors TP53 (diffuse large B-cell and follicular lymphoma), CDKN2A (all subtypes), PTEN (diffuse large B-cell lymphoma), ATM (diffuse large B-cell lymphoma) and NF1 (diffuse large B-cell lymphoma

  14. A role for the adaptor proteins TRAM and TRIF in toll-like receptor 2 signaling.

    PubMed

    Nilsen, Nadra J; Vladimer, Gregory I; Stenvik, Jørgen; Orning, M Pontus A; Zeid-Kilani, Maria V; Bugge, Marit; Bergstroem, Bjarte; Conlon, Joseph; Husebye, Harald; Hise, Amy G; Fitzgerald, Katherine A; Espevik, Terje; Lien, Egil

    2015-02-06

    Toll-like receptors (TLRs) are involved in sensing invading microbes by host innate immunity. TLR2 recognizes bacterial lipoproteins/lipopeptides, and lipopolysaccharide activates TLR4. TLR2 and TLR4 signal via the Toll/interleukin-1 receptor adaptors MyD88 and MAL, leading to NF-κB activation. TLR4 also utilizes the adaptors TRAM and TRIF, resulting in activation of interferon regulatory factor (IRF) 3. Here, we report a new role for TRAM and TRIF in TLR2 regulation and signaling. Interestingly, we observed that TLR2-mediated induction of the chemokine Ccl5 was impaired in TRAM or TRIF deficient macrophages. Inhibition of endocytosis reduced Ccl5 release, and the data also suggested that TRAM and TLR2 co-localize in early endosomes, supporting the hypothesis that signaling may occur from an intracellular compartment. Ccl5 release following lipoprotein challenge additionally involved the kinase Tbk-1 and Irf3, as well as MyD88 and Irf1. Induction of Interferon-β and Ccl4 by lipoproteins was also partially impaired in cells lacking TRIF cells. Our results show a novel function of TRAM and TRIF in TLR2-mediated signal transduction, and the findings broaden our understanding of how Toll/interleukin-1 receptor adaptor proteins may participate in signaling downstream from TLR2.

  15. Early alpha/beta interferon production by myeloid dendritic cells in response to UV-inactivated virus requires viral entry and interferon regulatory factor 3 but not MyD88.

    PubMed

    Hidmark, Asa S; McInerney, Gerald M; Nordström, Eva K L; Douagi, Iyadh; Werner, Kristen M; Liljeström, Peter; Karlsson Hedestam, Gunilla B

    2005-08-01

    Alpha/beta interferons (IFN-alpha/beta) are key mediators of innate immunity and important modulators of adaptive immunity. The mechanisms by which IFN-alpha/beta are induced are becoming increasingly well understood. Recent studies showed that Toll-like receptors 7 and 8 expressed by plasmacytoid dendritic cells (pDCs) mediate the endosomal recognition of incoming viral RNA genomes, a process which requires myeloid differentiation factor 88 (MyD88). Here we investigate the requirements for virus-induced IFN-alpha/beta production in cultures of bone marrow-derived murine myeloid DCs (mDCs). Using recombinant Semliki Forest virus blocked at different steps in the viral life cycle, we show that replication-defective virus induced IFN-alpha/beta in mDCs while fusion-defective virus did not induce IFN-alpha/beta. The response to replication-defective virus was largely intact in MyD88-/- mDC cultures but was severely reduced in mDC cultures from mice lacking IFN regulatory factor 3. Our observations suggest that mDCs respond to incoming virus via a pathway that differs from the fusion-independent, MyD88-mediated endosomal pathway described for the induction of IFN-alpha/beta in pDCs. We propose that events during or downstream of viral fusion, but prior to replication, can activate IFN-alpha/beta in mDCs. Thus, mDCs may contribute to the antiviral response activated by the immune system at early time points after infection.

  16. Resveratrol inhibits the IL-1β-induced expression of MMP-13 and IL-6 in human articular chondrocytes via TLR4/MyD88-dependent and -independent signaling cascades.

    PubMed

    Gu, Hailun; Jiao, Yongliang; Yu, Xiaolu; Li, Xingyao; Wang, Wei; Ding, Lifeng; Liu, Li

    2017-03-01

    The natural polyphenolic compound, resveratrol, has been shown to exhibit anti-osteoarthritic activity. Therefore it is hypothesized that resveratrol may serve as a nutritional supplement to counteract osteoarthritis (OA). However, the mechanisms responsible for these anti-osteoarthritic effects have not yet been fully elucidated. The aim of this study was to determine whether the biological effects of resveratrol against interleukin (IL)-1β‑induced inflammation in human articular chondrocytes involved both Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-dependent and -independent signaling pathways. Human articular chondrocytes derived from patients with OA were stimulated with IL-1β, and then co-treated with resveratrol. Cell viability was subsequently evaluated by MTS assays, and the concentrations of matrix metalloproteinase (MMP)-13 and the pro-inflammatory factor, IL-6, were detected in culture supernatants using ELISA. The mRNA and protein levels of downstream mediators of TLR4/MyD88-dependent and -independent signaling pathways were also assayed by RT-qPCR and western blot analysis, respectively. Our results revealed that resveratrol prevented the IL-1β-induced reduction in cell viability. Furthermore, stimulation of the chondrocytes with IL-1β resulted in a significant upregulation of TLR4 and downstream targets of both TLR4/MyD88-dependent and -independent signaling pathways that are associated with the synthesis of MMP-13 and IL-6. Correspondingly, IL-1β-induced catabolic and inflammatory responses were effectively reversed by resveratrol. Taken together, these data suggest that resveratrol exerted protective effects against matrix degradation and inflammation in OA-affected chondrocytes by inhibiting both TLR4/MyD88-dependent and -independent signaling pathways. Thus, resveratrol represents a potential treatment for OA and warrants further investigation.

  17. Rifaximin Improves Clostridium difficile Toxin A-Induced Toxicity in Caco-2 Cells by the PXR-Dependent TLR4/MyD88/NF-κB Pathway

    PubMed Central

    Esposito, Giuseppe; Nobile, Nicola; Gigli, Stefano; Seguella, Luisa; Pesce, Marcella; d’Alessandro, Alessandra; Bruzzese, Eugenia; Capoccia, Elena; Steardo, Luca; Cuomo, Rosario; Sarnelli, Giovanni

    2016-01-01

    Background: Clostridium difficile infections (CDIs) caused by Clostridium difficile toxin A (TcdA) lead to severe ulceration, inflammation and bleeding of the colon, and are difficult to treat. Aim: The study aimed to evaluate the effect of rifaximin on TcdA-induced apoptosis in intestinal epithelial cells and investigate the role of PXR in its mechanism of action. Methods: Caco-2 cells were incubated with TcdA and treated with rifaximin (0.1-10 μM) with or without ketoconazole (10 μM). The transepithelial electrical resistance (TEER) and viability of the treated cells was determined. Also, the expression of zona occludens-1 (ZO-1), toll-like receptor 4 (TLR4), Bcl-2-associated X protein (Bax), transforming growth factor-β-activated kinase-1 (TAK1), myeloid differentiation factor 88 (MyD88), and nuclear factor-kappaB (NF-κB) was determined. Results: Rifaximin treatment (0.1, 1.0, and 10 μM) caused a significant and concentration-dependent increase in the TEER of Caco-2 cells (360, 480, and 680% vs. TcdA treatment) 24 h after the treatment and improved their viability (61, 79, and 105%). Treatment also concentration-dependently decreased the expression of Bax protein (-29, -65, and -77%) and increased the expression of ZO-1 (25, 54, and 87%) and occludin (71, 114, and 262%) versus TcdA treatment. The expression of TLR4 (-33, -50, and -75%), MyD88 (-29, -60, and -81%) and TAK1 (-37, -63, and -79%) were also reduced with rifaximin versus TcdA treatment. Ketoconazole treatment inhibited these effects. Conclusion: Rifaximin improved TcdA-induced toxicity in Caco-2 cells by the PXR-dependent TLR4/MyD88/NF-κB pathway mechanism, and may be useful in the treatment of CDIs. PMID:27242527

  18. miR-181 interacts with signaling adaptor molecule DENN/MADD and enhances TNF-induced cell death

    PubMed Central

    Ghorbani, Samira; Talebi, Farideh; Ghasemi, Sedigheh; Jahanbazi Jahan Abad, Ali; Vojgani, Mohammed; Noorbakhsh, Farshid

    2017-01-01

    MicroRNAs are small noncoding RNAs, which regulate the expression of protein coding transcripts through mRNA degradation or translational inhibition. Numerous reports have highlighted the role of miRNAs in regulating cell death pathways including the expression of genes involved in the induction of apoptosis. Tumor necrosis factor alpha (TNF-α) is a proinflammatory cytokine which can send pro-death signals through its receptor TNFR1. Diverse adaptor molecules including DENN/MADD adaptor protein have been shown to modulate TNF-α pro-death signaling via recruitment of MAP kinases to TNFR1 and activation of pro-survival NFκB signaling. Herein, we investigated the role of microRNA-181 (miR-181) in regulating DENN/MADD expression levels and its subsequent effects on TNF-α-induced cell death. Using bioinformatics analyses followed by luciferase reporter assays we showed that miR-181 interacts with the 3’ UTR of DENN/MADD transcripts. miR-181 overexpression also led to decreased endogenous DENN/MADD mRNA levels in L929 murine fibroblasts. Flow cytometric analysis of miR-181 transfected cells showed this miRNA accentuates mitochondrial membrane potential loss caused by TNF-α. These findings were associated with enhanced apoptosis of L929 cells following TNF-α treatment. Overall, these data point to the potential role of miR-181 in regulating TNF-α pro-death signaling, which could be of importance from pathogenesis and therapeutic perspectives in inflammatory disorders associated with tissue degeneration and cell death. PMID:28323882

  19. Burkholderia pseudomallei-induced expression of a negative regulator, sterile-alpha and Armadillo motif-containing protein, in mouse macrophages: a possible mechanism for suppression of the MyD88-independent pathway.

    PubMed

    Pudla, M; Limposuwan, K; Utaisincharoen, P

    2011-07-01

    Burkholderia pseudomallei, a causative agent of melioidosis, is a Gram-negative facultative intracellular bacterium that can survive and multiply in macrophages. Previously, we demonstrated that B. pseudomallei failed to activate gene expression downstream of the MyD88-independent pathway, particularly the expression of beta interferon (IFN-β) and inducible nitric oxide synthase (iNOS), leading to the inability of macrophages to kill this bacterium. In the present report, we extended our study to show that B. pseudomallei was able to activate sterile-α and Armadillo motif (SARM)-containing protein, a known negative regulator of the MyD88-independent pathway. Both live B. pseudomallei and heat-killed B. pseudomallei were able to upregulate SARM expression in a time-dependent manner in mouse macrophage cell line RAW 264.7. The expression of SARM required bacterial internalization, as it could be inhibited by cytochalasin D. In addition, the intracellular survival of B. pseudomallei was suppressed in SARM-deficient macrophages. Increased expression of IFN-β and iNOS and degradation of IκBα correlated with enhanced macrophage killing capability. These results demonstrated that B. pseudomallei modulated macrophage defense mechanisms by upregulating SARM, thus leading to the suppression of IFN-β and iNOS needed for bacterial elimination.

  20. TLR4/MyD88-Induced CD11b+Gr-1intF4/80+ Non-Migratory Myeloid Cells Suppress Th2 Effector Function in the Lung

    PubMed Central

    Arora, Meenakshi; Poe, Stephanie L.; Oriss, Timothy B.; Krishnamoorthy, Nandini; Yarlagadda, Manohar; Wenzel, Sally E.; Billiar, Timothy R.; Ray, Anuradha; Ray, Prabir

    2010-01-01

    In humans, environmental exposure to a high dose of lipopolysaccharide (LPS) protects from allergic asthma the immunological underpinnings of which are not well understood. In mice, exposure to a high LPS dose blunted house dust mite-induced airway eosinophilia and Th2 cytokine production. While adoptively transferred Th2 cells induced allergic airway inflammation in control mice, they were unable to do so in LPS-exposed mice. LPS promoted the development of a CD11b+Gr1intF4/80+ lung-resident cell resembling myeloid-derived suppressor cells in a TLR4- and MyD88-dependent fashion that suppressed lung dendritic cell (DC)-mediated reactivation of primed Th2 cells. LPS effects switched from suppressive to stimulatory in MyD88-/- mice. Suppression of Th2 effector function was reversed by anti-IL-10 or inhibition of Arginase 1. Lineageneg bone marrow progenitor cells could be induced by LPS to develop into CD11b+Gr1intF4/80+ cells both in vivo and in vitro which when adoptively transferred suppressed allergen-induced airway inflammation in recipient mice. These data suggest that CD11b+Gr1intF4/80+ cells contribute to the protective effects of LPS in allergic asthma by tempering Th2 effector function in the tissue. PMID:20664577

  1. Depurinized milk downregulates rat thymus MyD88/Akt/p38 function, NF-κB-mediated inflammation, caspase-1 activity but not the endonuclease pathway: in vitro/in vivo study

    PubMed Central

    Kocic, Gordana; Veljkovic, Andrej; Kocic, Hristina; Colic, Miodrag; Mihajlovic, Dusan; Tomovic, Katarina; Stojanovic, Svetlana; Smelcerovic, Andrija

    2017-01-01

    The aim of this study was the evaluation of 15 days dietary regimen of depurinized (DP) milk (obtained using our patented technological procedures) or 1.5% fat UHT milk instead of standard chow diet, on rat thymus and bone marrow MyD88/Akt/p38, NF-κB, caspase-1 and endonuclease pathways, in relation to peripheral blood cell composition. To determine whether the reduced mass of the thymus is a consequence of the direct effect of DP/UHT milk on apoptosis of thymocytes, in vitro Annexin-V-FITC/PI assay was performed. Significant decreases in the thymus wet weight, thymocyte MyD88, Akt-1/phospho-Akt-1 kinase, p38/phospho-p38, NF-κB, caspase-1 activity and CD4+/CD8+ antigen expression were obtained, especially in the DP milk group. The activity of thymocyte alkaline and acid DNase increased in the DP but not in the UHT milk group. The level of IL-6 significantly decreased in DP milk treated group, while the level of total TGF-β and IL-6 increased in UHT milk group. Significant differences in hematological parameters were obtained in commercial milk fed group. Observed results about prevention of experimental diabetes in DP pretreated groups may suggest that purine compounds, uric acid and other volatile toxic compounds of commercial milk may suppress oral tolerance, probably via IL-6 and TGF-β cytokine effects. PMID:28176796

  2. Suppression of OVA-alum induced allergy by Heligmosomoides polygyrus products is MyD88-, TRIF-, regulatory T- and B cell-independent, but is associated with reduced innate lymphoid cell activation.

    PubMed

    McSorley, Henry J; Blair, Natalie F; Robertson, Elaine; Maizels, Rick M

    2015-11-01

    The murine intestinal nematode Heligmosomoides polygyrus exerts multiple immunomodulatory effects in the host, including the suppression of allergic inflammation in mice sensitized to allergen presented with alum adjuvant. Similar suppression is attained by co-administration of H. polygyrus excretory/secretory products (HES) with the sensitizing dose of ovalbumin (OVA) in alum. We investigated the mechanism of suppression by HES in this model, and found it was maintained in MyD88xTRIF-deficient mice, implying no role for helminth- or host-derived TLR ligands, or IL-1 family cytokines that signal in a MyD88- or TRIF-dependent manner. We also found suppression was unchanged in µMT mice, which lack B2 B cells, and that suppression was not abrogated when regulatory T cells were depleted in Foxp3.LuciDTR-4 mice. However, reduced IL-5 production was seen in the first 12 h after injection of OVA-alum when HES was co-administered, associated with reduced activation of IL-5(+) and IL-13(+) group 2 innate lymphoid cells. Thus, the suppressive effects of HES on alum-mediated OVA sensitization are reflected in the very earliest innate response to allergen exposure in vivo.

  3. Porcine circovirus type 2 increases IL-1β and IL-10 production via the MyD88-NF-κB signaling pathway in porcine alveolar macrophages in vitro.

    PubMed

    Han, Junyuan; Zhang, Shuxia; Zhang, Yaqun; Chen, Mengmeng; Lv, Yingjun

    2016-07-25

    Porcine alveolar macrophages represent the first line of defense in the porcine lung after infection with porcine circovirus type 2 (PCV2) via the respiratory tract. However, PCV2 infection impairs the microbicidal capability of PAMs and alters cytokine production and/or secretion. Currently, the reason for the imbalance of cytokines has not been fully elucidated and the regulatory mechanisms involved are not clear. Here, we investigated the expression levels and regulation of IL-1β and IL-10 in PAMs following incubation with PCV2 in vitro. Both levels of IL-1β and IL-10 increased in PAM supernatants, and the distribution of NF-κB p65 staining in the nucleus, the expression of MyD88 and p-IκB in the cytoplasm and the DNA-binding activity of NF-κB increased after incubation with PCV2, while the expression of p65 in the cytoplasm of PAMs decreased. However, when PAMs were co-incubated with PCV2 and small interfering RNA targeting MyD88, these effects were reversed. Additionally, mRNA expression levels of Toll-like receptor (TLR)-2, -3, -4, -7, -8 and -9 were increased when PAMs were incubated with PCV2. These findings showed that PCV2 induced increased IL-1β and IL-10 production in PAMs, and these changes in expression were relative to the TLR-MyD88-NF-κB signaling pathway.

  4. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation

    SciTech Connect

    Zawawi, M.S.F.; Dharmapatni, A.A.S.S.K.; Cantley, M.D.; McHugh, K.P.; Haynes, D.R.; Crotti, T.N.

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real

  5. Monoclonal antibody against Toll-like receptor 4 attenuates ventilator-induced lung injury in rats by inhibiting MyD88- and NF-κB-dependent signaling.

    PubMed

    Huang, Cuiyuan; Pan, Linghui; Lin, Fei; Dai, Huijun; Fu, Ruili

    2017-03-01

    The mechanisms through which mechanical ventilation causes non-infectious inflammatory diseases and lung injury are poorly understood. Animals models of this type of injury suggest that it involves signaling mediated by Toll‑like receptor (TLR)4 and 9. In this study, in order to gain further insight into the involvement of TLR4 in this type of injury, we performed in vivo and in vitro experiments to determine the mechanisms through which TLR4 triggers inflammation. We also examined whether the use of TLR4 monoclonal antibody (mAb) can alleviate this type of injury. For this purpose, rats were tracheotomized and administered intratracheal injections of anti‑TLR4 mAb or saline, and then ventilated for 4 h at a high tidal volume (HTV) of 40 ml/ kg or allowed to breathe spontaneously for the same period of time (controls). Alveolar macrophages (AMs) were isolated from the bronchoalveolar lavage fluid (BALF) of the rats and stimulated for 16 h with tumor necrosis factor (TNF)‑α in the presence or absence of anti‑TLR4 mAb. Lung injury was assessed by examining lung histopathology, lung wet/dry weight ratio, BALF total protein and cytokine levels in BALF and plasma. The mRNA and protein expression levels of TLR4, TLR9, myeloid differentiation factor 88 (Myd88) and nuclear factor (NF)‑κB were measured in cultured macrophages. Compared to the controls (spontaneous breathing), the ventilated rats exhibited greater pulmonary permeability, more severe inflammatory cell infiltration/lung edema, and higher levels of interleukin (IL)‑1β, IL‑6 and TNF‑α in BALF and plasma. The AMs from the ventilated rats expressed higher mRNA and protein levels of TLR4, TLR9, Myd88 and NF‑κB compared with the macrophages from the spontaneously breathing rats. The ventilated rats pre‑treated with anti‑TLR4 mAb exhibited markedly attenuated signs of ventilation‑induced injury, such as less lung inflammation and pulmonary edema, fewer cells in BALF, and

  6. Curcumin Represses NLRP3 Inflammasome Activation via TLR4/MyD88/NF-κB and P2X7R Signaling in PMA-Induced Macrophages

    PubMed Central

    Kong, Fanqi; Ye, Bozhi; Cao, Jiatian; Cai, Xueli; Lin, Lu; Huang, Shanjun; Huang, Weijian; Huang, Zhouqing

    2016-01-01

    Aims: In the NOD-like receptor (NLR) family, the pyrin domain containing 3 (NLRP3) inflammasome is closely related to the progression of atherosclerosis. This study aimed to assess the effects of curcumin on NLRP3 inflammasome in phorbol 12-myristate 13-acetate (PMA)-induced macrophages and explore its underlying mechanism. Methods: Human monocytic THP-1 cells were pretreated with curcumin for 1 h and subsequently induced with PMA for 48 h. Total protein was collected for Western blot analysis. Cytokine interleukin (IL)-1β release and nuclear factor kappa B (NF-κB) p65 translocation were detected by ELISA assay and cellular NF-κB translocation kit, respectively. Results: Curcumin significantly reduced the expression of NLRP3 and cleavage of caspase-1 and IL-1β secretion in PMA-induced macrophages. Moreover, Bay (a NF-κB inhibitor) treatment considerably suppressed the expression of NLRP3 inflammasome in PMA-induced THP-1 cells. Curcumin also markedly inhibited the upregulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphorylation level of IκB-α, and activation of NF-κB in PMA-induced macrophages. In addition, purinergic 2X7 receptor (P2X7R) siRNA was administered, and it significantly decreased NLRP3 inflammasome expression in PMA-induced macrophages. Furthermore, curcumin reversed PMA-stimulated P2X7R activation, which further reduced the expression of NLRP3 and cleavage of caspase-1 and IL-1β secretion. Silencing of P2X7R using siRNA also suppressed the activation of NF-κB pathway in PMA-induced macrophages, but P2X7R-silenced cells did not significantly decrease the expression of TLR4 and MyD88. Conclusion: Curcumin inhibited NLRP3 inflammasome through suppressing TLR4/MyD88/NF-κB and P2X7R pathways in PMA-induced macrophages. PMID:27777559

  7. A putative TIR domain protein from Helicobacter pylori is dimeric in solution and interacts with human TLR adaptor Myeloid Differentiation Primary Response 88.

    PubMed

    Türköz, Burcu Kaplan

    2017-03-06

    Helicobacter pylori is an important human pathogen capable of causing persistent infection with minimal immune response. The first line of defense during H. pylori infection is through gastric epithelial cells that present Toll like receptors (TLR), a family of bacterial proteins which share homology with the Toll/IL1 receptor (TIR) domain. Bacterial TIR proteins (BTP) mimic human TIR domain proteins and act on MyD88 signaling pathways to suppress TLR signaling. H. pylori might also produce a similar protein. A putative H. pylori BTP was found based on sequence homology and the corresponding gene hp1437 was inserted into an expression vector in fusion with an N-terminal cleavable 6his-tag. The recombinant protein, 6his-HP1437 was purified using nickel affinity chromatography with a yield of 8 mg/ L culture. Oligomerization of HP1437 was investigated by size-exclusion chromatography. Our results show that HP1437 forms dimers in solution similar to other BTPs. Furthermore, GST pull down assays identify an interaction between HP1437 and human TIR domain adaptor MyD88. This study suggests that HP1437 has the characteristic features of BTPs and may play a direct role in reduced immune response against H. pylori by binding to MyD88 and pave the way for an in-depth characterization of this putative novel H. pylori virulence factor.

  8. LPS Up-Regulates ICAM-1 Expression in Breast Cancer Cells by Stimulating a MyD88-BLT2-ERK-Linked Cascade, Which Promotes Adhesion to Monocytes

    PubMed Central

    Park, Geun-Soo; Kim, Jae-Hong

    2015-01-01

    Monocytes are the major inflammatory cells that infiltrate most solid tumors in humans. The interaction of tumor cells with infiltrating monocytes and their adhesion to these monocytes play a significant role in altering the tumor to become more aggressive. Recently, exposure to lipopolysaccharide (LPS) was suggested to promote cancer cell adhesion to monocytes; however, little is known about the details of the signaling mechanism involved in this process. In this study, we found that LPS up-regulates ICAM-1 expression in MDA-MB-231 breast cancer cells, which facilitates their adhesion to THP-1 monocytes. In addition, we analyzed the signaling mechanism underlying the up-regulation of ICAM-1 and found that the siRNA-mediated depletion of BLT2 markedly suppressed the LPS-induced expression of ICAM-1 in MDA-MB-231 cells and the subsequent adhesion of these cells to THP-1 monocytes. Moreover, we demonstrated that myeloid differentiation primary response gene 88 (MyD88) lies downstream of LPS/TLR4 and upstream of BLT2 and that this ‘MyD88-BLT2’ cascade mediates ERK activation and subsequent ICAM-1 expression, which is critical for the adhesion of MDA-MB-231 cells to THP-1 monocytes. Taken together, our results demonstrate for the first time that LPS up-regulates ICAM-1 expression in breast cancer cells via a MyD88-BLT2-ERK-linked signaling cascade, leading to the increased adhesion of breast cancer cells to monocytes. PMID:26299331

  9. LPS-Stimulated Inflammatory Environment Inhibits BMP-2-Induced Osteoblastic Differentiation Through Crosstalk Between TLR4/MyD88/NF-κB and BMP/Smad Signaling

    PubMed Central

    Huang, Ru-Lin; Yuan, Yuwen; Zou, Gang-Ming; Liu, Guangwang; Tu, Jun

    2014-01-01

    Abstract Bone morphogenetic protein-2 (BMP-2) is a novel differentiation factor that is capable of inducing osteoblast differentiation and bone formation, making it an attractive option in treatment of bone defects, fractures, and spine fusions. Inflammation, which was a common situation during bone healing, is recognized to inhibit osteogenic differentiation and bone formation. However, the effect of inflammation on BMP-2-induced osteoblastic differentiation remains ambiguous. In this study, we showed that an inflammatory environment triggered by lipopolysaccharide (LPS) in vitro would suppress BMP-2-induced osteogenic differentiation of bone marrow mesenchymal stem cells, which represented by decreased alkaline phosphatase (ALPase) activity and down-regulated osteogenic genes. In addition, LPS activated nuclear factor-κB (NF-κB) via a TLR4/MyD88-dependent manner and inhibited BMP-2-induced phosphorylation and nuclear translocation of Smad1/5/8. The blocking of NF-κB signaling by pretreatment with specific inhibitors such as BAY-11-7082, TPCK and PDTC, or by transfection with plasmids encoding p65 siRNA or IκBα siRNA could significantly reverse the inhibitory effect of LPS on BMP-2-induced BMP/Smad signaling and osteogenic differentiation. By contrast, even without stimulation of LPS, overexpression of p65 gene showed obvious inhibitory effects on BMP-2-induced BMP/Smad signaling and ALPase activity. These data indicate that the LPS-mediated inflammatory environment inhibits BMP-2-induced osteogenic differentiation, and that the crosstalk between TLR4/MyD88/NF-κB and BMP/Smad signaling negatively modulates the osteoinductive capacity of BMP-2. PMID:24050190

  10. MiR-23a-5p modulates mycobacterial survival and autophagy during mycobacterium tuberculosis infection through TLR2/MyD88/NF-κB pathway by targeting TLR2.

    PubMed

    Gu, Xing; Gao, Yan; Mu, De-Guang; Fu, En-Qing

    2017-03-19

    Autophagy plays a pivotal role in activating the antimicrobial host defense against Mycobacterium tuberculosis (M.tb.). The emerging roles of microRNAs (miRNAs) in regulating immune responses have attracted increasing attention in recent years. Appreciating the potential of host-directed therapies designed to control autophagy during mycobacterial infection, we focused on the influence of miR-23a-5p on the activation of macrophage autophagy during M.tb. infection in bone marrow-derived macrophages (BMDMs) and murine RAW264.7 cells. Here, we demonstrated that M.tb.-infection of macrophages lead to markedly enhanced expression of miR-23a-5p in a time- and dose-dependent manner. Furthermore, forced expression of miR-23a-5p accelerated the survival rate of intracellular mycobacteria, while transfection with miR-23a-5p inhibitors attenuated mycobacterial survival. More importantly, overexpression of miR-23a-5p dramatically prevented M.tb.-induced activation of autophagy in macrophages, whereas inhibitors of miR-23a-5p remarkably accelerated M.tb.-induced autophagy. Mechanistically, miR-23a-5p is able to modulate TLR2/MyD88/NF-κB signaling activity by targeting TLR2 in RAW264.7 cells in response to M.tb.-infection. Collectively, these findings demonstrated that miR-23a-5p modulated the innate host defense by promoting mycobacteria survival and inhibiting the activation of autophagy against M.tb. through TLR2/MyD88/NF-κB pathway by targeting TLR2, which may provide a promising therapeutic target for tuberculosis.

  11. CXC195 suppresses proliferation and inflammatory response in LPS-induced human hepatocellular carcinoma cells via regulating TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway

    SciTech Connect

    Wang, Yiting; Tu, Qunfei; Yan, Wei; Xiao, Dan; Zeng, Zhimin; Ouyang, Yuming; Huang, Long; Cai, Jing; Zeng, Xiaoli; Chen, Ya-Jie; Liu, Anwen

    2015-01-02

    Highlights: • CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. • CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells. • CXC195 regulated TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway in LPS-induced HepG2 cells. - Abstract: CXC195 showed strong protective effects in neuronal apoptosis by exerting its antioxidant activity. However, the anti-cancer effects of CXC195 is still with limited acquaintance. Here, we investigated the role of CXC195 in lipopolysaccharide (LPS)-induced human hepatocellular carcinoma (HCC) cells lines (HepG2) and the possible signaling pathways. CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. In addition, CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells, including TNF-α, iNOS, IL-1β, IL-6, CC chemokine ligand (CCL)-2, CCL-22 and epidermal growth factor receptor (EGFR). Moreover, CXC195 inhibited the expressions and interactions of TLR4, MyD88 and TAK1, NF-κB translocation to nucleus and its DNA binding activity, phosphorylation of ERK1/2, p38 and JNK. Our results suggested that treatment with CXC195 could attenuate the TLR4-mediated proliferation and inflammatory response in LPS-induced HepG2 cells, thus might be beneficial for the treatment of HCC.

  12. Targeting the genital tract mucosa with a lipopeptide/recombinant adenovirus prime/boost vaccine induces potent and long-lasting CD8+ T cell immunity against herpes: importance of MyD88.

    PubMed

    Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; Benmohamed, Lbachir

    2012-11-01

    Targeting of the mucosal immune system of the genital tract with subunit vaccines has failed to induce potent and durable local CD8(+) T cell immunity, which is crucial for protection against many sexually transmitted viral pathogens, including HSV type 2 (HSV-2), which causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8(+) T cell immunity to protect the female genital tract from herpes. The lipopeptide vaccine and the rAdv5 vaccine express the immunodominant HSV-2 CD8(+) T cell epitope (gB(498-505)), and both were delivered intravaginally in the progesterone-induced B6 mouse model of genital herpes. Compared with mice immunized with the homologous lipopeptide/lipopeptide (Lipo/Lipo) vaccine, the Lipo/rAdv5 prime/boost immunized mice 1) developed potent and sustained HSV-specific CD8(+) T cells, detected in both the genital tract draining nodes and in the vaginal mucosa; 2) had significantly lower virus titers; 3) had decreased overt signs of genital herpes disease; and 4) did not succumb to lethal infection (p < 0.005) after intravaginal HSV-2 challenge. Polyfunctional CD8(+) T cells, producing IFN-γ, TNF-α, and IL-2 and exhibiting cytotoxic activity, were associated with protection (p < 0.005). The protective CD8(+) T cell response was significantly compromised in the absence of the adapter MyD88 (p = 0.0001). Taken together, these findings indicate that targeting of the vaginal mucosa with a Lipo/rAdv5 prime/boost vaccine elicits a potent, MyD88-dependent, and long-lasting mucosal CD8(+) T cell protective immunity against sexually transmitted herpes infection and disease.

  13. Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways.

    PubMed

    Zhang, Ruihua; Ai, Xia; Duan, Yongjie; Xue, Man; He, Wenxiao; Wang, Cunlian; Xu, Tong; Xu, Mingju; Liu, Baojian; Li, Chunhong; Wang, Zhijun; Zhang, Ruihong; Wang, Guohua; Tian, Shufei; Liu, Huifeng

    2017-03-02

    Kaempferol, a very common type of dietary flavonoids, has been found to exert antioxidative and anti-inflammatory properties. The purpose of our investigation was designed to reveal the effect of kaempferol on H9N2 influenza virus-induced inflammation in vivo and in vitro. In vivo, BALB/C mice were infected intranasally with H9N2 influenza virus with or without kaempferol treatment to induce acute lung injury (ALI) model. In vitro, MH-S cells were infected with H9N2 influenza virus with or without kaempferol treatment. In vivo, kaempferol treatment attenuated pulmonary edema, the W/D mass ratio, pulmonary capillary permeability, myeloperoxidase (MPO) activity, and the numbers of inflammatory cells. Kaempferol reduced ROS and Malondialdehyde (MDA) production, and increased the superoxide dismutase (SOD) activity. Kaempferol also reduced overproduction of TNF-α, IL-1β and IL-6. In addition, kaempferol decreased the H9N2 viral titre. In vitro, ROS, MDA, TNF-α, IL-1β and IL-6 was also reduced by kaempferol. Moreover, our data showed that kaempferol significantly inhibited the upregulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphorylation level of IκBα and nuclear factor-κB (NF-κB) p65, NF-κB p65 DNA binding activity, and phosphorylation level of MAPKs, both in vivo and in vitro. These results suggest that kaempferol exhibits a protective effect on H9N2 virus-induced inflammation via suppression of TLR4/MyD88-mediated NF-κB and MAPKs pathways, and kaempferol may be considered as an effective drug for the potential treatment of influenza virus-induced ALI.

  14. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation.

    PubMed

    Zawawi, M S F; Dharmapatni, A A S S K; Cantley, M D; McHugh, K P; Haynes, D R; Crotti, T N

    2012-10-19

    Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcRγ) and DNAX-activating protein 12kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin (β3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that FK506 treatment significantly (p<0.05) reduced the expression of NFATc1, CathK, OSCAR, FcRγ, TREM2 and DAP12 during the terminal stage of osteoclast formation. VIVIT treatment significantly (p<0.05) decreased CathK, OSCAR, FcRγ, and AnnVIII, gene expression. This data suggest FK506 and VIVIT act differently in targeting the

  15. Kaposi's sarcoma-associated herpesvirus microRNAs target IRAK1 and MYD88, two components of the toll-like receptor/interleukin-1R signaling cascade, to reduce inflammatory-cytokine expression.

    PubMed

    Abend, Johanna R; Ramalingam, Dhivya; Kieffer-Kwon, Philippe; Uldrick, Thomas S; Yarchoan, Robert; Ziegelbauer, Joseph M

    2012-11-01

    Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is the causative agent of KS, an important AIDS-associated malignancy. KSHV expresses at least 18 different mature microRNAs (miRNAs). We identified interleukin-1 receptor (IL-1R)-associated kinase 1 (IRAK1) as a potential target of miR-K12-9 (miR-K9) in an array data set examining changes in cellular gene expression levels in the presence of KSHV miRNAs. Using 3'-untranslated region (3'UTR) luciferase reporter assays, we confirmed that miR-K9 and other miRNAs inhibit IRAK1 expression. In addition, IRAK1 expression is downregulated in cells transfected with miR-K9 and during de novo KSHV infection. IRAK1 is an important component of the Toll-like receptor (TLR)/IL-1R signaling cascade. The downregulation of IRAK1 by miR-K9 resulted in the decreased stimulation of NF-κB activity in endothelial cells treated with IL-1α and in B cells treated with a TLR7/8 agonist. Interestingly, miR-K9 had a greater effect on NF-κB activity than did a small interfering RNA (siRNA) targeting IRAK1 despite the more efficient downregulation of IRAK1 expression with the siRNA. We hypothesized that KSHV miRNAs may also be regulating a second component of the TLR/IL-1R signaling cascade, resulting in a stronger phenotype. Reanalysis of the array data set identified myeloid differentiation primary response protein 88 (MYD88) as an additional potential target. 3'UTR luciferase reporter assays and Western blot analysis confirmed the targeting of MYD88 by miR-K5. The presence of miR-K9 and miR-K5 inhibited the production of IL-6 and IL-8 upon the IL-1α stimulation of endothelial cells. These results demonstrate KSHV-encoded miRNAs regulating the TLR/IL-1R signaling cascade at two distinct points and suggest the importance of these pathways during viral infection.

  16. Molecular cloning, characterization and expression analysis of TLR9, MyD88 and TRAF6 genes in common carp (Cyprinus carpio)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Induction of innate immune pathways is critical for early host defense but there is limited understanding of how teleost fish recognize pathogen molecules and activate these pathways. In mammals, cells of the innate immune system detect pathogenic molecular structures using pattern recognition rece...

  17. The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile Virus pathogenesis.

    PubMed

    Szretter, Kristy J; Samuel, Melanie A; Gilfillan, Susan; Fuchs, Anja; Colonna, Marco; Diamond, Michael S

    2009-09-01

    Sterile alpha and HEAT/Armadillo motif (SARM) is a highly conserved Toll/interleukin-1 receptor (TIR)-containing adaptor protein that is believed to negatively regulate signaling of the pathogen recognition receptors Toll-like receptor 3 (TLR3) and TLR4. To test its physiological function in the context of a microbial infection, we generated SARM(-/-) mice and evaluated the impact of this deficiency on the pathogenesis of West Nile virus (WNV), a neurotropic flavivirus that requires TLR signaling to restrict infection. Although SARM was preferentially expressed in cells of the central nervous system (CNS), studies with primary macrophages, neurons, or astrocytes showed no difference in viral growth kinetics. In contrast, viral replication was increased specifically in the brainstem of SARM(-/-) mice, and this was associated with enhanced mortality after inoculation with a virulent WNV strain. A deficiency of SARM was also linked to reduced levels of tumor necrosis factor alpha (TNF-alpha), decreased microglia activation, and increased neuronal death in the brainstem after WNV infection. Thus, SARM appears to be unique among the TIR adaptor molecules, since it functions to restrict viral infection and neuronal injury in a brain region-specific manner, possibly by modulating the activation of resident CNS inflammatory cells.

  18. Toll-like receptor 4 activation promotes cardiac arrhythmias by decreasing the transient outward potassium current (Ito) through an IRF3-dependent and MyD88-independent pathway.

    PubMed

    Monnerat-Cahli, Gustavo; Alonso, Hiart; Gallego, Monica; Alarcón, Micaela Lopez; Bassani, Rosana A; Casis, Oscar; Medei, Emiliano

    2014-11-01

    Cardiac arrhythmias are one of the main causes of death worldwide. Several studies have shown that inflammation plays a key role in different cardiac diseases and Toll-like receptors (TLRs) seem to be involved in cardiac complications. In the present study, we investigated whether the activation of TLR4 induces cardiac electrical remodeling and arrhythmias, and the signaling pathway involved in these effects. Membrane potential was recorded in Wistar rat ventricle. Ca(2+) transients, as well as the L-type Ca(2+) current (ICaL) and the transient outward K(+) current (Ito), were recorded in isolated myocytes after 24 h exposure to the TLR4 agonist, lipopolysaccharide (LPS, 1 μg/ml). TLR4 stimulation in vitro promoted a cardiac electrical remodeling that leads to action potential prolongation associated with arrhythmic events, such as delayed afterdepolarization and triggered activity. After 24 h LPS incubation, Ito amplitude, as well as Kv4.3 and KChIP2 mRNA levels were reduced. The Ito decrease by LPS was prevented by inhibition of interferon regulatory factor 3 (IRF3), but not by inhibition of interleukin-1 receptor-associated kinase 4 (IRAK4) or nuclear factor kappa B (NF-κB). Extrasystolic activity was present in 25% of the cells, but apart from that, Ca(2+) transients and ICaL were not affected by LPS; however, Na(+)/Ca(2+) exchanger (NCX) activity was apparently increased. We conclude that TLR4 activation decreased Ito, which increased AP duration via a MyD88-independent, IRF3-dependent pathway. The longer action potential, associated with enhanced Ca(2+) efflux via NCX, could explain the presence of arrhythmias in the LPS group.

  19. A Small Molecule that Mimics the BB-Loop in the Toll/IL-1 Receptor Domain of MyD88 Attenuates Staphylococcal Enterotoxin B Induced Pro-Inflammatory Cytokine Production and Toxicity in Mice

    DTIC Science & Technology

    2011-06-01

    to allow the cells to swell. 50 µl of 10% Nonidet P - 40 was added to the cells and briefly centrifuged. The nuclear pellet was resuspended in...protein 10 (IP-10). A conserved sequence, (F/Y)-(V/L/I)-( P /G), called the BB- loop appears in the TIR domain of most members of the TLR/IL-1R family...from 7 structural analogs based on the tripeptide sequence of the BB-loop [(F/Y)-(V/L/I)-( P /G)] of the Toll/IL-1 receptor (TIR) domain binding

  20. Phylogeny of Toll-Like Receptor Signaling: Adapting the Innate Response

    PubMed Central

    Roach, Jeffrey M.; Racioppi, Luigi; Jones, Corbin D.; Masci, Anna Maria

    2013-01-01

    The Toll-like receptors represent a largely evolutionarily conserved pathogen recognition machinery responsible for recognition of bacterial, fungal, protozoan, and viral pathogen associated microbial patterns and initiation of inflammatory response. Structurally the Toll-like receptors are comprised of an extracellular leucine rich repeat domain and a cytoplasmic Toll/Interleukin 1 receptor domain. Recognition takes place in the extracellular domain where as the cytoplasmic domain triggers a complex signal network required to sustain appropriate immune response. Signal transduction is regulated by the recruitment of different intracellular adaptors. The Toll-like receptors can be grouped depending on the usage of the adaptor, MyD88, into MyD88-dependent and MyD88 independent subsets. Herein, we present a unique phylogenetic analysis of domain regions of these receptors and their cognate signaling adaptor molecules. Although previously unclear from the phylogeny of full length receptors, these analyses indicate a separate evolutionary origin for the MyD88-dependent and MyD88-independent signaling pathway and provide evidence of a common ancestor for the vertebrate and invertebrate orthologs of the adaptor molecule MyD88. Together these observations suggest a very ancient origin of the MyD88-dependent pathway Additionally we show that early duplications gave rise to several adaptor molecule families. In some cases there is also strong pattern of parallel duplication between adaptor molecules and their corresponding TLR. Our results further support the hypothesis that phylogeny of specific domains involved in signaling pathway can shed light on key processes that link innate to adaptive immune response. PMID:23326591

  1. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  2. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  3. The adaptor molecule signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is essential in mechanisms involving the Fyn tyrosine kinase for induction and progression of collagen-induced arthritis.

    PubMed

    Zhong, Ming-Chao; Veillette, André

    2013-11-01

    Signaling lymphocytic activation molecule-associated protein (SAP) is an Src homology 2 domain-only adaptor involved in multiple immune cell functions. It has also been linked to immunodeficiencies and autoimmune diseases, such as systemic lupus erythematosus. Here, we examined the role and mechanism of action of SAP in autoimmunity using a mouse model of autoimmune arthritis, collagen-induced arthritis (CIA). We found that SAP was essential for development of CIA in response to collagen immunization. It was also required for production of collagen-specific antibodies, which play a key role in disease pathogenesis. These effects required SAP expression in T cells, not in B cells. In mice immunized with a high dose of collagen, the activity of SAP was nearly independent of its ability to bind the protein tyrosine kinase Fyn and correlated with the capacity of SAP to promote full differentiation of follicular T helper (TFH) cells. However, with a lower dose of collagen, the role of SAP was more dependent on Fyn binding, suggesting that additional mechanisms other than TFH cell differentiation were involved. Further studies suggested that this might be due to a role of the SAP-Fyn interaction in natural killer T cell development through the ability of SAP-Fyn to promote Vav-1 activation. We also found that removal of SAP expression during progression of CIA attenuated disease severity. However, it had no effect on disease when CIA was clinically established. Together, these results indicate that SAP plays an essential role in CIA because of Fyn-independent and Fyn-dependent effects on TFH cells and, possibly, other T cell types.

  4. SARM: a novel Toll-like receptor adaptor, is functionally conserved from arthropod to human.

    PubMed

    Belinda, Loh Wei-Ching; Wei, Wang Xiao; Hanh, Bui Thi Hong; Lei, Luan Xiao; Bow, Ho; Ling, Ding Jeak

    2008-03-01

    Sterile-alpha and Armadillo motif containing protein (SARM) was recently identified as the fifth member of the Toll-like receptor (TLR) adaptor family. Whilst the Caenorhabditis elegans SARM homologue, TIR-1, is crucial for efficient immune responses against bacterial infections, human SARM was demonstrated to function as a specific inhibitor of TRIF-dependent TLR signaling. The opposing role of SARM in C. elegans and human is intriguing, prompting us to seek clarification on the enigmatic function of SARM in an ancient species which relies solely on innate immunity for survival. Here, we report the discovery of a primitive but functional SARM (CrSARM) in the immune defense of a "living fossil", the horseshoe crab, Carcinoscorpius rotundicauda. CrSARM shares numerous signature motifs and displays significant homology with vertebrate and invertebrate SARM homologues. CrSARM downregulates TRIF-dependent TLR signaling suggesting the conservation of SARM function from horseshoe crab to human. During infection by Pseudomonas aeruginosa, CrSARM is rapidly upregulated within 3h and strongly repressed at 6h, coinciding with the timing of bacterial clearance, thus demonstrating its dynamic role in innate immunity. Furthermore, yeast-two-hybrid screening revealed several potential interaction partners of CrSARM implying the role of SARM in downregulating TLR signaling events. Altogether, our study shows that, although C. elegans SARM upregulates immune signaling, its disparate role as a suppressor of TLR signaling, specifically via TRIF and not MyD88, is well-conserved from horseshoe crab to human.

  5. Endocytic adaptors – social networking at the plasma membrane

    PubMed Central

    Reider, Amanda; Wendland, Beverly

    2011-01-01

    Receptor-mediated endocytosis is a dynamic process that is crucial for maintaining plasma membrane composition and controlling cell-signaling pathways. A variety of entry routes have evolved to ensure that the vast array of molecules on the cell surface can be differentially internalized by endocytosis. This diversity has extended to include a growing list of endocytic adaptor proteins, which are thought to initiate the internalization process. The key function of adaptors is to select the proteins that should be removed from the cell surface. Thus, they have a central role in defining the physiology of a cell. This has made the study of adaptor proteins a very active area of research that is ripe for exciting future discoveries. Here, we review recent work on how adaptors mediate endocytosis and address the following questions: what characteristics define an endocytic adaptor protein? What roles do these proteins fulfill in addition to selecting cargo and how might adaptors function in clathrin-independent endocytic pathways? Through the findings discussed in this Commentary, we hope to stimulate further characterization of known adaptors and expansion of the known repertoire by identification of new adaptors. PMID:21536832

  6. Transgenic zebrafish reporter lines reveal conserved Toll-like receptor signaling potential in embryonic myeloid leukocytes and adult immune cell lineages.

    PubMed

    Hall, Chris; Flores, Maria Vega; Chien, Annie; Davidson, Alan; Crosier, Kathryn; Crosier, Phil

    2009-05-01

    The immune response of a host to an invading pathogen is dependent on the capacity of its immune cell compartment to recognize highly conserved pathogen components using an ancient class of pattern recognition receptors known as Toll-like receptors (TLRs). Initiation of TLR-mediated signaling results in the induction of proinflammatory cytokines that help govern the scale and duration of any ensuing response. Specificity for TLR signaling is, in part, a result of the differential recruitment of intracellular adaptor molecules. Of these, MyD88 is required for the majority of TLR signaling. Zebrafish have been shown to possess TLRs and adaptor molecules throughout early development, including MyD88, strongly suggesting conservation of this ancient defense mechanism. However, information about which embryonic cells/tissues possess this conserved signaling potential is lacking. To help define which embryonic cells, in particular, those of the innate immune system, have the potential for MyD88-dependent, TLR-mediated signaling, we generated transgenic reporter lines using regulatory elements of the myd88 gene to drive the fluorescent reporters enhanced GFP and Discosoma red fluorescent protein 2 within live zebrafish. These lines possess fluorescently marked cells/tissues consistent with endogenous myd88 expression, including a subset of myeloid leukocytes. These innate immune cells were confirmed to express other TLR adaptors including Mal, trif, and Sarm. Live wound-healing and infection assays validated the potential of these myd88-expressing leukocytes to participate in immune responses. These lines will provide a valuable resource for further resolving the contribution of MyD88 to early vertebrate immunity.

  7. Selective interleukin-1 receptor–associated kinase 4 inhibitors for the treatment of autoimmune disorders and lymphoid malignancy

    PubMed Central

    Kelly, Priscilla N.; Romero, Donna L.; Yang, Yibin; Shaffer, Arthur L.; Chaudhary, Divya; Robinson, Shaughnessy; Miao, Wenyan; Rui, Lixin; Westlin, William F.; Kapeller, Rosana

    2015-01-01

    Pathological activation of the Toll-like receptor signaling adaptor protein MYD88 underlies many autoimmune and inflammatory disease states. In the activated B cell–like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), the oncogenic MYD88 L265P mutation occurs in 29% of cases, making it the most prevalent activating mutation in this malignancy. IRAK4 kinase accounts for almost all of the biological functions of MYD88, highlighting IRAK4 as a therapeutic target for diseases driven by aberrant MYD88 signaling. Using innovative structure-based drug design methodologies, we report the development of highly selective and bioavailable small molecule IRAK4 inhibitors, ND-2158 and ND-2110. These small molecules suppressed LPS-induced TNF production, alleviated collagen-induced arthritis, and blocked gout formation in mouse models. IRAK4 inhibition promoted killing of ABC DLBCL lines harboring MYD88 L265P, by down-modulating survival signals, including NF-κB and autocrine IL-6/IL-10 engagement of the JAK–STAT3 pathway. In ABC DLBCL xenograft models, IRAK4 inhibition suppressed tumor growth as a single agent, and in combination with the Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib or the Bcl-2 inhibitor ABT-199. Our findings support pharmacological inhibition of IRAK4 as a therapeutic strategy in autoimmune disorders, in a genetically defined population of ABC DLBCL, and possibly other malignancies dependent on aberrant MYD88 signaling. PMID:26621451

  8. The Grb2 adaptor.

    PubMed

    Chardin, P; Cussac, D; Maignan, S; Ducruix, A

    1995-08-01

    Grb2 is an 'adaptor' protein made of one SH2 and two SH3 domains. The SH3 domains bind to prolinerich motifs in the C-terminal part of the ras exchange factor Sos. Binding of the Grb2 SH2 domain to phosphotyrosine motifs on receptors, or other adaptor proteins such as Shc, recruits this Grb2/Sos complex at the plasma membrane where Sos stimulates nucleotide exchange on ras, then ras activates raf and leads to MAP kinase activation. The structure of Grb2, the precise motifs recognised by its SH2 and SH3 domains, the way Grb2 performs its function, a possible regulation of its association with Sos, and its ability to complex with other proteins in vivo, are discussed.

  9. The innate immunity adaptor SARM translocates to the nucleus to stabilize lamins and prevent DNA fragmentation in response to pro-apoptotic signaling.

    PubMed

    Sethman, Chad R; Hawiger, Jacek

    2013-01-01

    Sterile alpha and armadillo-motif containing protein (SARM), a highly conserved and structurally unique member of the MyD88 family of Toll-like receptor adaptors, plays an important role in innate immunity signaling and apoptosis. Its exact mechanism of intracellular action remains unclear. Apoptosis is an ancient and ubiquitous process of programmed cell death that results in disruption of the nuclear lamina and, ultimately, dismantling of the nucleus. In addition to supporting the nuclear membrane, lamins serve important roles in chromatin organization, epigenetic regulation, transcription, nuclear transport, and mitosis. Mutations and other damage that destabilize nuclear lamins (laminopathies) underlie a number of intractable human diseases. Here, we report that SARM translocates to the nucleus of human embryonic kidney cells by using its amino-terminal Armadillo repeat region. Within the nucleus, SARM forms a previously unreported lattice akin to the nuclear lamina scaffold. Moreover, we show that SARM protects lamins from apoptotic degradation and reduces internucleosomal DNA fragmentation in response to signaling induced by the proinflammatory cytokine Tumor Necrosis Factor alpha. These findings indicate an important link between the innate immunity adaptor SARM and stabilization of nuclear lamins during inflammation-driven apoptosis in human cells.

  10. TIR-Domain-Containing Adaptor-Inducing Interferon-β (TRIF) Mediates Antibacterial Defense during Gram-Negative Pneumonia by Inducing Interferon-x03B3.

    PubMed

    van Lieshout, Miriam H P; Florquin, Sandrine; Vanʼt Veer, Cornelis; de Vos, Alex F; van der Poll, Tom

    2015-01-01

    Klebsiella pneumoniae is an important cause of Gram-negative pneumonia and sepsis. Mice deficient for TIR-domain-containing adaptor-inducing interferon-β (TRIF) demonstrate enhanced bacterial growth and dissemination during Klebsiella pneumonia. We show here that the impaired antibacterial defense of TRIF mutant mice is associated with absent interferon (IFN)-x03B3; production in the lungs. IFN-x03B3; production by splenocytes in response to K. pneumoniae in vitro was critically dependent on Toll-like receptor 4 (TLR4), the common TLR adaptor myeloid differentiation primary response gene (MyD88) and TRIF. Reconstitution of TRIF mutant mice with recombinant IFN-x03B3; via the airways reduced bacterial loads in lungs and distant body sites to levels measured in wild-type mice, and partially restored pulmonary cytokine levels. The IFN-x03B3;-induced, improved, enhanced antibacterial response in TRIF mutant mice occurred at the expense of increased hepatocellular injury. These data indicate that TRIF mediates antibacterial defense during Gram-negative pneumonia, at least in part, by inducing IFN-x03B3; at the primary site of infection.

  11. Depletion of the ubiquitin-binding adaptor molecule SQSTM1/p62 from macrophages harboring cftr ΔF508 mutation improves the delivery of Burkholderia cenocepacia to the autophagic machinery.

    PubMed

    Abdulrahman, Basant A; Khweek, Arwa Abu; Akhter, Anwari; Caution, Kyle; Tazi, Mia; Hassan, Hoda; Zhang, Yucheng; Rowland, Patrick D; Malhotra, Sankalp; Aeffner, Famke; Davis, Ian C; Valvano, Miguel A; Amer, Amal O

    2013-01-18

    Cystic fibrosis is the most common inherited lethal disease in Caucasians. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), of which the cftr ΔF508 mutation is the most common. ΔF508 macrophages are intrinsically defective in autophagy because of the sequestration of essential autophagy molecules within unprocessed CFTR aggregates. Defective autophagy allows Burkholderia cenocepacia (B. cepacia) to survive and replicate in ΔF508 macrophages. Infection by B. cepacia poses a great risk to cystic fibrosis patients because it causes accelerated lung inflammation and, in some cases, a lethal necrotizing pneumonia. Autophagy is a cell survival mechanism whereby an autophagosome engulfs non-functional organelles and delivers them to the lysosome for degradation. The ubiquitin binding adaptor protein SQSTM1/p62 is required for the delivery of several ubiquitinated cargos to the autophagosome. In WT macrophages, p62 depletion and overexpression lead to increased and decreased bacterial intracellular survival, respectively. In contrast, depletion of p62 in ΔF508 macrophages results in decreased bacterial survival, whereas overexpression of p62 leads to increased B. cepacia intracellular growth. Interestingly, the depletion of p62 from ΔF508 macrophages results in the release of the autophagy molecule beclin1 (BECN1) from the mutant CFTR aggregates and allows its redistribution and recruitment to the B. cepacia vacuole, mediating the acquisition of the autophagy marker LC3 and bacterial clearance via autophagy. These data demonstrate that p62 differentially dictates the fate of B. cepacia infection in WT and ΔF508 macrophages.

  12. Depletion of the Ubiquitin-binding Adaptor Molecule SQSTM1/p62 from Macrophages Harboring cftr ΔF508 Mutation Improves the Delivery of Burkholderia cenocepacia to the Autophagic Machinery*

    PubMed Central

    Abdulrahman, Basant A.; Khweek, Arwa Abu; Akhter, Anwari; Caution, Kyle; Tazi, Mia; Hassan, Hoda; Zhang, Yucheng; Rowland, Patrick D.; Malhotra, Sankalp; Aeffner, Famke; Davis, Ian C.; Valvano, Miguel A.; Amer, Amal O.

    2013-01-01

    Cystic fibrosis is the most common inherited lethal disease in Caucasians. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), of which the cftr ΔF508 mutation is the most common. ΔF508 macrophages are intrinsically defective in autophagy because of the sequestration of essential autophagy molecules within unprocessed CFTR aggregates. Defective autophagy allows Burkholderia cenocepacia (B. cepacia) to survive and replicate in ΔF508 macrophages. Infection by B. cepacia poses a great risk to cystic fibrosis patients because it causes accelerated lung inflammation and, in some cases, a lethal necrotizing pneumonia. Autophagy is a cell survival mechanism whereby an autophagosome engulfs non-functional organelles and delivers them to the lysosome for degradation. The ubiquitin binding adaptor protein SQSTM1/p62 is required for the delivery of several ubiquitinated cargos to the autophagosome. In WT macrophages, p62 depletion and overexpression lead to increased and decreased bacterial intracellular survival, respectively. In contrast, depletion of p62 in ΔF508 macrophages results in decreased bacterial survival, whereas overexpression of p62 leads to increased B. cepacia intracellular growth. Interestingly, the depletion of p62 from ΔF508 macrophages results in the release of the autophagy molecule beclin1 (BECN1) from the mutant CFTR aggregates and allows its redistribution and recruitment to the B. cepacia vacuole, mediating the acquisition of the autophagy marker LC3 and bacterial clearance via autophagy. These data demonstrate that p62 differentially dictates the fate of B. cepacia infection in WT and ΔF508 macrophages. PMID:23148214

  13. The Adaptor Molecule SAP Regulates IFNγ and IL-4 Production in Vα14 Transgenic NKT cells via Effects on GATA-3 and T-bet Expression1

    PubMed Central

    Cen, Osman; Ueda, Aki; Guzman, Laura; Jain, Jimmy; Bassiri, Hamid; Nichols, Kim E.; Stein, Paul L.

    2008-01-01

    NKT cells comprise a rare regulatory T cell population of limited TCR diversity, with most cells utilizing a Vα14Jα18 TCR. These cells exhibit a critical dependence on the signaling adapter molecule SAP for their ontogeny, an aspect not seen in conventional αβ T cells. Prior studies demonstrate that SAP enhances TCR-induced activation of NF-kB in CD4+ T cells. Since NF-kB is required for NKT cell development, SAP might promote the ontogeny of this lineage by signaling to NF-kB. In this report, we demonstrate that forced expression of the NF-kB target gene, Bcl-xL, or IKKβ, a catalytic subunit of the IkB kinase complex essential for NF-kB activation, fails to restore NKT cell development in sap−/− mice, suggesting that SAP mediates NKT cell development independently of NF-kB. To examine the role of SAP in NKT cell function, we generated NKT cells in sap−/− mice by expressing a transgene encoding the Vα14Jα18 component of the invariant TCR. These cells bound α-GalCer loaded CD1d tetramers, but exhibited a very immature CD24+NK1.1- phenotype. While sap−/− tetramer-reactive cells proliferated in response to TCR activation, they did not produce appreciable levels of IL-4 or IFN-γ. The reduction in cytokine production correlated with the near absence of GATA-3 and T-bet, key transcription factors regulating cytokine expression and maturation of NKT cells. Ectopic expression of GATA-3 partially restored IL-4 production by the NKT cells. Collectively these data suggest that by promoting GATA3 and T-bet expression, SAP exerts control over NKT cell development and mature NKT cell cytokine production. PMID:19155483

  14. Crystal structures of the Toll/Interleukin-1 receptor (TIR) domains from the Brucella protein TcpB and host adaptor TIRAP reveal mechanisms of molecular mimicry.

    PubMed

    Snyder, Greg A; Deredge, Daniel; Waldhuber, Anna; Fresquez, Theresa; Wilkins, David Z; Smith, Patrick T; Durr, Susi; Cirl, Christine; Jiang, Jiansheng; Jennings, William; Luchetti, Timothy; Snyder, Nathaniel; Sundberg, Eric J; Wintrode, Patrick; Miethke, Thomas; Xiao, T Sam

    2014-01-10

    The Toll/IL-1 receptor (TIR) domains are crucial innate immune signaling modules. Microbial TIR domain-containing proteins inhibit Toll-like receptor (TLR) signaling through molecular mimicry. The TIR domain-containing protein TcpB from Brucella inhibits TLR signaling through interaction with host adaptor proteins TIRAP/Mal and MyD88. To characterize the microbial mimicry of host proteins, we have determined the X-ray crystal structures of the TIR domains from the Brucella protein TcpB and the host adaptor protein TIRAP. We have further characterized homotypic interactions of TcpB using hydrogen/deuterium exchange mass spectrometry and heterotypic TcpB and TIRAP interaction by co-immunoprecipitation and NF-κB reporter assays. The crystal structure of the TcpB TIR domain reveals the microtubule-binding site encompassing the BB loop as well as a symmetrical dimer mediated by the DD and EE loops. This dimerization interface is validated by peptide mapping through hydrogen/deuterium exchange mass spectrometry. The human TIRAP TIR domain crystal structure reveals a unique N-terminal TIR domain fold containing a disulfide bond formed by Cys(89) and Cys(134). A comparison between the TcpB and TIRAP crystal structures reveals substantial conformational differences in the region that encompasses the BB loop. These findings underscore the similarities and differences in the molecular features found in the microbial and host TIR domains, which suggests mechanisms of bacterial mimicry of host signaling adaptor proteins, such as TIRAP.

  15. Induction of CXCL2 and CCL2 by pressure force requires IL-1β-MyD88 axis in osteoblasts.

    PubMed

    Maeda, Aya; Bandow, Kenjiro; Kusuyama, Joji; Kakimoto, Kyoko; Ohnishi, Tomokazu; Miyawaki, Shouichi; Matsuguchi, Tetsuya

    2015-05-01

    Mechanical stresses including pressure force induce chemokine expressions in osteoblasts resulting in inflammatory reactions and bone remodeling. However, it has not been well elucidated how mechanical stresses induce inflammatory chemokine expressions in osteoblasts. IL-1β has been identified as an important pathogenic factor in bone loss diseases, such as inflammatory arthritis and periodontitis. Myeloid differentiation factor 88 (MyD88) is an essential downstream adaptor molecule of IL-1 receptor signaling. This study was to examine the gene expression profiles of inflammatory chemokines and the role of MyD88 in osteoblasts stimulated by pressure force. Pressure force (10g/cm(2)) induced significant mRNA increases of CXCL2, CCL2, and CCL5, as well as prompt phosphorylation of MAP kinases (ERK, p38 and JNK), in wild-type primary osteoblasts. The CXCL2 and CCL2 mRNA increases and MAP kinase phosphorylation were severely impaired in MyD88(-/-) osteoblasts. Constitutive low-level expression of IL-1β mRNA was similarly observed in both wild-type and MyD88(-/-) osteoblasts, which was not altered by pressure force stimulation. Notably, neutralization of IL-1β with a specific antibody significantly impaired pressure force-induced mRNA increases of CXCL2 and CCL2, as well as MAP kinase phosphorylation, in wild-type osteoblasts. Furthermore, pre-treatment with recombinant IL-1β significantly enhanced MAP kinase phosphorylation and mRNA increases of CXCL2 and CCL2 by pressure force in wild-type but not MyD88(-/-) osteoblasts. These results have suggested that the activation of MyD88 pathway by constitutive low-level IL-1β expression is essential for pressure force-induced CXCL2 and CCL2 expression in osteoblasts. Thus MyD88 signal in osteoblasts may be required for bone resorption by pressure force through chemokine induction.

  16. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E.

    PubMed

    Michelsen, Kathrin S; Wong, Michelle H; Shah, Prediman K; Zhang, Wenxuan; Yano, Juliana; Doherty, Terence M; Akira, Shizuo; Rajavashisth, Tripathi B; Arditi, Moshe

    2004-07-20

    Toll-like receptors (TLRs) and the downstream adaptor molecule myeloid differentiation factor 88 (MyD88) play an essential role in the innate immune responses. Here, we demonstrate that genetic deficiency of TLR4 or MyD88 is associated with a significant reduction of aortic plaque areas in atherosclerosis-prone apolipoprotein E-deficient mice, despite persistent hypercholesterolemia, implying an important role for the innate immune system in atherogenesis. Apolipoprotein E-deficient mice that also lacked TLR4 or MyD88 demonstrated reduced aortic atherosclerosis that was associated with reductions in circulating levels of proinflammatory cytokines IL-12 or monocyte chemoattractant protein 1, plaque lipid content, numbers of macrophage, and cyclooxygenase 2 immunoreactivity in their plaques. Endothelial-leukocyte adhesion in response to minimally modified low-density lipoprotein was reduced in aortic endothelial cells derived from MyD88-deficient mice. Taken together, our results suggest an important role for TLR4 and MyD88 signaling in atherosclerosis in a hypercholesterolemic mouse model, providing a pathophysiologic link between innate immunity, inflammation, and atherogenesis.

  17. Human metapneumovirus M2-2 protein inhibits innate immune response in monocyte-derived dendritic cells.

    PubMed

    Ren, Junping; Liu, Guangliang; Go, Jonathan; Kolli, Deepthi; Zhang, Guanping; Bao, Xiaoyong

    2014-01-01

    Human metapneumovirus (hMPV) is a leading cause of lower respiratory infection in young children, the elderly and immunocompromised patients. Repeated hMPV infections occur throughout life. However, immune evasion mechanisms of hMPV infection are largely unknown. Recently, our group has demonstrated that hMPV M2-2 protein, an important virulence factor, contributes to immune evasion in airway epithelial cells by targeting the mitochondrial antiviral-signaling protein (MAVS). Whether M2-2 regulates the innate immunity in human dendritic cells (DC), an important family of immune cells controlling antigen presenting, is currently unknown. We found that human DC infected with a virus lacking M2-2 protein expression (rhMPV-ΔM2-2) produced higher levels of cytokines, chemokines and IFNs, compared to cells infected with wild-type virus (rhMPV-WT), suggesting that M2-2 protein inhibits innate immunity in human DC. In parallel, we found that myeloid differentiation primary response gene 88 (MyD88), an essential adaptor for Toll-like receptors (TLRs), plays a critical role in inducing immune response of human DC, as downregulation of MyD88 by siRNA blocked the induction of immune regulatory molecules by hMPV. Since M2-2 is a cytoplasmic protein, we investigated whether M2-2 interferes with MyD88-mediated antiviral signaling. We found that indeed M2-2 protein associated with MyD88 and inhibited MyD88-dependent gene transcription. In this study, we also identified the domains of M2-2 responsible for its immune inhibitory function in human DC. In summary, our results demonstrate that M2-2 contributes to hMPV immune evasion by inhibiting MyD88-dependent cellular responses in human DC.

  18. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-mediated signaling contributes to innate immune responses in the lung during Escherichia coli pneumonia.

    PubMed

    Jeyaseelan, Samithamby; Young, Scott K; Fessler, Michael B; Liu, Yuhong; Malcolm, Kenneth C; Yamamoto, Masahiro; Akira, Shizuo; Worthen, G Scott

    2007-03-01

    Bacterial pneumonia remains a serious disease and is associated with neutrophil recruitment. Innate immunity is pivotal for the elimination of bacteria, and TLRs are essential in this process. Toll/IL-1R domain-containing adaptor inducing IFN-beta (TRIF) is an adaptor for TLR3 and TLR4, and is associated with the MyD88-independent cascade. However, the importance of TRIF in immune responses against pulmonary bacterial pathogens is not well understood. We investigated the involvement of TRIF in a murine model of Escherichia coli pneumonia. TRIF(-/-) mice infected with E. coli display attenuated neutrophil migration; NF-kappaB activation; and TNF-alpha, IL-6, and LPS-induced C-X-C chemokine production in the lungs. In addition, E. coli-induced phosphorylation of JNK, ERK, and p38 MAPK was detected in bone marrow-derived macrophages (BMMs) of TRIF(+/+) mice, but attenuated in BMMs of TRIF(-/-) mice. Furthermore, E. coli-induced TNF-alpha and IL-6 production was attenuated in BMMs of TRIF(-/-) mice. E. coli LPS-induced late MAPK activation, and TNF-alpha and IL-6 production were abolished in BMMs of TRIF(-/-) mice. Moreover, TRIF is not required for LPS-induced neutrophil influx, and keratinocyte cell-derived chemokine, MIP-2, and LPS-induced C-X-C chemokine production in the lungs. Using TLR3(-/-) mice, we ruled out the role of TLR3-mediated TRIF-dependent neutrophil influx during E. coli pneumonia. A TLR4-blocking Ab inhibited E. coli-induced TNF-alpha and IL-6 in BMMs of both TRIF(-/-) and TRIF(+/+) mice, suggesting that TRIF-mediated signaling involves TLR4. We also found that TRIF is critical to control E. coli burden in the lungs and E. coli dissemination. Thus, rapid activation of TRIF-dependent TLR4-mediated signaling cascade serves to augment pulmonary host defense against a Gram-negative pathogen.

  19. Comparative analysis of adaptor-mediated clathrin assembly reveals general principles for adaptor clustering.

    PubMed

    Pucadyil, Thomas J; Holkar, Sachin S

    2016-10-15

    Clathrin-mediated endocytosis (CME) manages the sorting and uptake of the bulk of membrane proteins (or cargo) from the plasma membrane. CME is initiated by the formation of clathrin-coated pits (CCPs), in which adaptors nucleate clathrin assembly. Clathrin adaptors display diversity in both the type and number of evolutionarily conserved clathrin-binding boxes. How this diversity relates to the process of adaptor clustering as clathrin assembles around a growing pit remains unclear. Using real-time, fluorescence microscopy-based assays, we compare the formation kinetics and distribution of clathrin assemblies on membranes that display five unique clathrin adaptors. Correlations between equilibrium and kinetic parameters of clathrin assembly to the eventual adaptor distribution indicate that adaptor clustering is determined not by the amount of clathrin recruited or the degree of clathrin clustered but instead by the rate of clathrin assembly. Together our results emphasize the need to analyze kinetics of protein interactions to better understand mechanisms that regulate CME.

  20. Unexpected Roles for Toll-Like Receptor 4 and TRIF in Intraocular Infection with Gram-Positive Bacteria

    PubMed Central

    Parkunan, Salai Madhumathi; Randall, C. Blake; Coburn, Phillip S.; Astley, Roger A.; Staats, Rachel L.

    2015-01-01

    Inflammation caused by infection with Gram-positive bacteria is typically initiated by interactions with Toll-like receptor 2 (TLR2). Endophthalmitis, an infection and inflammation of the posterior segment of the eye, can lead to vision loss when initiated by a virulent microbial pathogen. Endophthalmitis caused by Bacillus cereus develops as acute inflammation with infiltrating neutrophils, and vision loss is potentially catastrophic. Residual inflammation observed during B. cereus endophthalmitis in TLR2−/− mice led us to investigate additional innate pathways that may trigger intraocular inflammation. We first hypothesized that intraocular inflammation during B. cereus endophthalmitis would be controlled by MyD88- and TRIF-mediated signaling, since MyD88 and TRIF are the major adaptor molecules for all bacterial TLRs. In MyD88−/− and TRIF−/− mice, we observed significantly less intraocular inflammation than in eyes from infected C57BL/6J mice, suggesting an important role for these TLR adaptors in B. cereus endophthalmitis. These results led to a second hypothesis, that TLR4, the only TLR that signals through both MyD88 and TRIF signaling pathways, contributed to inflammation during B. cereus endophthalmitis. Surprisingly, B. cereus-infected TLR4−/− eyes also had significantly less intraocular inflammation than infected C57BL/6J eyes, indicating an important role for TLR4 in B. cereus endophthalmitis. Taken together, our results suggest that TLR4, TRIF, and MyD88 are important components of the intraocular inflammatory response observed in experimental B. cereus endophthalmitis, identifying a novel innate immune interaction for B. cereus and for this disease. PMID:26195555

  1. Adaptor assembly for coupling turbine blades to rotor disks

    SciTech Connect

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell

    2014-09-23

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor root of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.

  2. THREADED ADAPTOR FOR LUGGED PIPE ENDS

    DOEpatents

    Robb, J.E.

    1962-06-01

    An adaptor is designed for enabling a threaded part to be connected to a member at a region having lugs normally receiving bayonet slots of another part for attachment of the latter. It has been found desirable to replace a closure cap connected in a bayonet joint to the end of a coolant tube containing nuclear- reactor fuel elements, with a threaded valve. An adaptor is used which has J- slots receiving lugs on the end of the reactor tube, a thread for connection with the valve, and gear-tooth section enabling a gear-type of tool to rotate the adaptor to seal the valve to the end of the reactor tube. (AEC)

  3. Styles of Creativity: Adaptors and Innovators in a Singapore Context

    ERIC Educational Resources Information Center

    Ee, Jessie; Seng, Tan Oon; Kwang, Ng Aik

    2007-01-01

    Kirton (1976) described two creative styles, namely adaptors and innovators. Adaptors prefer to "do things better" whilst, innovators prefer to "do things differently". This study explored the relationship between two creative styles (adaptor and innovator) and the Big Five personality traits (extraversion, agreeableness, conscientiousness,…

  4. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  5. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  6. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  7. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  8. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  9. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  10. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  11. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  12. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  13. TLR-independent anti-inflammatory function of intestinal epithelial TRAF6 signalling prevents DSS-induced colitis in mice

    PubMed Central

    Vlantis, Katerina; Polykratis, Apostolos; Welz, Patrick-Simon; van Loo, Geert; Pasparakis, Manolis; Wullaert, Andy

    2016-01-01

    Objective The gut microbiota modulates host susceptibility to intestinal inflammation, but the cell types and the signalling pathways orchestrating this bacterial regulation of intestinal homeostasis remain poorly understood. Here, we investigated the function of intestinal epithelial toll-like receptor (TLR) responses in the dextran sodium sulfate (DSS)-induced mouse model of colitis. Design We applied an in vivo genetic approach allowing intestinal epithelial cell (IEC)-specific deletion of the critical TLR signalling adaptors, MyD88 and/or TIR-domain-containing adapter-inducing interferon-β (TRIF), as well as the downstream ubiquitin ligase TRAF6 in order to reveal the IEC-intrinsic function of these TLR signalling molecules during DSS colitis. Results Mice lacking TRAF6 in IECs showed exacerbated DSS-induced inflammatory responses that ensued in the development of chronic colon inflammation. Antibiotic pretreatment abolished the increased DSS susceptibility of these mice, showing that epithelial TRAF6 signalling pathways prevent the gut microbiota from driving excessive colitis. However, in contrast to epithelial TRAF6 deletion, blocking epithelial TLR signalling by simultaneous deletion of MyD88 and TRIF specifically in IECs did not affect DSS-induced colitis severity. This in vivo functional comparison between TRAF6 and MyD88/TRIF deletion in IECs shows that the colitis-protecting effects of epithelial TRAF6 signalling are not triggered by TLRs. Conclusions Intestinal epithelial TRAF6-dependent but MyD88/TRIF-independent and, thus, TLR-independent signalling pathways are critical for preventing propagation of DSS-induced colon inflammation by the gut microbiota. Moreover, our experiments using mice with dual MyD88/TRIF deletion in IECs unequivocally show that the gut microbiota trigger non-epithelial TLRs rather than epithelial TLRs to restrict DSS colitis severity. PMID:25761602

  14. Modulation of lipoprotein receptor functions by intracellular adaptor proteins.

    PubMed

    Stolt, Peggy C; Bock, Hans H

    2006-10-01

    Members of the low density lipoprotein (LDL) receptor gene family are critically involved in a wide range of physiological processes including lipid and vitamin homeostasis, cellular migration, neurodevelopment, and synaptic plasticity, to name a few. Lipoprotein receptors exert these diverse biological functions by acting as cellular uptake receptors or by inducing intracellular signaling cascades. It was discovered that a short sequence in the intracellular region of all lipoprotein receptors, Asn-Pro-X-Tyr (NPXY) is important for mediating either endocytosis or signal transduction events, and that this motif serves as a binding site for phosphotyrosine-binding (PTB) domain containing scaffold proteins. These molecular adaptors connect the transmembrane receptors with the endocytosis machinery and regulate cellular trafficking, or function as assembly sites for dynamic multi-protein signaling complexes. Whereas the LDL receptor represents the archetype of an endocytic lipoprotein receptor, the structurally closely related apolipoprotein E receptor 2 (apoER2) and very low density lipoprotein (VLDL) receptor activate a kinase-dependent intracellular signaling cascade after binding to the neuronal signaling molecule Reelin. This review focuses on two related PTB domain containing adaptor proteins that mediate these divergent lipoprotein receptor responses, ARH (autosomal recessive hypercholesterolemia protein) and Dab1 (disabled-1), and discusses the structural and molecular basis of this different behaviour.

  15. Comparative analysis of adaptor-mediated clathrin assembly reveals general principles for adaptor clustering

    PubMed Central

    Pucadyil, Thomas J.; Holkar, Sachin S.

    2016-01-01

    Clathrin-mediated endocytosis (CME) manages the sorting and uptake of the bulk of membrane proteins (or cargo) from the plasma membrane. CME is initiated by the formation of clathrin-coated pits (CCPs), in which adaptors nucleate clathrin assembly. Clathrin adaptors display diversity in both the type and number of evolutionarily conserved clathrin-binding boxes. How this diversity relates to the process of adaptor clustering as clathrin assembles around a growing pit remains unclear. Using real-time, fluorescence microscopy–based assays, we compare the formation kinetics and distribution of clathrin assemblies on membranes that display five unique clathrin adaptors. Correlations between equilibrium and kinetic parameters of clathrin assembly to the eventual adaptor distribution indicate that adaptor clustering is determined not by the amount of clathrin recruited or the degree of clathrin clustered but instead by the rate of clathrin assembly. Together our results emphasize the need to analyze kinetics of protein interactions to better understand mechanisms that regulate CME. PMID:27559129

  16. The Troll in Toll: Mal and Tram as bridges for TLR2 and TLR4 signaling.

    PubMed

    Sheedy, Frederick J; O'Neill, Luke A J

    2007-08-01

    Signaling by two of the most important bacteria-sensing TLRs, TLR2 and TLR4, involves two adaptor proteins, MyD88 adaptor-like (Mal) and Toll/IL-1 receptor (TIR) domain-containing adaptor-inducing IFN-beta (Trif)-related adaptor molecule (TRAM). Recently, new insights into the functioning of these two adapters have emerged. Mal is required by both TLRs to act as a bridge to recruit the adaptor MyD88, leading ultimately to NF-kappaB activation. Similarly, TRAM acts as a bridge to recruit TRIF to the TLR4 complex, leading to activation of the transcription factor IFN regulatory factor 3. Consistent with Mal and TRAM being key points of control, recent evidence suggests that they are subject to regulation by phosphorylation. Further, a variant in Mal in humans has been found to protect against multiple infectious diseases. Finally, another TIR domain-containing adaptor, sterile alpha and HEAT/armadillo motif protein (SARM), has been shown to act as an inhibitor of TRIF-dependent signaling. These recent discoveries add to the complexity of TLR signaling and highlight specific control mechanisms for TLR2 and TLR4 signaling.

  17. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis.

    PubMed

    Paczkowski, Jon E; Richardson, Brian C; Fromme, J Christopher

    2015-07-01

    Cargo adaptors sort transmembrane protein cargos into nascent vesicles by binding directly to their cytosolic domains. Recent studies have revealed previously unappreciated roles for cargo adaptors and regulatory mechanisms governing their function. The adaptor protein (AP)-1 and AP-2 clathrin adaptors switch between open and closed conformations that ensure they function at the right place at the right time. The exomer cargo adaptor has a direct role in remodeling the membrane for vesicle fission. Several different cargo adaptors functioning in distinct trafficking pathways at the Golgi are similarly regulated through bivalent binding to the ADP-ribosylation factor 1 (Arf1) GTPase, potentially enabling regulation by a threshold concentration of Arf1. Taken together, these studies highlight that cargo adaptors do more than just adapt cargos.

  18. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis

    PubMed Central

    Paczkowski, Jon E.; Richardson, Brian C.; Fromme, J. Christopher

    2015-01-01

    Cargo adaptors sort transmembrane protein cargos into nascent vesicles by binding directly to their cytosolic domains. Recent studies have revealed previously unappreciated roles for cargo adaptors and regulatory mechanisms governing their function. The AP-1 and AP-2 clathrin adaptors switch between open and closed conformations that ensure they function at the right place at the right time. The exomer cargo adaptor plays a direct role in remodeling the membrane for vesicle fission. Several different cargo adaptors functioning in distinct trafficking pathways at the Golgi are similarly regulated through bivalent binding to the Arf1 GTPase, potentially enabling regulation by a threshold concentration of Arf1. Taken together, these studies highlight that cargo adaptors do more than just adapt cargos. PMID:25795254

  19. Adaptor assembly for coupling turbine blades to rotor disks

    SciTech Connect

    Delvaux, John McConnel; Garcia-Crespo, Andres Jose; Joyce, Kilmer Joseph; Tindell, Allan Randall

    2014-06-03

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is disclosed. The adaptor assembly may generally include an adaptor body having a root configured to be received within the root slot. The adaptor body may also define a slot having an open end configured to receive the blade root. The adaptor body may further define a channel. The adaptor assembly may also include a plate having an outwardly extending foot. The foot may be configured to be received within the channel. Additionally, the plate may be configured to cover at least a portion of the open end of the slot when the foot is received within the channel.

  20. Neuronal Roles of the Bicaudal D Family of Motor Adaptors.

    PubMed

    Budzinska, M; Wicher, K B; Terenzio, M

    2017-01-01

    All cell types rely on active intracellular cargo transport to shuttle essential cellular components such as proteins, lipids, RNA, and even organelles from the center to the periphery and vice versa. Additionally, several signaling pathways take advantage of intracellular transport to propagate their signals by moving activated receptors and protein effectors to specific locations inside the cell. Neurons particularly, being a very polarized cell type, are highly dependent on molecular motors for the anterograde and retrograde delivery of essential cellular components and signaling molecules. For these reasons, motor adaptor proteins have been extensively investigated in regard to their role in physiology and pathology of the nervous system. In this chapter, we will concentrate on a family of motor adaptor proteins, Bicaudal D (BICD), and their function in the context of the nervous system. BicD was originally described as essential for the correct localization of maternal mRNAs in Drosophila's oocyte and a regulator of the Golgi to ER retrograde transport in mammalian cells. Both mammalian BICD1 and BICD2 are highly expressed in the nervous system during development, and their importance in neuronal homeostasis has been recently under scrutiny. Several mutations in BICD2 have been linked to the development of neuromuscular diseases, and BICD2 knockout (KO) mice display migration defects of the radial cerebellar granule cells. More in line with the overall topic of this book, BICD1 was identified as a novel regulator of neurotrophin (NT) signaling as its deletion leads to defective sorting of ligand-activated NT receptors with dramatic consequences on the NT-mediated signaling pathway.

  1. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    PubMed

    Lam, Tonika; Thomas, Lisa M; White, Clayton A; Li, Guideng; Pone, Egest J; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  2. The N-terminal loop of IRAK-4 death domain regulates ordered assembly of the Myddosome signalling scaffold

    PubMed Central

    Dossang, Anthony C. G.; Motshwene, Precious G.; Yang, Yang; Symmons, Martyn F.; Bryant, Clare E.; Borman, Satty; George, Julie; Weber, Alexander N. R.; Gay, Nicholas J.

    2016-01-01

    Activation of Toll-like receptors induces dimerization and the recruitment of the death domain (DD) adaptor protein MyD88 into an oligomeric post receptor complex termed the Myddosome. The Myddosome is a hub for inflammatory and oncogenic signaling and has a hierarchical arrangement with 6–8 MyD88 molecules assembling with exactly 4 of IRAK-4 and 4 of IRAK-2. Here we show that a conserved motif in IRAK-4 (Ser8-X-X-X-Arg12) is autophosphorylated and that the phosphorylated DD is unable to form Myddosomes. Furthermore a mutant DD with the phospho-mimetic residue Asp at this position is impaired in both signalling and Myddosome assembly. IRAK-4 Arg12 is also essential for Myddosome assembly and signalling and we propose that phosphorylated Ser8 induces the N-terminal loop to fold into an α-helix. This conformer is stabilised by an electrostatic interaction between phospho-Ser8 and Arg12 and would destabilise a critical interface between IRAK-4 and MyD88. Interestingly IRAK-2 does not conserve this motif and has an alternative interface in the Myddosome that requires Arg67, a residue conserved in paralogues, IRAK-1 and 3(M). PMID:27876844

  3. Gain-of-Function Mutations in the Toll-Like Receptor Pathway: TPL2-Mediated ERK1/ERK2 MAPK Activation, a Path to Tumorigenesis in Lymphoid Neoplasms?

    PubMed Central

    Rousseau, Simon; Martel, Guy

    2016-01-01

    Lymphoid neoplasms form a family of cancers affecting B-cells, T-cells, and NK cells. The Toll-Like Receptor (TLR) signaling adapter molecule MYD88 is the most frequently mutated gene in these neoplasms. This signaling adaptor relays signals from TLRs to downstream effector pathways such as the Nuclear Factor kappa B (NFκB) and Mitogen Activated Protein Kinase (MAPK) pathways to regulate innate immune responses. Gain-of-function mutations such as MYD88[L265P] activate downstream signaling pathways in absence of cognate ligands for TLRs, resulting in increased cellular proliferation and survival. This article reports an analysis of non-synonymous somatic mutations found in the TLR signaling network in lymphoid neoplasms. In accordance with previous reports, mutations map to MYD88 pro-inflammatory signaling and not TRIF-mediated Type I IFN production. Interestingly, the analysis of somatic mutations found downstream of the core TLR-signaling network uncovered a strong association with the ERK1/2 MAPK cascade. In support of this analysis, heterologous expression of MYD88[L265P] in HEK293 cells led to ERK1/2 MAPK phosphorylation in addition to NFκB activation. Moreover, this activation is dependent on the protein kinase Tumor Promoting Locus 2 (TPL2), activated downstream of the IKK complex. Activation of ERK1/2 would then lead to activation, amongst others, of MYC and hnRNPA1, two proteins previously shown to contribute to tumor formation in lymphoid neoplasms. Taken together, this analysis suggests that TLR-mediated ERK1/2 activation via TPL2 may be a novel path to tumorigenesis. Therefore, the hypothesis proposed is that inhibition of ERK1/2 MAPK activation would prevent tumor growth downstream of MYD88[L265]. It will be interesting to test whether pharmacological inhibitors of this pathway show efficacy in primary tumor cells derived from hematologic malignancies such as Waldenstrom's Macroglobulinemia, where the majority of the cells carry the MYD88[L265P

  4. An adaptor hierarchy regulates proteolysis during a bacterial cell cycle

    PubMed Central

    Joshi, Kamal Kishore; Bergé, Matthieu; Radhakrishnan, Sunish Kumar; Viollier, Patrick Henri; Chien, Peter

    2015-01-01

    Summary Regulated protein degradation is essential. The timed destruction of crucial proteins by the ClpXP protease drives cell-cycle progression in the bacterium Caulobacter crescentus. Although ClpXP is active alone, additional factors are inexplicably required for cell-cycle dependent proteolysis. Here, we show that these factors constitute an adaptor hierarchy where different substrates are destroyed based on the degree of adaptor assembly. The hierarchy builds upon priming of ClpXP by the adaptor CpdR, which promotes degradation of one class of substrates and also recruits the adaptor RcdA to degrade a second class of substrates. Adding the PopA adaptor promotes destruction of a third class of substrates, while inhibiting degradation of the second class. We dissect RcdA to generate bespoke adaptors, identifying critical substrate elements needed for RcdA recognition and uncovering additional cell-cycle dependent ClpXP substrates. Our work reveals how hierarchical adaptors and primed proteases orchestrate regulated proteolysis during bacterial cell-cycle progression. PMID:26451486

  5. The Lnk adaptor protein: a key regulator of normal and pathological hematopoiesis.

    PubMed

    Velazquez, Laura

    2012-12-01

    The development and function of blood cells are regulated by specific growth factors/cytokines and their receptors' signaling pathways. In this way, these factors influence cell survival, proliferation and differentiation of hematopoietic cells. Central to this positive and/or negative control are the adaptor proteins. Since their identification 10 years ago, members of the Lnk adaptor protein family have proved to be important activators and/or inhibitors in the hematopoietic, immune and vascular system. In particular, the generation of animal and cellular models for the Lnk and APS proteins has helped establish the physiological role of these molecules through the identification of their specific signaling pathways and the characterization of their binding partners. Moreover, the recent identification of mutations in the LNK gene in myeloproliferative disorders, as well as the correlation of a single nucleotide polymorphism on LNK with hematological, immune and vascular diseases have suggested its involvement in the pathophysiology of these malignancies. The latter findings have thus raised the possibility of addressing Lnk signaling for the treatment of certain human diseases. This review therefore describes the pathophysiological role of this adaptor protein in hematological malignancies and the potential benefits of Lnk therapeutic targeting.

  6. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor... entitled “Guidance for the Submission of Research and Marketing Applications for Permanent Pacemaker...

  7. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling

    PubMed Central

    Birge, Raymond B; Kalodimos, Charalampos; Inagaki, Fuyuhiko; Tanaka, Shinya

    2009-01-01

    The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses. PMID:19426560

  8. Expression of many immunologically important genes in Mycobacterium tuberculosis-infected macrophages is independent of both TLR2 and TLR4 but dependent on IFN-alphabeta receptor and STAT1.

    PubMed

    Shi, Shuangping; Blumenthal, Antje; Hickey, Christopher M; Gandotra, Sheetal; Levy, David; Ehrt, Sabine

    2005-09-01

    Macrophages respond to several subcellular products of Mycobacterium tuberculosis (Mtb) through TLR2 or TLR4. However, primary mouse macrophages respond to viable, virulent Mtb by pathways largely independent of MyD88, the common adaptor molecule for TLRs. Using microarrays, quantitative PCR, and ELISA with gene-disrupted macrophages and mice, we now show that viable Mtb elicits the expression of inducible NO synthase, RANTES, IFN-inducible protein 10, immune-responsive gene 1, and many other key genes in macrophages substantially independently of TLR2, TLR4, their combination, or the TLR adaptors Toll-IL-1R domain-containing adapter protein and Toll-IL-1R domain-containing adapter inducing IFN-beta. Mice deficient in both TLR2 and TLR4 handle aerosol infection with viable Mtb as well as congenic controls. Viable Mtb also up-regulates inducible NO synthase, RANTES, IFN-inducible protein 10, and IRG1 in macrophages that lack mannose receptor, complement receptors 3 and 4, type A scavenger receptor, or CD40. These MyD88, TLR2/4-independent transcriptional responses require IFN-alphabetaR and STAT1, but not IFN-gamma. Conversely, those genes whose expression is MyD88 dependent do not depend on IFN-alphabetaR or STAT1. Transcriptional induction of TNF is TLR2/4, MyD88, STAT1, and IFN-alphabetaR independent, but TNF protein release requires the TLR2/4-MyD88 pathway. Thus, macrophages respond transcriptionally to viable Mtb through at least three pathways. TLR2 mediates the responses of a numerically minor set of genes that collectively do not appear to affect the course of infection in mice; regulation of TNF requires TLR2/4 for post-transcriptional control, but not for transcriptional induction; and many responding genes are regulated through an unknown, TLR2/4-independent pathway that may involve IFN-alphabetaR and STAT1.

  9. Targeting signals and subunit interactions in coated vesicle adaptor complexes

    PubMed Central

    1995-01-01

    There are two clathrin-coated vesicle adaptor complexes in the cell, one associated with the plasma membrane and one associated with the TGN. The subunit composition of the plasma membrane adaptor complex is alpha-adaptin, beta-adaptin, AP50, and AP17; while that of the TGN adaptor complex is gamma-adaptin, beta'-adaptin, AP47, and AP19. To search for adaptor targeting signals, we have constructed chimeras between alpha-adaptin and gamma-adaptin within their NH2-terminal domains. We have identified stretches of sequence in the two proteins between amino acids approximately 130 and 330-350 that are essential for targeting. Immunoprecipitation reveals that this region determines whether a construct coassemblies with AP50 and AP17, or with AP47 and AP19. These observations suggest that these other subunits may play an important role in targeting. In contrast, beta- and beta'-adaptins are clearly not involved in this event. Chimeras between the alpha- and gamma-adaptin COOH-terminal domains reveal the presence of a second targeting signal. We have further investigated the interactions between the adaptor subunits using the yeast two-hybrid system. Interactions can be detected between the beta/beta'-adaptins and the alpha/gamma- adaptins, between the beta/beta'-adaptins and the AP50/AP47 subunits, between alpha-adaptin and AP17, and between gamma-adaptin and AP19. These results indicate that the adaptor subunits act in concert to target the complex to the appropriate membrane. PMID:7593184

  10. Synthetic Protein Scaffolds Based on Peptide Motifs and Cognate Adaptor Domains for Improving Metabolic Productivity

    PubMed Central

    Horn, Anselm H. C.; Sticht, Heinrich

    2015-01-01

    The efficiency of many cellular processes relies on the defined interaction among different proteins within the same metabolic or signaling pathway. Consequently, a spatial colocalization of functionally interacting proteins has frequently emerged during evolution. This concept has been adapted within the synthetic biology community for the purpose of creating artificial scaffolds. A recent advancement of this concept is the use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ domains have been used most often in research studies to date. The approach has been successfully applied to the synthesis of a variety of target molecules including catechin, D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and mevalonate. Increased production levels of up to 77-fold have been observed compared to non-scaffolded systems. A recent extension of this concept is the creation of a covalent linkage between peptide motifs and adaptor domains, which leads to a more stable association of the scaffolded systems and thus bears the potential to further enhance metabolic productivity. PMID:26636078

  11. Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays

    DOEpatents

    Li, Zheng; Chen, Wei

    2016-07-05

    A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.

  12. Identification of CMS as a cytosolic adaptor of the human pTalpha chain involved in pre-TCR function.

    PubMed

    Navarro, María N; Nusspaumer, Gretel; Fuentes, Patricia; González-García, Sara; Alcain, Juan; Toribio, María L

    2007-12-15

    The T-cell receptor beta (TCRbeta)/pre-TCRalpha (pTalpha) pre-TCR complex (pre-TCR) signals the expansion and differentiation of de-veloping thymocytes. Functional pro-perties of the pre-TCR rely on its unique pTalpha chain, which suggests the participation of specific intracellular adaptors. However, pTalpha-interacting molecules remain unknown. Here, we identified a polyproline-arginine sequence in the human pTalpha cytoplasmic tail that interacted in vitro with SH3 domains of the CIN85/CMS family of adaptors, and mediated the recruitment of multiprotein complexes involving all (CMS, CIN85, and CD2BP3) members. Supporting the physiologic relevance of this interaction, we found that 1 such adaptor, CMS, interacted in vivo with human pTalpha, and its expression was selectively up-regulated during human thymopoiesis in pre-TCR-activated thymocytes. Upon activation, pre-TCR clustering was induced, and CMS and polymerized actin were simultaneously recruited to the pre-TCR activation site. CMS also associated via its C-terminal region to the actin cytoskeleton in the endocytic compartment, where it colocalized with internalized pTalpha in traffic to lysosomal degradation. Notably, deletion of the pTalpha CIN85/CMS-binding motif impaired pre-TCR-mediated Ca(2+) mobilization and NFAT transcriptional activity, and precluded activation induced by overexpression of a CMS-SH3 N-terminal mutant. These results provide the first molecular evidence for a pTalpha intracellular adaptor involved in pre-TCR function.

  13. TRIF Is a Critical Negative Regulator of TLR Agonist Mediated Activation of Dendritic Cells In Vivo

    PubMed Central

    Appledorn, Daniel M.; Aylsworth, Charles F.; Godbehere, Sarah; Liu, Chyong-Jy Joyce; Quiroga, Dionisia; Amalfitano, Andrea

    2011-01-01

    Despite recent advances in developing and licensing adjuvants, there is a great need for more potent formulations to enhance immunogenicity of vaccines. An Eimeria tenella derived antigen (rEA) augments immune responses against several pathogens in animal models and recently was confirmed to be safe for human use. In this study, we have analyzed the molecular mechanisms underlying rEA activity in mice, and confirmed that rEA activates multiple immune cell types, including DCs, macrophages, NK, B, and T cells. The rEA adjuvant also elicits the induction of pleiotropic pro-inflammatory cytokines, responses that completely depend upon the presence of the TLR adaptor protein MyD88. Surprisingly, we also found that the TRIF adaptor protein acts as a potent negative regulator of TLR agonist-triggered immune responses. For example, IL12 production and the induction of co-stimulatory molecule expression by DCs and IFNγ production by NK cells in vivo were significantly increased in rEA-treated TRIF-KO mice. Importantly, however, TRIF suppressive effects were not restricted to rEA-mediated responses, but were apparent in LPS- or ODN2006-activated DCs as well. Taken together, our findings confirm that rEA is a potent adjuvant, triggering robust activation of the innate immune system, in a manner that is augmented by MyD88 and inhibited by TRIF; thereby unveiling the potential complexities of modulating TLR activity to augment vaccine efficacy. PMID:21760953

  14. STING Requires the Adaptor TRIF to Trigger Innate Immune Responses to Microbial Infection.

    PubMed

    Wang, Xin; Majumdar, Tanmay; Kessler, Patricia; Ozhegov, Evgeny; Zhang, Ying; Chattopadhyay, Saurabh; Barik, Sailen; Sen, Ganes C

    2016-09-14

    The intracellular microbial nucleic acid sensors, TLR3 and STING, recognize pathogen molecules and signal to activate the interferon pathway. The TIR-domain containing protein TRIF is the sole adaptor of TLR3. Here, we report an essential role for TRIF in STING signaling: various activators of STING could not induce genes in the absence of TRIF. TRIF and STING interacted directly, through their carboxy-terminal domains, to promote STING dimerization, intermembrane translocation, and signaling. Herpes simplex virus (HSV), which triggers the STING signaling pathway and is controlled by it, replicated more efficiently in the absence of TRIF, and HSV-infected TRIF(-/-) mice displayed pronounced pathology. Our results indicate that defective STING signaling may be responsible for the observed genetic association between TRIF mutations and herpes simplex encephalitis in patients.

  15. Adaptor for Measuring Principal Strains with Tuckerman Strain Gage

    NASA Technical Reports Server (NTRS)

    Mcpherson, A E

    1943-01-01

    An adapter is described which uses three Tuckerman optical strain gages to measure the displacement of the three vortices of an equilateral triangle along lines 120 degrees apart. These displacements are substituted in well-known equations in order to compute the magnitude and direction of the principal strains. Tests of the adaptor indicate that principal strains over a gage length of 1.42 inch may be measured with a systematic error not exceeding 4 percent and a mean observational error of the order of + or minus 0.000006. The maximum observed error in strain was of the order of 0.00006. The directions of principal strains for unidirectional stress were measured with the adaptor with an average error of the order of 1 degree.

  16. The humoral pattern recognition molecule PTX3 is a key component of innate immunity against urinary tract infection.

    PubMed

    Jaillon, Sébastien; Moalli, Federica; Ragnarsdottir, Bryndis; Bonavita, Eduardo; Puthia, Manoj; Riva, Federica; Barbati, Elisa; Nebuloni, Manuela; Cvetko Krajinovic, Lidija; Markotic, Alemka; Valentino, Sonia; Doni, Andrea; Tartari, Silvia; Graziani, Giorgio; Montanelli, Alessandro; Delneste, Yves; Svanborg, Catharina; Garlanda, Cecilia; Mantovani, Alberto

    2014-04-17

    Immunity in the urinary tract has distinct and poorly understood pathophysiological characteristics and urinary tract infections (UTIs) are important causes of morbidity and mortality. We investigated the role of the soluble pattern recognition molecule pentraxin 3 (PTX3), a key component of the humoral arm of innate immunity, in UTIs. PTX3-deficient mice showed defective control of UTIs and exacerbated inflammation. Expression of PTX3 was induced in uroepithelial cells by uropathogenic Escherichia coli (UPEC) in a Toll-like receptor 4 (TLR4)- and MyD88-dependent manner. PTX3 enhanced UPEC phagocytosis and phagosome maturation by neutrophils. PTX3 was detected in urine of UTI patients and amounts correlated with disease severity. In cohorts of UTI-prone patients, PTX3 gene polymorphisms correlated with susceptibility to acute pyelonephritis and cystitis. These results suggest that PTX3 is an essential component of innate resistance against UTIs. Thus, the cellular and humoral arms of innate immunity exert complementary functions in mediating resistance against UTIs.

  17. The role of MicroRNAs miR-200b and miR-200c in TLR4 signaling and NF-κB activation

    PubMed Central

    Wendlandt, Erik B; Graff, Joel W; Gioannini, Theresa L; McCaffrey, Anton P; Wilson, Mary E

    2013-01-01

    Recognition of microbial products by members of the Toll-like receptor (TLR) family initiates intracellular signaling cascades that result in NF-κB activation and subsequent production of inflammatory cytokines. We explored the potential roles of microRNAs (miRNAs) in regulating TLR pathways. A target analysis approach to the TLR4 pathway adaptor molecules identified several putative targets of miR-200a, miR-200b and miR-200c. miRNA mimics were co-transfected with a NF-κB activity reporter plasmid into HEK293 cells stably expressing TLR4 (HEK293-TLR4). Mimics of both miR-200b and miR-200c, but not miR-200a, decreased NF-κB reporter activity in either untreated cells or in cells treated with endotoxin:MD2 as a TLR4 agonist. Transfection of HEK293-TLR4 cells with miR-200b or miR-200c significantly decreased expression of MyD88, whereas TLR4, IRAK-1 and TRAF-6 mRNAs were unaffected. When miR-200b or miR-200c mimics were transfected into the differentiated monocytic THP-1 cell line, the abundance of MyD88 transcripts, as well as LPS-induced expression of the pro-inflammatory molecules IL-6, CXCL9 and TNF-α were diminished. These data define miRNAs miR-200b and miR-200c as factors that modify the efficiency of TLR4 signaling through the MyD88-dependent pathway and can thus affect host innate defenses against microbial pathogens. PMID:22522429

  18. The structure and polymerase-recognition mechanism of the crucial adaptor protein AND-1 in the human replisome.

    PubMed

    Guan, Chengcheng; Li, Jun; Sun, Dapeng; Liu, Yingfang; Liang, Huanhuan

    2017-04-05

    DNA replication in eukaryotic cells is performed by a multi-protein complex called the replisome, which consists of helicases, polymerases and adaptor molecules. Human acidic nucleoplasmic DNA-binding protein 1 (AND-1), also known as WD repeat and HMG-box DNA binding protein 1 (WDHD1), is an adaptor molecule crucial for DNA replication. While structural information for the AND-1 yeast ortholog is available, the mechanistic details for how human AND-1 protein anchors the lagging-strand DNA polymerase α (Pol α) to the DNA helicase complex (Cdc45-MCM2-7-GINS, CMG) await elucidation. Here, we report the structures of the N-terminal WD40 and SepB domains of human AND-1, as well as a biochemical analysis of the C-terminal HMG domain. We show that AND-1 exists as a homo-trimer mediated by the SepB domain. Mutant study results suggested that a positively charged groove within the SepB domain provides binding sites for Pol α. Different from its ortholog protein in budding yeast, human AND-1 is recruited to the CMG complex mediated by unknown participants other than GINS. In addition, we show that AND-1 binds to DNA in vitro, using its C-terminal HMG domain. In conclusion, our findings provide important insights into the mechanistic details of human AND-1 function, advancing our understanding of replisome formation during eukaryotic replication.

  19. The adaptor protein ARH escorts megalin to and through endosomes.

    PubMed

    Nagai, Masaaki; Meerloo, Timo; Takeda, Tetsuro; Farquhar, Marilyn Gist

    2003-12-01

    Megalin is an endocytic receptor that binds multiple ligands and is essential for many physiological processes such as brain development and uptake of proteins by the kidney tubule, yolk sac, and thyroid. The cytoplasmic tail of megalin contains two FXNPXY motifs. Autosomal recessive hypercholesterolemia (ARH) is an adaptor protein that binds to the FXNPXY motif of the low-density lipoprotein receptor as well as clathrin and AP-2. We found that ARH also binds to the first FXNPXY motif of megalin in two-hybrid, pull-down and coimmunoprecipitation assays. ARH colocalizes with megalin in clathrin coated pits and in recycling endosomes in the Golgi region. When cells are treated with nocodazole, the recycling endosomes containing megalin and ARH disperse. On internalization of megalin, ARH and megalin are first seen in clathrin coated pits followed by sequential localization in early endosomes and tubular recycling endosomes in the pericentriolar region followed by their reappearance at the cell surface. Expression of ARH in Madin-Darby canine kidney cells expressing megalin mini-receptors enhances megalin-mediated uptake of 125I-lactoferrin, a megalin ligand. These results show that ARH facilitates endocytosis of megalin, escorts megalin along its endocytic route and raise the possibility that transport through the endosomal system is selective and requires interaction with specific adaptor proteins.

  20. Toll-like receptor signaling for the induction of mucin expression by lipopolysaccharide in the hen vagina.

    PubMed

    Ariyadi, B; Isobe, N; Yoshimura, Y

    2014-03-01

    We previously reported that bacterial lipopolysaccharide (LPS), a ligand of Toll-like receptor 4 (TLR4), induced mucin mRNA to enhance the mucosal barrier in the hen vagina. The aim of this study was to determine the intracellular signaling molecules for that mucin induction, and the effect of molting and estrogen on their expression. The expression of TLR4, its adaptor molecules, and transcriptional factors in the vaginal mucosa of laying and molting hens treated with or without estradiol was examined by reverse-transcription PCR. The expression of mucin in the cultured mucosal tissue stimulated by LPS together with inhibitors of transcriptional factors was analyzed by quantitative reverse-transcription PCR. The expression of TLR4, its adaptor molecule, namely, myeloid differentiation factor 88 (MyD88) or Toll-interleukin 1 receptor domain-containing adaptor-inducing IFN-β (TRIF), and transcriptional factors, namely, cFos and cJun, declined in molting hens compared with that in laying hens, and were upregulated by estradiol. In vagina of laying hens, mucin expression was upregulated by LPS, whereas it was suppressed by inhibitors of transcriptional factors, namely, ALLN (an inhibitor of IκB proteolysis), BAY-117085 (an NFκB inhibitor), U0126 [a mitogen-activated protein kinase (MAPK) inhibitor], and transhinone IIA [an activated protein 1 (AP-1) inhibitor]. These results suggest that a MyD88-dependent pathway downstream of TLR4 and transcriptional factors of NFκB and AP-1 participate in the induction of mucin expression by LPS in the vaginal mucosa. These signaling functions may decline during molting owing to the decline in the level of circulating estrogen. Such mucin expression system may play a role in the mucosal barrier against infection in the vaginal mucosa.

  1. MAP1S Protein Regulates the Phagocytosis of Bacteria and Toll-like Receptor (TLR) Signaling.

    PubMed

    Shi, Ming; Zhang, Yifan; Liu, Leyuan; Zhang, Tingting; Han, Fang; Cleveland, Joseph; Wang, Fen; McKeehan, Wallace L; Li, Yu; Zhang, Dekai

    2016-01-15

    Phagocytosis is a critical cellular process for innate immune defense against microbial infection. The regulation of phagocytosis process is complex and has not been well defined. An intracellular molecule might regulate cell surface-initiated phagocytosis, but the underlying molecular mechanism is poorly understood (1). In this study, we found that microtubule-associated protein 1S (MAP1S), a protein identified recently that is involved in autophagy (2), is expressed primarily in macrophages. MAP1S-deficient macrophages are impaired in the phagocytosis of bacteria. Furthermore, we demonstrate that MAP1S interacts directly with MyD88, a key adaptor of Toll-like receptors (TLRs), upon TLR activation and affects the TLR signaling pathway. Intriguingly, we also observe that, upon TLR activation, MyD88 participates in autophagy processing in a MAP1S-dependent manner by co-localizing with MAP1 light chain 3 (MAP1-LC3 or LC3). Therefore, we reveal that an intracellular autophagy-related molecule of MAP1S controls bacterial phagocytosis through TLR signaling.

  2. Hantaan virus triggers TLR4-dependent innate immune responses.

    PubMed

    Yu, Hai-Tao; Jiang, Hong; Zhang, Ye; Nan, Xue-Ping; Li, Yu; Wang, Wei; Jiang, Wei; Yang, Dong-Qiang; Su, Wen-Jing; Wang, Jiu-Ping; Wang, Ping-Zhong; Bai, Xue-Fan

    2012-10-01

    The innate immune response induced by Hantavirus is responsible for endothelial cell dysfunction and viral pathogenicity. Recent studies demonstrate that TLR4 expression is upregulated and mediates the secretion of several cytokines in Hantaan virus (HTNV)-infected endothelial cells. To examine viral interactions with host endothelial cells and characterize the innate antiviral responses associated with Toll-like receptors, we selected TLR4 as the target molecule to investigate anti-hantavirus immunity. TLR4 mRNA-silenced EVC-304 (EVC-304 TLR4-) cells and EVC-304 cells were used to investigate signaling molecules downstream of TLR4. The expression of the adaptor protein TRIF was higher in HTNV-infected EVC-304 cells than in EVC-304 TLR4- cells. However, there was no apparent difference in the expression of MyD88 in either cell line. The transcription factors for NF-κB and IRF-3 were translocated from the cytoplasm into the nucleus in HTNV-infected EVC-304 cells, but not in HTNV-infected EVC-304 TLR4- cells. Our results demonstrate that TLR4 may play an important role in the antiviral immunity of the host against HTNV infection through an MyD88-independent signaling pathway.

  3. A Big-Five Personality Profile of the Adaptor and Innovator.

    ERIC Educational Resources Information Center

    Kwang, Ng Aik; Rodrigues, Daphne

    2002-01-01

    A study explored the relationship between two creative types (adaptor and innovator) and the Big Five personality traits (extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience), in 164 teachers in Singapore. Adaptors were significantly more conscientious than innovators, while innovators were significantly more…

  4. 21 CFR 870.4290 - Cardiopulmonary bypass adaptor, stopcock, manifold, or fitting.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., or fitting. 870.4290 Section 870.4290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 870.4290 Cardiopulmonary bypass adaptor, stopcock, manifold, or fitting. (a) Identification. A cardiopulmonary bypass adaptor, stopcock, manifold, or fitting is a device used in cardiovascular...

  5. Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump

    PubMed Central

    Hinchliffe, Philip; Greene, Nicholas P.; Paterson, Neil G.; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2014-01-01

    Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal. PMID:24996185

  6. DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides.

    PubMed

    Dowler, S; Currie, R A; Downes, C P; Alessi, D R

    1999-08-15

    We have identified a novel 280 amino acid protein which contains a putative myristoylation site at its N-terminus followed by an Src homology (SH2) domain and a pleckstrin homology (PH) domain at its C-terminus. It has been termed dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1). DAPP1 is widely expressed and exhibits high-affinity interactions with PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2), but not with other phospholipids tested. These observations predict that DAPP1 will interact with both tyrosine phosphorylated proteins and 3-phosphoinositides and may therefore play a role in regulating the location and/or activity of such proteins(s) in response to agonists that elevate PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2).

  7. SIGIRR inhibits toll-like receptor 4, 5, 9-mediated immune responses in human airway epithelial cells.

    PubMed

    Zhang, Chun; Wu, Xueling; Zhao, Yunfeng; Deng, Zhaoxia; Qian, Guisheng

    2011-01-01

    Human airway epithelial cells (HAEC) may contribute to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) through toll-like receptors (TLRs)-mediated molecular mechanisms. TLRs exist on the surface of HAEC where binding to their cognate ligands initiates airway inflammation. Single immunoglobulin interleukin-1 receptor-related protein (SIGIRR) is a member of the toll-interleukin-1 receptor (TIR) family that can negatively modulate the immune response. We carried out studies to characterize SIGIRR modulation of TLR-mediated immune response in HAEC and to define its mechanisms of action. Following treatment with various concentrations of LPS, flagellin and CpG DNA, the levels of cognate TLRs 4, 5, and 9 were measured in the supernatants of HAEC over-expressing the SIGIRR molecule. Moreover, the interaction of the TLR adaptor myeloid differentiation factor 88 (MyD88) with SIGIRR in response to LPS-, flagellin- and CpG DNA-stimulation was examined by co-immunoprecipitation. The findings from this study revealed that overexpression of SIGIRR in HAEC stimulated by LPS, flagellin or CpG DNA resulted in attenuated production of the inflammatory mediators IL-6 and TNF-α. This attenuation was not the result of decreased expression of TLR4, 5 or 9, but rather a sequestration of MyD88 to the TLRs. In conclusion, SIGIRR can inhibit TLR4, 5, and 9-mediated immune responses in HAEC and may be a valuable therapeutic target for the prevention of ALI/ARDS.

  8. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case.

    PubMed

    Halova, Ivana; Draber, Petr

    2016-01-01

    The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.

  9. The p66(Shc) adaptor protein controls oxidative stress response in early bovine embryos.

    PubMed

    Betts, Dean H; Bain, Nathan T; Madan, Pavneesh

    2014-01-01

    The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2-4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2-4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.

  10. Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1.

    PubMed

    Ren, Xuefeng; Farías, Ginny G; Canagarajah, Bertram J; Bonifacino, Juan S; Hurley, James H

    2013-02-14

    AP-1 is a clathrin adaptor complex that sorts cargo between the trans-Golgi network and endosomes. AP-1 recruitment to these compartments requires Arf1-GTP. The crystal structure of the tetrameric core of AP-1 in complex with Arf1-GTP, together with biochemical analyses, shows that Arf1 activates cargo binding by unlocking AP-1. Unlocking is driven by two molecules of Arf1 that bridge two copies of AP-1 at two interaction sites. The GTP-dependent switch I and II regions of Arf1 bind to the N terminus of the β1 subunit of one AP-1 complex, while the back side of Arf1 binds to the central part of the γ subunit trunk of a second AP-1 complex. A third Arf1 interaction site near the N terminus of the γ subunit is important for recruitment, but not activation. These observations lead to a model for the recruitment and activation of AP-1 by Arf1.

  11. Probing heterobivalent binding to the endocytic AP-2 adaptor complex by DNA-based spatial screening.

    PubMed

    Diezmann, F; von Kleist, L; Haucke, V; Seitz, O

    2015-08-07

    The double helical DNA scaffold offers a unique set of properties, which are particularly useful for studies of multivalency in biomolecular interactions: (i) multivalent ligand displays can be formed upon nucleic acid hybridization in a self-assembly process, which facilitates spatial screening (ii) valency and spatial arrangement of the ligand display can be precisely controlled and (iii) the flexibility of the ligand display can be adjusted by integrating nick sites and unpaired template regions. Herein we describe the use of DNA-based spatial screening for the characterization of the adaptor complex 2 (AP-2), a central interaction hub within the endocytic protein network in clathrin-mediated endocytosis. AP-2 is comprised of a core domain and two, so-called appendage domains, the α- and the β2-ear, which associate with cytoplasmatic proteins required for the formation or maturation of clathrin/AP-2 coated pits. Each appendage domain has two binding grooves which recognize distinct peptide motives with micromolar affinity. This provides opportunities for enhanced interactions with protein molecules that contain two (or more) different peptide motives. To determine whether a particular, spatial arrangement of binding motifs is required for high affinity binding we probed the distance-affinity relationships by means of DNA-programmed spatial screening with self-assembled peptide-DNA complexes. By using trimolecular and tetramolecular assemblies two different peptides were positioned in 2-22 nucleotide distance. The binding data obtained with both recombinant protein in well-defined buffer systems and native AP-2 in brain extract suggests that the two binding sites of the AP-2 α-appendage can cooperate to provide up to 40-fold enhancement of affinity compared to the monovalent interaction. The distance between the two recognized peptide motives was less important provided that the DNA duplex segments were connected by flexible, single strand segments. By

  12. RIAM (Rap1-interacting adaptor molecule) regulates complement-dependent phagocytosis.

    PubMed

    Medraño-Fernandez, Iria; Reyes, Raquel; Olazabal, Isabel; Rodriguez, Elena; Sanchez-Madrid, Francisco; Boussiotis, Vassiliki A; Reche, Pedro A; Cabañas, Carlos; Lafuente, Esther M

    2013-07-01

    Phagocytosis mediated by the complement receptor CR3 (also known as integrin αMß2 or Mac-1) is regulated by the recruitment of talin to the cytoplasmic tail of the ß2 integrin subunit. Talin recruitment to this integrin is dependent on Rap1 activation. However, the mechanism by which Rap1 regulates this event and CR3-dependent phagocytosis remains largely unknown. In the present work, we examined the role of the Rap1 effector RIAM, a talin-binding protein, in the regulation of complement-mediated phagocytosis. Using the human myeloid cell lines HL-60 and THP-1, we determined that knockdown of RIAM impaired αMß2 integrin affinity changes induced by stimuli fMLP and LPS. Phagocytosis of complement-opsonized RBC particles, but not of IgG-opsonized RBC particles, was impaired in RIAM knockdown cells. Rap1 activation via EPAC induced by 8-pCPT-2'-O-Me-cAMP resulted in an increase of complement-mediated phagocytosis that was abrogated by knockdown of RIAM in HL-60 and THP-1 cell lines and in macrophages derived from primary monocytes. Furthermore, recruitment of talin to ß2 integrin during complement-mediated phagocytosis was reduced in RIAM knockdown cells. These results indicate that RIAM is a critical component of the phagocytosis machinery downstream of Rap1 and mediates its function by recruiting talin to the phagocytic complement receptors.

  13. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING

    DOE PAGES

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J.; ...

    2015-07-06

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2'3'-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2'3'-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. In this paper, we show that 2'3'-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Finally, our results demonstrate that analysesmore » of free-ligand conformations can be as important as analyses of protein conformations in understanding protein–ligand interactions.« less

  14. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING

    PubMed Central

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J.; Chen, Chuo

    2015-01-01

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2′3′-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2′3′-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. Here we show that 2′3′-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Our results demonstrate that analyses of free-ligand conformations can be as important as analyses of protein conformations in understanding protein–ligand interactions. PMID:26150511

  15. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING

    SciTech Connect

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J.; Chen, Chuo

    2015-07-06

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2'3'-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2'3'-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. In this paper, we show that 2'3'-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Finally, our results demonstrate that analyses of free-ligand conformations can be as important as analyses of protein conformations in understanding protein–ligand interactions.

  16. Adaptor Protein 1A Facilitates Dengue Virus Replication

    PubMed Central

    Yasamut, Umpa; Tongmuang, Nopprarat; Yenchitsomanus, Pa-thai; Junking, Mutita; Noisakran, Sansanee; Puttikhunt, Chunya; Chu, Justin Jang Hann; Limjindaporn, Thawornchai

    2015-01-01

    Rearrangement of membrane structure induced by dengue virus (DENV) is essential for replication, and requires host cellular machinery. Adaptor protein complex (AP)-1 is a host component, which can be recruited to components required for membrane rearrangement. Therefore, dysfunction of AP-1 may affect membrane organization, thereby decreasing replication of virus in infected cells. In the present study, AP-1-dependent traffic inhibitor inhibited DENV protein expression and virion production. We further clarified the role of AP-1A in the life cycle of DENV by RNA interference. AP-1A was not involved in DENV entry into cells. However, it facilitated DENV RNA replication. Viral RNA level was reduced significantly in Huh7 cells transfected with AP-1A small interfering RNA (siRNA) compared with control siRNA. Transfection of naked DENV viral RNA into Huh7 cells transfected with AP-1A siRNA resulted in less viral RNA and virion production than transfection into Huh7 cells transfected with control siRNA. Huh7 cells transfected with AP-1A siRNA showed greater modification of membrane structures and fewer vesicular packets compared with cells transfected with control siRNA. Therefore, AP-1A may partly control DENV-induced rearrangement of membrane structures required for viral replication. PMID:26090672

  17. A dual-band adaptor for infrared imaging

    SciTech Connect

    McLean, A. G.; Ahn, J-W.; Maingi, R.; Gray, T. K.; Roquemore, A. L.

    2012-05-15

    A novel imaging adaptor providing the capability to extend a standard single-band infrared (IR) camera into a two-color or dual-band device has been developed for application to high-speed IR thermography on the National Spherical Tokamak Experiment (NSTX). Temperature measurement with two-band infrared imaging has the advantage of being mostly independent of surface emissivity, which may vary significantly in the liquid lithium divertor installed on NSTX as compared to that of an all-carbon first wall. In order to take advantage of the high-speed capability of the existing IR camera at NSTX (1.6-6.2 kHz frame rate), a commercial visible-range optical splitter was extensively modified to operate in the medium wavelength and long wavelength IR. This two-band IR adapter utilizes a dichroic beamsplitter, which reflects 4-6 {mu}m wavelengths and transmits 7-10 {mu}m wavelength radiation, each with >95% efficiency and projects each IR channel image side-by-side on the camera's detector. Cutoff filters are used in each IR channel, and ZnSe imaging optics and mirrors optimized for broadband IR use are incorporated into the design. In-situ and ex-situ temperature calibration and preliminary data of the NSTX divertor during plasma discharges are presented, with contrasting results for dual-band vs. single-band IR operation.

  18. A dual-band adaptor for infrared imaging

    SciTech Connect

    McLean, Adam G; Ahn, J.W.; Maingi, Rajesh; Gray, T. K.; Roquemore, L.

    2012-01-01

    A novel imaging adaptor providing the capability to extend a standard single-band infrared (IR) camera into a two-color or dual-band device has been developed for application to high-speed IR thermography on the National Spherical Tokamak Experiment (NSTX). Temperature measurement with two-band infrared imaging has the advantage of being mostly independent of surface emissivity, which may vary significantly in the liquid lithium divertor installed on NSTX as compared to that of an all-carbon first wall. In order to take advantage of the high-speed capability of the existing IR camera at NSTX (1.6-6.2 kHz frame rate), a commercial visible-range optical splitter was extensively modified to operate in the medium wavelength and long wavelength IR. This two-band IR adapter utilizes a dichroic beamsplitter, which reflects 4-6 mu m wavelengths and transmits 7-10 mu m wavelength radiation, each with >95% efficiency and projects each IR channel image side-by-side on the camera's detector. Cutoff filters are used in each IR channel, and ZnSe imaging optics and mirrors optimized for broadband IR use are incorporated into the design. In-situ and ex-situ temperature calibration and preliminary data of the NSTX divertor during plasma discharges are presented, with contrasting results for dual-band vs. single-band IR operation.

  19. Alternative Splicing in CaV2.2 Regulates Neuronal Trafficking via Adaptor Protein Complex-1 Adaptor Protein Motifs

    PubMed Central

    Macabuag, Natsuko

    2015-01-01

    N-type voltage-gated calcium (CaV2.2) channels are expressed in neurons and targeted to the plasma membrane of presynaptic terminals, facilitating neurotransmitter release. Here, we find that the adaptor protein complex-1 (AP-1) mediates trafficking of CaV2.2 from the trans-Golgi network to the cell surface. Examination of splice variants of CaV2.2, containing either exon 37a (selectively expressed in nociceptors) or 37b in the proximal C terminus, reveal that canonical AP-1 binding motifs, YxxΦ and [DE]xxxL[LI], present only in exon 37a, enhance intracellular trafficking of exon 37a-containing CaV2.2 to the axons and plasma membrane of rat DRG neurons. Finally, we identify differential effects of dopamine-2 receptor (D2R) and its agonist-induced activation on trafficking of CaV2.2 isoforms. D2R slowed the endocytosis of CaV2.2 containing exon 37b, but not exon 37a, and activation by the agonist quinpirole reversed the effect of the D2R. Our work thus reveals key mechanisms involved in the trafficking of N-type calcium channels. SIGNIFICANCE STATEMENT CaV2.2 channels are important for neurotransmitter release, but how they are trafficked is still poorly understood. Here, we describe a novel mechanism for trafficking of CaV2.2 from the trans-Golgi network to the cell surface which is mediated by the adaptor protein AP-1. Alternative splicing of exon 37 produces CaV2.2-exon 37a, selectively expressed in nociceptors, or CaV2.2-exon 37b, which is the major splice isoform. Our study reveals that canonical AP-1 binding motifs (YxxΦ and [DE]xxxL[LI]), present in exon 37a, but not 37b, enhance intracellular trafficking of exon 37a-containing CaV2.2 to axons and plasma membrane of DRG neurons. Interaction of APs with CaV2.2 channels may also be key underlying mechanisms for differential effects of the dopamine D2 receptor on trafficking of CaV2.2 splice variants. PMID:26511252

  20. Ascent Heating Thermal Analysis on Spacecraft Adaptor Fairings

    NASA Technical Reports Server (NTRS)

    Wang, Xiao Yen; Yuko, James; Motil, Brian

    2011-01-01

    When the Crew Exploration Vehicle (CEV) is launched, the spacecraft adaptor (SA) fairings that cover the CEV service module (SM) are exposed to aero heating. Thermal analysis is performed to compute the fairing temperatures and to investigate whether the temperatures are within the material limits for nominal ascent aeroheating case. The ascent heating is analyzed by using computational fluid dynamics (CFD) and engineering codes at Marshall Space Flight Center. The aeroheating environment data used for this work is known as Thermal Environment 3 (TE3) heating data. One of the major concerns is with the SA fairings covering the CEV SM and the SM/crew launch vehicle (CLV) flange interface. The TE3 heating rate is a function of time, wall temperature, and the spatial locations. The implementation of the TE3 heating rate as boundary conditions in the thermal analysis becomes challenging. The ascent heating thermal analysis on SA fairings and SM/CLV flange interface are performed using two commercial software packages: Cullimore & Ring (C&R) Thermal Desktop (TD) 5.1 and MSC Patran 2007r1 b. TD is the pre-and post-processor for SINDA, which is a finite-difference-based solver. In TD, the geometry is built and meshed, the boundary conditions are defined, and then SINDA is used to compute temperatures. MSC Pthermal is a finite-element- based thermal solver. MSC Patran is the pre- and post-processor for Pthermal. Regarding the boundary conditions, the convection, contact resistance, and heat load can be imposed in different ways in both programs. These two software packages are used to build the thermal model for the same analysis to validate each other and show the differences in the modeling details.

  1. Inclined selective plane illumination microscopy adaptor for conventional microscopes.

    PubMed

    Cutrale, Francesco; Gratton, Enrico

    2012-11-01

    Driven by the biological sciences, there is an increased need for imaging modalities capable of live cell imaging with high spatial and temporal resolution. To achieve this goal in a comprehensive manner, three-dimensional acquisitions are necessary. Ideal features of a modern microscope system should include high imaging speed, high contrast ratio, low photo-bleaching and photo-toxicity, good resolution in a 3D context, and mosaic acquisition for large samples. Given the importance of collecting data in live sample further increases the technical challenges required to solve these issues. This work presents a practical version of a microscopy method, Selective Plane Illumination Microscopy re-introduced by Huisken et al. (Science2004,305,1007-1009). This method is gaining importance in the biomedical field, but its use is limited by difficulties associated with unconventional microscope design which employs two objectives and a particular kind of sample preparation needed to insert the sample between the objectives. Based on the selective plane illumination principle but with a design similar to the Total Internal Reflection Fluorescence microscope, Dunsby (Dunsby, Opt Express 2008,16,20306-20316) demonstrated the oblique plane microscope (OPM) using a single objective which uses conventional sample preparation protocols. However, the Dunsby instrument was not intended to be part of a commercial microscope. In this work, we describe a system with the advantages of OPM and that can be used as an adaptor to commonly used microscopes, such as IX-71 Olympus, simplifying the construction of the OPM and increasing performance of a conventional microscope. We named our design inclined selective plane illumination microscope (iSPIM).

  2. The adaptor 3BP2 is required for KIT receptor expression and human mast cell survival

    PubMed Central

    Ainsua-Enrich, Erola; Serrano-Candelas, Eva; Álvarez-Errico, Damiana; Picado, César; Sayós, Joan; Rivera, Juan; Martín, Margarita

    2015-01-01

    3BP2 is a cytoplasmic adaptor protein that acts as a positive regulator in mast cell FcεRI-dependent signaling. The KIT receptor whose ligand is the stem cell factor (SCF) is necessary for mast cell development, proliferation and survival as well as for optimal IgE-dependent signal. Activating mutations in KIT have been associated with several diseases including mastocytosis. In the present work, we found that 3BP2 silencing impairs KIT signaling pathways, thus affecting PI3K and MAP kinase pathways in human mast cells from HMC-1, LAD2 (human mast cell lines) and CD34+-derived mast cells. Unexpectedly, silencing of 3BP2 reduces KIT expression in normal human mast cells as well as in HMC-1 cells where KIT is mutated, thus increasing cellular apoptosis and caspase 3/7 activity. 3BP2 silencing reduces KIT transcription expression levels. Interestingly, 3BP2 silencing decreased MITF expression, a transcription factor involved in KIT expression. Reconstitution of 3BP2 in knockdown cells leads to reversal of KIT expression as well as survival phenotype. Accordingly MITF reconstitution enhances KIT expression levels in 3BP2 silenced cells. Moreover, downregulation of KIT expression by miRNA221 overexpression or the proteasome inhibitor bortezomib also reduced 3BP2 and MITF expression. Furthermore, KIT tyrosine activity inhibition reduced 3BP2 and MITF expression, demonstrating again a tight and reciprocal relationship between these molecules. Taken together, our results show that 3BP2 regulates human mast cell survival and participates in KIT-mediated signal transduction by directly controlling KIT receptor expression, suggesting its potential as a therapeutic target in mast cell-mediated inflammatory diseases and deregulated KIT disorders. PMID:25810396

  3. Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature.

    PubMed

    Abou Jamra, Rami; Philippe, Orianne; Raas-Rothschild, Annick; Eck, Sebastian H; Graf, Elisabeth; Buchert, Rebecca; Borck, Guntram; Ekici, Arif; Brockschmidt, Felix F; Nöthen, Markus M; Munnich, Arnold; Strom, Tim M; Reis, Andre; Colleaux, Laurence

    2011-06-10

    Intellectual disability inherited in an autosomal-recessive fashion represents an important fraction of severe cognitive-dysfunction disorders. Yet, the extreme heterogeneity of these conditions markedly hampers gene identification. Here, we report on eight affected individuals who were from three consanguineous families and presented with severe intellectual disability, absent speech, shy character, stereotypic laughter, muscular hypotonia that progressed to spastic paraplegia, microcephaly, foot deformity, decreased muscle mass of the lower limbs, inability to walk, and growth retardation. Using a combination of autozygosity mapping and either Sanger sequencing of candidate genes or next-generation exome sequencing, we identified one mutation in each of three genes encoding adaptor protein complex 4 (AP4) subunits: a nonsense mutation in AP4S1 (NM_007077.3: c.124C>T, p.Arg42(∗)), a frameshift mutation in AP4B1 (NM_006594.2: c.487_488insTAT, p.Glu163_Ser739delinsVal), and a splice mutation in AP4E1 (NM_007347.3: c.542+1_542+4delGTAA, r.421_542del, p.Glu181Glyfs(∗)20). Adaptor protein complexes (AP1-4) are ubiquitously expressed, evolutionarily conserved heterotetrameric complexes that mediate different types of vesicle formation and the selection of cargo molecules for inclusion into these vesicles. Interestingly, two mutations affecting AP4M1 and AP4E1 have recently been found to cause cerebral palsy associated with severe intellectual disability. Combined with previous observations, these results support the hypothesis that AP4-complex-mediated trafficking plays a crucial role in brain development and functioning and demonstrate the existence of a clinically recognizable syndrome due to deficiency of the AP4 complex.

  4. The Exosome Is Recruited to RNA Substrates through Specific Adaptor Proteins.

    PubMed

    Thoms, Matthias; Thomson, Emma; Baßler, Jochen; Gnädig, Marén; Griesel, Sabine; Hurt, Ed

    2015-08-27

    The exosome regulates the processing, degradation, and surveillance of a plethora of RNA species. However, little is known about how the exosome recognizes and is recruited to its diverse substrates. We report the identification of adaptor proteins that recruit the exosome-associated helicase, Mtr4, to unique RNA substrates. Nop53, the yeast homolog of the tumor suppressor PICT1, targets Mtr4 to pre-ribosomal particles for exosome-mediated processing, while a second adaptor Utp18 recruits Mtr4 to cleaved rRNA fragments destined for degradation by the exosome. Both Nop53 and Utp18 contain the same consensus motif, through which they dock to the "arch" domain of Mtr4 and target it to specific substrates. These findings show that the exosome employs a general mechanism of recruitment to defined substrates and that this process is regulated through adaptor proteins.

  5. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins.

    PubMed

    Cirl, Christine; Wieser, Andreas; Yadav, Manisha; Duerr, Susanne; Schubert, Sören; Fischer, Hans; Stappert, Dominik; Wantia, Nina; Rodriguez, Nuria; Wagner, Hermann; Svanborg, Catharina; Miethke, Thomas

    2008-04-01

    Pathogenic microbes have evolved sophisticated molecular strategies to subvert host defenses. Here we show that virulent bacteria interfere directly with Toll-like receptor (TLR) function by secreting inhibitory homologs of the Toll/interleukin-1 receptor (TIR) domain. Genes encoding TIR domain containing-proteins (Tcps) were identified in Escherichia coli CFT073 (TcpC) and Brucella melitensis (TcpB). We found that TcpC is common in the most virulent uropathogenic E. coli strains and promotes bacterial survival and kidney pathology in vivo. In silico analysis predicted significant tertiary structure homology to the TIR domain of human TLR1, and we show that the Tcps impede TLR signaling through the myeloid differentiation factor 88 (MyD88) adaptor protein, owing to direct binding of Tcps to MyD88. Tcps represent a new class of virulence factors that act by inhibiting TLR- and MyD88-specific signaling, thus suppressing innate immunity and increasing virulence.

  6. Innate immunity and intestinal microbiota in the development of Type 1 diabetes.

    PubMed

    Wen, Li; Ley, Ruth E; Volchkov, Pavel Yu; Stranges, Peter B; Avanesyan, Lia; Stonebraker, Austin C; Hu, Changyun; Wong, F Susan; Szot, Gregory L; Bluestone, Jeffrey A; Gordon, Jeffrey I; Chervonsky, Alexander V

    2008-10-23

    Type 1 diabetes (T1D) is a debilitating autoimmune disease that results from T-cell-mediated destruction of insulin-producing beta-cells. Its incidence has increased during the past several decades in developed countries, suggesting that changes in the environment (including the human microbial environment) may influence disease pathogenesis. The incidence of spontaneous T1D in non-obese diabetic (NOD) mice can be affected by the microbial environment in the animal housing facility or by exposure to microbial stimuli, such as injection with mycobacteria or various microbial products. Here we show that specific pathogen-free NOD mice lacking MyD88 protein (an adaptor for multiple innate immune receptors that recognize microbial stimuli) do not develop T1D. The effect is dependent on commensal microbes because germ-free MyD88-negative NOD mice develop robust diabetes, whereas colonization of these germ-free MyD88-negative NOD mice with a defined microbial consortium (representing bacterial phyla normally present in human gut) attenuates T1D. We also find that MyD88 deficiency changes the composition of the distal gut microbiota, and that exposure to the microbiota of specific pathogen-free MyD88-negative NOD donors attenuates T1D in germ-free NOD recipients. Together, these findings indicate that interaction of the intestinal microbes with the innate immune system is a critical epigenetic factor modifying T1D predisposition.

  7. Impaired Cd14 and Cd36 expression, bacterial clearance, and Toll-like receptor 4-Myd88 signaling in caveolin-1-deleted macrophages and mice.

    PubMed

    Tsai, Tsung-Huang; Chen, Shu-Fen; Huang, Tai-Yu; Tzeng, Chun-Fu; Chiang, Ann-Shyn; Kou, Yu Ru; Lee, Tzong-Shyuan; Shyue, Song-Kun

    2011-01-01

    An overwhelming immune response, particularly from macrophages, with gram-negative bacteria-induced sepsis plays a critical role in survival of and organ damage in infected patients. Caveolin-1 (Cav-1), a major structure protein of caveolae, regulates many cellular functions. We examined the vital role of Cav-1 in the response of macrophages and mice to bacteria or LPS exposure. Deletion of Cav-1 decreased the expression of CD14 and CD36 during macrophage differentiation and suppressed their phagocytotic ability. As well, the ability to kill bacteria was inhibited in Cav-1 macrophages and mice peritoneal cavity, tissue, and plasma, which was partly attributed to hindered expression of iNOS induced by bacteria or LPS. Furthermore, deletion of Cav-1 attenuated the expression of Toll-like receptor 4 and myeloid differentiation factor 88 and the activation of nuclear factor κB, all of which impeded the production of inflammatory cytokines in response to bacterial exposure in Cav-1 macrophages and mice. Thus, Cav-1 participates in the regulation of CD14, CD36, Toll-like receptor 4 and myeloid differentiation factor 88 protein expression and is crucial for the immune response of macrophages to bacterial infection. Cav-1 may be a therapeutic target in the treatment of sepsis.

  8. Bovine viral diarrhea virus type 2 in vivo infection modulates TLR4 responsiveness in differentiated Myeloid cells which is associated with decreased MyD88 expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine viral diarrhea virus (BVDV) causes clinical signs in cattle ranging from mild to severe acute infection which can lead to increased susceptibility to secondary bacteria. In this study we examined the effects of BVDV genotype 2 (BVDV2) infection on the ability of myeloid lineage cells derived...

  9. IL-33-induced alterations in murine intestinal function and cytokine responses are MyD88, STAT6, and IL-13-dependent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    IL-33 is a recently identified cytokine member of the IL-1 family. The biological activities of IL-33 are associated with promotion of Th2 and inhibition of Th1/Th17 immune responses. Exogenous IL-33 induces a typical “type 2” immune response in the gastrointestinal tract, yet the underlying mechani...

  10. Therapeutic Inhibition of Pro-Inflammatory Signaling and Toxicity to Staphylococcal Enterotoxin B by a Synthetic Dimeric BB-Loop Mimetic of MyD88

    DTIC Science & Technology

    2012-07-27

    C57BL/6 mice were obtained from Charles River (NCI-Frederick, Frederick, MD). Cell Isolation and Purification Peripheral blood mononuclear cells (MNC...7]. Consequently, both super- antigenic exotoxins (SEs) and bacterial LPS ( endotoxin ) have been implicated in the pathogenesis of TSS, supported by...enterotoxin B (SEB) and SEA was purchased from Porton Down, Inc. (Salisbury, UK) and stored at 250uC. SEB or SEA was endotoxin free and prepared under GMP

  11. An organized co-assembly of clathrin adaptors is essential for endocytosis.

    PubMed

    Skruzny, Michal; Desfosses, Ambroise; Prinz, Simone; Dodonova, Svetlana O; Gieras, Anna; Uetrecht, Charlotte; Jakobi, Arjen J; Abella, Marc; Hagen, Wim J H; Schulz, Joachim; Meijers, Rob; Rybin, Vladimir; Briggs, John A G; Sachse, Carsten; Kaksonen, Marko

    2015-04-20

    Clathrin-mediated endocytosis, the main trafficking route from the plasma membrane to the cytoplasm, is critical to many fundamental cellular processes. Clathrin, coupled to the membrane by adaptor proteins, is thought to play a major structural role in endocytosis by self-assembling into a cage-like lattice around the forming vesicle. Although clathrin adaptors are essential for endocytosis, little is known about their structural role in this process. Here we show that the membrane-binding domains of two conserved clathrin adaptors, Sla2 and Ent1, co-assemble in a PI(4,5)P2-dependent manner to form organized lattices on membranes. We determined the structure of the co-assembled lattice by electron cryo-microscopy and designed mutations that specifically impair the lattice formation in vitro. We show that these mutations block endocytosis in vivo. We suggest that clathrin adaptors not only link the polymerized clathrin to the membrane but also form an oligomeric structure, which is essential for membrane remodeling during endocytosis.

  12. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.

    PubMed

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M

    2016-03-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends.

  13. Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes.

    PubMed

    Theos, Alexander C; Tenza, Danièle; Martina, José A; Hurbain, Ilse; Peden, Andrew A; Sviderskaya, Elena V; Stewart, Abigail; Robinson, Margaret S; Bennett, Dorothy C; Cutler, Daniel F; Bonifacino, Juan S; Marks, Michael S; Raposo, Graça

    2005-11-01

    Specialized cells exploit adaptor protein complexes for unique post-Golgi sorting events, providing a unique model system to specify adaptor function. Here, we show that AP-3 and AP-1 function independently in sorting of the melanocyte-specific protein tyrosinase from endosomes to the melanosome, a specialized lysosome-related organelle distinguishable from lysosomes. AP-3 and AP-1 localize in melanocytes primarily to clathrin-coated buds on tubular early endosomes near melanosomes. Both adaptors recognize the tyrosinase dileucine-based melanosome sorting signal, and tyrosinase largely colocalizes with each adaptor on endosomes. In AP-3-deficient melanocytes, tyrosinase accumulates inappropriately in vacuolar and multivesicular endosomes. Nevertheless, a substantial fraction still accumulates on melanosomes, concomitant with increased association with endosomal AP-1. Our data indicate that AP-3 and AP-1 function in partially redundant pathways to transfer tyrosinase from distinct endosomal subdomains to melanosomes and that the AP-3 pathway ensures that tyrosinase averts entrapment on internal membranes of forming multivesicular bodies.

  14. SCIMP is a transmembrane non-TIR TLR adaptor that promotes proinflammatory cytokine production from macrophages

    PubMed Central

    Luo, Lin; Bokil, Nilesh J.; Wall, Adam A.; Kapetanovic, Ronan; Lansdaal, Natalie M.; Marceline, Faustine; Burgess, Belinda J.; Tong, Samuel J.; Guo, Zhong; Alexandrov, Kirill; Ross, Ian L.; Hibbs, Margaret L.; Stow, Jennifer L.; Sweet, Matthew J.

    2017-01-01

    Danger signals activate Toll-like receptors (TLRs), thereby initiating inflammatory responses. Canonical TLR signalling, via Toll/Interleukin-1 receptor domain (TIR)-containing adaptors and proinflammatory transcription factors such as NF-κB, occurs in many cell types; however, additional mechanisms are required for specificity of inflammatory responses in innate immune cells. Here we show that SCIMP, an immune-restricted, transmembrane adaptor protein (TRAP), promotes selective proinflammatory cytokine responses by direct modulation of TLR4. SCIMP is a non-TIR-containing adaptor, binding directly to the TLR4-TIR domain in response to lipopolysaccharide. In macrophages, SCIMP is constitutively associated with the Lyn tyrosine kinase, is required for tyrosine phosphorylation of TLR4, and facilitates TLR-inducible production of the proinflammatory cytokines IL-6 and IL-12p40. Point mutations in SCIMP abrogating TLR4 binding also prevent SCIMP-mediated cytokine production. SCIMP is, therefore, an immune-specific TLR adaptor that shapes host defence and inflammation. PMID:28098138

  15. EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cγ, Ca++, and Erk, leading to granule polarization.

    PubMed

    Pérez-Quintero, Luis-Alberto; Roncagalli, Romain; Guo, Huaijian; Latour, Sylvain; Davidson, Dominique; Veillette, André

    2014-04-07

    Ewing's sarcoma-associated transcript 2 (EAT-2) is an Src homology 2 domain-containing intracellular adaptor related to signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), the X-linked lymphoproliferative gene product. Both EAT-2 and SAP are expressed in natural killer (NK) cells, and their combined expression is essential for NK cells to kill abnormal hematopoietic cells. SAP mediates this function by coupling SLAM family receptors to the protein tyrosine kinase Fyn and the exchange factor Vav, thereby promoting conjugate formation between NK cells and target cells. We used a variety of genetic, biochemical, and imaging approaches to define the molecular and cellular mechanisms by which EAT-2 controls NK cell activation. We found that EAT-2 mediates its effects in NK cells by linking SLAM family receptors to phospholipase Cγ, calcium fluxes, and Erk kinase. These signals are triggered by one or two tyrosines located in the carboxyl-terminal tail of EAT-2 but not found in SAP. Unlike SAP, EAT-2 does not enhance conjugate formation. Rather, it accelerates polarization and exocytosis of cytotoxic granules toward hematopoietic target cells. Hence, EAT-2 promotes NK cell activation by molecular and cellular mechanisms distinct from those of SAP. These findings explain the cooperative and essential function of these two adaptors in NK cell activation.

  16. A novel conserved phosphotyrosine motif in the Drosophila fibroblast growth factor signaling adaptor Dof with a redundant role in signal transmission.

    PubMed

    Csiszar, Agnes; Vogelsang, Elisabeth; Beug, Hartmut; Leptin, Maria

    2010-04-01

    The fibroblast growth factor receptor (FGFR) signals through adaptors constitutively associated with the receptor. In Drosophila melanogaster, the FGFR-specific adaptor protein Downstream-of-FGFR (Dof) becomes phosphorylated upon receptor activation at several tyrosine residues, one of which recruits Corkscrew (Csw), the Drosophila homolog of SHP2, which provides a molecular link to mitogen-activated protein kinase (MAPK) activation. However, the Csw pathway is not the only link from Dof to MAPK. In this study, we identify a novel phosphotyrosine motif present in four copies in Dof and also found in other insect and vertebrate signaling molecules. We show that these motifs are phosphorylated and contribute to FGF signal transduction. They constitute one of three sets of phosphotyrosines that act redundantly in signal transmission: (i) a Csw binding site, (ii) four consensus Grb2 recognition sites, and (iii) four novel tyrosine motifs. We show that Src64B binds to Dof and that Src kinases contribute to FGFR-dependent MAPK activation. Phosphorylation of the novel tyrosine motifs is required for the interaction of Dof with Src64B. Thus, Src64B recruitment to Dof through the novel phosphosites can provide a new link to MAPK activation and other cellular responses. This may give a molecular explanation for the involvement of Src kinases in FGF-dependent developmental events.

  17. Bcl-XL cooperatively associates with the Bap31 complex in the endoplasmic reticulum, dependent on procaspase-8 and Ced-4 adaptor.

    PubMed

    Ng, F W; Shore, G C

    1998-02-06

    Bap31 is a polytopic integral membrane protein of the endoplasmic reticulum and forms a complex with Bcl-2/Bcl-XL and procaspase-8 (Ng, F. W. H., Nguyen, M., Kwan, T., Branton, P. E., Nicholson, W. D., Cromlish, J. A., and Shore, G. C. (1997) J. Cell Biol. 139, 327-338). In co-transfected human cells, procaspase-8 is capable of interacting with Ced-4, an important adaptor molecule in Caenorhabditis elegans that binds to and activates the C. elegans procaspase, proCed-3. Here, we show that the predicted death effector homology domain within the cytosolic region of Bap31 interacts with Ced-4 and contributes to recruitment of procaspase-8. Bcl-XL, which binds directly but weakly to the polytopic transmembrane region of Bap31, indirectly and cooperatively associates with the Bap31 cytosolic domain, dependent on the presence of procaspase-8 and Ced-4. Ced-4Deltac does not interact with Bcl-XL but rather displaces it from Bap31, suggesting that an endogenous Ced-4-like adaptor is a normal constituent of the Bap31 complex and is required for stable association of Bcl-XL with Bap31 in vivo. These findings indicate that Bap31 is capable of recruiting essential components of a core death regulatory machinery.

  18. p130Cas Scaffolds the Signalosome To Direct Adaptor-Effector Cross Talk during Kaposi's Sarcoma-Associated Herpesvirus Trafficking in Human Microvascular Dermal Endothelial Cells

    PubMed Central

    Bandyopadhyay, Chirosree; Veettil, Mohanan Valiya; Dutta, Sujoy

    2014-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface receptors, such as heparan sulfate, integrins (α3β1, αVβ3, and αVβ5), and EphrinA2 (EphA2), and activates focal adhesion kinase (FAK), Src, phosphoinositol 3-kinase (PI3-K), c-Cbl, and RhoA GTPase signal molecules early during lipid raft (LR)-dependent productive macropinocytic entry into human dermal microvascular endothelial cells. Our recent studies have identified CIB1 as a signal amplifier facilitating EphA2 phosphorylation and subsequent cytoskeletal cross talk during KSHV macropinocytosis. Although CIB1 lacks an enzymatic activity and traditional adaptor domain or known interacting sequence, it associated with the KSHV entry signal complex and the CIB1-KSHV association was sustained over 30 min postinfection. To identify factors scaffolding the EphA2-CIB1 signal axis, the role of major cellular scaffold protein p130Cas (Crk-associated substrate of Src) was investigated. Inhibitor and small interfering RNA (siRNA) studies demonstrated that KSHV induced p130Cas in an EphA2-, CIB1-, and Src-dependent manner. p130Cas and Crk were associated with KSHV, LRs, EphA2, and CIB1 early during infection. Live-cell microscopy and biochemical studies demonstrated that p130Cas knockdown did not affect KSHV entry but significantly reduced productive nuclear trafficking of viral DNA and routed KSHV to lysosomal degradation. p130Cas aided in scaffolding adaptor Crk to downstream guanine nucleotide exchange factor phospho-C3G possibly to coordinate GTPase signaling during KSHV trafficking. Collectively, these studies demonstrate that p130Cas acts as a bridging molecule between the KSHV-induced entry signal complex and the downstream trafficking signalosome in endothelial cells and suggest that simultaneous targeting of KSHV entry receptors with p130Cas would be an attractive potential avenue for therapeutic intervention in KSHV infection. IMPORTANCE Eukaryotic cell adaptor molecules

  19. The adaptor TRAF3 restrains the lineage determination of thymic regulatory T cells by modulating signaling via the receptor for IL-2.

    PubMed

    Yi, Zuoan; Lin, Wai Wai; Stunz, Laura L; Bishop, Gail A

    2014-09-01

    The number of Foxp3+ regulatory T cells (Treg cells) must be tightly controlled for efficient suppression of autoimmunity with no impairment of normal immune responses. Here we found that the adaptor TRAF3 was intrinsically required for restraining the lineage determination of thymic Treg cells. T cell-specific deficiency in TRAF3 resulted in a two- to threefold greater frequency of Treg cells, due to the more efficient transition of precursors of Treg cells into Foxp3+ Treg cells. TRAF3 dampened interleukin 2 (IL-2) signaling by facilitating recruitment of the tyrosine phosphatase TCPTP to the IL-2 receptor complex, which resulted in dephosphorylation of the signaling molecules Jak1 and Jak3 and negative regulation of signaling via Jak and the transcription factor STAT5. Our results identify a role for TRAF3 as an important negative regulator of signaling via the IL-2 receptor that affects the development of Treg cells.

  20. ER Adaptor SCAP Translocates and Recruits IRF3 to Perinuclear Microsome Induced by Cytosolic Microbial DNAs

    PubMed Central

    Yu, Huansha; Liu, Xing; Huang, Lulu; Wang, Qiang; Liu, Heng; Cui, Ye; Tang, Yijun; Zhang, Peng; Wang, Chen

    2016-01-01

    Stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS) induces the activation of TBK1 kinase and IRF3 transcription factor, upon sensing of microbial DNAs. How IRF3 is recruited onto the STING signalosome remains unknown. We report here that silencing of the ER adaptor SCAP markedly impairs the IRF3-responsive gene expression induced by STING. Scap knockdown mice are more susceptible to HSV-1 infection. Interestingly, SCAP translocates from ER, via Golgi, to perinuclear microsome in a STING-dependent manner. Mechanistically, the N-terminal transmembrane domain of SCAP interacts with STING, and the C-terminal cytosolic domain of SCAP binds to IRF3, thus recruiting IRF3 onto STING signalosome. Mis-localization of SCAP abolishes its antiviral function. Collectively, this study characterizes SCAP as an essential adaptor in the STING signaling pathway, uncovering a critical missing link in DNAs-triggered host antiviral responses. PMID:26900919

  1. Binding of AP-2 adaptor complex to brain membrane is regulated by phosphorylation of proteins

    SciTech Connect

    Alberdi, A. . E-mail: aalberdi@fcm.uncu.edu.ar; Sartor, T.; Sosa, M.A.

    2005-05-13

    Phosphorylation of proteins appears as a key process in early steps of clathrin coated vesicle formation. Here, we report that treatment of post-nuclear fraction with alkaline phosphatase induced redistribution of {alpha} subunits of AP-2 adaptor complex to cytosol and this effect was higher in the {alpha}2 subunit. A high serine phosphorylation status of {alpha} subunits correlated with the higher affinity of AP-2 to membranes. Using a simple binding assay, where membranes were incubated with either purified adaptors or cytosols, we observed an inhibitory effect of tyrphostin, a tyrosine kinase inhibitor, on the binding of AP-2 to membranes, but also an unexpected decrease induced by the phosphatase inhibitor cyclosporine. We also show an inhibitory effect of ATP mediated by cytosolic proteins, although it could not be related to the phosphorylation of AP-2, suggesting an action upstream a cascade of phosphorylations that participate in the regulation of the assembly of AP-2 to membranes.

  2. Use of Conversion Adaptors to Clone Antigen Genes in Lambda gt11

    DTIC Science & Technology

    1987-01-01

    gradients of 19, 30, and 50%. with 4 units ofT 4 DNA ligase for 60 min at Chromosomal DNA was prepared by dode- 16°C. Because the adaptor-insert...0.75 M and 6.5%. respectively. After chill- Biotec. Madison. WI) and 0.5 unit of T4 ing on ice for I h. the mixture was centri- DNA ligase , in 5ul of

  3. Identification of Cargo for Adaptor Protein (AP) Complexes 3 and 4 by Sucrose Gradient Profiling.

    PubMed

    Pertl-Obermeyer, Heidi; Wu, Xu Na; Schrodt, Jens; Müdsam, Christina; Obermeyer, Gerhard; Schulze, Waltraud X

    2016-09-01

    Intracellular vesicle trafficking is a fundamental process in eukaryotic cells. It enables cellular polarity and exchange of proteins between subcellular compartments such as the plasma membrane or the vacuole. Adaptor protein complexes participate in the vesicle formation by specific selection of the transported cargo. We investigated the role of the adaptor protein complex 3 (AP-3) and adaptor protein complex 4 (AP-4) in this selection process by screening for AP-3 and AP-4 dependent cargo proteins. Specific cargo proteins are expected to be mis-targeted in knock-out mutants of adaptor protein complex components. Thus, we screened for altered distribution profiles across a density gradient of membrane proteins in wild type versus ap-3β and ap-4β knock-out mutants. In ap-3β mutants, especially proteins with transport functions, such as aquaporins and plasma membrane ATPase, as well as vesicle trafficking proteins showed differential protein distribution profiles across the density gradient. In the ap-4β mutant aquaporins but also proteins from lipid metabolism were differentially distributed. These proteins also showed differential phosphorylation patterns in ap-3β and ap-4β compared with wild type. Other proteins, such as receptor kinases were depleted from the AP-3 mutant membrane system, possibly because of degradation after mis-targeting. In AP-4 mutants, membrane fractions were depleted for cytochrome P450 proteins, cell wall proteins and receptor kinases. Analysis of water transport capacity in wild type and mutant mesophyll cells confirmed aquaporins as cargo proteins of AP-3 and AP-4. The combination of organelle density gradients with proteome analysis turned out as a suitable experimental strategy for large-scale analyses of protein trafficking.

  4. Adaptor Scaffoldins: An Original Strategy for Extended Designer Cellulosomes, Inspired from Nature

    PubMed Central

    Stern, Johanna; Moraïs, Sarah; Lamed, Raphael

    2016-01-01

    ABSTRACT Designer cellulosomes consist of chimeric cohesin-bearing scaffoldins for the controlled incorporation of recombinant dockerin-containing enzymes. The largest designer cellulosome reported to date is a chimeric scaffoldin that contains 6 cohesins. This scaffoldin represented a technical limit of sorts, since adding another cohesin proved problematic, owing to resultant low expression levels, instability (cleavage) of the scaffoldin polypeptide, and limited numbers of available cohesin-dockerin specificities—the hallmark of designer cellulosomes. Nevertheless, increasing the number of enzymes integrated into designer cellulosomes is critical, in order to further enhance degradation of plant cell wall material. Adaptor scaffoldins comprise an intermediate type of scaffoldin that can both incorporate various enzymes and attach to an additional scaffoldin. Using this strategy, we constructed an efficient form of adaptor scaffoldin that possesses three type I cohesins for enzyme integration, a single type II dockerin for interaction with an additional scaffoldin, and a carbohydrate-binding module for targeting to the cellulosic substrate. In parallel, we designed a hexavalent scaffoldin capable of connecting to the adaptor scaffoldin by the incorporation of an appropriate type II cohesin. The resultant extended designer cellulosome comprised 8 recombinant enzymes—4 xylanases and 4 cellulases—thereby representing a potent enzymatic cocktail for solubilization of natural lignocellulosic substrates. The contribution of the adaptor scaffoldin clearly demonstrated that proximity between the two scaffoldins and their composite set of enzymes is crucial for optimized degradation. After 72 h of incubation, the performance of the extended designer cellulosome was determined to be approximately 70% compared to that of native cellulosomes. PMID:27048796

  5. The E3 ubiquitin ligase Nrdp1 'preferentially' promotes TLR-mediated production of type I interferon.

    PubMed

    Wang, Chen; Chen, Taoyong; Zhang, Jia; Yang, Mingjin; Li, Nan; Xu, Xiongfei; Cao, Xuetao

    2009-07-01

    E3 ubiquitin ligases are important in both innate and adaptive immunity. Here we report that Nrdp1, an E3 ubiquitin ligase, inhibited the production of proinflammatory cytokines but increased interferon-beta production in Toll-like receptor-triggered macrophages by suppressing adaptor MyD88-dependent activation of transcription factors NF-kappaB and AP-1 while promoting activation of the kinase TBK1 and transcription factor IRF3. Nrdp1 directly bound and polyubiquitinated MyD88 and TBK1, which led to degradation of MyD88 and activation of TBK1. Knockdown of Nrdp1 inhibited the degradation of MyD88 and the activation of TBK1 and IRF3. Nrdp1-transgenic mice showed resistance to lipopolysaccharide-induced endotoxin shock and to infection with vesicular stomatitis virus. Our data suggest that Nrdp1 functions as both an adaptor protein and an E3 unbiquitin ligase to regulate TLR responses in different ways.

  6. Differential Regulation of Clathrin and Its Adaptor Proteins during Membrane Recruitment for Endocytosis1[OPEN

    PubMed Central

    Wang, Chao; Hu, Tianwei; Yan, Xu; Meng, Tingting; Wang, Yutong; Wang, Qingmei; Zhang, Xiaoyue; Gu, Ying; Sánchez-Rodríguez, Clara; Gadeyne, Astrid; Lin, Jinxing

    2016-01-01

    In plants, clathrin-mediated endocytosis (CME) is dependent on the function of clathrin and its accessory heterooligomeric adaptor protein complexes, ADAPTOR PROTEIN2 (AP-2) and the TPLATE complex (TPC), and is negatively regulated by the hormones auxin and salicylic acid (SA). The details for how clathrin and its adaptor complexes are recruited to the plasma membrane (PM) to regulate CME, however, are poorly understood. We found that SA and the pharmacological CME inhibitor tyrphostin A23 reduce the membrane association of clathrin and AP-2, but not that of the TPC, whereas auxin solely affected clathrin membrane association, in Arabidopsis (Arabidopsis thaliana). Genetic and pharmacological experiments revealed that loss of AP2μ or AP2σ partially affected the membrane association of other AP-2 subunits and that the AP-2 subunit AP2σ, but not AP2μ, was required for SA- and tyrphostin A23-dependent inhibition of CME. Furthermore, we show that although AP-2 and the TPC are both required for the PM recruitment of clathrin in wild-type cells, the TPC is necessary for clathrin PM association in AP-2-deficient cells. These results indicate that developmental signals may differentially modulate the membrane recruitment of clathrin and its core accessory complexes to regulate the process of CME in plant cells. PMID:26945051

  7. Adaptor-dependent degradation of a cell-cycle regulator uses a unique substrate architecture.

    PubMed

    Rood, Keith L; Clark, Nathaniel E; Stoddard, Patrick R; Garman, Scott C; Chien, Peter

    2012-07-03

    In Caulobacter crescentus, the ClpXP protease degrades several crucial cell-cycle regulators, including the phosphodiesterase PdeA. Degradation of PdeA requires the response regulator CpdR and signals a morphological transition in concert with initiation of DNA replication. Here, we report the structure of a Per-Arnt-Sim (PAS) domain of PdeA and show that it is necessary for CpdR-dependent degradation in vivo and in vitro. CpdR acts as an adaptor, tethering the amino-terminal PAS domain to ClpXP and promoting recognition of the weak carboxyl-terminal degron of PdeA, a combination that ensures processive proteolysis. We identify sites on the PAS domain needed for CpdR recognition and find that one subunit of the PdeA dimer can be delivered to ClpXP by its partner. Finally, we show that improper stabilization of PdeA in vivo alters cellular behavior. These results introduce an adaptor/substrate pair for ClpXP and reveal broad diversity in adaptor-mediated proteolysis.

  8. Science Signaling Podcast for 12 July 2016: Adaptor proteins limit signaling.

    PubMed

    Wiley, H Steven; VanHook, Annalisa M

    2016-07-12

    This Podcast features an interview with Steven Wiley, senior author of a Research Article that appears in the 12 July 2016 issue of Science Signaling, about how the abundance of adaptor proteins and feedback regulators affect the flow of information downstream of the epidermal growth factor receptor (EGFR). Information flows through a signaling pathway by sequential interactions between core components of the pathway, many of which have enzymatic activity. Adaptor proteins do not directly participate in relaying the signal and do not have enzymatic activity, but are important for signaling because they facilitate interactions between the core components. Using quantitative methods, Shi et al demonstrated that core components of the EGFR pathway were highly abundant in both normal cells and cancer cells. However, adaptor proteins were present in much lower abundance in both cell types, indicating that it is the abundance of these proteins that limit signaling downstream of EGFR. The authors also found that differences in EGFR signaling between different cell types likely resulted from the variable abundance of feedback regulators.Listen to Podcast.

  9. The role of Tks adaptor proteins in invadopodia formation, growth and metastasis of melanoma

    PubMed Central

    Iizuka, Shinji; Abdullah, Christopher; Buschman, Matthew D.; Diaz, Begoña; Courtneidge, Sara A.

    2016-01-01

    Metastatic cancer cells are characterized by their ability to degrade and invade through extracellular matrix. We previously showed that the Tks adaptor proteins, Tks4 and Tks5, are required for invadopodia formation and/or function in Src-transformed fibroblasts and a number of human cancer cell types. In this study, we investigated the role of Tks adaptor proteins in melanoma cell invasion and metastasis. Knockdown of either Tks4 or Tks5 in both mouse and human melanoma cell lines resulted in a decreased ability to form invadopodia and degrade extracellular matrix. In addition, Tks-knockdown melanoma cells had decreased proliferation in a 3-dimensional type l collagen matrix, but not in 2-dimensional culture conditions. We also investigated the role of Tks proteins in melanoma progression in vivo using xenografts and experimental metastasis assays. Consistent with our in vitro results, reduction of Tks proteins markedly reduced subcutaneous melanoma growth as well as metastatic growth in the lung. We explored the clinical relevance of Tks protein expression in human melanoma specimens using a tissue microarray. Compared to non-malignant nevi, both Tks proteins were highly expressed in melanoma tissues. Moreover, metastatic melanoma cases showed higher expression of Tks5 than primary melanoma cases. Taken together, these findings suggest the importance of Tks adaptor proteins in melanoma growth and metastasis in vivo, likely via functional invadopodia formation. PMID:27802184

  10. Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation

    SciTech Connect

    Reider, Amanda; Barker, Sarah L.; Mishra, Sanjay K.; Im, Young Jun; Maldonado-Báez, Lymarie; Hurley, James H.; Traub, Linton M.; Wendland, Beverly

    2010-10-28

    Internalization of diverse transmembrane cargos from the plasma membrane requires a similarly diverse array of specialized adaptors, yet only a few adaptors have been characterized. We report the identification of the muniscin family of endocytic adaptors that is conserved from yeast to human beings. Solving the structures of yeast muniscin domains confirmed the unique combination of an N-terminal domain homologous to the crescent-shaped membrane-tubulating EFC/F-BAR domains and a C-terminal domain homologous to cargo-binding {mu} homology domains ({mu}HDs). In vitro and in vivo assays confirmed membrane-tubulation activity for muniscin EFC/F-BAR domains. The {mu}HD domain has conserved interactions with the endocytic adaptor/scaffold Ede1/eps15, which influences muniscin localization. The transmembrane protein Mid2, earlier implicated in polarized Rho1 signalling, was identified as a cargo of the yeast adaptor protein. These and other data suggest a model in which the muniscins provide a combined adaptor/membrane-tubulation activity that is important for regulating endocytosis.

  11. The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH.

    PubMed

    Maurer, Meghan E; Cooper, Jonathan A

    2006-10-15

    Clathrin-mediated endocytosis requires cargo-specific adaptor proteins that recognize specific receptors and recruit them into coated pits. ARH [also called low-density lipoprotein receptor (LDLR) adaptor protein] serves as an adaptor for LDLR endocytosis in liver. However, ARH is dispensable for LDL uptake by some other cell types. Here, we show that the adaptor Dab2 plays a major role in LDLR internalization in HeLa cells and fibroblasts. Dab2 mediates internalization of LDLRs but not transferrin receptors independently of ARH and the classic clathrin adaptor AP-2. If Dab2 is absent, ARH can mediate LDLR endocytosis, but its action requires AP-2. Furthermore, the rate of LDLR endocytosis is decreased when Dab2 is absent and Dab2, but not ARH, catalyzes the efficient clustering of LDLR into coated pits. Dab2 activity requires its binding to clathrin, LDLR and phospholipids. Dab2 is also involved in moving LDLRs off filopodia. We suggest that Dab2 is a cargo-specific endocytic adaptor protein, stably associating with phospholipids and clathrin to sort LDLR to nascent-coated pits, whereas ARH might accelerate later steps in LDLR endocytosis in cooperation with AP-2.

  12. Rapid CD4+ T-cell responses to bacterial flagellin require dendritic cell expression of Syk and CARD9

    PubMed Central

    Atif, Shaikh M; Lee, Seung-Joo; Li, Lin-Xi; Uematsu, Satoshi; Akira, Shizuo; Gorjestani, Sara; Lin, Xin; Schweighoffer, Edina; Tybulewicz, Victor L J; McSorley, Stephen J

    2015-01-01

    Toll-like receptors (TLRs) can recognize microbial patterns and utilize adaptor molecules, such as-MyD88 or (TRIF TIR-domain-containing adapter-inducing interferon-β), to initiate downstream signaling that ultimately affects the initiation of adaptive immunity. In addition to this inflammatory role, TLR5 expression on dendritic cells can favor antigen presentation of flagellin peptides and thus increase the sensitivity of flagellin-specific T-cell responses in vitro and in vivo. Here, we examined the role of alternative signaling pathways that might regulate flagellin antigen presentation in addition to MyD88. These studies suggest a requirement for spleen tyrosine kinase, a noncanonical TLR-signaling adaptor molecule, and its downstream molecule CARD9 in regulating the sensitivity of flagellin-specific CD4+ T-cell responses in vitro and in vivo. Thus, a previously unappreciated signaling pathway plays an important role in regulating the dominance of flagellin-specific T-cell responses. PMID:25430631

  13. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  14. Interleukin-1-receptor-associated kinase 2 (IRAK2)-mediated interleukin-1-dependent nuclear factor kappaB transactivation in Saos2 cells requires the Akt/protein kinase B kinase.

    PubMed Central

    Cenni, Vittoria; Sirri, Alessandra; De Pol, Anto; Maraldi, Nadir Mario; Marmiroli, Sandra

    2003-01-01

    The post-receptor pathway that leads to nuclear factor kappaB (NF-kappaB) activation begins with the assembly of a membrane-proximal complex among the interleukin 1 (IL-1) receptors and the adaptor molecules, myeloid differentiation protein 88 (MyD88), IL-1-receptor-associated kinases (IRAKs) and tumour-necrosis-factor-receptor-associated factor 6. Eventually, phosphorylation of the inhibitor of NF-kappaB (IkappaB) by the IkappaB kinases releases NF-kappaB, which translocates to the nucleus and modulates gene expression. In this paper, we report that IRAK2 and MyD88, but not IRAK1, interact physically with Akt, as demonstrated by co-immunoprecipitation and pull-down experiments. Interestingly, the association of Akt with recombinant IRAK2 is decreased by stimulation with IL-1, and is favoured by pre-treatment with phosphatase. Likewise, Akt association with IRAK2 is increased considerably by overexpression of PTEN (phosphatase and tensin homologue deleted on chromosome 10), while it is completely abrogated by overexpression of phosphoinositide-dependent protein kinase 1. These data indicate that Akt takes part in the formation of the signalling complex that conveys the signal from the IL-1 receptors to NF-kappaB, a step that is much more membrane-proximal than was reported previously. We also demonstrate that Akt activity is necessary for IL-1-dependent NF-kappaB transactivation, since a kinase-defective mutant of Akt impairs IRAK2- and MyD88-dependent, but not IRAK1-dependent, NF-kappaB activity, as monitored by a gene reporter assay. Accordingly, IRAK2 failed to trigger inducible nitric oxide synthase and IL-1beta production in cells expressing dominant-negative Akt. However, NF-kappaB binding to DNA was not affected by inhibition of Akt, indicating that Akt regulates NF-kappaB at a level distinct from the dissociation of p65 from IkappaBalpha and its translocation to the nucleus, possibly involving phosphorylation of the p65 transactivation domain. PMID:12906710

  15. The expression of functional Toll-like receptor 4 is associated with proliferation and maintenance of stem cell phenotype in endothelial progenitor cells (EPCs).

    PubMed

    He, Jin; Xiao, Zhilin; Chen, Xiaobin; Chen, Meifang; Fang, Li; Yang, Mei; Lv, Qingshan; Li, Yuehui; Li, Guancheng; Hu, Jinyue; Xie, Xiumei

    2010-09-01

    Endothelial dysfunction is involved in various cardiovascular diseases such as atherosclerosis. Endothelial progenitor cells (EPCs) contribute to re-endothelialization and neo-vascularization, and the increase of EPCs in peripherial circulation benefits the prognosis of cardiovascular disease. However, little is known about the biological stimuli that initiate the proliferation and the maintenance of stem cell phenotype of EPCs. Here we reported that human umbilical vein blood derived EPCs expressed gene transcripts coding for Toll-like receptor (TLR) 1-6, TLR8-10, TLR4 co-receptor CD14, and myeloid differentiation factor 88 (MyD88), a TLR adaptor molecule. Protein expression of TLR2, 4, CD14, and MyD88 was also detected by FACS or Western blot. The activation of TLR4 by LPS modulated the expression of TLRs, induced the phosphorylation of NF-kappaB, P38, and ERK42/44, and up-regulated the gene expression of cytokines IL-8, IFN-alpha, IFN-beta, and TNF-alpha, suggesting EPCs expressed functional TLR4. Unexpectedly LPS treatment failed to induce apoptosis in EPCs, but instead promoted cell proliferation of EPCs. Furthermore, the treatment of EPCs with LPS up-regulated stem cell markers AC133 and CD34 in both mRNA and protein levels, and down-regulated the protein expression of differential marker eNOS. These results suggested that TLR4 functions to maintain the stem cell phenotype of EPCs and enlarge its population, which reveals a novel aspect of the multiple-faced TLR biology, and may open new prospects for using TLR4 agonists to promote the production of EPCs for clinical use.

  16. Induction of immune-related gene expression in Ctenopharyngodon idella kidney cells by secondary metabolites from immunostimulatory Alcaligenes faecalis FY-3.

    PubMed

    Wu, Z-F; Liu, G-L; Zhou, Z; Wang, G-X; Xia, L; Liu, J-L

    2012-08-01

    This study was undertaken to isolate active secondary metabolites from immunostimulatory Alcaligenes faecalis FY-3 and evaluate their activities using grass carp Ctenopharyngodon idella kidney (CIK) cells. By applying chromatography techniques and successive recrystallization, three purified metabolites were obtained and identified by spectral data (mass spectrometry and nuclear magnetic resonance) as: (1) phenylacetic acid, (2) p-hydroxyphenylacetylamide and (3) cyclo-(Gly-(L)-Pro). CIK cells were stimulated by different concentrations (1, 10 and 100 μg/ml) of the isolated compounds, and expression of MyD88, IL-1β, TNF-α, type I-IFN and IL-8 genes at different time points (2, 8 and 24 h) post-stimulation was quantified by real-time PCR. The known immunostimulatory agent lipopolysaccharide (LPS) was used as a positive control. To analyse whether these compounds are toxic to the cells, the methyl tetrazolium assay was employed to measure changes in cell viability. The obtained results revealed that transcribing level of MyD88, an important adaptor molecule in toll-like receptor signalling pathway, was augmented remarkably by all the three isolated compounds and LPS as early as 2-h exposure. These compounds also induced gene expression of cytokines such as IL-1β, TNF-α and type I-IFN. Under the experimental conditions, none of the test compounds is toxic to the CIK cells. These findings demonstrate that the immunostimulatory properties of the three metabolites [phenylacetic acid, p-hydroxyphenylacetylamide and cyclo-(Gly-(L)-Pro)] from A. faecalis FY-3 in CIK cells and highlight the potential of using these metabolites as immunostimulants in fish aquaculture.

  17. Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation.

    PubMed

    Hoshino, Katsuaki; Kaisho, Tsuneyasu; Iwabe, Tomio; Takeuchi, Osamu; Akira, Shizuo

    2002-10-01

    Toll-like receptor (TLR) can activate dendritic cells (DC) through common signaling pathways requiring a cytoplasmic adapter, MyD88. However, the signaling is differentially regulated among TLR family members. TLR4 can activate MyD88-deficient bone marrow-derived DC (BMDC), and lead to induction of IFN-inducible genes and up-regulation of co-stimulatory molecules such as CD40, implying that the MyD88-independent signaling pathway functions downstream of TLR4. Because these effects can also be induced by type I IFN, we have analyzed whether type I IFN is involved in TLR4-induced responses. In response to lipopolysaccharide (LPS), IFN-beta gene expression was augmented in both wild-type and MyD88-deficient BMDC. Expression of all IFN-inducible genes except immune-responsive gene 1 (IRG1) was abolished and CD40 up-regulation was decreased in LPS-stimulated BMDC lacking either IFN-alpha/beta receptor (IFN-alpha/betaR) or signal transducer and activator of transcription 1 (STAT-1). Similar to the LPS response, TLR9 signaling can also induce expression of IFN-beta and IFN-inducible genes, and up-regulation of CD40. However, all these effects were MyD88 dependent. Thus, in TLR4 signaling, IFN-beta expression can be induced either by the MyD88-dependent or -independent pathway, whereas, in TLR9 signaling, it is dependent on MyD88. In CpG DNA-stimulated DC, expression of IFN-inducible genes except IRG1 was dependent on type I IFN signaling as in LPS-stimulated DC. However, in contrast to TLR4 signaling, TLR9 signaling requires type I IFN signaling for CD40 up-regulation. Taken together, this study demonstrates differential involvement of type I IFN in TLR4- and TLR9-induced effects on DC.

  18. DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein–dynactin–cargo adaptor complexes

    PubMed Central

    Hoang, Ha Thi; Schlager, Max A.; Carter, Andrew P.

    2017-01-01

    Mutations in the human DYNC1H1 gene are associated with neurological diseases. DYNC1H1 encodes the heavy chain of cytoplasmic dynein-1, a 1.4-MDa motor complex that traffics organelles, vesicles, and macromolecules toward microtubule minus ends. The effects of the DYNC1H1 mutations on dynein motility, and consequently their links to neuropathology, are not understood. Here, we address this issue using a recombinant expression system for human dynein coupled to single-molecule resolution in vitro motility assays. We functionally characterize 14 DYNC1H1 mutations identified in humans diagnosed with malformations in cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMALED), as well as three mutations that cause motor and sensory defects in mice. Two of the human mutations, R1962C and H3822P, strongly interfere with dynein’s core mechanochemical properties. The remaining mutations selectively compromise the processive mode of dynein movement that is activated by binding to the accessory complex dynactin and the cargo adaptor Bicaudal-D2 (BICD2). Mutations with the strongest effects on dynein motility in vitro are associated with MCD. The vast majority of mutations do not affect binding of dynein to dynactin and BICD2 and are therefore expected to result in linkage of cargos to dynein–dynactin complexes that have defective long-range motility. This observation offers an explanation for the dominant effects of DYNC1H1 mutations in vivo. Collectively, our results suggest that compromised processivity of cargo–motor assemblies contributes to human neurological disease and provide insight into the influence of different regions of the heavy chain on dynein motility. PMID:28196890

  19. DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein-dynactin-cargo adaptor complexes.

    PubMed

    Hoang, Ha Thi; Schlager, Max A; Carter, Andrew P; Bullock, Simon L

    2017-02-28

    Mutations in the human DYNC1H1 gene are associated with neurological diseases. DYNC1H1 encodes the heavy chain of cytoplasmic dynein-1, a 1.4-MDa motor complex that traffics organelles, vesicles, and macromolecules toward microtubule minus ends. The effects of the DYNC1H1 mutations on dynein motility, and consequently their links to neuropathology, are not understood. Here, we address this issue using a recombinant expression system for human dynein coupled to single-molecule resolution in vitro motility assays. We functionally characterize 14 DYNC1H1 mutations identified in humans diagnosed with malformations in cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMALED), as well as three mutations that cause motor and sensory defects in mice. Two of the human mutations, R1962C and H3822P, strongly interfere with dynein's core mechanochemical properties. The remaining mutations selectively compromise the processive mode of dynein movement that is activated by binding to the accessory complex dynactin and the cargo adaptor Bicaudal-D2 (BICD2). Mutations with the strongest effects on dynein motility in vitro are associated with MCD. The vast majority of mutations do not affect binding of dynein to dynactin and BICD2 and are therefore expected to result in linkage of cargos to dynein-dynactin complexes that have defective long-range motility. This observation offers an explanation for the dominant effects of DYNC1H1 mutations in vivo. Collectively, our results suggest that compromised processivity of cargo-motor assemblies contributes to human neurological disease and provide insight into the influence of different regions of the heavy chain on dynein motility.

  20. Blockade of Toll-Like Receptors (TLR2, TLR4) Attenuates Pain and Potentiates Buprenorphine Analgesia in a Rat Neuropathic Pain Model

    PubMed Central

    Jurga, Agnieszka M.; Rojewska, Ewelina; Makuch, Wioletta; Pilat, Dominika; Przewlocka, Barbara

    2016-01-01

    Accumulating evidence indicates that microglial TLR2 and TLR4 play a significant role in nociception. Experiments were conducted to evaluate the contribution of TLR2 and TLR4 and their adaptor molecules to neuropathy and their ability to amplify opioid effectiveness. Behavioral tests (von Frey's and cold plate) and biochemical (Western blot and qRT-PCR) analysis of spinal cord and DRG tissue were conducted after chronic constriction injury (CCI) to the sciatic nerve. Repeated intrathecal administration of LPS-RS (TLR2 and TLR4 antagonist) and LPS-RS Ultrapure (TLR4 antagonist) attenuated allodynia and hyperalgesia. Biochemical analysis revealed time-dependent upregulation of mRNA and/or protein levels of TLR2 and TLR4 and MyD88 and TRIF adaptor molecules, which was paralleled by an increase in IBA-1/CD40-positive cells under neuropathy. LPS-RS and LPS-RS Ultrapure similarly influenced opioid analgesia by enhancing the effectiveness of buprenorphine but not morphine. Summing up, in light of their upregulation over the course of pain, both TLR2 and TLR4 may indeed play a significant role in neuropathy, which could be linked to the observed activation of IBA-1/CD40-positive cells. Blockade of TLR2 and TLR4 produced analgesia and enhanced buprenorphine's effectiveness, which suggests that they may be a putative target for future pharmacological pain relief tools, especially for opioid rotation, when the effect of morphine is tolerated. PMID:26962463

  1. Blockade of Toll-Like Receptors (TLR2, TLR4) Attenuates Pain and Potentiates Buprenorphine Analgesia in a Rat Neuropathic Pain Model.

    PubMed

    Jurga, Agnieszka M; Rojewska, Ewelina; Piotrowska, Anna; Makuch, Wioletta; Pilat, Dominika; Przewlocka, Barbara; Mika, Joanna

    2016-01-01

    Accumulating evidence indicates that microglial TLR2 and TLR4 play a significant role in nociception. Experiments were conducted to evaluate the contribution of TLR2 and TLR4 and their adaptor molecules to neuropathy and their ability to amplify opioid effectiveness. Behavioral tests (von Frey's and cold plate) and biochemical (Western blot and qRT-PCR) analysis of spinal cord and DRG tissue were conducted after chronic constriction injury (CCI) to the sciatic nerve. Repeated intrathecal administration of LPS-RS (TLR2 and TLR4 antagonist) and LPS-RS Ultrapure (TLR4 antagonist) attenuated allodynia and hyperalgesia. Biochemical analysis revealed time-dependent upregulation of mRNA and/or protein levels of TLR2 and TLR4 and MyD88 and TRIF adaptor molecules, which was paralleled by an increase in IBA-1/CD40-positive cells under neuropathy. LPS-RS and LPS-RS Ultrapure similarly influenced opioid analgesia by enhancing the effectiveness of buprenorphine but not morphine. Summing up, in light of their upregulation over the course of pain, both TLR2 and TLR4 may indeed play a significant role in neuropathy, which could be linked to the observed activation of IBA-1/CD40-positive cells. Blockade of TLR2 and TLR4 produced analgesia and enhanced buprenorphine's effectiveness, which suggests that they may be a putative target for future pharmacological pain relief tools, especially for opioid rotation, when the effect of morphine is tolerated.

  2. DNA as Tunable Adaptor for siRNA Polyplex Stabilization and Functionalization

    PubMed Central

    Heissig, Philipp; Klein, Philipp M.; Hadwiger, Philipp; Wagner, Ernst

    2016-01-01

    siRNA and microRNA are promising therapeutic agents, which are engaged in a natural mechanism called RNA interference that modulates gene expression posttranscriptionally. For intracellular delivery of such nucleic acid triggers, we use sequence-defined cationic polymers manufactured through solid phase chemistry. They consist of an oligoethanamino amide core for siRNA complexation and optional domains for nanoparticle shielding and cell targeting. Due to the small size of siRNA, electrostatic complexes with polycations are less stable, and consequently intracellular delivery is less efficient. Here we use DNA oligomers as adaptors to increase size and charge of cargo siRNA, resulting in increased polyplex stability, which in turn boosts transfection efficiency. Extending a single siRNA with a 181-nucleotide DNA adaptor is sufficient to provide maximum gene silencing aided by cationic polymers. Interestingly, this simple strategy was far more effective than merging defined numbers (4–10) of siRNA units into one DNA scaffolded construct. For DNA attachment, the 3′ end of the siRNA passenger strand was beneficial over the 5′ end. The impact of the attachment site however was resolved by introducing bioreducible disulfides at the connection point. We also show that DNA adaptors provide the opportunity to readily link additional functional domains to siRNA. Exemplified by the covalent conjugation of the endosomolytic influenza peptide INF-7 to siRNA via a DNA backbone strand and complexing this construct with a targeting polymer, we could form a highly functional polyethylene glycol–shielded polyplex to downregulate a luciferase gene in folate receptor–positive cells. PMID:26928236

  3. Burn to leg: full thickness lower limb burn associated with laptop power adaptor.

    PubMed

    Patel, Shivali M; Leon-Villapalos, Jorge

    2011-03-10

    There has been much media attention in recent years on laptops and their accessories overheating and even causing fires. Here, the authors report a case of a laptop power adaptor causing a full thickness burn requiring surgical intervention in a young, fit man. The total contact time was less than 1 h. Initial surgical management involved debridement and allografting of the wound due to a concomitant cellulitis. A week later, once the cellulitis had resolved, an autograft was applied. The graft take was satisfactory (100%) and the patient had a good postoperative outcome.

  4. The role of small adaptor proteins in the control of oncogenic signaling driven by tyrosine kinases in human cancer

    PubMed Central

    Naudin, Cécile; Chevalier, Clément; Roche, Serge

    2016-01-01

    Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology. PMID:26788993

  5. TIR domain-containing adaptor SARM is a late addition to the ongoing microbe-host dialog.

    PubMed

    Zhang, Qing; Zmasek, Christian M; Cai, Xiaohui; Godzik, Adam

    2011-04-01

    Toll/interleukin-1 receptor (TIR) domain-containing proteins play important roles in defense against pathogens in both animals and plants, connecting the immunity signaling pathways via a chain of specific protein-protein interactions. Among them is SARM, the only TIR domain-containing adaptor that can negatively regulate TLR signaling. By extensive phylogenetic analysis, we show here that SARM is closely related to bacterial proteins with TIR domains, suggesting that this family has a different evolutionary history from other animal TIR-containing adaptors, possibly emerging via a lateral gene transfer from bacteria to animals. We also show evidence of several similar, independent transfer events, none of which, however, survived in vertebrates. An evolutionary relationship between the animal SARM adaptor and bacterial proteins with TIR domains illustrates the possible role that bacterial TIR-containing proteins play in regulating eukaryotic immune responses and how this mechanism was possibly adapted by the eukaryotes themselves.

  6. Serine residues in the LAT adaptor are essential for TCR-dependent signal transduction.

    PubMed

    Martínez-Florensa, Mario; García-Blesa, Antonio; Yélamos, José; Muñoz-Suano, Alba; Domínguez-Villar, Margarita; Valdor, Rut; Alonso, Antonio; García-Cózar, Francisco; Aparicio, Pedro; Malissen, Bernard; Aguado, Enrique

    2011-01-01

    The adaptor protein LAT has a prominent role in the transduction of intracellular signals elicited by the TCR/CD3 complex. Upon TCR engagement, LAT becomes tyrosine-phosphorylated and thereby, recruits to the membrane several proteins implicated in the activation of downstream signaling pathways. However, little is known about the role of other conserved motifs present in the LAT sequence. Here, we report that the adaptor LAT contains several conserved serine-based motifs, which are essential for proper signal transduction through the TCR. Mutation of these serine motifs in the human T cell line Jurkat prevents proper calcium influx, MAPK activation, and IL-2 production in response to TCR/CD3 stimulation. Moreover, this mutant form of LAT has a reduced ability to bind to PLC-γ1 and SLP-76, although phosphorylation of tyrosine residues 132, 171, and 191 is not decreased, raising a possible role for the serine-based motifs of LAT for the binding of important partners. The functional role of LAT serine-based motifs in signal transduction could be mediated by an effect on tyrosine phosphorylation, as their mutation significantly diminishes the phosphorylation of tyrosine residue 226. In addition, these serine motifs seem to have a regulatory role, given that upon their mutation, ZAP-70 shows enhanced phosphorylation. Therefore, the LAT serine-based motifs likely regulate signaling pathways that are essential for T cell physiology.

  7. Modulation of TCR responsiveness by the Grb2-family adaptor, Gads.

    PubMed

    Lugassy, Jennie; Corso, Jasmin; Beach, Dvora; Petrik, Thomas; Oellerich, Thomas; Urlaub, Henning; Yablonski, Deborah

    2015-01-01

    T cell antigen receptor (TCR) signaling depends on three interacting adaptor proteins: SLP-76, Gads, and LAT. Their mechanisms of signaling have been extensively explored, with the aid of fortuitously isolated LAT- and SLP-76-deficient T cell lines, but no such tools were available for Gads, a Grb2-family adaptor that bridges the TCR-inducible interaction between SLP-76 and LAT. TALEN-directed genome editing was applied to disrupt the first coding exon of human Gads in the Jurkat T cell line. Gads was dispensable for TCR-induced phosphorylation of SLP-76, but was a dose-dependent amplifier of TCR-induced CD69 expression. Gads conferred responsiveness to weak TCR stimuli, leading to PLC-γ1 phosphorylation and calcium flux. TALEN-derived, Gads-deficient T cell lines provide a uniquely tractable genetic platform for exploring its regulatory features, such as Gads phosphorylation at T262, which we observed by mass spectrometry. Upon mutation of this site, TCR responsiveness and sensitivity to weak TCR stimuli were increased. This study demonstrates the feasibility of TALEN-based reverse genetics in Jurkat T cells, while enriching our understanding of Gads as a regulated modulator of TCR sensitivity.

  8. Systematic VCP-UBXD Adaptor Network Proteomics Identifies a Role for UBXN10 in Regulating Ciliogenesis

    PubMed Central

    Raman, Malavika; Sergeev, Mikhail; Garnaas, Maija; Lydeard, John R.; Huttlin, Edward L.; Goessling, Wolfram; Shah, Jagesh V.; Harper, J. Wade

    2015-01-01

    The AAA-ATPase VCP (also known as p97 or CDC48) uses ATP hydrolysis to “segregate” ubiquitinated proteins from their binding partners. VCP acts via UBX-domain containing adaptors that provide target specificity, but targets and functions of UBXD proteins remain poorly understood. Through systematic proteomic analysis of UBXD proteins in human cells, we reveal a network of over 195 interacting proteins, implicating VCP in diverse cellular pathways. We have explored one such complex between an unstudied adaptor UBXN10 and the intraflagellar transport B (IFT-B) complex, which regulates anterograde transport into cilia. UBXN10 localizes to cilia in a VCP-dependent manner and both VCP and UBXN10 are required for ciliogenesis. Pharmacological inhibition of VCP destabilized the IFT-B complex and increased trafficking rates. Depletion of UBXN10 in zebrafish embryos causes defects in left-right asymmetry, which depends on functional cilia. This study provides a resource for exploring the landscape of UBXD proteins in biology and identifies an unexpected requirement for VCP-UBXN10 in ciliogenesis. PMID:26389662

  9. Effectiveness of Needleless Vial Adaptors and Blunt Cannulas for Drug Administration in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Hailey, M.; Bayuse, T.

    2010-01-01

    Fluid Isolation in the medication vial: Air/ fluid isolation maneuvers were used to move the medication to the septum end of vial. This isolation may be achieved in multiple ways based on the experience of the astronaut with fluid management in microgravity. If vial adaptors/blunt cannula or syringe assembly is inserted into the to vial before fluid isolation commences, the stability of this assembly should be considered in an effort to limit the risk of "slinging off" of the vial during isolation. Alternatively, fluid isolation can be performed prior to attaching the syringe/vial adaptor assembly. Terrestrial practices for medication withdrawal from a nonvented vial require injection of an equivalent amount of air as the expected medication volume prior to withdrawing liquid. In microgravity, this action is still valid, however the injection of additional air into the vial creates a multitude of micro bubbles and increases the volume of medication mixed with air that then must be withdrawn to achieve the desired drug volume in syringe. This practice is more likely to be required when using vials >30ml in size and injection volumes >10mL. It is felt that based on the microgravity flight, the practice of air injection is more of a hindrance than help.

  10. SH2B1beta adaptor is a key enhancer of RET tyrosine kinase signaling.

    PubMed

    Donatello, S; Fiorino, A; Degl'Innocenti, D; Alberti, L; Miranda, C; Gorla, L; Bongarzone, I; Rizzetti, M G; Pierotti, M A; Borrello, M G

    2007-10-04

    The RET gene encodes two main isoforms of a receptor tyrosine kinase (RTK) implicated in various human diseases. Activating germ-line point mutations are responsible for multiple endocrine neoplasia type 2-associated medullary thyroid carcinomas, inactivating germ-line mutations for Hirschsprung's disease, while somatic rearrangements (RET/PTCs) are specific to papillary thyroid carcinomas. SH2B1beta, a member of the SH2B adaptors family, and binding partner for several RTKs, has been recently described to interact with proto-RET. Here, we show that both RET isoforms and its oncogenic derivatives bind to SH2B1beta through the SRC homology 2 (SH2) domain and a kinase activity-dependent mechanism. As a result, RET phosphorylates SH2B1beta, which in turn enhances its autophosphorylation, kinase activity, and downstream signaling. RET tyrosine residues 905 and 981 are important determinants for functional binding of the adaptor, as removal of both autophosphorylation sites displaces its recruitment. Binding of SH2B1beta appears to protect RET from dephosphorylation by protein tyrosine phosphatases, and might represent a likely mechanism contributing to its upregulation. Thus, overexpression of SH2B1beta, by enhancing phosphorylation/activation of RET transducers, potentiates the cellular differentiation and the neoplastic transformation thereby induced, and counteracts the action of RET inhibitors. Overall, our results identify SH2B1beta as a key enhancer of RET physiologic and pathologic activities.

  11. Stepping stone: a cytohesin adaptor for membrane cytoskeleton restraint in the syncytial Drosophila embryo

    PubMed Central

    Liu, Jiangshu; Lee, Donghoon M.; Yu, Cao Guo; Angers, Stephane; Harris, Tony J. C.

    2015-01-01

    Cytohesin Arf-GEFs are conserved plasma membrane regulators. The sole Drosophila cytohesin, Steppke, restrains Rho1-dependent membrane cytoskeleton activity at the base of plasma membrane furrows of the syncytial embryo. By mass spectrometry, we identified a single major Steppke-interacting protein from syncytial embryos, which we named Stepping stone (Sstn). By sequence, Sstn seems to be a divergent homologue of the mammalian cytohesin adaptor FRMD4A. Our experiments supported this relationship. Specifically, heterophilic coiled-coil interactions linked Sstn and Steppke in vivo and in vitro, whereas a separate C-terminal region was required for Sstn localization to furrows. Sstn mutant and RNAi embryos displayed abnormal, Rho1-dependent membrane cytoskeleton expansion from the base of pseudocleavage and cellularization furrows, closely mimicking Steppke loss-of-function embryos. Elevating Sstn furrow levels had no effect on the steppke phenotype, but elevating Steppke furrow levels reversed the sstn phenotype, suggesting that Steppke acts downstream of Sstn and that additional mechanisms can recruit Steppke to furrows. Finally, the coiled-coil domain of Steppke was required for Sstn binding and in addition homodimerization, and its removal disrupted Steppke furrow localization and activity in vivo. Overall we propose that Sstn acts as a cytohesin adaptor that promotes Steppke activity for localized membrane cytoskeleton restraint in the syncytial Drosophila embryo. PMID:25540427

  12. A highly versatile adaptor protein for the tethering of growth factors to gelatin-based biomaterials.

    PubMed

    Addi, Cyril; Murschel, Frédéric; Liberelle, Benoît; Riahi, Nesrine; De Crescenzo, Gregory

    2017-03-01

    In the field of tissue engineering, the tethering of growth factors to tissue scaffolds in an oriented manner can enhance their activity and increase their half-life. We chose to investigate the capture of the basic Fibroblast Growth Factor (bFGF) and the Epidermal Growth Factor (EGF) on a gelatin layer, as a model for the functionalization of collagen-based biomaterials. Our strategy relies on the use of two high affinity interactions, that is, the one between two distinct coil peptides as well as the one occurring between a collagen-binding domain (CBD) and gelatin. We expressed a chimeric protein to be used as an adaptor that comprises one of the coil peptides and a CBD derived from the human fibronectin. We proved that it has the ability to bind simultaneously to a gelatin substrate and to form a heterodimeric coiled-coil domain with recombinant growth factors being tagged with the complementary coil peptide. The tethering of the growth factors was characterized by ELISA and surface plasmon resonance-based biosensing. The bioactivity of the immobilized bFGF and EGF was evaluated by a human umbilical vein endothelial cell proliferation assay and a vascular smooth muscle cell survival assay. We found that the tethering of EGF preserved its mitogenic and anti-apoptotic activity. In the case of bFGF, when captured via our adaptor protein, changes in its natural mode of interaction with gelatin were observed.

  13. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins

    PubMed Central

    Zhao, Baoyu; Shu, Chang; Gao, Xinsheng; Sankaran, Banumathi; Du, Fenglei; Shelton, Catherine L.; Herr, Andrew B.; Ji, Jun-Yuan; Li, Pingwei

    2016-01-01

    Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)–like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses. PMID:27302953

  14. The interaction between the adaptor protein APS and Enigma is involved in actin organisation.

    PubMed

    Barrès, Romain; Gonzalez, Teresa; Le Marchand-Brustel, Yannick; Tanti, Jean-François

    2005-08-15

    APS (adaptor protein with PH and SH2 domains) is an adaptor protein phosphorylated by several tyrosine kinase receptors including the insulin receptor. To identify novel binding partners of APS, we performed yeast two-hybrid screening. We identified Enigma, a PDZ and LIM domain-containing protein that was previously shown to be associated with the actin cytoskeleton. In HEK 293 cells, Enigma interacted specifically with APS, but not with the APS-related protein SH2-B. This interaction required the NPTY motif of APS and the LIM domains of Enigma. In NIH-3T3 cells that express the insulin receptor, Enigma and APS were partially co-localised with F-actin in small ruffling structures. Insulin increased the complex formation between APS and Enigma and their co-localisation in large F-actin containing ruffles. While in NIH-3T3 and HeLa cells the co-expression of both Enigma and APS did not modify the actin cytoskeleton organisation, expression of Enigma alone led to the formation of F-actin clusters. Similar alteration in actin cytoskeleton organisation was observed in cells expressing both Enigma and APS with a mutation in the NPTY motif. These results identify Enigma as a novel APS-binding protein and suggest that the APS/Enigma complex plays a critical role in actin cytoskeleton organisation.

  15. Tetraspan cargo adaptors usher GPI-anchored proteins into multivesicular bodies

    PubMed Central

    MacDonald, Chris; Stamnes, Mark A; Katzmann, David J; Piper, Robert C

    2015-01-01

    Ubiquitinated membrane proteins are sorted into intralumenal endosomal vesicles on their way for degradation in lysosomes. Here we summarize the discovery of the Cos proteins, which work to organize and segregate ubiquitinated cargo prior to its incorporation into intralumenal vesicles of the multivesicular body (MVB). Importantly, cargoes such as GPI-anchored proteins (GPI-APs) that cannot undergo ubiquitination, rely entirely on Cos proteins for sorting into intralumenal vesicles using the same pathway that depends on ESCRTs and ubiquitin ligases that typical polytopic membrane proteins do. Here we show Cos proteins provide functions as not only adaptor proteins for ubiquitin ligases, but also as cargo carriers that can physically usher a variety of other proteins into the MVB pathway. We then discuss the significance of this new sorting model and the broader implications for this cargo adaptor mechanism, whereby yeast Cos proteins, and their likely animal analogs, provide a ubiquitin sorting signal in trans to enable sorting of a membrane protein network into intralumenal vesicles. PMID:26505929

  16. The adaptor protein SAP directly associates with PECAM-1 and regulates PECAM-1-mediated-cell adhesion in T-like cell lines.

    PubMed

    Proust, Richard; Crouin, Catherine; Gandji, Leslie Yewakon; Bertoglio, Jacques; Gesbert, Franck

    2014-04-01

    SAP is a small cytosolic adaptor protein expressed in hematopoietic lineages whose main function is to regulate intracellular signaling pathways induced by the triggering of members of the SLAM receptor family. In this paper, we have identified the adhesion molecule PECAM-1 as a new partner for SAP in a conditional yeast two-hybrid screen. PECAM-1 is an immunoglobulin-like molecule expressed by endothelial cells and leukocytes, which possesses both pro- and anti-inflammatory properties. However, little is known about PECAM-1 functions in T cells. We show that SAP directly and specifically interacts with the cytosolic tyrosine 686 of PECAM-1. We generated different T-like cell lines in which SAP or PECAM-1 are expressed or down modulated and we demonstrate that a diminished SAP expression correlates with a diminished PECAM-1-mediated adhesion. Although SAP has mainly been shown to associate with SLAM receptors, we evidence here that SAP is a new actor downstream of PECAM-1.

  17. The Role of TLR2, TLR4, and TLR9 in the Pathogenesis of Atherosclerosis

    PubMed Central

    2016-01-01

    Toll-like receptors (TLRs) are key players in the pathogenesis of inflammatory conditions including coronary arterial disease (CAD). They are expressed by a variety of immune cells where they recognize pathogen-associated molecular patterns (PAMPs). TLRs recruit adaptor molecules, including myeloid differentiation primary response protein (MYD88) and TIRF-related adaptor protein (TRAM), to mediate activation of MAPKs and NF-kappa B pathways. They are associated with the development of CAD through various mechanisms. TLR4 is expressed in lipid-rich and atherosclerotic plaques. In TLR2−/− and TLR4−/− mice, atherosclerosis-associated inflammation was diminished. Moreover, TLR2 and TLR4 may induce expression of Wnt5a in advanced staged atheromatous plaque leading to activation of the inflammatory processes. TLR9 is activated by CpG motifs in nucleic acids and have been implicated in macrophage activation and the uptake of oxLDL from the circulation. Furthermore, TLR9 also stimulates interferon-α (INF-α) secretion and increases cytotoxic activity of CD4+ T-cells towards coronary artery tunica media smooth muscle cells. This review outlines the pathophysiological role of TLR2, TLR4, and TLR9 in atherosclerosis, focusing on evidence from animal models of the disease. PMID:27795867

  18. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  19. Modeling Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.

  20. Mobius Molecules

    ERIC Educational Resources Information Center

    Eckert, J. M.

    1973-01-01

    Discusses formation of chemical molecules via Mobius strip intermediates, and concludes that many special physics-chemical properties of the fully closed circular form (1) of polyoma DNA are explainable by this topological feature. (CC)

  1. Enumerating molecules.

    SciTech Connect

    Visco, Donald Patrick, Jr.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2004-04-01

    This report is a comprehensive review of the field of molecular enumeration from early isomer counting theories to evolutionary algorithms that design molecules in silico. The core of the review is a detail account on how molecules are counted, enumerated, and sampled. The practical applications of molecular enumeration are also reviewed for chemical information, structure elucidation, molecular design, and combinatorial library design purposes. This review is to appear as a chapter in Reviews in Computational Chemistry volume 21 edited by Kenny B. Lipkowitz.

  2. SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other.

    PubMed

    Maures, Travis J; Kurzer, Jason H; Carter-Su, Christin

    2007-01-01

    Src homology 2 (SH2) B adaptor protein 1 (SH2B1; originally named SH2-B) is a member of a family of adaptor proteins that influences a variety of signaling pathways mediated by Janus kinase (JAK) and receptor tyrosine kinases. Although SH2B1 performs classical adaptor functions, such as recruitment of specific proteins to activated receptors, it also demonstrates a unique ability to enhance the kinase activity of the cytokine receptor-associated tyrosine kinase JAK2, as well as that of several receptor tyrosine kinases. SH2B1 is also among a small number of adaptor proteins shown to undergo nucleocytoplasmic shuttling, although its exact role within the nucleus is not yet clear. Deletion of the SH2B1 gene results in severe obesity and both leptin and insulin resistance, as well as infertility, which might be a consequence of resistance to insulin-like growth factor I. Thus, knockout mice support a role for SH2B1 as a positive regulator of JAK2 signaling pathways initiated by leptin, as well as of pathways initiated by insulin and, potentially, by insulin-like growth factor I.

  3. Functions of Adaptor Protein (AP)-3 and AP-1 in Tyrosinase Sorting from Endosomes to MelanosomesD⃞

    PubMed Central

    Theos, Alexander C.; Tenza, Danièle; Martina, José A.; Hurbain, Ilse; Peden, Andrew A.; Sviderskaya, Elena V.; Stewart, Abigail; Robinson, Margaret S.; Bennett, Dorothy C.; Cutler, Daniel F.; Bonifacino, Juan S.; Marks, Michael S.; Raposo, Graça

    2005-01-01

    Specialized cells exploit adaptor protein complexes for unique post-Golgi sorting events, providing a unique model system to specify adaptor function. Here, we show that AP-3 and AP-1 function independently in sorting of the melanocyte-specific protein tyrosinase from endosomes to the melanosome, a specialized lysosome-related organelle distinguishable from lysosomes. AP-3 and AP-1 localize in melanocytes primarily to clathrin-coated buds on tubular early endosomes near melanosomes. Both adaptors recognize the tyrosinase dileucine-based melanosome sorting signal, and tyrosinase largely colocalizes with each adaptor on endosomes. In AP-3-deficient melanocytes, tyrosinase accumulates inappropriately in vacuolar and multivesicular endosomes. Nevertheless, a substantial fraction still accumulates on melanosomes, concomitant with increased association with endosomal AP-1. Our data indicate that AP-3 and AP-1 function in partially redundant pathways to transfer tyrosinase from distinct endosomal subdomains to melanosomes and that the AP-3 pathway ensures that tyrosinase averts entrapment on internal membranes of forming multivesicular bodies. PMID:16162817

  4. The late endosomal adaptor p14 is a macrophage host-defense factor against Salmonella infection.

    PubMed

    Taub, Nicole; Nairz, Manfred; Hilber, Diana; Hess, Michael W; Weiss, Günter; Huber, Lukas A

    2012-06-01

    The outcome of an infection depends on the balance between host resistance and bacterial virulence. Here, we show that the late endosomal adaptor p14 (also known as LAMTOR2) is one of the components for cellular host defense against the intracellular pathogen Salmonella enterica serovar Typhimurium. During Salmonella infection, the complex of p14 and MP1 is required for the accurately timed transport of Salmonella through the endolysosomal system. Loss of p14 opens a time window that allows Salmonella to populate a replication niche, in which early and late antimicrobial effector systems, comprising NADPH phagocytic oxidase and inducible nitric oxide synthase, respectively, are inappropriately activated. Thus, p14 supports the accurate transport of Salmonella through the endolysosomal system, thereby limiting bacterial replication in both, professional phagocytes and in non-phagocytic cells in vitro, and helps mice to successfully battle Salmonella infection in vivo.

  5. The hypoxic regulator of sterol synthesis Nro1 is a nuclear import adaptor

    PubMed Central

    Yeh, Tzu-Lan; Lee, Chih-Yung S.; Amzel, L. Mario; Espenshade, Peter J.; Bianchet, Mario A.

    2011-01-01

    SUMMARY Fission yeast protein Sre1, the homolog of the mammalian sterol regulatory element binding protein (SREBP), is a hypoxic transcription factor required for sterol homeostasis and low oxygen growth. Nro1 regulates the stability of the N-terminal transcription factor domain of Sre1 (Sre1N) by inhibiting the action of the prolyl 4-hydroxylase-like Ofd1 in an oxygen-dependent manner. The crystal structure of Nro1 determined at 2.2 Å resolution shows an all-α-helical fold that can be divided into two domains: a small N-terminal domain and a larger C-terminal HEAT-repeat domain. Follow-up studies showed that Nro1 defines a new class of nuclear import adaptor that functions both in Ofd1 nuclear localization and in the oxygen-dependent inhibition of Ofd1 to control the hypoxic response. PMID:21481773

  6. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71.

    PubMed

    Wang, Xiangxi; Peng, Wei; Ren, Jingshan; Hu, Zhongyu; Xu, Jiwei; Lou, Zhiyong; Li, Xumei; Yin, Weidong; Shen, Xinliang; Porta, Claudine; Walter, Thomas S; Evans, Gwyndaf; Axford, Danny; Owen, Robin; Rowlands, David J; Wang, Junzhi; Stuart, David I; Fry, Elizabeth E; Rao, Zihe

    2012-03-04

    Enterovirus 71 (EV71) is a major agent of hand, foot and mouth disease in children that can cause severe central nervous system disease and death. No vaccine or antiviral therapy is available. High-resolution structural analysis of the mature virus and natural empty particles shows that the mature virus is structurally similar to other enteroviruses. In contrast, the empty particles are markedly expanded and resemble elusive enterovirus-uncoating intermediates not previously characterized in atomic detail. Hydrophobic pockets in the EV71 capsid are collapsed in this expanded particle, providing a detailed explanation of the mechanism for receptor-binding triggered virus uncoating. These structures provide a model for enterovirus uncoating in which the VP1 GH loop acts as an adaptor-sensor for cellular receptor attachment, converting heterologous inputs to a generic uncoating mechanism, highlighting new opportunities for therapeutic intervention.

  7. The Hypoxic Regulator of Sterol Synthesis Nro1 Is a Nuclear Import Adaptor

    SciTech Connect

    T Yeh; C Lee; L Amzel; P Espenshade; M Bianchet

    2011-12-31

    Fission yeast protein Sre1, the homolog of the mammalian sterol regulatory element-binding protein (SREBP), is a hypoxic transcription factor required for sterol homeostasis and low-oxygen growth. Nro1 regulates the stability of the N-terminal transcription factor domain of Sre1 (Sre1N) by inhibiting the action of the prolyl 4-hydroxylase-like Ofd1 in an oxygen-dependent manner. The crystal structure of Nro1 determined at 2.2 {angstrom} resolution shows an all-{alpha}-helical fold that can be divided into two domains: a small N-terminal domain, and a larger C-terminal HEAT-repeat domain. Follow-up studies showed that Nro1 defines a new class of nuclear import adaptor that functions both in Ofd1 nuclear localization and in the oxygen-dependent inhibition of Ofd1 to control the hypoxic response.

  8. Interaction with the adaptor protein Shc prevents aberrant Erk activation in the absence of extracellular stimulus

    PubMed Central

    Suen, Kin Man; Lin, Chi-Chuan; George, Roger; Melo, Fernando A.; Biggs, Eleanor R.; Ahmed, Zamal; Drake, Melanie N.; Arur, Swathi; Arold, Stefan T.; Ladbury, John E.

    2014-01-01

    Control mechanisms that prevent aberrant signaling are necessary to maintain cellular homeostasis. We describe a novel mechanism by which the adaptor protein Shc binds directly to the MAP-kinase Erk, preventing its activation in the absence of extracellular stimulus. The Shc–Erk complex restricts Erk nuclear translocation, restraining Erk-dependent transcription of genes, including those responsible for oncogenic growth. The complex is formed through unique binding sites on both the Shc PTB domain and N-terminal lobe of Erk. Upon receptor tyrosine kinase stimulation, a conformational change within Shc—induced through interaction with the phosphorylated receptor—releases Erk allowing it to fulfill its role in signaling. Thus, in addition to its established role in promoting MAP-kinase signaling in stimulated cells, Shc negatively regulates Erk activation in the absence of growth factors and thus could be considered as a tumor suppressor in human cells. PMID:23584453

  9. The two faces of the inflammasome adaptor ASC in epithelial skin carcinogenesis.

    PubMed

    Yazdi, Amir S; Drexler, Stefan K

    2015-01-01

    The development of tumours is a multistep process during which cells acquire the capability to sustain proliferation, evade growth suppressors and/or resist cell death. One factor, which is increasingly recognised to influence tumour progression, is the inflammatory environment of the tumour. The responsible molecular mechanisms and signalling pathways are only beginning to emerge. One major pathway able to induce potent inflammation is the activation of the inflammasome and the subsequent secretion of the pro-inflammatory cytokines IL-1β and IL-18. Both these cytokines have been implicated in tumour-genesis/progression. However, evidence for the role of inflammasomes in this process is still scarce and mainly derived from murine colitis associated tumour models. In this short review we discuss current knowledge on the role of inflammasomes in epithelial cancer of the gut and skin with a special focus on the complex role of the inflammasome adaptor ASC in epithelial skin carcinogenesis.

  10. The Rai (Shc C) adaptor protein regulates the neuronal stress response and protects against cerebral ischemia

    PubMed Central

    Troglio, Flavia; Echart, Cinara; Gobbi, Alberto; Pawson, Tony; Pelicci, Pier Giuseppe; De Simoni, Maria Grazia; Pelicci, Giuliana

    2004-01-01

    Rai (Shc C or N-Shc) is a neuron-specific member of the family of Shc-like adaptor proteins. Rai functions in the cytoplasmic propagation of Ret-dependent survival signals and regulates, in vivo, the number of sympathetic neurons. We report here a function of Rai, i.e., the regulation of the neuronal adaptive response to environmental stresses. We demonstrate that (i) primary cultures of cortical neurons from Rai-/- mice are more sensitive to apoptosis induced by hypoxia or oxidative stress; (ii) in Rai-/- mice, ischemia/reperfusion injury induces severe neurological deficits, increased apoptosis and size of the infarct area, and significantly higher mortality; and (iii) Rai functions as a stress-response gene that increases phosphatidylinositol 3-kinase activation and Akt phosphorylation after hypoxic or oxidation insults. These data suggest that Rai has a functional neuroprotective role in brain injury, with possible implications in the treatment of stroke. PMID:15494442

  11. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71

    PubMed Central

    Wang, Xiangxi; Peng, Wei; Ren, Jingshan; Hu, Zhongyu; Xu, Jiwei; Lou, Zhiyong; Li, Xumei; Yin, Weidong; Shen, Xinliang; Porta, Claudine; Walter, Thomas S.; Evans, Gwyndaf; Axford, Danny; Owen, Robin; Rowlands, David J.; Wang, Junzhi; Stuart, David I.; Fry, Elizabeth E.; Rao, Zihe

    2012-01-01

    Enterovirus 71 (EV71), a major agent of hand-foot-and-mouth disease in children, can cause severe central nervous system disease and mortality. At present no vaccine or antiviral therapy is available. We have determined high-resolution structures for the mature virus and natural empty particles. The structure of the mature virus is similar to that of other enteroviruses, whilst the empty particles are dramatically expanded, with notable fissures, resembling elusive enterovirus uncoating intermediates not previously characterized in atomic detail. Hydrophobic capsid pockets within the EV71 capsid are collapsed in this expanded particle, providing a detailed explanation of the mechanism for receptor-binding triggered virus uncoating. The results provide a paradigm for enterovirus uncoating, in which the VP1 GH loop acts as an adaptor-sensor for the attachment of cellular receptors, converting heterologous inputs to a generic uncoating mechanism, spotlighting novel points for therapeutic intervention. PMID:22388738

  12. Molecular basis of substrate selection by the N-end rule adaptor protein ClpS

    SciTech Connect

    Román-Hernández, Giselle; Grant, Robert A.; Sauer, Robert T.; Baker, Tania A.

    2009-06-19

    The N-end rule is a conserved degradation pathway that relates the stability of a protein to its N-terminal amino acid. Here, we present crystal structures of ClpS, the bacterial N-end rule adaptor, alone and engaged with peptides containing N-terminal phenylalanine, leucine, and tryptophan. These structures, together with a previous structure of ClpS bound to an N-terminal tyrosine, illustrate the molecular basis of recognition of the complete set of primary N-end rule amino acids. In each case, the alpha-amino group and side chain of the N-terminal residue are the major determinants of recognition. The binding pocket for the N-end residue is preformed in the free adaptor, and only small adjustments are needed to accommodate N-end rule residues having substantially different sizes and shapes. M53A ClpS is known to mediate degradation of an expanded repertoire of substrates, including those with N-terminal valine or isoleucine. A structure of Met53A ClpS engaged with an N-end rule tryptophan reveals an essentially wild-type mechanism of recognition, indicating that the Met(53) side chain directly enforces specificity by clashing with and excluding beta-branched side chains. Finally, experimental and structural data suggest mechanisms that make proteins with N-terminal methionine bind very poorly to ClpS, explaining why these high-abundance proteins are not degraded via the N-end rule pathway in the cell.

  13. Role of toll-like receptors and their adaptors in adjuvant immunotherapy for cancer.

    PubMed

    Seya, Tsukasa; Akazawa, Takashi; Uehori, Junji; Matsumoto, Misako; Azuma, Ichiro; Toyoshima, Kumao

    2003-01-01

    The potentiation of immune responses to tumor-associated antigen (Ag) is a pivotal issue in immunotherapy for cancer and thus requires the use of adjuvants, which are involved in efficient antibody (Ab) production and killer cell induction. The efficacy for tumor regression of a number of adjuvants that have been applied to immunotherapy in humans and tumor-bearing animal models has been tested without understanding of the function of adjuvants. Recent findings on the function of Toll-like receptors (TLRs) and their adaptors facilitated the elucidation of the molecular basis of adjuvant activity. TLR signaling was found to induce interferons (IFNs), chemokines and proinflammatory cytokines and mature dendritic cells (DCs) for enhanced efficiency in antigen presentation. The mediators then play a crucial role in the organization of acquired immunity and, together with matured DCs, activate cytotoxic T cells (CTL) and NK cells. These TLR outputs vary among adjuvants, which may depend on adjuvant-specific selection of appropriate sets of TLRs and their adaptors. Here we review how a variety of host immune responses are induced by an individual adjuvant to confer an adjuvant-specific anti-tumor immunity. We elaborate specifically on two adjuvants, BCG-cell wall skeleton and double-stranded RNA (dsRNA). The former activates TLR2/4 on DCs and induces tumor-specific CTL allowing general application to patients with surgically dissected cancer and improving prognosis, while the latter activates TLR3 on DCs to release type 1 IFN that induces tumor cell apoptosis and NK-mediated tumor cytotoxicity.

  14. The AP-2 adaptor beta2 appendage scaffolds alternate cargo endocytosis.

    PubMed

    Keyel, Peter A; Thieman, James R; Roth, Robyn; Erkan, Elif; Everett, Eric T; Watkins, Simon C; Heuser, John E; Traub, Linton M

    2008-12-01

    The independently folded appendages of the large alpha and beta2 subunits of the endocytic adaptor protein (AP)-2 complex coordinate proper assembly and operation of endocytic components during clathrin-mediated endocytosis. The beta2 subunit appendage contains a common binding site for beta-arrestin or the autosomal recessive hypercholesterolemia (ARH) protein. To determine the importance of this interaction surface in living cells, we used small interfering RNA-based gene silencing. The effect of extinguishing beta2 subunit expression on the internalization of transferrin is considerably weaker than an AP-2 alpha subunit knockdown. We show the mild sorting defect is due to fortuitous substitution of the beta2 chain with the closely related endogenous beta1 subunit of the AP-1 adaptor complex. Simultaneous silencing of both beta1 and beta2 subunit transcripts recapitulates the strong alpha subunit RNA interference (RNAi) phenotype and results in loss of ARH from endocytic clathrin coats. An RNAi-insensitive beta2-yellow fluorescent protein (YFP) expressed in the beta1 + beta2-silenced background restores cellular AP-2 levels, robust transferrin internalization, and ARH colocalization with cell surface clathrin. The importance of the beta appendage platform subdomain over clathrin for precise deposition of ARH at clathrin assembly zones is revealed by a beta2-YFP with a disrupted ARH binding interface, which does not restore ARH colocalization with clathrin. We also show a beta-arrestin 1 mutant, which engages coated structures in the absence of any G protein-coupled receptor stimulation, colocalizes with beta2-YFP and clathrin even in the absence of an operational clathrin binding sequence. These findings argue against ARH and beta-arrestin binding to a site upon the beta2 appendage platform that is later obstructed by polymerized clathrin. We conclude that ARH and beta-arrestin depend on a privileged beta2 appendage site for proper cargo recruitment to clathrin

  15. Effectiveness of Needles Vial Adaptors and Blunt Cannulas for Drug Administration in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Hailey, Melinda; Bayuse, Tina

    2009-01-01

    The need for a new system of injectable medications aboard the International Space Station (ISS) was identified. It is desired that this system fly medications in their original manufacturer's packaging, allowing the system to comply with United States Pharmacopeia (USP) guidelines while minimizing the resupply frequency due to medication expiration. Pre-filled syringes are desired, however, the evolving nature of the healthcare marketplace requires flexibility in the redesign. If medications must be supplied in a vial, a system is required that allows for the safe withdrawal of medication from the vial into a syringe for administration in microgravity. During two reduced gravity flights, the effectiveness of two versions of a blunt cannula and needleless vial adaptors was evaluated to facilitate the withdrawal of liquid medication from a vial into a syringe for injection. Other parameters assessed included the ability to withdraw the required amount of medication and whether this is dependent on vial size, liquid, or the total volume of fluid within the vial. Injectable medications proposed for flight on ISS were used for this evaluation. Due to differing sizes of vials and the fluid properties of the medications, the needleless vial adaptors proved to be too cumbersome to recommend for use on the ISS. The blunt cannula, specifically the plastic version, proved to be more effective at removing medication from the various sizes of vials and are the recommended hardware for ISS. Fluid isolation within the vials and syringes is an important step in preparing medication for injection regardless of the hardware used. Although isolation is a challenge in the relatively short parabolas during flight, it is not an obstacle for sustained microgravity. This presentation will provide an overview of the products tested as well as the challenges identified during the microgravity flights.

  16. Tailed pooled suppression subtractive hybridization (PSSH) adaptors do not alter efficiency.

    PubMed

    Gerrish, Robert S; Gill, Steven R

    2010-11-01

    Suppression Subtractive Hybridization (SSH) and its derivative, Pooled Suppression Subtractive hybridization (PSSH), are powerful tools used to study variances larger than ~100 bp in prokaryotic genome structure. The initial steps involve ligating an oligonucleotide of known sequence (the "adaptor") to a fragmented genome to facilitate amplification, subtraction and downstream sequencing. SSH results in the creation of a library of unique DNA fragments which have been traditionally analyzed via Sanger sequencing. Numerous next generation sequencing technologies have entered the market yet SSH is incompatible with these platforms. This is due to the high level of sequence conservation of the oligonucleotide used for SSH. This rigid adherence is partly because it has yet to be determined if alteration of this oligonucleotide will have a deleterious impact on subtraction efficiency. The subtraction occurs when non-unique fragments are inhibited by a secondary self-pairing structure which requires exact nucleotide sequence. We determine if appending custom sequence to the 5' terminal ends of these oligonucleotides during the nested PCR stages of PSSH will reduce subtraction efficiency. We compare a pool of ten S. aureus clinical isolates with a standard PSSH and custom tailed-PSSH. We detected no statistically significant difference between their subtraction efficiencies. Our observations suggest that the adaptor's terminal ends may be labeled during the nested PCR step. This produces libraries labeled with custom sequence. This does not lead to loss of subtraction efficiency and would be invaluable for groups wishing to combine SSH or PSSH with their own downstream applications, such as a high throughput sequencing platform.

  17. Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice.

    PubMed

    Cero, Fadila Telarevic; Hillestad, Vigdis; Sjaastad, Ivar; Yndestad, Arne; Aukrust, Pål; Ranheim, Trine; Lunde, Ida Gjervold; Olsen, Maria Belland; Lien, Egil; Zhang, Lili; Haugstad, Solveig Bjærum; Løberg, Else Marit; Christensen, Geir; Larsen, Karl-Otto; Skjønsberg, Ole Henning

    2015-08-15

    Pulmonary hypertension is a serious condition that can lead to premature death. The mechanisms involved are incompletely understood although a role for the immune system has been suggested. Inflammasomes are part of the innate immune system and consist of the effector caspase-1 and a receptor, where nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) is the best characterized and interacts with the adaptor protein apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC). To investigate whether ASC and NLRP3 inflammasome components are involved in hypoxia-induced pulmonary hypertension, we utilized mice deficient in ASC and NLRP3. Active caspase-1, IL-18, and IL-1β, which are regulated by inflammasomes, were measured in lung homogenates in wild-type (WT), ASC(-/-), and NLRP3(-/-) mice, and phenotypical changes related to pulmonary hypertension and right ventricular remodeling were characterized after hypoxic exposure. Right ventricular systolic pressure (RVSP) of ASC(-/-) mice was significantly lower than in WT exposed to hypoxia (40.8 ± 1.5 mmHg vs. 55.8 ± 2.4 mmHg, P < 0.001), indicating a substantially reduced pulmonary hypertension in mice lacking ASC. Magnetic resonance imaging further supported these findings by demonstrating reduced right ventricular remodeling. RVSP of NLRP3(-/-) mice exposed to hypoxia was not significantly altered compared with WT hypoxia. Whereas hypoxia increased protein levels of caspase-1, IL-18, and IL-1β in WT and NLRP3(-/-) mice, this response was absent in ASC(-/-) mice. Moreover, ASC(-/-) mice displayed reduced muscularization and collagen deposition around arteries. In conclusion, hypoxia-induced elevated right ventricular pressure and remodeling were attenuated in mice lacking the inflammasome adaptor protein ASC, suggesting that inflammasomes play an important role in the pathogenesis of pulmonary hypertension.

  18. Adaptor protein-3: A key player in RBL-2H3 mast cell mediator release

    PubMed Central

    da Silva, Elaine Zayas Marcelino; Freitas-Filho, Edismauro Garcia; de Souza-Júnior, Devandir Antonio; daSilva, Luis Lamberti Pinto; Jamur, Maria Celia

    2017-01-01

    Mast cell (MC) secretory granules are Lysosome-Related Organelles (LROs) whose biogenesis is associated with the post-Golgi secretory and endocytic pathways in which the sorting of proteins destined for a specific organelle relies on the recognition of sorting signals by adaptor proteins that direct their incorporation into transport vesicles. The adaptor protein 3 (AP-3) complex mediates protein trafficking between the trans-Golgi network (TGN) and late endosomes, lysosomes, and LROs. AP-3 has a recognized role in LROs biogenesis and regulated secretion in several cell types, including many immune cells such as neutrophils, natural killer cells, and cytotoxic T lymphocytes. However, the relevance of AP-3 for these processes in MCs has not been previously investigated. AP-3 was found to be expressed and distributed in a punctate fashion in rat peritoneal mast cells ex vivo. The rat MC line RBL-2H3 was used as a model system to investigate the role of AP-3 in mast cell secretory granule biogenesis and mediator release. By immunofluorescence and immunoelectron microscopy, AP-3 was localized both to the TGN and early endosomes indicating that AP-3 dependent sorting of proteins to MC secretory granules originates in these organelles. ShRNA mediated depletion of the AP-3 δ subunit was shown to destabilize the AP-3 complex in RBL-2H3 MCs. AP-3 knockdown significantly affected MC regulated secretion of β-hexosaminidase without affecting total cellular enzyme levels. Morphometric evaluation of MC secretory granules by electron microscopy revealed that the area of MC secretory granules in AP-3 knockdown MCs was significantly increased, indicating that AP-3 is involved in MC secretory granule biogenesis. Furthermore, AP-3 knockdown had a selective impact on the secretion of newly formed and newly synthesized mediators. These results show for the first time that AP-3 plays a critical role in secretory granule biogenesis and mediator release in MCs. PMID:28273137

  19. Interaction of amphiphysins with AP-1 clathrin adaptors at the membrane.

    PubMed

    Huser, Sonja; Suri, Gregor; Crottet, Pascal; Spiess, Martin

    2013-02-15

    The assembly of clathrin/AP (adaptor protein)-1-coated vesicles on the trans-Golgi network and endosomes is much less studied than that of clathrin/AP-2 vesicles at the plasma membrane for endocytosis. In vitro, the association of AP-1 with protein-free liposomes had been shown to require phosphoinositides, Arf1 (ADP-ribosylation factor 1)-GTP and additional cytosolic factor(s). We have purified an active fraction from brain cytosol and found it to contain amphiphysin 1 and 2 and endophilin A1, three proteins known to be involved in the formation of AP-2/clathrin coats at the plasma membrane. Assays with bacterially expressed and purified proteins showed that AP-1 stabilization on liposomes depends on amphiphysin 2 or the amphiphysin 1/2 heterodimer. Activity is independent of the SH3 (Src homology 3) domain, but requires interaction of the WDLW motif with γ-adaptin. Endogenous amphiphysin in neurons and transfected protein in cell lines co-localize perinuclearly with AP-1 at the trans-Golgi network. This localization depends on interaction of clathrin and the adaptor sequence in the amphiphysins and is sensitive to brefeldin A, which inhibits Arf1-dependent AP-1 recruitment. Interaction between AP-1 and amphiphysin 1/2 in vivo was demonstrated by co-immunoprecipitation after cross-linking. These results suggest an involvement of amphiphysins not only with AP-2 at the plasma membrane, but also in AP-1/clathrin coat formation at the trans-Golgi network.

  20. Structural and Functional Characterization of Cargo-Binding Sites on the μ4-Subunit of Adaptor Protein Complex 4

    PubMed Central

    Ross, Breyan H.; Lin, Yimo; Corales, Esteban A.; Burgos, Patricia V.; Mardones, Gonzalo A.

    2014-01-01

    Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non

  1. Endometrial cells sense and react to tissue damage during infection of the bovine endometrium via interleukin 1

    PubMed Central

    Healy, Laura L.; Cronin, James G.; Sheldon, I. Martin

    2014-01-01

    Cells generate inflammatory responses to bacteria when pattern recognition receptors bind pathogen-associated molecules such as lipopolysaccharide. Cells may also respond to tissue damage by sensing damage-associated molecules. Postpartum bacterial infections of the bovine uterus cause endometritis but the risk of disease is increased by tissue trauma triggered by dystocia. Animals that suffered dystocia had increased concentrations of inflammatory mediators IL-8, IL-1β and IL-1α in vaginal mucus 3 weeks postpartum, but they also had more bacteria than normal animals. Ex vivo organ cultures of endometrium, endometrial cells and peripheral blood monocytes did not generate inflammatory responses to prototypical damage molecules, HMGB1 or hyaluronan, or to necrotic cells; although they secreted IL-6 and IL-8 in a concentration-dependent manner when treated with IL-1α. However, necrotic endometrial cells did not accumulate intracellular IL-1α or release IL-1α, except when pre-treated with lipopolysaccharide or bacteria. Endometrial cell inflammatory responses to IL-1α were dependent on the cognate receptor IL-1R1, and the receptor adaptor protein MyD88, and the inflammatory response to IL-1α was independent of the response to lipopolysaccharide. Rather than a typical damage-associated molecule, IL-1α acts to scale the inflammatory response in recognition that there is a combination of pathogen challenge followed by endometrial cell damage. PMID:25395028

  2. Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in cell signaling.

    PubMed

    Houtman, Jon C D; Brown, Patrick H; Bowden, Brent; Yamaguchi, Hiroshi; Appella, Ettore; Samelson, Lawrence E; Schuck, Peter

    2007-01-01

    Multisite interactions and the formation of ternary or higher-order protein complexes are ubiquitous features of protein interactions. Cooperativity between different ligands is a hallmark for information transfer, and is frequently critical for the biological function. We describe a new computational platform for the global analysis of isothermal titration calorimetry (ITC) data for the study of binary and ternary multisite interactions, implemented as part of the public domain multimethod analysis software SEDPHAT. The global analysis of titrations performed in different orientations was explored, and the potential for unraveling cooperativity parameters in multisite interactions was assessed in theory and experiment. To demonstrate the practical potential and limitations of global analyses of ITC titrations for the study of cooperative multiprotein interactions, we have examined the interactions of three proteins that are critical for signal transduction after T-cell activation, LAT, Grb2, and Sos1. We have shown previously that multivalent interactions between these three molecules promote the assembly of large multiprotein complexes important for T-cell receptor activation. By global analysis of the heats of binding observed in sets of ITC injections in different orientations, which allowed us to follow the formation of binary and ternary complexes, we observed negative and positive cooperativity that may be important to control the pathway of assembly and disassembly of adaptor protein particles.

  3. Multivalent Molecules as Modulators of RNA Granule Size and Composition.

    PubMed

    Falkenberg, Cibele Vieira; Carson, John H; Blinov, Michael L

    2017-02-24

    RNA granules are ensembles of specific RNA and protein molecules that mediate localized translation in eukaryotic cells. The mechanisms for formation and selectivity of RNA granules are unknown. Here we present a model for assembly of one type of RNA granule based on experimentally measured binding interactions among three core multivalent molecular components necessary for such assembly: specific RNA molecules that contain a cis-acting sequence called the A2 response element (A2RE), hnRNP A2 proteins that bind specifically (with high affinity) to A2RE sequences or nonspecifically (with lower affinity) to other RNA sequences, and heptavalent protein cytoskeleton-associated protein 5 (CKAP5, an alternative name for TOG protein) that binds both hnRNP A2 molecules and RNA. Non-A2RE RNA molecules (RNA without the A2RE sequence) that may be recruited to the granules through nonspecific interactions are also considered in the model. Modeling multivalent molecular interactions in granules is challenging because of combinatorial complexity in the number of potential molecular complexes among these core components and dynamic changes in granule composition and structure in response to changes in local intracellular environment. We use a hybrid modeling approach (deterministic-stochastic-statistical) that is appropriate when the overall compositions of multimolecular ensembles are of greater importance than the specific interactions among individual molecular components. Modeling studies titrating the concentrations of various granule components and varying effective site pair affinities and RNA valency demonstrate that interactions between multivalent components (TOG and RNA) are modulated by a bivalent adaptor molecule (hnRNP A2). Formation and disruption of granules, as well as RNA selectivity in granule composition are regulated by distinct concentration regimes of A2. Our results suggest that granule assembly is tightly controlled by multivalent molecular interactions

  4. Involvement of TLR2 and TLR4 in inflammatory immune responses induced by fine and coarse ambient air particulate matter

    PubMed Central

    Shoenfelt, Joanna; Mitkus, Robert J.; Zeisler, Rolf; Spatz, Rabia O.; Powell, Jan; Fenton, Matthew J.; Squibb, Katherine A.; Medvedev, Andrei E.

    2009-01-01

    Induction of proinflammatory mediators by alveolar macrophages exposed to ambient air particulate matter has been suggested to be a key factor in the pathogenesis of inflammatory and allergic diseases in the lungs. However, receptors and mechanisms underlying these responses have not been fully elucidated. In this study, we examined whether TLR2, TLR4, and the key adaptor protein, MyD88, mediate the expression of proinflammatory cytokines and chemokines by mouse peritoneal macrophages exposed to fine and coarse PM. TLR2 deficiency blunted macrophage TNF-α and IL-6 expression in response to fine (PM2.5), while not affecting cytokine-inducing ability of coarse NIST Standard Reference Material (SRM 1648) particles. In contrast, TLR4−/− macrophages showed inhibited cytokine expression upon stimulation with NIST SRM 1648 but exhibited normal responses to PM2.5. Preincubation with polymyxin B markedly suppressed the capacity of NIST SRM 1648 to elicit TNF-α and IL-6, indicating endotoxin as a principal inducer of cytokine responses. Overexpression of TLR2 in TLR2/4-deficient human embryonic kidney 293 cells imparted PM2.5 sensitivity, as judged by IL-8 gene expression, whereas NIST SRM 1648, but not PM2.5 elicited IL-8 expression in 293/TLR4/MD-2 transfectants. Engagement of TLR4 by NIST SRM 1648 induced MyD88-independent expression of the chemokine RANTES, while TLR2-reactive NIST IRM PM2.5 failed to up-regulate this response. Consistent with the shared use of MyD88 by TLR2 and TLR4, cytokine responses of MyD88−/− macrophages to both types of air PM were significantly reduced. These data indicate differential utilization of TLR2 and TLR4 but shared use of MyD88 by fine and coarse air pollution particles. PMID:19406832

  5. Microbiota regulates type 1 diabetes through Toll-like receptors

    PubMed Central

    Burrows, Michael P.; Volchkov, Pavel; Kobayashi, Koichi S.; Chervonsky, Alexander V.

    2015-01-01

    Deletion of the innate immune adaptor myeloid differentiation primary response gene 88 (MyD88) in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D) results in microbiota-dependent protection from the disease: MyD88-negative mice in germ-free (GF), but not in specific pathogen-free conditions develop the disease. These results could be explained by expansion of particular protective bacteria (“specific lineage hypothesis”) or by dominance of negative (tolerizing) signaling over proinflammatory signaling (“balanced signal hypothesis”) in mutant mice. Here we found that colonization of GF mice with a variety of intestinal bacteria was capable of reducing T1D in MyD88-negative (but not wild-type NOD mice), favoring the balanced signal hypothesis. However, the receptors and signaling pathways involved in prevention or facilitation of the disease remained unknown. The protective signals triggered by the microbiota were revealed by testing NOD mice lacking MyD88 in combination with knockouts of several critical components of innate immune sensing for development of T1D. Only MyD88- and TIR-domain containing adapter inducing IFN β (TRIF) double deficient NOD mice developed the disease. Thus, TRIF signaling (likely downstream of Toll-like receptor 4, TLR4) serves as one of the microbiota-induced tolerizing pathways. At the same time another TLR (TLR2) provided prodiabetic signaling by controlling the microbiota, as reduction in T1D incidence caused by TLR2 deletion was reversed in GF TLR2-negative mice. Our results support the balanced signal hypothesis, in which microbes provide signals that both promote and inhibit autoimmunity by signaling through different receptors, including receptors of the TLR family. PMID:26216961

  6. Epithelial Myeloid-differentiation Factor 88 is Dispensable During Klebsiella Pneumonia.

    PubMed

    Anas, Adam A; Claushuis, Theodora A M; Mohan, Rajiv A; Christoffels, Vincent M; Aidinis, Vassilis; Florquin, Sandrine; Van't Veer, Cornelis; Hou, Baidong; de Vos, Alex F; van der Poll, Tom

    2017-02-10

    Klebsiella (K.) pneumoniae is a common cause of pneumonia. Previous studies have documented an important role for Toll-like receptors (TLRs) expressed by myeloid cells in the recognition of K. pneumoniae and the initiation of a protective immune response. Lung epithelial cells also express TLRs and can participate in innate immune defense. The aim of this study was to examine the role of the common TLR adaptor protein myeloid differentiation factor (MyD)88 in lung epithelium during host defense against K. pneumoniae induced pneumonia. For this we first crossed mice expressing cre recombinase under the control of the surfactant protein C (SftpCcre) or the club cell 10Kd (CC10cre) promoter with reporter mice to show that SftpCcre mice mainly express cre in type II alveolar cells, while CC10cre mice express cre almost exclusively in bronchiolar epithelial cells. We then generated mice with cell targeted deletion of MyD88 in type II alveolar (SftpCcre-MyD88-lox) and bronchiolar epithelial (CC10cre-MyD88-lox) cells, and infected them with K. pneumoniae via the airways. Bacterial growth and dissemination were not affected by the loss of MyD88 in SftpCcre-MyD88-lox or CC10cre-MyD88-lox mice compared to control littermates. Furthermore, inflammatory responses induced by K. pneumoniae in the lung were not dependent on MyD88 expression in type II alveolar or bronchiolar epithelial cells. These results indicate that MyD88 expression in two distinct lung epithelial cell types does not contribute to host defense during pneumonia caused by a common human gram-negative pathogen.

  7. Transcriptional repression of Kruppel like factor-2 by the adaptor protein p66shc

    PubMed Central

    Kumar, Ajay; Hoffman, Timothy A.; DeRicco, Jeremy; Naqvi, Asma; Jain, Mukesh K.; Irani, Kaikobad

    2009-01-01

    The adaptor protein p66shc promotes cellular oxidative stress and apoptosis. Here, we demonstrate a novel mechanistic relationship between p66shc and the kruppel like factor-2 (KLF2) transcription factor and show that this relationship has biological relevance to p66shc-regulated cellular oxidant level, as well as KLF2-induced target gene expression. Genetic knockout of p66shc in mouse embryonic fibroblasts (MEFs) stimulates activity of the core KLF2 promoter and increases KLF2 mRNA and protein expression. Similarly, shRNA-induced knockdown of p66shc increases KLF2-promoter activity in HeLa cells. The increase in KLF2-promoter activity in p66shc-knockout MEFs is dependent on a myocyte enhancing factor-2A (MEF2A)-binding sequence in the core KLF2 promoter. Short-hairpin RNA-induced knockdown of p66shc in endothelial cells also stimulates KLF2 mRNA and protein expression, as well as expression of the endothelial KLF2 target gene thrombomodulin. MEF2A protein and mRNA are more abundant in p66shc-knockout MEFs, resulting in greater occupancy of the KLF2 promoter by MEF2A. In endothelial cells, the increase in KLF2 and thrombomodulin protein by shRNA-induced decrease in p66shc expression is partly abrogated by knockdown of MEF2A. Finally, knockdown of KLF2 abolishes the decrease in the cellular reactive oxygen species hydrogen peroxide observed with knockdown of p66shc, and KLF2 overexpression suppresses cellular hydrogen peroxide levels, independent of p66shc expression. These findings illustrate a novel mechanism by which p66shc promotes cellular oxidative stress, through suppression of MEF2A expression and consequent repression of KLF2 transcription.—Kumar, A., Hoffman, T. A., DeRicco, J., Naqvi, A., Jain, M. K., Irani, K. Transcriptional repression of Kruppel like factor-2 by the adaptor protein p66shc. PMID:19696221

  8. Adaptor protein Nck1 interacts with p120 Ras GTPase-activating protein and regulates its activity.

    PubMed

    Ger, Marija; Zitkus, Zigmantas; Valius, Mindaugas

    2011-10-01

    Adaptor protein Nck1 binds a number of intracellular proteins and influences various signaling pathways. Here we show that Nck1 directly binds and activates the GTPase-activating protein of Ras (RasGAP), which is responsible for the down-regulation of Ras. The first and the third SH3 domains of Nck1 and the NH(2)-terminal proline-rich sequence of RasGAP contribute most to the complex formation causing direct molecular interaction between the two proteins. Cell adhesion to the substrate is obligatory for the Nck1 and RasGAP association, as cell detachment makes RasGAP incapable of associating with Nck1. This leads to the complex dissipation, decrease of RasGAP activity and the increase of H-Ras-GTP level in the detached cells. Our findings reveal unexpected feature of adaptor protein Nck1 as the regulator of RasGAP activity.

  9. Preparation of next-generation sequencing libraries using Nextera™ technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition.

    PubMed

    Caruccio, Nicholas

    2011-01-01

    DNA library preparation is a common entry point and bottleneck for next-generation sequencing. Current methods generally consist of distinct steps that often involve significant sample loss and hands-on time: DNA fragmentation, end-polishing, and adaptor-ligation. In vitro transposition with Nextera™ Transposomes simultaneously fragments and covalently tags the target DNA, thereby combining these three distinct steps into a single reaction. Platform-specific sequencing adaptors can be added, and the sample can be enriched and bar-coded using limited-cycle PCR to prepare di-tagged DNA fragment libraries. Nextera technology offers a streamlined, efficient, and high-throughput method for generating bar-coded libraries compatible with multiple next-generation sequencing platforms.

  10. Structural Analysis of the Interaction between Dishevelled2 and Clathrin AP-2 Adaptor, A Critical Step in Noncanonical Wnt Signaling

    SciTech Connect

    Yu, Anan; Xing, Yi; Harrison, Stephen C.; Kirchhausen, Tomas

    2010-10-14

    Wnt association with its receptor, Frizzled (Fz), and recruitment by the latter of an adaptor, Dishevelled (Dvl), initiates signaling through at least two distinct pathways (canonical and noncanonical). Endocytosis and compartmentalization help determine the signaling outcome. Our previous work has shown that Dvl2 links at least one Frizzled family member (Fz4) to clathrin-mediated endocytosis by interacting with the {mu}2 subunit of the AP-2 clathrin adaptor, through both a classical endocytic tyrosine motif and a so-called DEP domain. We report here the crystal structure of a chimeric protein that mimics the Dvl2-{mu}2 complex. The DEP domain binds at one end of the elongated, C-terminal domain of {mu}2. This domain:domain interface shows that parts of the {mu}2 surface distinct from the tyrosine-motif site can help recruit specific receptors or adaptors into a clathrin coated pit. Mutation of residues at the DEP-{mu}2 contact or in the tyrosine motif reduce affinity of Dvl2 for {mu}2 and block efficient internalization of Fz4 in response to ligation by Wnt5a. The crystal structure has thus allowed us to identify the specific interaction that leads to Frizzled uptake and to downstream, noncanonical signaling events.

  11. HIV-1 Nucleocapsid Mimics the Membrane Adaptor Syntenin PDZ to Gain Access to ESCRTs and Promote Virus Budding.

    PubMed

    Sette, Paola; O'Connor, Sarah K; Yerramilli, V Siddartha; Dussupt, Vincent; Nagashima, Kunio; Chutiraka, Kasana; Lingappa, Jaisri; Scarlata, Suzanne; Bouamr, Fadila

    2016-03-09

    HIV-1 recruits cellular endosomal sorting complexes required for transport (ESCRTs) to bud virions from the membrane. Disruption of the viral nucleocapsid (NC) domain integrity affects HIV-1 budding. However, the molecular mechanisms of NC's involvement in HIV budding remain unclear. We find that NC mimics the PDZ domains of syntenin, a membrane-binding adaptor involved in cell-to-cell contact/communication, to capture the Bro1 domain of ALIX, which is an ESCRTs recruiting cellular adaptor. NC binds membranes via basic residues in either the distal or proximal zinc fingers, and NC-membrane binding is essential for Bro1 capture and HIV-1 budding. Removal of RNA enhances NC membrane binding, suggesting a dynamic competition between membrane lipids and RNA for the same binding sites in NC. Remarkably, syntenin PDZ can substitute for NC function in HIV-1 budding. Thus, NC mimics syntenin PDZs to function as a membrane-binding adaptor critical for HIV-1 budding at specific microdomains of the membrane.

  12. HIV-1 Nucleocapsid mimics the membrane adaptor Syntenin to gain access to ESCRTs and promote virus budding

    PubMed Central

    Sette, Paola; O’Connor, Sarah K.; Yerramilli, V. Siddartha; Dussupt, Vincent; Nagashima, Kunio; Chutiraka, Kasana; Lingappa, Jaisri; Scarlata, Suzanne; Bouamr, Fadila

    2016-01-01

    Summary HIV-1 recruits cellular Endosomal Sorting Complexes Required for Transport (ESCRTs) to bud virions from the membrane. Disruption of the viral nucleocapsid (NC) domain integrity affects HIV-1 budding. However, the molecular mechanisms of NC’s involvement in HIV budding remain unclear. We find that NC mimics the PDZ domains of syntenin, a membrane-binding adaptor involved in cell-to-cell contact/communication, to capture the Bro1 domain of ALIX, which is an ESCRTs recruiting cellular adaptor. NC binds membranes via basic residues in either the distal or proximal zinc fingers and NC-membrane binding is essential for Bro1 capture and HIV-1 budding. Removal of RNA enhances NC membrane binding suggesting a dynamic competition between membrane lipids and RNA for same binding sites in NC. Remarkably, syntenin PDZ can substitute for NC function in HIV-1 budding. Thus, NC mimics syntenin PDZs to function as a membrane-binding adaptor critical for HIV-1 budding at microdomains of the membrane. PMID:26962944

  13. Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures

    NASA Astrophysics Data System (ADS)

    Schreiber, Andreas; Huber, Matthias C.; Cölfen, Helmut; Schiller, Stefan M.

    2015-03-01

    The control over the defined assembly of nano-objects with nm-precision is important to create systems and materials with enhanced properties, for example, metamaterials. In nature, the precise assembly of inorganic nano-objects with unique features, for example, magnetosomes, is accomplished by efficient and reliable recognition schemes involving protein effectors. Here we present a molecular approach using protein-based ‘adaptors/connectors’ with genetically encoded interaction sites to guide the assembly and functionality of different plasmonically active gold nanoparticle architectures (AuNP). The interaction of the defined geometricaly shaped protein adaptors with the AuNP induces the self-assembly of nanoarchitectures ranging from AuNP encapsulation to one-dimensional chain-like structures, complex networks and stars. Synthetic biology and bionanotechnology are applied to co-translationally encode unnatural amino acids as additional site-specific modification sites to generate functionalized biohybrid nanoarchitectures. This protein adaptor-based nano-object assembly approach might be expanded to other inorganic nano-objects creating biohybrid materials with unique electronic, photonic, plasmonic and magnetic properties.

  14. Characterization of the adaptor protein ARH expression in the brain and ARH molecular interactions.

    PubMed

    Mameza, Marie Germaine; Lockard, Jon M; Zamora, Eduardo; Hillefors, Mi; Lavina, Zeno Scotto; Kaplan, Barry B

    2007-11-01

    Previously, pA134 was identified as one of the mRNAs present in the squid giant axon. Comparative sequence analyses revealed that the pA134 gene product manifested significant similarity to the mammalian lipoprotein receptor adaptor protein also known as ARH (autosomal recessive hypercholesterolemia). ARH mRNA and protein displayed very similar pattern of expression throughout the mouse brain. Significant levels of expression were observed in cells with a predominantly neuronal profile in the cerebellum, brainstem, olfactory bulb, hippocampus, and cortex. A yeast two hybrid screen for ARH protein interactions in mouse brain identified the following binders: amyloid precursor-like protein 1, low density lipoprotein receptor-related protein (LRP) 1, LRP8, and GABA receptor-associated protein-like 1. The interactions of ARH with LRP1 and GABA receptor-associated protein-like 1 were subsequently verified by co-immunoprecipitation of the protein complexes from transfected human embryonic kidney cells. The presence of ARH mRNA in axon of primary sympathetic neurons was established by RT-PCR analyses and confirmed by in situ hybridization. Taken together, our data suggest that ARH is a multifunctional protein whose spectrum of function in the brain goes beyond the traditionally known metabolism of lipoproteins, and that ARH may be locally synthesized in the axon.

  15. Artificial Neural Network for the Prediction of Tyrosine-Based Sorting Signal Recognition by Adaptor Complexes

    PubMed Central

    Mukherjee, Debarati; Hanna, Claudia B.; Aguilar, R. Claudio

    2012-01-01

    Sorting of transmembrane proteins to various intracellular compartments depends on specific signals present within their cytosolic domains. Among these sorting signals, the tyrosine-based motif (YXXØ) is one of the best characterized and is recognized by μ-subunits of the four clathrin-associated adaptor complexes (AP-1 to AP-4). Despite their overlap in specificity, each μ-subunit has a distinct sequence preference dependent on the nature of the X-residues. Moreover, combinations of these residues exert cooperative or inhibitory effects towards interaction with the various APs. This complexity makes it impossible to predict a priori, the specificity of a given tyrosine-signal for a particular μ-subunit. Here, we describe the results obtained with a computational approach based on the Artificial Neural Network (ANN) paradigm that addresses the issue of tyrosine-signal specificity, enabling the prediction of YXXØ-μ interactions with accuracies over 90%. Therefore, this approach constitutes a powerful tool to help predict mechanisms of intracellular protein sorting. PMID:22505811

  16. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52

    NASA Astrophysics Data System (ADS)

    Jo, Chulman; Gundemir, Soner; Pritchard, Susanne; Jin, Youngnam N.; Rahman, Irfan; Johnson, Gail V. W.

    2014-03-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2-knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.

  17. Losses, Expansions, and Novel Subunit Discovery of Adaptor Protein Complexes in Haptophyte Algae.

    PubMed

    Lee, Laura J Y; Klute, Mary J; Herman, Emily K; Read, Betsy; Dacks, Joel B

    2015-11-01

    The phylum Haptophyta (Diaphoratickes) contains marine algae that perform biomineralization, extruding large, distinctive calcium carbonate scales (coccoliths) that completely cover the cell. Coccolith production is an important part of global carbon cycling; however, the membrane trafficking pathway by which they are secreted has not yet been elucidated. In most eukaryotes, post-Golgi membrane trafficking involves five heterotetrameric adaptor protein (AP) complexes, which impart cargo selection specificity. To better understand coccolith secretion, we performed comparative genomic, phylogenetic, and transcriptomic analyses of the AP complexes in Emiliania huxleyi strains 92A, Van556, EH2, and CCMP1516, and related haptophytes Gephyrocapsa oceanica and Isochrysis galbana; the latter has lost the ability to biomineralize. We show that haptophytes have a modified membrane trafficking system (MTS), as we found both AP subunit losses and duplications. Additionally, we identified a single conserved subunit of the AP-related TSET complex, whose expression suggests a functional role in membrane trafficking. Finally, we detected novel alpha adaptin ear and gamma adaptin ear proteins, the first of their kind to be described outside of opisthokonts. These novel ear proteins and the sculpting of the MTS may support the capacity for biomineralization in haptophytes, enhancing their ability to perform this highly specialized form of secretion.

  18. PHF6 Degrees of Separation: The Multifaceted Roles of a Chromatin Adaptor Protein

    PubMed Central

    Todd, Matthew A.M.; Ivanochko, Danton; Picketts, David J.

    2015-01-01

    The importance of chromatin regulation to human disease is highlighted by the growing number of mutations identified in genes encoding chromatin remodeling proteins. While such mutations were first identified in severe developmental disorders, or in specific cancers, several genes have been implicated in both, including the plant homeodomain finger protein 6 (PHF6) gene. Indeed, germline mutations in PHF6 are the cause of the Börjeson–Forssman–Lehmann X-linked intellectual disability syndrome (BFLS), while somatic PHF6 mutations have been identified in T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Studies from different groups over the last few years have made a significant impact towards a functional understanding of PHF6 protein function. In this review, we summarize the current knowledge of PHF6 with particular emphasis on how it interfaces with a distinct set of interacting partners and its functional roles in the nucleoplasm and nucleolus. Overall, PHF6 is emerging as a key chromatin adaptor protein critical to the regulation of neurogenesis and hematopoiesis. PMID:26103525

  19. The role of palmitoylation and transmembrane domain in sorting of transmembrane adaptor proteins.

    PubMed

    Chum, Tomáš; Glatzová, Daniela; Kvíčalová, Zuzana; Malínský, Jan; Brdička, Tomáš; Cebecauer, Marek

    2016-01-01

    Plasma membrane proteins synthesised at the endoplasmic reticulum are delivered to the cell surface via sorting pathways. Hydrophobic mismatch theory based on the length of the transmembrane domain (TMD) dominates discussion about determinants required for protein sorting to the plasma membrane. Transmembrane adaptor proteins (TRAP) are involved in signalling events which take place at the plasma membrane. Members of this protein family have TMDs of varying length. We were interested in whether palmitoylation or other motifs contribute to the effective sorting of TRAP proteins. We found that palmitoylation is essential for some, but not all, TRAP proteins independent of their TMD length. We also provide evidence that palmitoylation and proximal sequences can modulate sorting of artificial proteins with TMDs of suboptimal length. Our observations point to a unique character of each TMD defined by its primary amino acid sequence and its impact on membrane protein localisation. We conclude that, in addition to the TMD length, secondary sorting determinants such as palmitoylation or flanking sequences have evolved for the localisation of membrane proteins.

  20. The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes.

    PubMed

    Paleotti, Olivia; Macia, Eric; Luton, Frederic; Klein, Stephanie; Partisani, Mariagrazia; Chardin, Pierre; Kirchhausen, Tom; Franco, Michel

    2005-06-03

    The small GTP-binding protein ADP-ribosylation factor 6 (Arf6) is involved in plasma membrane/endosomes trafficking. However, precisely how the activation of Arf6 regulates vesicular transport is still unclear. Here, we show that, in vitro, recombinant Arf6GTP recruits purified clathrin-adaptor complex AP-2 (but not AP-1) onto phospholipid liposomes in the absence of phosphoinositides. We also show that phosphoinositides and Arf6 tightly cooperate to translocate AP-2 to the membrane. In vivo, Arf6GTP (but not Arf6GDP) was found associated to AP-2. The expression of the GTP-locked mutant of Arf6 leads to the plasma membrane redistribution of AP-2 in Arf6GTP-enriched areas. Finally, we demonstrated that the expression of the GTP-locked mutant of Arf6 inhibits transferrin receptor internalization without affecting its recycling. Altogether, our results demonstrated that Arf6GTP interacts specifically with AP-2 and promotes its membrane recruitment. These findings strongly suggest that Arf6 plays a major role in clathrin-mediated endocytosis by directly controlling the assembly of the AP-2/clathrin coat.

  1. Adaptor Protein 2 (AP-2) complex is essential for functional axogenesis in hippocampal neurons

    PubMed Central

    Kyung, Jae Won; Cho, In Ha; Lee, Sukmook; Song, Woo Keun; Ryan, Timothy A.; Hoppa, Michael B.; Kim, Sung Hyun

    2017-01-01

    The complexity and diversity of a neural network requires regulated elongation and branching of axons, as well as the formation of synapses between neurons. In the present study we explore the role of AP-2, a key endocytic adaptor protein complex, in the development of rat hippocampal neurons. We found that the loss of AP-2 during the early stage of development resulted in impaired axon extension and failed maturation of the axon initial segment (AIS). Normally the AIS performs two tasks in concert, stabilizing neural polarity and generating action potentials. In AP-2 silenced axons polarity is established, however there is a failure to establish action potential firing. Consequently, this impairs activity-driven Ca2+ influx and exocytosis at nerve terminals. In contrast, removal of AP-2 from older neurons does not impair axonal growth or signaling and synaptic function. Our data reveal that AP-2 has important roles in functional axogenesis by proper extension of axon as well as the formation of AIS during the early step of neurodevelopment. PMID:28139716

  2. Cutting edge: DNA sensing via the STING adaptor in myeloid dendritic cells induces potent tolerogenic responses.

    PubMed

    Huang, Lei; Li, Lingqian; Lemos, Henrique; Chandler, Phillip R; Pacholczyk, Gabriela; Baban, Babak; Barber, Glen N; Hayakawa, Yoshihiro; McGaha, Tracy L; Ravishankar, Buvana; Munn, David H; Mellor, Andrew L

    2013-10-01

    Cytosolic DNA sensing via the stimulator of IFN genes (STING) adaptor incites autoimmunity by inducing type I IFN (IFN-αβ). In this study, we show that DNA is also sensed via STING to suppress immunity by inducing IDO. STING gene ablation abolished IFN-αβ and IDO induction by dendritic cells (DCs) after DNA nanoparticle (DNP) treatment. Marginal zone macrophages, some DCs, and myeloid cells ingested DNPs, but CD11b(+) DCs were the only cells to express IFN-β, whereas CD11b(+) non-DCs were major IL-1β producers. STING ablation also abolished DNP-induced regulatory responses by DCs and regulatory T cells, and hallmark regulatory responses to apoptotic cells were also abrogated. Moreover, systemic cyclic diguanylate monophosphate treatment to activate STING induced selective IFN-β expression by CD11b(+) DCs and suppressed Th1 responses to immunization. Thus, previously unrecognized functional diversity among physiologic innate immune cells regarding DNA sensing via STING is pivotal in driving immune responses to DNA.

  3. Tyrosine phosphorylation-independent regulation of lipopolysaccharide-mediated response by the transmembrane adaptor protein LAB.

    PubMed

    Zhu, Minghua; Fuller, Deirdre M; Ou-Yang, Chih-wen; Sullivan, Sarah A; Zhang, Weiguo

    2012-03-15

    Linker for activation of B cells (LAB)/non-T cell activation linker is a transmembrane adaptor protein that functions in immunoreceptor-mediated signaling. Published studies have shown that LAB has both positive and negative roles in regulating TCR and high-affinity Fc receptor-mediated signaling and cellular function. In this study, we showed that LAB was also expressed in dendritic cells and that LAB deficiency affected LPS-mediated signaling and cytokine production. LPS-mediated MAPK activation was enhanced in LAB(-/-) bone marrow-derived dendritic cells. These bone marrow-derived dendritic cells also produced more TNF-α, IL-6, and IL-10 than wild-type cells. Moreover, LAB(-/-) mice were hyperresponsive to LPS-induced septic shock. These data indicated that LAB has a negative role in LPS-mediated responses. By using LAB knockin mice, which harbor mutations at five membrane-distal tyrosines, we further showed that, in contrast to its role in immunoreceptor-mediated signaling, LAB function in LPS-mediated signaling pathway did not depend on its tyrosine phosphorylation. Our study suggested a novel mechanism by which LAB functions in the regulation of innate immunity.

  4. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    PubMed

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  5. Machines of destruction - AAA+ proteases and the adaptors that control them.

    PubMed

    Gur, Eyal; Ottofueling, Ralf; Dougan, David A

    2013-01-01

    Bacteria are frequently exposed to changes in environmental conditions, such as fluctuations in temperature, pH or the availability of nutrients. These assaults can be detrimental to cell as they often result in a proteotoxic stress, which can cause the accumulation of unfolded proteins. In order to restore a productive folding environment in the cell, bacteria have evolved a network of proteins, known as the protein quality control (PQC) network, which is composed of both chaperones and AAA+ proteases. These AAA+ proteases form a major part of this PQC network, as they are responsible for the removal of unwanted and damaged proteins. They also play an important role in the turnover of specific regulatory or tagged proteins. In this review, we describe the general features of an AAA+ protease, and using two of the best-characterised AAA+ proteases in Escherichia coli (ClpAP and ClpXP) as a model for all AAA+ proteases, we provide a detailed mechanistic description of how these machines work. Specifically, the review examines the physiological role of these machines, as well as the substrates and the adaptor proteins that modulate their substrate specificity.

  6. The polarity protein Par3 regulates APP trafficking and processing through the endocytic adaptor protein Numb.

    PubMed

    Sun, Miao; Asghar, Suwaiba Z; Zhang, Huaye

    2016-09-01

    The processing of amyloid precursor protein (APP) into β-amyloid peptide (Aβ) is a key step in the pathogenesis of Alzheimer's disease (AD), and trafficking dysregulations of APP and its secretases contribute significantly to altered APP processing. Here we show that the cell polarity protein Par3 plays an important role in APP processing and trafficking. We found that the expression of full length Par3 is significantly decreased in AD patients. Overexpression of Par3 promotes non-amyloidogenic APP processing, while depletion of Par3 induces intracellular accumulation of Aβ. We further show that Par3 functions by regulating APP trafficking. Loss of Par3 decreases surface expression of APP by targeting APP to the late endosome/lysosome pathway. Finally, we show that the effects of Par3 are mediated through the endocytic adaptor protein Numb, and Par3 functions by interfering with the interaction between Numb and APP. Together, our studies show a novel role for Par3 in regulating APP processing and trafficking.

  7. ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor

    PubMed Central

    Lavin, Martin F.; Kozlov, Sergei; Gatei, Magtouf; Kijas, Amanda W.

    2015-01-01

    The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes. PMID:26512707

  8. The Inflammasome Adaptor ASC Induces Procaspase-8 Death Effector Domain Filaments*

    PubMed Central

    Vajjhala, Parimala R.; Lu, Alvin; Brown, Darren L.; Pang, Siew Wai; Sagulenko, Vitaliya; Sester, David P.; Cridland, Simon O.; Hill, Justine M.; Schroder, Kate; Stow, Jennifer L.; Wu, Hao; Stacey, Katryn J.

    2015-01-01

    Inflammasomes mediate inflammatory and cell death responses to pathogens and cellular stress signals via activation of procaspases-1 and -8. During inflammasome assembly, activated receptors of the NLR or PYHIN family recruit the adaptor protein ASC and initiate polymerization of its pyrin domain (PYD) into filaments. We show that ASC filaments in turn nucleate procaspase-8 death effector domain (DED) filaments in vitro and in vivo. Interaction between ASC PYD and procaspase-8 tandem DEDs optimally required both DEDs and represents an unusual heterotypic interaction between domains of the death fold superfamily. Analysis of ASC PYD mutants showed that interaction surfaces that mediate procaspase-8 interaction overlap with those required for ASC self-association and interaction with the PYDs of inflammasome initiators. Our data indicate that multiple types of death fold domain filaments form at inflammasomes and that PYD/DED and homotypic PYD interaction modes are similar. Interestingly, we observed condensation of procaspase-8 filaments containing the catalytic domain, suggesting that procaspase-8 interactions within and/or between filaments may be involved in caspase-8 activation. Procaspase-8 filaments may also be relevant to apoptosis induced by death receptors. PMID:26468282

  9. ARH is a modular adaptor protein that interacts with the LDL receptor, clathrin, and AP-2.

    PubMed

    He, Guocheng; Gupta, Sarita; Yi, Ming; Michaely, Peter; Hobbs, Helen H; Cohen, Jonathan C

    2002-11-15

    Mutations in the phosphotyrosine binding domain protein ARH cause autosomal recessive hypercholesterolemia, a disorder caused by defective internalization of low density lipoprotein receptors (LDLR) in the liver. To examine the function of ARH, we used pull-down experiments to test for interactions between ARH, the LDLR, and proteins involved in clathrin-mediated endocytosis. The phosphotyrosine binding domain of ARH interacted with the internalization sequence (NPVY) in the cytoplasmic tail of LDLR in a sequence-specific manner. Mutations in the NPVY sequence that were previously shown to decrease LDLR internalization abolished in vitro binding to ARH. Recombinant ARH bound purified bovine clathrin with high affinity (K(D), approximately 44 nm). The interaction between ARH and clathrin was mapped to a canonical clathrin box sequence (LLDLE) in ARH and to the N-terminal domain of the clathrin heavy chain. A highly conserved 20-amino acid sequence in the C-terminal region of ARH bound the beta(2)-adaptin subunit of AP-2. Mutation of a glutamic acid residue in the appendage domain of beta(2)-adaptin that is required for interaction with the adapter protein beta-arrestin markedly reduced binding to ARH. These data are consistent with the hypothesis that ARH functions as an adaptor protein that couples LDLR to the endocytic machinery.

  10. Nuclear Translocation of Crk Adaptor Proteins by the Influenza A Virus NS1 Protein

    PubMed Central

    Ylösmäki, Leena; Fagerlund, Riku; Kuisma, Inka; Julkunen, Ilkka; Saksela, Kalle

    2016-01-01

    The non-structural protein-1 (NS1) of many influenza A strains, especially those of avian origin, contains an SH3 ligand motif, which binds tightly to the cellular adaptor proteins Crk (Chicken tumor virus number 10 (CT10) regulator of kinase) and Crk-like adapter protein (CrkL). This interaction has been shown to potentiate NS1-induced activation of the phosphatidylinositol 3-kinase (PI3K), but additional effects on the host cell physiology may exist. Here we show that NS1 can induce an efficient translocation of Crk proteins from the cytoplasm into the nucleus, which results in an altered pattern of nuclear protein tyrosine phosphorylation. This was not observed using NS1 proteins deficient in SH3 binding or engineered to be exclusively cytoplasmic, indicating a physical role for NS1 as a carrier in the nuclear translocation of Crk. These data further emphasize the role of Crk proteins as host cell interaction partners of NS1, and highlight the potential for host cell manipulation gained by a viral protein simply via acquiring a short SH3 binding motif. PMID:27092521

  11. Roles of BLOC-1 and Adaptor Protein-3 Complexes in Cargo Sorting to Synaptic Vesicles

    PubMed Central

    Newell-Litwa, Karen; Salazar, Gloria; Smith, Yoland

    2009-01-01

    Neuronal lysosomes and their biogenesis mechanisms are primarily thought to clear metabolites and proteins whose abnormal accumulation leads to neurodegenerative disease pathology. However, it remains unknown whether lysosomal sorting mechanisms regulate the levels of membrane proteins within synaptic vesicles. Using high-resolution deconvolution microscopy, we identified early endosomal compartments where both selected synaptic vesicle and lysosomal membrane proteins coexist with the adaptor protein complex 3 (AP-3) in neuronal cells. From these early endosomes, both synaptic vesicle membrane proteins and characteristic AP-3 lysosomal cargoes can be similarly sorted to brain synaptic vesicles and PC12 synaptic-like microvesicles. Mouse knockouts for two Hermansky–Pudlak complexes involved in lysosomal biogenesis from early endosomes, the ubiquitous isoform of AP-3 (Ap3b1−/−) and muted, defective in the biogenesis of lysosome-related organelles complex 1 (BLOC-1), increased the content of characteristic synaptic vesicle proteins and known AP-3 lysosomal proteins in isolated synaptic vesicle fractions. These phenotypes contrast with those of the mouse knockout for the neuronal AP-3 isoform involved in synaptic vesicle biogenesis (Ap3b2−/−), in which the content of select proteins was reduced in synaptic vesicles. Our results demonstrate that lysosomal and lysosome-related organelle biogenesis mechanisms regulate steady-state synaptic vesicle protein composition from shared early endosomes. PMID:19144828

  12. Impairment of dendritic cell functions in patients with adaptor protein-3 complex deficiency.

    PubMed

    Prandini, Alberto; Salvi, Valentina; Colombo, Francesca; Moratto, Daniele; Lorenzi, Luisa; Vermi, William; De Francesco, Maria Antonia; Notarangelo, Lucia Dora; Porta, Fulvio; Plebani, Alessandro; Facchetti, Fabio; Sozzani, Silvano; Badolato, Raffaele

    2016-06-30

    Hermansky-Pudlak syndrome type 2 (HPS2) is a primary immunodeficiency due to adaptor protein-3 (AP-3) complex deficiency. HPS2 patients present neutropenia, partial albinism, and impaired lysosomal vesicles formation in hematopoietic cells. Given the role of dendritic cells (DCs) in the immune response, we studied monocyte-derived DCs (moDCs) and plasmacytoid DCs (pDCs) in two HPS2 siblings. Mature HPS2 moDCs showed impaired expression of CD83 and DC-lysosome-associated membrane protein (LAMP), low levels of MIP1-β/CCL4, MIG/CXCL9, and severe defect of interleukin-12 (IL-12) secretion. DCs in lymph-node biopsies from the same patients showed a diffuse cytoplasm reactivity in a large fraction of DC-LAMP(+) cells, instead of the classical dot-like stain. In addition, analysis of pDC-related functions of blood-circulating mononuclear cells revealed reduced interferon-α secretion in response to herpes simplex virus-1 (HSV-1), whereas granzyme-B induction upon IL-3/IL-10 stimulation was normal. Finally, T-cell costimulatory activity, as measured by mixed lymphocyte reaction assay, was lower in patients, suggesting that function and maturation of DCs is abnormal in patients with HPS2.

  13. ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor.

    PubMed

    Lavin, Martin F; Kozlov, Sergei; Gatei, Magtouf; Kijas, Amanda W

    2015-10-23

    The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes.

  14. How HIV-1 Nef hijacks the AP-2 clathrin adaptor to downregulate CD4.

    PubMed

    Ren, Xuefeng; Park, Sang Yoon; Bonifacino, Juan S; Hurley, James H

    2014-01-01

    The Nef protein of HIV-1 downregulates the cell surface co-receptor CD4 by hijacking the clathrin adaptor complex AP-2. The structural basis for the hijacking of AP-2 by Nef is revealed by a 2.9 Å crystal structure of Nef bound to the α and σ2 subunits of AP-2. Nef binds to AP-2 via its central loop (residues 149-179) and its core. The determinants for Nef binding include residues that directly contact AP-2 and others that stabilize the binding-competent conformation of the central loop. Residues involved in both direct and indirect interactions are required for the binding of Nef to AP-2 and for downregulation of CD4. These results lead to a model for the docking of the full AP-2 tetramer to membranes as bound to Nef, such that the cytosolic tail of CD4 is situated to interact with its binding site on Nef. DOI: http://dx.doi.org/10.7554/eLife.01754.001.

  15. A novel TLR3 inhibitor encoded by African swine fever virus (ASFV).

    PubMed

    de Oliveira, V L; Almeida, S C P; Soares, H R; Crespo, A; Marshall-Clarke, S; Parkhouse, R M E

    2011-04-01

    African swine fever virus (ASFV) encodes proteins that manipulate important host antiviral mechanisms. Bioinformatic analysis of the ASFV genome revealed ORF I329L, a gene without any previous functional characterization as a possible inhibitor of TLR signaling. We demonstrate that ORF I329L encodes a highly glycosylated protein expressed in the cell membrane and on its surface. I329L also inhibited dsRNA-stimulated activation of NFκB and IRF3, two key players in innate immunity. Consistent with this, expression of I329L protein also inhibited the activation of interferon-β and CCL5. Finally, overexpression of TRIF reversed I329L-mediated inhibition of both NFκB and IRF3 activation. Our results suggest that TRIF, a key MyD88-independent adaptor molecule, is a possible target of this viral host modulation gene. The demonstration of an ASFV host evasion molecule inhibiting TLR responses is consistent with the ability of this virus to infect vertebrate and invertebrate hosts, both of which deploy innate immunity controlled by conserved TLR systems.

  16. A Staphylococcus aureus TIR domain protein virulence factor blocks TLR2-mediated NF-κB signaling.

    PubMed

    Askarian, Fatemeh; van Sorge, Nina M; Sangvik, Maria; Beasley, Federico C; Henriksen, Jørn R; Sollid, Johanna U E; van Strijp, Jos A G; Nizet, Victor; Johannessen, Mona

    2014-01-01

    Signaling through Toll-like receptors (TLRs), crucial molecules in the induction of host defense responses, requires adaptor proteins that contain a Toll/interleukin-1 receptor (TIR) domain. The pathogen Staphylococcus aureus produces several innate immune-evasion molecules that interfere with the host's innate immune response. A database search analysis suggested the presence of a gene encoding a homologue of the human TIR domain in S. aureus MSSA476 which was named staphylococcal TIR domain protein (TirS). Ectopic expression of TirS in human embryonic kidney, macrophage and keratinocyte cell lines interfered with signaling through TLR2, including MyD88 and TIRAP, NF-κB and/or mitogen-activated protein kinase pathways. Moreover, the presence of TirS reduced the levels of cytokines MCP-1 and G-CSF secreted in response to S. aureus. The effects on NF-κB pathway were confirmed using S. aureus MSSA476 wild type, an isogenic mutant MSSA476ΔtirS, and complemented MSSA476ΔtirS +pTirS in a Transwell system where bacteria and host cells were physically separated. Finally, in a systematic mouse infection model, TirS promoted bacterial accumulation in several organs 4 days postinfection. The results of this study reveal a new S. aureus virulence factor that can interfere with PAMP-induced innate immune signaling in vitro and bacterial survival in vivo.

  17. The Small GTPase Arf6 Is Essential for the Tram/Trif Pathway in TLR4 Signaling*

    PubMed Central

    Van Acker, Tim; Eyckerman, Sven; Vande Walle, Lieselotte; Gerlo, Sarah; Goethals, Marc; Lamkanfi, Mohamed; Bovijn, Celia; Tavernier, Jan; Peelman, Frank

    2014-01-01

    Recognition of lipopolysaccharides (LPS) by Toll-like receptor 4 (TLR4) at the plasma membrane triggers NF-κB activation through recruitment of the adaptor proteins Mal and MyD88. Endocytosis of the activated TLR4 allows recruitment of the adaptors Tram and Trif, leading to activation of the transcription factor IRF3 and interferon production. The small GTPase ADP-ribosylation factor 6 (Arf6) was shown to regulate the plasma membrane association of Mal. Here we demonstrate that inhibition of Arf6 also markedly reduced LPS-induced cytokine production in Mal−/− mouse macrophages. In this article, we focus on a novel role for Arf6 in the MyD88-independent TLR4 pathway. MyD88-independent IRF3 activation and IRF3-dependent gene transcription were strictly dependent on Arf6. Arf6 was involved in transport of Tram to the endocytic recycling compartment and internalization of LPS, possibly explaining its requirement for LPS-induced IRF3 activation. Together, these results show a critical role for Arf6 in regulating Tram/Trif-dependent TLR4 signaling. PMID:24297182

  18. The SH2B1 adaptor protein associates with a proximal region of the erythropoietin receptor.

    PubMed

    Javadi, Mojib; Hofstätter, Edda; Stickle, Natalie; Beattie, Bryan K; Jaster, Robert; Carter-Su, Christin; Barber, Dwayne L

    2012-07-27

    Gene targeting experiments have shown that the cytokine erythropoietin (EPO), its cognate erythropoietin receptor (EPO-R), and associated Janus tyrosine kinase, JAK2, are all essential for erythropoiesis. Structural-functional and murine knock-in experiments have suggested that EPO-R Tyr-343 is important in EPO-mediated mitogenesis. Although Stat5 binds to EPO-R phosphotyrosine 343, the initial Stat5-deficient mice did not have profound erythroid abnormalities suggesting that additional Src homology 2 (SH2) domain-containing effectors may bind to EPO-R Tyr-343 and couple to downstream signaling pathways. We have utilized cloning of ligand target (COLT) screening to demonstrate that EPO-R Tyr(P)-343 and Tyr(P)-401 bind to the SH2 domain-containing adaptor protein SH2B1β. Immunoprecipitation and in vitro mixing experiments reveal that EPO-R binds to SH2B1 in an SH2 domain-dependent manner and that the sequence that confers SH2B1 binding to the EPO-R is pYXXL. Previous studies have shown that SH2B1 binds directly to JAK2, but we show that in hematopoietic cells, SH2B1β preferentially associates with the EPO-R. SH2B1 is capable of constitutive association with EPO-R, which is necessary for its optimal SH2-dependent recruitment to EPO-R-Tyr(P)-343/Tyr(P)-401. We also demonstrate that SH2B1 is responsive to EPO stimulation and becomes phosphorylated, most likely on serines/threonines, in an EPO dose- and time-dependent manner. In the absence of SH2B1, we observe enhanced activation of signaling pathways downstream of the EPO-R, indicating that SH2B1 is a negative regulator of EPO signaling.

  19. Genetic Deletion of the Clathrin Adaptor GGA3 Reduces Anxiety and Alters GABAergic Transmission

    PubMed Central

    Albrecht, David; Lomoio, Selene; Haydon, Philip G.; Moss, Stephen J.; Tesco, Giuseppina

    2016-01-01

    Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) is a monomeric clathrin adaptor that has been shown to regulate the trafficking of the Beta-site APP-cleaving enzyme (BACE1), which is required for production of the Alzheimer’s disease (AD)-associated amyloid βpeptide. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that depletion of GGA3 results in increased BACE1 levels and activity owing to impaired lysosomal trafficking and degradation. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3 null mice. We report here that GGA3 deletion results in novelty-induced hyperactivity and decreased anxiety-like behaviors. Given the pivotal role of GABAergic transmission in the regulation of anxiety-like behaviors, we performed electrophysiological recordings in hippocampal slices and found increased phasic and decreased tonic inhibition in the dentate gyrus granule cells (DGGC). Moreover, we found that the number of inhibitory synapses is increased in the dentate gyrus of GGA3 null mice in further support of the electrophysiological data. Thus, the increased GABAergic transmission is a leading candidate mechanism underlying the reduced anxiety-like behaviors observed in GGA3 null mice. All together these findings suggest that GGA3 plays a key role in GABAergic transmission. Since BACE1 levels are elevated in the brain of GGA3 null mice, it is possible that at least some of these phenotypes are a consequence of increased processing of BACE1 substrates. PMID:27192432

  20. Biophysical basis of the binding of WWOX tumor suppressor to WBP1 and WBP2 adaptors.

    PubMed

    McDonald, Caleb B; Buffa, Laura; Bar-Mag, Tomer; Salah, Zaidoun; Bhat, Vikas; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Malhotra, Arun; Sudol, Marius; Aqeilan, Rami I; Nawaz, Zafar; Farooq, Amjad

    2012-09-07

    The WW-containing oxidoreductase (WWOX) tumor suppressor participates in a diverse array of cellular activities by virtue of its ability to recognize WW-binding protein 1 (WBP1) and WW-binding protein 2 (WBP2) signaling adaptors among a wide variety of other ligands. Herein, using a multitude of biophysical techniques, we provide evidence that while the WW1 domain of WWOX binds to PPXY motifs within WBP1 and WBP2 in a physiologically relevant manner, the WW2 domain exhibits no affinity toward any of these PPXY motifs. Importantly, our data suggest that while R25/W44 residues located within the binding pocket of a triple-stranded β-fold of WW1 domain are critical for the recognition of PPXY ligands, they are replaced by the chemically distinct E66/Y85 duo at structurally equivalent positions within the WW2 domain, thereby accounting for its failure to bind PPXY ligands. Predictably, not only does the introduction of E66R/Y85W double substitution within the WW2 domain result in gain of function but the resulting engineered domain, hereinafter referred to as WW2_RW, also appears to be a much stronger binding partner of WBP1 and WBP2 than the wild-type WW1 domain. We also show that while the WW1 domain is structurally disordered and folds upon ligand binding, the WW2 domain not only adopts a fully structured conformation but also aids stabilization and ligand binding to WW1 domain. This salient observation implies that the WW2 domain likely serves as a chaperone to augment the physiological function of WW1 domain within WWOX. Collectively, our study lays the groundwork for understanding the molecular basis of a key protein-protein interaction pertinent to human health and disease.

  1. Biophysical Basis of the Binding of WWOX Tumor Suppressor to WBP1 and WBP2 Adaptors

    PubMed Central

    McDonald, Caleb B.; Buffa, Laura; Bar-Mag, Tomer; Salah, Zaidoun; Bhat, Vikas; Mikles, David C.; Deegan, Brian J.; Seldeen, Kenneth L.; Malhotra, Arun; Sudol, Marius; Aqeilan, Rami I.; Nawaz, Zafar; Farooq, Amjad

    2012-01-01

    The WWOX tumor suppressor participates in a diverse array of cellular activities by virtue of its ability to recognize WBP1 and WBP2 signaling adaptors among a wide variety of other ligands. Herein, using a multitude of biophysical techniques, we provide evidence that while the WW1 domain of WWOX binds to PPXY motifs within WBP1 and WBP2 in a physiologically-relevant manner, the WW2 domain exhibits no affinity toward any of these PPXY motifs. Importantly, our data suggest that while R25/W44 residues located within the binding pocket of triple-stranded β-fold of WW1 domain are critical for the recognition of PPXY ligands, they are replaced by the chemically-distinct E66/Y85 duo at structurally-equivalent positions within the WW2 domain, thereby accounting for its failure to bind PPXY ligands. Predictably, introduction of E66R/Y85W double-substitution within the WW2 domain not only results in gain-of-function but the resulting engineered domain, hereinafter referred to as WW2_RW, also appears to be a much stronger binding partner of WBP1 and WBP2 than the wild type WW1 domain. We also show that while the WW1 domain is structurally disordered and folds upon ligand binding, the WW2 domain not only adopts a fully structured conformation but also aids stabilization and ligand binding to WW1 domain. This salient observation implies that the WW2 domain likely serves as a chaperone to augment the physiological function of WW1 domain within WWOX. Collectively, our study lays the groundwork for understanding the molecular basis of a key protein-protein interaction pertinent to human health and disease. PMID:22634283

  2. Negative Regulation of the Endocytic Adaptor Disabled-2 (Dab2) in Mitosis*

    PubMed Central

    Chetrit, David; Barzilay, Lior; Horn, Galit; Bielik, Tom; Smorodinsky, Nechama I.; Ehrlich, Marcelo

    2011-01-01

    Mitotic cells undergo extensive changes in shape and size through the altered regulation and function of their membrane trafficking machinery. Disabled 2 (Dab2), a multidomain cargo-specific endocytic adaptor and a mediator of signal transduction, is a potential integrator of trafficking and signaling. Dab2 binds effectors of signaling and trafficking that localize to different intracellular compartments. Thus, differential localization is a putative regulatory mechanism of Dab2 function. Furthermore, Dab2 is phosphorylated in mitosis and is thus regulated in the cell cycle. However, a detailed description of the intracellular localization of Dab2 in the different phases of mitosis and an understanding of the functional consequences of its phosphorylation are lacking. Here, we show that Dab2 is progressively displaced from the membrane in mitosis. This phenomenon is paralleled by a loss of co-localization with clathrin. Both phenomena culminate in metaphase/anaphase and undergo partial recovery in cytokinesis. Treatment with 2-methoxyestradiol, which arrests cells at the spindle assembly checkpoint, induces the same effects observed in metaphase cells. Moreover, 2-methoxyestradiol also induced Dab2 phosphorylation and reduced Dab2/clathrin interactions, endocytic vesicle motility, clathrin exchange dynamics, and the internalization of a receptor endowed with an NPXY endocytic signal. Serine/threonine to alanine mutations, of residues localized to the central region of Dab2, attenuated its phosphorylation, reduced its membrane displacement, and maintained its endocytic abilities in mitosis. We propose that the negative regulation of Dab2 is part of an accommodation of the cell to the altered physicochemical conditions prevalent in mitosis, aimed at allowing endocytic activity throughout the cell cycle. PMID:21097498

  3. Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera pathophysiology.

    PubMed

    Ishikawa, Yuichi; Maeda, Manami; Pasham, Mithun; Aguet, Francois; Tacheva-Grigorova, Silvia K; Masuda, Takeshi; Yi, Hai; Lee, Sung-Uk; Xu, Jian; Teruya-Feldstein, Julie; Ericsson, Maria; Mullally, Ann; Heuser, John; Kirchhausen, Tom; Maeda, Takahiro

    2015-04-01

    Clathrin-dependent endocytosis is an essential cellular process shared by all cell types. Despite this, precisely how endocytosis is regulated in a cell-type-specific manner and how this key pathway functions physiologically or pathophysiologically remain largely unknown. PICALM, which encodes the clathrin adaptor protein PICALM, was originally identified as a component of the CALM/AF10 leukemia oncogene. Here we show, by employing a series of conditional Picalm knockout mice, that PICALM critically regulates transferrin uptake in erythroid cells by functioning as a cell-type-specific regulator of transferrin receptor endocytosis. While transferrin receptor is essential for the development of all hematopoietic lineages, Picalm was dispensable for myeloid and B-lymphoid development. Furthermore, global Picalm inactivation in adult mice did not cause gross defects in mouse fitness, except for anemia and a coat color change. Freeze-etch electron microscopy of primary erythroblasts and live-cell imaging of murine embryonic fibroblasts revealed that Picalm function is required for efficient clathrin coat maturation. We showed that the PICALM PIP2 binding domain is necessary for transferrin receptor endocytosis in erythroblasts and absolutely essential for erythroid development from mouse hematopoietic stem/progenitor cells in an erythroid culture system. We further showed that Picalm deletion entirely abrogated the disease phenotype in a Jak2(V617F) knock-in murine model of polycythemia vera. Our findings provide new insights into the regulation of cell-type-specific transferrin receptor endocytosis in vivo. They also suggest a new strategy to block cellular uptake of transferrin-bound iron, with therapeutic potential for disorders characterized by inappropriate red blood cell production, such as polycythemia vera.

  4. Hydrological Modeling Reproducibility Through Data Management and Adaptors for Model Interoperability

    NASA Astrophysics Data System (ADS)

    Turner, M. A.

    2015-12-01

    Because of a lack of centralized planning and no widely-adopted standards among hydrological modeling research groups, research communities, and the data management teams meant to support research, there is chaos when it comes to data formats, spatio-temporal resolutions, ontologies, and data availability. All this makes true scientific reproducibility and collaborative integrated modeling impossible without some glue to piece it all together. Our Virtual Watershed Integrated Modeling System provides the tools and modeling framework hydrologists need to accelerate and fortify new scientific investigations by tracking provenance and providing adaptors for integrated, collaborative hydrologic modeling and data management. Under global warming trends where water resources are under increasing stress, reproducible hydrological modeling will be increasingly important to improve transparency and understanding of the scientific facts revealed through modeling. The Virtual Watershed Data Engine is capable of ingesting a wide variety of heterogeneous model inputs, outputs, model configurations, and metadata. We will demonstrate one example, starting from real-time raw weather station data packaged with station metadata. Our integrated modeling system will then create gridded input data via geostatistical methods along with error and uncertainty estimates. These gridded data are then used as input to hydrological models, all of which are available as web services wherever feasible. Models may be integrated in a data-centric way where the outputs too are tracked and used as inputs to "downstream" models. This work is part of an ongoing collaborative Tri-state (New Mexico, Nevada, Idaho) NSF EPSCoR Project, WC-WAVE, comprised of researchers from multiple universities in each of the three states. The tools produced and presented here have been developed collaboratively alongside watershed scientists to address specific modeling problems with an eye on the bigger picture of

  5. Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors.

    PubMed

    Pei, Jimin; Grishin, Nick V

    2012-03-01

    The Shisa family of single-transmembrane proteins is characterized by an N-terminal cysteine-rich domain and a proline-rich C-terminal region. Its founding member, Xenopus Shisa, promotes head development by antagonizing Wnt and FGF signaling. Recently, a mouse brain-specific Shisa protein CKAMP44 (Shisa9) was shown to play an important role in AMPA receptor desensitization. We used sequence similarity searches against protein, genome and EST databases to study the evolutionary origin and phylogenetic distribution of Shisa homologs. In addition to nine Shisa subfamilies in vertebrates, we detected distantly related Shisa homologs that possess an N-terminal domain with six conserved cysteines. These Shisa-like proteins include FAM159 and KIAA1644 mainly from vertebrates, and members from various bilaterian invertebrates and Porifera, suggesting their presence in the last common ancestor of Metazoa. Shisa-like genes have undergone large expansions in Branchiostoma floridae and Saccoglossus kowalevskii, and appear to have been lost in certain insects. Pattern-based searches against eukaryotic proteomes also uncovered several other families of predicted single-transmembrane proteins with a similar cysteine-rich domain. We refer to these proteins (Shisa/Shisa-like, WBP1/VOPP1, CX, DUF2650, TMEM92, and CYYR1) as STMC6 proteins (single-transmembrane proteins with conserved 6 cysteines). STMC6 genes are widespread in Metazoa, with the human genome containing 17 members. Frequent occurrences of PY motifs in STMC6 proteins suggest that most of them could interact with WW-domain-containing proteins, such as the NEDD4 family E3 ubiquitin ligases, and could play critical roles in protein degradation and sorting. STMC6 proteins are likely transmembrane adaptors that regulate membrane proteins such as cell surface receptors.

  6. Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera pathophysiology

    PubMed Central

    Ishikawa, Yuichi; Maeda, Manami; Pasham, Mithun; Aguet, Francois; Tacheva-Grigorova, Silvia K.; Masuda, Takeshi; Yi, Hai; Lee, Sung-Uk; Xu, Jian; Teruya-Feldstein, Julie; Ericsson, Maria; Mullally, Ann; Heuser, John; Kirchhausen, Tom; Maeda, Takahiro

    2015-01-01

    Clathrin-dependent endocytosis is an essential cellular process shared by all cell types. Despite this, precisely how endocytosis is regulated in a cell-type-specific manner and how this key pathway functions physiologically or pathophysiologically remain largely unknown. PICALM, which encodes the clathrin adaptor protein PICALM, was originally identified as a component of the CALM/AF10 leukemia oncogene. Here we show, by employing a series of conditional Picalm knockout mice, that PICALM critically regulates transferrin uptake in erythroid cells by functioning as a cell-type-specific regulator of transferrin receptor endocytosis. While transferrin receptor is essential for the development of all hematopoietic lineages, Picalm was dispensable for myeloid and B-lymphoid development. Furthermore, global Picalm inactivation in adult mice did not cause gross defects in mouse fitness, except for anemia and a coat color change. Freeze-etch electron microscopy of primary erythroblasts and live-cell imaging of murine embryonic fibroblasts revealed that Picalm function is required for efficient clathrin coat maturation. We showed that the PICALM PIP2 binding domain is necessary for transferrin receptor endocytosis in erythroblasts and absolutely essential for erythroid development from mouse hematopoietic stem/progenitor cells in an erythroid culture system. We further showed that Picalm deletion entirely abrogated the disease phenotype in a Jak2V617F knock-in murine model of polycythemia vera. Our findings provide new insights into the regulation of cell-type-specific transferrin receptor endocytosis in vivo. They also suggest a new strategy to block cellular uptake of transferrin-bound iron, with therapeutic potential for disorders characterized by inappropriate red blood cell production, such as polycythemia vera. PMID:25552701

  7. Molecular basis for association of PIPKI gamma-p90 with clathrin adaptor AP-2.

    PubMed

    Kahlfeldt, Nina; Vahedi-Faridi, Ardeschir; Koo, Seong Joo; Schäfer, Johannes G; Krainer, Georg; Keller, Sandro; Saenger, Wolfram; Krauss, Michael; Haucke, Volker

    2010-01-22

    Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) is an essential determinant in clathrin-mediated endocytosis (CME). In mammals three type I phosphatidylinositol-4-phosphate 5-kinase (PIPK) enzymes are expressed, with the I gamma-p90 isoform being highly expressed in the brain where it regulates synaptic vesicle (SV) exo-/endocytosis at nerve terminals. How precisely PI(4,5)P(2) metabolism is controlled spatially and temporally is still uncertain, but recent data indicate that direct interactions between type I PIPK and components of the endocytic machinery, in particular the AP-2 adaptor complex, are involved. Here we demonstrated that PIPKI gamma-p90 associates with both the mu and beta2 subunits of AP-2 via multiple sites. Crystallographic data show that a peptide derived from the splice insert of the human PIPKI gamma-p90 tail binds to a cognate recognition site on the sandwich subdomain of the beta2 appendage. Partly overlapping aromatic and hydrophobic residues within the same peptide also can engage the C-terminal sorting signal binding domain of AP-2mu, thereby potentially competing with the sorting of conventional YXXØ motif-containing cargo. Biochemical and structure-based mutagenesis analysis revealed that association of the tail domain of PIPKI gamma-p90 with AP-2 involves both of these sites. Accordingly the ability of overexpressed PIPKI gamma tail to impair endocytosis of SVs in primary neurons largely depends on its association with AP-2 beta and AP-2mu. Our data also suggest that interactions between AP-2 and the tail domain of PIPKI gamma-p90 may serve to regulate complex formation and enzymatic activity. We postulate a model according to which multiple interactions between PIPKI gamma-p90 and AP-2 lead to spatiotemporally controlled PI(4,5)P(2) synthesis during clathrin-mediated SV endocytosis.

  8. Mind Molecules

    PubMed Central

    Snyder, Solomon H.

    2011-01-01

    Scientific styles vary tremendously. For me, research is largely about the unfettered pursuit of novel ideas and experiments that can test multiple ideas in a day, not a year, an approach that I learned from my mentor Julius “Julie” Axelrod. This focus on creative conceptualizations has been my métier since working in the summers during medical school at the National Institutes of Health, during my two years in the Axelrod laboratory, and throughout my forty-five years at Johns Hopkins University School of Medicine. Equally important has been the “high” that emerges from brainstorming with my students. Nothing can compare with the eureka moments when, together, we sense new insights and, better yet, when high-risk, high-payoff experiments succeed. Although I have studied many different questions over the years, a common theme emerges: simple biochemical approaches to understanding molecular messengers, usually small molecules. Equally important has been identifying, purifying, and cloning the messengers' relevant biosynthetic, degradative, or target proteins, at all times seeking potential therapeutic relevance in the form of drugs. In the interests of brevity, this Reflections article is highly selective, and, with a few exceptions, literature citations are only of findings of our laboratory that illustrate notable themes. PMID:21543333

  9. Adaptor protein CRK induces epithelial–mesenchymal transition and metastasis of bladder cancer cells through HGF/c-Met feedback loop

    PubMed Central

    Matsumoto, Ryuji; Tsuda, Masumi; Wang, Lei; Maishi, Nako; Abe, Takashige; Kimura, Taichi; Tanino, Mishie; Nishihara, Hiroshi; Hida, Kyoko; Ohba, Yusuke; Shinohara, Nobuo; Nonomura, Katsuya; Tanaka, Shinya

    2015-01-01

    We have previously reported that an adaptor protein CRK, including CRK-I and CRK-II, plays essential roles in the malignant potential of various aggressive human cancers, suggesting the validity of targeting CRK in molecular targeted therapy of a wide range of cancers. Nevertheless, the role of CRK in human bladder cancer with marked invasion, characterized by distant metastasis and poor prognosis, remains obscure. In the present study, immunohistochemistry indicated a striking enhancement of CRK-I/-II, but not CRK-like, in human bladder cancer tissues compared to normal urothelium. We established CRK-knockdown bladder cancer cells using 5637 and UM-UC-3, which showed a significant decline in cell migration, invasion, and proliferation. It is noteworthy that an elimination of CRK conferred suppressed phosphorylation of c-Met and the downstream scaffold protein Gab1 in a hepatocyte growth factor-dependent and -independent manner. In epithelial–mesenchymal transition-related molecules, E-cadherin was upregulated by CRK elimination, whereas N-cadherin, vimentin, and Zeb1 were downregulated. A similar effect was observed following treatment with c-Met inhibitor SU11274. Depletion of CRK significantly decreased cell proliferation of 5637 and UM-UC-3, consistent with reduced activity of ERK. An orthotopic xenograft model with bioluminescent imaging revealed that CRK knockdown significantly attenuated not only tumor volume but also the number of circulating tumor cells, resulted in a complete abrogation of metastasis. Taken together, this evidence uncovered essential roles of CRK in invasive bladder cancer through the hepatocyte growth factor/c-Met/CRK feedback loop for epithelial–mesenchymal transition induction. Thus, CRK might be a potent molecular target in bladder cancer, particularly for preventing metastasis, leading to the resolution of clinically longstanding critical issues. PMID:25816892

  10. Cell-based Fluorescence Complementation Reveals a Role for HIV-1 Nef Protein Dimerization in AP-2 Adaptor Recruitment and CD4 Co-receptor Down-regulation.

    PubMed

    Shu, Sherry T; Emert-Sedlak, Lori A; Smithgall, Thomas E

    2017-02-17

    The HIV-1 Nef accessory factor enhances viral infectivity, immune evasion, and AIDS progression. Nef triggers rapid down-regulation of CD4 via the endocytic adaptor protein 2 (AP-2) complex, a process linked to enhanced viral infectivity and immune escape. Here, we describe a bimolecular fluorescence complementation (BiFC) assay to visualize the interaction of Nef with AP-2 and CD4 in living cells. Interacting protein pairs were fused to complementary non-fluorescent fragments of YFP and co-expressed in 293T cells. Nef interactions with both CD4 and AP-2 resulted in complementation of YFP and a bright fluorescent signal by confocal microcopy that localized to the cell periphery. Co-expression of the AP-2 α subunit enhanced the Nef·AP-2 σ2 subunit BiFC signal and vice versa, suggesting that the AP-2 α-σ2 hemicomplex interacts cooperatively with Nef. Mutagenesis of Nef amino acids Arg-134, Glu-174, and Asp-175, which stabilize Nef for AP-2 α-σ2 binding in a recent co-crystal structure, substantially reduced AP-2 interaction without affecting CD4 binding. A dimerization-defective mutant of Nef failed to interact with either CD4 or AP-2 in the BiFC assay, indicating that Nef quaternary structure is required for CD4 and AP-2 recruitment as well as CD4 down-regulation. A small molecule previously shown to bind the Nef dimerization interface also reduced Nef interactions with AP-2 and CD4 and restored CD4 expression to the surface of HIV-infected cells. Our findings provide a mechanistic explanation for previous observations that dimerization-defective Nef mutants fail to down-regulate CD4 and validate the Nef dimerization interface as a target site for antiretroviral drug development.

  11. SH2 domain–containing adaptor protein B expressed in dendritic cells is involved in T-cell homeostasis by regulating dendritic cell–mediated Th2 immunity

    PubMed Central

    2017-01-01

    Purpose The Src homology 2 domain–containing adaptor protein B (SHB) is widely expressed in immune cells and acts as an important regulator for hematopoietic cell function. SHB silencing induces Th2 immunity in mice. SHB is also involved in T-cell homeostasis in vivo. However, SHB has not yet been studied and addressed in association with dendritic cells (DCs). Materials and Methods The effects of SHB expression on the immunogenicity of DCs were assessed by Shb gene silencing in mouse bone marrow–derived DCs (BMDCs). After silencing, surface phenotype, cytokine expression profile, and T-cell stimulation capacity of BMDCs were examined. We investigated the signaling pathways involved in SHB expression during BMDC development. We also examined the immunogenicity of SHB-knockdown (SHBKD) BMDCs in a mouse atopic dermatitis model. Results SHB was steadily expressed in mouse splenic DCs and in in vitro–generated BMDCs in both immature and mature stages. SHB expression was contingent on activation of the mitogen- activated protein kinase/Foxa2 signaling pathway during DC development. SHBKD increased the expression of MHC class II and costimulatory molecules without affecting the cytokine expression of BMDCs. When co-cultured with T cells, SHBKD in BMDCs significantly induced CD4+ T-cell proliferation and the expression of Th2 cytokines, while the regulatory T cell (Treg) population was downregulated. In mouse atopic dermatitis model, mice inoculated with SHBKD DCs developed more severe symptoms of atopic dermatitis compared with mice injected with control DCs. Conclusion SHB expression in DCs plays an important role in T-cell homeostasis in vivo by regulating DC-mediated Th2 polarization. PMID:28168174

  12. Direct interactions of adaptor protein complexes 1 and 2 with the copper transporter ATP7A mediate its anterograde and retrograde trafficking

    PubMed Central

    Yi, Ling; Kaler, Stephen G.

    2015-01-01

    ATP7A is a P-type ATPase in which diverse mutations lead to X-linked recessive Menkes disease or occipital horn syndrome. Recently, two previously unknown ATP7A missense mutations, T994I and P1386S, were shown to cause an isolated distal motor neuropathy without clinical or biochemical features of other ATP7A disorders. These mutant alleles cause subtle defects in ATP7A intracellular trafficking, resulting in preferential plasma membrane localization compared with wild-type ATP7A. We reported previously that ATP7AP1386S causes unstable insertion of the eighth and final transmembrane segment, preventing proper position of the carboxyl-terminal tail in a proportion of mutant molecules. Here, we utilize this and other naturally occurring and engineered mutant ATP7A alleles to identify mechanisms of normal ATP7A trafficking. We show that adaptor protein (AP) complexes 1 and 2 physically interact with ATP7A and that binding is mediated in part by a carboxyl-terminal di-leucine motif. In contrast to other ATP7A missense mutations, ATP7AP1386S partially disturbs interactions with both APs, leading to abnormal axonal localization in transfected NSC-34 motor neurons and altered calcium-signaling following glutamate stimulation. Our results imply that AP-1 normally tethers ATP7A at the trans-Golgi network in the somatodendritic segments of motor neurons and that alterations affecting the ATP7A carboxyl-terminal tail induce release of the copper transporter to the axons or axonal membranes. The latter effects are intensified by diminished interaction with AP-2, impeding ATP7A retrograde trafficking. Taken together, these findings further illuminate the normal molecular mechanisms of ATP7A trafficking and suggest a pathophysiological basis for ATP7A-related distal motor neuropathy. PMID:25574028

  13. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster.

    PubMed

    Rodriguez-Fernandez, Imilce A; Dell'Angelica, Esteban C

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated in

  14. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex.

    PubMed

    Ortega, Davi R; Zhulin, Igor B

    2016-02-01

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.

  15. Evolutionary genomics suggests that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex

    DOE PAGES

    Ortega, Davi R.; Zhulin, Igor B.; Punta, Marco

    2016-02-04

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linkingmore » the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Altogether, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.« less

  16. Distinct Roles for TGN/Endosome Epsin-like Adaptors Ent3p and Ent5p

    PubMed Central

    Costaguta, Giancarlo; Duncan, Mara C.; Fernández, G. Esteban; Huang, Grace H.

    2006-01-01

    Clathrin adaptors are key factors in clathrin-coated vesicle formation, coupling clathrin to cargo and/or the lipid bilayer. A physically interacting network of three classes of adaptors participate in clathrin-mediated traffic between the trans-Golgi network (TGN) and endosomes: AP-1, Gga proteins, and epsin-like proteins. Here we investigate functional relationships within this network through transport assays and protein localization analysis in living yeast cells. We observed that epsin-like protein Ent3p preferentially localized with Gga2p, whereas Ent5p distributed equally between AP-1 and Gga2p. Ent3p was mislocalized in Gga-deficient but not in AP-1–deficient cells. In contrast, Ent5p retained localization in cells lacking either or both AP-1 and Gga proteins. The Ent proteins were dispensable for AP-1 or Gga localization. Synthetic genetic growth and α-factor maturation defects were observed when ent5Δ but not ent3Δ was introduced together with deletions of the GGA genes. In AP-1–deficient cells, ent3Δ and to a lesser extent ent5Δ caused minor α-factor maturation defects, but together resulted in a near-lethal phenotype. Deletions of ENT3 and ENT5 also displayed synthetic defects similar to, but less severe than, synthetic effects of AP-1 and Gga inactivation. These results differentiate Ent3p and Ent5p function in vivo, suggesting that Ent3p acts primarily with Gga proteins, whereas Ent5p acts with both AP-1 and Gga proteins but is more critical for AP-1–mediated transport. The data also support a model in which the Ent adaptors provide important accessory functions to AP-1 and Gga proteins in TGN/endosome traffic. PMID:16790491

  17. Evolutionary genomics suggests that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex

    SciTech Connect

    Ortega, Davi R.; Zhulin, Igor B.; Punta, Marco

    2016-02-04

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Altogether, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.

  18. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex

    PubMed Central

    Ortega, Davi R.; Zhulin, Igor B.

    2016-01-01

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a “phosphate sink” possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. PMID:26844549

  19. Crk Adaptors Negatively Regulate Actin Polymerization in Pedestals Formed by Enteropathogenic Escherichia coli (EPEC) by Binding to Tir Effector

    PubMed Central

    Martín-Villa, José Manuel; Benito-León, María; Martinez-Quiles, Narcisa

    2014-01-01

    Infections by enteropathogenic Escherichia coli (EPEC) cause diarrhea linked to high infant mortality in developing countries. EPEC adheres to epithelial cells and induces the formation of actin pedestals. Actin polymerization is driven fundamentally through signaling mediated by Tir bacterial effector protein, which inserts in the plasma membrane of the infected cell. Tir binds Nck adaptor proteins, which in turn recruit and activate N-WASP, a ubiquitous member of the Wiskott-Aldrich syndrome family of proteins. N-WASP activates the Arp2/3 complex to promote actin polymerization. Other proteins aside from components of the Tir-Nck-N-WASP pathway are recruited to the pedestals but their functions are unknown. Here we investigate the function of two alternatively spliced isoforms of Crk adaptors (CrkI/II) and the paralog protein CrkL during pedestal formation by EPEC. We found that the Crk isoforms act as redundant inhibitors of pedestal formation. The SH2 domain of CrkII and CrkL binds to phosphorylated tyrosine 474 of Tir and competes with Nck to bind Tir, preventing its recruitment to pedestals and thereby inhibiting actin polymerization. EPEC infection induces phosphorylation of the major regulatory tyrosine in CrkII and CrkL, possibly preventing the SH2 domain of these proteins from interacting with Tir. Phosphorylated CrkII and CrkL proteins localize specifically to the plasma membrane in contact with EPEC. Our study uncovers a novel role for Crk adaptors at pedestals, opening a new perspective in how these oncoproteins regulate actin polymerization. PMID:24675776

  20. Multiple interactions drive adaptor-mediated recruitment of the ubiquitin ligase rsp5 to membrane proteins in vivo and in vitro.

    PubMed

    Sullivan, James A; Lewis, Michael J; Nikko, Elina; Pelham, Hugh R B

    2007-07-01

    Recognition of membrane proteins by the Nedd4/Rsp5 ubiquitin ligase family is a critical step in their targeting to the multivesicular body pathway. Some substrates contain "PY" motifs (PPxY), which bind to WW domains in the ligase. Others lack PY motifs and instead rely on adaptors that recruit the ligase to them. To investigate the mechanism of adaptor-mediated ubiquitination, we have characterized the interactions between the adaptor Bsd2, the ubiquitin ligase Rsp5, and the membrane proteins Cps1, Tre1, and Smf1 from Saccharomyces cerevisiae. We have reconstituted adaptor-mediated modification of Cps1 and Tre1 in vitro, and we show that two PY motifs in Bsd2 and two WW domains (WW2 and WW3) in Rsp5 are crucial for this. The binding of a weak noncanonical DMAPSY motif in Bsd2 to WW3 is an absolute requirement for Bsd2 adaptor function. We show that sorting of the manganese transporter Smf1, which requires both Bsd2 and Tre1, depends upon two PY motifs in Bsd2 and one motif in Tre1 but only two WW domains in Rsp5. We suggest that sequential assembly of first a Bsd2/Rsp5 complex, then a Tre1/Bsd2/Rsp5 complex followed by a rearrangement of PY-WW interactions is required for the ubiquitination of Smf1.

  1. Adaptor Identity Modulates Adaptation Effects in Familiar Face Identification and Their Neural Correlates

    PubMed Central

    Walther, Christian; Schweinberger, Stefan R.; Kovács, Gyula

    2013-01-01

    Adaptation-related aftereffects (AEs) show how face perception can be altered by recent perceptual experiences. Along with contrastive behavioural biases, modulations of the early event-related potentials (ERPs) were typically reported on categorical levels. Nevertheless, the role of the adaptor stimulus per se for face identity-specific AEs is not completely understood and was therefore investigated in the present study. Participants were adapted to faces (S1s) varying systematically on a morphing continuum between pairs of famous identities (identities A and B), or to Fourier phase-randomized faces, and had to match the subsequently presented ambiguous faces (S2s; 50/50% identity A/B) to one of the respective original faces. We found that S1s identical with or near to the original identities led to strong contrastive biases with more identity B responses following A adaptation and vice versa. In addition, the closer S1s were to the 50/50% S2 on the morphing continuum, the smaller the magnitude of the AE was. The relation between S1s and AE was, however, not linear. Additionally, stronger AEs were accompanied by faster reaction times. Analyses of the simultaneously recorded ERPs revealed categorical adaptation effects starting at 100 ms post-stimulus onset, that were most pronounced at around 125–240 ms for occipito-temporal sites over both hemispheres. S1-specific amplitude modulations were found at around 300–400 ms. Response-specific analyses of ERPs showed reduced voltages starting at around 125 ms when the S1 biased perception in a contrastive way as compared to when it did not. Our results suggest that face identity AEs do not only depend on physical differences between S1 and S2, but also on perceptual factors, such as the ambiguity of S1. Furthermore, short-term plasticity of face identity processing might work in parallel to object-category processing, and is reflected in the first 400 ms of the ERP. PMID:23990908

  2. Adaptor identity modulates adaptation effects in familiar face identification and their neural correlates.

    PubMed

    Walther, Christian; Schweinberger, Stefan R; Kovács, Gyula

    2013-01-01

    Adaptation-related aftereffects (AEs) show how face perception can be altered by recent perceptual experiences. Along with contrastive behavioural biases, modulations of the early event-related potentials (ERPs) were typically reported on categorical levels. Nevertheless, the role of the adaptor stimulus per se for face identity-specific AEs is not completely understood and was therefore investigated in the present study. Participants were adapted to faces (S1s) varying systematically on a morphing continuum between pairs of famous identities (identities A and B), or to Fourier phase-randomized faces, and had to match the subsequently presented ambiguous faces (S2s; 50/50% identity A/B) to one of the respective original faces. We found that S1s identical with or near to the original identities led to strong contrastive biases with more identity B responses following A adaptation and vice versa. In addition, the closer S1s were to the 50/50% S2 on the morphing continuum, the smaller the magnitude of the AE was. The relation between S1s and AE was, however, not linear. Additionally, stronger AEs were accompanied by faster reaction times. Analyses of the simultaneously recorded ERPs revealed categorical adaptation effects starting at 100 ms post-stimulus onset, that were most pronounced at around 125-240 ms for occipito-temporal sites over both hemispheres. S1-specific amplitude modulations were found at around 300-400 ms. Response-specific analyses of ERPs showed reduced voltages starting at around 125 ms when the S1 biased perception in a contrastive way as compared to when it did not. Our results suggest that face identity AEs do not only depend on physical differences between S1 and S2, but also on perceptual factors, such as the ambiguity of S1. Furthermore, short-term plasticity of face identity processing might work in parallel to object-category processing, and is reflected in the first 400 ms of the ERP.

  3. Toll-like receptor 2 mediates microglia/brain macrophage MT1-MMP expression and glioma expansion

    PubMed Central

    Vinnakota, Katyayni; Hu, Feng; Ku, Min-Chi; Georgieva, Petya B.; Szulzewsky, Frank; Pohlmann, Andreas; Waiczies, Sonia; Waiczies, Helmar; Niendorf, Thoralf; Lehnardt, Seija; Hanisch, Uwe-Karsten; Synowitz, Michael; Markovic, Darko; Wolf, Susanne A.; Glass, Rainer; Kettenmann, Helmut

    2013-01-01

    Background Glioblastomas are the most aggressive primary brain tumors in humans. Microglia/brain macrophage accumulation in and around the tumor correlates with malignancy and poor clinical prognosis of these tumors. We have previously shown that microglia promote glioma expansion through upregulation of membrane type 1 matrix metalloprotease (MT1-MMP). This upregulation depends on signaling via the Toll-like receptor (TLR) adaptor molecule myeloid differentiation primary response gene 88 (MyD88). Methods Using in vitro, ex vivo, and in vivo techniques, we identified TLR2 as the main TLR controlling microglial MT1-MMP expression and promoting microglia-assisted glioma expansion. Results The implantation of mouse GL261 glioma cells into TLR2 knockout mice resulted in significantly smaller tumors, reduced MT1-MMP expression, and enhanced survival rates compared with wild-type control mice. Tumor expansion studied in organotypic brain slices depended on both parenchymal TLR2 expression and the presence of microglia. Glioma-derived soluble factors and synthetic TLR2 specific ligands induced MT1-MMP expression in microglia from wild-type mice, but no such change in MT1-MMP gene expression was observed in microglia from TLR2 knockout mice. We also found evidence that TLR1 and TLR6 cofunction with TLR2 as heterodimers in regulating MT1-MMP expression in vitro. Conclusions Our results thus show that activation of TLR2 along with TLRs 1 and/or 6 converts microglia into a glioma supportive phenotype. PMID:24014382

  4. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators.

    PubMed

    Raza, Sobia; Barnett, Mark W; Barnett-Itzhaki, Zohar; Amit, Ido; Hume, David A; Freeman, Tom C

    2014-08-01

    Macrophages respond to the TLR4 agonist LPS with a sequential transcriptional cascade controlled by a complex regulatory network of signaling pathways and transcription factors. At least two distinct pathways are currently known to be engaged by TLR4 and are distinguished by their dependence on the adaptor molecule MyD88. We have used gene expression microarrays to define the effects of each of three variables--LPS dose, LPS versus IFN-β and -γ, and genetic background--on the transcriptional response of mouse BMDMs. Analysis of correlation networks generated from the data has identified subnetworks or modules within the macrophage transcriptional network that are activated selectively by these variables. We have identified mouse strain-specific signatures, including a module enriched for SLE susceptibility candidates. In the modules of genes unique to different treatments, we found a module of genes induced by type-I IFN but not by LPS treatment, suggesting another layer of complexity in the LPS-TLR4 signaling feedback control. We also observe that the activation of the complement system, in common with the known activation of MHC class 2 genes, is reliant on IFN-γ signaling. Taken together, these data further highlight the exquisite nature of the regulatory systems that control macrophage activation, their likely relevance to disease resistance/susceptibility, and the appropriate response of these cells to proinflammatory stimuli.

  5. Live Staphylococcus aureus Induces Expression and Release of Vascular Endothelial Growth Factor in Terminally Differentiated Mouse Mast Cells.

    PubMed

    Johnzon, Carl-Fredrik; Rönnberg, Elin; Guss, Bengt; Pejler, Gunnar

    2016-01-01

    Mast cells have been shown to express vascular endothelial growth factor (VEGF), thereby implicating mast cells in pro-angiogenic processes. However, the mechanism of VEGF induction in mast cells and the possible expression of VEGF in fully mature mast cells have not been extensively studied. Here, we report that terminally differentiated peritoneal cell-derived mast cells can be induced to express VEGF in response to challenge with Staphylococcus aureus, thus identifying a mast cell-bacteria axis as a novel mechanism leading to VEGF release. Whereas live bacteria produced a robust upregulation of VEGF in mast cells, heat-inactivated bacteria failed to do so, and bacteria-conditioned media did not induce VEGF expression. The induction of VEGF was not critically dependent on direct cell-cell contact between bacteria and mast cells. Hence, these findings suggest that VEGF can be induced by soluble factors released during the co-culture conditions. Neither of a panel of bacterial cell-wall products known to activate toll-like receptor (TLR) signaling promoted VEGF expression in mast cells. In agreement with the latter, VEGF induction occurred independently of Myd88, an adaptor molecule that mediates the downstream events following TLR engagement. The VEGF induction was insensitive to nuclear factor of activated T-cells inhibition but was partly dependent on the nuclear factor kappa light-chain enhancer of activated B cells signaling pathway. Together, these findings identify bacterial challenge as a novel mechanism by which VEGF is induced in mast cells.

  6. Osteopontin expression is essential for interferon-α production by plasmacytoid dendritic cells

    PubMed Central

    Shinohara, Mari L.; Lu, Linrong; Bu, Jing; Werneck, Miriam B. F.; Kobayashi, Koichi S.; Glimcher, Laurie H.; Cantor, Harvey

    2013-01-01

    The observation that the T-bet transcription factor allows tissue-specific upregulation of intracellular osteopontin (Opn-i) in plasmacytoid dendritic cells (pDCs) suggests that Opn might contribute to the expression of interferon-α (IFN-α) in those cells. Here we show that Opn deficiency substantially reduced Toll-like receptor 9 (TLR9)–dependent IFN-α responses but spared expression of transcription factor NF-κB–dependent proinflammatory cytokines. Shortly after TLR9 engagement, colocalization of Opn-i and the adaptor molecule MyD88 was associated with induction of transcription factor IRF7–dependent IFN-α gene expression, whereas deficient expression of Opn-i was associated with defective nuclear translocation of IRF7 in pDCs. The importance of the Opn–IFN-α pathway was emphasized by its essential involvement in cross-presentation in vitro and in anti–herpes simplex virus 1 IFN-α response in vivo. The finding that Opn-i selectively coupled TLR9 signaling to expression of IFN-α but not to that of other proinflammatory cytokines provides new molecular insight into the biology of pDCs. PMID:16604075

  7. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators

    PubMed Central

    Raza, Sobia; Barnett, Mark W.; Barnett-Itzhaki, Zohar; Amit, Ido; Hume, David A.; Freeman, Tom C.

    2014-01-01

    Macrophages respond to the TLR4 agonist LPS with a sequential transcriptional cascade controlled by a complex regulatory network of signaling pathways and transcription factors. At least two distinct pathways are currently known to be engaged by TLR4 and are distinguished by their dependence on the adaptor molecule MyD88. We have used gene expression microarrays to define the effects of each of three variables—LPS dose, LPS versus IFN-β and -γ, and genetic background—on the transcriptional response of mouse BMDMs. Analysis of correlation networks generated from the data has identified subnetworks or modules within the macrophage transcriptional network that are activated selectively by these variables. We have identified mouse strain-specific signatures, including a module enriched for SLE susceptibility candidates. In the modules of genes unique to different treatments, we found a module of genes induced by type-I IFN but not by LPS treatment, suggesting another layer of complexity in the LPS-TLR4 signaling feedback control. We also observe that the activation of the complement system, in common with the known activation of MHC class 2 genes, is reliant on IFN-γ signaling. Taken together, these data further highlight the exquisite nature of the regulatory systems that control macrophage activation, their likely relevance to disease resistance/susceptibility, and the appropriate response of these cells to proinflammatory stimuli. PMID:24721704

  8. TLR4/MD-2 activation by a synthetic agonist with no similarity to LPS

    PubMed Central

    Wang, Ying; Su, Lijing; Morin, Matthew D.; Jones, Brian T.; Whitby, Landon R.; Surakattula, Murali M. R. P.; Huang, Hua; Shi, Hexin; Choi, Jin Huk; Wang, Kuan-wen; Moresco, Eva Marie Y.; Berger, Michael; Zhan, Xiaoming; Zhang, Hong; Boger, Dale L.; Beutler, Bruce

    2016-01-01

    Structurally disparate molecules reportedly engage and activate Toll-like receptor (TLR) 4 and other TLRs, yet the interactions that mediate binding and activation by dissimilar ligands remain unknown. We describe Neoseptins, chemically synthesized peptidomimetics that bear no structural similarity to the established TLR4 ligand, lipopolysaccharide (LPS), but productively engage the mouse TLR4 (mTLR4)/myeloid differentiation factor 2 (MD-2) complex. Neoseptin-3 activates mTLR4/MD-2 independently of CD14 and triggers canonical myeloid differentiation primary response gene 88 (MyD88)- and Toll-interleukin 1 receptor (TIR) domain-containing adaptor inducing IFN-beta (TRIF)-dependent signaling. The crystal structure mTLR4/MD-2/Neoseptin-3 at 2.57-Å resolution reveals that Neoseptin-3 binds as an asymmetrical dimer within the hydrophobic pocket of MD-2, inducing an active receptor complex similar to that induced by lipid A. However, Neoseptin-3 and lipid A form dissimilar molecular contacts to achieve receptor activation; hence strong TLR4/MD-2 agonists need not mimic LPS. PMID:26831104

  9. Variants in Toll-like Receptor 1 and 4 Genes Are Associated With Chlamydia trachomatis Among Women With Pelvic Inflammatory Disease

    PubMed Central

    Darville, Toni; Ferrell, Robert E.; Kammerer, Candace M.; Ness, Roberta B.; Haggerty, Catherine L.

    2012-01-01

    Background. Toll-like receptors (TLRs) are involved in the innate immune response. We examined whether TLR variants are associated with Chlamydia trachomatis infection among women with pelvic inflammatory disease (PID). Methods. We tested whether 18 tagging single nucleotide polymorphisms (tagSNPs) assayed in 4 TLR genes (TLR1, TLR2, TLR4, TLR6) and 2 adaptor molecules (TIRAP, MyD88) were associated with C. trachomatis among 205 African American women with clinically suspected PID from the PID Evaluation and Clinical Health Study. Logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). An empirical P value of <.004 was considered significant. Results. Women with PID who carried the TLR4 rs1927911 CC genotype had significantly increased odds of C. trachomatis (OR, 3.7; 95% CI, 1.6–8.8; P = .002). The TLR1 rs5743618TT genotype was also associated with C. trachomatis (OR, 2.8; 95% CI, 1.3–6.2; P = .008). Conclusions. Among African American women with PID, variants in the TLR1 and TLR4 genes, which may increase signaling, were associated with increased C. trachomatis infection. PMID:22238472

  10. TLR4/MD-2 activation by a synthetic agonist with no similarity to LPS.

    PubMed

    Wang, Ying; Su, Lijing; Morin, Matthew D; Jones, Brian T; Whitby, Landon R; Surakattula, Murali M R P; Huang, Hua; Shi, Hexin; Choi, Jin Huk; Wang, Kuan-wen; Moresco, Eva Marie Y; Berger, Michael; Zhan, Xiaoming; Zhang, Hong; Boger, Dale L; Beutler, Bruce

    2016-02-16

    Structurally disparate molecules reportedly engage and activate Toll-like receptor (TLR) 4 and other TLRs, yet the interactions that mediate binding and activation by dissimilar ligands remain unknown. We describe Neoseptins, chemically synthesized peptidomimetics that bear no structural similarity to the established TLR4 ligand, lipopolysaccharide (LPS), but productively engage the mouse TLR4 (mTLR4)/myeloid differentiation factor 2 (MD-2) complex. Neoseptin-3 activates mTLR4/MD-2 independently of CD14 and triggers canonical myeloid differentiation primary response gene 88 (MyD88)- and Toll-interleukin 1 receptor (TIR) domain-containing adaptor inducing IFN-beta (TRIF)-dependent signaling. The crystal structure mTLR4/MD-2/Neoseptin-3 at 2.57-Å resolution reveals that Neoseptin-3 binds as an asymmetrical dimer within the hydrophobic pocket of MD-2, inducing an active receptor complex similar to that induced by lipid A. However, Neoseptin-3 and lipid A form dissimilar molecular contacts to achieve receptor activation; hence strong TLR4/MD-2 agonists need not mimic LPS.

  11. The role of innate immune signals in immunity to Brucella abortus.

    PubMed

    Gomes, Marco Túlio R; Campos, Priscila C; de Almeida, Leonardo A; Oliveira, Fernanda S; Costa, Miriam Maria S; Marim, Fernanda M; Pereira, Guilherme S M; Oliveira, Sergio C

    2012-01-01

    Innate immunity serves as the first line of defense against infectious agents such as intracellular bacteria. The innate immune platform includes Toll-like receptors (TLRs), retinoid acid-inducible gene-I-like receptors and other cytosolic nucleic acid sensors, nucleotide-binding and oligomerization domain-like receptors, adaptors, kinases and other signaling molecules that are required to elicit effective responses against different pathogens. Our research group has been using the Gram-negative bacteria Brucella abortus as a model of pathogen. We have demonstrated that B. abortus triggers MAPK and NF-κB signaling pathways in macrophages in a MyD88 and IRAK-4-dependent manner. Furthermore, we claimed that so far TLR9 is the most important single TLR during Brucella infection. The identification of host receptors that recognize pathogen-derived nucleic acids has revealed an essential role for nucleic acid sensing in the triggering of immunity to intracellular pathogens. Besides TLRs, herein we describe recent advances in NOD1, NOD2, and type I IFN receptors in innate immune pathways during B. abortus infection.

  12. DAMP production by human islets under low oxygen and nutrients in the presence or absence of an immunoisolating-capsule and necrostatin-1

    PubMed Central

    Paredes-Juarez, Genaro A.; Sahasrabudhe, Neha M.; Tjoelker, Reina S.; de Haan, Bart J.; Engelse, Marten A.; de Koning, Eelco J. P.; Faas, Marijke M.; de Vos, Paul

    2015-01-01

    In between the period of transplantation and revascularization, pancreatic islets are exposed to low-oxygen and low-nutrient conditions. In the present study we mimicked those conditions in vitro to study the involvement of different cell death processes, release of danger-associated molecular patterns (DAMP), and associated in vitro immune activation. Under low-oxygen and low-nutrient conditions, apoptosis, autophagy and necroptosis occur in human islets. Necroptosis is responsible for DAMP-release such as dsDNA, uric acid, and HMGB1. The sensors of the innate immune system able to recognize these DAMPs are mainly TLR, NOD receptors, and C-type lectins. By using cell-lines with a non-functional adaptor molecule MyD88, we were able to show that the islet-derived DAMPs signal mainly via TLR. Immunoisolation in immunoprotective membranes reduced DAMP release and immune activation via retention of the relative large DAMPs in the capsules. Another effective strategy was suppressing necroptosis using the inhibitor nec-1. Although the effect on cell-survival was minor, nec-1 was able to reduce the release of HMGB1 and its associated immune activation. Our data demonstrate that in the immediate post-transplant period islets release DAMPs that in vitro enhance responses of innate immune cells. DAMP release can be reduced in vitro by immunoisolation or intervention with nec-1. PMID:26419792

  13. Both Innate Immunity and Type 1 Humoral Immunity to Streptococcus pneumoniae Are Mediated by MyD88 but Differ in Their Relative Levels of Dependence on Toll-Like Receptor 2

    DTIC Science & Technology

    2005-01-01

    normal pathogen- specific IgG isotype response to Borrelia burgdorferi was ob- served in TLR2/ mice, although this was associated with a higher... Borrelia burgdorferi -infected mice. Infect. Immun. 72:3195–3203. 28. Lund, J., A. Sato, S. Akira, R. Medzhitov, and A. Iwasaki. 2003. Toll-like...Zachary, C. J. Kirschning, and J. J. Weis. 2002. Toll-like receptor 2 is required for innate, but not acquired, host defense to Borrelia burgdorferi

  14. Unintended attenuation in the Leksell Gamma Knife registered Perfexion trade mark sign calibration-phantom adaptor and its effect on dose calibration

    SciTech Connect

    Bhatnagar, Jagdish P.; Novotny, Josef Jr.; Quader, Mubina A.; Bednarz, Greg; Huq, M. Saiful

    2009-04-15

    The calibration of Leksell Gamma Knife Perfexion (LGK PFX) is performed using a spherical polystyrene phantom 160 mm in diameter, which is provided by the manufacturer. This is the same phantom that has been used with LGK models U, B, C, and 4C. The polystyrene phantom is held in irradiation position by an aluminum adaptor, which has stainless steel side-fixation screws. The phantom adaptor partially attenuates the beams from sectors 3 and 7 by 3.2% and 4.6%, respectively. This unintended attenuation introduces a systematic error in dose calibration. The overall effect of phantom-adaptor attenuation on output calibration of the LGK PFX unit is to underestimate output by about 1.0%.

  15. Activity-Regulated Cytoskeleton-Associated Protein Controls AMPAR Endocytosis through a Direct Interaction with Clathrin-Adaptor Protein 2123

    PubMed Central

    Wall, Mark J.; P. de Almeida, Luciana; Wauters, Sandrine C.; Januário, Yunan C.; Müller, Jürgen

    2016-01-01

    Abstract The activity-regulated cytoskeleton-associated (Arc) protein controls synaptic strength by facilitating AMPA receptor (AMPAR) endocytosis. Here we demonstrate that Arc targets AMPAR to be internalized through a direct interaction with the clathrin-adaptor protein 2 (AP-2). We show that Arc overexpression in dissociated hippocampal neurons obtained from C57BL/6 mouse reduces the density of AMPAR GluA1 subunits at the cell surface and reduces the amplitude and rectification of AMPAR-mediated miniature-EPSCs (mEPSCs). Mutations of Arc, that prevent the AP-2 interaction reduce Arc-mediated endocytosis of GluA1 and abolish the reduction in AMPAR-mediated mEPSC amplitude and rectification. Depletion of the AP-2 subunit µ2 blocks the Arc-mediated reduction in mEPSC amplitude, an effect that is restored by reintroducing µ2. The Arc–AP-2 interaction plays an important role in homeostatic synaptic scaling as the Arc-dependent decrease in mEPSC amplitude, induced by a chronic increase in neuronal activity, is inhibited by AP-2 depletion. These data provide a mechanism to explain how activity-dependent expression of Arc decisively controls the fate of AMPAR at the cell surface and modulates synaptic strength, via the direct interaction with the endocytic clathrin adaptor AP-2. PMID:27257628

  16. Clathrin Terminal Domain-Ligand Interactions Regulate Sorting of Mannose 6-Phosphate Receptors Mediated by AP-1 and GGA Adaptors*

    PubMed Central

    Stahlschmidt, Wiebke; Robertson, Mark J.; Robinson, Phillip J.; McCluskey, Adam; Haucke, Volker

    2014-01-01

    Clathrin plays important roles in intracellular membrane traffic including endocytosis of plasma membrane proteins and receptors and protein sorting between the trans-Golgi network (TGN) and endosomes. Whether clathrin serves additional roles in receptor recycling, degradative sorting, or constitutive secretion has remained somewhat controversial. Here we have used acute pharmacological perturbation of clathrin terminal domain (TD) function to dissect the role of clathrin in intracellular membrane traffic. We report that internalization of major histocompatibility complex I (MHCI) is inhibited in cells depleted of clathrin or its major clathrin adaptor complex 2 (AP-2), a phenotype mimicked by application of Pitstop® inhibitors of clathrin TD function. Hence, MHCI endocytosis occurs via a clathrin/AP-2-dependent pathway. Acute perturbation of clathrin also impairs the dynamics of intracellular clathrin/adaptor complex 1 (AP-1)- or GGA (Golgi-localized, γ-ear-containing, Arf-binding protein)-coated structures at the TGN/endosomal interface, resulting in the peripheral dispersion of mannose 6-phosphate receptors. By contrast, secretory traffic of vesicular stomatitis virus G protein, recycling of internalized transferrin from endosomes, or degradation of EGF receptor proceeds unperturbed in cells with impaired clathrin TD function. These data indicate that clathrin is required for the function of AP-1- and GGA-coated carriers at the TGN but may be dispensable for outward traffic en route to the plasma membrane. PMID:24407285

  17. Dissecting nuclear Wingless signalling: recruitment of the transcriptional co-activator Pygopus by a chain of adaptor proteins.

    PubMed

    Städeli, Reto; Basler, Konrad

    2005-11-01

    Members of the Wingless (Wg)/Wnt family of secreted glycoproteins control cell fate during embryonic development and adult homeostasis. Wnt signals regulate the expression of target genes by activating a conserved signal transduction pathway. Upon receptor activation, the signal is transmitted intracellularly by stabilization of Armadillo (Arm)/beta-catenin. Arm/beta-catenin translocates to the nucleus, interacts with DNA-binding factors of the Pangolin (Pan)/TCF/LEF class and activates transcription of target genes in cooperation with the recently identified proteins Legless/BCL9 (Lgs) and Pygopus (Pygo). Here, we analyse the mode of action of Pan, Arm, Lgs, and Pygo in Drosophila cultured cells. We provide evidence that together these four proteins form a 'chain of adaptors' linking the NH2-terminal homology domain (NHD) of Pygo to the DNA-binding domain of Pan. We show that the NHD has potent transcriptional activation capacity, which differs from that of acidic activator domains and depends on a conserved NPF tripeptide. A single point mutation within this NPF motif abolishes the transcriptional activity of the Pygo NHD in vitro and strongly reduces Wg signalling in vivo. Together, our results suggest that the transcriptional output of Wg pathway activity largely relies on a 'chain of adaptors' design to direct the Pygo NHD to Wg target promoters in an Arm-dependent manner.

  18. The modular adaptor protein autosomal recessive hypercholesterolemia (ARH) promotes low density lipoprotein receptor clustering into clathrin-coated pits.

    PubMed

    Garuti, Rita; Jones, Christopher; Li, Wei-Ping; Michaely, Peter; Herz, Joachim; Gerard, Robert D; Cohen, Jonathan C; Hobbs, Helen H

    2005-12-09

    Autosomal recessive hypercholesterolemia is characterized by a cell type-specific defect in low density lipoprotein receptor (LDLR) endocytosis. LDLR-mediated uptake of LDL is impaired in the liver, but not in fibroblasts of subjects with this disorder. The disease is caused by mutations in ARH, which encodes a putative adaptor protein that interacts with the cytoplasmic tail of the LDLR, phospholipids, and two components of the clathrin endocytic machinery, clathrin and adaptor protein-2 (AP-2) in vitro. To determine the physiological relevance of these interactions, we examined the effect of mutations in the ARH on LDLR location and function in polarized hepatocytes (WIF-B). The integrity of the FDNPVY sequence in the LDLR cytoplasmic tail was required for ARH-associated LDLR clustering into clathrin-coated pits. The phosphotyrosine binding domain of ARH plus either the clathrin box or the AP-2 binding region were required for both clustering and internalization of the LDLR. Parallel studies performed in vivo with the same recombinant forms of ARH in livers of Arh(-/-) mice confirmed the relevance of the cell culture findings. These results demonstrate that ARH must bind the LDLR tail and either clathrin or AP-2 to promote receptor clustering and internalization of LDL.

  19. A single common portal for clathrin-mediated endocytosis of distinct cargo governed by cargo-selective adaptors.

    PubMed

    Keyel, Peter A; Mishra, Sanjay K; Roth, Robyn; Heuser, John E; Watkins, Simon C; Traub, Linton M

    2006-10-01

    Sorting of transmembrane cargo into clathrin-coated vesicles requires endocytic adaptors, yet RNA interference (RNAi)-mediated gene silencing of the AP-2 adaptor complex only disrupts internalization of a subset of clathrin-dependent cargo. This suggests alternate clathrin-associated sorting proteins participate in cargo capture at the cell surface, and a provocative recent proposal is that discrete endocytic cargo are sorted into compositionally and functionally distinct clathrin coats. We show here that the FXNPXY-type internalization signal within cytosolic domain of the LDL receptor is recognized redundantly by two phosphotyrosine-binding domain proteins, Dab2 and ARH; diminishing both proteins by RNAi leads to conspicuous LDL receptor accumulation at the cell surface. AP-2-dependent uptake of transferrin ensues relatively normally in the absence of Dab2 and ARH, clearly revealing delegation of sorting operations at the bud site. AP-2, Dab2, ARH, transferrin, and LDL receptors are all present within the vast majority of clathrin structures at the surface, challenging the general existence of specialized clathrin coats for segregated internalization of constitutively internalized cargo. However, Dab2 expression is exceptionally low in hepatocytes, likely accounting for the pathological hypercholesterolemia that accompanies ARH loss.

  20. Recruitment of the inhibitor Cand1 to the cullin substrate adaptor site mediates interaction to the neddylation site

    PubMed Central

    Helmstaedt, Kerstin; Schwier, Elke U.; Christmann, Martin; Nahlik, Krystyna; Westermann, Mieke; Harting, Rebekka; Grond, Stephanie; Busch, Silke; Braus, Gerhard H.

    2011-01-01

    Cand1 inhibits cullin RING ubiquitin ligases by binding unneddylated cullins. The Cand1 N-terminus blocks the cullin neddylation site, whereas the C-terminus inhibits cullin adaptor interaction. These Cand1 binding sites can be separated into two functional polypeptides which bind sequentially. C-terminal Cand1 can directly bind to unneddylated cullins in the nucleus without blocking the neddylation site. The smaller N-terminal Cand1 cannot bind to the cullin neddylation region without C-terminal Cand1. The separation of a single cand1 into two independent genes represents the in vivo situation of the fungus Aspergillus nidulans, where C-terminal Cand1 recruits smaller N-terminal Cand1 in the cytoplasm. Either deletion results in an identical developmental and secondary metabolism phenotype in fungi, which resembles csn mutants deficient in the COP9 signalosome (CSN) deneddylase. We propose a two-step Cand1 binding to unneddylated cullins which initiates at the adaptor binding site and subsequently blocks the neddylation site after CSN has left. PMID:21119001

  1. Clathrin terminal domain-ligand interactions regulate sorting of mannose 6-phosphate receptors mediated by AP-1 and GGA adaptors.

    PubMed

    Stahlschmidt, Wiebke; Robertson, Mark J; Robinson, Phillip J; McCluskey, Adam; Haucke, Volker

    2014-02-21

    Clathrin plays important roles in intracellular membrane traffic including endocytosis of plasma membrane proteins and receptors and protein sorting between the trans-Golgi network (TGN) and endosomes. Whether clathrin serves additional roles in receptor recycling, degradative sorting, or constitutive secretion has remained somewhat controversial. Here we have used acute pharmacological perturbation of clathrin terminal domain (TD) function to dissect the role of clathrin in intracellular membrane traffic. We report that internalization of major histocompatibility complex I (MHCI) is inhibited in cells depleted of clathrin or its major clathrin adaptor complex 2 (AP-2), a phenotype mimicked by application of Pitstop® inhibitors of clathrin TD function. Hence, MHCI endocytosis occurs via a clathrin/AP-2-dependent pathway. Acute perturbation of clathrin also impairs the dynamics of intracellular clathrin/adaptor complex 1 (AP-1)- or GGA (Golgi-localized, γ-ear-containing, Arf-binding protein)-coated structures at the TGN/endosomal interface, resulting in the peripheral dispersion of mannose 6-phosphate receptors. By contrast, secretory traffic of vesicular stomatitis virus G protein, recycling of internalized transferrin from endosomes, or degradation of EGF receptor proceeds unperturbed in cells with impaired clathrin TD function. These data indicate that clathrin is required for the function of AP-1- and GGA-coated carriers at the TGN but may be dispensable for outward traffic en route to the plasma membrane.

  2. Ste50 adaptor protein governs sexual differentiation of Cryptococcus neoformans via the pheromone response MAPK signaling pathway

    PubMed Central

    Jung, Kwang-Woo; Kim, Seo-Young; Okagaki, Laura H.; Nielsen, Kirsten; Bahn, Yong-Sun

    2010-01-01

    The mitogen-activated protein kinase (MAPK) pathways control diverse cellular functions in pathogenic fungi, including sexual differentiation, stress-response, and maintenance of cell wall integrity. Here we characterized a C. neoformans gene, which is homologous to the yeast Ste50 that is known to play an important role in mating pheromone response and stress response as an adaptor protein to the Ste11 MAPK kinase kinase in Saccharomyces cerevisiae. The C. neoformans Ste50 was not involved in any of the stress responses or virulence factor production (capsule and melanin) that are controlled by the HOG and Ras/cAMP signaling pathways. However, Ste50 was required for mating in both serotype A and serotype D C. neoformans strains. The ste50Δ mutant was completely defective in cell-cell fusion and mating pheromone production. Double mutation of the STE50 gene blocked increased production of pheromone and the hyper-filamentation phenotype of cells deleted of the CRG1 gene, which encodes the RGS protein that negatively regulates pheromone responsive G-protein signaling via the MAPK pathway. Regardless of the presence of the basidiomycota-specific SH3 domains of Ste50 that are known to be required for full virulence of Ustilago maydis, Ste50 was dispensable for virulence of C. neoformans in a murine model of cryptococcosis. In conclusion, the Ste50 adaptor protein controls sexual differentiation of C. neoformans via the pheromone-responsive MAPK pathway but is not required for virulence. PMID:20971202

  3. Evidence for TLR4 and FcRγ-CARD9 activation by cholera toxin B subunit and its direct bindings to TREM2 and LMIR5 receptors.

    PubMed

    Phongsisay, Vongsavanh; Iizasa, Ei'ichi; Hara, Hiromitsu; Yoshida, Hiroki

    2015-08-01

    Cholera toxin (CTX) is a virulent factor of Vibrio cholerae that causes life-threatening diarrheal disease. Its non-toxic subunit CTB has been extensively studied for vaccine delivery. In immune cells, CTB induces a number of signaling molecules related to cellular activation and cytokine production. The mechanisms by which CTB exerts its immunological effects are not understood. We report here the immunological targets of CTB. The unexpected finding that GM1 ganglioside inhibited NF-κB activation in human monocytes stimulated with CTX and agonists of Toll-like receptors (TLR) suggests the possibility of CTX-TLR interaction. Indeed, CTX-induced IL-6 production was substantially reduced in MyD88(-/-) or TLR4(-/-) macrophages. Ectopic expression of TLR4 was required for CTX-induced NF-κB activation in HEK 293 cells. Furthermore, the inflammatory capacity of CTB was lost in the absence of TLR4, adaptor protein FcRγ, or its downstream signaling molecule CARD9. Attempts have been made to identify CTB-binding targets from various C-type lectin and immunoglobulin-like receptors. CTB targeted not only GM1 and TLR4 but also TREM2 and LMIR5/CD300b. CTB-TREM2 interaction initiated signal transduction through adaptor protein DAP12. The binding of CTB inhibited LMIR5 activation induced by its endogenous ligand 3-O-sulfo-β-d-galactosylceramide C24:1. In summary, CTB targets TLR4, FcRγ-CARD9, TREM2, and LMIR5. These findings provide new insights into the immunobiology of cholera toxin.

  4. Human parainfluenza virus type 2 V protein inhibits TRAF6-mediated ubiquitination of IRF7 to prevent TLR7- and TLR9-dependent interferon induction.

    PubMed

    Kitagawa, Yoshinori; Yamaguchi, Mayu; Zhou, Min; Nishio, Machiko; Itoh, Masae; Gotoh, Bin

    2013-07-01

    Paramyxovirus V proteins block Toll-like receptor 7 (TLR7)- and TLR9-dependent signaling leading to alpha interferon production. Our recent study has provided evidence that interaction of the V proteins with IRF7 is important for the blockade. However, the detailed mechanisms still remain unclear. Here we reexamined the interaction of the human parainfluenza virus type 2 (HPIV2) V protein with signaling molecules involved in TLR7/9-dependent signaling. Immunoprecipitation experiments in HEK293T cells transfected with V protein and one of the signaling molecules revealed that the V protein interacted with not only IRF7 but also TRAF6, IKKα, and MyD88. Whereas overexpression of TRAF6 markedly enhanced the level of V protein associating with IRF7, IKKα, and MyD88 in HEK293T cells, the level of V protein associating with TRAF6 was little affected by overexpression of IRF7, IKKα, and MyD88. Moreover, knockdown or knockout of endogenous TRAF6 in HEK293T or mouse embryonic fibroblast cells resulted in dissociation of the V protein from IRF7, IKKα, and MyD88. These results demonstrate that binding of the V protein to IRF7, IKKα, and MyD88 is largely indirect and mediated by endogenous TRAF6. It was found that the V protein inhibited TRAF6-mediated lysine 63 (K63)-linked polyubiquitination of IRF7, which is prerequisite for IRF7 activation. Disruption of the tryptophan-rich motif of the V protein significantly affected its TRAF6-binding efficiency, which correlated well with the magnitude of inhibition of K63-linked polyubiquitination and the resultant activation of IRF7. Taken together, these results suggest that the HPIV2 V protein prevents TLR7/9-dependent interferon induction by inhibiting TRAF6-mediated K63-linked polyubiquitination of IRF7.

  5. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING

    PubMed Central

    Holm, Christian K; Jensen, Søren B; Jakobsen, Martin R; Cheshenko, Natalia; Horan, Kristy A; Moeller, Hanne B; Gonzalez-Dosal, Regina; Rasmussen, Simon B; Christensen, Maria H.; Yarovinsky, Timur O; Rixon, Frazer J; Herold, Betsy C; Fitzgerald, Katherine A; Paludan, Søren R

    2012-01-01

    The innate immune system senses infection by detecting evolutionarily conserved molecules essential for microbial survival or abnormal location of molecules. Here we demonstrate the existence of a novel innate detection mechanism, which is induced by fusion between viral envelopes and target cells. Virus-cell fusion specifically stimulated a type I interferon (IFN) response with expression of IFN-stimulated genes (ISGs), in vivo recruitment of leukocytes, and potentiation of Toll-like receptor 7 and 9 signaling. The fusion dependent response was dependent on stimulator of interferon genes (STING) but independent of DNA, RNA and viral capsid. We suggest that membrane fusion is sensed as a danger signal with potential implications for defense against enveloped viruses and various conditions of giant cell formation. PMID:22706339

  6. OM85-BV Induced the Productions of IL-1β, IL-6, and TNF-α via TLR4- and TLR2-Mediated ERK1/2/NF-κB Pathway in RAW264.7 Cells

    PubMed Central

    Luan